
Revision 2.8
September 2024

613875-009

Intel® Ethernet Controller E810
Datasheet

NEX Cloud Networking Group (NCNG)

PRODUCT FEATURES

General
 Support both 50Gb/s PAM4 and 25Gb/s NRZ (E810-CAM2/

CAM1 only)
 Dynamic Device Personalization (DDP) with

fully-programmable pipeline that can add or modify protocols
on-demand, allowing for fast-paced innovations

 Application Device Queues (ADQ) feature to increase
application predictability, reduce application latency, and
improve application throughput

 Support both iWARP and RoCEv2 RDMA, selectable via
software per port for low latency, high throughput workload

 Support for 8x10GbE connections for appliance designs
(E810-CAM2 only)

 Optimized Tx-Scheduler for steady Tx traffic flow to avoid
burst send and in-network congestion

 IEEE 1588 support for precision time measurement
 Enhanced Data Plane Development Kit (DPDK) for Network

Functions Virtualization acceleration, advanced packet
forwarding, and highly-efficient packet processing

 More resources to support higher density server
virtualization deployments: 256 VFs, 768 VSIs

 Flat NVM structure with dual banks to facilitate Any-to-Any
NVM update and allow rolling back to previously known good
NVM when device cannot load from current active bank

 Extensive test and validation with ecosystem devices
including switches, cables and transceivers for
interoperability

Three SKUs
 E810-CAM2:25x25mm; PCI Express v4.0/v3.0 x16/x8;

2x100Gb, 2x50Gb, 4x25Gb, 8x10Gb, 50Gb PAM4/25Gb NRZ
SerDes

 E810-CAM1:25x25mm; PCI Express v4.0/v3.0 x16/x8;
1x100Gb, 2x50Gb, 4x25Gb, 50Gb PAM4/25Gb NRZ SerDes

 E810-XXVAM2:21x21mm; PCI Express v4.0/v3.0 x8;
1x50Gb, 2x25Gb, 25Gb NRZ SerDes

Storage Networking
 Data Center Bridging (DCB)
 Stateless L3/L4 offloads for iSCSI, NAS, NFS
 Server Message Block (SMB)

NFV and Network Virtualization Overlay (NVO) Support
 Dynamic Device Personalization (DDP) with programmable

pipeline for flexible frame format support
 Intelligent Flow Direction: Receiver Side Scaling (RSS),

Intel® Ethernet Flow Director, Application Device Queues
(ADQ)

 Comprehensive Network Virtualization Overlay protocols
support.

 vSwitch Assist
 QoS: Priority-based Flow Control (802.1Qbb); Enhanced

Transmission Selection (802.1Qaz); Differentiated Services
Code Point (DSCP)

Server Virtualization Support
 SR-IOV: 8 PFs, 256 VFs, 256 Queues per PF, 2K queue pairs

total, 768 VSIs
 Adaptive VF driver
 Scalable IO Virtualization (768 VDEVs)
 Programmable Virtual Ethernet Bridging (VEB) with ACL
 Virtual Machine Device Queue (VMDq); Virtual Machine QoS

(VMQoS)

Remote Direct Memory Access (RDMA)
 Both iWARP and RoCEv2 support selectable via software per

port

Precision Clocks Synchronization
 IEEE 1588 v1 and v2 PTP/802.1AS

Management
 Firmware Management Protocol (FMP)
 MCTP over PCIe and SMBus/I2C
 PLDM over MCTP; PLDM Monitoring; PLDM Firmware Update;

PLDM for RDE
 NET2BMC/OS2BMC

Security
 Hardware-based Root of Trust
 Authentication on Read and Power On; Allowlist approach on

NVM update
 Built-in detection of firmware/critical setting corruption with

automated device recovery

Intel® Ethernet Controller E810 Datasheet
Revision History

2 613875-009

Revision History

Revision Date Notes

2.8 September, 2024 Updates include the following:
• Add Note in Section 3.2.5.3, “Initialization”
• Updated Section 3.2.5.4.1, “Link Status Changes”
• Updated description in Section 6.3.66.4, “NC-SI Configuration 1 (0x0003)” - Bit 7:5
• Updated default NVM value and description in Section 6.3.66.5, “NC-SI Configuration 2

(0x0004)” - Bit 15:14
• Updated field name in Section 6.3.66.5, “NC-SI Configuration 2 (0x0004)” - Bit 13:9
• Updated field name in Section 6.3.66.5, “NC-SI Configuration 2 (0x0004)” - Bit 8:4
• Updated description in Section 6.3.103.7, “Flags and Device Part Number (0x0006)” -

Bit 15:8
• Updated description in Section 6.3.104.7, “Flags and Device Part Number (0x0006)” -

Bit 15:8
• Updated description in Section 6.3.105.7, “Flags and Device Part Number (0x0006)” -

Bit 15:8
• Updated description in Section 6.3.106.7, “Flags and Device Part Number (0x0006)” -

Bit 15:8
• Updated bit value in Section 13.2.2.3.13, “PCIe Capabilities Support - GLPCI_CAPSUP

(0x0009DE8C; RO)” - Field ECRC_GEN_EN and ECRC_CHK_EN

2.7 March 11, 2024 Updates include the following:
• Updated note following Table 2-5 in Section 2.2.3, “NC-SI Interface Pins”.
• Changed value of 25GBASE-SR/LR in SFP28 module with RS in Table 3-20, “Supported

Electrical Modes”.

613875-009 3

Intel® Ethernet Controller E810 Datasheet
Revision History

2.6 May 23, 2023 Updates include the following:
• Updated Table 1-2, “Standards Supported by the E810”.
• Added Section 3.2.5.4.2, “Reference Input Changes”.
• Updated Table 3-44, “SyncE Commands” to add:

 — Get Input Frequency List (0x0C6C).
 — Get Output Frequency List (0x0C6D).

• Updated Table 3-55, “Set CCU Input Configuration Command”.
• Updated Table 3-59, “Get CCU Input Configuration Command Response”.
• Updated Section 3.2.6.7, “Set CCU Output Configuration (0x0C64)”.
• Updated Table 3-61, “Set CCU Output Configuration Command”.
• Updated Table 3-65, “Get CCU Output Configuration Command Response”.
• Added Section 3.2.6.14, “Get Input Frequency List (0x0C6C)”.
• Added Section 3.2.6.15, “Get Output Frequency List (0x0C6D)”.
• Updated Section 3.3.8.12.3, “Phase Offset Compensation Lo (0x0002)”.
• Updated Section 3.3.8.12.4, “Phase Offset Compensation Hi (0x0003)”.
• Updated Section 3.3.8.12.5, “Max Phase Offset Compensation Lo (0x0004)”.
• Updated Section 3.3.8.12.6, “Max Phase Offset Compensation Hi (0x0005)”.
• Updated Section 3.4.9.2, “Intel Key Generation and Intel Code Signing System”.
• Updated Table 3-115, “NVM Write Completion (on ARQ)”.
• Updated Table 3-125, “NVM Write Activate Response”.
• Updated Table 6-5, “Module TypeID Table” to add FRU Data TLV (Module TypeID =

0x14F).
• Updated PLDM Header section register descriptions in the following sections:

 — Section 6.2.1.19, “PackageVersionString_0 (0x0012)” through Section 6.2.1.27,
“PackageVersionString_8 (0x001A)”

 — Section 6.2.1.35, “ComponentImageSetVersionString_0 (0x0022)” through
Section 6.2.1.43, “ComponentImageSetVersionString_8 (0x002A)”

 — Section 6.2.1.100, “FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_0 (0x0063)” through Section 6.2.1.115,
“FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_15 (0x0072)”

• Updated NVM Content section:
 — Updated the Default NVM Value of the following fields in Section 6.3.34.4, “Module

Logging Enable [n=0] (0x0003)”:
• Module Link Topology Detection Warning Logging Enable (Bit 14)
• Module Link Topology Detection Normal Logging Enable (Bit 13)
• Module Link Management Warning Logging Enable (Bit 10)
• Module General Normal Logging Enable (Bit 1)

 — Updated the Default NVM Value of the following fields in Section 6.3.34.5, “Module
Logging Enable [n=1] (0x0004)”:
• Module MDIO Error Logging Enable (Bit 15)
• Module MDIO Warning Logging Enable (Bit 14)
• Module MDIO Normal Logging Enable (Bit 13)
• Module SDP Error Logging Enable (Bit 11)
• Module SDP Warning Logging Enable (Bit 10)
• Module SDP Normal Logging Enable (Bit 9)
• Module I2C Error Logging Enable (Bit 7)
• Module I2C Warning Logging Enable (Bit 6)
• Module I2C Normal Logging Enable (Bit 5)
• Module Dreadnought Lake Warning Logging Enable (Bit 2)
• Module Dreadnought Lake Normal Logging Enable (Bit 1)

Revision Date Notes

Intel® Ethernet Controller E810 Datasheet
Revision History

4 613875-009

2.6
(Continued)

May 23, 2023 • Updated NVM Content section (continued):
 — Updated the Default NVM Value of the following fields in Section 6.3.34.6, “Module

Logging Enable [n=2] (0x0005)”:
• Module DCBx Warning Logging Enable (Bit 14)
• Module DCBx Normal Logging Enable (Bit 13)
• Module LLDP Warning Logging Enable (Bit 10)
• Module LLDP Normal Logging Enable (Bit 9)
• Module HDMA Error Logging Enable (Bit 7)
• Module HDMA Warning Logging Enable (Bit 6)
• Module HDMA Normal Logging Enable (Bit 5)
• Module Admin Queue Warning Logging Enable (Bit 2)
• Module Admin Queue Normal Logging Enable (Bit 1)

 — Updated the Default NVM Value of the following fields in Section 6.3.34.7, “Module
Logging Enable [n=3] (0x0006)”:
• Module Authentication Warning Logging Enable (Bit 14)
• Module Authentication Normal Logging Enable (Bit 13)
• Module NVM Warning Logging Enable (Bit 10)
• Module NVM Normal Logging Enable (Bit 9)
• Module DCB Warning Logging Enable (Bit 2)
• Module DCB Normal Logging Enable (Bit 1)

 — Updated the Default NVM Value of the following fields in Section 6.3.34.8, “Module
Logging Enable [n=4] (0x0007)”:
• Module Switch Warning Logging Enable (Bit 14)
• Module Switch Normal Logging Enable (Bit 13)
• Module Parser Warning Logging Enable (Bit 10)
• Module Parser Normal Logging Enable (Bit 9)
• Module IOSF Warning Logging Enable (Bit 6)
• Module IOSF Normal Logging Enable (Bit 5)
• Module VPD Warning Logging Enable (Bit 2)
• Module VPD Normal Logging Enable (Bit 1)

 — Updated the Default NVM Value of the following fields in Section 6.3.34.9, “Module
Logging Enable [n=5] (0x0008)”:
• Module Post Warning Logging Enable (Bit 14)
• Module Post Normal Logging Enable (Bit 13)
• Module ACL Warning Logging Enable (Bit 10)
• Module ACL Normal Logging Enable (Bit 9)
• Module TX Queue Management Warning Logging Enable (Bit 6)
• Module TX Queue Management Normal Logging Enable (Bit 5)
• Module Scheduler Warning Logging Enable (Bit 2)
• Module Scheduler Normal Logging Enable (Bit 1)

 — Updated the Default NVM Value of the following fields in Section 6.3.34.10,
“Module Logging Enable [n=6] (0x0009)”:
• Module SyncE Warning Logging Enable (Bit 14)
• Module SyncE Normal Logging Enable (Bit 13)
• Module Manageability Warning Logging Enable (Bit 10)
• Module Manageability Normal Logging Enable (Bit 9)
• Module Task Dispatcher Warning Logging Enable (Bit 6)
• Module Task Dispatcher Normal Logging Enable (Bit 5)
• Module Watchdog Warning Logging Enable (Bit 2)
• Module Watchdog Normal Logging Enable (Bit 1)

Revision Date Notes

613875-009 5

Intel® Ethernet Controller E810 Datasheet
Revision History

2.6
(Continued)

May 23, 2023 • Updated NVM Content section (continued):
 — Updated the Default NVM Value of the following fields in Section 6.3.34.11,

“Module Logging Enable [n=7] (0x000A)”:
• Module Version Warning Logging Enable (Bit 14)
• Module Version Normal Logging Enable (Bit 13)
• Module PF Registration Warning Logging Enable (Bit 10)
• Module PF Registration Normal Logging Enable (Bit 9)
• Module Time Sync Warning Logging Enable (Bit 6)
• Module Time Sync Normal Logging Enable (Bit 5)
• Module Health Warning Logging Enable (Bit 2)
• Module Health Normal Logging Enable (Bit 1)

 — Updated register descriptions in the following sections:
• Section 6.3.39.3, “ComponentImageSetVersionString_0 (0x0002)” through

Section 6.3.39.18, “ComponentImageSetVersionString_15 (0x0011)”
 — Changed the value of Bit 5 of Section 6.3.42.4, “Port Options 1[n] (0x0003 +

10*n, n=0...7)” from Reserved to No-FEC.
 — Added the following sections to the map:

• Section 6.3.49, “LLDP Preserved 2 Section”
• Section 6.3.50, “WA Enable TLV Section”
• Section 6.3.51, “FRU Data Section”
• Section 6.3.52, “SyncE DPLL Input Settings Section”

 — Added LCB auto-load workaround (Bits 4:3) to Section 6.3.61.28, “Features
Enable (0x0022)”.

 — Updated table in Section 6.3.76, “Extended ML Header Section” to add:
• CPK PCIe Config Group 1 Hash Low (Word Offset 0x0018)
• CPK PCIe Config Group 1 Hash High (Word Offset 0x0018)

 — Added Section 6.3.76.25, “CPK PCIe Config Group 1 Hash Low (0x0018)”.
 — Added Section 6.3.76.26, “CPK PCIe Config Group 1 Hash High (0x0019)”.

• Added Section 7.8.10.1, “Shared Resources”.
• Updated table in Table 7-22, “Switch Configuration Admin Commands (0x02xx)” to add

Change Resource Ownership Type command (0x020B).
• Updated Section 7.8.12.2.2, “Set Port Parameters (0x0203)” to add Byte 22,

“Loopback Mode”.
• Updated Return Value/VFID (Bytes 6-7) in Table 7-33, “Allocate Resource Response”.
• Updated descriptions of Bits 14-15 of Offset 0-1 in Table 7-34, “Resource Description

Table Entry”.
• Updated Section 7.8.12.2.5, “Free Resource (0x0209)”.
• Updated Section 7.8.12.2.6, “Get Allocated Resource Descriptors (0x020A)”.
• Added Section 7.8.12.2.7, “Change Resource Ownership Type (0x020B)”.
• Updated description of Allow Loopback field in Table 7-50, “Add VSI Command Buffer”.
• Updated Section 7.8.12.6.3, “Remove Switch Rules (0x02A2)”.
• Updated Section 8.3.4.3.6.5, “Move Scheduling Elements (0x0408)”.
• Updated Table 8-38, “Move Scheduling Elements Buffer per Sibling Group” to add 2-bit

Mode field.
• Redefined Bits 27-28 in Byte 3 of 1588 (0x0046) capability in Table 9-50, “Resources

Recognized by This Version of the Command”.
• Added the following capabilities to Table 9-50, “Resources Recognized by This Version

of the Command”:
 — OROM Update in Recovery Mode (0x0090)
 — RDMA RoCEv2 LAG (0x0092)

• Updated Section 9.7.5.1, “Transmit Timestamp”.
• Added note related to DCBx ETS Configuration TLV in Section 9.8.4.2, “Supported

TLV”.
• Updated Table 9-70, “LLDP Admin Queue Commands” to add Execute Pending LLDP

MIB command (0x0A0B).
• Added Pending Event Enable field to Configure LLDP MIB Change Event command. See

Section 9.8.5.2.2.2, “Configure LLDP MIB Change Event (0x0A01)”.
• Updated Section 9.8.5.2.2.2.1, “LLDP MIB Change Event”.
• Updated Return Value/VFID field in Table 9-77, “Add LLDP TLV Response”.
• Updated Return Value/VFID field in Table 9-79, “Update LLDP TLV Response”.

Revision Date Notes

Intel® Ethernet Controller E810 Datasheet
Revision History

6 613875-009

2.6
(Continued)

May 23, 2023 • Updated Return Value/VFID field in Table 9-90, “Set Local LLDP MIB Response”.
• Added Section 9.8.5.2.2.12, “Execute Pending LLDP MIB (0x0A0B)”.
• Updated Table 10-29, “LAN Tx-Queue Context in the QTXCOMM_CNTX Array”.
• Updated Table 10-32, “Tx-Queue Handling Admin Queue Commands” to add Move

RDMA Queue Sets command.
• Added Section 10.5.5.8.5, “Move RDMA Queue Sets (0x0C34)”.
• Updated Table 12-16, “OEM Commands Summary” to add the following commands:

 — Get Status (0x062)
 — SyncE Status change Event (0x083)

• Added Section 12.6.4.20, “Get Status (Intel Command 0x62)”.
• Added Section 12.6.4.22, “SyncE Status Change Event (Intel OEM NC-SI AEN 0x83)”.
• Updated Table 12-55, “Get MCTP Version Support Returned Value”.
• Updated Table 12-56, “Get Message Type Support Response”.
• Added Section 12.7.8, “SPDM over MCTP”.
• Updated Table 12-66, “GetPLDMVersion Command and Response”.
• Updated Table 12-68, “GetPLDMCommand Command and Response”.
• Updated Table 12-75, “PollForPlatformEventMessage Command and Response”.
• Updated table in Section 12.8.3.3.4.2, “Controller Composite State Sensor PDR”.
• Updated table in Section 12.8.3.3.4.3, “Plug Composite State Sensor PDR”.
• Updated Table 12-95, “PDRs Corresponding to Supported Schemas” to add the

following PDRs:
 — PCIeDevice
 — NetworkAdapterMetrics
 — PortMetrics
 — NetworkDeviceFunctionMetrics

• Updated Figure 12-14, “ACD Profile PDRs and Links”.
• Updated table in Section 12.8.3.3.8.1, “NetworkAdapter PDR”.
• Updated table in Section 12.8.3.3.8.5, “Port PDR”.
• Updated table in Section 12.8.3.3.8.6, “NetworkDeviceFunction PDR”.
• Added Section 12.8.3.3.8.7, “PCIeDevice PDR”.
• Updated table in Section 12.8.3.3.8.8, “PCIeFunctions PDR”.
• Added Section 12.8.3.3.8.10, “NetworkAdapterMetrics PDR”.
• Added Section 12.8.3.3.8.11, “PortMetrics PDR”.
• Added Section 12.8.3.3.8.12, “NetworkDeviceFunctionMetrics PDR”.
• Updated table in Section 12.8.3.3.10.1, “NetworkAdapter.ResetSetingsToDefault Action

PDR”.
• Updated table in Section 12.8.3.3.10.2, “Port.Reset Action PDR”.
• Updated Section 12.8.6.1.2, “UPDATE, REPLACE Operation Guidelines”.
• Updated Table 12-102, “RDE Commands Summary Table” to add SelectRegistryVersion

command.
• Updated Table 12-103, “Handle per Resource”.
• Updated Table 12-104, “URI per Resource”.
• Updated table in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.
• Updated Table 12-105, “Resources Parameters”.
• Updated table in Section 12.8.6.3.17, “RDEOperationKill (0x15)”.
• Updated Section 12.8.6.5.3.1, “Port v1.6.0”.
• Updated Section 12.8.6.5.3.4, “NetworkAdapter v1.7.0”.
• Updated Section 12.8.6.5.3.5, “NetworkDeviceFunction v1.3.3”.
• Added Section 12.8.6.5.3.10, “NetworkAdapterMetrics”.
• Added Section 12.8.6.5.3.11, “PortMetrics”.
• Added Section 12.8.6.5.3.12, “NetworkDeviceFunctionMetrics”.
• Updated Table 15-4, “Set Health Status Configuration Command and Response”.
• Updated Section 15.4.1.1, “Supported Failure Scenarios by Firmware”
• Updated Table 16-8, “E810-CAM2/CAM1 MAX Power - PCIe Gen 4 and PCIe Gen 3”.
• Updated Table 16-9, “E810-CAM2/CAM1 Typical Active Power - PCIe Gen 4 and PCIe

Gen 3”.
• Updated Table 16-33, “Supported Flash Parts”.

Revision Date Notes

613875-009 7

Intel® Ethernet Controller E810 Datasheet
Revision History

2.5 November 21, 2022 Updates include the following:
• Updated Table 1-1, “E810 Features Summary”.
• Updated Table 1-2, “Standards Supported by the E810”.
• Added Section 3.2.5, “SyncE Flows”.
• Added Section 3.2.6, “SyncE Commands”.
• Updated Table 3-90, “128-Bit Word Extended PHY Capabilities”.
• Updated Table 3-91, “64-Bit Word Extended PHY Capabilities”.
• Updated Table 3-98, “External Topology Device NVM Section Format”.
• Updated Node Type field in Section 3.3.8.2.1, “Node Type and Section Length

(0x0000)”.
• Updated Node Part Number field in Section 3.3.8.2.4, “Node Part Number and Node

Options (0x0003)”.
• Updated I/O Type and I/O Function / I/O Number fields in Section 3.3.8.3.2, “I/O Type

and Driving Interface (0x0001 + n*2)”.
• Added Section 3.3.8.11, “Node Clock Configuration Header Section”.
• Added Section 3.3.8.12, “Node Clock Input Configuration Section”.
• Added Section 3.3.8.13, “Node Clock Output Configuration Section”.
• Added Section 3.3.8.14, “Node Recovered Clock Output Configuration Section”.
• Added Section 3.3.8.15, “Node Clock DPLL Configuration Section”.
• Added Section 3.3.8.27, “Clock Controller Node”.
• Added Section 3.3.8.28, “Clock MUX Node”.
• Added Section 3.3.8.29, “GPS Node”.
• Added Section 3.3.9.4.6, “Generic Clock Mux”.
• Updated Section 3.4.1, “General Overview”.
• Updated Section 3-33, “Flash Wear-Out Protection Algorithm”.
• Updated Section 4-20, “Completion for the Done Alternate Write Command”.
• Updated Section 6-5, “Module TypeID Table”.
• Updated Section 6.2, “PLDM Header”.
• Updated NVM Content section:

 — Updated table in Section 6.3.21.3, “Setup Options PCI Function[n] (0x0002 + 1*n,
n=0...7)”.

 — Added Section 6.3.48, “Tx-Scheduler Topology User Selection Section”.
 — Updated Section 6.3.56, “CORER Registers Auto-Load Module Section”.
 — Updated the Default NVM Value of Max PF per Port field in Section 6.3.61.9, “Max

PF and VF per Port (0x0008)”.
 — Updated description of the HII Version Check For Seamless Update Enable field in

Section 6.3.61.28, “Features Enable (0x0022)”.
 — Updated Section 6.3.64, “GFID Module Section”.
 — Updated description of the SMBus Connection Speed field in Section 6.3.66.3,

“SMBus Notification Timeout and Flags (0x0002)”.
 — Added MCTP Over PCIe Segmentation Enable field to Section 6.3.66.12, “NC-SI

over MCTP Configuration (0x000F)”.
 — Updated Section 6.3.76, “Extended ML Header Section”.
 — Updated the Default NVM Value of the Device Blank NVM Device ID field in Section

6.3.88.1, “Device Blank NVM Device ID (0x0000)”.
 — Updated the Default NVM Value of the Device Blank NVM Device ID field in Section

6.3.113.1, “Device Blank NVM Device ID (0x0000)”.
• Updated Table 7-22, “Switch Configuration Admin Commands (0x02xx)” to add:

 — Set VLAN Mode Parameters command (0x020C).
 — Get VLAN Mode Parameters command (0x020D).
 — Set DMA PASID IDX Map command (0x0214).
 — Get DMA PASID IDX Map command (0x0215).

• Updated description of Offset (Bytes) 0-1 in Table 7-26, “Get Switch Configuration –
Port/VSI Element”.

• Updated description of the Command Flags field in Table 7-27, “Set Port Parameters
Command”.

• Updated description of Offset (Bytes) 0-1 and added Offset (Bytes) 10-11 in Table 7-
31, “Get Resource Allocation Response Buffer Entry”.

• Updated description of Offset (Bytes) 0-1 in Table 7-34, “Resource Description Table
Entry”.

Revision Date Notes

Intel® Ethernet Controller E810 Datasheet
Revision History

8 613875-009

2.5
(Continued)

November 21, 2022 • Updated description of the Resource field in Table 7-38, “Get Allocated Resource
Descriptors Command”.

• Updated description of the Resource field in Table 7-39, “Get Allocated Resource
Descriptors Response”.

• Added Section 7.8.12.2.8, “Set VLAN Mode Parameters (0x020C)”.
• Added Section 7.8.12.2.9, “Get VLAN Mode Parameters (0x020D)”.
• Updated Table 7-50, “Add VSI Command Buffer”.
• Added Section 7.8.12.3.5, “Set DMA PASID IDX Map (0x0214)”.
• Added Section 7.8.12.3.6, “Get DMA PASID IDX Map (0x0215)”.
• Updated Table 7-179, “Segment Type Numbers”.
• Updated Table 7-180, “Global Metadata Segment”.
• Updated Section 7.11.5.3, “Configuration Data Segment”:

 — Updated Figure 7-35, Overview of the E810 Data Segments.
 — Updated Table 7-182, “E810 Data Segment”.

• Updated the Return Value/VFID filed description in Table 7-194, “Download Package
Response”.

• Updated Table 7-283, “Flex Descriptor Table”.
• Updated Table 8-3, “CGD Configuration for Each Usage”.
• Updated Section 8.3.3, “Network Topologies in Tx-Scheduler”.
• Added Table 8-24, “Tx-Scheduler 5-Layer and 9-Layer Topologies”.
• Updated Table 8-25, “Scheduler Configuration Admin Queue Commands”.
• Added Section 8.3.4.3.6.11, “Set Tx-Scheduler Topology (0x0417)”.
• Added Section 8.3.4.3.6.12, “Get Tx-Scheduler Topology (0x0418)”.
• Updated Section 9.2.3.1, “Assumptions”.
• Updated Section 9.2.3.2.1, “PASID Context”.
• Updated Section 9.2.3.3, “Assignable Device Interface”.
• Updated Section 9.5.13.5, “Request Resource Ownership (0x0008)”.
• Updated Table 9-50, “Resources Recognized by This Version of the Command”.
• Updated Table 9-83, “Stop LLDP Agent Response”.
• Updated Table 9-85, “Start LLDP Agent Response”.
• Updated Section 10.4.2.2.3, “Programming Status Descriptor Write-Back Format”.
• Updated Section 10.4.3.3, “Configure No-Drop Policy Admin Command (0x00112)”.
• Updated Section 10.5.3.1.1, “Transmit Data Descriptor”.
• Removed Section 10.5.4.9, “Tx Time (SO_TXTIME) Overview Descriptors and

Doorbells”.
• Updated Section 10.5.7, “Performance Consideration”.
• Updated Table 12-1, “System Manageability Features”.
• Updated Section 12.6.3.1, “NC-SI Link State Control”.
• Updated Table 12-15, “OEM-Specific Command Response Reason Codes” to add

Reason Code 0x50A0 (Driver Conflict).
• Updated Table 12-16, “OEM Commands Summary” to add the Config LLDP FW Agent

command (0x26),
• Added Section 12.6.4.15, “LLDP Firmware Agent Configuration”:

 — Added Section 12.6.4.15.1, “Config LLDP FW Agent Command (Intel Command
0x26)”.

 — Added Section 12.6.4.15.1.1, “Config LLDP FW Agent Response”.
• Added Controller Information Items to Table 12-40 related to Section 12.6.4.17.1.1,

“Get Controller Information Response”.
• Updated Section 12.7.2.2, “PCIe Discovery Process”.
• Added note to Section 12.8.2.1.11, “SetSensorThresholds (0x13)”.
• Updated Section 12.8.3.3.6.1, “Thermal Sensors PDR”.
• Update Table 12-97, “Version Strings and Comparison Stamps”.
• Updated Section 12.8.6.5.3.4, “NetworkAdapter v1.7.0”.
• Updated Section 12.8.6.5.3.7, “PCIeDevice.v1.4.0”.
• Updated Section 12.8.6.5.3.9, “PCIeFunction.v1.2.3”.

Revision Date Notes

613875-009 9

Intel® Ethernet Controller E810 Datasheet
Revision History

2.5
(Continued)

November 21, 2022 • Updated DCB registers in Section 13.2.2.17, “PF - DCB Registers”:
 — Added Section 13.2.2.17.47, “DCB TLPM TC PFC Mapping - GLDCB_TLPM_TC2PFC

(0x000A0194; RW)”.
 — Added Section 13.2.2.17.48, “DCB TC to PFC Mapping - GLRPB_TC2PFC

(0x000AC040; RW)”.
 — Added Section 13.2.2.17.72, “DCB TC to PFC Mapping - GLDCB_TCUPM_TC2PFC

(0x000BC34C; RW)”.
 — Updated Section 13.2.2.17.103, “DCB TC to PFC Mapping - GLDCB_TC2PFC

(0x001D2694; RW)”.
• Updated PE registers in Section 13.2.2.28, “PF - Protocol Engine Registers”:

 — Added Section 13.2.2.28.53, “Critical Error Status and Control - GLPE_CRITERR
(0x00534000; RW)”.

• Updated Manageability registers in Section 13.2.2.29, “PF - Manageability Registers”:
 — Updated Section 13.2.2.29.7, “Firmware Status - GL_MNG_FWSM (0x000B6134;

RO)”.
• Updated Table 15-11, “Health Status Codes”.

2.4 March 20, 2022 Updates include the following:
• Added Section 3.3.10.1, “Set GPIO by Function (0x06E6)”.
• Added Section 3.3.10.2, “Get GPIO by Function (0x06E7)”.
• Updated Table 4-27, “Resources per Configuration”.
• Updated Table 4-28, “Resource Distribution”.
• Updated MajorSchemaNameLength value in Section 12.8.3.3.8.6,

“NetworkDeviceFunction PDR”.
• Updated MajorSchemaNameLength value in Section 12.8.3.3.8.9, “PCIeFunction PDR”.
• Updated AdditionalResourceID [0] value in Section 12.8.3.3.9.2, “EthernetInterface

PDR”.
• Updated ADJUST_H field description in Section 13.2.2.27.17, “Global TimeSync

Shadow Adjust High - GLTSYN_SHADJ_H[n] (0x00088910 + 0x4*n, n=0...1; RW)”.

2.3 September 28, 2021 Updates include the following:
• Updated description of cc_cfg_valid field in Section 11.5.2.3, “CQP Context”.
• Corrected erroneous tolerance value in the table in Section 16.7.1, “Tolerance

Information”.

2.2 July 8, 2021 Updates include the following:
• Removed mezzanine card discussions, as mezzanine cards not supported with the

E810. Affected sections include:
 — Section 3.3.1, “Overview”
 — Section 3.3.2, “Link Topology Definition”
 — Section 3.3.3, “Topology Structures”
 — Section 3.3.3.4, “Link Topology Netlist”
 — Section 3.3.5, “Link Topology Use Cases”

• Added Section 3.3.4, “Link Default Override Mask NVM Section”.
• Added Section 3.3.6, “Topology Device Loading and Programming”.
• Added Section 3.3.7, “Block Access to External PHY During Its NVM Programming”.
• Added two new Link Topology Admin Commands:

 — Section 3.3.10.4, “Read/Write SFF EEPROM (0x06EE)”
 — Section 3.3.10.5, “Program Topology Device NVM (0x06F2)”

• Updated Section 3.4.9, “NVM Authentication Procedure” and the following subsections
therein:
 — Section 3.4.9.1, “Digital Signature Algorithm Details”
 — Section 3.4.9.2, “Intel Key Generation and Intel Code Signing System”

• Added Section 3.4.9.3, “Netlist Authentication During Update”.
• Updated POR flow in Section 4.1.2.1.
• Updated CORER flow in Section 4.1.2.3.2.
• Added Section 4.5.5, “Port Enable and Disable from BIOS (HII)”.
• Updated Section 6.2, “PLDM Header”.
• Updated Section 6.3, “NVM Content”.
• Updated Section 7.2.1, “Rx and Tx Pipeline Structure”.
• Updated Section 7.8.5.3.5, “Forwarding Actions”.

Revision Date Notes

Intel® Ethernet Controller E810 Datasheet
Revision History

10 613875-009

2.2
(Continued)

July 8, 2021 • Modified list of AQ commands in Section 8.3.4.3.6, “Admin Queue Commands” and
associated subsections.

• Updated Section 9.2.1.3, “Virtualization Supported Features”.
• Updated Section 9.2.2.2.1.1, “Tx Data Checks (GL_MDCK_TX _TDPU Register)”.
• Updated Table 9-7, “Malicious Driver - Tx-Descriptor Checks

(GL_MDCK_TDAT_TCLAN)”.
• Modified list of generic firmware admin commands in Section 9.5.13, “Generic

Firmware Admin Commands” and associated subsections.
• Updated Table 9-50, “Resources Recognized by This Version of the Command”.
• Added Section 9.5.13.9, “Set/Get Shared Driver Parameters (0x0C90)”.
• Updated the QINDEX and FLEX_VAL descriptions in Quad Word 0 in Section 10.5.3.3,

“FD Filter Programming Descriptor”.
• Added Section 10.5.4.9, “Tx Time (SO_TXTIME) Overview Descriptors and Doorbells”.
• Updated Table 10-29, “LAN Tx-Queue Context in the QTXCOMM_CNTX Array”.
• Updated Section 10.5.7, “Performance Consideration”.
• Updated Table 10-45, “Transmit Integrity Offload for Packet Types”.
• Updated Table 11-1, “Protocol Engine Features”.
• Updated Section 11.5.2.3, “CQP Context”.
• Updated Table 11-19, “CQP Error Codes”.
• Updated Section 11.6.3, “RoCEv2 QP Context Format”.
• Updated Section 12.6.3.2, “Set Link Error Codes”.
• Updated Section 12.6.4.1, “Overview”.
• Updated Table 12-15, “OEM-Specific Command Response Reason Codes”.
• Updated Table 12-16, “OEM Commands Summary”.
• Added Get SFF Module Temperature command and related sections:

 — Section 12.6.4.19, “SFF Module Temperature”
 — Section 12.6.4.19.1, “Get SFF Module Temperature Command (Intel Command

0x4B, Parameter 0x02)”
 — Section 12.6.4.19.1.1, “Get SFF Module Temperature Response”

• Updated Section 12.6.4.16.4, “Set BMC IP Address Command (Intel Command 0x40,
Parameter 0x04)”.

• Updated Table 12-40, “Controller Information Items”.
• Updated Section 12.8, “PLDM Support”.
• Updated Section 12.8.1.2.1, “GetPLDMVersion (0x03)”.
• Updated Section 12.8.1.2.3, “GetPLDMCommand (0x05)”.
• Updated Section 12.8.2.3, “PDR Dynamic Changes Flow”.
• Updated Section 12.8.2.3.1.1, “QSFP/SFP Plug Events”.
• Updated Section 12.8.2.3.1.2, “QSFP/SFP Unplug Events”.
• Updated Section 12.8.3.1, “Sensors Numbering”.
• Updated the sensorID value in the following sections:

 — Section 12.8.3.2.3.1, “Controller Health State Data Structure”
 — Section 12.8.3.2.3.2, “Controller Configuration Data Structure”
 — Section 12.8.3.2.3.3, “Controller Configuration Change Data Structure”
 — Section 12.8.3.2.3.4, “Controller Thermal Trip State Data Structure”

• Added Section 12.8.3.2.3.5, “Firmware Version State Data Structure”.
• Updated the sensorID value in the following sections:

 — Section 12.8.3.2.4.1, “Plug Health State Data Structure”
 — Section 12.8.3.2.4.2, “Plug Presence State Data Structure”
 — Section 12.8.3.2.4.3, “Plug Thermal Trip State Data Structure”
 — Section 12.8.3.2.5.1, “Port Link Sensor”

• Updated recordHandle and PLDMTerminusHandle values in Section 12.8.3.3.1,
“Terminus Locator PDR”.

• Updated Section 12.8.3.3.2.1, “NIC Association PDR”.
• Updated Section 12.8.3.3.2.2, “Controller Association PDR”.
• Updated Section 12.8.3.3.2.3, “Connector Association PDR”.
• Updated Section 12.8.3.3.2.4, “Pluggable Module Association PDR”.
• Updated Section 12.8.3.3.3.1, “Communication Channel Entity Association PDR”.
• Updated Section 12.8.3.3.4.1, “NIC Composite State Sensor PDR”.
• Updated Section 12.8.3.3.4.2, “Controller Composite State Sensor PDR”.

Revision Date Notes

613875-009 11

Intel® Ethernet Controller E810 Datasheet
Revision History

2.2
(Continued)

July 8, 2021 • Updated Section 12.8.3.3.4.3, “Plug Composite State Sensor PDR”.
• Updated Section 12.8.3.3.5.1, “Port Link State PDR”.
• Updated Section 12.8.3.3.6.1, “Thermal Sensors PDR”.
• Updated Section 12.8.3.3.6.2, “Pluggable Module Power Sensors PDR”.
• Updated Section 12.8.3.3.6.3, “Link Speed Sensors PDR”.
• Updated Section 12.8.3.3.7, “Redfish PDRs”.
• Updated Section 12.8.3.3.8, “ACD Profile PDRs and Links”.
• Updated Section 12.8.3.3.8.1, “NetworkAdapter PDR”.
• Updated Section 12.8.3.3.8.2, “NetworkInterface PDR”.
• Updated Section 12.8.3.3.8.3, “Ports PDR”.
• Updated Section 12.8.3.3.8.5, “Port PDR”.
• Updated Section 12.8.3.3.8.6, “NetworkDeviceFunction PDR”.
• Updated Section 12.8.3.3.8.9, “PCIeFunction PDR”.
• Added Section 12.8.3.3.10.2, “Port.Reset Action PDR”.
• Updated Section 12.8.5.2.1, “Package Versions” and added Table 12-97, “Version

Strings and Comparison Stamps”.
• Updated Table 12-103, “Handle per Resource”.
• Updated Table 12-104, “URI per Resource”.
• Updated Section 12.8.6.2, “RDE Commands Summary” and added the following

commands:
 — Section 12.8.6.3.6, “GetOEMCount (0x06)”
 — Section 12.8.6.3.7, “GetOEMName (0x07)”
 — Section 12.8.6.3.8, “GetRegistryCount (0x8)”
 — Section 12.8.6.3.9, “GetRegistryDetails (0x9)”
 — Section 12.8.6.3.11, “GetMessageRegistry (0xB)”

• Updated Table 12-105, “Resources Parameters”.
• Updated Section 12.8.6.5.2, “Common Fields in All Schemas”.
• Updated Section 12.8.6.5.3, “ACD Schemas” and the following subsections therein:

 — Section 12.8.6.5.3.1, “Port v1.6.0”
 — Section 12.8.6.5.3.2, “PortCollection”
 — Section 12.8.6.5.3.3, “NetworkInterface v1.2.0”
 — Section 12.8.6.5.3.4, “NetworkAdapter v1.7.0”
 — Section 12.8.6.5.3.5, “NetworkDeviceFunction v1.3.3”
 — Section 12.8.6.5.3.7, “PCIeDevice.v1.4.0”

• Added Section 12.8.6.5.5, “Generic Schemas” and the following subsections:
 — Section 12.8.6.5.5.1, “Event”
 — Section 12.8.6.5.5.2, “NetworkDevice Registry v1.0.1”

• Updated Section 14.3.5.12, “Link Capabilities 2 Register (0xCC; RO)”.
• Updated Table 14-20, “Extended Capabilities List”.
• Updated Section 14.4.7.2, “Link Control 3 Register (0x1D4; RW)”.
• Updated Section 14.4.10.9, “16.0 GT/s Lane Equalization Control Register (0x230 -

0x23C; HWInit)”.
• Updated Section 15.1.1, “ECC Support and ECC Error Flow”.
• Added Section 15.3, “Device Diagnostics” and the following subsections:

 — Section 15.3.1, “Firmware Logging Overview”
• Section 15.3.1.1, “NVM Default Firmware Log Configuration”
• Section 15.3.1.2, “Persistent Crash Log”

 — Section 15.3.2, “Health Status Commands”
• Section 15.3.2.1, “Set Health Status Configuration (0xFF20)”
• Section 15.3.2.2, “Get Supported Health Status Codes (0xFF21)”
• Section 15.3.2.3, “Get Health Status Event (0xFF22)”
• Section 15.3.2.4, “Clear Health Status (0xFF23)”

 — Section 15.3.3, “Health Status Codes”
• Updated Section 15.4.2.2.1.1, “Recovery Mode Admin Commands”.
• Updated Table 16-30, “Mechanical Load Limits”.
• Added Section 16.7.1, “Tolerance Information”.
• Updated Chapter 19, “Glossary and Acronyms”.

Revision Date Notes

Intel® Ethernet Controller E810 Datasheet
Revision History

12 613875-009

2.1 January 22, 2021 Updates include the following:
• Updated Table 1-1, “E810 Features Summary” under the Security category.
• Added Section 1.4.12.1, “Protect, Detect, and Recover”.
• Updated Table 1-2, “Standards Supported by the E810” to add Security category.
• Updated Section 16.3.1.1, “Power On/Off Sequence”.
• Updated Table 16-8, “E810-CAM2/CAM1 MAX Power - PCIe Gen 4 and PCIe Gen 3”.
• Updated Section 16.5.5, “Reference Clock Specification” to enhance HCSL and Vdiff

discussion.
• Updated Table 18-2, “E810 Thermal Specifications”.

2.0 July 23, 2020 Second public release.

1.91 July 13, 2020 Initial public release.

1. There are no previous publicly-available versions of this document.

Revision Date Notes

613875-009 15

Intel® Ethernet Controller E810 Datasheet
Contents

Contents

Chapter 1 Introduction .. 29
1.1 Overview ... 29
1.2 E810 Full Chip Block Diagram ... 32
1.3 Controller Core Block Diagram .. 33

1.3.1 LAN Traffic Tx Flow.. 33
1.3.2 LAN Traffic Rx Flow ... 34
1.3.3 Management Flows.. 34

1.4 Functional Blocks .. 35
1.4.1 Host Interface .. 35
1.4.2 Host Memory Objects .. 35
1.4.3 LAN Engine .. 36
1.4.4 Protocol Engine... 36
1.4.5 Transmit Scheduler ... 36
1.4.6 Tx and Rx Modifiers ... 37
1.4.7 Ethernet Media Access Controller (MAC) ... 37
1.4.8 Packet Parser ... 38
1.4.9 VEB Switch (a.k.a. Binary Classifier) .. 38
1.4.10 Access Control Lists (ACLs)... 38
1.4.11 Classification Filters... 39
1.4.12 Embedded Management Processor (EMP) ... 39
1.4.13 Host Memory Cache (HMC)... 40
1.4.14 Various Interfaces ... 40

1.5 Conventions ... 41
1.5.1 Numbers and Number Bases... 41
1.5.2 Byte Ordering ... 41

1.6 Support Documents ... 43
Chapter 2 Pin Interface .. 51

2.1 Pin Descriptions .. 51
2.2 Pin Assignments and Descriptions .. 51

2.2.1 PCIe Interface Pins.. 52
2.2.2 Ethernet Interface Pins .. 54
2.2.3 NC-SI Interface Pins .. 56
2.2.4 SMBus Interface Pins ... 56
2.2.5 Serial Flash Memory Interface Pins .. 57
2.2.6 General Purpose I/O (GPIO) Pins... 58
2.2.7 Miscellaneous Pins... 59
2.2.8 Testability and Debug Pins.. 60
2.2.9 Reserved and No-Connect Pins.. 61
2.2.10 Power Supply Pins ... 62
2.2.11 Pull-Up and Pull-Down Resistors .. 63

2.3 Package Layout .. 64
Chapter 3 Interconnects .. 69

3.1 PCI Express (PCIe) .. 69
3.1.1 Features .. 69
3.1.2 Transaction Layer.. 70
3.1.3 Link Layer .. 80
3.1.4 Physical Layer... 81
3.1.5 Error Events and Error Reporting... 86
3.1.6 Performance and Statistics Counters.. 91

3.2 Ethernet Interconnect .. 95
3.2.1 Media Access Control (MAC) Layer... 95

Intel® Ethernet Controller E810 Datasheet
Contents

16 613875-009

3.2.2 Physical Layer Interface ... 106
3.2.3 Link Management.. 113
3.2.4 Link Configuration Admin Commands... 120
3.2.5 SyncE Flows ... 144
3.2.6 SyncE Commands ... 148

3.3 Link Topology ... 180
3.3.1 Overview ... 180
3.3.2 Link Topology Definition ... 181
3.3.3 Topology Structures .. 182
3.3.4 Link Default Override Mask NVM Section .. 191
3.3.5 Link Topology Use Cases .. 194
3.3.6 Topology Device Loading and Programming .. 196
3.3.7 Block Access to External PHY During Its NVM Programming... 198
3.3.8 Topology Netlist .. 199
3.3.9 Topology Netlist Constraints and Conventions ... 260
3.3.10 Link Topology Admin Commands ... 264

3.4 Non-Volatile Memory (NVM) ... 276
3.4.1 General Overview.. 276
3.4.2 External Flash... 278
3.4.3 Shadow RAM .. 279
3.4.4 NVM Access Modes .. 281
3.4.5 NVM Update Flows .. 282
3.4.6 NVM Clients and Low-Level Interfaces.. 298
3.4.7 Flash Access Contention... 299
3.4.8 NVM Access Procedures ... 300
3.4.9 NVM Authentication Procedure .. 303
3.4.10 NVM Access Admin Commands and Events ... 310
3.4.11 VPD Support... 334

3.5 General Purpose I/O (GPIO) and LED ... 336
3.5.1 E810 I/O Widget SDP and LED .. 336

Chapter 4 Initialization .. 339
4.1 Reset Operation .. 339

4.1.1 Reset Sources... 339
4.1.2 Hardware Reset Flows.. 344
4.1.3 Function-Level Reset Flows... 348

4.2 Power-On and Reset .. 362
4.2.1 Auto-Load Shadow RAM ... 362

4.3 BIOS Initialization ... 370
4.3.1 Initial State .. 370
4.3.2 Non-Persistent Configuration .. 370
4.3.3 Network Boot ... 381
4.3.4 Device State... 381

4.4 Driver Load .. 382
4.4.1 Introduction ... 382

4.5 Device/Port/Function Configuration .. 385
4.5.1 General ... 385
4.5.2 Disable Through Strapping Pins... 385
4.5.3 Port and Device Disable ... 386
4.5.4 Function Disable ... 387
4.5.5 Port Enable and Disable from BIOS (HII) .. 388
4.5.6 Event Flow for Enable/Disable Ports and PCI Functions ... 389

4.6 Shared Resource Management .. 391
4.6.1 Resource Profiles... 391

Chapter 5 Power Management ... 395

613875-009 17

Intel® Ethernet Controller E810 Datasheet
Contents

5.1 PCIe Power Management .. 395
5.1.1 Auxiliary Power Usage ... 395
5.1.2 PCIe Link Power Management ... 396
5.1.3 Power States .. 397

5.2 Network Interfaces Power Management .. 402
5.2.1 Low Power Link Up (LPLU) .. 402

5.3 Wake-Up ... 404
5.3.1 Advanced Power Management Wake-Up ... 404
5.3.2 ACPI Power Management Wake-Up.. 405
5.3.3 Wake-Up Filters .. 405
5.3.4 Wake-Up and Virtualization .. 406
5.3.5 Wake-Up Flows ... 407

Chapter 6 Non-Volatile Memory Map .. 409
6.1 NVM Organization ... 409

6.1.1 NVM Map High Level .. 409
6.1.2 NVM Header ... 410
6.1.3 Structure of NVM Modules .. 413
6.1.4 NVM Integrity Checks by Software... 424
6.1.5 Header of NVM Modules ... 424
6.1.6 Adaptive NVM Structures.. 428

6.2 PLDM Header .. 436
6.2.1 PLDM Header Section... 436

6.3 NVM Content .. 492
6.3.1 NVM General Summary.. 492
6.3.2 SPI Descriptor Section ... 495
6.3.3 Init Module Section.. 496
6.3.4 PFA Header Section ... 517
6.3.5 PFA Features Module Section .. 517
6.3.6 Feature Configuration Padding Module Section .. 518
6.3.7 PFA Immediate Values Module Section ... 518
6.3.8 Immediate Fields Padding Module Section... 519
6.3.9 PFA VPD Module Section .. 520
6.3.10 PFA MNG Filter Section .. 521
6.3.11 PFA PT Configuration 0 Section ... 522
6.3.12 PFA PT Configuration 1 Section ... 529
6.3.13 PFA PT Configuration 2 Section ... 534
6.3.14 PFA PT Configuration 3 Section ... 539
6.3.15 PFA PT Configuration 4 Section ... 544
6.3.16 PFA PT Configuration 5 Section ... 549
6.3.17 PFA PT Configuration 6 Section ... 554
6.3.18 PFA PT Configuration 7 Section ... 559
6.3.19 Original EETrack ID Section .. 564
6.3.20 IBA Capabilities Module Section... 565
6.3.21 PXE Setup Options Module Section .. 567
6.3.22 PXE Configuration Customization Options Module Section ... 569
6.3.23 PXE Version Module Section.. 572
6.3.24 VLAN Module Section ... 573
6.3.25 Boot Configuration Block Section... 575
6.3.26 PBA Header Section... 576
6.3.27 PBA Block Section ... 577
6.3.28 PCIR Registers PFA Auto-Load Module Section... 579
6.3.29 POR Registers PFA Auto-Load Module Section.. 587
6.3.30 PSM Preserved Section... 594
6.3.31 MinSrev Section .. 597
6.3.32 PF MAC Address Section... 599

Intel® Ethernet Controller E810 Datasheet
Contents

18 613875-009

6.3.33 MNG MAC Address Section ... 602
6.3.34 FW Logging Defaults Section... 604
6.3.35 1588 Parameters Section ... 611
6.3.36 MD Link Topology Section .. 614
6.3.37 LLDP Preserved Section.. 616
6.3.38 RDE Module Section .. 618
6.3.39 Identical Content as PLDM Header ComponentImageSetVersionString Section 619
6.3.40 Software Checksum Module Section... 623
6.3.41 RDMA Control Section.. 624
6.3.42 Link Default Override Mask Section.. 625
6.3.43 RDE Ethernet MTU Section ... 631
6.3.44 Default DCB Parameters Section ... 632
6.3.45 Current DCB Parameters Section ... 633
6.3.46 HII Port Disable by Function Section .. 634
6.3.47 NetlistMinSrev Section ... 636
6.3.48 Tx-Scheduler Topology User Selection Section... 637
6.3.49 LLDP Preserved 2 Section... 638
6.3.50 WA Enable TLV Section .. 655
6.3.51 FRU Data Section .. 656
6.3.52 SyncE DPLL Input Settings Section .. 659
6.3.53 Padding Module Section ... 704
6.3.54 PCIR Type 1/2 Section ... 705
6.3.55 POR Type 1/2 Section .. 706
6.3.56 CORER Registers Auto-Load Module Section.. 707
6.3.57 Mailbox Register Auto-Load Module Section .. 754
6.3.58 GLOBR Registers Auto-Load Module Section.. 761
6.3.59 PE CORER Registers Section ... 776
6.3.60 Sideband Bus Auto-Load Section ... 777
6.3.61 EMP SR Settings Module Header Section... 824
6.3.62 SR PF Allocations Section ... 832
6.3.63 LLDP Configuration Section... 834
6.3.64 GFID Module Section ... 837
6.3.65 Manageability Module Header Section .. 845
6.3.66 Sideband Configuration Structure Section... 850
6.3.67 OEM Section... 855
6.3.68 Auto-Generated Pointers Module Section .. 857
6.3.69 NVM Image CSS Header Section ... 867
6.3.70 NVM Key and Signature Section .. 873
6.3.71 NVM Image Auth Header Section... 874
6.3.72 SR1 - Should Be Copy of Shadow RAM: Section Clone .. 875
6.3.73 ML CSS Header Section.. 876
6.3.74 ML Key and Signature Section... 882
6.3.75 ML Auth Header Section ... 883
6.3.76 Extended ML Header Section .. 885
6.3.77 ML Image Section ... 889
6.3.78 Analog PHY pre PLL Configuration Section... 890
6.3.79 CSR Protected List Section ... 891
6.3.80 PCIe Analog Module Section ... 893
6.3.81 PCIR Registers Auto-Load Module Section... 894
6.3.82 POR Registers Auto-Load Module Section.. 896
6.3.83 PCIR_PFA Auto-Load Allowlist Module Section ... 897
6.3.84 POR_PFA Auto-Load Allowlist Module Section .. 904
6.3.85 LVK Hashes Section... 911
6.3.86 Recovery FW CSS Header Section.. 912
6.3.87 Recovery FW Key and Signature Section .. 918

613875-009 19

Intel® Ethernet Controller E810 Datasheet
Contents

6.3.88 Recovery FW Auth Header Section... 919
6.3.89 DCB Rx Module Section.. 920
6.3.90 DCB Tx Module Section .. 920
6.3.91 QoS DCB Auto-Load Section ... 920
6.3.92 QoS no-DCB Auto-Load Section... 920
6.3.93 Ext. CORER Registers Auto-Load Module Section ... 921
6.3.94 EMP Global Module Section ... 922
6.3.95 EMP Settings Module Header Section ... 927
6.3.96 DL Scripts Section ... 930
6.3.97 Allowlist Section.. 930
6.3.98 Analog PHY Configuration Section.. 930
6.3.99 Configuration Metadata Section... 931
6.3.100 Control Pipe Package Section .. 931
6.3.101 EMP Image Section.. 932
6.3.102 RDE Dictionaries Section .. 932
6.3.103 External Topology Device Image 0 Section ... 933
6.3.104 External Topology Device Image 1 Section ... 935
6.3.105 External Topology Device Image 2 Section ... 937
6.3.106 External Topology Device Image 3 Section ... 939
6.3.107 NVM Provisioning Area Section.. 941
6.3.108 OROM Section .. 942
6.3.109 OROM Provisioning Area Section.. 949
6.3.110 Link Topology Netlist Raw Data Section .. 950
6.3.111 Link Topology Netlist CSS Header Section... 951
6.3.112 Link Topology Netlist Key and Signature Section.. 957
6.3.113 Link Topology Netlist Auth Header Section .. 958
6.3.114 TLV Extension Provisioning Area Section... 960
6.3.115 Link Topology Scratch Pad Area Section ... 960
6.3.116 FW Scratch Pad Area Section .. 961
6.3.117 Factory Settings Header Section.. 961
6.3.118 Factory Settings Area Section ... 963
6.3.119 Guarded Zone Section ... 963

Chapter 7 Packet Processing .. 965
7.1 Introduction ... 965
7.2 FlexiPipe Processing Pipeline ... 966

7.2.1 Rx and Tx Pipeline Structure... 966
7.2.2 Pipeline Virtualization .. 968

7.3 Priority Resolver ... 968
7.3.1 MDID Override.. 969
7.3.2 Programming the Priority Resolver... 969

7.4 FlexActions ... 970
7.5 Extractor ... 971

7.5.1 Programming the Extraction Logic ... 971
7.6 Receive Descriptor Builder .. 973

7.6.1 Overview ... 973
7.6.2 Legacy Descriptor Format... 974
7.6.3 Flex Descriptor Format... 975
7.6.4 RXDID Descriptor Builder Profiles .. 979
7.6.5 Receive Flex Queue Context ... 981
7.6.6 Timestamp Overlay ... 982
7.6.7 Field Extraction into the Flex Descriptor.. 983
7.6.8 Pointers to Location of Interest ... 984

7.7 Programmable Parser .. 985
7.7.1 Introduction ... 985

7.8 Switch (Binary Classifier) ... 991

Intel® Ethernet Controller E810 Datasheet
Contents

20 613875-009

7.8.1 Features .. 991
7.8.2 Binary Classifier (Switch) Block Diagram .. 993
7.8.3 Control Domain and Profile Selection ... 994
7.8.4 Ingress Pre-Processing... 995
7.8.5 Switching Engine... 996
7.8.6 Egress Post Processing Actions.. 1009
7.8.7 Manageability Filtering ... 1012
7.8.8 Virtual Station Interfaces ... 1013
7.8.9 Classifier Performance ... 1015
7.8.10 Resource Allocation ... 1015
7.8.11 Binary Classifier Configuration .. 1019
7.8.12 Software Programming Model ... 1021

7.9 ACL (Ternary Classifier) ... 1072
7.9.1 Overview ... 1072
7.9.2 ACL Programming ... 1087
7.9.3 ACL Operation and Management ... 1093
7.9.4 ACL Configuration Example... 1136

7.10 Receive Classification Filters ... 1138
7.10.1 Introduction ... 1138
7.10.2 Block Diagram .. 1146
7.10.3 Profile Chooser ... 1147
7.10.4 Input Sets Generator ... 1148
7.10.5 Switch Filters.. 1149
7.10.6 ACL Filters ... 1149
7.10.7 Hash Filter ... 1149
7.10.8 Flow Director (FD) Filter... 1152
7.10.9 Protocol Engine (PE) Filters... 1157
7.10.10 Hash Functions ... 1160
7.10.11 Receive Filters Admin Commands .. 1163
7.10.12 Filter Clearing Commands and Flows.. 1168
7.10.13 Default Extractor Configuration ... 1172

7.11 Packages and Configuration .. 1176
7.11.1 Introduction ... 1176
7.11.2 Overriding the Default Package ... 1177
7.11.3 Endianness... 1177
7.11.4 Version Numbers .. 1177
7.11.5 Package Format .. 1178
7.11.6 Section Type Enumeration.. 1183
7.11.7 Segment Metadata Section ... 1188
7.11.8 Segment Security Manifest ... 1189
7.11.9 Package Configuration Admin Commands ... 1193
7.11.10 Uniform TCAM Key Encoding... 1198
7.11.11 Ownership Configuration .. 1199
7.11.12 Common Packet Profile Commands.. 1200
7.11.13 Parser Configuration .. 1217
7.11.14 HIF Block Programming ... 1238
7.11.15 RDPU Block Configuration... 1240

7.12 L2 Packet Processing ... 1242
7.12.1 CRC Handling ... 1242
7.12.2 L2 Padding ... 1242
7.12.3 L2 Tag Handling.. 1242
7.12.4 VLAN Handling.. 1253
7.12.5 Outer Tag Handling ... 1256
7.12.6 User Priority Bits (802.1p) Handling... 1257

Chapter 8 Quality of Service (QoS) .. 1261

613875-009 21

Intel® Ethernet Controller E810 Datasheet
Contents

8.1 E810 Usage Models: Number of Ports and Number of Congestion Domains 1261
8.2 E810 QoS and DCB Support .. 1262

8.2.1 Receive Path QoS.. 1262
8.2.2 Transmit Path QoS .. 1267
8.2.3 Tx-Pipe Overview .. 1268
8.2.4 Tx-Pipe QoS Next Level of Details.. 1269
8.2.5 DCB Admin Commands .. 1283
8.2.6 LLDP/DCBx Admin Commands .. 1287

8.3 Transmit Scheduling .. 1288
8.3.1 Hierarchical Scheduling .. 1288
8.3.2 Hierarchical Scheduling Concept.. 1289
8.3.3 Network Topologies in Tx-Scheduler .. 1303
8.3.4 Flows .. 1315

Chapter 9 Device Services .. 1351
9.1 Interrupts .. 1351

9.1.1 Interrupt Signaling .. 1351
9.1.2 Interrupt Causes ... 1354
9.1.3 Interrupt Linked List .. 1360
9.1.4 Interrupt Moderation ... 1362

9.2 Virtualization .. 1364
9.2.1 Overview ... 1364
9.2.2 SR-IOV Implementation ... 1369
9.2.3 Scalable I/O and PASID ... 1376

9.3 Host Memory Cache .. 1378
9.3.1 Host Memory Usage .. 1378
9.3.2 Object Caches .. 1385
9.3.3 Private Memory Space Profiles .. 1385
9.3.4 Host HMC Resource Partitioning .. 1387
9.3.5 Default HMC Profile Equations ... 1387
9.3.6 Function Private Memory Space... 1390
9.3.7 Populating HMC Backing Pages.. 1393
9.3.8 De-Populating HMC Backing Pages... 1395
9.3.9 Special Cases for Protocol Engine Objects... 1395
9.3.10 HMC Error Reporting.. 1396

9.4 Quad Hash Host Memory Cache .. 1400
9.4.1 Cache Replication.. 1400
9.4.2 Function Private Memory Space Configuration ... 1400
9.4.3 Populating HMC Backing Pages.. 1401
9.4.4 Register Naming in Quad Hash HMC Relative to PE HMC ... 1402

9.5 Control Queues ... 1403
9.5.1 Preface .. 1403
9.5.2 Queue Structure ... 1404
9.5.3 Initialization ... 1407
9.5.4 Driver Unload and Queue Shutdown .. 1409
9.5.5 Command Descriptions .. 1410
9.5.6 Firmware Command Fetch and Verification ... 1413
9.5.7 Mailbox and Sideband Command Fetch and Verification .. 1414
9.5.8 Non-Completion Events.. 1414
9.5.9 Error Handling .. 1415
9.5.10 Error Codes .. 1415
9.5.11 Command Opcodes ... 1417
9.5.12 CSR-Based Firmware Admin Queue for Tools... 1417
9.5.13 Generic Firmware Admin Commands.. 1420
9.5.14 Mailbox Commands ... 1435

9.6 Statistics .. 1438

Intel® Ethernet Controller E810 Datasheet
Contents

22 613875-009

9.6.1 Counter Implementation .. 1438
9.6.2 Statistics Sample Points ... 1439
9.6.3 Statistics Consistency Rules.. 1442
9.6.4 Supported MIBs .. 1442
9.6.5 Interface Statistics at VSIs and Logical Interfaces.. 1442
9.6.6 RDMA/RoCE Statistics .. 1447

9.7 TimeSync (IEEE1588 and 802.1AS) ... 1448
9.7.1 Overview ... 1448
9.7.2 Time Synchronization - Background... 1449
9.7.3 1588 Clock and Timer Registers .. 1452
9.7.4 Programming the 1588 Timers .. 1454
9.7.5 Timestamp Indication .. 1459
9.7.6 Synchronized Auxiliary Events .. 1461
9.7.7 Synchronization with Host Timer ... 1462
9.7.8 Interrupts .. 1463
9.7.9 1588 Initialization Flow .. 1463
9.7.10 Software Timer ... 1463

9.8 LLDP Protocol ... 1464
9.8.1 Introduction ... 1464
9.8.2 Scope.. 1464
9.8.3 LLDP Agent .. 1464
9.8.4 LLDP Processing.. 1465
9.8.5 Initialization and Configuration.. 1469

Chapter 10 LAN Engine .. 1489
10.1 Introduction ... 1489
10.2 Queues Allocation and Management ... 1489

10.2.1 LAN Receive Queue Allocation ... 1489
10.2.2 LAN Transmit Queue Allocation ... 1493
10.2.3 Dynamic Queue Allocation in Rx and Tx.. 1494
10.2.4 LAN Transmit Completion Queue and Doorbell Queue Allocation .. 1495

10.3 Steering Tag and Processing Hint Support for LAN Engine Traffic (TPH) 1496
10.4 LAN Receive Data-Path .. 1496

10.4.1 Receive Packet in System Memory... 1496
10.4.2 LAN Receive Descriptors... 1498
10.4.3 LAN Receive Queue (Ring).. 1504
10.4.4 Stateless Receive Offloads.. 1514

10.5 LAN Transmit Data-Path ... 1519
10.5.1 LAN Transmit Introduction.. 1519
10.5.2 Transmit Packets in System Memory.. 1519
10.5.3 Descriptors and Doorbells... 1520
10.5.4 LAN Transmit - Advanced Features .. 1529
10.5.5 Transmit Configuration .. 1538
10.5.6 Packet Transmission .. 1557
10.5.7 Performance Consideration... 1561
10.5.8 Stateless Transmit Offloads .. 1561

Chapter 11 Protocol Engine ... 1571
11.1 Protocol Engine Overview ... 1571
11.2 Features .. 1572
11.3 Functional Description ... 1575

11.3.1 Packet Classification and the PE .. 1575
11.4 Verbs Programming Model .. 1577

11.4.1 Verbs from a System View ... 1577
11.4.2 iWARP State Management .. 1601
11.4.3 RoCEv2 State Management .. 1605

613875-009 23

Intel® Ethernet Controller E810 Datasheet
Contents

11.4.4 Exception Queues ... 1608
11.4.5 Completion Event Queue (CEQ) Entry Format.. 1610
11.4.6 Asynchronous Event Queue (AEQ) Entry Format .. 1610
11.4.7 AE Codes ... 1613
11.4.8 Steering Tag (STag) and Processing Hint Support for PE Traffic (TPH) 1619

11.5 Resource Management ... 1619
11.5.1 PE Initialization... 1622
11.5.2 Control QP (CQP) Operation.. 1625
11.5.3 CQP SQ Descriptor Format ... 1635

11.6 RDMA Functionality ... 1692
11.6.1 iWARP Q2 Area ... 1692
11.6.2 iWARP QP Context Format .. 1693
11.6.3 RoCEv2 QP Context Format .. 1707
11.6.4 RDMA QP Completion Codes ... 1711
11.6.5 RDMA CQ Entry Formats .. 1711
11.6.6 RDMA Descriptor Formats... 1714

11.7 UD/UDA Functionality .. 1731
11.7.1 UD/UDA Descriptor Formats ... 1731

11.8 UDA Functionality .. 1739
11.8.1 Transmit UDA Hardware Acceleration ... 1739
11.8.2 Receive UDA Hardware Filtering and Acceleration .. 1740
11.8.3 UDA Programming Interface ... 1743
11.8.4 UDA QP Context Format... 1746
11.8.5 UDA CQ Entry Formats... 1751
11.8.6 UDA QP Completion Error Codes.. 1751
11.8.7 UDA QP Asynchronous Error Codes .. 1752
11.8.8 UDA Descriptor Formats... 1752

11.9 Protocol Engine Statistics ... 1753
11.9.1 Summary... 1753

11.10 SR-IOV Protocol Engine Functionality ... 1756
11.11 NVM RDMA Register Initialization .. 1757

Chapter 12 System Manageability .. 1759
12.1 Features .. 1759
12.2 Pass-Through Functionality ... 1760

12.2.1 Supported Topologies .. 1761
12.2.2 Pass-Through Packet Routing.. 1761

12.3 Components of the Sideband Interface ... 1762
12.3.1 Physical Layer... 1762
12.3.2 Logical Layer .. 1763

12.4 Packet Filtering ... 1770
12.4.1 Manageability Receive Filtering ... 1770
12.4.2 L2 Filters.. 1771
12.4.3 L3/L4 Filtering .. 1772
12.4.4 Flexible 144-Byte Filter .. 1774
12.4.5 Configuring Manageability Filters ... 1777
12.4.6 Filtering Programming Interfaces... 1781
12.4.7 Possible Configurations .. 1783
12.4.8 Determining Manageability MAC Address .. 1784

12.5 OS-to-BMC Traffic ... 1785
12.5.1 Overview ... 1785
12.5.2 Filtering ... 1786
12.5.3 Blocking Network-to-BMC Flow.. 1786
12.5.4 OS-to-BMC and Flow Control... 1787
12.5.5 Statistics.. 1787
12.5.6 OS-to-BMC Enablement ... 1787

Intel® Ethernet Controller E810 Datasheet
Contents

24 613875-009

12.5.7 SMBus Troubleshooting.. 1788
12.6 Network Controller Sideband Interface (NC-SI) PT Interface ... 1791

12.6.1 Overview ... 1791
12.6.2 NC-SI Standard Support .. 1795
12.6.3 External Link Control via NC-SI ... 1798
12.6.4 NC-SI Mode - Intel-Specific Commands.. 1800
12.6.5 Basic NC-SI Workflows... 1877
12.6.6 Asynchronous Event Notifications (AENs).. 1881
12.6.7 Querying Active Parameters.. 1881
12.6.8 Resets ... 1881
12.6.9 Advanced Workflows.. 1882

12.7 Management Component Transport Protocol (MCTP) .. 1885
12.7.1 MCTP Overview... 1885
12.7.2 MCTP over PCIe .. 1890
12.7.3 MCTP over SMBus ... 1892
12.7.4 NC-SI over MCTP .. 1893
12.7.5 PLDM over MCTP ... 1896
12.7.6 OEM Commands ... 1896
12.7.7 MCTP Programming ... 1896
12.7.8 SPDM over MCTP... 1902

12.8 PLDM Support .. 1905
12.8.1 PLDM Base Implementation .. 1905
12.8.2 PLDM Monitoring and Control Support .. 1910
12.8.3 PLDM Monitoring and Control Generic Structures ... 1933
12.8.4 PLDM Firmware Update Commands ... 1968
12.8.5 PLDM Firmware Update Flow... 1975
12.8.6 RDE Support .. 1980

12.9 Host Isolate Support .. 2024
12.10 OCP NIC 3.0 Support ... 2025

12.10.1 Support for FAN_ON_AUX Pin ... 2025
Chapter 13 Programming Interface ... 2027

13.1 Introduction ... 2027
13.1.1 Access Mechanisms ... 2027
13.1.2 Memory BAR .. 2030
13.1.3 The MSI-X BAR ... 2032
13.1.4 CSR Organization and Mapping ... 2033
13.1.5 Register Conventions... 2034
13.1.6 Register Field Attributes ... 2035

13.2 Device Registers - PF ... 2037
13.2.1 BAR0 Registers Summary... 2037
13.2.2 Detailed Register Descriptions - PF BAR0.. 2096
13.2.3 BAR3 Registers Summary... 2522
13.2.4 Detailed Register Descriptions - PF BAR3.. 2522

13.3 Device Registers - VF .. 2524
13.3.1 VF Registers Mapping in the PF Space .. 2524
13.3.2 BAR0 Registers Summary... 2527
13.3.3 Detailed Register Descriptions - VF BAR0.. 2530
13.3.4 BAR3 Registers Summary... 2539
13.3.5 Detailed Register Descriptions - VF BAR3.. 2539

Chapter 14 PCIe Programming Interface ... 2541
14.1 Overview ... 2541

14.1.1 Functions Mapping .. 2541
14.1.2 Supported Features ... 2542

14.2 PCI Configuration Space ... 2543

613875-009 25

Intel® Ethernet Controller E810 Datasheet
Contents

14.2.1 Register Attributes .. 2543
14.2.2 Reset Rules .. 2544
14.2.3 PCI Configuration Space Summary .. 2545
14.2.4 Sharing Among PCI Functions ... 2545
14.2.5 Mandatory PCI Configuration Registers - Except BARs .. 2547
14.2.6 Mandatory PCI Configuration Registers - BARs .. 2551

14.3 Capabilities in PCI Configuration Space .. 2553
14.3.1 PCI Power Management Capability... 2553
14.3.2 MSI Capability .. 2556
14.3.3 MSI-X Capability ... 2558
14.3.4 VPD Capability .. 2562
14.3.5 PCIe Capability Structure ... 2563

14.4 PCIe Extended Configuration Space ... 2578
14.4.1 Advanced Error Reporting (AER) Capability ... 2579
14.4.2 Serial Number .. 2585
14.4.3 Alternate Routing ID Interpretation (ARI) Capability Structure... 2587
14.4.4 SR-IOV Capability Structure ... 2589
14.4.5 TPH Requester Capability ... 2596
14.4.6 ACS Extended Capability Structure .. 2598
14.4.7 Secondary PCI Express Extended Capability.. 2600
14.4.8 Data Link Feature Extended Capability ... 2602
14.4.9 PASID Capability ... 2603
14.4.10 Physical Layer 16.0 GT/s Capability ... 2605
14.4.11 Lane Margining at the Receiver Capability... 2607

14.5 Virtual Functions ... 2609
14.5.1 Overview ... 2609
14.5.2 Mandatory Configuration Space... 2612
14.5.3 PCI and PCIe Capabilities ... 2615

Chapter 15 Reliability, Diagnostics, and Testability ... 2621
15.1 Reliability ... 2621

15.1.1 ECC Support and ECC Error Flow ... 2621
15.2 Link Loopback Operations .. 2622
15.3 Device Diagnostics .. 2622

15.3.1 Firmware Logging Overview.. 2622
15.3.2 Health Status Commands ... 2625
15.3.3 Health Status Codes .. 2629

15.4 Firmware Recovery Mode ... 2631
15.4.1 Overview ... 2631
15.4.2 Recovery Flows... 2632
15.4.3 Operation Mode Software Identification .. 2634

Chapter 16 Electrical/Mechanical Specification ... 2635
16.1 Introduction ... 2635
16.2 Operating Conditions ... 2635

16.2.1 Absolute Maximum Ratings... 2635
16.2.2 Recommended Operating Conditions.. 2635

16.3 Power Delivery ... 2636
16.3.1 Power Supply Specification ... 2636
16.3.2 In-Rush Current.. 2639

16.4 Power Dissipation .. 2640
16.4.1 Max Power (TDP) - E810-CAM2/CAM1 .. 2640
16.4.2 Typical Power - E810-CAM2/CAM1... 2641
16.4.3 Max Power (TDP) - E810-XXVAM2 ... 2643
16.4.4 Typical Power - E810-XXVAM2 .. 2643

16.5 DC/AC Specification ... 2645

Intel® Ethernet Controller E810 Datasheet
Contents

26 613875-009

16.5.1 Digital I/O DC Specifications ... 2645
16.5.2 Digital I/F AC Specifications.. 2646
16.5.3 PCIe Interface AC/DC Specification .. 2652
16.5.4 Network Interface AC/DC Specification... 2652
16.5.5 Reference Clock Specification.. 2652

16.6 Package Characteristics ... 2654
16.6.1 Mechanical Configuration.. 2654
16.6.2 Heat Sink Mechanical Load Limits .. 2654
16.6.3 Thermal... 2655
16.6.4 Electrical.. 2655

16.7 Package Mechanical Drawings ... 2656
16.7.1 Tolerance Information.. 2656
16.7.2 E810-CAM2/CAM1 ... 2656
16.7.3 E810-XXVAM2 .. 2659

16.8 Devices Supported .. 2662
16.8.1 Flash ... 2662

Chapter 17 Design Guidelines .. 2663
17.1 Introduction ... 2663
17.2 Defined Topologies .. 2664

17.2.1 E810 Host Topology Overview... 2665
17.2.2 Configuration Topologies .. 2668
17.2.3 Supported Link Modes and Breakout Modes .. 2671
17.2.4 Supported Modules.. 2671

17.3 E810 Ethernet Signal Descriptions ... 2672
17.3.1 E810 High-Speed Serial ... 2672
17.3.2 E810 Management Connections... 2673
17.3.3 E810 SDP[0:7] (GPIO) Connections ... 2674
17.3.4 E810 SDP[8:19] (LED) Connections ... 2675
17.3.5 E810 SDP[20:23] (IEEE 1588) Connections .. 2676

17.4 Signal Descriptions .. 2676
17.4.1 High-Speed Serial ... 2676
17.4.2 SFP and QSFP I/O Module Connections... 2678
17.4.3 Reset, Interrupt, and Present.. 2680
17.4.4 Management Interfaces ... 2681

17.5 LED Configuration and Behavior .. 2682
17.5.1 Default LED Behavior - Discrete LED Implementation ... 2682

17.6 Electrical Specifications .. 2684
17.6.1 Pull-Up/Pull-Down Requirements ... 2684

Chapter 18 Thermal Design Considerations ... 2685
18.1 Introduction ... 2685
18.2 Measuring the Thermal Conditions ... 2685
18.3 Thermal Considerations ... 2686
18.4 Importance of Thermal Management ... 2686
18.5 Packaging Terminology .. 2687
18.6 Thermal Specifications ... 2688
18.7 Package Mechanical Attributes .. 2689

Chapter 19 Glossary and Acronyms ... 2691
Appendix A Factory Parsing Program... 2697

A.1 General .. 2697
A.1.1 Supported Header Length... 2697

A.2 Parse Graph .. 2697
A.3 PTYPEs ... 2700
A.4 Protocol IDs .. 2706
A.5 Frame Formats .. 2710

613875-009 27

Intel® Ethernet Controller E810 Datasheet
Contents

A.5.1 Layer 2.. 2710
A.5.2 Layer 2.5 ... 2720
A.5.3 Layer 3.. 2721
A.5.4 Layer 4.. 2734
A.5.5 Tunneling and Overlay Networks ... 2738

Intel® Ethernet Controller E810 Datasheet
Contents

28 613875-009

613875-009 29

Intel® Ethernet Controller E810 Datasheet
Introduction

Chapter 1 Introduction

1.1 Overview

This document describes the external architecture (including device operation, pin descriptions, register
definitions, and so on) for the Intel® Ethernet Controller E810 (E810), a dual-port 100 Gigabit Ethernet
(GbE) Network Interface device.

This document is intended as a reference for architects, logic designers, firmware and software device
driver developers, board designers, test engineers, or anyone else who might need specific technical or
programming information about the E810.

The E810 is Intel's first multi-speed 100 GbE controller supporting rates between 100 Mb/s and
100 Gb/s. The E810's key objective is to enable a scalable Ethernet controller suitable for Enterprise,
Cloud, and Communications Service Provider applications.

The key features supported in the E810 include two 100 Gigabit Ethernet ports, 100 Gigabit throughput
performance, enhanced programmable packet processing pipeline, virtualization (enhanced SR-IOV
support with up to 256 VFs and backward compatibility VF driver support), new features for the
communications market (fine grained scheduler, transmit head drop support, adjustment of credits
according to different headers, enhanced QoS, and enhanced burst control) and RDMA (iWARP and
RoCEv2).

Table 1-1 provides a summary of E810 features. For additional information on supported features, see
the Intel® Ethernet Controller E810 Feature Support Matrix.

Table 1-1. E810 Features Summary

Category Features

Host Interface • Compliance with PCIe 4.0 specification.
• Concurrency for 256 non-posted requests.
• PCIe Gen4x16 lanes

Network Interface • Speeds at 2x100 GbE, 2x50 GbE, 4x25 GbE, 8x10 GbE, 8x1 GbE, and 8x100 Mb/s.

Performance • 100 Gb/s throughput (for each Tx and Rx).
• Up to 80 Mpps for Tx and 90 Mpps for Rx.
• 100 Gb/s single queue performance.

Intel® Ethernet Controller E810 Datasheet
Introduction

30 613875-009

Software Interface • Base mode VF compatibility.
• Tx/Rx-Queues:

 — 16K Tx-Queues.
 — 2K Rx-Queues.
 — Dynamic allocation of queues to functions and VSIs.

• Interrupts:
 — 2048 interrupts vectors, allocated in a flexible manner to queues and other causes.
 — Multiple interrupt moderation schemes.
 — 20M interrupts per second.

• Control Queues (also known as Admin Queues):
 — Mailbox Queues for PF-VF and driver-driver.
 — Admin Queues for software-firmware control flows.
 — Sideband Queues for software to access IPs inside the E810.

• 256 Tx Doorbell (DB) Queues.
• 512 Tx Completion Queues.
• Quanta Descriptor (QD) Queue per Tx-Queue. Quanta information is also embedded in the Tx

doorbell.
• Programmable Rx-Descriptor fields.

Packet Processing • General:
 — Stages of parsing, switching, ACLs, classification, and packet modification.
 — Programmable packet processing pipeline.
 — Multiple control domains.
 — Profile-based.
 — Programmable actions.
 — Propagation of priorities between stages.

• Parser:
 — Parses up to 504 bytes from packet header.
 — Parse Graph-based.
 — Session-based parsing.
 — Programmable parse engine.

• Binary Classifier (VEB Switch):
 — 768 switch ports (VSIs).
 — Programmable forwarding rules.
 — Storm control.

• ACLs:
 — 8K programmable TCAM entries.
 — Tiling capability to n*40-bit width.

• Classification Filters:
 — Hash-based statistical distribution.
 — Flow Director flow-based classification.
 — Flow-based identification of iWARP and RoCE flows.
 — Programmable rules.

• Modifier:
 — Insertion (Tx), removal (Rx), and modification of packet VLANs.
 — L3 and L4 checksums and CRC.

Virtualization • Host virtualization via VMQ and SR-IOV.
• 256 SR-IOV Virtual Functions (VFs).
• Stateless offloads for tunneled packets (network virtualization support).
• Malicious VF protection.

Table 1-1. E810 Features Summary [continued]

Category Features

613875-009 31

Intel® Ethernet Controller E810 Datasheet
Introduction

RDMA • iWARP and RoCE v2.
• 256K Queue Pairs (QPs).
• Send Queue Push Mode.

Note: RDMA is not supported when the E810 is configured for >4-port operation.
Note: Userspace Direct Access (UDA) was intended to provide userspace access queues in a general

way, but this feature is not supported in the E810. UDA is available only in the kernel and is
limited to iWARP connection setup and error handling. UDA is not available in userspace.

QoS • WFQ Transmit scheduler with nine programmable layers.
• Pipeline sharing and starvation avoidance.
• Up to 32 Congestion Domains in the Tx and Rx paths.
• QoS via 802.1p PCP or Differentiated services DSCP value.
• Rx packet buffer supports at least three no-drop flow control events, shared among ports.

Communication • Packet shaping.
• Packet drops/aging + reporting.
• Reduced burstiness - jitter control.
• Adjustment of credits per packet based on four different header types.
• Concurrent Quanta Descriptors/Legacy Scheduling.

Manageability • SMBus operating at up to 400 Kb/s.
• DMTF-compliant NC-SI 1.1 Interface at 100 Mb/s.
• PLDM Types 0, 2, 5, 6 for monitoring and control, firmware update, and Redfish device enablement.
• MCTP over PCIe and SMBus.
• Enterprise-level management schemes via local BMC.

Power Management • Supports PCI power management states D0, D3hot, and D3cold.
• APM WoL support in D0, D3hot, and D3cold.

Note: Energy Efficient Ethernet (EEE) is not currently supported in the E810. Some references might
remain in this document in the event that it is enabled in the future.

Time Synchronization • Timestamp with each Rx packet.
• Selective timestamps for Tx packets.
• IEEE 1588 support.

Security • Authentication of firmware contents on load from NVM.
• NIST.SP.800-193 compliant.

Table 1-1. E810 Features Summary [continued]

Category Features

Intel® Ethernet Controller E810 Datasheet
Introduction

32 613875-009

1.2 E810 Full Chip Block Diagram

The E810 is based on a 100G Ethernet controller core block, which is used in multiple Intel products.
Figure 1-1 illustrates the relationship between the controller core logic and the I/O and support
functions that comprise the full E810 device.

In this document, references to the controller core are often abbreviated as “CPK”, for example, in
register bit and NVM field definitions.

Figure 1-1. E810 Block Diagram

Ethernet Controller Core Logic
(CPK)

PCS, FEC & 1588 timing

8x 50G PAM4 SERDES Lanes
2x100G/50G, 4x25G, 8x10G/1G

PCIe PHY
Gen4 x16

PCIe
Link Control

Block
Sideband Bus

IO
Widget

Fuse
Control

Clock &
Reset

SPI
Controller

GPIO,
I2C,

MDIO

Fuse
Bank

POR
Circuit

Ethernet MACs

Primary Host InterfaceSupport Logic Interface

Ethernet PHY Subsystem

613875-009 33

Intel® Ethernet Controller E810 Datasheet
Introduction

1.3 Controller Core Block Diagram

The controller core block diagram is depicted in Figure 1-2.

The following subsections describe the packet flows.

1.3.1 LAN Traffic Tx Flow

Transmission starts with a “doorbell” from software, indicating one packet or more is waiting in some
transmit queue in host memory. If the queue is a LAN queue, the doorbell is registered with the internal
Transmit Scheduler (Tx-Scheduler). If the queue is an RDMA queue, the request is registered with the
Protocol Engine (PE) scheduler. When the PE scheduler selects a request, the request goes through
RDMA protocol processing, at the end of which an internal request is issued to the Tx-Scheduler.

The Tx-Scheduler is responsible for pacing traffic to the network ports. It guarantees bandwidth
allocation among requesters, does rate limiting where needed, and paces packets to avoid congestion
later in the network.

Figure 1-2. Controller Core Block Diagram

Rx Pre-Parser

Rx MACTx MAC

Legend:
Loopback

P
E

L
A
N

ONPI (supports 2x100G,50G / 4x25G / 8x10G,1G,100M)

Tx Packet
Modifier

Tx Packet
Buffer

Tx MAC Rx MAC

Rx Pre-Parser

Rx Packet Buffer

Rx Packet
Modifier

PCIe

Switch
SB control path

control path

Tx

Tx Scheduler

Tx

Caching &
Address

Translation

Rx LAN
Engine

Rx PE
Engine

I/O: RMII,
SMBus, GPIO

Parser

ACL

Filters

AQ I/F &
Mailbox

SB-IOSF

Tx/Rx path

Packet Processing

Host I/F

Rx datapath

Tx datapath

AQ path

EMP

Intel® Ethernet Controller E810 Datasheet
Introduction

34 613875-009

Once the Tx-Scheduler selects a transmit queue (either from LAN or from RDMA), it services some
amount of transmit data (called a “quanta”). Packet data is read from host memory and any packet
processing or packet manipulation takes place. These can include partial parsing of the packet,
performing Transmit Segmentation Offload (TSO), calculating relevant checksums and CRCs, L2 header
manipulations UP enforcement, and inner protocol TTL decrement.

The packet is then passed to the Packet Processing Pipeline, where it queries the on-die switch to
identify its destinations. A packet can be forwarded locally to a Host destination (for example VM-VM
communication) or to an on-board BMC. The packet also goes through the ACL block, where
permissions are checked, and might alter the forwarding decisions made in the switch.

The LAN Controller then forwards the packet to one of the LAN ports and/or to the Receive path. If the
destination port is busy, the packet is stored in a local Transmit Buffer. Transmission to a LAN port is
done via a 802.3 MAC that interfaces an On-Chip Network Packet Interface (ONPI).

1.3.2 LAN Traffic Rx Flow

Packet reception starts when a packet arrives to any of the ONPI channels. The packet goes through
initial processing in the 802.3 MAC and a parsing/processing unit. The parsing/processing unit does
some checksum verifications on the packet. The packet is then stored in the on-die Receive Packet
Buffer.

The packet header then goes through the Packet Processing stage, where it potentially goes through
parsing, switching, ACLs, and classification. If the packet is identified as an RDMA packet, it is passed to
the Protocol Engine for protocol processing. If the packet is a LAN packet, it is forwarded to the LAN
Engine. Either engine then issues a command to the Rx Modifier. The Rx Modifier fetches the packet
from the Receive Packet Buffer, completes any modifications, calculates any required checksums, posts
the packet into the respective Host buffer, and terminates the transaction.

1.3.3 Management Flows

Other flows include traffic to or from a system level Baseboard Management Controller (BMC). The
E810 serves as a network interface to the BMC. A packet is received from the BMC via PCIe, NC-SI, or
SMBus. The Embedded Management Processor (EMP) unit generates a command into the Transmit
Pipeline in a similar manner to the Transmit Scheduler as described above. The Tx Modifier fetches the
packet from the management interface to be processed as any Host packet.

In a similar manner, a received packet can be forwarded to the BMC once the on-die switch identifies
the BMC as its destination. The packet is then forwarded to the management interface to be sent to the
BMC.

Host software can also forward a packet to a system BMC. During transmit packet processing, the
on-die switch identifies that the destination for the packet is the BMC interface. The E810 then forwards
the packet from the transmit path to the receive path as described above. The receive path then
processes the packet and forwards it to the management interface to be sent to the BMC.

613875-009 35

Intel® Ethernet Controller E810 Datasheet
Introduction

1.4 Functional Blocks

This section contains a short overview The E810 functional units depicted in Figure 1-2.

1.4.1 Host Interface

The E810 implements a Gen4x16 PCIe 4.0 compliant interface.

The E810 implements a PCIe Transaction layer. The E810’s PCIe host interface implements up to eight
Physical Functions (PFs), and up to 256 Virtual Functions (VFs). More details on the E810’s PCIe
features are provided in Section 3.1, while Chapter 14 describes the PCIe programming interface.

1.4.2 Host Memory Objects

The E810 operating system drivers set up a wide variety of host memory objects that are
comprehended and manipulated by the E810. All objects are set up in the context of a PCI function.

Described below are the types of memory objects:

• LAN Transmit (Tx) and Receive (Rx) Queues — These are ring buffers for submitting
commands to the Local Area Network (LAN) engine or posting packets that arrive from the network.
Commands take the form of packets/data to be transmitted, descriptors for empty host memory
buffers to be filled with received packets/data, and so on. Queues are typically mapped into OS
kernel space (or userspace in the case of DSI driver). In a virtualized server, they can be assigned
either to the VMM, or to VMs using SR-IOV. The E810 supports up to 16K Tx-Queues and 2K
Rx-Queues that can be assigned to PFs or VFs as needed. The queues assigned to a particular PCI
function can be used in these important ways:

— For distributing packet processing work to the different processors in a multi-processor system.
On the transmit side, this is done by simply dedicating an independent transmit queue for each
CPU to use. On the receive side, packets are classified by the E810 under operating system
control into groups of conversations. Each group of conversations is assigned its own receive
queue and receiving processor. Microsoft Receive Side Scaling (RSS) is one popular example of
this method. ATR using the Flow Director is a another, more precise mechanism to direct Rx
packets to queues.

— For assigning Traffic Class (TC). Transmit queues assigned to different TCs are serviced at
different rates by the E810 Transmit Scheduler. Receive queues assigned to different TCs can be
serviced at different rates by a Quality of Service (QoS)-enabled operating system and its
software device drivers.

— To associate queues with VMs in VMDq1 or VMDq2 modes, saving packet processing and
copying by the VMM

— To associate DSI queues with different wireless operators, providing a degree of separation
between the operators.

• LAN Auxiliary structures in host memory — These include:

— Tx Completion Queues where write-back of transmit events can be done. The 512 Completion
Queues allow coalescing of write-back information from multiple transmit queues into a small
number of Completion Queues, making it easier for software to collect write-back events.

Intel® Ethernet Controller E810 Datasheet
Introduction

36 613875-009

— Tx Doorbell (DB) Queues are used by software to coalesce Tx doorbells (“Tail Write” events) to
the device, reducing load on the CPUs. Software can write a Tx DB to one of the 256 DB
Queues. Once in a while, software sends an indication (also called doorbell or Tail Write) to the
device, indicating that a certain DB Queue has one or more Tx-Queues’ doorbells stored in it.
The E810 then fetches the Tx-Queue DBs from host memory.

— Tx Quanta Descriptor (QD) Queues store auxiliary information on packets stored in Tx-Queues.
The information assists the Transmit Scheduler by letting it know how much data is waiting for
transmission in a given Tx-Queue. Each Tx-Queue has an associated QD queue.

• Protocol Engine Queue Pairs (QPs) — These are ring buffers (one Send Queue, one Receive
Queue) for submitting commands to the Protocol Engine. Each Protocol Engine QP can be
configured for either RDMA messages or for UDA packets. Commands on RDMA QPs take the form
of RDMA messages to be transmitted, descriptors for empty host memory buffers to be filled with
received RDMA messages, and so on. Commands on UDA QPs take the form of packets/data to be
transmitted, descriptors for empty host memory buffers to be filled with received packets/data, and
so on. Protocol Engine QPs are typically mapped into host userspace. In a virtualized server, they
can be assigned either to the VMM, or to Virtual Machine userspace using SR-IOV. The E810
supports up to 262,144 Protocol Engine QPs, which are allocated to PFs and VFs as the E810
initializes and drivers load, and are fixed after that.

• Control Queue (or Admin Queues (AQ)) Pairs — AQs are used for communication between
device drivers, and between a device driver and E810 embedded controllers. Each Admin Queue
Pair maps one Admin Transmit Queue (ATQ) and one Admin Receive Queue (ARQ). The ATQ is a
ring buffer used by the host driver for submitting commands. The ARQ conveys events to host
driver that are not an immediate result of an ATQ command. The host driver posts empty buffers to
the ARQ, and the E810 fills them with events. For more details on AQs, see Section 9.5.

1.4.3 LAN Engine

The LAN engine implements the host programming interface for traditional LAN traffic in both
virtualized and non-virtualized scenarios. The E810 implements 768 VSIs (virtual ports) used to
distribute traffic to PCI physical functions and virtual functions. These VSIs can connect to the host via
16K Tx-Queues and 2K Tx-Queues.

1.4.4 Protocol Engine

The Protocol Engine implements iWARP and RoCEv2 RDMA capability. The Protocol Engine offloads
protocol processing from the host, places received data payloads directly into user buffers with no host
CPU involvement, and eliminates user-kernel context switching when performing I/O by mapping the
RDMA programming interface directly into application address space.

The Protocol Engine implements the latest RDMA features, including Send Queue Push Mode.

1.4.5 Transmit Scheduler

The Transmit Scheduler (Tx-Scheduler) determines the order and timing of packets sent to the network.
It receives requests (“doorbells”) from LAN and RDMA queues and schedules these for transmission. A
scheduling decision allows a given “quanta” of bytes or packets from a given queue or set of queues to
be fetched from host memory and sent to the network.

613875-009 37

Intel® Ethernet Controller E810 Datasheet
Introduction

The main capabilities of the Tx-Scheduler are:

• Hierarchical scheduling tree — Scheduling decisions are done by selecting a Queue node while
taking in consideration the state of its branch in each layer of the tree. Layers of the tree represent
entities that define scheduling attributes, and can be a queue, a set of queues, a VSI, a PCI
function, a Traffic Class, a network port, and more. Layers can also represent a network topology,
scheduling to prevent congestion in nodes further down the network.

• Scheduling based on Weighted Fair Queuing (WFQ), Strict Priority (SP), and Hybrid algorithms.

• Minimum bandwidth guarantee via Dual-Rate Shapers.

• Rate limiting, including shared rate limiters.

• High-performance fine-grained and accurate scheduling.

• Fully-configurable, flexible topology, including on-the-fly configuration.

• Each scheduler node can be stopped via software-based or hardware-based flow control
mechanisms.

For more detail on E810 transmit scheduler features and operation, see Section 8.3.

1.4.6 Tx and Rx Modifiers

The Tx and Rx modifiers perform operations on packet contents in the Tx and Rx pipelines, respectively.
The modifiers perform updates to packet headers, such as insertion and removal of L2 tags (for
example, VLAN), and calculation (and split in Rx) of header and payload checksums (insertion on Tx
and validation on Rx). The Tx modifier also performs TCP Segmentation Offload (TSO).

1.4.7 Ethernet Media Access Controller (MAC)

The E810 integrates IEEE Std 802.3 compliant Ethernet MACs that operate at 100 Mb/s, 1 GbE, 10 GbE,
25 GbE, 50 GbE, and 100 GbE. A total of eight MACs map to the following speeds:

• Two MACs operating at all speeds from 100 GbE and lower.

• Additional two MACs operating at all speeds from 25 GbE and lower.

• Additional four MACs operating at all speeds from 10 GbE and lower.

Therefore, the E810 supports port configurations of 2x100 GbE, 2x50 GbE, 4x25 GbE, 8x10 GbE,
8x1 GbE, and 8x100 Mb/s.

All E810 MACs support transmission and reception of jumbo frames of up to 9728 bytes, and 802.3x
flow control frames or 802.3bd priority-based flow control frames. See Section 3.2.1.5 for details.

The E810 implements a set of control signals for the PHY:

• Five independent interfaces for connection to external PHYs. Each interface can be either a
Management Data Input/Output (MDIO) or Inter-integrated Circuit (I2C) interface. These enable
host software or E810 firmware to control connected external PHYs, including the ability to read and
write PHY registers.

• Eight SDP signals to be used as general purpose I/O. SDPs are typically used to exchange
information with or to control external devices (such as PHY devices) under E810 software driver or
firmware control. See Section 3.5.1 for more details.

Intel® Ethernet Controller E810 Datasheet
Introduction

38 613875-009

• Three LED indications for maximum 4-ports configuration (total of 12 pins). Each of the LED
outputs can be individually configured to select which particular event, state, or activity it indicates.
In addition, each LED can be individually configured for output polarity and for blinking versus
non-blinking (steady-state) indications. See Section 3.5.1 for more information.

Details on how they are typically connected and used are described in Section 3.2.3.

Admin Queue commands are provided for software device driver control over the integrated PHYs.

1.4.8 Packet Parser

The E810 provides a software programmable Parser capable of supporting a wide range of well-known
and proprietary protocols. The Parser examines ingress traffic, retrieves search parameters from the
packet and from associated packet context, and then generates additional context based on certain
packet attributes. This context is further used by other packet processing modules in the pipeline to
associate the packet with a profile, a flow, an action, and so on.

The Parser supports a large set of native frame formats that are common in various networking
applications. These formats are provided by the E810 out-of-the-box, not requiring any additional
installation or programming. Additional frame formats can be programmed per usage.

1.4.9 VEB Switch (a.k.a. Binary Classifier)

The VEB switch identifies packet destinations for both Tx and Rx, for traffic to/from Host and to/from a
manageability port (BMC). For Tx packets, it determines whether the packet goes to an external ONPI
port, to a local destination either in the host or to the BMC (via loopback), or to both. For packets
arriving from ONPI or from the loopback path, it selects a local destination. A local destination is named
a “VSI” and is associated with a PCI function or with an EMP buffer.

The switch makes its forwarding decision based on a set of programmable rules, such as VLAN tag, a
destination MAC Address, or a combination of such. Basic forwarding rules are loaded from NVM, and
additional rules can be programmed per usage. Dedicated rules identify management traffic to be
forwarded to a Baseband Management Controller (BMC).

The switch supports replication of broadcast and multicast packets to multiple VSIs. It also supports
mirroring of both Tx and Rx packets. As any other stage in the processing pipeline, the switch
generates statistics and can also insert metadata into the pipeline (potentially reaching the
Rx-Descriptor).

1.4.10 Access Control Lists (ACLs)

The packet processing pipeline in the E810 provides a programmable Ternary Classifier stage for
implementing functions such as Access Control List (ACL), IP Longest Prefix Match (LPM), statistics
collection, and so on. The Ternary Classifier is SDN/NFV-enabled, supporting a wide range of network
protocols, both standard-based and proprietary. The architecture is fully-programmable,
protocol-agnostic, and action-agnostic, capable of adapting to future protocol headers and use cases.

The Ternary Classifier is located following the switch in the packet processor pipeline, as illustrated in
Figure 1-2. Since the architecture of the Ternary Classifier is protocol-agnostic and action-agnostic, it
can be programmed to serve as a switch extension and thus provide packet forwarding based on
programmable rules, augmenting the capabilities of the switch.

613875-009 39

Intel® Ethernet Controller E810 Datasheet
Introduction

1.4.11 Classification Filters

Following forwarding decision in the switch and ACLs stages, the Classification filters perform fine-grain
classification of receive packets. The following capabilities are provided:

• Hash-based classification — Determines a destination queue in host memory through a hash
function over fields in the packet headers. Several hash functions are supported, such as Microsoft
RSS.

• Flow Director — Provides flow-level classification of packets, including association with a queue in
host memory. The E810 provides on-die classification of 16K different flows.

• Protocol Engine Quad-Hash classification — Identifies flows to be offloaded in the on-die
Protocol Engine.

The Classification Filters are programmable as are other stages in the Packet Processing Pipeline.

1.4.12 Embedded Management Processor (EMP)

The Embedded Management Processor (EMP) unit handles all management duties that cannot be
performed by the E810’s device drivers, and must be carried out on-chip. This includes performing
parts of the E810 power-on sequence, handling AQ commands, initializing E810 Ethernet ports,
participating in various fabric configuration protocols like DCBx and other Link Layer Discovery Protocol
(LLDP) protocols, filling configuration requests received on one of the E810’s BMC management
interfaces like NC-SI, and handling special configuration requests received off an Ethernet port.

1.4.12.1 Protect, Detect, and Recover

Zero Trust is a security design strategy centered on the belief that organizations, by default, should not
automatically trust anything or anybody inside or outside its perimeters and instead must verify
anything and everything trying to connect and gain admittance to its systems before granting access.
The Intel® Ethernet 800 Series EMP implements a design philosophy of platform resiliency with three
attributes compliant with the NIST Cyber Security Framework, including NIST SP 800-193 Platform
Firmware Resiliency Guidelines: Protect, Detect, and Recover.

Intel® Ethernet 800 Series uses signed firmware updates and hardware Root of Trust to protect and
verify critical device settings with built-in detection of corruption, and automated device recovery to
ensure the device safely returns to its originally programmed state. For details, Section 3.4.9, “NVM
Authentication Procedure” and Section 15.4, “Firmware Recovery Mode”.

Intel® Ethernet Controller E810 Datasheet
Introduction

40 613875-009

1.4.13 Host Memory Cache (HMC)

The E810’s quad hash lookup and Protocol Engine use host memory as a backing store for a variety of
context objects. The Host Memory Cache (HMC) is responsible for caching and managing these context
objects.

For each RDMA connection, the Protocol Engine uses a QP Context object (TCP/IP connection context
that stores, for example, TCP sequence numbers) and Inbound RDMA Read Queue (IRRQ) objects that
buffer inbound RDMA Read Requests until their associated Read Responses are scheduled for transmit.
For each RDMA Memory Region, the Protocol Engine uses a Memory Region Table Entry (MRTE) object
to store region boundary and access rights information, and a set of Physical Buffer List Entry (PBLE)
objects to store virtual-to-physical address translations for this region. These and many more Protocol
Engine context objects are detailed in Chapter 11.

General information on HMC operation and configuration is provided in Section 9.3.

1.4.14 Various Interfaces

1.4.14.1 Shared Serial Flash Interface

The E810 accesses the NVM via an SPI interface. The NVM device is required for storage of device
firmware, device configuration parameters, identifiers that vary per adapter (like MAC Addresses), and
register overrides that auto-load automatically after reset. The E810 assumes that at least 10 MB of the
NVM are dedicated for these configurations.

More information on the shared serial Flash interface is available in Section 3.4.

1.4.14.2 SMBus Interface

SMBus is an optional interface for pass-through and/or configuration traffic between an external BMC
and the E810. The E810's SMBus interface supports standard SMBus at 100 KHz and 400 KHz. Refer to
Section 12.3.1.1 for an additional description of the SMBus interface, and Section 2.2.4 for the pin
descriptions.

1.4.14.3 NC-SI Interface

NC-SI is an optional interface for pass-through and/or configuration traffic between an external BMC
and the E810. Refer to Section 12.3.1.2 for an additional description of the NC-SI interface,
Section 2.2.3 for the pin descriptions, and Section 12.6 for NC-SI programming.

1.4.14.4 High-Speed SDPs

On top of the eight SDPs and 12 LEDs slow interfaces accessible via the internal sideband Link, there
are also four single-ended high-speed SDPs directly controlled by the E810 controller core. In addition,
one differential output is directly connected to the internal clock control unit to create a high-precision
clock signal. These SDPs are used for applications like IEEE 1588 that requires more precise timing of
the SDPs transitions. See Section 9.7.6.1 for details.

613875-009 41

Intel® Ethernet Controller E810 Datasheet
Introduction

1.5 Conventions

1.5.1 Numbers and Number Bases

Hexadecimal numbers are written with a 0x prefix (like 0xFFFF or 0x1234ABDF). Binary numbers are
written with a lowercase ‘b’ suffix (like 1001b or 10b). Decimal numbers are indicated without any
suffix or using a lowercase ‘d’ suffix (like 4500d).

1.5.2 Byte Ordering

This section defines the internal organization of registers and memory structures that span multiple
bytes. A few conventions to start with are:

• Network Order — Ethernet always transmits multiple-bytes fields with the Most Significant (MS)
byte first.

• Endian Notation — Defines how a logical entity (such as a MAC Address) is stored in a given
structure (like register or descriptor). Two options exist:

— Little Endian (LE) notation — The MS byte of the logical entity is mapped to the highest byte
address of the structure.

— Big Endian (BE) notation — The MS byte of the logical entity is mapped to the lowest byte
address of the structure.

Following are some examples:

Example 1:

A 32-bit counter is equal 0x01234567 (such as the sequence number in the TCP header). The
counter is transferred on the wire as: 01 23 45 67 where 01 is the first byte on the wire and 67 is
the last byte.

LE registers store this counter as (in bytes) as follows:

0x01 — Highest byte address
0x23
0x45
0x67 — Lowest byte address

BE registers store this counter as (in bytes) as follows:

0x67 — Highest byte address
0x45
0x23
0x01 — Lowest byte address

Example 2:

An L2 type register that holds the value of IPv4 header is equal 0x0800. The field is transferred on
the wire as: 08 00 where 08 is the first byte on the wire.

LE registers store this counter as (in bytes) as follows:

0x08 — Highest byte address
0x00 — Lowest byte address

Intel® Ethernet Controller E810 Datasheet
Introduction

42 613875-009

BE registers store this counter as (in bytes) as follows:

0x00 — Highest byte address
0x08 — Lowest byte address

Example 3:

A 48-bit Ethernet MAC Address equals 0x00112348A9BE. The Ethernet MAC Address is transferred
on the wire as: 00 11 23 48 A9 BE where 00 is the first byte on the wire.

LE registers store this counter as (in bytes) as follows:

0x00 — Highest byte address
0x11
0x23
0x48
0xA9
0xBE — Lowest byte address

BE registers store this counter as (in bytes) as follows:

0xBE — Highest byte address
0xA9
0x48
0x23
0x11
0x00 — Lowest byte address

The following rules determine the Endian-ness of E810 structures:

• The general rule is that all structures are defined in LE notation unless defined otherwise. These
structures include:

— Registers.

— AQ commands.

— Structures in host memory (including any type of descriptors).

— NVM.

— LAN and PE contexts.

• The following structures are in BE notation:

— Host memory buffers that are received or transmitted.

— Any structures that contains a MAC Address (see exception for field vector).

— Quad hash context programming registers (GL_SWT_LOFV_PE, GL_SWT_LOFV_SW and
EMP_SWT_LOFV) are each defined in LE, while register 'n' is mapped to words (63 - 2*'n') and
(62 - 2 *'n') in the field vector.

— IP Addresses in Protocol Engine host memory.

• The following structures have a mixed notation:

— Field vector is presented in mixed BE/LE notation: Words are ordered in BE notation and bytes
within the words are presented in LE notation.

— Type-Length-Value (TLV) structures are stored in the NVM in mixed BE/LE notation: Words are
ordered in BE notation and bytes within the words are presented in LE notation.

613875-009 43

Intel® Ethernet Controller E810 Datasheet
Introduction

1.6 Support Documents

Table 1-2 lists industry standards relevant to the E810.

Table 1-2. Standards Supported by the E810

Category Description

ARP Title: “RFC 826: An Ethernet Address Resolution Protocol (ARP)”, November 1982
Document: https://www.ietf.org/rfc/rfc0826.txt
Description: Protocol to convert IP Addresses to Ethernet addresses.

Base Title: “RFC 1071: Computing the Internet Checksum”, September 1988
Document: https://www.ietf.org/rfc/rfc1071.txt
Description: This RFC describes how to compute the Internet checksums used in IP, TCP and UDP.

Base Title: “RFC 1180: A TCP/IP Tutorial”, January 1991
Document: https://www.ietf.org/rfc/rfc1180.txt
Description: Bare bones tutorial of TCP/IP protocol suite: ARP, IP and TCP and Upper Layer Protocols (ULPs). This
is included for informative purposes only.

Base Title: “RFC 1936: Implementing the Internet Checksum in Hardware”, April 1996
Document: https: //www.ietf.org/rfc/rfc1936.txt
Description: Techniques for efficiently implementing the Internet checksum in hardware.

DCB Title: “DCB Capability Exchange Protocol Base Specification”, Revision 1.01
Document: https://www.ieee802.org/1/files/public/docs2008/az-wadekar-dcbxcapability-exchange-discovery-
protocol-1108-v1.01.pdf
Description: Defines CEE DCBx, a pre-standard version of the DCB Capability Exchange Protocol.

DCB Title: “Priority Grouping for DCB Networks (Enhanced Transmission Selection)”, Revision 1.01
Document: https://www.ieee802.org/1/files/public/docs2008/az-wadekar-etsproposal-0608-v1.01.pdf
Description: Defines CEE ETS, a pre-standard version of the DCB Enhanced Transmission Selection Protocol

Ethernet Title: “IEEE Standard for Ethernet” (IEEE Std 802.3-2018)
Document: Available from https://standards.ieee.org/getieee802
Description: Specifies the Ethernet MAC and PHY layers up to 400 Gb/s. Includes these now superseded docs
(among many others): 802.3ae (10 Gb/s base spec), 802.3an (10GBASE-T), 802.3ap (backplane Ethernet, KX,
KX4, KR), 802.3ba (100G), 802.3by (25G), 802.3bs (200G/400G), and more.

Ethernet Title: “IEEE Standard for Ethernet – Amendment 3: Media Access Control Parameters for 50 Gb/s and Physical
Layers and Management Parameters for 50 Gb/s, 100 Gb/s, and 200 Gb/s Operation” (IEEE Std 802.3cd-2018)
Document: Available from https://standards.ieee.org/getieee802
Description: Defines Ethernet MAC for 50 GbE and PHY layers for 50G/100G/200G based upon 50Gb/s PAM4
electrical and optical signaling.

Ethernet Title: “Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications – Amendment 8: MAC Control Frame for Priority-based Flow Control” (IEEE P802.3bd-2011)
Document: Available from https://standards.ieee.org/getieee802
Description: Defines a MAC control frame to support 802.1Qbb priority-based flow control.

Ethernet Title: “IEEE Standard for Local and Metropolitan Area Networks – Media Access Control (MAC) Bridges” (IEEE Std
802.1D-2004)
Document: Available from https://standards.ieee.org/getieee802
Description: Base specification for Ethernet bridging.

Ethernet Title: “IEEE Standards for Local and Metropolitan Area Networks - Media Access Control (MAC) Bridges and Virtual
Bridged Local Area Networks” (IEEE Std 802.1Q-2011)
Document: Available from https://standards.ieee.org/getieee802
Description: Ethernet VLAN-aware bridge specification.

Ethernet Title: “IEEE Standard for Local and metropolitan area networks— Link Aggregation” (IEEE Std 802.1AX-2008)
Document: Available from https://standards.ieee.org/getieee802
Description: Logic and protocols that enable aggregation of one or more Ethernet links into a single logical link.
Until recently, link aggregation was defined in the 802.3 specification, but in the 2008 version it was moved to
802.1.

http://www.ietf.org/rfc/rfc0826.txt
http://www.ietf.org/rfc/rfc1071.txt
http://www.ietf.org/rfc/rfc1180.txt
http://www.ietf.org/rfc/rfc1936.txt
http://www.ieee802.org/1/files/public/docs2008/az-wadekar-dcbx-capability-exchange-discovery-protocol-1108-v1.01.pdf
http://www.ieee802.org/1/files/public/docs2008/az-wadekar-dcbx-capability-exchange-discovery-protocol-1108-v1.01.pdf
http://www.ieee802.org/1/files/public/docs2008/az-wadekar-ets-proposal-0608-v1.01.pdf
http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802

Intel® Ethernet Controller E810 Datasheet
Introduction

44 613875-009

Ethernet Title: “Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks — Amendment17: Priority-
based Flow Control” (IEEE P802.1Qbb-2011)
Document: Available from https://standards.ieee.org/getieee802
Description: Priority-based Flow Control (PFC) is one of the specifications that comprise DCB. PFC enables flow
control per TC on IEEE 802 point-to-point full duplex links. This is achieved by a mechanism similar to the IEEE
802.3 Annex 31B PAUSE, but operating on individual priorities.

Ethernet Title: “Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks — Amendment 21: Edge
Virtual Bridging” (IEEE P802.1Qbg-2012)
Document: Available from https://standards.ieee.org/getieee802
Description: EVB is one of the specifications that comprise DCB. EVB defines many of the virtual switching
features on end stations like the E810. This includes definition of things like S-channels, which enable the
multiplexing of multiple virtual channels on a single physical LAN, VSIs, VEBs, VEPAs, and so on. It also defines
new management infrastructure for administering the new features.

Ethernet Title: “Virtual Bridged Local Area Networks — Bridge Port Extension” (IEEE P802.1BR/D3.3)
Document: Available from https://standards.ieee.org/getieee802
Description: BPE is a dedicated specification describing the bridge port extender element. It specifies the use of
E-channels and a multicast replication service to extend bridge ports across multiple physical or virtual devices.

Ethernet Title: “IEEE Standard for Local and metropolitan area networks — Station and Media Access Control Connectivity
Discovery” (IEEE Std 802.1AB-2009)
Document: Available from https://standards.ieee.org/getieee802
Description: Defines Link Layer Discovery Protocol (LLDP) that enables a server to advertise its identity,
capabilities, and interconnections to other entities on an Ethernet fabric.

Ethernet Title: “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems” (IEEE Std 1588-2008)
Document: Available from https://standards.ieee.org/getieee802
Description: Defines a protocol that enables precise synchronization of clocks in systems communicating via
packet networks.

Ethernet Title: “SFF-8436 Specification for QSFP+ 4X 10 Gb/s Pluggable Transceiver”, Revision 4.9, 8/31/2018
Document: Available from https://www.snia.org/technology-communities/sff/specifications
Description: Defines the Quad Small Form Factor Pluggable (QSFP+) module mechanicals, electrical interface and
pin-out, and so on.

Ethernet Title: “SFF-8431 SFP+ 10 Gb/s and Low Speed Electrical Interface”, Revision 4.1, 7/6/2009”
Document: Available from https://www.snia.org/technology-communities/sff/specifications
Description: Defines the SERDES Framer Interface (SFI) high speed electrical interface to a Small Form-factor
Pluggable (SFP+) optical module. Also defines the SFP+ management interface.

Ethernet Title: “RMII™ Specification”, Revision 1.2, 3/20/1998
Document: https://ebook.pldworld.com/_eBook/-Telecommunications,Networks-/TCPIP/RMII/rmii_rev12.pdf
Description: Reduced pin count interface used in place of IEEE standard Media Independent Interface (MII). The
E810 has an Reduced Media Independent Interface (RMII) based interface for its NC-SI connection.

Ethernet Title: Serial-GMII Specification, rev 1.8, 11/2/2005, published by Cisco Systems
Document: ftp://ftp-eng.cisco.com/smii/sgmii.pdf
Description: Reduced pin count interface used in place of IEEE standard Gigabit Media Independent Interface
(GMII).

Ethernet Title: “Ethernet Alliance, Ethernet Jumbo Frames”, Version 0.1, 11/12/2009
Document: https://ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
Description: Document describing jumbo frames. Included for informative purposes only.

Ethernet Title: “Extended Frame Sizes for Next Generation Ethernets”
Document: https://staff.psc.edu/mathis/MTU/AlteonExtendedFrames_W0601.pdf
Description: Document describing jumbo frames. Included for informative purposes only.

Ethernet Title: “Extended Ethernet Frame Size Support”, November 1999
Document: https://www.ietf.org/proceedings/48/I-D/kaplan-isis-ext-eth-02.txt
Description: Document describing jumbo frames. Included for informative purposes only.

Table 1-2. Standards Supported by the E810 [continued]

Category Description

http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802
http://standards.ieee.org/getieee802
https://www.snia.org/technology-communities/sff/specifications
https://www.snia.org/technology-communities/sff/specifications
http://ebook.pldworld.com/_eBook/-Telecommunications,Networks-/TCPIP/RMII/rmii_rev12.pdf
ftp://ftp-eng.cisco.com/smii/sgmii.pdf
http://ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://staff.psc.edu/mathis/MTU/AlteonExtendedFrames_W0601.pdf
https://www.ietf.org/proceedings/48/I-D/kaplan-isis-ext-eth-02.txt

613875-009 45

Intel® Ethernet Controller E810 Datasheet
Introduction

Ethernet
(DCB)

Title: “Virtual Bridged Local Area Networks — Amendment 18: Enhanced Transmission Selection for Bandwidth
Sharing Between Traffic Classes” (IEEE P802.1Qaz-2011)
Document: Available from https://standards.ieee.org/getieee802
Description: ETS is one of the specifications that comprise DCB. ETS enables arbitration of bandwidth between
TCs. This specification also defines Data Center Bridging Exchange (DCBx) protocol. DCBx enables configuration of
DCB features onto an Ethernet LAN.

Ethernet/IP Title: “RFC 894: A Standard for the Transmission of IP Datagrams over Ethernet Networks”, April 1984
Document: https://www.ietf.org/rfc/rfc894.txt
Description: This specifies the method for transmitting IP datagrams over Ethernet.

Ethernet/IP Title: “RFC 1042: A Standard for the Transmission of IP Datagrams over IEEE 802 Networks”, February 1988
Document: https://www.ietf.org/rfc/rfc1042.txt
Description: This specifies the method for transmitting IP datagrams over IEEE 802.3 networks. Obsoletes: RFC
948

IP Title: “RFC 791: Internet Protocol”, September 1981
Document: https://www.ietf.org/rfc/rfc0791.txt
Description: Base specification for IPv4.

IP Title: “RFC 815: IP Datagram Reassembly Algorithms”, July 1982
Document: https://www.ietf.org/rfc/rfc0815.txt

IP Title: “RFC 2460: Internet Protocol, Version 6 (IPv6) Specification”, December 1998
Document: https://www.ietf.org/rfc/rfc2460.txt
Description: Base specification for IPv6. Obsoletes RFC 1883.

IP Title: “RFC 2474: Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers”,
December 1998
Document: https://tools.ietf.org/html/rfc2474
Description: Obsoletes RFC 1349, 1455.

IP Title: “RFC 2710: Multicast Listener Discovery (MLD) for IPv6”, October 1999
Document: https://www.ietf.org/rfc/rfc2710.txt
Description: Specifies the protocol used by an IPv6 router to discover the multicast listeners on its directly
attached links. MLD is derived from version 2 of IPv4's Internet Group Management Protocol, IGMPv2. This is an
important standard for power management.

IP Title: “RFC 3810: Multicast Listener Discovery Version 2 (MLDv2) for IPv6”, June 2004
Document: https://www.ietf.org/rfc/rfc3810.txt
Description: Updates RFC 2710. This is an important standard for power management.

IP Title: “RFC 2873: TCP Processing of the IPv4 Precedence Field”, June 2000
Document: https: //www.ietf.org/rfc/rfc2873.txt
Description: Corrects a conflict between TCP as defined in RFC 793 and DiffServ in handling of the IPv4
precedence field.

IP Title: “RFC 4861: Neighbor Discovery for IP version 6 (IPv6)”, September 2007
Document: https://www.ietf.org/rfc/rfc4861.txt
Description: IPv6 nodes use neighbor discovery to discover each other's presence, to determine each other's
link-layer addresses, to find routers, and to maintain reachability information. This is an important standard for
power management. Obsoletes RFC 2461.

Mgmt Title: “System Management Bus (SMBus) Specification”, v3.0, December 20, 2014
Document: Available from https://smbus.org/specs/
Description: A two-wire interface for communication of management information, based on the principles of
operation of I2C.

Mgmt Title: “DSP0218: Platform Level Data Model (PLDM) for Redfish Device Enablement”, Version 1.1.0, November 2,
2021
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0218_1.1.0.pdf
Description: Specifies RDE protocol.

Table 1-2. Standards Supported by the E810 [continued]

Category Description

http://standards.ieee.org/getieee802
http://www.ietf.org/rfc/rfc894.txt
http://www.ietf.org/rfc/rfc1042.txt
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc0815.txt
http://www.ietf.org/rfc/rfc2460.txt
https://tools.ietf.org/html/rfc2474
http://www.ietf.org/rfc/rfc2710.txt
http://www.ietf.org/rfc/rfc3810.txt
http://www.ietf.org/rfc/rfc2873.txt
http://www.ietf.org/rfc/rfc4861.txt
http://smbus.org/specs/
https://www.dmtf.org/sites/default/files/standards/documents/DSP0218_1.1.0.pdf

Intel® Ethernet Controller E810 Datasheet
Introduction

46 613875-009

Mgmt Title: “DSP0222: Network Controller Sideband Interface (NC-SI) Specification”, Version 1.1.0, September 23,
2015
Document: https://dmtf.org/sites/default/files/standards/documents/DSP0222_1.1.0.pdf
Description: Standardizes the sideband communication interface between a NIC (the E810) and a BMC.

Mgmt Title: “DSP0236: Management Component Transport Protocol (MCTP) Base Specification”, Version 1.3.0,
November 24, 2016
Document: https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
Description: Specifies MCTP protocol.

Mgmt Title: “DSP0237: Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification”,
Version 1.0.0, May 21, 2017
Document: https://dmtf.org/sites/default/files/standards/documents/DSP0237_1.1.0.pdf
Description: Describes the binding of MCTP over SMBus.

Mgmt Title: “DSP0238: Management Component Transport Protocol (MCTP) PCIe VDM Transport Binding Specification”,
Version 1.0.2, December 7, 2014
Document: https://dmtf.org/sites/default/files/standards/documents/DSP0238_1.0.1.pdf
Description: Describes the binding of MCTP over PCIe.

Mgmt Title: “DSP0239: Management Component Transport Protocol (MCTP) IDs and Codes”, Version 1.2.0, August 28,
2012
Document: https://dmtf.org/sites/default/files/standards/documents/DSP0239_1.2.0.pdf
Description: Describes constants used by MCTP specifications.

Mgmt Title: “DSP0240: Platform Level Data Model (PLDM) Base Specification”, Version 1.0.0, April 23, 2009
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
Description: PLDM base specification including the PLDM command format and PLDM control commands.

Mgmt Title: “DSP2041: Platform Level Data Model (PLDM) over MCTP Binding Specification”, Version 1.0.0, April 23,
2009
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0241_1.0.0.pdf
Description: Describes the binding of PLDM over MCTP.

Mgmt Title: “DSP0245 Platform Level Data Model (PLDM) IDs and Codes Specification”, Version 1.2.0, November 24,
2016
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0245_1.2.0.pdf
Description: Constants used for PLDM commands.

Mgmt Title: “DSP0248: Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification”, Version
1.2.0, September 9, 2019
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0248_1.2.0.pdf
Description: Contains the description of PDT, sensors and affecters used in PLDM.

Mgmt Title: “DSP0249: Platform Level Data Model (PLDM) State Set Specification”, Version 1.0.0, March 16, 2009
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0249_1.1.0.pdf
Description: Defines the enums and states used by PLDM.

Mgmt Title: “DSP0254: PLDM NIC Modeling”, Version 1.0.0, December 18, 2019
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP2054_1.0.0.pdf
Description: Defines PLDM data structures for modeling a NIC using PLDM for Monitoring and Control.

Mgmt Title: “DSP0261: NC-SI Over MCTP Specification”, Version 1.1.0, March 21, 2015
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0261_1.1.0.pdf
Description: Describes the encapsulation of NC-SI packets in MCTP.

Mgmt Title: “DSP0267: Platform Level Data Model (PLDM) For Firmware Update Specification”, Version 1.0.0, November
24, 2016
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.0.0.pdf
Description: Defines messages and data structures for updating firmware.

MPLS Title: “RFC 3031: Multiprotocol Label Switching Architecture”, January 2001
Document: https://datatracker.ietf.org/doc/rfc3031/
Description: MPLS architecture.

Table 1-2. Standards Supported by the E810 [continued]

Category Description

http://dmtf.org/sites/default/files/standards/documents/DSP0222_1.1.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0237_1.1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0238_1.0.2.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0239_1.2.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0241_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0245_1.2.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0249_1.1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0261_1.1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.0.0.pdf
https://datatracker.ietf.org/doc/rfc3031/
https://www.dmtf.org/sites/default/files/standards/documents/DSP2054_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0248_1.2.0.pdf

613875-009 47

Intel® Ethernet Controller E810 Datasheet
Introduction

MPLS Title: “RFC 3032: MPLS Label Stack Encoding”, January 2001
Document: https://datatracker.ietf.org/doc/rfc3032/
Description: MPLS header.

PCI Title: “PCI Local Bus Specification”, Revision 3.0, February 3, 2004
Document: Available from www.pcisig.com
Description: Compliant with select sections, such as Appendix I Vital Product Data.

PCI Title: “PCI Hot-Plug Specification”, Revision 1.1, June 20, 2001
Document: Available from www.pcisig.com
Description: Defines how PCI add-in cards are installed and removed while the system is running.

PCI Title: “PCI Firmware Specification”, Revision 3.0, June 20, 2005
Document: Available from www.pcisig.com
Description: Defines the firmware interface for managing PCIe systems in a host computer. Describes the format,
contents, and code entry points for Expansion ROMs.

PCI Title: “PCI Express Base Specification”, Revision 3.1a, December 7, 2015
Document: Available from www.pcisig.com
Description: Contains the technical details of the PCIe architecture, protocol, link layer, physical layer, and
software interface.

PCI Title: “PCI Express Card Electromechanical Specification”, Revision 3.0, July 21, 2013
Document: Available from www.pcisig.com
Description: Mechanical and electrical specifications for an Evo card form factor.

Power Mgmt Title: “Magic Packet Technology”, November 1995
Document: http://support.amd.com/TechDocs/20213.pdf
Description: Defines a method for waking up a sleeping networked PC using a specific Ethernet frame (a Magic
packet).

Power Mgmt Title: “PCI Bus Power Management Interface Specification”, Revision 1.2, March 3, 2004
Document: Available from www.pcisig.com
Description: Defines a standard set of PCI peripheral power management hardware interfaces and behavioral
policies.

Power Mgmt Title: “Advanced Configuration and Power Interface Specification”, Revision 4.0a, April 5, 2010
Document: http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
Description: Defines standard interfaces to enable robust OS-directed motherboard device configuration and
power management.

Power Mgmt Title: “Standard ECMA-393: proxZZZy for sleeping hosts” 2nd Edition, June 2012
Document: www.ecma-international.org/publications/files/ECMA-ST/ECMA-393.pdf
Description: Defines a low-power proxy that handles key network tasks for a high-power device, thus allowing the
high-power device to sleep when not in active use.

RDMA Title: “RFC 5040: A Remote Direct Memory Access Protocol Specification”, October 2007
Document: http://www.ietf.org/rfc/rfc5040.txt
Description: LLP is DDP, connects directly to the Host CPU/OS via the E810 System Interface.

RDMA Title: “RFC 5041: Direct Data Placement over Reliable Transports”, October 2007
Document: http://www.ietf.org/rfc/rfc5041.txt
Description: LLP is MPA, ULP is RDMAP. DDP protocol provides information to place incoming data directly into a
ULP receive buffer without intermediate buffers.

RDMA Title: “RFC 5044: Marker PDU Aligned Framing for TCP Specification”, October 2007
Document: http://www.ietf.org/rfc/rfc5044.txt
Description: LLP is TCP, ULP is DDP. MPA is a framing protocol that enables the preservation of ULP record
boundaries.

RDMA Title: “RFC 7306: Remote Direct Memory Access (RDMA) Protocol Extensions”, June 2014
Document: https://tools.ietf.org/html/rfc7306
Description: Specifies extensions to the IETF Remote Direct Memory Access Protocol (RDMAP) as specified in RFC
5040.

Table 1-2. Standards Supported by the E810 [continued]

Category Description

https://datatracker.ietf.org/doc/rfc3032/
www.pcisig.com
www.pcisig.com
www.pcisig.com
www.pcisig.com
www.pcisig.com
http://support.amd.com/TechDocs/20213.pdf
www.pcisig.com
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
www.ecma-international.org/publications/files/ECMA-ST/ECMA-393.pdf
http://www.ietf.org/rfc/rfc5040.txt
http://www.ietf.org/rfc/rfc5041.txt
http://www.ietf.org/rfc/rfc5044.txt
https://tools.ietf.org/html/rfc7306

Intel® Ethernet Controller E810 Datasheet
Introduction

48 613875-009

RDMA Title: “RDMA Protocol Verbs Specification (Version 1.0)”, April 2003
Document: rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
Description: Verbs describe the Host application/OS interface to an RNIC. This interface is implemented as a
combination of the RNIC system interface, its associated firmware, and host software. It provides access to the
RNIC queuing and memory management resources, as well as the underlying networking layers.

RDMA Title: “InfiniBand Architecture Specification Annex A17: RoCEv2” September 2, 2014
Document: Available from https://www.infinibandta.org/ibta-specifications-download/
Description: This document is an annex to Volume 1 release 1.2.1 of the InfiniBand Architecture.

RDMA Title: “InfiniBand Architecture Specification Volume 1”, Release 1.3, March 3, 2015 (subset of this spec that applies
to RoCEv2)
Document: Available from https://www.infinibandta.org/ibta-specifications-download/
Description: The InfiniBand Architecture Specification describes a first order interconnect technology for
interconnecting processor nodes and I/O nodes to form a system area network.

Security Title: “NIST SP 800-198: Platform Firmware Resiliency Guidelines”, May 2018
Abstract: https://csrc.nist.gov/publications/detail/sp/800-193/final
Document: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
Description: Provides technical guidelines and recommendations supporting resiliency of platform firmware and
data against potentially destructive attacks.

Software Title: Microsoft specification for “Receive Side Scaling” (RSS).
Document: https://docs.microsoft.com/en-us/windows-hardware/drivers/network/ndis-receive-side-scaling2
Description: RSS is a network driver technology that enables the efficient distribution of network receive
processing across multiple CPUs in multiprocessor systems.

SR-IOV Title: “Single Root I/O Virtualization and Sharing Specification”, Revision 1.1, January 20, 2010
Document: Available from www.pcisig.com
Description: The SR-IOV specification defines extensions to the PCIe specification that enable the VMs in a
virtualized server to efficiently share PCI adapter hardware resources.

Security Title: Security Protocol and Data Model (SPDM) Specification
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.1.pdf
Description: The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and
sequences for performing message exchanges between devices over a variety of transport and physical media.

Security Title: Security Protocol and Data Model (SPDM) over MCTP Binding Specification.
Document: https://www.dmtf.org/sites/default/files/standards/documents/DSP0275_1.0.0.pdf
Description: SPDM is designed to be an effective interface and data model that enables efficient access to low-
level security capabilities and operations. SPDM over MCTP binding defines the format of SPDM messages
transported over MCTP.

Statistics Title: “RFC 2819: Remote Network Monitoring Management Information Base”, May 2000
Document: http://www.ietf.org/rfc/rfc2819.txt
Description: Defines objects for managing remote network monitoring devices. Includes the popular packet size
histogram counters. Obsoletes RFC 1757.

Statistics Title: “RFC 2863: The Interfaces Group MIB”, June 2000
Document: http://www.ietf.org/rfc/rfc2863.txt
Description: Describes objects used for managing network interfaces. Obsoletes RFC 2233.

Statistics Title: “RFC 4022: Management Information Base for the Transmission Control Protocol (TCP)”, March 2005
Document: http://www.ietf.org/rfc/rfc4022.txt
Description: IP version-independent TCP MIB. Obsoletes RFC 2012, 2452.

Statistics Title: “RFC 4113: Management Information Base for the User Datagram Protocol (UDP)”, June 2005
Document: http://www.ietf.org/rfc/rfc4113.txt
Description: Objects for managing implementations of UDP. Obsoletes RFC 2013, 2454.

Statistics Title: “RFC 4293: Management Information Base for the Internet Protocol (IP)”, April 2006
Document: http://www.ietf.org/rfc/rfc4293.txt
Description: IP version-independent IP MIB. Obsoletes RFC 2011, 2465, 2466.

Table 1-2. Standards Supported by the E810 [continued]

Category Description

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.1.pdf
http://rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
https://www.infinibandta.org/ibta-specifications-download/
https://www.infinibandta.org/ibta-specifications-download/
https://csrc.nist.gov/publications/detail/sp/800-193/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/ndis-receive-side-scaling2
www.pcisig.com
http://www.ietf.org/rfc/rfc2819.txt
http://www.ietf.org/rfc/rfc2863.txt
http://www.ietf.org/rfc/rfc4022.txt
http://www.ietf.org/rfc/rfc4113.txt
http://www.ietf.org/rfc/rfc4293.txt
https://www.dmtf.org/sites/default/files/standards/documents/DSP0275_1.0.0.pdf

613875-009 49

Intel® Ethernet Controller E810 Datasheet
Introduction

Statistics Title: “Microsoft NDIS 6.0 OID_GEN_STATISTICS”
Document: https://docs.microsoft.com/en-us/windows-hardware/drivers/network/oid-gen-statistics
Description: Adapter statistics counters defined by Microsoft for NDIS 6.0.

TCP Title: “RFC 793: Transmission Control Protocol”, September 1981
Document: http://www.ietf.org/rfc/rfc0793.txt
Description: Base specification for TCP.

TCP Title: “RFC 813: Window and Acknowledgment Strategy in TCP”, July 1982
Document: http://www.ietf.org/rfc/rfc813.txt

TCP Title: “RFC 896: Congestion Control in IP/TCP Internetworks”, January 6, 1984
Document: http://www.ietf.org/rfc/rfc896.txt
Description: Defines the Nagle algorithm, which specifies delaying transmission of small amounts of data when
there are Acknowledgments (ACKs) outstanding.

TCP Title: “RFC 1323: TCP Extensions for High Performance”, May 1992
Document: http://www.ietf.org/rfc/rfc1323.txt
Description: Defines the TCP window scale and timestamp options, Round Trip Time Measurement (RTTM) and
Protect Against Wrapped Sequences (PAWS). Obsoletes RFC 1072, 1185.

TCP Title: “RFC 2525: Known TCP Implementation Problems”, March 1999
Document: http://www.ietf.org/rfc/rfc2525.txt
Description: This RFC describes implementation issues with various historical TCP/IP stacks. While it is included
here for informative purposes only, it does serve as a good check list to avoid known problems. The E810 Protocol
Engine is designed to support its recommendations.

TCP Title: “RFC 2923: TCP Problems with Path MTU Discovery”, September 2000
Document: http://www.ietf.org/rfc/rfc2923.txt
Description: Discusses problems with existing RFC 1191 implementations that should be avoided. Serves as an
implementation checklist.

TCP Title: “RFC 2988: Computing TCP's Retransmission Timer”, November 2000
Document: http://www.ietf.org/rfc/rfc2988.txt
Description: Defines the standard algorithm that TCP senders are required to use to compute and manage their
retransmission timer.

TCP Title: “RFC 3390: Increasing TCP's Initial Window”, October 2002
Document: http://www.ietf.org/rfc/rfc3390.txt
Description: Specifies an optional standard for TCP to increase the permitted initial window from one or two
segments to roughly 4 KB. Obsoletes RFC 2414. Updates RFC 2581.

TCP Title: “RFC 3465: TCP Congestion Control with Appropriate Byte Counting (ABC)”, February 2003
Document: http://www.ietf.org/rfc/rfc3465.txt
Description: This experimental RFC defines a small modification to the way TCP increases its congestion window.
Instead of increasing cwnd by a constant amount for each acknowledgment, cwnd is increased based on the
number of previously unacknowledged bytes each ACK covers.

TCP Title: “RFC 3782: The NewReno Modification to TCP’s Fast Recovery Algorithm”, April 2004
Document: http://www.ietf.org/rfc/rfc3782.txt
Description: Update the fast recovery algorithm that is run after three duplicate ACKs have been received.
Changes to the CWND during fast recovery, scheduling additional fast retransmitted packets if the received ACKs
do not acknowledge all the data when fast recovery was entered. Obsoletes RFC 2582.

TCP Title: “RFC 5681: TCP Congestion Control”, September 2009
Document: http://www.ietf.org/rfc/rfc5681.txt
Description: TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms. Obsoletes RFC
2581.

Test Title: “IEEE Standard Test Access Port and Boundary-Scan Architecture” (IEEE Std 1149.1-2001)
Document: Available from http://standards.ieee.org/getieee802
Description: Defines a standard interface through which instructions and test data are communicated to an
integrated circuit for component- and circuit board-level testing.

Table 1-2. Standards Supported by the E810 [continued]

Category Description

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/oid-gen-statistics
http://www.ietf.org/rfc/rfc0793.txt
http://www.ietf.org/rfc/rfc813.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc2525.txt
http://www.ietf.org/rfc/rfc2923.txt
http://www.ietf.org/rfc/rfc2988.txt
http://www.ietf.org/rfc/rfc3390.txt
http://www.ietf.org/rfc/rfc3465.txt
http://www.ietf.org/rfc/rfc3782.txt
http://www.ietf.org/rfc/rfc5681.txt
http://standards.ieee.org/getieee802

Intel® Ethernet Controller E810 Datasheet
Introduction

50 613875-009

Tunneling Title: “RFC 7637: NVGRE: Network Virtualization using Generic Routing Encapsulation”, September 2015
Document: http://datatracker.ietf.org/doc/draft-sridharan-virtualization-nvgre/?include_text=1
Description: MAC in Generic Routing Encapsulation (GRE) over IP encapsulation.

Tunneling Title: “RFC 7348: Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks”, August 2014
Document: http://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/?include_text=1
Description: MAC in UDP encapsulation.

UDP Title: “RFC 768: User Datagram Protocol”, August 28, 1980
Document: http://www.ietf.org/rfc/rfc0768.txt
Description: Base specification for UDP.

Table 1-2. Standards Supported by the E810 [continued]

Category Description

http://datatracker.ietf.org/doc/draft-sridharan-virtualization-nvgre/?include_text=1
http://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/?include_text=1
http://www.ietf.org/rfc/rfc0768.txt

613875-009 51

Intel® Ethernet Controller E810 Datasheet
Pin Interface

Chapter 2 Pin Interface

2.1 Pin Descriptions

This section provides detailed descriptions of E810 signal pins, grouped by function.

• A “_N” following the signal name indicates that the signal is active-low.

• Signal names with a suffix of “_p” and “_n” refer to differential signals.

The buffer types are listed in Table 2-1.

2.2 Pin Assignments and Descriptions

The E810 is available in two package options:

• The 25x25 mm, 668-pin, Flip-Chip Ball Grid Array (FCBGA) package contains all the signals needed
to implement the maximum product configuration. In particular, 16 lanes of PCIe and eight lanes of
Ethernet PMD are exposed. Products based on the Intel® Ethernet Controller E810-CAM1 and the
Intel® Ethernet Controller E810-CAM2 use this package.

• The 21x21 mm, 456-pin, Flip-Chip Ball Grid Array (FCBGA) package contains the signals needed to
implement eight lanes of PCIe and two lanes of Ethernet PMD for the dual-port 25 GbE or single-
port 50 GbE implementation. Products based on the Intel® Ethernet Controller E810-XXVAM2 use
this package.

The following sections provide the signal names, pin/ball assignments and signal descriptions. The
AC/DC electrical specifications for the signals are described in Chapter 16.

Table 2-1. Buffer Types

Buffer Description

In Input is a standard input-only signal.

Out (O) Totem Pole Output (TPO) is a standard active driver.

t/s Tri-state is a bi-directional, tri-state input/output pin.

o/d Open drain enables multiple devices to share as a wire-OR.

A-in Analog input signals.

A-out Analog output signals.

A-Inout Bi-directional analog signals.

HCSL-in High-Speed Current Steering Logic input signal.

NCSI-in NC-SI input signal.

NCSI-out NC-SI output signal.

Pu Internal pull-up resistor.

Pd Internal pull-down resistor.

clkobs Clock observation output.

JTAG 1.8 V JTAG I/O.

Intel® Ethernet Controller E810 Datasheet
Pin Interface

52 613875-009

2.2.1 PCIe Interface Pins

This section provides the pin assignment for PCIe interface signals.

Table 2-2. PCIe Interface Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

PE_CLK_p
PE_CLK_n

N47
N45

H40
G39

HCSL-in PCIe Differential Reference Clock In.
A 100 MHz differential clock input. This clock is used as the
reference clock for the PCIe Tx/Rx circuitry and by the PCIe core PLL
to generate clocks for the PCIe core logic.

PET_0_p
PET_0_n

L39
L41

E39
E37

A-out PCIe Serial Data Output.
A serial differential output pair running at 16 GT/s, 8 GT/s, 5 GT/s,
or 2.5 GT/s. This output carries both data and an embedded clock
that is recovered along with data at the receiving end.

PET_1_p
PET_1_n

J39
J41

C35
C33

A-out Same as previous.

PET_2_p
PET_2_n

G39
G41

C29
C27

A-out Same as previous.

PET_3_p
PET_3_n

E45
D44

C23
C21

A-out Same as previous.

PET_4_p
PET_4_n

E41
D40

C17
C15

A-out Same as previous.

PET_5_p
PET_5_n

E37
D36

E11
D10

A-out Same as previous.

PET_6_p
PET_6_n

E33
D32

E7
D6

A-out Same as previous.

PET_7_p
PET_7_n

E29
D28

E3
D2

A-out Same as previous.

PET_8_p
PET_8_n

E25
D24

N/A A-out Same as previous.

PET_9_p
PET_9_n

E21
D20

N/A A-out Same as previous.

PET_10_p
PET_10_n

E17
D16

N/A A-out Same as previous.

PET_11_p
PET_11_n

E13
D12

N/A A-out Same as previous.

PET_12_p
PET_12_n

E9
D8

N/A A-out Same as previous.

PET_13_p
PET_13_n

E5
D4

N/A A-out Same as previous.

PET_14_p
PET_14_n

G9
G7

N/A A-out Same as previous.

PET_15_p
PET_15_n

J9
J7

N/A A-out Same as previous.

PER_0_p
PER_0_n

L45
L47

C39
B38

A-in PCIe Serial Data Input.
A serial differential input pair running at 16 GT/s, 8 GT/s, 5 GT/s, or
2.5 GT/s This output carries both data and an embedded clock that
is recovered along with data at the receiving end.

PER_1_p
PER_1_n

J45
J47

A35
A33

A-in Same as previous.

PER_2_p
PER_2_n

G45
G47

A29
A27

A-in Same as previous.

613875-009 53

Intel® Ethernet Controller E810 Datasheet
Pin Interface

PER_3_p
PER_3_n

B44
A43

A23
A21

A-in Same as previous.

PER_4_p
PER_4_n

B40
A39

A17
A15

A-in Same as previous.

PER_5_p
PER_5_n

B36
A35

B12
A11

A-in Same as previous.

PER_6_p
PER_6_n

B32
A31

B8
A7

A-in Same as previous.

PER_7_p
PER_7_n

B28
A27

B4
A3

A-in Same as previous.

PER_8_p
PER_8_n

B24
A23

N/A A-in Same as previous.

PER_9_p
PER_9_n

B20
A19

N/A A-in Same as previous.

PER_10_p
PER_10_n

B16
A15

N/A A-in Same as previous.

PER_11_p
PER_11_n

B12
A11

N/A A-in Same as previous.

PER_12_p
PER_12_n

B8
A7

N/A A-in Same as previous.

PER_13_p
PER_13_n

B4
A3

N/A A-in Same as previous.

PER_14_p
PER_14_n

G3
G1

N/A A-in Same as previous.

PER_15_p
PER_15_n

J3
J1

N/A A-in Same as previous.

PE_WAKE_N R47 Y40 o/d Wake.
Pulled to 0b to indicate that a Power Management Event (PME) is
pending and the PCIe link should be restored. Defined in the PCIe
specifications. 3.3 V tolerant even when device is not powered.

PE_RST_N R45 W39 In Power and Clock Good Indication.
Indicates that power and PCIe reference clock are within specified
values. Defined in the PCIe specifications. Also called PCIe Reset
and PERST#.

Table 2-2. PCIe Interface Pins [continued]

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

Intel® Ethernet Controller E810 Datasheet
Pin Interface

54 613875-009

2.2.2 Ethernet Interface Pins

This section provides the pin assignments for Ethernet interface signals.

Table 2-3. Ethernet Interface Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

REFCLKIN_p
REFCLKIN_n

M2
M4

G1
H2

HCSL-in 156.25MHz HCSL differential clock input

RX_L0_p
RX_L0_n

AF44
AE45

AA17
AA19

A-in Serial Data Input for Ethernet PMD lane 0.
A serial differential input pair running at up to 26.5625 GBaud. An
embedded clock present in this input is recovered along with the
data.
This lane is used as a receive pair for one of the Ethernet ports. See
Section 3.2.2 for lane to port mapping

RX_L1_p
RX_L1_n

AF38
AF40

AA23
AA25

A-in Same as previous, Lane 1.

RX_L2_p
RX_L2_n

AF32
AF34

N/A A-in Same as previous, Lane 2.

RX_L3_p
RX_L3_n

AF26
AF28

N/A A-in Same as previous, Lane 3.

RX_L4_p
RX_L4_n

AF20
AF22

N/A A-in Same as previous, Lane 4.

RX_L5_p
RX_L5_n

AF14
AF16

N/A A-in Same as previous, Lane 5.

RX_L6_p
RX_L6_n

AF8
AF10

N/A A-in Same as previous, Lane 6.

RX_L7_p
RX_L7_n

AF2
AF4

N/A A-in Same as previous, Lane 7.

TX_L0_p
TX_L0_n

AG47
AF48

AC17
AC19

A-out Serial Data Output for Ethernet PMD Lane 0.
A serial differential output pair running at up to 26.5625 GBaud.
This output carries both data and an embedded clock that is
recovered along with data at the receiving end.
This lane is used as a transmit pair for one of the Ethernet ports for
one of the Ethernet ports. See Section 3.2.2 for lane to port
mapping

TX_L1_p
TX_L1_n

AH42
AH44

AC23
AC25

A-out Same as previous, Lane 1.

TX_L2_p
TX_L2_n

AH36
AH38

N/A A-out Same as previous, Lane 2.

TX_L3_p
TX_L3_n

AH30
AH32

N/A A-out Same as previous, Lane 3.

TX_L4_p
TX_L4_n

AH24
AH26

N/A A-out Same as previous, Lane 4.

TX_L5_p
TX_L5_n

AH18
AH20

N/A A-out Same as previous, Lane 5.

TX_L6_p
TX_L6_n

AH12
AH14

N/A A-out Same as previous, Lane 6.

TX_L7_p
TX_L7_n

AH6
AH8

N/A A-out Same as previous, Lane 7.

613875-009 55

Intel® Ethernet Controller E810 Datasheet
Pin Interface

Note: If an I2C interface clock/data pair is disconnected, the pins must be pulled up either by an
external pull-up resistor or by enabling the internal pull-up.

Table 2-4. External Ethernet PHY Control - MDIO/I2C Interface Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

MDIO0_SDA0 AC45 AC33 T/s, o/d, Pu Management Data, when configured as an MDIO interface.
Bi-directional signal for serial data transfers between the E810
and the PHY management registers.
Note: Tri-state buffer, requires an external pull-up device.
I2C Data, when configured as 2-wire management interface.
Stable during the high period of the clock (unless it is a start or
stop condition).
Note: Open drain buffer requires an external pull-up device.
Mapping of MDIO/I2C interfaces is controlled by the topology
netlist stored in NVM.

MDC0_SCL0 AB38 W33 O, o/d, Pu Management Clock, when configured as an MDIO interface.
Clock output for accessing the PHY management registers. MDC
clock frequency is set to 2.4 MHz (default).
I2C Clock, when configured as 2-wire management. One clock
pulse is generated for each data bit transferred.
Mapping of MDIO/I2C interfaces is controlled by the topology
netlist stored in NVM.
Note: This I/O operates as an open drain buffer, and therefore

requires an external pull-up device.

MDIO1_SDA1 AB42 AA33 T/s, o/d, Pu Same as above.

MDC1_SCL1 Y38 R31 O, o/d, Pu Same as above

MDIO2_SDA2 AB48 AC37 T/s, o/d, Pu Same as above.

MDC2_SCL2 AA39 U33 O, o/d, Pu Same as above

MDIO3_SDA3 AA45 AA37 T/s, o/d, Pu Same as above.

MDC3_SCL3 AB40 Y34 O, o/d, Pu Same as above

MDIO4_SDA4 Y48 Y38 T/s, o/d, Pu Same as above.

MDC4_SCL4 Y40 V34 O, o/d, Pu Same as above

Intel® Ethernet Controller E810 Datasheet
Pin Interface

56 613875-009

2.2.3 NC-SI Interface Pins

This section provides the pin assignment for NC-SI signals.

Note: If NC-SI is disconnected, external pull-downs should be used for the NCSI_CLK_IN and
NCSI_TX_EN signals, while the NCSI_TXD[1:0] signals should be pulled up to 3.3 V.

2.2.4 SMBus Interface Pins

This section provides the pin assignment for the SMBus interface signals.

Note: If the SMBus is disconnected, an external pull-up should be used for the SMBCLK and SMBD
pins.

Table 2-5. NC-SI Interface Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

NCSI_CLK_IN U39 U37 NCSI-In, Pu NC-SI Reference Clock Input.
Synchronous clock reference for receive, transmit, and control
interface. It is a 50 MHz clock ±100 ppm.

NCSI_CRS_DV U45 T40 NCSI-Out, Pu Carrier Sense/Receive Data Valid (CRS/DV).

NCSI_RXD_0
NCSI_RXD_1

V46
Y42

U39
N33

NCSI-Out, Pu Receive Data. Data signals to the BMC.

NCSI_TX_EN V42 V40 NCSI-In, Pu Transmit Enable.

NCSI_TXD_0
NCSI_TXD_1

V40
W41

V38
T34

NCSI-In, Pu Transmit Data. Data signals from the BMC.

NCSI_ARB_IN U41 T38 NCSI-In, Pu NC-SI Hardware Arbitration Input.
If GL_MNG_HWARB_CTRL.NCSI_ARB_EN is cleared, this pin is
internally pulled up.

NCSI_ARB_OUT Y46 P34 NCSI-Out, Pu NC-SI Hardware Arbitration Output.

Table 2-6. SMBus Interface Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

SMBCLK AC41 AA31 o/d SMBus Clock.
One clock pulse is generated for each data bit transferred.
3.3 V tolerant when device is not powered.

SMBD AA37 W31 o/d SMBus Data.
Stable during the high period of the clock (unless it is a start or stop
condition).
3.3 V tolerant when device is not powered.

SMBALRT_N AC39 AC31 o/d SMBus Alert.
Acts as an interrupt pin of a secondary device on the SMBus.
3.3 V tolerant when device is not powered.

613875-009 57

Intel® Ethernet Controller E810 Datasheet
Pin Interface

2.2.5 Serial Flash Memory Interface Pins

This section provides the pin assignment for SPI signals for connectivity to Flash memory devices.

Table 2-7. Serial Flash Memory Interface Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

FLSH_SI W1 U1 t/s, Pu Serial data output that should be connected to the Serial Input (SI)
of the SPI serial Flash memory.
With the dual and quad SPI commands, the SI Pin becomes I/O0 in
conjunction with other pins providing a 4-bit wide data path to the
Flash device.
To maintain consistency with the SPI nomenclature, the SI (I/O0)
pin is referenced as the SI pin unless specifically addressing the
Dual-I/O and Quad-I/O modes in which case it is referenced as I/
O0.

FLSH_SO AA1 W1 In, Pu Serial data input that should be connected to the Serial Output (SO)
from the SPI serial Flash memory.
With the dual and quad SPI commands, the SO Pin becomes I/O1 in
conjunction with other pins providing a 4-bit wide data path to the
Flash device.
To maintain consistency with the SPI nomenclature, the SO (I/O1)
pin is referenced as the SO pin unless specifically addressing the
Dual-I/O and Quad-I/O modes in which case it is referenced as I/
O1.

FLSH_IO2
FLSH_IO3

Y2
U1

V2
R1

t/s, Pu FLSH_IO2 and FLSH_IO3 are only used for quad SPI instructions,
providing a 4-bit wide data path to the Flash device.

FLSH_SCK V2 T2 t/s, Pu Flash serial clock operates at 50 MHz.

FLSH_CE_N AB2 Y2 t/s, Pu Flash chip select output.

Intel® Ethernet Controller E810 Datasheet
Pin Interface

58 613875-009

2.2.6 General Purpose I/O (GPIO) Pins

This section provides the pin assignment for GPIO signals. The E810 has a total of 24 GPIO pins that
can be configured as Software Definable Pins (SDPs), LED drivers or dedicated hardware functions for
connecting to external PHYs or IEEE 1588 auxiliary devices. The E810 offers the flexibility to configure
any of the GPIO pins to different modes and associated with different ports as described in Section 3.5.

The GPIO pins fall into two categories:

• GPIO/SDP/LED: These general purpose software definable pins are driven via the internal I/O
expander (the I/O Widget). The terms GPIO and SDP are used somewhat interchangeably in this
document. Application of these pins is defined by the link topology netlist. Refer to the reference
design section for supported mapping.

• Direct Timing GPIO: The E810 has a total of five direct, low latency, GPIOs that can be used for
accurate timing applications such as 1588. Four of these GPIOs are single ended, one a differential
output. These pins are controlled directly by the controller core to minimize delay and jitter for
timing applications.

Table 2-8. GPIO/SDP/LED Interface Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

SDP0
SDP1
SDP2
SDP3
SDP4
SDP5
SDP6
SDP7
SDP8
SDP9
SDP10
SDP11
SDP12
SDP13
SDP14
SDP15
SDP16
SDP17
SDP18
SDP19

V4
T10
U3
U7
U11
W3
Y4

V10
U9
W7
W9
V8
Y8

W11
AA3
Y10
AA7
AB4
V38
W39

T4
P6
R3
V4
R7
U3
AA1
U7
W3
AA3
V8
Y4

AB4
R9
AC3
U9
AC5
AB6
W37
R33

t/s, Pu General purpose 3.3 V I/Os.
Can be used to connect LEDs, low speed optical module interfaces,
external PHY control, or other similar usages. The SDP pins can also
be configured for use as external interrupt sources. Refer to the
reference design section for supported uses.

Table 2-9. Direct Timing GPIO Interface Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

SDP20
SDP21
SDP22
SDP23

AC1
AA9
AB8
AC3

AA9
W7
AA7
AC9

t/s, Pu General purpose 3.3 V I/Os for 1588 synchronized timing
applications.
The pins can also be configured for use as external interrupt
sources.

CLK_OUT_P
CLK_OUT_N

P4
P2

M2
L1

clkobs 0.8 V differential output for 1588 synchronized timing applications.

613875-009 59

Intel® Ethernet Controller E810 Datasheet
Pin Interface

2.2.7 Miscellaneous Pins

This section provides the pin assignment for other miscellaneous signals.

Table 2-10. Miscellaneous Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

LAN_PWR_GOOD AA11 Y10 In, Pu LAN Power Good.
A 3.3 V input signal. A transition from low-to-high initializes
the E810 into operation.
If not used (POR_BYPASS = 0b), an internal Power-on-
Reset (POR) circuit triggers the E810 power-up.
If the internal POR circuit is used to trigger device power-
up, this signal should be connected to 3.3 V. By default,
internal POR should be used.

POR_BYPASS AD2 AB10 In, Pu Bypass indication as to whether or not to use the internal
POR or the LAN_PWR_GOOD pin.

0b = The E810 uses both the internal POR circuit and the
LAN_PWR_GOOD pin; the device is held in reset as
long as the POR is active or LAN_PWR_GOOD is low.
By default, this pin should be pulled down to VSS
and the internal POR used unless the power supply
sequencing timing requirements, as defined in
Chapter 16 could not be met.

1b = The E810 disables the internal POR circuit and uses
the LAN_PWR_GOOD pin as a POR indication.

AUX_PWR AD4 AB12 In, Pu Auxiliary Power Available.
When set, indicates that auxiliary power is available and the
E810 should support the D3COLD power state if enabled to
do so. This pin is latched at the rising edge of
LAN_PWR_GOOD.

MAIN_PWR_OK AC7 AC11 In, Pu Main Power OK.
Indicates that platform main power is up. Must be
connected externally.

PCI_DIS_N AB10 Y8 In, Pu This pin is a strapping pin latched while LAN_PWR_GOOD or
PE_RST_N or in-band PCIe reset are asserted.
If this pin is not connected or driven high during
initialization, all PCI functions as configured from NVM are
enabled.
If this pin is asserted/driven low during initialization, all PCI
functions that are allowed to be disabled as configured in
NVM are disabled (see Section 4.5 for details).

DEV_DIS_N AC9 W9 In, Pu This pin is a strapping option pin latched while
LAN_PWR_GOOD or PE_RST_N or in-band PCIe reset are
asserted. This pin can be either used as a device disable or
for disabling the LAN ports and associated functions based
on NVRAM configuration (see Section 4.5 for details).
If this pin is not connected or driven high during
initialization, all the LAN ports and associated functions as
configured from NVRAM are enabled for normal operation.
If this pin is asserted/driven low during initialization, the
LAN ports and associated functions as configured from
NVRAM are disabled. Asserting this pin disables the entire
device if all the LAN ports are configured to be disabled.
When the entire device is disabled, the PCIe link is in L3
state, the PHY is in power down mode, and the output
buffers are tri-stated. (see Section 4.5 for details).

SENSOR_THERM_IN
SENSOR_THERM_OUT

M10
M8

J7
J5

Analog Thermal Diode for use with the integrated thermal sensor.
Use with an external thermal sensor is not validated.

OBS_CORE_VDD
OBS_CORE_VSS

T24
R23

P22
N21

Power supply observation pins.

Intel® Ethernet Controller E810 Datasheet
Pin Interface

60 613875-009

2.2.8 Testability and Debug Pins

This section provides the pin assignment for JTAG testability interface signals.Note that the JTAG 1.8 V
I/Os internal pull-up/pull-down are not enabled until after core VDD is applied. Therefor, for stable
power up, external pull-up/pull-down resistors are required as indicated. Access to the JTAG pins is
need for advanced debug. Refer to Section 17, “Design Guidelines” for recommended debug
connections.

Table 2-11. Testability and Debug Pins

Signal Ball #
CAM2/CAM1

Ball #
XXVAM2 Type Description

JTCK R41 K38 JTAG, In, Pu JTAG Clock Input.
Connect pull up resistor to 1.8V for normal operation.

JTDI P38 K36 JTAG, In, Pu JTAG Data Input.
Connect pull up resistor to 1.8V for normal operation.

JTDO P42 J37 JTAG, Out JTAG Data Output. 1.8 V

JTMS N39 K34 JTAG, In, Pu JTAG TMS Input.
Connect pull up resistor to 1.8 V for normal operation.

JRST_N R37 L37 JTAG, In, Pd JTAG Reset Input.
1.8 V I/O. Active low reset for the JTAG port. Connect pull
down resistor to VSS for normal operation.

TAP_SEL P40 L39 JTAG, In, Pd 1.8V I/O.
0b = JTAG interface is connected to Intel TAP.
1b = JTAG interface is connected to manufacturing TAP.

UARTTXD AA47 AA39 t/s, Pu Multi-function pin.
RSVD pins. UART interface for EMP firmware debug. Transmit
data output.
This pin can also be configured as an additional SDP from the
I/O Widget (IOW).

UARTRXD AA41 AB38 t/s, Pu Multi-function pin.
RSVD pins. UART interface for EMP firmware debug. Receive
data input.
This pin can also be configured as an additional SDP from the
IOW.

UARTCTS AB46 Y32 t/s, Pd Multi-function pin.
RSVD pins. UART interface for EMP firmware debug. Clear to
send input.
This pin can also be configured as an additional SDP from the
IOW.

UARTRTS AC47 AB34 t/s, Pu Multi-function pin.
RSVD pins. UART interface for EMP firmware debug. Request
to send output.
This pin can also be configured as an additional SDP from the
IOW.

613875-009 61

Intel® Ethernet Controller E810 Datasheet
Pin Interface

2.2.9 Reserved and No-Connect Pins

This section provides the pin assignment for reserved and no-connect pins. Table 2-12 and Table 2-13
contain the reserved and no-connect pins for the E810-CAM2/CAM1 and E810-XXVAM2, respectively.

Table 2-12. Reserved and No-Connect Pins (E810-CAM2/CAM1)

Signal Ball #
CAM2/CAM1 Description

RSVDN37_VDDH
RSVDR39_VDDH

N37
R39

Reserved pins. Connect pull up resistor to 1.8 V for normal operation.

RSVDN41_VSS N41 Reserved pin. Connect pull down resistor to VSS for normal operation.

RSVDN7_NC
RSVDN11_NC
RSVDP8_NC
RSVDP10_NC
RSVDR7_NC
RSVDR9_NC
RSVDR11_NC
RSVDT2_NC
RSVDT4_NC
RSVDT8_NC
RSVDT38_NC
RSVDT40_NC
RSVDT42_NC
RSVDT46_NC
RSVDT48_NC
RSVDU47_NC
RSVDV48_NC
RSVDW33_NC
RSVDW45_NC
RSVDW47_NC
RSVDAA35_NC

N7
N11
P8
P10
R7
R9
R11
T2
T4
T8
T38
T40
T42
T46
T48
U47
V48
W33
W45
W47
AA35

Reserved pins. Leave unconnected for normal operation.

Table 2-13. Reserved and No-Connect Pins (E810-XXVAM2)

Signal Ball #
XXVAM2 Description

RSVDJ33_VDDH
RSVDM40_VDDH

J33
M40

Reserved pins. Connect pull up resistor to 1.8 V for normal operation.

RSVDK40_VSS K40 Reserved pin. Connect pull down resistor to VSS for normal operation.

RSVDH6_NC
RSVDK4_NC
RSVDK6_NC
RSVDL5_NC
RSVDL7_NC
RSVDL33_NC
RSVDM6_NC
RSVDM34_NC
RSVDM38_NC
RSVDN5_NC
RSVDN7_NC
RSVDN9_NC
RSVDN37_NC
RSVDN39_NC
RSVDP4_NC
RSVDP38_NC
RSVDP40_NC
RSVDR13_NC
RSVDR37_NC
RSVDR39_NC
RSVDAB40_NC

H6
K4
K6
L5
L7
L33
M6
M34
M38
N5
N7
N9
N37
N39
P4
P38
P40
R13
R37
R39
AB40

Reserved pins. Leave unconnected for normal operation.

Intel® Ethernet Controller E810 Datasheet
Pin Interface

62 613875-009

2.2.10 Power Supply Pins

This section provides the pin assignment for power supply pins. The electrical specifications for the
power supply pins are defined in Section 16.3. Table 2-14 and Table 2-15 contain the power supply pins
for the E810-CAM2/CAM1 and E810-XXVAM2, respectively.

Table 2-14. Power Supply Pins (E810-CAM2/CAM1)

Signal Ball # CAM2/CAM1 Type Description

VDDIO33 P12, P14, T12, T14, T34, T36, V12, V14, V34, V36, Y12, Y14,
Y34, Y36

3.3 V Digital power supply for 3.3 V I/O.

VDDH18 M12, M14, P34, P36 1.8 V Digital 1.8 V power supply.

AVDDH Y20, Y22, Y24 1.1 V Analog power supply for Ethernet
SerDes interfaces.

AVDD_ETH AB14, AB16, AB18, AB20, AB22, AB24, AB26, AB28, AB30,
AB32, AB34, AD12, AD14, AD16, AD18, AD20, AD22, AD24,
AD26, AD28, AD30, AD32, AD34, AD36

0.9 V Analog power supply for Ethernet
SerDes interfaces.

AVDD_PCIE F14, F16, F18, F20, F22, F24, F26, F28, F30, F32, F34, H16,
H18, H20, H22, H24, H26, H28, H30, H32, K22, K24, K26,
K28, K30

0.9 V Analog power supply for PCIe
SerDes interfaces.

AVDD_PLL AA19, AA23 0.9 V PLL power supply.

VDD K20, K32, M16, M18, M20, M22, M24, M26, M28, M30, M32,
P16, P18, P20, P22, P24, P26, P28, P30, P32, T16, T18, T20,
T22, T26, T28, T30, T32, V16, V18, V20, V22, V24, V26, V28,
V30, V32, Y16, Y18, Y26, Y28, Y30, Y32

0.8 V Digital core logic power supply.

PLLVDD J17, K18 0.8 V

VSSA A5, A9, A13, A17, A21, A25, A29, A33, A37, A41, A45, B2, B6,
B10, B14, B18, B22, B26, B30, B34, B38, B42, B46, B48, C1,
C3, C5, C7, C9, C11, C13, C15, C17, C19, C21, C23, C25, C27,
C29, C31, C33, C35, C37, C39, C41, C43, C45, C47, D2, D6,
D10, D14, D18, D22, D26, D30, D34, D38, D42, D46, D48, E1,
E3, E7, E11, E15, E19, E23, E27, E31, E35, E39, E43, E47, F2,
F4, F6, F8, F10, F12, F36, F38, F40, F42, F44, F46, F48, G5,
G11, G13, G15, G17, G19, G21, G23, G25, G27, G29, G31,
G33, G35, G37, G43, H2, H4, H6, H8, H10, H12, H14, H34,
H36, H38, H40, H42, H44, H46, H48, J5, J11, J13, J15, J21,
J23, J25, J27, J29, J31, J33, J35, J37, J43, K2, K4, K6, K8,
K10, K12, K34, K36, K38, K40, K42, K44, K46, K48, L35, L37,
L43, M34, M36, M38, M40, M42, M44, M46, M48, W21, W23,
AA15, AA17, AA21, AA25, AA27, AA29, AA31, AA33, AB12,
AB36, AC11, AC13 AC15, AC17, AC19, AC21, AC23, AC25,
AC27, AC29, AC31, AC33, AC35, AC37, AD8, AD10, AD38,
AD40, AD42, AD44, AD46, AD48, AE1, AE3, AE5, AE7, AE9,
AE11, AE13, AE15, AE17, AE19, AE21, AE23, AE25, AE27,
AE29, AE31, AE33, AE35, AE37, AE39, AE41, AE43, AE47, AF6,
AF12, AF18, AF24, AF30, AF36, AF42, AF46, AG1, AG3, AG5,
AG7, AG9, AG11, AG13, AG15, AG17, AG19, AG21, AG23,
AG25, AG27, AG29, AG31, AG33, AG35, AG37, AG39, AG41,
AG43, AG45, AH4, AH10, AH16, AH22, AH28, AH34, AH40,
AH46

0 V Analog power supply ground.

PLLGND J19, K16 0 V

VSS K14, L1, L3, L5, L7, L9, L11, L13, L15, L17, L19, L21, L23,
L25, L27, L29, L31, L33, M6, N1, N3, N5, N9, N13, N15, N17,
N19, N21, N23, N25, N27, N29, N31, N33, N35, N43, P6, P44,
P46, P48, R1, R3, R5, R13, R15, R17, R19, R21, R25, R27,
R29, R31, R33, R35, R43, T6, T44, U5, U13, U15, U17, U19,
U21, U23, U25, U27, U29, U31, U33, U35, U37, U43, V6, V44,
W5, W13, W15, W17, W19, W25, W27, W29, W31, W35, W37,
W43, Y6, Y44, AA5, AA13, AA43, AB6, AB44, AC5, AC43, AD6

0 V Digital power supply ground.

613875-009 63

Intel® Ethernet Controller E810 Datasheet
Pin Interface

2.2.11 Pull-Up and Pull-Down Resistors

Internal pull-up and pull-down values on 3.3 V I/O pins, where indicated:

• Min: 10 KΩ

• Max: 20 KΩ

Internal pull-up and pull-down values on 1.8 V JTAG I/O pins, where indicated:

• Min: 25 KΩ

• Max: 50 KΩ

Table 2-15. Power Supply Pins (E810-XXVAM2)

Signal Ball # XXVAM2 Type Description

VDDIO33 M8, M10, M12, M30, M32, P8, P10, P12, P30, P32, T8, T10,
T30, T32, V30, V32

3.3 V Digital power supply for 3.3 V I/O.

VDDH18 H8, H10, H30, H32, K8, K10, K30, K32 1.8 V Digital 1.8 V power supply.

AVDD D14, D16, D18, D20, D22, D24, D26, D28, F18, F20, F22, F24,
F26, F28, F30, U19, U21, W13, W15, W17, W19, W21, W23,
W25, W27

0.9 V Analog power supply for PCIe and
Ethernet SerDes interfaces.

VDD H12, H18, H20, H22, H24, H26, H28, K12, K14, K16, K18,
K20, K22, K24, K26, K28, M14, M16, M18, M20, M22, M24,
M26, M28, P14, P16, P18, P20, P24, P26, P28, T12, T14, T16,
T18, T22, T24, T26, T28

0.8 V Digital core logic power supply.

PLLVDD G15, H16 0.8 V

VSSA A5, A9, A13, A19, A25, A31, A37, B2, B6, B10, B14, B16, B18,
B20, B22, B24, B26, B28, B30, B32, B34, B36, B40, C1, C3,
C5, C7, C9, C11, C13, C19, C25, C31, C37, D4, D8, D12, D30,
D32, D34, D36, D38, D40, E1, E5, E9, E13, E15, E17, E19,
E21, E23, E25, E27, E29, E31, E33, E35, F2, F4, F6, F8, F10,
F32, F34, F36, F38, F40, G19, G21, G23, T20, V12, V14, V16,
V18, V20, V22, V24, V26, V28, Y14, Y16, Y18, Y20, Y22, Y24,
Y26, Y28, AA13, AA15, AA21, AA27, AB14, AB16, AB18, AB20,
AB22, AB24, AB26, AB28, AC15, AC21, AC27

0 V Analog power supply ground.

PLLGND G17, H14 0 V

VSS F12, F14, F16, G3, G5, G7, G9, G11, G13, G25, G27, G29,
G31, G33, G35, G37, H4, H34, H36, H38, J1, J3, J9, J11, J13,
J15, J17, J19, J21, J23, J25, J27, J29, J31, J35, J39, K2, L3,
L9, L11, L13, L15, L17, L19, L21, L23, L25, L27, L29, L31, L35,
M4, M36, N1, N3, N11, N13, N15, N17, N19, N23, N25, N27,
N29, N31, N35, P2, P36, R5, R11, R15, R17, R19, R21, R23,
R25, R27, R29, R35, T6, T36, U5, U11, U13, U15, U17, U23,
U25, U27, U29, U31, U35, V6, V10, V36, W5, W11, W29, W35,
Y6, Y12, Y30, Y36, AA5, AA11, AA29, AA35, AB2, AB8, AB30,
AB32, AB36, AC7, AC13, AC29, AC35

0 V Digital power supply ground.

Intel® Ethernet Controller E810 Datasheet
Pin Interface

64 613875-009

2.3 Package Layout

Figure 2-1 and Figure 2-2 show a top view ball map of Intel® Ethernet Controller E810-CAM2/CAM1.
Figure 2-3 and Figure 2-4 show a top view ball map of Intel® Ethernet Controller E810-XXVAM2. See
Section 16.7 for package mechanical specifications.

Figure 2-1. E810-CAM2/CAM1 Package Layout (Part 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
A PER_1

3_n VSSA PER_1
2_n VSSA PER_1

1_n VSSA PER_1
0_n VSSA PER_9

_n VSSA PER_8
_n

B VSSA PER_1
3_p VSSA PER_1

2_p VSSA PER_1
1_p VSSA PER_1

0_p VSSA PER_9
_p VSSA PER_8

_p

C VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA

D VSSA PET_1
3_n VSSA PET_1

2_n VSSA PET_1
1_n VSSA PET_1

0_n VSSA PET_9
_n VSSA PET_8

_n

E VSSA VSSA PET_1
3_p VSSA PET_1

2_p VSSA PET_1
1_p VSSA PET_1

0_p VSSA PET_9
_p VSSA

F VSSA VSSA VSSA VSSA VSSA VSSA AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

G PER_1
4_n

PER_1
4_p VSSA PET_1

4_n
PET_1

4_p VSSA VSSA VSSA VSSA VSSA VSSA VSSA

H VSSA VSSA VSSA VSSA VSSA VSSA VSSA AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

J PER_1
5_n

PER_1
5_p VSSA PET_1

5_n
PET_1

5_p VSSA VSSA VSSA PLLVD
D

PLLGN
D VSSA VSSA

K VSSA VSSA VSSA VSSA VSSA VSSA VSS PLLGN
D

PLLVD
D VDD AVDD_

PCIE
AVDD_
PCIE

L VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS

M REFCL
KIN_p

REFCL
KIN_n VSS

SENSOR_
THERM_O

UT

SENSOR_
THERM_I

N

VDDH1
8

VDDH1
8 VDD VDD VDD VDD VDD

N VSS VSS VSS RSVDN
7_NC VSS RSVDN

11_NC VSS VSS VSS VSS VSS VSS

P CLK_O
UT_N

CLK_O
UT_P VSS RSVDP

8_NC
RSVDP
10_NC

VDDIO
33

VDDIO
33 VDD VDD VDD VDD VDD

R VSS VSS VSS RSVDR
7_NC

RSVDR
9_NC

RSVDR
11_NC VSS VSS VSS VSS VSS

OBS_C
ORE_V

SS

T RSVDT
2_NC

RSVDT
4_NC VSS RSVDT

8_NC SDP1 VDDIO
33

VDDIO
33 VDD VDD VDD VDD

OBS_C
ORE_V

DD

U FLSH_I
O3 SDP2 VSS SDP3 SDP8 SDP4 VSS VSS VSS VSS VSS VSS

V FLSH_
SCK SDP0 VSS SDP11 SDP7 VDDIO

33
VDDIO

33 VDD VDD VDD VDD VDD

W FLSH_
SI SDP5 VSS SDP9 SDP10 SDP13 VSS VSS VSS VSS VSSA VSSA

Y FLSH_I
O2 SDP6 VSS SDP12 SDP15 VDDIO

33
VDDIO

33 VDD VDD AVDDH AVDDH AVDDH

AA FLSH_
SO SDP14 VSS SDP16 SDP21

LAN_P
WR_GO

OD
VSS VSSA VSSA AVDD_

PLL VSSA AVDD_
PLL

AB FLSH_
CE_N SDP17 VSS SDP22 PCI_DI

S_N VSSA AVDD_
ETH

AVDD_
ETH

AVDD_
ETH

AVDD_
ETH

AVDD_
ETH

AVDD_
ETH

AC SDP20 SDP23 VSS
MAIN_
PWR_

OK

DEV_D
IS_N VSSA VSSA VSSA VSSA VSSA VSSA VSSA

AD POR_B
YPASS

AUX_P
WR VSS VSSA VSSA AVDD_

ETH
AVDD_

ETH
AVDD_

ETH
AVDD_

ETH
AVDD_

ETH
AVDD_

ETH
AVDD_

ETH

AE VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA

AF RX_L7
_p

RX_L7
_n VSSA RX_L6

_p
RX_L6

_n VSSA RX_L5
_p

RX_L5
_n VSSA RX_L4

_p
RX_L4

_n VSSA

AG VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA

AH VSSA TX_L7_
p

TX_L7_
n VSSA TX_L6_

p
TX_L6_

n VSSA TX_L5_
p

TX_L5_
n VSSA TX_L4_

p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

613875-009 65

Intel® Ethernet Controller E810 Datasheet
Pin Interface

Figure 2-2. E810-CAM2/CAM1 Package Layout (Part 2)

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
VSSA PER_7

_n VSSA PER_6
_n VSSA PER_5

_n VSSA PER_4
_n VSSA PER_3

_n VSSA A

VSSA PER_7
_p VSSA PER_6

_p VSSA PER_5
_p VSSA PER_4

_p VSSA PER_3
_p VSSA VSSA B

VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA C

VSSA PET_7
_n VSSA PET_6

_n VSSA PET_5
_n VSSA PET_4

_n VSSA PET_3
_n VSSA VSSA D

PET_8
_p VSSA PET_7

_p VSSA PET_6
_p VSSA PET_5

_p VSSA PET_4
_p VSSA PET_3

_p VSSA E
AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE VSSA VSSA VSSA VSSA VSSA VSSA VSSA F

VSSA VSSA VSSA VSSA VSSA VSSA VSSA PET_2
_p

PET_2
_n VSSA PER_2

_p
PER_2

_n G
AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA H

VSSA VSSA VSSA VSSA VSSA VSSA VSSA PET_1
_p

PET_1
_n VSSA PER_1

_p
PER_1

_n J
AVDD_
PCIE

AVDD_
PCIE

AVDD_
PCIE VDD VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA K

VSS VSS VSS VSS VSS VSSA VSSA PET_0
_p

PET_0
_n VSSA PER_0

_p
PER_0

_n L

VDD VDD VDD VDD VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA M

VSS VSS VSS VSS VSS VSS
RSVDN
37_VD

DH
JTMS

RSVDN
41_VS

S
VSS PE_CL

K_N
PE_CL

K_P N

VDD VDD VDD VDD VDDH1
8

VDDH1
8 JTDI TAP_S

EL JTDO VSS VSS VSS P

VSS VSS VSS VSS VSS VSS JRST_
N

RSVDR
39_VD

DH
JTCK VSS PE_RS

T_N
PE_WA
KE_N R

VDD VDD VDD VDD VDDIO
33

VDDIO
33

RSVDT
38_NC

RSVDT
40_NC

RSVDT
42_NC VSS RSVDT

46_NC
RSVDT
48_NC T

VSS VSS VSS VSS VSS VSS VSS NCSI_
CLK_IN

NCSI_
ARB_I

N
VSS

NCSI_
CRS_D

V

RSVDU
47_NC U

VDD VDD VDD VDD VDDIO
33

VDDIO
33 SDP18 NCSI_T

XD_0
NCSI_T
X_EN VSS NCSI_

RXD_0
RSVDV
48_NC V

VSS VSS VSS VSS
RSVD

W33_N
C

VSS VSS SDP19 NCSI_T
XD_1 VSS

RSVD
W45_N

C

RSVD
W47_N

C
W

VDD VDD VDD VDD VDDIO
33

VDDIO
33

MDC1_
SCL1

MDC4_
SCL4

NCSI_
RXD_1 VSS

NCSI_
ARB_O

UT

MDIO4
_SDA4 Y

VSSA VSSA VSSA VSSA VSSA
RSVDA
A35_N

C
SMBD MDC2_

SCL2
UARTR

XD VSS MDIO3
_SDA3

UARTT
XD AA

AVDD_
ETH

AVDD_
ETH

AVDD_
ETH

AVDD_
ETH

AVDD_
ETH VSSA MDC0_

SCL0
MDC3_
SCL3

MDIO1
_SDA1 VSS UARTC

TS
MDIO2
_SDA2 AB

VSSA VSSA VSSA VSSA VSSA VSSA VSSA SMBAL
RT_N

SMBCL
K VSS MDIO0

_SDA0
UARTR

TS AC
AVDD_

ETH
AVDD_

ETH
AVDD_

ETH
AVDD_

ETH
AVDD_

ETH
AVDD_

ETH VSSA VSSA VSSA VSSA VSSA VSSA AD

VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA RX_L0
_n VSSA AE

RX_L3
_p

RX_L3
_n VSSA RX_L2

_p
RX_L2

_n VSSA RX_L1
_p

RX_L1
_n VSSA RX_L0

_p VSSA TX_L0_
n AF

VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA TX_L0_
p AG

TX_L4_
n VSSA TX_L3_

p
TX_L3_

n VSSA TX_L2_
p

TX_L2_
n VSSA TX_L1_

p
TX_L1_

n VSSA AH

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Intel® Ethernet Controller E810 Datasheet
Pin Interface

66 613875-009

Figure 2-3. E810-XXVAM2 Package Layout (Part 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A PER_7

_n VSSA PER_6
_n VSSA PER_5

_n VSSA PER_4
_n

PER_4
_p VSSA

B VSSA PER_7
_p VSSA PER_6

_p VSSA PER_5
_p VSSA VSSA VSSA VSSA

C VSSA VSSA VSSA VSSA VSSA VSSA VSSA PET_4_
n

PET_4_
p VSSA

D PET_7_
n VSSA PET_6_

n VSSA PET_5_
n VSSA AVDD AVDD AVDD AVDD

E VSSA PET_7_
p VSSA PET_6_

p VSSA PET_5_
p VSSA VSSA VSSA VSSA

F VSSA VSSA VSSA VSSA VSSA VSS VSS VSS AVDD AVDD

G REFCL
KIN_p VSS VSS VSS VSS VSS VSS PLLVD

D
PLLGN

D VSSA

H REFCL
KIN_n VSS RSVDH

6_NC
VDDH1

8
VDDH1

8 VDD PLLGN
D

PLLVD
D VDD VDD

J VSS VSS
SENSOR_
THERM_O

UT

SENSOR_
THERM_I

N
VSS VSS VSS VSS VSS VSS

K VSS RSVDK
4_NC

RSVDK
6_NC

VDDH1
8

VDDH1
8 VDD VDD VDD VDD VDD

L CLK_O
UT_N VSS RSVDL

5_NC
RSVDL
7_NC VSS VSS VSS VSS VSS VSS

M CLK_O
UT_P VSS RSVDM

6_NC
VDDIO

33
VDDIO

33
VDDIO

33 VDD VDD VDD VDD

N VSS VSS RSVDN
5_NC

RSVDN
7_NC

RSVDN
9_NC VSS VSS VSS VSS VSS

P VSS RSVDP
4_NC SDP1 VDDIO

33
VDDIO

33
VDDIO

33 VDD VDD VDD VDD

R FLSH_I
O3 SDP2 VSS SDP4 SDP13 VSS RSVDR

13_NC VSS VSS VSS

T FLSH_
SCK SDP0 VSS VDDIO

33
VDDIO

33 VDD VDD VDD VDD VSSA

U FLSH_
SI SDP5 VSS SDP7 SDP15 VSS VSS VSS VSS AVDD

V FLSH_I
O2 SDP3 VSS SDP10 VSS VSSA VSSA VSSA VSSA VSSA

W FLSH_
SO SDP8 VSS SDP21 DEV_DI

S_N VSS AVDD AVDD AVDD AVDD

Y FLSH_
CE_N SDP11 VSS PCI_DI

S_N

LAN_PW
R_GOO

D
VSS VSSA VSSA VSSA VSSA

AA SDP6 SDP9 VSS SDP22 SDP20 VSS VSSA VSSA RX_L0_
p

RX_L0_
n

AB VSS SDP12 SDP17 VSS POR_B
YPASS

AUX_P
WR VSSA VSSA VSSA VSSA

AC SDP14 SDP16 VSS SDP23
MAIN_
PWR_

OK
VSS VSSA TX_L0_

p
TX_L0_

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

613875-009 67

Intel® Ethernet Controller E810 Datasheet
Pin Interface

Figure 2-4. E810-XXVAM2 Package Layout (Part 2)

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
PER_3

_n
PER_3

_p VSSA PER_2
_n

PER_2
_p VSSA PER_1

_n
PER_1

_p VSSA A

VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA PER_0
_n VSSA B

PET_3_
n

PET_3_
p VSSA PET_2_

n
PET_2_

p VSSA PET_1_
n

PET_1_
p VSSA PER_0

_p C

AVDD AVDD AVDD AVDD VSSA VSSA VSSA VSSA VSSA VSSA D

VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA PET_0_
n

PET_0_
p E

AVDD AVDD AVDD AVDD AVDD VSSA VSSA VSSA VSSA VSSA F

VSSA VSSA VSS VSS VSS VSS VSS VSS VSS PCIE_C
LK_N G

VDD VDD VDD VDD VDDH1
8

VDDH1
8 VSS VSS VSS PCIE_C

LK_P H

VSS VSS VSS VSS VSS VSS
RSVDJ
33_VD

DH
VSS JTDO VSS J

VDD VDD VDD VDD VDDH1
8

VDDH1
8 JTMS JTDI JTCK

RSVDK
40_VS

S
K

VSS VSS VSS VSS VSS VSS RSVDL
33_NC VSS JRST_

N
TAP_S

EL L

VDD VDD VDD VDD VDDIO
33

VDDIO
33

RSVDM
34_NC VSS RSVDM

38_NC

RSVDM
40_VD

DH
M

OBS_C
ORE_V

SS
VSS VSS VSS VSS VSS NCSI_

RXD_1 VSS RSVDN
37_NC

RSVDN
39_NC N

OBS_C
ORE_V

DD
VDD VDD VDD VDDIO

33
VDDIO

33

NCSI_A
RB_OU

T
VSS RSVDP

38_NC
RSVDP
40_NC P

VSS VSS VSS VSS VSS MDC1_
SCL1 SDP19 VSS RSVDR

37_NC
RSVDR
39_NC R

VDD VDD VDD VDD VDDIO
33

VDDIO
33

NCSI_T
XD_1 VSS NCSI_A

RB_IN

NCSI_
CRS_D

V
T

AVDD VSS VSS VSS VSS VSS MDC2_
SCL2 VSS NCSI_

CLK_IN
NCSI_
RXD_0 U

VSSA VSSA VSSA VSSA VDDIO
33

VDDIO
33

MDC4_
SCL4 VSS NCSI_T

XD_0
NCSI_T
X_EN V

AVDD AVDD AVDD AVDD VSS SMBD MDC0_
SCL0 VSS SDP18 PE_RS

T_N W

VSSA VSSA VSSA VSSA VSS UARTC
TS

MDC3_
SCL3 VSS MDIO4

_SDA4
PE_WA
KE_N Y

VSSA RX_L1_
p

RX_L1_
n VSSA VSS SMBCL

K
MDIO1
_SDA1 VSS MDIO3

_SDA3
UARTT

XD AA

VSSA VSSA VSSA VSSA VSS VSS UARTR
TS VSS UARTR

XD

RSVDA
B40_N

C
AB

VSSA TX_L1_
p

TX_L1_
n VSSA VSS SMBAL

RT_N
MDIO0
_SDA0 VSS MDIO2

_SDA2 AC

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Intel® Ethernet Controller E810 Datasheet
Pin Interface

68 613875-009

NOTE: This page intentionally left blank.

613875-009 69

Intel® Ethernet Controller E810 Datasheet
Interconnects

Chapter 3 Interconnects

3.1 PCI Express (PCIe)

3.1.1 Features

The E810 supports Rev. 4.0 of the PCIe base specification.

In addition to the capabilities required by the PCIe specifications, the E810 also supports the following
optional functionality as described in this section:

• All PCI functions are native PCIe functions.

• Physical Layer:

— Support for 2.5GT/s, 5GT/s, 8GT/s, and 16GT/s

— Interface width of 1, 4, 8, or 16 PCIe lanes

— Full swing and half swing signaling

— Lane reversal

• Transaction Layer mechanisms:

— 64-bit and 32-bit memory address spaces

— Removal of I/O BAR (optional)

— Relaxed ordering

— Flow control update timeout mechanism

— ID-based ordering (IDO)

— Packet sizes:

• Maximum payload size: 512B

• Maximum read request size: 4 KB

— Extended tags:

• 10-bit tag as completer

• 8-bit tag as requester

— Function-Level Reset (FLR).

• Reliability:

— Advanced Error Reporting (AER)

— End-to-End CRC (ECRC) generation and checking

— Recovery from data poisoning

— Completion timeout

• Power Management:

— Wake capability

Intel® Ethernet Controller E810 Datasheet
Interconnects

70 613875-009

• DFT and DFM support for high-volume manufacturing.

• The E810 supports the following extended capabilities:

— AER

— Device Serial Number (DSN)

— Alternative RID Interpretation (ARI)

— Single Root I/O Virtualization (SR-IOV)

— Access Control Services (ACS)

— TLP Processing Hints (TPH)

— Process Address Space ID (PASID)

Table 3-1 lists the new requirements for the PCIe interface in the E810.

3.1.2 Transaction Layer

3.1.2.1 Transactions Accepted by the E810

Table 3-2 lists the transactions accepted by the device and their attributes. See Section 3.1.2.8 for the
number of credits provided per FC type.

Table 3-1. PCIe Interface New Features

Description

General
• Support PCIe base specification Ver. 4.0).
• Support up to 8 PCI physical functions.
Note: The PCI functions can be used in different manners per usage (for example, allocated to Ethernet ports).

PCI and PCIe Capabilities
• PASID support.
• Gen4 support.

Table 3-2. Transaction Types Accepted by the Transaction Layer

Transaction Type FC Type Tx Layer Reaction Hardware Should Keep Data
from Original Packet

Configuration Read Request NPH CPLH + CPLD Requester ID, TAG, attribute.

Configuration Write Request NPH + NPD CPLH Requester ID, TAG, attribute.

Memory Read Request NPH CPLH + CPLD Requester ID, TAG, attribute.

Memory Write Request PH + PD - -

IO Read Request NPH CPLH + CPLD Requester ID, TAG, attribute.

IO Write Request NPH + NPD CPLH Requester ID, TAG, attribute.

Read Completions CPLH + CPLD - -

Message PH + PD1

1. MCTP messages contain payload.

- -

613875-009 71

Intel® Ethernet Controller E810 Datasheet
Interconnects

Flow Control types:

• CPLD — Completion Data Payload

• CPLH — Completion Headers

• NPD — Non-Posted Request Data Payload

• NPH — Non-Posted Request Headers

• PD — Posted Request Data Payload

• PH — Posted Request Headers

3.1.2.2 Size of Target Accesses

3.1.2.2.1 Memory Accesses

Rules for accesses to the CSR space (both memory BAR and MSI-X BAR):

Write accesses:

• CSR writes are 32-bit or 64-bit only.

• Zero-length writes have no internal impact (nothing written, no effect such as clear-by-write).
The transaction is treated as a successful operation (no error event).

• Other accesses (partial writes, larger writes) are handled as completer abort. Data is dropped
and an error is generated as per PCIe rules.

Read accesses:

• CSR reads are 32-bit or 64-bit only.

Note: Some 64-bit reads are handled atomically, such as not interleaved with any other
read requests. This applies mainly to reading counters, where all 64 bits need to be
read simultaneously. Such registers are explicitly marked in their description.

• Partial reads with at least one byte disabled are handled internally as a full read. That is, any
side effect of the full read (such as clear-by-read) is also applicable to partial reads. The
completion on PCIe adheres to the specification rules regarding the number of bytes reported in
the completion.

• Zero-length reads generate a completion, but the register is not accessed and undefined data is
returned.

• Larger CSR read requests are handled as unsupported requests. The completion includes a UR
status and an error is generated as per PCIe rules.

Rules for accessing the doorbell space in the memory BAR:

Write accesses:

• Write accesses are supported within the limit of the respective PCIe credits.

• A write access that crosses over into the Flash address space is handled as a completer abort.

• Zero-length writes have no internal impact (nothing written, no effect such as clear-by-write).
The transaction is treated as a successful operation (no error event).

Read accesses:

• Read accesses are replied with stale data. No error indication is provided.

Intel® Ethernet Controller E810 Datasheet
Interconnects

72 613875-009

Rules for accessing the Flash space in the memory BAR or the Expansion ROM BAR:

Write accesses:

• Writes to Flash are silently ignored.

Read accesses:

• Reads to Flash are 32 bits wide.

• Partial reads with at least one byte disabled are handled internally as a full read. The
completion on PCIe adheres to the specification rules regarding the number of bytes reported in
the completion

• Zero-length reads generate a completion, but the Flash is not accessed and undefined data is
returned.

• Larger CSR read requests are handled as completer abort. The completion includes a CA status
and an error is generated as per PCIe rules.

3.1.2.3 I/O Accesses

Rules for accesses to the I/O BAR:

Write accesses:

• Write accesses are 32 bits wide.

• Zero-length writes have no internal impact (nothing written, no effect such as clear-by-write).
The transaction is treated as a successful operation (no error event).

• Other accesses (partial writes, larger writes) are handled as completer abort. Data is dropped
and an error is generated as per PCIe rules.

Read accesses:

• Reads to the I/O BAR are 32 bits wide.

• Partial reads with at least one byte disabled are handled internally as a full read. That is, any
side effect of the full read (such as clear by read) is also applicable to partial reads. The
completion on PCIe adheres to the specification rules regarding the number of bytes reported in
the completion.

• Larger CSR read requests are handled as completer abort. The completion includes a CA status
and an error is generated as per PCIe rules.

• See Section 13.1.1.5 for more details.

3.1.2.3.1 Messages

MCTP messages might contain a payload of up to 64 bytes.

613875-009 73

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.1.2.4 Transactions Initiated by the E810

Table 3-3 lists the transactions initiated by the device and their attributes.

Configuration values:

• MAX_PAYLOAD_SIZE - The value of the Max Payload Size Supported field in the Device Capabilities
register is loaded from NVM.

— Hardware default is 512B.

— System software then programs the actual value into the Max Payload Size field of the Device
Control register.

• Non-ARI mode: If not all functions are programmed with the same value, the Max Payload
Size used for all functions is the minimum value programmed among all functions.

• ARI mode: Max Payload Size is determined solely by the setting in Function 0.

• MAX_READ_REQUEST_SIZE - The E810 supports read requests of up to 4 KB.

— The actual maximum size of a read request is defined as the minimum {4 KB, Max Read
Request Size field in the Device Control Register}.

• Extended tags are supported for Memory Read Requests.

• Prefixes can be added to memory read and write requests when PASID is enabled.

Note: If Extended tags are not enabled, the performance of the device might degrade. To ensure
usage of extended tags, all functions must enable them in the Extended Tag Field Enable
field.

3.1.2.4.1 Data Alignment

Requests must never specify an address/length combination that causes a memory space access to
cross a 4 KB boundary. Therefore, the E810 breaks requests into 4 KB-aligned requests (if needed).
This does not pose any requirement on software. However, if software allocates a buffer across a 4 KB
boundary, hardware issues multiple requests for the buffer. Software should consider aligning buffers to
a 4 KB boundary in cases where it improves performance.

Table 3-3. Transaction Types Initiated by the Transaction Layer

Transaction Type Payload Size FC Type

Configuration Read Request Completion DWord CPLH + CPLD

Configuration Write Request Completion - CPLH

IO Read Request Completion DWord CPLH + CPLD

IO Write Request Completion - CPLH

Read Request Completion DWord/QWord CPLH + CPLD

Memory Read Request - NPH

Memory Write Request ≤ MAX_PAYLOAD_SIZE PH + PD

Message ≤ 64 bytes1

1. MCTP messages contain payload.

PH + PD

Intel® Ethernet Controller E810 Datasheet
Interconnects

74 613875-009

The general rules for packet alignment are as follows. Note that these apply to all E810 requests:

• The length of a single request does not exceed the PCIe limit of Max Payload Size for write, and Max
Read Request Size for read.

• A single request does not span across different memory pages as noted by the 4 KB boundary
alignment previously mentioned.

If a request can be sent as a single PCIe packet and still meets the general rules for packet alignment,
it is not broken at the cache line boundary, but rather is sent as a single packet. However, if any of the
general rules require that the request be broken into two or more packets, the request is broken at the
cache line boundary.

For requests with data payload, if the payload size is larger than (MAX_PAYLOAD_SIZE -
CACHELINE_SIZE), the request is broken into multiple TLPs starting at the first cache-line boundary
following the (MAX_PAYLOAD_SIZE - CACHELINE_SIZE) bytes. For example, if MAX_PAYLOAD_SIZE =
256B and CACHELINE_SIZE = 64 bytes, a 1 KB request starting at address 0x...10 is broken into TLPs
such that the first TLP contains 240 bytes of payload (since 240 bytes + 0x10 = 256 bytes is on the
cache-line boundary).

The system cache line size is controlled by the GLPCI_CNF2.CACHELINE_SIZE bit, loaded from the NVM
Cache Line Size field. Note that the Cache Line Size register in the PCI configuration space is not related
to the GLPCI_CNF2.CACHELINE_SIZE and is solely for software use.

3.1.2.5 Messages

Table 3-4 lists the response to messages sent to the device. Unlisted messages are not supported by
the device and are treated as unsupported requests.

Table 3-5 lists the messages sent by the device.

Table 3-4. Messages in the E810 (as a Receiver)

Message
Code [7:0]

Routing
r2r1r0 Message E810 Response

0x00 011b Unlock Silently drop.

0x14 100b PM_Active_State_NAK Accepted.

0x19 011b PME_Turn_Off Accepted.

0x40
0x41
0x43
0x44
0x45
0x47
0x48

100b Ignored messages (used to be hot-plug
messages)

Silently drop.

0x50 100b Slot power limit support (has one DWord data) Silently drop.

0x7E 000b
010b
011b
100b

Vendor_defined type 0 Drop and handle as an unsupported request.

0x7F 100b
000b

Vendor_defined type 1 Silently drop.

0x7F 010b
011b

Vendor_defined type 1. See Section 3.1.2.5.1 Send to MCTP reassembly if Vendor ID = 0x1AB4
(DMTF) and VDM code - 0000b (MCTP).
Otherwise, silently drop.

613875-009 75

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.1.2.5.1 VDM

The following vendor defined message is supported:

• DMTF

• MCTP

3.1.2.5.1.1 MCTP VDMs

MCTP VDMs are supported as both master and target. The following header fields are involved (see
Section 12.7.2.1 for more details):

• Fmt — Set to 11b to indicate a 4-DWord header with data.

• Type:

[4:3] — Set to 10b to indicate a message.
[2:0] — Routing r2r1r0 = 000b, 010b or 011b.

• Traffic Class — Set to 000b.

• TLP Digest — Set to 0b (no ECRC).

• Error Present — Set to 0b.

• Attributes[1:0] — Set to 01b (no snoop).

• Tag field — Indicates this is an MCTP packet and the size of padding to DWord alignment added.

• Message code = 0x7F (Type 1 VDM).

• Destination ID — captures the target B/D/F for route by ID. Otherwise, reserved.

• Vendor ID = 0x1AB4 (DMTF).

Table 3-5. Messages in the E810 (as a Transmitter)

Message Code [7:0] Routing r2r1r0 Message

0x20 100b Assert INT A

0x21 100b Assert INT B

0x22 100b Assert INT C

0x23 100b Assert INT D

0x24 100b De-assert INT A

0x25 100b De-assert INT B

0x26 100b De-assert INT C

0x27 100b De-assert INT D

0x30 000b ERR_COR

0x31 000b ERR_NONFATAL

0x33 000b ERR_FATAL

0x18 000b PM_PME

0x1B 101b PME_TO_Ack

0x7F 000b
010b
011b

Vendor Defined Messages (VDM); see Section 3.1.2.5.1.

Intel® Ethernet Controller E810 Datasheet
Interconnects

76 613875-009

3.1.2.6 Transaction Attributes

3.1.2.6.1 Traffic Class (TC) and Virtual Channels (VC)

The E810 supports only TC = 0b and VC = 0b (default).

3.1.2.6.2 TLP Processing Hints (TPH)

The E810 supports the TPH capability defined in the PCI Express specification. It does not support
extended TPH requests.

Existence of a TPH is indicated on the PCIe link by setting the TH bit in the TLP header. Using the PCIe
TLP Steering Tag (ST) and Processing Hints (PH) fields, the E810 can provide hints to the root complex
about the destination (socket ID) and about data access patterns (locality in cache) when executing
DMA memory writes or read operations.

The E810 exposes a PCIe TPH capability structure (see Section 14.4.5) with no steering table.

Required steps to enable TPH usage:

1. For a given function, the TPH Requester Enable field in the PCIe configuration TPH Requester
Control register should be set to either 01b or 11b, and the ST Mode Select field should be set to
one of the two supported values: 000b (No Table Mode) or 010b (Device Specific Mode). If this is
not the case, the PF driver should not enable the TPH in the transmit and receive queue contexts.

2. Appropriate TPH Enable bits in the receive or transmit queue context should be set.

3. Processing hints should be programmed in the GLTPH_CTRL.Desc_PH and GLTPH_CTRL.Data_PH
Processing Hints fields.

4. Steering information should be programed in the CPUID fields in the receive or transmit queue
context.

The Processing Hints and Steering Tags are set according to the characteristics of the traffic as listed in
Table 10-2.

Note: To enable TPH usage, all the memory reads are done without setting any of the byte enable
bits.

3.1.2.6.2.1 Steering Tag and Processing Hint Programming

Each type of DMA traffic uses a different policy to define how the steering tag (socket ID) and
processing hints are generated:

• The policy for LAN traffic is described in Section 10.3.

• The policy for offloaded traffic is described in Section 11.4.8.

• Accesses to the Host Memory Cache do not use TPH hints.

• Accesses to the admin command queues do not use TPH hints.

3.1.2.6.3 PASID Prefix

Memory read and write transactions can have a PASID prefix added if the transaction is related to a
queue from a PASID-enabled VSIs and PASID is enabled in the system.

The PASID prefix is described as follows:

613875-009 77

Intel® Ethernet Controller E810 Datasheet
Interconnects

where:

• The PASID[19:0] value is extracted from the VSI_PASID.PASID[19:0] field.

• E = Execute Privilege = 0

• P = Privileged Mode Requested = 0

The addition of the prefix is controlled by the VSI_PASID.EN[31] bit if PASID is enabled in the PASID
capability. See Section 14.4.9 for more information.

3.1.2.7 Device Ordering Rules

The E810 meets the PCIe ordering rules as follows:

Deadlock avoidance — The E810 meets the PCIe ordering rules that prevent deadlocks:

• Posted writes overtake stalled read requests. This applies to both target and master directions.
For example, if master read requests are stalled due to lack of credits, master posted writes are
allowed to proceed. On the target side, it is acceptable to timeout on stalled read requests to
allow later posted writes to proceed.

• Target posted writes overtake stalled target configuration writes.

• Completions overtake stalled read requests. This applies to both target and master directions.
For example, if master read requests are stalled due to lack of credits, completions generated
by the E810 are allowed to proceed.

Consistency of data:

• Descriptor/Data Ordering — The E810 insures that a Rx-Descriptor is written back on PCIe only
after the data that the descriptor relates to is written to the PCIe link.

• Target NP read requests might pass target posted writes addressing different PCI functions.

• Completions for target reads (memory, I/O, configuration) do not pass previous posted
requests. Here are some specific usages of this rule:

— Flush following a reset (such as FLR, BME, D3 entry, VFE clear) — When the system issues
a reset event, it needs to identify when the device stops sending new posted requests from
the function(s) under reset. The completion to the config write of these reset events is sent
after all requests/completions related to that function(s) are flushed out. The device is
expected not to issue any new posted transactions from the function(s) under reset.

— MSI and MSI-X Ordering Rules — System software can change the MSI or MSI-X tables
during run-time. Software expects that interrupt messages issued after the table has been
updated are using the updated contents of the tables.

• Since software does not know when the tables are actually updated in the E810, a
common scheme is to issue a read request to the MSI or MSI-X table after an update to
the table (a PCI configuration read for MSI and a memory read for MSI-X). Software
expects that any message issued following the completion of the read request is using
the updated contents of the tables.

• Once an MSI or MSI-X message is issued using the updated contents of the interrupt
tables, any consecutive MSI or MSI-X message does not use the contents of the tables
prior to the change.

31 29 28 27 24 23 22 21 20 19 0

100 1 0001 E P Res PASID[19:0]

Intel® Ethernet Controller E810 Datasheet
Interconnects

78 613875-009

Independence between target and master accesses:

• The acceptance of a target posted request does not depend upon the transmission of any TLP.

• The acceptance of a target non-posted request does not depend upon the transmission of a
non-posted request.

• Accepting a completion does not depend upon the transmission of any TLP.

3.1.2.7.1 Processing of Target Accesses

The E810 meets the specification requirements regarding target accesses as described in
Section 3.1.2.7.

In addition, the following behaviors apply:

• Target accesses from different functions might be processed in a different order than the order in
which they arrive.

• Completions that belong to requests from different PCI functions might be issued in a different
order than the order of the respective requests.

3.1.2.7.2 Relaxed Ordering

The E810 takes advantage of the relaxed ordering rules in PCIe. By setting the relaxed ordering bit in
the packet header, the E810 enables the system to optimize performance in the following cases:

• Relaxed ordering for LAN descriptor and data reads — When the E810 issues a read transaction, its
split completion has no ordering relationship with the writes from the CPUs (same direction). It
should be allowed to bypass the writes from the CPUs.

— The GLLAN_RCTL_1.RXDESCRDROEN bit (loaded from NVM) enables relaxed ordering for
Rx-Descriptor reads.

• Relaxed ordering for LAN Rx data writes — When the E810 issues Rx data writes, it also enables
them to bypass each other in the path to system memory because software does not process this
data until their associated descriptor writes are done.

— The GLLAN_RCTL_1.RXDATAWRROEN bit (loaded from NVM) enables relaxed ordering for Rx
data writes.

• The E810 does not relax ordering for the following requests:

— LAN descriptor writes.

— LAN Tx head write back.

— Interrupt messages.

— MCTP messages.

— Protocol Engine traffic.

— HMC requests.

— EMP requests.

— Any other requests not previously mentioned.

Relaxed ordering is globally enabled in the E810 by clearing the GLPCI_CNF2.RO_DIS bit, originally
loaded from NVM. It is further controlled through the Enable Relaxed Ordering bit in the PCIe Device
Control register (see Section 14.3.5.5).

613875-009 79

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.1.2.7.3 ID-Based Ordering (IDO)

ID-based ordering was introduced in the PCIe rev. 2.1 specification. When enabled, the E810 sets IDO
in all applicable TLPs defined in the PCIe specification. IDO is not set for MCTP packets.

IDO is enabled when all of the following conditions are met:

• IDO is not disabled from the NVM. Device default is enabled. The value loaded from the NVM is
reflected in the GLPCI_CAPSUP register.

• The PCIe IDO Request Enable bit (for requests) or the IDO Completion Enable bit (for completions)
in the Device Control 2 register is set (see Section 14.3.5.11).

3.1.2.8 Flow Control

3.1.2.8.1 Flow Control Rules

The E810 only implements the default Virtual Channel (VC0). A single set of credits is maintained for
VC0.

Rules for FC updates:

• UpdateFC packets are sent immediately when a resource becomes available.

• The E810 follows the PCIe recommendations for frequency of UpdateFC FCPs.

• Specific rules apply in L0 or L0s link state. See the PCIe specification.

3.1.2.8.2 Flow Control Timeout Mechanism

The E810 implements the optional flow control update timeout mechanism. See the PCIe specification.

Table 3-6. Flow Control Credits Allocation

Credit Type Operations Number of Credits (per Device)

Posted Request Header (PH) Target write (one unit)
Message (one unit)

96 header credit units.

Posted Request Data (PD) Target write
Message

288 data credits units.

Non-Posted Request Header (NPH) Target read (one unit)
Configuration read (one unit)
Configuration write (one unit)

Four units (to enable concurrent target
accesses).

Non-Posted Request Data (NPD) Configuration write (one unit) Four units.

Completion Header (CPLH) Read completion (N/A) Infinite (accepted immediately).

Completion Data (CPLD) Read completion (N/A) Infinite (accepted immediately).

Intel® Ethernet Controller E810 Datasheet
Interconnects

80 613875-009

3.1.2.9 End-to-End CRC (ECRC)

The E810 supports ECRC as defined in the PCIe specification. The following functionality is provided:

• Inserting ECRC in transmitted TLPs:

— The E810 indicates support for inserting ECRC in the ECRC Generation Capable bit of the PCIe
Configuration registers. This bit is loaded from the global ECRC Generation Capable NVM bit.

— Inserting ECRC is enabled per function by the ECRC Generation Enable bit of the PCIe
Configuration registers. VFs follow the behavior of their PF.

— ECRC is not added to MCTP messages (per the MCTP specification).

• ECRC is checked on all incoming TLPs. A packet received with an ECRC error is dropped. Note that
for completions, a completion timeout occurs later (if enabled).

— The E810 indicates support for ECRC checking in the ECRC Check Capable bit of the PCIe
Configuration registers. This bit is loaded from the global ECRC Check Capable NVM bit.

— Checking of ECRC is enabled by the ECRC Check Enable bit of the PCIe Configuration registers.
ECRC checking is done if enabled by at least one physical function (enablement is not done via
VFs).

• ECRC errors are reported on all Physical Functions (PFs) enabled for ECRC checking.

• System software can configure ECRC independently per each physical function.

3.1.3 Link Layer

3.1.3.1 ACK/NAK Scheme

NAKs are sent as soon as identified.

ACKs are sent per Section 3.5.3.1 (Table 3-7, Table 3-8, and Table 3-9) in the PCIe Base Specification.

3.1.3.2 Supported DLLPs

The following DLLPs are supported by the E810 as a receiver:

• ACK

• NAK

• PM_Request_Ack

• InitFC1-P

• InitFC1-NP

• InitFC1-Cpl

• InitFC2-P

• InitFC2-NP

• InitFC2-Cpl

• UpdateFC-P

• UpdateFC-NP

613875-009 81

Intel® Ethernet Controller E810 Datasheet
Interconnects

• UpdateFC-Cpl

The following DLLPs are supported by the E810 as a transmitter:

• ACK

• NAK

• PM_Enter_L1

• PM_Enter_L23

• InitFC1-P

• InitFC1-NP

• InitFC1-Cpl

• InitFC2-P

• InitFC2-NP

• InitFC2-Cpl

• UpdateFC-P

• UpdateFC-NP

Note: UpdateFC-Cpl is not sent because of the infinite FC-Cpl allocation.

3.1.3.3 Transmit EDB Nullifying (End Bad)

A TLP might be signaled as EDB or poisoned if during its transmission from the device, an internal
memory error is detected that might corrupt the TLP payload.

3.1.3.4 Retry Buffer

The retry buffer size is 8 KB.

3.1.4 Physical Layer

3.1.4.1 Link Speed

The E810 supports Gen 1 (2.5GT/s), Gen 2 (5GT/s), Gen 3 (8GT/s), and Gen 4 (16GT/s).

The following configuration controls link speed:

• PCIe Supported Link Speeds bit — Indicates the link speeds supported by the E810.

• PCIe Current Link Speed bit — Indicates the negotiated link speed.

• PCIe Target Link Speed bit — Used to set the target compliance mode speed when software is using
the Enter Compliance bit to force a link into compliance mode. The default value is the highest link
speed supported defined by the previous Supported Link Speeds.

The E810 does not initiate a hardware autonomous speed change.

The E810 supports entering compliance mode at the speed indicated in the Target Link Speed field in
the PCIe Link Control 2 register (see Section 14.3.5.13). Compliance mode functionality is controlled
via the PCIe Link Control 2 register.

Intel® Ethernet Controller E810 Datasheet
Interconnects

82 613875-009

3.1.4.2 Link Width

The E810 supports a maximum link width of x16, x8, x4, or x1.

The maximum link width supported is loaded from the NVM into the Maximum Link Width field of the
PCIe Link Capabilities register (see Section 14.3.5.7). Hardware default is the x16 link.

During link configuration, the platform and the E810 negotiate on a common link width. The link width
must be one of the supported PCIe link widths (x1, x4, x8, x16), such that:

• If maximum link width = x16, the E810 negotiates to either x16, x8, x4, or x1.

• If maximum link width = x8, the E810 negotiates to either x8, x4, or x1.

• If maximum link width = x4, the E810 negotiates to either x4 or x1.

• If maximum link width = x1, the E810 only negotiates to x1.

The E810 does not initiate a hardware autonomous link width change.

3.1.4.3 Lane Configurations

The E810 supports lane reversal and degraded modes.

The following general rules determine how the device reacts in different cases of lanes configuration:

• If lane 0 is found valid, the E810 does not initiate lane reversal. The Link Partner (LP) might initiate
lane reversal (to end up with an optimal lane width) and the E810 consents with the lane reversal.

• If lane 0 is found invalid, the E810 initiates lane reversal. Lane reversal succeeds if the LP supports
link reversal.

• If the lanes at both ends of the port (such as lanes 0 and 15 for x16, lanes 0 and 7 for x8, lanes 0
and 3 for x4, lane 0 for x1) are invalid, a link is not established.

Note: Some of the configurations or transitions assume lane reversal done by the LP. If the LP does
not support a specific transition, the respective configuration is not provided on that system.

Figure 3-1, Figure 3-2, Figure 3-3 and Figure 3-4 depict the initial link width configuration and link
degradation options. In Figure 3-2 and Figure 3-3, the upper part of the figures describe link options
where the LP and the E810 are aligned. The bottom part of the figures describe link options where the
LP and the E810 are reversed in order.

• Figure 3-1 applies when both the LP or the E810 is physically set to x1.

• Figure 3-2 applies when either the LP or the E810 is physically set to x4 and both are not physically
set to x8.

• Figure 3-3 applies when either the LP or the E810 is physically set to x8.

• Figure 3-4 applies when either the LP or the E810 is physically set to x16.

613875-009 83

Intel® Ethernet Controller E810 Datasheet
Interconnects

Figure 3-1. Link Width Configurations for a x1 Port

Figure 3-2. Link Width Configurations for a x4 Port

Initial Configuration
LP 0

Device 0

LP 0
Device 0

Case 1: all lanes valid

Initial Configuration
LP 0 1 2 3

Device 0 1 2 3

LP 0 1 2 3
Device 0 1 2 3

LP 0 1 2 3
Device 0 1 2 3

LP 3 2 1 0
Device 0 1 2 3

Initial Configuration
LP 3 2 1 0

Device 0 1 2 3

LP 3 2 1 0
Device 0 1 2 3

LP 3 2 1 0
Device 0 1 2 3

LP 0 1 2 3
Device 0 1 2 3

Degradation:

Case 2: at least 1 of physical Lanes 1-3 is defect

Case 3: Physical lane 0 is defect

Case 1: all lanes valid
Degradation:

Case 2: at least one of physical Lanes 0-2 is defect

Case 3: Physical lane 3 is defect

Case 1: all lanes valid

Intel® Ethernet Controller E810 Datasheet
Interconnects

84 613875-009

Figure 3-3. Link Width Configurations for a x8 Port

Initial Configuration
LP 0 1 2 3 4 5 6 7

Device 0 1 2 3 4 5 6 7

LP 0 1 2 3 4 5 6 7
Device 0 1 2 3 4 5 6 7

LP 0 1 2 3 4 5 6 7
Device 0 1 2 3 4 5 6 7

LP 0 1 2 3 4 5 6 7
Device 0 1 2 3 4 5 6 7

LP 7 6 5 4 3 2 1 0
Device 0 1 2 3 4 5 6 7

LP 7 6 5 4 3 2 1 0
Device 0 1 2 3 4 5 6 7

Initial Configuration
LP 7 6 5 4 3 2 1 0

Device 0 1 2 3 4 5 6 7

LP 7 6 5 4 3 2 1 0
Device 0 1 2 3 4 5 6 7

LP 7 6 5 4 3 2 1 0
Device 0 1 2 3 4 5 6 7

LP 7 6 5 4 3 2 1 0
Device 0 1 2 3 4 5 6 7

LP 0 1 2 3 4 5 6 7
Device 0 1 2 3 4 5 6 7

LP 0 1 2 3 4 5 6 7
Device 0 1 2 3 4 5 6 7

Case 4: (At least 1 of physical Lanes 4-6 is defect and LP initiates lane reversal) or (Physical lane 7 is
defect and physical lanes 0-3 are valid)

Case 5: Physical lane 7 is defect and at least one of physical lanes 1-3 are defect

Case 1: all lanes valid

Case 2: at least 1 of physical Lanes 4-7 is defect

Case 3: (At least 1 of physical Lanes 1-3 is defect and LP doesn’t initiate lane reversal) or (At least 1 of
physical Lanes 1-3 is defect and at least 1 of physical Lanes 4-7 is defect)

Case 4: (At least 1 of physical Lanes 1-3 is defect and LP initiates lane reversal) or (Physical lane 0 is
defect and physical lanes 4-7 are valid)

Case 5: Physical lane 0 is defect and at least one of physical lanes 4-6 are defect

Degradation:

Degradation:

Case 1: all lanes valid

Case 2: at least one of physical Lanes 0-3 is defect

Case 3: (At least 1 of physical Lanes 4-6 is defect and LP doesn’t initiate lane reversal) or (At least 1 of
physical Lanes 4-6 is defect and at least 1 of physical Lanes 0-3 is defect)

613875-009 85

Intel® Ethernet Controller E810 Datasheet
Interconnects

Figure 3-4. Link Width Configurations for a x16 Port

Initial Configuration
LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Device 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Similar logic is applied when Initial Configuration is
LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Device 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Case 7: (physical lanes 0 is defect and at least one of physical Lanes 12-14 is defect and
lane 15 is valid)

LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Device 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 6: (at least one of physical Lanes 1-3 is defect and LP initiate lane reversal) or (physical
lanes 0 is defect and physical lanes 12-15 are valid and at least one of physical Lanes 8-11 is
defect)

LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Device 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 5: (at least one of physical Lanes 1-7 is defect and LP initiate lane reversal) or (physical
lanes 0 is defect and physical lanes 8-15 are valid)

LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Device 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 4: (at least one of physical Lanes 1-3 is defect and LP doesn t initiate lane reversal) or
(at least one of physical lanes 1-3 is defect and at least one of physical lanes 12-15 is defect)

LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Device 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 3: (at least one of physical Lanes 4-7 is defect and LP doesn t initiate lane reversal) or
(at least one of physical lanes 4-7 is defect and at least one of physical lanes 8-15 is defect)

LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Device 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 2: at least one of physical Lanes 8-15 is defect
LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Device 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 1: All lanes valid
LP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Device 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Degradation

Intel® Ethernet Controller E810 Datasheet
Interconnects

86 613875-009

3.1.4.4 Receiver Framing Requirements

This section applies to Gen 3 or Gen 4 operation only, and lists the optional capabilities defined in
Section 4.2.2.3.3, “Receiver Framing Requirements” of the PCIe Base Specification.

The device implements the optional Gen3 receiver framing error checks other than:

• TLP Token length=0b

• Mixed order sets across lanes (which anyway ending up with recovery)

3.1.5 Error Events and Error Reporting

This section describes error reporting and advanced error reporting.

3.1.5.1 General Description

PCIe defines two error reporting paradigms:

• Baseline capability

• Advanced Error Reporting (AER) capability.

The baseline error reporting capabilities are required of all PCIe devices, and define the minimum error
reporting requirements. The AER capability is defined for more robust error reporting, and is
implemented with a specific PCIe capability structure. Both mechanisms are supported by the E810, but
the AER capability must be enabled in the NVM.

The SERR# Enable and the Parity Error bits from the Legacy Command register also take part in the
error reporting and logging mechanism.

In a multi-function device, PCIe errors that are not related to any specific function within the device are
logged in the corresponding status and logging registers of all functions in that device (see Section
6.2.4 in the PCIe Base Specification). Figure 3-5 shows, in detail, the flow of error reporting in PCIe.
See also Figure 6-2 in the PCIe Base Specification.

613875-009 87

Intel® Ethernet Controller E810 Datasheet
Interconnects

Figure 3-5. Error Reporting Mechanism

Device Status ::
Correctable Error Detected

Device Status ::
Non-Fatal Error Detected

Device Status ::
Fatal Error Detected

Device Status ::
Unsupported Request Detected

Status ::
Signaled Target Abort

Status ::
Received Target Abort

Status ::
Received Master Abort

Status ::
Detected Parity Error

Root Error Status

Correctable Error Status

Correctable Error Mask

Uncorrectable Error Status

Uncorrectable Error Mask

Uncorrectable Error Severity

St
at

us
 R

ep
or

tin
g

-N
ot

 G
at

ed

Error Sources
 (Associated with Port)

Device Control ::
Correctable Error Reporting Enable

Device Control ::
Unsupported Request Reporting Enable

Device Control ::
Non-Fatal Error Reporting Enable

Device Control ::
Fatal Error Reporting Enable

Report Error Command ::
Correctable Error Reporting Enable

Report Error Command ::
Non-Fatal Error Reporting Enable

Report Error Command ::
Fatal Error Reporting Enable

Interrupt

Command::
Parity Error Response

Bridge Control::
SERR Enable

Error Message
Processing

Rcv
Msg

Secondary Side Error Sources

System
 Error

Root Control::
System Error on Correctable Error Enable

Root Control::
System Error on Non-Fatal Error Enable

Root Control::
System Error on Fatal Error Enable

Status::
Master Data Parity Error

Status::
Signaled System Error

Secondary Status::
Detected Parity Error

Secondary Status::
Signaled Master Abort

Secondary Status::
Received Target Abort

Secondary Status::
Received Target Abort

Bridge Control::
Parity Error Response Enable Secondary Status::

Master Data Parity
Error

Secondary Status::
Received System Error
Either Implementation
Acceptable – the unqualified
version is more like PCI P2P
bridge spec

Command::
SERR# Enable

Intel® Ethernet Controller E810 Datasheet
Interconnects

88 613875-009

3.1.5.2 Error Events

Table 3-7 lists the error events identified by the E810 and the response in terms of logging, reporting,
and actions taken. Refer to the PCIe specification for the effect on the PCI Status register.

Table 3-7. Response and Reporting of PCIe Error Events

Error Name Error Events Default Severity Action

Physical Layer Errors

Receiver Error 8b/10b Decode Errors
Packet Framing Error

Correctable
Send ERR_CORR

TLP to Initiate NAK, Drop Data
DLLP to Drop

Data Link Errors

Bad TLP Bad CRC
Not Legal EDB
Wrong Sequence Number

Correctable
Send ERR_CORR

TLP to Initiate NAK, Drop Data

Bad DLLP Bad CRC Correctable
Send ERR_CORR

DLLP to Drop

Replay Timer
Timeout

REPLAY_TIMER expiration Correctable
Send ERR_CORR

Follow LL Rules

REPLAY NUM
Rollover

REPLAY NUM Rollover Correctable
Send ERR_CORR

Follow LL Rules

Data Link Protocol
Error

Violations of Flow Control Initialization
Protocol

Uncorrectable
Send ERR_FATAL

Poisoned TLP
Received

TLP With Error Forwarding Uncorrectable
ERR_NONFATAL
Log Header

See section Section 3.1.5.4 for more
details.
If error is defined as non-fatal (default
severity):
• Treat as an advisory non-fatal error:

Send an ERR_COR message.
If error is defined as fatal:
• Send ERR_FATAL message.

ECRC Check Failed Failed ECRC check Uncorrectable
ERR_NONFATAL
Log Header

See Section 3.1.2.9 for more details.
If error is defined as non-fatal (default
severity):
• Send an ERR_NONFATAL message.

If error is defined as fatal:
• Send ERR_FATAL message.

Unsupported
Request (UR)

Receipt of TLP with unsupported
Request Type
Receipt of an Unsupported Vendor
Defined Type 0 Message
Invalid Message Code
Wrong Function Number
Received TLP Outside BAR Address
Range
Receipt of a Request TLP during
D3hot, other than Configuration and
Message requests
Reception of packet with unexpected
PASID prefix
Received Target Access with illegal
data size per Section 3.1.2.2

Uncorrectable
ERR_NONFATAL
Log header (including
optional prefix)

Send Completion with UR.
If error is defined as non-fatal (default
severity):
• Treat as an advisory non-fatal error:

Send an ERR_COR message.
If error is defined as fatal:
• Send ERR_FATAL message.

613875-009 89

Intel® Ethernet Controller E810 Datasheet
Interconnects

Completion Timeout Completion Timeout Timer Expired Uncorrectable
ERR_NONFATAL

See Section 3.1.5.3 for more details.
Log the header of the Request TLP that
encountered the error.
If error is defined as non-fatal (default
severity):
• Treat as an advisory non-fatal error:

Send an ERR_COR message.
If error is defined as fatal:
• Send ERR_FATAL message.

Unexpected
Completion

Received Completion Without a
Request For It (Tag, ID, and so on)

Uncorrectable
ERR_NONFATAL
Log Header

Discard TLP.
If error is defined as non-fatal (default
severity):
• Treat as an advisory non-fatal error:

Send an ERR_COR Message.
If error is defined as fatal:
• Send ERR_FATAL message.

Receiver Overflow Received TLP Beyond Allocated Credits Uncorrectable
ERR_FATAL

Receiver Behavior is Undefined

Flow Control
Protocol Error

 Minimum Initial Flow Control
Advertisements
Flow Control Update for Infinite Credit
Advertisement

Uncorrectable
ERR_FATAL

Receiver Behavior is Undefined

Malformed TLP (MP) Data Payload Exceed
Max_Payload_Size
Received TLP Data Size Does Not
Match Length Field
TD field value does not correspond
with the observed size
PM Messages That Do Not Use TC0.
Usage of Unsupported VC
Target request crosses a 4KB
boundary

Uncorrectable
ERR_FATAL
Log Header

Drop the Packet, Free FC Credits

Completion with
Unsuccessful
Completion Status

No Action (already
done by originator of
completion)

Free FC Credits (no credits for
completions)

Table 3-7. Response and Reporting of PCIe Error Events [continued]

Error Name Error Events Default Severity Action

Intel® Ethernet Controller E810 Datasheet
Interconnects

90 613875-009

3.1.5.3 Completion Timeout Mechanism

The E810 supports completion timeout as defined in the PCIe specification.

The E810 controls the following aspects of completion timeout:

• Disabling or enabling completion timeout.

— The PCIe Completion Timeout Disable Supported bit in the Device Capabilities 2 register
(Section 14.3.5.10) is hard-wired to 1b to indicate that disabling completion timeout is
supported.

— The PCIe Completion Timeout Disable bit in Device Control 2 register (Section 14.3.5.11)
controls whether completion timeout is enabled.

• A programmable range of timeout values.

— The E810 supports all four ranges as programmed in the Completion Timeout Ranges
Supported field of the Device Capabilities 2 register. The actual completion timeout value is
written in the Completion Timeout Value field of Device Control 2 register.

The following sequence takes place when completion timeout is detected:

1. The appropriate message is sent on PCIe as listed in Table 3-7.

2. The affected queue or client takes action based on the nature of the original request:

• If the original request was for Tx packet data, the request and any partial packet completions
are dropped.

• Else, the request is handled same way as malicious requests. An interrupt is issued to the
respective PF.

3. Software might identify the source of the event (whether due to TLP poisoning, to a completion
timeout, or an actual malicious event) by reading the error reporting counters or the performance
and statistics counters.

3.1.5.4 Error Forwarding (TLP Poisoning)

If a TLP is received with an error-forwarding trailer, the packet is dropped and is not delivered to its
destination.

The following sequence takes place when a poisoned TLP is received:

1. The appropriate message is sent on PCIe as listed in Table 3-7.

2. If the TLP is a completion, a completion timeout follows at some later time. Processing continues as
described in Section 3.1.5.3.

System logic is expected to trigger a system-level interrupt to inform the operating system of the
problem. Operating systems can then stop the process associated with the transaction, re-allocate
memory to a different area instead of the faulty area, and so on.

3.1.5.5 Completion with Unsuccessful Completion Status

A completion arriving with unsuccessful completion status (either UR or CA) is dropped and not
delivered to its destination. A completion timeout follows at some later time. Processing continues as
described in Section 3.1.5.3.

613875-009 91

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.1.5.6 Error Pollution

Error pollution can occur if error conditions for a given transaction are not isolated to the error's first
occurrence. If the PHY detects and reports a receiver error, to avoid having this error propagate and
cause subsequent errors at the upper layers, the same packet is not signaled at the data link or
transaction layers. Similarly, when the data link layer detects an error, subsequent errors that occur for
the same packet are not signaled at the transaction layer.

3.1.5.7 Blocking on Upper Address

The GLPCI_UPADD register blocks master accesses from being sent out on PCIe if the TLP address
exceeds some upper limit. Bits [31:1] correspond to bits [63:33] in the PCIe address space,
respectively.

When a bit is set in GLPCI_UPADD[31:1], any transaction in which the corresponding bit in its address
is set is blocked and not sent over PCIe. If all register bits are cleared, there is no effect (TLPs are sent
unconditionally).

Processing a blocked transaction:

• Write transaction:

— The transaction is dropped.

• Read transaction:

— The transaction is dropped.

— Set the exceeded upper address limit (read requests) event in the PCIe errors register (see
Section 3.1.6).

— The affected queue or client takes action based on the nature of the original request. An
interrupt is issued to the respective PF. See Section 9.2.2.2.1.

3.1.6 Performance and Statistics Counters

The E810 incorporates counters to track the behavior and performance of the PCIe interconnect.

General characteristics of the counters:

• Software can reset, stop, or start the counters.

The counters are shared by all PCI functions (service mode of sharing).

3.1.6.1 Event Counters - Transaction Layer

Counters operate in one of the following modes:

• Count mode — The counter increments when the respective event occurred.

• Leaky bucket mode — The counter increments only when the rate of events exceeded a certain
value. See Section 3.1.6.1.2 for more details.

The list of events supported by the E810 are listed in Table 3-8.

Intel® Ethernet Controller E810 Datasheet
Interconnects

92 613875-009

3.1.6.1.1 Count Mode

The following CSR fields control operation of the Count mode:

• Four 32-bit counters GLPCI_GSCN_0_3 track events and increment on each occurrence of an event.

— The four 32-bit counters can also operate in a two 64-bit mode to count long intervals or large
payloads.

• Registers GLPCI_GSCN_0_3[0] and GLPCI_GSCN_0_3[1] form the first 64-bit counter,
while registers GLPCI_GSCN_0_3[2] and GLPCI_GSCN_0_3[3] form the second 64-bit
counter.

• The GLPCI_GSCL_1_P.GIO_64_BIT_EN selects between 32-bit and 64-bit modes.

• The GLPCI_GSCL_1_P.GIO_COUNT_EN_[3:0] bits enable each of the four counters.

— The enable bits for the two 64-bit counters are GLPCI_GSCL_1_P.GIO_COUNT_EN_0 and
GLPCI_GSCL_1_P.GIO_COUNT_EN_2, respectively.

• The GLPCI_GSCL_1_P.GIO_COUNT_START bit starts event counting of enabled counters.

• The GLPCI_GSCL_1_P.GIO_COUNT_STOP bit stops event counting of running counters.

• The GLPCI_GSCL_1_P.GIO_COUNT_RESET bit resets the event counters.

Table 3-8. PCIe Statistic Events Encoding

Event
Event

Mapping
(Hex)

Description

Cycles 0x00 Increment on each PCIe clock tick.

Transaction Layer Events

Bad Request TLPs 0x10 Number of bad TLPs arriving to the transaction layer. These include:
• Request caused UR.
• Request caused CA.
• Malformed TLP.

Bad Completions 0x11 Number of bad completions received. These include:
• Unexpected completion.
• UR status.
• CA status.

Completion Timeout 0x12 Number of completion timeout events.

Poisoned TLP 0x13 Number of TLPs received with poisoned data.

ECRC Check 0x14 Number of TLPs that fail ECRC check.

Link Layer Events

Retry Buffer Timeout 0x31 Number of replay events that happen due to timeout (does not count replay
initiated due to NACK).

Retry Buffer Replay Roll-Over 0x32 Increment when a replay is initiated for more than three times.

Physical Layer Events

Receive Error 0x50 Increment when one of the following occurs:
• Decoder error occurred during training in the PHY. It is reported only when

training ends.
• Decoder error occurred during link-up or till the end of the current packet (in

case the link failed). This error is masked when entering/exiting EI.

613875-009 93

Intel® Ethernet Controller E810 Datasheet
Interconnects

• The GLPCI_GSCL_2 associates an event with each of the four counters.

— In 64-bit mode, the GIO_EVENT_NUM_[2,0] fields are used.

3.1.6.1.2 Leaky Bucket Mode

Each of the counters can be configured independently to operate in a leaky bucket mode. When in leaky
bucket mode, the following functionality is provided:

• One of four 16-bit Leaky Bucket Counters (LBC) is enabled via the LBC_ENABLE_[3:0] bits in the
PCIe Statistic Control Register #1 (GLPCI_GSCL_1_P).

• The LBC is controlled by the GIO_COUNT_START, GIO_COUNT_STOP, GIO_COUNT_RESET bits in
the PCIe Statistic Control Register #1 (GLPCI_GSCL_1_P).

• The LBC increments every time the respective event occurs.

• The LBC is decremented every T μs as defined in the LBC_TIMER_N field in the PCIe Statistic
Control Register #5...#8 (GLPCI_GSCL_5_8).

• When an event occurs and the value of the LBC meets or exceeds the threshold defined in the
LBC_THRESHOLD_N field in the PCIe Statistic Control Register #5...#8 (GLPCI_GSCL_5_8), the
respective statistics counter increments, and the LBC counter is cleared to zero.

3.1.6.2 Event Counters - Link and Physical Layers

This section describes the performance events for the Link and Physical layers and how to manage the
counters associated with these events.

Two events can be counted concurrently. The event counters include two sets of registers, each
managing one event counter. Such pairs are documented as <register_name>[1:0].

The following procedures manage the operation of the event counters (when writing to part of the
register, ensure that other fields are written with their existing values):

Resetting the counters configuration:

1. Set the XPPERFCON.GRST bit.

2. Clear the XPPERFCON.GRST bit (otherwise the logic stays in reset)

Setting an event:

1. Write 0x0...0 to the XPPMCL[1:0] registers.

2. Set the XPPMR[1:0].CENS field to 0x1.

3. Set the XPPMR[1:0].CNTMD field to 0x1.

4. Set the XPPMER[1:0].XPRSCA field to 0x1.

5. Set the event according to Table 3-9.

Starting a count:

1. Set the XPPERFCON.GCE bit

Stopping a count:

1. Clear the XPPERFCON.GCE bit

Intel® Ethernet Controller E810 Datasheet
Interconnects

94 613875-009

Reading the count (note: reading the counter clears their values):

1. Read the respective XPPMDH[1:0] and XPPMDL[1:0] register pair in a single 64-bit aligned
access.

Table 3-9 defines the Link and Physical Layer events:

3.1.6.2.1 Bandwidth Counters

The bandwidth counters measure total payload bytes transferred over the PCIe link. Counting is
provided per each traffic type (posted, non-posted, completions) per direction (upstream,
downstream).

The mechanisms described above hold for the bandwidth counters with the following differences:

Setting an event:

1. Set the XPPMR[1:0].CENS field to 0x1.

2. Set the XPPMR[1:0].EGS field to 0x2.

3. Set the XPPMER[1:0].FCCSEL field to the desired traffic type (posted, non-posted, completions,
or all).

4. Set the XPPMER[1:0].TXRXSEL field to desired values.

5. Set the XPPMER[1:0].XPRSCA field to 0x1.

6. Set the XPPERFCON.GCE field to 0x1.

Registers fields used exclusively by the bandwidth counters:

• XPPMER[1:0].FCCSEL - Selects the desired traffic type (posted, non-posted, completions, or all).

• XPPMER[1:0].TXRXSEL - Selects between monitoring downstream traffic, upstream traffic, or both.

Table 3-9. Link and Physical Layer Performance Events

Event Description Register Field

Uncorrectable Errors Counts the total number of Uncorrectable Errors. XPPMER[1:0].CNTUCERR

Correctable Errors Counts the total number of Correctable Errors. XPPMER[1:0].CNTCERR

Tx L0s State Utilization Counts the number of entries to L0s on the Tx lanes. XPPMER[1:0].TXL0SU

Rx L0s State Utilization Counts the number of entries to L0s on the Rx lanes. XPPMER[1:0].RXL0SU

Link Utilization Counts clocks that a port is receiving data.
If one counter counts receiver errors and another counter counts
Link Utilization, a bit error rate can be calculated.

XPPMER[1:0].LNKUTIL

Recovery State Utilization Counts the number of entries to Recovery state. XPPMER[1:0].RECOVERY

ASPM L1 State Utilization Counts the number of entries to ASPM L1 state (that is, initiated by
the device)

XPPMER[1:0].L1

SW L1 State Utilization Counts the number of entries to L1 state initiated by software. XPPMER[1:0].SWL1

Tx and Rx L0s Utilization Counts number of events where both Tx and Rx are in L0s state. XPPMER[1:0].RXL0STXL0SU

NAK DLLP Received Counts number of received NAK DLLPs. XPPMER[1:0].NAKDLLP

613875-009 95

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2 Ethernet Interconnect

3.2.1 Media Access Control (MAC) Layer

The E810 supports up to eight full-duplex Ethernet MAC ports compliant with IEEE Std802.3-2018
standard (Clause 4 and Annex 4A). The MAC ports can be configured to operate at different speeds, as
explained in Section 3.2.1.2.

Each MAC port is associated with a corresponding Media Access Unit (MAU) that provides the physical
layer interfaces. The MAUs must be configured to operate with the appropriate physical layer protocols
based on the MAC operating speed. Physical layers supported by the E810 for different speeds of
operation are explained in Section 3.2.2, “Physical Layer Interface”.

3.2.1.1 MAC Features

Table 3-10 lists the E810 Ethernet port features.

3.2.1.2 MAC Speed Configuration

Table 3-11 lists the possible speed configurations available on each MAC port.

Table 3-10. Link Layer Ethernet Port Features

Description

Ethernet Speed and Interfaces:
• 100 Gb/s: 2 ports of CGMII
• 50 Gb/s: 2 ports of XLGMII
• 25 Gb/s: 4 ports of XGMII (boosted to 25G)
• 10 Gb/s: 8 ports over XGMII (supporting 10G,1G, 100M)

The E810’s Maximum Transmit Unit Size (MTU) is 9728 - Ethernet header/CRC = 9728 - 18 = 9710 bytes (jumbo frames).
MTU can be further reduced by additional header fields such as Virtual Local Area Network (VLAN) tag(s), and so on.

Full-duplex operation at all supported speeds.

Integrates support for IEEE Std 802.3 Clause 73 Auto-Negotiation for Backplane Ethernet (The auto-negotiation protocol is done by
the PHY).

Table 3-11. MAC Port and Possible Speed Configurations

Port 100 Mb/s 1 Gb/s 10 Gb/s 25 Gb/s 50 Gb/s 100 Gb/s

MAC 0 Y Y Y Y Y Y

MAC 1 Y Y Y Y Y Y

MAC 2 Y Y Y Y N N

MAC 3 Y Y Y Y N N

MAC 4 Y Y Y N N N

MAC 5 Y Y Y N N N

MAC 6 Y Y Y N N N

MAC 7 Y Y Y N N N

Intel® Ethernet Controller E810 Datasheet
Interconnects

96 613875-009

When LAN ports are disabled in multi-port system configurations, corresponding PCIe functions must be
disabled through the NVM or external disable pins. See Section 4.4 for details on PCI function disable
and LAN port disable functionality.

The link speed for each port can be controlled through NVM loaded settings or Link Configuration admin
commands (see Section 3.2.4). In some physical interfaces, the final link speed is selected out of the
pre-configured options, based on the link auto-negotiation protocol.

The maximum speed enabled depends on the number of enabled ports:

• 2 Ports setting:

— Each port can be independently configured to 100/50/25/10/1 Gb, 100 Mb, or disabled.

— In this setting, only Port0 and Port1 can be enabled.

• 4 Ports setting:

— Each Port can be independently configured to 25/10/1 Gb, 100 Mb, or disabled.

— In this setting, only Port0, Port1, Port2, Port3 can be enabled.

• 8 Ports setting:

— Each Port can be independently configured to 10/1 Gb, 100 Mb, or disabled.

— Some ports can be configured to 25 Gb, depending on other port’s configurations (see
Table 3-12).

— In this setting, all ports can be enabled.

Note: The ports maximal speed depends also on the maximal bandwidth SKU. The above speeds
assumes 200G SKU.

Note: The number of ports and their speed affect the E810 pipe settings, such as TPB, RPB, DCB,
and more. This is done using the adaptive NVM method, when the link topology is configured.
See Section 3.3.3.3.

Table 3-12 illustrates the allowed port configurations when the E810 bandwidth is not limited by SKU
setting (like 200G max bandwidth SKU).

Table 3-12. Port Configurations

Ports1/
Configuration P0 P1 P2 P3 P4 P5 P6 P7

2 ports 100G 100G - - - - - - 2 ports (100G and below)

4 ports 25G 25G 25G 25G - - - - 4 ports (25G and below)

6 ports - 1 25G 25G 10G 10G - - 10G 10G 2x25G + 4x10G

6 ports - 2 10G 10G 25G 25G 10G 10G - - 2x25G + 4x10G

6 ports - 3 25G 10G 25G 10G - 10G - 10G 2x25G + 4x10G

6 ports - 4 10G 25G 10G 25G 10G - 10G - 2x25G + 4x10G

6 ports - 5 25G 10G 10G 25G - 10G 10G - 2x25G + 4x10G

6 ports - 6 10G 25G 25G 10G 10G - - 10G 2x25G + 4x10G

7 ports - 1 25G 10G 10G 10G - 10G 10G 10G 1x25G + 6x10G

7 ports - 2 10G 25G 10G 10G 10G - 10G 10G 1x25G + 6x10G

7 ports - 3 10G 10G 25G 10G 10G 10G - 10G 1x25G + 6x10G

613875-009 97

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.1.3 Transmit Padding

The minimum frame size for Ethernet as specified by IEEE Std 802.3 standard is 64 bytes. The E810
MAC pads, with zeros, Ethernet packets that are smaller than 64 bytes during transmit. In the E810,
transmit packets arrive already padded to the MAC. Refer to the padding rules for transmitted and
received packets and loop-back packets in Section 7.12.2.

3.2.1.4 Jumbo Frame Support

The E810 MAC supports transmission and reception of frames of up to 9.5 KB (9728 bytes). Maximum
receive and transmit frame size is configured through the Max Frame Size field in the Set MAC Config
command (see Section 3.2.4.1.2).

3.2.1.5 Ethernet Flow Control (FC)

The E810 supports flow control (pause) as defined in 802.3x (IEEE Std 802.3-2008 Annex 31B), as well
as the specific operation of asymmetrical flow control (asymmetric pause) defined by 802.3z (IEEE Std
802.3-2008 Annex 28B). The E810 also supports Priority Flow Control (PFC) as defined in IEEE
P802.1Qbb, sometimes referred to as Class Based Flow Control or (CBFC), as part of the DCB
architecture.

Note: An E810 port can either be configured to receive 802.3x Link Flow Control (LFC) packets or
802.1Qbb/802.3bd PFC packets. It does not support the reception of both types of packets
simultaneously over the same port.

Flow control is implemented to reduce receive buffer overflows, which result in the dropping of received
packets. Flow control also allows for local controlling of network congestion levels. This can be
accomplished by sending an indication to a transmitting station of a nearly full receive buffer condition
at a receiving station.

The implementation of asymmetric flow control allows for one link partner to send flow control packets
while being allowed to ignore their reception (for example, not required to respond to PAUSE frames).

The following registers define the basic control functionality. Refer to the registers specified in
Section 8.2.4.4 for the other programming related to flow control. In Data Center Bridge (DCB) mode,
some of the registers are duplicated per Traffic Class (TC), up to eight duplicate copies of the registers.
If DCB is disabled, index [0] of each register is used.

7 ports - 4 10G 10G 10G 25G 10G 10G 10G - 1x25G + 6x10G

8 ports 10G 10G 10G 10G 10G 10G 10G 10G 8 ports (10G and below)

1. Port numbers in this table refer to E810 port numbering. See Section 3.2.2.3 for port mapping.

Table 3-12. Port Configurations [continued]

Ports1/
Configuration P0 P1 P2 P3 P4 P5 P6 P7

Intel® Ethernet Controller E810 Datasheet
Interconnects

98 613875-009

3.2.1.5.1 MAC Control Frames and Reception of Flow Control Frames

3.2.1.5.1.1 MAC Control Frame — Other Than FC

IEEE 802 reserved the EtherType value of 0x8808 for MAC control frames as listed in Table 3-13. The
MAC control frame format is specified in IEEE 802.3 Clause 31.

3.2.1.5.1.1.1 MAC Control Frame Receive Identification

Packets with:

• MAC DA = 01-80-C2-00-00-01.

• EtherType value of 0x8808 are considered to be control frames.

3.2.1.5.1.2 Structure of 802.3x FC Packets

802.3x FC packets are defined by the following three fields (see Table 3-14):

• A match on the 6-byte multicast address for MAC control frames, or a match to the station address
of the device. The 802.3x standard defines the MAC control frame multicast address as 01-80-C2-
00-00-01.

• A match on the Type field. The Type field in the FC packet is compared against an IEEE reserved
value of 0x8808.

• A match of the MAC control Opcode field has a value of 0x0001.

Frame-based flow control differentiates XOFF from XON based on the value of the PAUSE Timer field.
Non-zero values constitute XOFF frames while a value of zero constitutes an XON frame. Values in the
Timer field are in units of pause quanta (slot time). A pause quanta lasts 64 byte times, which is
converted in to an absolute time duration according to the line speed.

Note: XON frame signals the cancellation of the pause that was initiated by an XOFF frame. For
example, a pause for zero pause quanta.

Table 3-13. MAC Control Frame Format

Field Description

DA The Destination Address field can be an individual or multicast (including broadcast) address. Permitted
values for the Destination Address field can be specified separately for a specific control opcode such as
FC packets.

SA Port Ethernet MAC Address (6 bytes).

Type 0x8808 (2 bytes).

Opcode The MAC control opcode indicates the MAC control function.

Parameters The MAC Control Parameters field must contain MAC control opcode-specific parameters. This field can
contain none, one, or more parameters up to a maximum of minFrameSize = 20 bytes.

Reserved field = 0x00 The Reserved field is used when the MAC control parameters do not fill the fixed length MAC control
frame.

CRC 4 bytes.

613875-009 99

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.1.5.1.2.1 802.3x Frame Receive Identification

Received frames that are identified as control frames (see Section 3.2.1.5.1.1.1) can further be
classified as 802.3x if the frames opcode = 0x0001 as listed in Table 3-14.

3.2.1.5.1.3 Priority Flow Control (PFC)

EEDC introduces support for multiple TCs assigning different priorities and bandwidth per TC. LFC stops
all the TCs. PFC specified in IEEE P802.1Qbb enables more granular flow control on the Ethernet link in
an EEDC environment, as opposed to the PAUSE mechanism defined in 802.3x. The PFC frame format is
specified in IEEE P802.3bd.

Table 3-14. 802.3x Link Flow Control - Frame Formats

Field Description

DA 01_80_C2_00_00_01 (6 bytes).

SA Port Ethernet MAC Address (6 bytes).

Type 0x8808 (2 bytes).

Opcode 0x0001 (2 bytes).

Time XXXX (2 bytes).

Pad 42 bytes.

CRC 4 bytes.

Table 3-15. Priority Flow Control - Frame Format

Field Description

DA 01_80_C2_00_00_01 (6 bytes).

SA Port Ethernet MAC Address (6 bytes).

Type 0x8808 (2 bytes).

Opcode 0x0101 (2 bytes).

Priority Enable Vector 0x00XX (2 bytes).

Timer 0 XXXX (2 bytes).

Timer 1 XXXX (2 bytes).

Timer 2 XXXX (2 bytes).

Timer 3 XXXX (2 bytes).

Timer 4 XXXX (2 bytes).

Timer 5 XXXX (2 bytes).

Timer 6 XXXX (2 bytes).

Timer 7 XXXX (2 bytes).

Pad 26 bytes.

CRC 4 bytes.

Intel® Ethernet Controller E810 Datasheet
Interconnects

100 613875-009

Each of the eight timers refers to a specific User Priority (UP). For example, Timer 0 refers to UP 0, and
so on. The E810 binds a UP (and therefore the timer) to one of its TCs according to the UP-to-TC
binding tables. Refer to the PRTDCB_TUP2TC register (Section 13.2.2.17.104) for the binding of
received PFC frames to Tx TCs, and to the PRTDCB_RUP2TC register (Section 13.2.2.17.102) for the
binding of transmitted PFC frames to Rx TCs.

When a PFC frame is formatted by the E810, the same values are replicated into every Timer field and
Priority Enable Vector bit of all the UPs bound to the concerned TC. These values as configured in the
PRTDCB_RUP2TC register.

The following rule is applicable for the case of multiple UPs that share the same TC as configured in the
PRTDCB_TUP2TC register. When PFC frames are received with different timer values for the previous
UPs, the traffic on the associated TC must be paused by the highest XOFF timer’s value.

3.2.1.5.1.3.1 PFC Frame Receive Identification

Received frames that are identified as control frames (see Section 3.2.1.5.1.1.1) can further be
classified as PFC if the frames opcode = 0x0101 as listed in Table 3-15.

3.2.1.5.1.4 Operation and Rules

The E810 operates in either LFC mode or in PFC mode. Enabling both modes concurrently is not
allowed.

Note: LFC capability must be negotiated between link partners via the auto-negotiation process.
PFC capability is negotiated via some higher level protocol (DCBx), and the resolution is
usually provided to the software device driver by the EEDC management agent. It is the
responsibility of the EMP to reconfigure the LFC settings after the auto-negotiation process is
resolved.

Once the receiver has validated the reception of an XOFF or PAUSE frame, the device performs the
following:

1. Increment the appropriate statistics register(s).

2. Initialize the pause timer based on the packet's PAUSE Timer field (overwriting any current timer’s
value).

• In case of PFC, this is done per TC. If several UPs are associated with a TC, the device sets the
timer to the maximum value among all enabled timer fields associated with the TC.

3. Disable packet transmission or schedule the disabling of transmission after the current packet
completes.

• In case of PFC, this is done per paused TC.

Resumption of transmission can occur under the following conditions:

• Expiration of the PAUSE timer.

— In case of PFC, this is done per TC.

Table 3-16. Format of Priority Enable Vector

ms octet ls octet

Priority enable vector definition 0 e[7]...e[n]...e[0]

e[n] =1 => time (n) valid
e[n] =0 => time (n) invalid

613875-009 101

Intel® Ethernet Controller E810 Datasheet
Interconnects

• Reception of an XON frame (a frame with its PAUSE timer set to 0b).

— In case of PFC, this is done per TC.

Both conditions clear the relevant TXOFF status bits in the Transmit Flow Control Status
(PRTDCB_TFCS) register and transmission can resume. Hardware records the number of received XON
frames.

3.2.1.5.1.5 Timing Considerations

When operating at 100 Gb/s line speed, the E810 does not begin to transmit a (new) frame more than
394 pause_quantum after the reception of a valid XOFF frame that contains a non-zero value of
pause_time, as measured at the wires (a pause quantum is 512 bit times).

When operating at 50 Gb/s line speed, the E810 does not begin to transmit a (new) frame more than
394 pause_quantum after the reception of a valid XOFF frame that contains a non-zero value of
pause_time, as measured at the wires (a pause quantum is 512 bit times).

When operating at 25 Gb/s line speed, the E810 does not begin to transmit a (new) frame more than
80 pause_quantum after the reception of a valid XOFF frame that contains a non-zero value of
pause_time, as measured at the wires (a pause quantum is 512 bit times).

When operating at 10 Gb/s line speed, the E810 must not begin to transmit a (new) frame more than
60 pause quanta after receiving a valid XOFF frame, as measured at the wires. When connected to an
external 10GBASE-KR PHY with FEC, or to an external 10GBASE-T PHY, the response time requirement
increases to 74 pause quanta because of extra delays consumed by these external PHYs.

When operating at 1 Gb/s line speed, the E810 must not begin to transmit a (new) frame more than
two pause quanta after receiving a valid XOFF frame, as measured at the wires.

The IEEE P802.1Qbb draft 2.3, specifies that the tolerated response time for priority XOFF frames is
614.4 ns (equivalent of 12 pause quanta at the link speed of 10 Gb/s). This extra budget in addition to
the link delay is aimed to compensate for the fact that the decision to stop new transmissions from a
specific TC must be taken earlier in the transmit data path than for the LFC case.

3.2.1.5.2 Transmitting PAUSE Frames

The E810 generates PAUSE packets to ensure there is enough space in its receive packet buffers to
avoid packet drop. The E810 monitors the fullness of its receive FIFOs and compares it with the
contents of a programmable threshold. When the threshold is reached, the E810 sends a PAUSE frame.

The E810 supports both LFC and PFC, but not both concurrently (at the same physical port). When DCB
is enabled, it sends only PFC. When DCB is disabled, it sends only LFC.

Note: Similar to the reception of flow control packets previously mentioned, software can enable
flow control transmission only after it is negotiated between the link partners (possibly by
auto-negotiation).

3.2.1.5.2.1 PFC

Like Rx flow control, Tx flow control operates in either a link 802.3x compliant mode or in PFC mode,
but not in both at the same time.

The same flow control mechanism is used for PFC and for 802.3x flow control to determine when to
send XOFF and XON packets. When PFC is used in the receive path, Priority PAUSE packets are sent
instead of 802.3x PAUSE packets. The format of priority PAUSE packets is described in
Section 3.2.1.5.1.2.1.

Intel® Ethernet Controller E810 Datasheet
Interconnects

102 613875-009

A specific consideration for generating PFC packets:

• When a PFC packet is sent, the packet sets all the UPs that are associated with the relevant TC
(UP-to-TC association in receive is defined in PRTDCB_RUP2TC register).

3.2.1.5.2.2 Operation and Rules

At 10 Gb/s and lower speeds, the TFCE field in the Flow Control Configuration (PRTDCB_FCCFG)
register enables transmission of PAUSE packets as well as selects between the LFC mode and the PFC
mode.

Refer to Section 8.2.1.4.1 for the criteria used by the device for sending a XOFF frame to the neighbor.
The E810 sends an additional PAUSE frame if it has previously sent one and the FIFO overflows. This is
intended to minimize the amount of packets dropped if the first PAUSE frame did not reach its target.

From the time it has issued a PAUSE frame to the neighbor, the E810 starts counting down in an
internal shadow counter used to mirror the pause timeout counter at the partner’s end. When this
internal counter reaches the value set, then, if the PAUSE condition is still valid (meaning that the
buffer(s) fullness is still above the relevant watermarks), an XOFF message is sent again.

Once the receive buffer fullness reaches the relevant low watermarks, the E810 sends an XON message
(a PAUSE frame with a timer value of zero). Refer to Section 8.2.1.4.1 for the criteria used by the
device for sending a XON frame to the neighbor.

3.2.1.6 Inter Packet Gap (IPG) Control and Pacing

The E810 can limit the packet transmission using one of the following:

• Programmable fixed IPG extension, per port configuration — The inter packet gap can be
extended by fixed number of 16-bytes words, for all Tx packets. This configuration can enable
connection through Bump On the Wire devices that need larger inter packet gap. The TX_IPG field
of the PRTMAC_TX_PACE[PRT] register specifies the number of 16-bytes words inserted between
each consecutive packets.

• Average data rate limitation, per port configuration — The gap between packets can be
extended in a way that the average data rate is lower than the link speed. This configuration might
be used with PHYs that implements line speeds that can not be directly configured to the E810 (for
example, 5 Gb/s), but can connect to the E810 with and interface with which the E810 can support
its speed (for example, 10 Gb/s). Pacing rate is implemented by extending the IPG. The TX_PACE
field of register PRTMAC_TX_PACE[PRT] specifies the number of bits added to IPG for each 16 bytes
that are transmitted. The total number of bits to be added is accumulated, and when the IPG is
inserted between packets, the IPG is extended in 16-bytes granularity, according to the total
number of accumulated bits, while the residual is kept to be added at the next gap between
packets. To meet the IEEE 802.3 specifications, 12 bytes of minimal inter frame gap are always
added to the IPG.

The following examples show how the TX_PACE field can be calculated to achieve specific rate.

Example 1:

Assume all transmitted packets are in size of 64 bytes. To achieve a 5 Gb/s data rate when link rate
is 10 Gb/s (50%) and packet length is 64 bytes (4 x 16-bytes words), programmers need to add an
additional IPG, calculated as follows. The 64-byte packet is transmitted with 12 bytes IPG, and the
bandwidth must be reduced by 50%, or add 1 byte for each transmitted byte or IPG byte.
Therefore, for each packet 76 bytes must be added. As TX_PACE is added in bit resolution for each
of the 4 16-byte words of the packet, the programmer therefore should configure 76*8/4=152 bits
in the TX_PACE field. The multiplication by 8 is to translate bytes to bits and the division is to
calculate the number of bits to be added per 16-byte word.

613875-009 103

Intel® Ethernet Controller E810 Datasheet
Interconnects

Example 2:

Now assume all transmitted packets are in size of 65 bytes. To achieve a 5 Gb/s data rate when link
rate is 10 Gb/s and packet length is 65 bytes (5 x 16-byte words when rounded up) programmers
must add an additional IPG of 65+12=77 bytes. Note that in these case, where the packet length
counted in 16-byte words is not an integer, the TX_PACE would be added also for a fraction of
16-bytes words transmitted. As TX_PACE is added in bit resolution for each of the five 16-byte
words of the packet, the programmer therefore should configure 77*8/5=123.2 in the TX_PACE
field. TX_PACE should be rounded up to 124, to ensure transmission at a slightly lower speed, as a
slightly higher speed might result in packet loss in some extreme case.

Note: For the two examples above, a fixed packet size is assumed. For the case of variable packet
size, if transmission must be ensured in lower than the configured rate, choose the highest
TX_PACE, as calculated for all packet sizes. Table 3-17 shows the exact number of bits
(rounded up to integer value) that needs to be added in order to reach 50% of the line rate.

Assuming rate must be equal or less than 50% (for example, pacing to 5 Gb/s with line speed of
10 Gb/s), TX_IPG should be configured to 152 bits.

Table 3-18 specifies the TX_IPG configuration for different pacing speeds with average target rate in
10% steps, assuming evenly-distributed packet size.

Table 3-17. Example of TX_IPG Configuration to Achieve 50% of the Data Rate for Different
Packet Sizes

Packet Size Added Bits per 16-Byte Word of the Packet (TX_IPG)

64 152

65 124

66 125

67 127

68 128

69 130

70 132

71 133

72 135

73 136

74 138

75 140

76 141

77 143

78 144

79 146

80 148

81 124

...

1500 129

Intel® Ethernet Controller E810 Datasheet
Interconnects

104 613875-009

3.2.1.7 MAC Speed Change at Different Power Modes

Auto-negotiation enables establishment of link speed at the Highest Common Denominator (HCD).
During certain low power modes, power saving might be more important than link performance. The
E810 supports an additional mode of operation, where it can configure the PHY to fixed speed, starting
from the lowest speed and checking if the link can be up. This method sets the link speed to the Lowest
Common Denominator (LCD) link speed. The link-up process enables the link to come up at any
possible speed in cases where power is more important than performance. See further information in
Section 5.2.1.

3.2.1.8 MAC Errors

The E810’s MAC supports identification of the following erroneous packets:

• L2 CRC Error — Packet’s FCS check resulted in an error.

• Undersized or Oversized Packets — Received frame size is smaller than 64 bytes or larger than
the configured max frame size, which was either loaded from the NVM or set using the Set MAC
Config command (see Section 3.2.4.1.2).

• Illegal Byte Error — Indication that an illegal control byte was received on the interface. An illegal
control byte is any value that is not legal. (See IEEE802.3 for legal symbols, such as /I/,/E/,/T/, /D/
, /S/, /Seq/, or /LPI/).

• Error Byte Error — Indication that a packet was received with the error control byte (/E/) on the
XGMII interface. Indicates that the PCS has encountered an error during the packet’s reception.

• 802.3 Length Error — <Length> field information in the 802.3 header does not match the
packet’s actual size.

Packets containing any one of the previous errors can be filtered by the device or forwarded to a
pre-configured VSI based on the SBP flag in the PRT_SBPVSI register.

Note: Packets shorter than 64 bytes are always filtered by the MAC layer and are not affected by
the Store Bad Packets (SBP) configuration.

Table 3-18. Configurations for Different Pacing Speeds

Pacing Speed
(Percentage of Line Rate) TX_IPG Pacing Config Field (Bits 6:3) in the

Set MAC Config Admin Command

100% 0 0000b

90% 17 1001b

80% 38 1000b

70% 66 0111b

60% 102 0110b

50% 152 0101b

40% 228 0100b

30% 355 0011b

20% 608 0010b

10% 1368 0001b

25% 456 1110b

93% (WAN) 12 1111b

613875-009 105

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.1.8.1 MAC Error Counters

Table 3-19 lists the different MAC error counters supported by the device.

Table 3-19. MAC Error Counters

Field Description

CRC Error Counts the number of packets received with CRC errors that are not fragments.

Illegal Bye Error Counts the number of packets received with an illegal control byte on the CGMII/XLGMII interface.

Error Byte Counts the number of packets that were received with an error control byte on the CGMII/XLGMII
interface.

Receive Length Error Counts the number of packets received with error in length field comparison in the 802.3 header.

Receive Undersize Counts the number of packets with good CRC that are smaller than 64 bytes.

Receive Fragment Counts the number of packets with bad CRC that are smaller than 64 bytes

Receive Oversize Counts the number of packet that are larger than the configured max frame size.

MAC Short Packet Discard Counts the number of packets smaller than 32 bytes that were discarded by the MAC layer.

Intel® Ethernet Controller E810 Datasheet
Interconnects

106 613875-009

3.2.2 Physical Layer Interface

3.2.2.1 Introduction

The E810 provides up to eight Ethernet port interfaces. The following sections describe the physical
interfaces that the E810 can support and manage through firmware.

Table 3-20. Supported Electrical Modes

Speed Mode Spec Comments

100G CAUI-4 • IEEE 802.3 Annex 83D/83E • 4x25G AUI used for chip-to-chip or chip-to-module
connectivity. Annex 83D/E provides electrical specs.
Clause 82 PCS, Clause 91 RS(528,514) required for
support of 100GBASE-SR4, CWMD4, or PSM4 optics.

100GBASE-KR4 PMD:
• IEEE 802.3 Clause 93

PCS:
• IEEE 802.3 Clause 82
• IEEE 802.3 Clause 91

• 4x25G used for backplane connectivity.
• Uses RS(528,514).

100GBASE-CR4 PMD:
• IEEE 802.3 Clause 92

PCS:
• IEEE 802.3 Clause 82
• IEEE 802.3 Clause 91

• 4x25G used for connecting to DA Copper cable.
• Uses RS(528,514).

100GBASE-CR2 PMD:
• IEEE 802.3 Clause 136

PCS:
• IEEE 802.3 Clause 82
• IEEE 802.3 Clause 91

• 2x50G lanes using PAM4 modulation. Used for
connecting to DA Copper cable.

• Uses RS(544,514).

100GBASE-KR2 PMD:
• IEEE 802.3 Clause 137

PCS:
• IEEE 802.3 Clause 82
• IEEE 802.3 Clause 91

• 2x50G lanes using PAM4 modulation. Used for
backplane connectivity.

• Uses RS(544,514)

100GAUI-2 IEEE 802.3 Annex 135F/135G • 2x50G lane AUI using PAM4 modulation and
RS(544,514) for chip-to-chip or chip-to-module
connectivity.

100GAUI-4 IEEE 802.3 Annex 135D/135E • 4x25G lane AUI using NRZ modulation and
RS(544,514) for chip-to-chip or chip-to-module
connectivity.

613875-009 107

Intel® Ethernet Controller E810 Datasheet
Interconnects

50G 50GBASE-KR2 PMD:
• IEEE 802.3 Clause 93 like

PCS:
• IEEE 802.3 Clause 82 like

• Used for Backplane connectivity.
• Not specified in IEEE 802.3, KR PMD with 2x25G

lanes as specified in 25/50G Ethernet consortium.

50GBASE-CR2 PMD:
• IEEE 802.3 Clause 92 like

PCS:
• IEEE 802.3 Clause 82 like

• Used for connecting to DA Copper cable.
• Not specified in IEEE 802.3, CR PMD with 2x25G

lanes as specified in 25/50G Ethernet consortium.

50GBASE-CR PMD:
• IEEE 802.3 Clause 136

PCS:
• IEEE 802.3 Clause 133
• IEEE 802.3 Clause 134 RS-FEC

• 1x50G PAM4 used for connecting to DA Copper cable.
• RS(544,514).

50GBASE-KR PMD:
• IEEE 802.3 Clause 137

PCS:
• IEEE 802.3 Clause 133
• IEEE 802.3 Clause 134 RS-FEC

• 1x50G PAM4 used for backplane connectivity.
• RS(544,514)

50GAUI-2 IEEE 802.3 Annex 135D/135E • 2x25G lane AUI using NRZ modulation and
RS(544,514) for chip-to-chip or chip-to-module
connectivity.

50GAUI-1 IEEE 802.3 Annex 135F/135GE • 1x50G lane AUI using PAM4 modulation and
RS(544,514) for chip-to-chip or chip-to-module
connectivity.

LAUI-2 IEEE 802.3 Annex 135B/135C • 2x25G lane AUI using NRZ modulation and
RS(528,514) or no FEC for chip-to-chip or chip-to-
module connectivity.

25G 25GAUI PMD:
• 25GAUI C2C Annex 109A
• 25GAUI C2M Annex 109B

PCS:
• IEEE 802.3 Clause 107 PCS,

Clause 108 RS-FEC

• 109A used for chip-to-chip connectivity.
• 109B used for connecting to optics (generally

25GBASE-SR/LR in SFP28 module with RS(528,514).

25GBASE-KR PMD:
• IEEE 802.3 Clause 111 PCS
• IEEE 802.3 Clause 107 PCS,

Clause 108 RS-FEC, Clause 74
BASE-R FEC

• Used for Backplane connectivity.
• Auto-negotiated options for use of no FEC, BASE-R

FEC, or RS(528,514).

25GBASE-CR PMD:
• IEEE 802.3 Clause 110 PCS
• IEEE 802.3 Clause 107 PCS,

Clause 108 RS-FEC, Clause 74
BASE-R FEC

• Used for connecting to DA Copper cable.
• Auto-negotiated options for use of no FEC, BASE-R

FEC, or RS(528,514).

25GBASE-CR1/KR1 25G/50G Ethernet Consortium
Schedule 3 v1.6.

• 25G CR/KR PMD as specified in 25G/50G Ethernet
Consortium Schedule 3 v1.6. Compatible with IEEE
25G CR/KR except for auto-negotiation
advertisement.

Table 3-20. Supported Electrical Modes [continued]

Speed Mode Spec Comments

Intel® Ethernet Controller E810 Datasheet
Interconnects

108 613875-009

3.2.2.2 MAC/PHY Interface

The E810 provides up to eight Ethernet ports, where there is a 1:1 mapping between the E810 MAC
ONPI port and the PHY physical port. The interface modes are illustrated in the following diagrams.

3.2.2.2.1 MAC/PHY Interface Mapping

Figure 3-6 illustrates the default MAC-to-PHY connectivity. The controller core contains eight Ethernet
MACs. The MACs are grouped into two sets of four. Within each set of four, one MAC supports all rates
up to 100G (MAC0 and MAC1), a second MAC supports all rates up to 25G (MACs2 and MAC3), and the
remaining MACs (MAC4-MAC7) support up to 10G.

10G 10GBASE-KR PMD:
• IEEE 802.3 Clause 72

PCS:
• IEEE 802.3 Clause 49

• Used for Backplane connectivity.

SFI PMD:
• SFF 8431

PCS:
• IEEE 802.3 Clause 49

• Used for connecting to SFP+ module.
• Limiting mode for optical and active cables.
• Appendix E linear mode for passive copper twin-ax.

1G 1000BASE-KX PMD:
• IEEE 802.3 Clause 70

PCS:
• IEEE 802.3 Clause 36

• Used for Backplane connectivity.

SGMII PMD:
• Cisco SGMII spec

PCS:
• IEEE 802.3 Clause 36, 37 like

• Used for chip-to-chip connectivity.

100M SGMII PMD:
• SGMII spec

PCS:
• IEEE 802.3 Clause 36, 37 like

• Used for chip-to-chip connectivity.

Table 3-20. Supported Electrical Modes [continued]

Speed Mode Spec Comments

613875-009 109

Intel® Ethernet Controller E810 Datasheet
Interconnects

Each set of four MACs is connected to a single PCS block that supports up to four ports. Within each
PCS block is one PCS function (PCS0) that support all rates up to 100G, a second PCS function (PCS1)
that supports rates up to 50G, and two PCS functions (PCS2/3) that support up to 10G.

When operating in dual port mode, MAC0 and MAC1 are connected to PCS0 of their respective PCS
blocks, and the PCS distributes the data to up to four SerDes lanes needed for 4-lane modes, such as
100GBASE-CR4. This results in MAC0 utilizing SerDes lanes 0-3, while MAC1 utilizes SerDes lanes 4-7.

When operating in quad-port mode, only single lane per port modes are supported. MAC0 and MAC2
connect to PCS0 and PSC1 of the first PCS, while MAC1 and MAC3 connect to PCS0 and PCS1 of the
second PCS block. Using the default PCS-to-SerDes mapping, this presents the data from MACs
(0,2,1,3) on SerDes lanes 0, 1, 4, and 5 respectively.

To support a “breakout” mode where all four ports utilize the same SerDes quad, multiplexers in the
PCS-to-SerDes path direct the data from both PCS blocks to a single SerDes quad. This mode allows a
system design to support quad-port 25G in the same QSFP connector as a 100G port.

When working with lane rates of 50G, a 100G port is mapped to two lanes and 50G port is mapped to a
single lane. As those rates are only supported by MAC0 and MAC1, both direct and breakout mappings
are supported. While working at 100G port rates, the direct mapping maps MAC0 into lane0 and lane1,
while MAC1 is mapped into lane4 and lane5. In 50G port rates, the direct mapping maps MAC0 to lane0
and MAC1 into lane4. In 50G port rates, additional breakout mapping can be applied, which maps MAC0
into lane0 and MAC1 into lane1.

The 50G “breakout” mode allows a system design to support two 50G ports using the same QSFP
connector that was used when the port is configured to 100G.

Figure 3-6. E810 - MAC-PCS-SerDes Default Mapping

MAC1
(100G)

MAC3
(25G)

MAC5
(10G)

MAC7
(10G)

PCS0
100G/
50G/
10G/
25G

PCS1
50G/
25G/
10G

PCS2
10G

PCS3
10G

Serdes
Lane 4

Serdes
Lane 5

Serdes
Lane 6

Serdes
Lane 7

MAC0
(100G)

MAC2
(25G)

MAC4
(10G)

MAC6
(10G)

PCS0
100G/
50G/
25G/
10G

PCS1
50G/
25G/
10G

PCS2
10G

PCS3
10G

Serdes
Lane 0

Serdes
Lane 1

Serdes
Lane 2

Serdes
Lane 3

QSFP0 + cageQSFP1 + cage

100/50/
25/10

25/1010G10G100/50/
25/10

25/1010G10G

Quad 0Quad 1

ONPI ONPI ONPI ONPI ONPI ONPI ONPI ONPI

Intel® Ethernet Controller E810 Datasheet
Interconnects

110 613875-009

3.2.2.3 Port and PMD Mapping

To manage the Ethernet links, E810 firmware must map the port number and PMD (SerDes lane)
number along the way of the packet.

3.2.2.3.1 Port and PMD Nomenclature

The term “Logical port” to refers to an Ethernet port link as seen from the host perspective. A logical
port is mapped to the E810 Ethernet MAC and to a PCIe physical function (PF). In addition, a logical
port is mapped to a single or multiple PMD lanes of the internal PHY, depending on the PMD type. For
link management admin commands or link topology commands, the E810 field refers to logical port.

E810 MAC port numbering might be different from logical port numbering, because of physical function
mapping and the internal ONPI connection between the E810 controller core and the PHY.

3.2.2.3.2 Port Mapping

Note: E810 Ports 0-3 support up to 25G. There is a need to map those ports using the same lanes
that were used for 100G, for breakout configurations. This mapping is described in Table 3-
22.

For 50G lane rates, E810 Ports 0-1 are mapped to lanes 0,1,4,5 using the following mapping:

Table 3-21. Port Mapping

E810 PHY

Physical Function (PF) Mapping
MAC Number ONPI Port

Number

PMD Lane Number1

1. Bold identifies the auto-neg PMD lane

2-Port Default 4-Port Default 8-Port Default Single Lane Multi Lane

0 0 0 0 0 0 0,1,2,3

1 1 2 2 1 1

2 4 4 2 2

3 6 6 3 3

1 2 4 1 1 4 4,5,6,7

3 5 3 3 5 5

6 5 5 6 6

7 7 7 7 7

Table 3-22. Port Mapping (4x25G on the First Quad)

Physical Function (PF) E810 MAC Number PHY ONPI Port Number PMD Number

0 0 0 0

1 2 2 1

2 1 1 2

3 3 3 3

613875-009 111

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.2.3.3 Port Mapping - E810-XXVAM2 SKU

The E810-XXVAM2 product in the 21x21 mm package shares the same core features as the
E810-CAM2/CAM1 products in the 25x25 mm package, with the exception of limited interfaces. The
PCIe interface is limited to Gen4 x8, and the Ethernet interface limited to two ports maximum at 25G
and lower speeds, or a single port of 50G, implemented as 2x25G SerDes (that is, 50GBASE-CR2).

3.2.2.4 PHY Lane Mapping per Port Mode

In single-lane mode, there is a direct mapping between the PHY ONPI port and the PHY PMD lane. In
multi-lane mode, a single PHY ONPI port is mapped to 2 or 4 PMD lanes. The E810 PHY Core supports
multi-lane mode at port 0 and port 4. Port 0 can be mapped to PMD lanes 0-2 for a dual-lane mode, or
lanes 0-3 for a 4-lane mode. Port 4 can be mapped to PMD lanes 2-3 for a dual-lane mode, or lanes 4-7
for a 4-lane mode.

Table 3-23. Port Mapping (50G Lane Rates)

Mode Physical Function
(PF) E810 MAC Number PHY ONPI Port

Number PMD Number1

1. Bold identifies the auto-neg PMD lane

2x100G
0 0 0 0,1

1 1 1 4,5

2x50G
0 0 0 0

1 1 1 4

2x50G Breakout
0 0 0 0

1 1 1 2

Table 3-24. Port Mapping - E810-XXVAM2

Mode Physical Function
(PF) E810 MAC Number PHY ONPI Port

Number PMD Number1

1. Bold identifies the auto-neg PMD lane

2x25G
0 0 0 0

1 1 1 1

1x50G 0 0 0 0,1

Intel® Ethernet Controller E810 Datasheet
Interconnects

112 613875-009

Table 3-25. E810 PMD Lane Mapping per Port Mode

Site #/PMD#/Supported PMD Rates

Site Site 0 Site 1

P
o

rt
 M

o
d

e

Notes/LimitationsPMD 0* 1 2 3 4* 5 6 7

QSFP
Lane 1 2 3 4 1 2 3 4

C
FG

1
.1

50G 50G 2 CFG1.1: 4xSFP (2-port and 4-port
modes)
Note: The 4x SFP implementation also
supports 2x50GBASE-R on PMD lane 0
and 2. This configuration multiplexes
the Site 1 serial lanes to Site 0.

25G 25G 25G 25G 4

10G 10G 10G 10G 4

1G 1G 1G 1G 4

100M 100M 100M 100M 4

C
FG

3
.1

100G-R4 2 CFG3.1: 1xQSFP (2-port and 4-port
modes, including breakout)
Note: This configuration multiplexes
the Site 1 serial lanes to Site 0. Site 0
configuration now effectively supports
QSFP and QSFP breakout cables. Site 1
is disabled due to the internal
multiplexing structure.

100G-R2 2

50G-R2 50G-R2 2

50G 50G 2

25G 25G 25G 25G 4

10G 10G 10G 10G 4

1G 1G 1G 1G 4

100M 100M 100M 100M 4

C
FG

4
.1

100G-R4 100G-R4 2 CFG4.1: 2xQSFP (2-port, 4-port, and
8-port modes)
Note: CFG4.x is a superset of CFG3.x.
A system designed with CFG4 can also
use the breakout mode described in
CFG3 on Site 0.
Note: For the noted PMD lanes (Note
1), the configuration is only supported
with topology resolution when
breakout cables are plugged in. This
would force the E810 to be configured
in a 4-port/8-port mode.

100G-R2 100G-R2 2

50G-R2 50G-R2 2

50G 50G 2

25G 25G1 25G 25G1 4

10G 10G1 10G1 10G1 10G 10G1 10G1 10G1 8

1G 1G1 1G1 1G1 1G 1G1 1G1 1G1 8

100M 100M1 100M1 100M1 100M 100M1 100M1 100M1 8

C
FG

5

10G 10G 10G 10G 4 CFG5: 4x10GBASE-T (4-port mode)

1G 1G 1G 1G 4

100M 100M 100M 100M 4

Key: 100G (BASE-R4/-R2) 50G (BASE-R2/-R) 25G 10G 1G/100M

613875-009 113

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.3 Link Management

3.2.3.1 Link Management Interfaces

The E810 supports either MDIO or I2C interfaces for control plane connection between the MAC (master
side) and external PHY devices. The MDIO or I2C interfaces enable both MAC and firmware access to
the PHY for monitoring and controlling of the PHYs functionality. E810 MDIO is compliant with the IEEE
Std 802.3 Clause 45 as well as IEEE Std 802.3 Clause 22 frame formats and register address space for
accessing legacy PHY devices. E810 I2C is compliant with the I2C bus specification.

Since I2C and MDIO interfaces requires 3.3 V pads, the I2C and MDIO controllers are not implemented
within the E810. Instead they are placed in a widget. E810 firmware accesses the I2C and MDIO
controllers via registers.

The E810 supports up to six management interfaces (one per port, in 2-port or 4-port configurations)
to control external PHY devices. In configurations where the number of ports is higher than four, each
management interface should be shared (that is, a single management interface for four ports).
Depending on the PHY type to manage, the management interface can be configured for either MDIO or
2-wire management interface.

To manage multi-port PHYs, an I2C/MDIO interface can be configured to control a quad-port PHY, or two
I2C/MDIO interfaces can be configured to control two dual-port PHYs. The PHY configuration registers
for each port are mapped into the respective I2C/MDIO address space. In configurations in which the
number of ports is higher than four, five E810 I2C/MDIO interfaces can be configured to control up to
five quad-port PHYs. The sixth I2C/MDIO interface is usually shared between all devices and is used for
PHYs, LED controllers, thermal sensor or other devices that can share the I2C or MDIO bus. The MDIO
can be used for PHYs or other devices that can share the bus. The I2C bus is either replicated, using I2C
port extender, or used for devices that can share the I2C bus. Alternatively, the I2C bus can be used by
single I2C device.

Note: PHY mezzanine daughter cards are not supported in the E810.

The E810 provides hardware acceleration of MDIO accesses over the 2-wire management interface. The
device driver manages the external devices using the admin commands (see Section 3.2.4, “Link
Configuration Admin Commands”). The device driver does not have direct access to the MDIO bus
except for diagnostic purposes. Firmware performs direct access to MDIO interface, using register read
and write commands to the widget, for reading and writing to the PHY device as described in the
paragraphs that follow.

Figure 3-7 shows the a basic example of connectivity between the MAC and an external PHY/module for
up to four ports.

Intel® Ethernet Controller E810 Datasheet
Interconnects

114 613875-009

Figure 3-7. Basic PHY/Module Connectivity

Communications
Controller

Optical Module
Port 0

Optical Module
Port 1

Cable/Fiber

MAUI0

I2C Cable/Fiber

Optical Module
Port 2

I2C Cable/Fiber

Optical Module
Port3

I2C Cable/Fiber

613875-009 115

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.3.2 Link Management Topologies

The E810 supports MDIO and 2-wire management interface (I2C) for connectivity to external modules,
re-timers, and PHYs (for example, SFP+ or QSFP+ optical and direct attached copper PHYs).

The E810 supports up to five management interfaces (one per port - for up to 4-port configurations) to
control external PHY devices. Depending on the PHY type to manage these can be configured for either
MDIO or 2-wire management interface.

The link topology is described using a netlist in NVM section (see Section 3.3).

Figure 3-8 and Figure 3-9 show the basic examples of connectivity between the MAC and an external
module.

Figure 3-8. Basic Example of Module Connectivity

Figure 3-9. Basic Example of Module Connectivity

SDPs

MDIO1

MAUI0
MAUI1
MAUI2
MAUI7

Cable

Cable

Cable

Cable

Communications
Controller

MAUI0
MAUI1
MAUI2
MAUI3

Quad
Port PHY

Quad
Port PHY

Cable

Cable

Cable

Cable

MAUI0
MAUI1
MAUI2
MAUI7

Cable/Optical

Cable/Optical

Cable/Optical

Cable/Optical

QSFP+
Communications

Controller QSFP+

Cable/Optical
MAUI0

Cable/Optical

Cable/Optical

Cable/Optical

MAUI1
MAUI2
MAUI3

Intel® Ethernet Controller E810 Datasheet
Interconnects

116 613875-009

3.2.3.2.1 The E810’s SFP+ Connectivity Scheme (Up to 4 Ports
Topologies)

Figure 3-10 and Figure 3-11 illustrate the low speed digital signals used when connecting the E810 to
SFP+ modules with topologies of up to four ports.

Note: The diagram illustrates the minimal connectivity required. Additional SDPs can be used to
connect to the SFP+ module for direct hardware signaling (for example, TX_FAULT).
However, these are not mandatory and can be replaced with register access through the I2C
management interface.

Figure 3-10. Quad 10G SFP+1

1. In 4-port configuration, the E810 provides up to 3 LEDs per port.

Figure 3-11. Quad 10G SFP+ with Re-driver PHY1

1. In 4 port configuration, the E810 provides up to 3 LEDs per port

I2C (2 pins)

I2C (2 pins)

I2C (2 pins)

I2C (2 pins)

MOD_ABS

MOD_ABS

MOD_ABS

MOD_ABS

LED[2:0]

LED[2:0]

LED[2:0]

LED[2:0]

LAN
Controller

SFP+
Cage

SFP+
Cage

SFP+
Cage

SFP+
Cage

SFI (1 Channel)

SFI (1 Channel)

SFI (1 Channel)

SFI (1 Channel)

I2C (2 pins)

I2C (2 pins)

I2C (2 pins)

I2C (2 pins)

MOD_ABS

MOD_ABS

MOD_ABS

MOD_ABS

LED[1:0]

LED[1:0]

LED[1:0]

LED[1:0]

LAN
Controller

SFP+
Cage

SFP+
Cage

SFP+
Cage

SFP+
Cage

Quad SFP+ PHY
Redriver / Retimer Port-0 SFI (1 Channel)KR (1 Channel)

SFI (1 Channel)KR (1 Channel)

SFI (1 Channel)KR (1 Channel)

SFI (1 Channel)KR (1 Channel)

Re-driver / Re-timer
solution

(different I2C address)

Quad SFP+ PHY
Redriver / Retimer Port-1

Quad SFP+ PHY
Redriver / Retimer Port-3

Quad SFP+ PHY
Redriver / Retimer Port-2

613875-009 117

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.3.2.2 The E810’s QSFP+ Connectivity Scheme (Up to 8 Ports
Topologies)

Figure 3-12 and Figure 3-13 illustrate the low speed digital signals used when connecting the E810 to
QSFP+ modules.

Note: The diagrams illustrates the minimal connectivity required. Additional SDPs can be used to
connect to the QSFP+ module for direct hardware signaling (for example, ResetL). However,
these are not mandatory and can be replaced with register access through the I2C
management interface.

The E810 also supports a mode where an SFP module is inserted in a QSP+ cage using a QSA module
adapter.

Figure 3-12. Octal 10GDual QSFP+

ModPrsL
LED

LED

LED

LED

LAN
Controller

QSFP+
Cage

SFI (1 Channel)

SFI (1 Channel)

SFI (1 Channel)

SFI (1 Channel)

ModPrsL
LED

LED

LED

LED

QSFP+
Cage

SFI (1 Channel)

SFI (1 Channel)

SFI (1 Channel)

SFI (1 Channel)

I2C

I2C
* For 8 ports configuration, single LED per port
 For 4 ports configuration, 3 LEDs per port

Intel® Ethernet Controller E810 Datasheet
Interconnects

118 613875-009

Figure 3-13. Octal 10GDual QSFP+ with Re-driver PHY

ModPrsL
LED[1:0]

LED[1:0]

LED[1:0]

LED[1:0]

LAN
Controller

QSFP+
Cage

I2C

Quad SFP+ PHY
Redriver Port-4 SFI (1 Channel)10G Serial (1 Channel)

Quad SFP+ PHY
Redriver Port-5

Quad SFP+ PHY
Redriver Port-6

Quad SFP+ PHY
Redriver Port-7

SFI (1 Channel)10G Serial (1 Channel)

SFI (1 Channel)10G Serial (1 Channel)

SFI (1 Channel)10G Serial (1 Channel)

Re-driver solution
(different I2C address)

ModPrsL
LED[1:0]

LED[1:0]

LED[1:0]

LED[1:0]

QSFP+
Cage

Quad SFP+ PHY
Redriver Port-0 SFI (1 Channel)10G Serial (1 Channel)

Quad SFP+ PHY
Redriver Port-1

Quad SFP+ PHY
Redriver Port-2

Quad SFP+ PHY
Redriver Port-3

SFI (1 Channel)10G Serial (1 Channel)

SFI (1 Channel)10G Serial (1 Channel)

SFI (1 Channel)10G Serial (1 Channel)

I2C

613875-009 119

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.3.2.3 The E810’s BASE-T Connectivity Scheme

Figure 3-14 illustrates the low speed digital signals used when connecting the E810 to BASE-T PHYs.

Note: The diagram illustrates the minimal connectivity required. Additional SDPs can be used to
connect to the PHY for direct hardware signaling INT. However, these are not mandatory and
can be replaced with register access through the MDIO management interface.

Note: The SFP+ module is shown with four SDP pins per port for dedicated hardware functions. The
TX_Disable bit of the SFP+ module is accessed by software through the I2C interface.
Alternatively, one of the global GPIO pins can be connected to TX_Disable pin.

Note: The SFP+ module is shown above with four SDPs. However, the minimum number of SDPs
required is only one, which should be connected to the module’s Mod_ABS pin.

Furthermore, when connecting to a pluggable 1GBASE-T module, the minimum number of
SDPs required is two, since an additional SDP is required for connecting to the module
Rx_LOS signal for accurate link state reporting to the link management firmware. There are,
however, specific pluggable BASE-T modules that can be supported without Rx_LOS. For
specific model numbers please contact Intel support.

Figure 3-14. Octal 10GBASE-T/1GBASE-T

Quad 10/1GbT PHY

INTn

MDIO/MDC

LED

LED

LED

LED

KX/KR (1 Channel)

KX/KR (1 Channel)

KX/KR (1 Channel)

KX/KR (1 Channel)

RJ-45

RJ-45

RJ-45

RJ-45

MDI

MDI

MDI

MDI

LAN
Controller

Quad 10/1GbT PHY

INTn

KX/KR (1 Channel)

KX/KR (1 Channel)

KX/KR (1 Channel)

KX/KR (1 Channel)

RJ-45

RJ-45

RJ-45

RJ-45

MDI

MDI

MDI

MDI

LED

LED

LED

LED

MDIO/MDC

Intel® Ethernet Controller E810 Datasheet
Interconnects

120 613875-009

3.2.4 Link Configuration Admin Commands

The E810 supports the following admin commands for configuring and managing the link. Software
should use the admin commands to configure the link. This includes configuring the MAC and internal/
external PHY devices. The firmware provides link configuration and status services to the device driver
based on these admin commands.

Software can use the Get Link Status command to find out the current status of the link.

Table 3-26. Link Configuration Admin Commands (0x06xx)

Command Opcode Description Section
Reference

Set PHY Config 0x0601 Sets various PHY configuration parameters on the port. 3.2.4.1.1

Set MAC Config 0x0603 Sets various MAC configuration parameters on the port. 3.2.4.1.2

Setup Link and Restart
Auto-Negotiation1

1. In SFP mode, the Setup Link and Restart Auto-Negotiation command must be executed by the device driver or any other change
in link parameters to take effect on the link. This operation could disrupt the link since the link state might toggle while the link is
re-initialized with the new parameters.

0x0605 Sets up the link and restarts link establishment.
This command applies the latest link configuration as configured with the Set
PHY Config (0x0601) command. The command also restarts the link
establishment process. For links configured for auto-negotiation, it starts the
auto-negotiation process.
This operation could bring down the link. This command must be executed to
allow the latest link parameters to take effect on the link.

3.2.4.1.3

Get PHY Abilities 0x0600 Gets various PHY abilities supported on the port. 3.2.4.1.4

Get Link Status 0x0607 Gets link status of the port. 3.2.4.1.5

Link Status Event 0x0607 Firmware sends this asynchronous event notification to software when there is
a change in status in any of the event causing conditions (such as link up/
down or other link error conditions).

3.2.4.1.6

Set Event Mask 0x0613 Sets event mask. Software can mask some or all of the link status event
causing conditions.

3.2.4.1.7

613875-009 121

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.4.1 Link Configuration Commands

This section provides a detailed description of the link configuration admin commands and their
structure.

3.2.4.1.1 Set PHY Config (0x0601)

This command is used by the device driver to set the various PHY configuration parameters supported
on the port.

This is a indirect command. Set PHY Config command parameters data structure is placed in the data
buffer.

Note: This command must be followed by the Setup Link and Restart Auto-Negotiation (0x0605)
command for any changes to the link parameters to actually take place. Some parameter
settings might take effect immediately with this command execution, as specified below.

In the E810, the command is indirect and contains a data buffer. The structure of the data buffer is
described in Table 3-28.

Table 3-27. Set PHY Config Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0601 Command opcode.

Datalen 4-5 0x18 Length of the data buffer in bytes.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.
Error codes are documented in the response buffer description in Table 3-29.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810

Reserved 17-23 Reserved Value 0x0.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

Intel® Ethernet Controller E810 Datasheet
Interconnects

122 613875-009

Table 3-28. Set PHY Config Command Data Structure

Name Bytes.Bits Value Remarks

PHY Type 0-15 PHY Type 128 bits PHY type (PHY capabilities) supported on port.
128 bits structure, describing capabilities of the outermost PHY, with one
bit per PHY capability. PHYs connected to the E810 might be capable of
supporting multiple PHY types, indicated using the link topology netlist
The software driver uses this command to indicate the capabilities to
enable.
This structure is identical to the extended PHY capabilities structure, as
described in Section 3.3.3.2.1.
This parameter is used by the device driver to set the various PHY
capabilities to be supported on the port. The port can be configured for a
subset of the actual PHY capabilities available on the port. The actual
PHY capabilities available are read by the device driver using Get PHY
Abilities (0x0600) command.
When the link establishment state machine (LESM) is enabled, the E810
tries one of the enabled PHY types that matches the media capabilities
and selects this PHY capability when the link is up.
When the LESM is disabled, this field should enable only a single value,
and then the E810 is forced to operate in that selected mode.
Some of the PHY capabilities might require the auto-negotiation feature,
which might resolve some of the link parameters, such as speed and
FEC, according to the negotiation result with the link partner.

PAUSE Ability 16.0-16.1 Pause Ability Bit 16.0: Tx Link Pause
0b = Disable PAUSE ability.
1b = Enable IEEE 802.3x Tx link PAUSE ability.

Bit 16.1: Rx Link Pause
0b = Disable PAUSE ability.
1b = Enable IEEE 802.3x Rx link PAUSE ability.

Auto-negotiation might have be restarted for this configuration to take
effect over the link.
This parameter is used by the device driver to set the IEEE 802.3x pause
ability of the port. The E810’s pause ability can be read using the Get
PHY Abilities (0x0600) or Get Link Status (0x0607) commands. The
device driver might disable the IEEE 802.3x link PAUSE ability using this
command. If the link is already up and configured, the device driver
needs to restart auto-negotiation, so the updated PAUSE ability could be
advertised to the link partner for the setting to take effect on the link.
Note: When PFC is enabled, firmware turns off the PAUSE ability bits

during auto-negotiation regardless of the setting used in the
admin command. However, if PFC will be disabled in the future,
the last setting of the PAUSE ability bits is used.

Low Power Ability 16.2 Low Power Mode Bit 16.2: Power Mode
0b = High Power mode.
1b = Low Power mode.

QSFP+:
• This is ignored if NVM loaded <Low Power Ability> = Low Power.

When QSFP+ is shared between multiple ports:
• Firmware sets the power mode based on the setting of the first

(lower power number) port in the group and ignore the settings of
the other ports in the group.

• The setting of Low Power Ability by one PF automatically changes
the Low Power Ability of all PFs sharing the QSFP+. This can result
in link loss on all ports.

• Firmware identifies which ports are sharing a QSFP+ by looking at
the ModPresL SDP and seeing that it is shared between multiple
ports.

Enable Link 16.3 Enable Link Bit 16.3: Link Enable
0b = Disable the link.
1b = Enable the link.

Device driver should not force link down when port is being used for
manageability or WoL.

613875-009 123

Intel® Ethernet Controller E810 Datasheet
Interconnects

Reserved 16.4 Reserved Reserved.

Enable Automatic
Link Update

16.5 Enable Automatic
Link Update

Bit 16.5: Automatic Link Update Enable
0b = The device driver maintains the responsibility for sending the

Setup Link and Restart Auto-Negotiation (0x0605) command.
1b = Firmware automatically executes the Setup Link and Restart

Auto-Negotiation (0x0605) command following this command.
When automatic link update is enabled, the device driver should be
aware that a link change event can occur following the Set PHY Config
(0x0601) command.

LESM Enable 16.6 LESM Enable Bit 16.6: LESM Enable
1b = Enables the Link Establishment State Machine.

Auto FEC Enable 16.7 Auto FEC Enable Bit 16.7: Auto FEC Enable
1b = Enables the automatic selection of FEC mode.

Low Power Control 17 D3cold LPAN Bit 17.0: D3cold LPAN
0b = Disable D3cold low power auto-negotiation.
1b = Enable D3cold low power auto-negotiation.

Bit 17.3: AN37 Enable - Clause 37 auto-negotiation enable.
0b = AN37 disabled.
1b = AN37 enabled on 1G links.
Note: The value of AN37 Enable bit should be propagated from Get

PHY Abilities (0x0600) output to Set PHY Config (0x0601)
input for all default Software and firmware flows.

All other bits = Reserved. Must be zero.

EEE Capability Enable 18-19 EEE Capability Sets EEE capability for each PHY type supported on the port.
One bit per PHY type. These capabilities refers to the outermost PHY
connected to the E810 link. The following parameter indicates the bit
number. Ignores values for unsupported PHY types.
This structure is aligned with the “EEE options 1”, in the link topology
netlist. See Section 3.3.8.6.8.

Bit 18.0: EEE is enabled for 100BASE-TX.
Bit 18.1: EEE is enabled for 1000BASE-T.
Bit 18.2: EEE is enabled for 10GBASE-T.
Bit 18.3: EEE is enabled for 1000BASE-KX.
Bit 18.4: EEE is enabled for 10GBASE-KR.
Bit 18.5: EEE is enabled for 25GBASE-KR
Bit 18.7: EEE is enabled for 50GBASE-KR2
Bit 19.0: EEE is enabled for 50GBASE-KR-PAM4
Bit 19.1: EEE is enabled for 100GBASE-KR4
Bit 19.2: EEE is enabled for 100GBASE-KR2-PAM4
All other bits = Reserved. Must be zero.

This field is used by the device driver to enable the EEE capability of
various PHY types supported on the port. The EEE capability of the E810
can be read by the Get PHY Abilities (0x0600) command. The device
driver might set EEE capability for a subset of PHY types supported by
the E810.

EEER 20-21 EEER Value Value to program the EEER register.
Note: The EEER register is changed immediately with the execution of

this command.

Table 3-28. Set PHY Config Command Data Structure [continued]

Name Bytes.Bits Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

124 613875-009

Link FEC Options 22 Link FEC Options Sets the FEC options to the link. This field is aligned with the FEC options
in “Link options 0” of the topology netlist.
Bit 22.0: FIRE_CODE_10_ABILITY Enable

Controls FEC capability advertisement for 10G KR.
0b = FEC disabled.
1b = FEC enabled (advertised).

Bit 22.1: FIRE_CODE_10_REQUEST
Controls FEC capability request for 10G KR.

0b = FEC disabled.
1b = FEC Enabled (requested).

Bit 22.2: RS_528_REQUEST
Controls RS FEC 528 capability request for 25G lanes KR/KR-S/KR1/
CR/CR-S/CR1.

0b = FEC disabled.
1b = FEC Enabled (requested).

Bit 22.3: FIRE_CODE_25_REQUEST
Controls KR FEC capability request for 25G lanes KR/KR-S/KR1/CR/
CR-S/CR1.

0b = FEC disabled.
1b = FEC Enabled (requested).

Bit 22.4: RS_544_REQUEST
Controls RS FEC 544 capability request for 25G/50G lanes KR/KR-S/
KR1/CR/CR-S/CR1.

Bit 22.5: No FEC:
Controls link enable when FEC is disabled

0b = Link not requested with FEC disabled.
1b = Link requested with FEC disabled.

Bit 22.6: RS_528_ABILITY
Controls RS FEC ability advertisement for 25G KR1/CR1.

0b = FEC disabled.
1b = FEC enabled (advertised).

Bit 22.7: FIRE_CODE_25_ABILITY
Controls KR FEC ability advertisement for 25G KR1/CR1.

0b = FEC disabled.
1b = FEC enabled (advertised).

Module Compliance
Enforcement

23.0 0b = Lenient
1b = Strict

Reserved 23.1-23.7 0x0 Reserved. Set to 0x0.

Table 3-28. Set PHY Config Command Data Structure [continued]

Name Bytes.Bits Value Remarks

613875-009 125

Intel® Ethernet Controller E810 Datasheet
Interconnects

The following structure describes the response by firmware to the Set PHY Config command.

Note: When Enable Automatic Link Update is set to 1b, firmware sends a completion for the Set PHY
Config command only after making all the necessary configuration changes and executing the
Setup Link and Restart Auto-Negotiation (0x0605) command.

Table 3-29. Set PHY Config Command Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0601 Command opcode.

Datalen 4-5 Length of the data buffer in bytes.

Return Value/VFID 6-7 Return value.
0 = No error. Command completed successfully.
1 = EPERM. Operation is not permitted.
12 = EBUSY. For example, when the command is called when a previous

request to program or read the external topology device is
ongoing. This code also returned when RDE operation is currently
executed.

21 = EMODE. Operation not allowed in current device mode. This error is
returned when the command is called with disable link, but the
link is configured to be used for manageability. At this case, the
link is not configured.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Param0 17-19 Reserved Zeroed by firmware,. Value is ignored.

Param1 20-23 Reserved Must be 0x0. Value is ignored.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

Intel® Ethernet Controller E810 Datasheet
Interconnects

126 613875-009

3.2.4.1.2 Set MAC Config (0x0603)

This command is used by the device driver to set the various MAC configuration parameters supported
on the port. This status is indicated by the command response.

This is a direct command. The Set MAC Config command parameters data structure is placed in the
command descriptor.

Table 3-31 lists the data structure of the Set MAC Config command parameters, such as max frame
size, and so on.

Table 3-30. Set MAC Config Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0603 Command opcode.

Datalen 4-5 0x0 Must be 0x0. Value is ignored.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Set MAC Config 16-31 See Table 3-31 16-byte data structure that holds the Set MAC Config command parameters as
listed in Table 3-31.

Table 3-31. Set MAC Config Command Data Structure

Name Bytes.Bits Value Remarks

Max Frame Size 0-1 Max Frame Size 16-bit value used to set the maximum frame size of the Ethernet frame
on the port.
This parameter is used by the device driver to set the maximum frame
size on the port both for Rx and for Tx.
This parameter should be set to the maximum expected L2 packet size. It
is ~1.5 KB or ~9.5 KB depending if jumbo packets are expected on the
link.
The firmware should return ERANGE error when the value provided by the
software is bigger than the maximal frame size supported by the MAC
(9.5K).
Note: The maximal frame size is checked on packets transmitted before

the Ethernet CRC is appended to them. For received packets, the
check is performed on the packet length that includes the
Ethernet CRC.

Reserved 2.0-2.2 Reserved Must be 0x0

Pacing config 2.3-2.7 Pacing Config Bits 2.6-2.3:
This is 4 bit field that allows configuring PACE parameter in the MAC to
slow down the effective data rate.
For data rate pacing, as defined in Table 3-18.
For Fixed IPG pacing, defines the number of 16-byte words added.

Bit 2.7: Pacing Type
0b = Data rate pacing.
1b = Fixed IPG pacing.

Transmit Timer
Priority

3 Transmit Timer
Priority

This bitmap field selects the priority <n>, with one bit per priority. The
priorities selected here are updated with the Transmit Time Value field
and the FC Refresh Threshold field with the values provided in this
command.
For additional register description, see Section 3.2.1.5.

613875-009 127

Intel® Ethernet Controller E810 Datasheet
Interconnects

The following data structure describes the response by firmware to the Set MAC Config command.

Transmit Timer Value 4-5 Transmit Timer
Value

This is the priority <n> timer value that is included in the XOFF frames
being transmitted, where <n> is selected in the Transmit Timer Priority
bitmap above.
<n> = 0 is used for Link Level FC.
For additional register description, see Section 3.2.1.5.

FC Refresh Threshold 6-7 FC Refresh
Threshold

This field represents priority <n> FC refresh threshold, that specifies how
many slot time before the XOFF expires, a new XOFF is sent.
<n> is selected in the Transmit Timer Priority bitmap above.
When <n> = 0, the value is used for link level flow control.
This value is used to calculate the actual refresh period for sending the
next pause frame if conditions for a pause state are still valid.
For additional register description, see Section 3.2.1.5.

Auto Drop Blocking
Packets

8.0 This bit controls the behavior when a no-drop packet is blocking a TC
queue.

0b = The PF driver is notified.
1b = The blocking packet is dropped and then the PF driver is notified.

Reserved 8.1-15 Reserved Must be 0x0.

Table 3-32. Set MAC Config Command Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0603 Command opcode.

Datalen 4-5 0x0 Must be 0x0. Value is ignored.

Return Value/VFID 6-7 Return value.
0x0 = Command success.

Returns EPERM code if the operation is not permitted.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved Value 0x0.

Table 3-31. Set MAC Config Command Data Structure [continued]

Name Bytes.Bits Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

128 613875-009

3.2.4.1.3 Setup Link and Restart Auto-Negotiation (0x0605)

This command is used by the device driver to setup the link and execute previously-sent Set PHY Config
(0x0601) commands, as well as restart the link establishment process. When the link is configured to
auto-negotiation mode, the link establishment state machine also starts the auto-negotiation process
over the link. This command must be executed for any change in link parameters, such as set link
speed (and so on) to take effect.

This is a direct command.

Table 3-33. Restart Auto-Negotiation Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0605 Command opcode.

Datalen 4-5 0x0 Must be 0x0. Value is ignored.
0 = No error. Command completed successfully.
20 = EMODE. Operation not allowed in current device mode. This error is

returned when the command is called with disable link, but the
link is configured to be used for manageability. At this case,
the link is not configured.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Reserved 17 Reserved Must be 0x0. Value is ignored.

Command Flags 18 Command Bit 18.1: Restart Link
1b = Restart the link.

Bit 18.21: Enable Link
0b = Disable link.
1b = Enable link.

All other bits = Reserved. Must be zero.
This command might be executed automatically by firmware, following a Set
PHY Config (0x0601) command, with the Enable Automatic Link Update bit
(16.5) set. In such a case, these bits are assigned by firmware as follows:

Bit 18.1 is set to 1.
Note: Bit 18.2 is copied from the Enable Link field in the Set PHY Config

command.

1. Used by the device driver to enable/disable the link without modifying the other link settings. This is useful at POR when an
application needs to have link powered down until the device driver loads.

Reserved 19-31 Reserved Must be 0x0. Value is ignored.

613875-009 129

Intel® Ethernet Controller E810 Datasheet
Interconnects

The following structure describes the response by firmware to the Restart Auto-Negotiation command.

Table 3-34. Restart Auto-Negotiation Command Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0605 Command opcode.

Datalen 4-5 0x0 Must be 0x0. Value is ignored.

Return Value/VFID 6-7 Return value.
0 = No error. Command completed successfully1.
12 = EBUSY. For example, when the command is called when a previous

request to program or read the external topology device is
ongoing. This code also returned when RDE operation is
currently executed.

20 = EMODE. Operation not allowed in current device mode. This error is
returned when the command is called with disable link, but the
link is configured to be used for manageability. At this case,
the link is not configured.

1. Successful completion of this commands only means that firmware accepted the command and will act accordingly. For example,
if the request is to enable the link, firmware will try to enable it. The link could be brought up after the command is successfully
completed, or could stay down because of other link issues.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Reserved 17-31 Reserved Value 0x0.

Intel® Ethernet Controller E810 Datasheet
Interconnects

130 613875-009

3.2.4.1.4 Get PHY Abilities (0x0600)

This command is used by the device driver to find out the various PHY abilities supported on the port.

This is an indirect command.

Table 3-35. Get PHY Abilities Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0600 Command opcode.

Datalen 4-5 Length of the response buffer in bytes. The software driver should supply a
buffer with enough space to be filled by firmware

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Reserved 17 Reserved Must be 0x0. Value is ignored.

Param0 18-19 Command First command parameter.
Bit 18.0: Report Qualified Modules

List of qualified modules is part of the response only when this bit is set to
1b.

Bits 18.3-18.1: Report Mode
000b = Report Topology Capabilities, without Media: Report capabilities

structure as read from the topology netlist in NVM or ID EEPROM.
This report ignores the media that might be connected and limits the
capabilities.

001b = Report Topology Capabilities, with Media: Report capabilities as
read from topology netlist in NVM and ID EEPROM, intersect with the
media information, if exists.
Examples:
When the topology includes cage, but it is empty, it reports all
possible module types and speeds, just like 00b report mode.
When there is specific media connected (that is, a module is
populated into the cage), it reports only modes speeds supported
by the media or the module.

010b = Report Active Configuration: Report the capabilities of the active
configuration. The active configuration can be taken from the last
software configuration, but it can be modified by firmware (for
example, when a new module is inserted or NC-SI command is
executed). When the Override Enable bit is set at the Link Default
Override Mask PFA section, the capabilities are taken from the same
PFA section.

011b = Report PHY Type and FEC Mode Capabilities: Report PHY Type
and FEC mode capabilities of the port based on Link Management
analysis of the inserted media.

100b = Report Default Configuration: This report mode returns the
default configuration based on link topology netlist, “Link Default
Override Mask” PFA section, relevant override bits in the PFA section
and Strict or Lenient mode. The default configuration does not
depend on the software configuration that might be applied using Set
PHY Config admin command.

All other bits = Reserved.

Reserved 20-23 Reserved Must be 0x0. Value is ignored.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

613875-009 131

Intel® Ethernet Controller E810 Datasheet
Interconnects

Table 3-36 lists the Get PHY Abilities response structure returned by firmware to the Get PHY Abilities
command. The response, opcode, and Get PHY Abilities response data structure buffer address are
placed in the descriptor. The Get PHY Abilities response data structure is placed in a buffer.

Table 3-37 lists the format of the buffer content for the Get PHY Abilities reply.

Table 3-36. Get PHY Abilities Command Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0600 Command opcode.

Datalen 4-5 Set by firmware according to the actual size of the response buffer.

Return Value/VFID 6-7 Return value.
EINVAL = Invalid parameters (for example, buffer too small).
EIO = Error while accessing the information.
EAGAIN = PHY/module interface currently busy, retry.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Reserved 17-23 Reserved Reserved. Must be set to 0x0.

Data Address High 24-27 Buffer Address
Buffer address.

Data Address Low 28-31 Buffer Address

Table 3-37. Get PHY Abilities Command Response Data Structure

Name Bytes.Bits Value Remarks

PHY Type 0-15 PHY Type See detailed description in Table 3-90.

Pause Ability 16.0:16.1 Pause Ability Bit 16.0:
Returns 1b if the port advertises IEEE 802.3x Tx link PAUSE ability.
Otherwise, returns 0b.

Bit 16.1:
Returns 1b if the port advertises IEEE 802.3x Rx link PAUSE ability.
Otherwise, returns 0b.

This parameter can be used by the device driver to determine the IEEE
802.3x PAUSE abilities of the port.

Low Power Ability 16.2 Low Power Ability Bit 16.2: Power Mode
0b = High Power mode.
1b = Low Power mode.

Link Mode 16.3 Link Mode Bit 16.3: Link Mode
0b = Link is disabled.
1b = Link is enabled.

Reserved 16.4 Reserved.

Enable Module
Qualification

16.5 Enable Module
Qualification

Bit 16.5: Module Qualification
Returns 1b if a external module or PHY qualification check is enabled.

LESM Enable 16.6 LESM Enable Bit 16.6: LESM
Returns 1b if the Link Establishment State Machine is enabled.

Auto FEC Enable 16.7 Auto FEC Enable Bit 16.7: Auto FEC
Returns 1b if the automatic selection of FEC mode is enabled.

Intel® Ethernet Controller E810 Datasheet
Interconnects

132 613875-009

Low Power Control /
AN Modes

17 D3cold LPAN Bit 17.0: D3cold LPAN
0b = D3cold low power auto-negotiation disabled.
1b = D3cold low power auto-negotiation enabled.

Bit 17.1:
0b = AN28 disabled.
1b = AN28 enabled.

Bit 17.2:
0b = AN73 disabled.
1b = AN73 enabled.

Bit 17.3:
0b = AN37 disabled.
1b = AN37 enabled on 1GF PHY Types.

All other bits = Reserved. Must be zero.
Note: The auto-negotiation enable bits are reserved when Get PHY

Abilities (0x0600)” command is called with the Report Active
Configuration parameter indicated, and firmware should
return these bits as 0.

EEE Capability 18-19 EEE Capability Reports EEE capability for each PHY type supported on the port.
One bit per PHY type. These capabilities refers to the outermost PHY
connected to the E810 link. The following parameter indicates the bit
number.
This structure is aligned with the “EEE options 1”, in the link topology
netlist. See Section 3.3.8.6.8.

Bit 18.0: EEE is enabled for 100BASE-TX.
Bit 18.1: EEE is enabled for 1000BASE-T.
Bit 18.2: EEE is enabled for 10GBASE-T.
Bit 18.3: EEE is enabled for 1000BASE-KX.
Bit 18.4: EEE is enabled for 10GBASE-KR.
Bit 18.5: EEE is enabled for 25GBASE-KR
Bit 18.7: EEE is enabled for 50GBASE-KR2
Bit 19.0: EEE is enabled for 50GBASE-KR-PAM4
Bit 19.1: EEE is enabled for 100GBASE-KR4
Bit 19.2: EEE is enabled for 100GBASE-KR2-PAM4
All other bits = Reserved, Must be zero.

EEER 20-21 EEER Value Content of EEER register.

Current PHY ID/Vendor
OUI

22-25 PHY ID/OUI This parameter is used by the device driver to find out the PHY/module
ID connected on the port.
If the E810 is connected to an external BASE-T PHY:

This 4-byte field returns the {OUI, Manufacturer Model#, Revision
ID} as defined in IEEE 802.3, 22.2.4.3.1 PHY Identifier (Registers 2
and 3).

Bytes 23:22: Register3.
Bytes 25:24: Register2.

If the E810 is connected to an external module:
This field returns the three-byte vendor OUI of the module (MSB is
padded with zeros).

Current PHY FW
version

26-33 PHY Firmware
Version

This 8-byte parameter indicates the external outermost PHY firmware
version

Table 3-37. Get PHY Abilities Command Response Data Structure [continued]

Name Bytes.Bits Value Remarks

613875-009 133

Intel® Ethernet Controller E810 Datasheet
Interconnects

Link FEC Options 34 Link FEC Options Returns the FEC options of the link. This field is aligned with the FEC
options in “Link options 0” of the topology netlist. See
Section 3.3.8.6.5.
Bit 34.0: FIRE_CODE_10_ABILITY Enable

Controls FEC capability advertisement for 10G KR.
0b = FEC Disabled.
1b = FEC Enabled (advertised).

Bit 34.1: FIRE_CODE_10_REQUEST
Controls FEC capability request for 10G KR.

0b = FEC Disabled.
1b = FEC Enabled (requested).

Bit 34.2: RS_528_REQUEST
Controls RS FEC 528 capability request for 25G KR/KR-S/KR1/CR/CR-
S/CR1.

0b = FEC Disabled.
1b = FEC Enabled (requested).

Bit 34.3: FIRE_CODE_25_REQUEST
Controls KR FEC capability request for 25G KR/KR-S/KR1/CR/CR-S/
CR1.

0b = FEC Disabled.
1b = FEC Enabled (requested).

Bit 34.4: RS_544_REQUEST
Controls RS FEC 544 capability request for 25G KR/KR-S/KR1/CR/CR-
S/CR1.

Bit 34.5: No FEC
Controls link enable when FEC is disabled.

0b = Link not allowed with FEC disabled
1b = Link allowed with FEC disabled

Bit 34.6: RS_528_ABILITY
Controls RS FEC ability advertisement for 25G KR1/CR1.

0b = FEC Disabled.
1b = FEC Enabled (advertised).

Bit 34.7: FIRE_CODE_25_ABILITY
Controls KR FEC ability advertisement for 25G KR1/CR1.

0b = FEC Disabled.
1b = FEC Enabled (advertised).

Module Compliance
Enforcement

35.0 0b = Lenient
1b = Strict

Reserved 35.1-35.7 Reserved Reserved.

Current Module
Extended Compliance
Code

36 Extended
Compliance Code

Returns the extended compliance code of the module as defined in
SFP+ (Address 0xA0, Byte 36) specification.
This parameter is used by the device driver to find out the module type
on the port when connected to external modules.

Table 3-37. Get PHY Abilities Command Response Data Structure [continued]

Name Bytes.Bits Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

134 613875-009

Current Module Type 37-39 Module Type Returns the three-byte module ID.
First byte:

Module identifier.
Defined by SFP+ (Address 0xA0, Byte 0) or QSFP+ (Address 128,
page 0) specifications.

Second byte:
The following bits might be set to indicate the supported
technologies:

0 = SFP+ Cu Passive
1 = SFP+ Cu Active
4 = 10G BASE-SR
5 = 10G BASE-LR
Remaining bits are reserved.

Third byte:
GbE compliance code.
Defined by SFP+ (Address 0xA0, Byte 6) or QSFP+ (Address ess134,
page0) specifications.

This parameter is used by the device driver to find out the module type
on the port when connected to external modules. For example, the
E810 might be connected to an SFP+ or QSFP+ optical or direct
attached copper modules. The format of the module type returns the
ID and Ethernet compliance code fields as defined in the SFP+ or
QSFP+ specifications. There is no separate Ethernet compliance code
for SFP+ copper modules. It is reported in a separate byte in SFP+
module. However, the E810 uses the unused bits in second byte to
report SFP+ direct attach cables.

Qualified Module Count 40 Number of qualified modules to be listed in the following bytes.

Reserved 41-47 Reserved Reserved.

Qualified Module ID-n 48+n*32 -
79+n*32

This is a list of qualified modules that are supported by the E810 and
might be connected.
The list contains a 24-byte field per module, based on IEEE Std 802.3
definition of device ID, containing:
• Vendor OUI (3 bytes).
• Reserved (1 bytes).
• Vendor Part# (16 bytes).
• Vendor Rev# (4 bytes).
• Last 8bytes are reserved.

Table 3-37. Get PHY Abilities Command Response Data Structure [continued]

Name Bytes.Bits Value Remarks

613875-009 135

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.4.1.5 Get Link Status (0x0607)

This command is used by the device driver to find out the link status of the port. Firmware returns link
status = up when the link is available for transmission/reception. This command also returns other
operating parameters of the link, such as negotiated speed, PHY type, and so on.

In the E810 this is an indirect command, and returns the Get Link Status information structure within
the buffer.

Table 3-38. Get Link Status Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0607 Command opcode.

Datalen 4-5 Length of the data buffer in bytes.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Reserved 17 Reserved Must be 0x0. Value is ignored.

Command Flags 18-19 Command Flags Bits 18.1-18.0:
00b = NOP — LSE notification value is not modified and Get Link Status

response returns the most updated value of enable/disable.
01b = Reserved.
10b = Disable link status event notification to software.
11b = Enable link status event notification to software.
See Section 3.2.4.1.6 for details on LSE and enabling/disabling LSE events.

All other bits = Reserved. Must be 0x0. Value is ignored.

Reserved 20-23 Reserved Must be 0x0. Value is ignored.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

Intel® Ethernet Controller E810 Datasheet
Interconnects

136 613875-009

The following structure describes the response by firmware to the Get Link Status command.

Table 3-40 lists the data structure of the Get Link Status command parameters, such as link up/down,
negotiated/operating speed, fault conditions, and so on.

Table 3-39. Get Link Status Command Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0607 Command opcode.

Datalen 4-5 Length of the data buffer in bytes.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Reserved 17 Reserved Must be 0x0. Value is ignored.

Command Flags 18-19 Command Flags Bit 18.0: LSE Enable
Enable link status event notification to software.
Firmware sets this bit to 1b to indicate that LSE is enabled, or sets to 0b if
LSE is disabled. See Section 3.2.4.1.6 for further details on LSE and
enabling/disabling LSE events.

All other bits = Reserved. Must be 0, value is ignored.

Reserved 20-23 Reserved Must be 0x0. Value is ignored.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

613875-009 137

Intel® Ethernet Controller E810 Datasheet
Interconnects

Table 3-40. Get Link Status Command Response Data Structure

Name Bytes.Bits Value Remarks

Topology/Media
Conflicts

0 Topology and media conflict reporting.
Bit 0.0: Unresolved topology conflict detected.

The mezzanine card topology does not match with the main board
topology or multiple port options available, but the automatic conflict
resolution bit is turned off.

Bit 0.1: Unresolved media conflict detects.
The detected media does not match with the available topology options
or media supports multiple port options, but the automatic conflict
resolution bit is turned off.

Bit 0.2: LOM Topology netlist corrupted.
The LOM topology netlist is corrupted and cannot be read from the NVM.

Bit 0.3: Reserved.
Bit 0.4: Topology netlist load detected Unreachable port.
Bit 0.5: Topology netlist load detected Underutilized port.
Bit 0.6: Topology netlist load detected Underutilized media.
Bit 0.7: Unsupported Media detected.

Link Configuration
Error

1 Bit 1.0: Link Configuration Error.
Link Configuration Error was detected during attempt to bring the link
up.

Bit 1.1: Reserved
Bit 1.2: Invalid Active Port Option

This bit indicates that the active port option was pointing to invalid port
option. This indication should appear until the user explicitly selects by
calling Set Port Option the active port option.

Bit 1.3: Invalid Feature ID or Configuration ID
This bit indicates that the port option in the netlist was pointing to
Adaptive NVM feature ID or configuration ID that the does exist in the
current Adaptive NVM table. This indication should appear until the user
explicitly selects by calling Set Port Option a different active port option,
or a new netlist or NVM image are loaded and the problem is solved.

Bit 1.4: Topology netlist lacks critical SDP or critical SDP is not configured
properly

This bit is set when TEMP_WARN_N SDP or TEMP_CRIT_N SDP or
FAN_ON_AUX does not exist in the netlist or not configured properly and
marked in NVM as must exist.

Bit 1.5: Module power unsupported
Returns 1b if module required power is higher than the limit in the
netlist. Returns 0b otherwise.

Bit 1.6: FW load not completed
FW Download Enable requested within the topology netlist for a PHY in
the PHY chain of the port but could not be completed. Several issues can
cause this error, for example:
1. There is no loadable image in the NVM for the PHY P/N.
2. The PHY was not responding to the load commands, etc.
Note: This bit is set for all PFs that are controlling ports that are

attached to the PHY.
This bit is set/cleared on every attempt to load the PHY.

Bit 1.7: Invalid node max power limit
Returns 1b if a Node max power limit was overridden by FW to NVM
value or if sum of nodes is higher than board power limit. Returns 0b
otherwise.

All other bits = Reserved.

Link Status 2.0 Function Link
Status

Bit 2.0: Function Link Status
Returns 1b if link status = up, or returns 0b if the link status = down.
This parameter indicates if the Link is up and ready for data
communication.

Intel® Ethernet Controller E810 Datasheet
Interconnects

138 613875-009

Link Fault 2.1:2.4 Link Fault Bit 2.1:
Returns 1b if PHY has detected a link fault condition. The fault could be
anywhere in the PHY layer and either on transmit or receive local or
remote fault.

The following bits provide additional information about a link fault
condition:
Bit 2.2:

Returns 1b if a transmit link fault condition is detected, 0b otherwise.
Bit 2.3:

Returns 1b if a receive link fault condition is detected, 0b otherwise.
Bit 2.4:

Returns 1b if a remote fault condition detected, 0b otherwise.

External Port Link
Status

2.5 Port's Link Status Bit 2.5: Port Link Status
Returns 1b if link status = up, or returns 0b if the link status = down.

Media Available 2.6 Media Available Bit 2.6: Media Available
Returns 1b if media is available for normal link communication, or
returns 0b otherwise.

This parameter is used by the device driver to find out if the media is
available on the port. When connected to an external module, this
command returns if the media is plugged in and is available for normal
communication.
Note: This field is not relevant when connecting to an external BASE-T

PHY or when connecting to a backplane.

Signal Detect 2.7 Signal Detect Bit 2.7: Signal Detect
Returns 1b if a receive signal is detected by the PHY or module, or
returns 0b otherwise.

In the case of external PHYs, for example, this maps to the global signal
detect function in the PHY and in some of the PHYs this maps to energy
detect function on the link. In the case of external modules, this maps to
the inverse of loss of signal function.

AN Completed 3.0 An Completed Bit 3.0: Auto-Negotiation Completed
Returns 1b if auto-negotiation completed successfully, or returns 0b
otherwise.

This bit is valid only if the currently configured PHY type supports
auto-negotiation and auto-negotiation is enabled.

LP AN Ability 3.1 LP AN Ability Bit 3.1: Link Partner Auto-Negotiation Ability
Returns 1b if the link partner is able to perform auto-negotiation, or
returns 0b otherwise.

This bit is valid only if the PHY supports auto-negotiation and
auto-negotiation is enabled.

Parallel Detection
Fault

3.2 Parallel Detection
Fault

Bit 3.2: Parallel Detection Fault
Returns 1b if the PHY detects parallel detection fault, or returns 0b
otherwise.

This bit is valid only if the PHY supports auto-negotiation with parallel
detection enabled.

FEC Enabled 3.3 FEC Enabled Bit 3.3: FEC Enabled
Returns 1b if FEC is enabled on the link, or returns 0b otherwise.

For PHY types that supports auto-negotiation, FEC might be enabled on
the link during auto-negotiation.

Low Power State 3.4 Low Power State Bit 3.4: Power Mode
Returns the Low power configuration as set by the Set PHY Config
(0x0601) command

0b = High Power Mode
1b = Low Power Mode

Table 3-40. Get Link Status Command Response Data Structure [continued]

Name Bytes.Bits Value Remarks

613875-009 139

Intel® Ethernet Controller E810 Datasheet
Interconnects

Link Pause Status 3.5:3.6 Link Pause Status Bit 3.5:
Returns 1b if Tx link pause is enabled on the link during
auto-negotiation, or returns 0b otherwise.

Bit 3.6:
Returns 1b if Rx link pause is enabled on the link during
auto-negotiation, or returns 0b otherwise.

Link Pause status is reported when the current PHY type supports
auto-negotiation.
Link pause should be disabled if PFC is enabled on the link. Simultaneous
operation of link pause and PFC is not supported.

Qualified Module 3.7 Qualified Module Bit 3.7: Qualified Module
When the E810 is connected to an external SFP+/QSFP+ module and
module qualification is required, this field indicates if the module is a
qualified module whose OUI matches one of the pre-defined qualified
modules.

0b = Module was not found in pre-configured list of qualified modules.
1b = Module is qualified.

PHY Temp Alarm 4.0 PHY Temp Alarm Bit 4.0: PHT Temp Alarm
Returns 1b if a temperature alarm condition is reported by the PHY, or
returns 0b otherwise.

Typically, an external PHY generates a temperature alarm condition by
signaling a PHY interrupt to firmware. The temperature alarm feature
should be enabled in the PHY to generate this condition.

Excessive Link
Errors

4.1 Excessive Link
Errors

Bit 4.1: Excessive Link Errors
Returns 1b if an excessive errors over the link condition is reported by
the outermost PHY, or returns 0b otherwise

Port Tx Suspended 4.2-4.3 Port Tx
Suspended

Bits 4.2-4.3: Port Tx Suspended
00b = Port's Tx active.
01b = Port's Tx suspended and drained.
10b = Reserved.
11b = Port's Tx suspended and drained. Blocked TC pipe flushed.

Reserved 4.4-4.7 Reserved Reserved.

Loopback Enabled
Status

5 Loopback
Enabled Status

Bit 5.0: PHY local loopback enabled.
Bit 5.1: PHY remote loopback enabled.
Bit 5.2: MAC local loopback enabled.
Bit 5.3-5.5: The PHY index of the PHY that is reported to perform
loopback.
All other bits = Reserved.
This command reports the first PHY in the chain that perform loopback,
starting at the outermost.

Max Frame Size 6-7 Max Frame Size Maximum frame size set on this port.

KR FEC Enabled 8.0 KR FEC Enabled Bit 8.0: KR FEC Enabled
Returns 1 if KR-FEC was negotiated on the link, or returns 0 otherwise.

This field is reported when the current PHY type supports
auto-negotiation.

RS 528 FEC Enabled 8.1 RS 528 FEC
Enabled

Bit 8.1: RS 528 FEC Enabled
Returns 1 if RS-FEC 528 was negotiated on the link, or returns 0
otherwise.

This field is reported when the current PHY type supports
auto-negotiation.

RS 544 FEC Enabled 8.2 RS 544 FEC
Enabled

Bit 8.2: RS 544 FEC Enabled
Returns1 if RS-FEC 544 was negotiated on the link, or returns 0
otherwise.

This field is reported when the current PHY type supports
auto-negotiation.

Table 3-40. Get Link Status Command Response Data Structure [continued]

Name Bytes.Bits Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

140 613875-009

Pacing Config 8.3-8.7 Pacing Config Bits 8.3-8.6:
This is 4-bit field that enables configuring an average rate pace
parameter or fixed IPG pace parameter in the MAC to slow down the
effective data rate as listed in Table 3-18.

Bit 8.7:
Specifies if the pacing is average rate or fixed IPG.

External Device
Power Class Ability

9.0-9.1 External Device
Power Class

Bits 9.0-9.1: External Device Power Class Ability
SFP/QSFP:

This field contains the supported power ability of the connected
module, as follows (bits order [1:0]):

00b = Power Class 1 Module (Low Power)
01b = Power Class 2 Module (High Power)
10b = Power Class 3 Module (High Power)
11b = Power Class 4+ Module (High Power)

Note: If QSFP Power Ability is High Power but <Low Power State> is
Low Power then link is disabled.

BASE-T (bit 9.0):
0b = Low and high power.
1b = High power only.

External Device
Power Ability

9.2-9.7 External Device
Power Ability

Power requirement of the module in resolution of 0.5 W (rounded up).

Current Link Speed 10-11 Link Speed Returns operating link speed of the port. The PHY might be capable of
many speeds but only one speed is enabled as result of configuration or
auto-negotiation.
This parameter is an 16-bit field, each bit corresponds to a link speed as
follows. Only one bit is set at any given time.

Bit 10.0: 10 Mb/s
Bit 10.1: 100 Mb/s
Bit 10.2: 1000 Mb/s
Bit 10.4: 5 Gb/s
Bit 10.5: 10 Gb/s
Bit 10.6: 20 Gb/s
Bit 10.7: 25 Gb/s
Bit 11.1: 50 Gb/s
Bit 11.2: 100 Gb/s
Bit 11.3: 200 Gb/s
All other bits = Reserved, must be zero.

This parameter is used by the device driver to find out the operating Link
speed on the port. The link might be enabled at one of the link speeds due
to the result of auto-negotiation/parallel detection or manually configured
by firmware or software when auto-negotiation is disabled.
Depending on the device MAC capabilities, some bits might not be set
regardless of the PHY because the MAC does not support those speeds.

Reserved 12-15 Reserved Must b 0x0.

Current PHY type 16-31 PHY Type This field will have a single bit set to indicate the PHY type per the link’s
mode of operation. The firmware should report back only the current PHY
types and speed, based on topology option or the latest result of the
auto-negotiation.
The bytes’ encoding is identical to PHY type (PHY capabilities) found in
Section 3.3.3.2.1.
Additionally, this field can set bit 127 in the structure to indicate that the
link state is disabled, or bit 126 in the structure to indicate that PHY is in
the auto-negotiation state.

Table 3-40. Get Link Status Command Response Data Structure [continued]

Name Bytes.Bits Value Remarks

613875-009 141

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.4.1.6 Link Status Event (0x0607)

The Link Status Event (LSE) is generated by firmware to the device driver when there is a change in
status in any of the event causing conditions. Event causing conditions listed in Table 3-41 can be
individually masked from generating LSE by using the Set Event Mask (0x0613) command. The LSE
share the same opcode, command structure and link status response data structure listed in Table 3-39
and Table 3-40. Firmware posts this data structure to the admin receive queue.

The LSE is disabled by default, unless explicitly enabled by software. Software enables an LSE by
setting the LSE Enable bit when issuing Get Link Status (0x0607) command (see Table 3-38). Firmware
disables the LSE immediately after generating an LSE and does not queue further events until LSE is
explicitly enabled by software by the Get Link Status command. Firmware also indicates the LSE
enabled status through the LSE Enable bit in the Get Link Status command response data structure
(see Table 3-39).

The LSE is only generated by firmware to respective PF drivers, and it is software’s responsibility to
communicate relevant link status change events to the VF through appropriate PF-to-VF communication
mechanisms. Software is not expected to use any hardware link status interrupt mechanisms.
Hardware link status change interrupts are provided only for diagnostic use. Hence, hardware link
status interrupts to PFs and VFs should be disabled for normal operation. Software should use the AQ
mechanism to get the link status change notifications using the Get Link Status command and LSE.

Table 3-41. Reported Link Events

Event Description

Link Change Link state change. For example, the link state changes from link up to link down.

Media Not Available Event is reported when an external module is pulled out of its cage.

Link Fault

PHY Temperature Alarm Event is generated when an external PHY or module generates a temperature alarm interrupt.

Excessive Errors

Signal Detect Condition

Auto-Negotiation Completed

Module Qualification Failure When working with external modules, firmware might be enabled to perform a validation process
where the module ID parameters are compared with a per-configured, NVM loaded, list of
qualified modules. If, qualification check is enabled and connected module is not found in the list,
then firmware terminates the link initialization process and then generates this event.

Port Tx Suspend Indicates that the port‘s Tx data path is temporarily suspended for configuration purposes.

Topology Conflict Indicates a conflict in the topology netlist, when the port options of the mezzanine card do not
match any available port option of the innermost PHY.

Media Conflict Indicate a conflict in the media options, when the available options that are supported by the
media do not intersect with the port options of the innermost to the outermost PHYs.

Intel® Ethernet Controller E810 Datasheet
Interconnects

142 613875-009

3.2.4.1.7 Set Event Mask (0x0613)

This command is used by the device driver to mask the event causing conditions of the link status event
from firmware. The link status event is generated by firmware to the PF as described in
Section 3.2.4.1.6. This is a Direct command.

Table 3-42. Set Event Mask Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0613 Command opcode.

Datalen 4-5 0x0 Must be 0x0. Value is ignored.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Reserved 17-23 Reserved Value 0x0.

Event Mask 24-25 Event Mask Masks the cause of LSE. The bit mask might be used to mask one or more
event causing conditions. Set bit(s) to 1b to mask an event from causing LSE
or set to 0b otherwise. The bits are cleared by default.

Bit 24.0: Reserved.
Bit 24.1: Mask link up/down condition.
Bit 24.2: Mask media not available or module not present condition.
Bit 24.3: Mask link fault condition.
Bit 24.4: Mask PHY temperature alarm condition.
Bit 24.5: Mask excessive errors over the link condition.
Bit 24.6: Mask signal detect (asserted or de-asserted) condition.
Bit 24.7: Mask auto-negotiation completed condition.
Bit 25.0: Mask module qualification failure condition.
Bit 25.1: Mask port Tx suspend.
Bit 25.2: Mask Topology conflict.
Bit 25.3: Mask media conflict.
Bit 25.4: PHY FW load failed.
All other bits = Reserved, Must be zero.

Reserved 26-31 Reserved Must be 0x0. Value is ignored.

613875-009 143

Intel® Ethernet Controller E810 Datasheet
Interconnects

The following structure describes the response by firmware to the Set Event Mask command.

Note: When the user chooses the load the PHY firmware, the operation is triggered to start, but the
command might return when the operation is run in the background. As long as the firmware
is loading the PHY, it should block other commands as described below. As it is a debug
command to recover the PHY, user should wait long enough for the operation to complete.

Table 3-43. Set Event Mask Command Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0613 Command opcode.

Datalen 4-5 0x0 Must be 0x0. Value is ignored.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Logical Port number. This field specifies the logical port number, and is ignored
in the E810.

Reserved 17-31 Reserved Must be 0x0. Value is ignored.

Intel® Ethernet Controller E810 Datasheet
Interconnects

144 613875-009

3.2.5 SyncE Flows

3.2.5.1 Overview

This section defines the system level SyncE clock management related flows, the assumptions they
make, their dependencies and the different firmware and software entities involved. These flows include
the configuration and monitoring of PHY recovered clock outputs, DPLLs, and their inputs and outputs.

The task of SyncE clock management is split between firmware and software. That is, the Link Manager
and the synce4l application.

• The Link Manager provides an abstraction layer for the configuration and monitoring of PHY
recovered clock outputs, DPLLs, and their inputs and outputs. It is responsible for initialization of
the SyncE related inputs, outputs, and their configuration on the relevant link events. The managed
PHY and DPLL devices, their management interfaces and clock connections as well as related
configuration information are captured within the link topology netlist as Clock Controller Unit
(CCU) nodes.

• The synce4l application is responsible for processing the Ethernet Synchronization Messaging
Channel (ESMC) traffic. It uses the received ESMC packets to trace the source of recovered clocks,
makes decisions on which ports to source recovered clock outputs from, assigns priorities for the
DPLL inputs, and generates ESMC packets to advertises the resulting clock quality on the active
ports.

The interface between the Link Manager and the synce4l application is defined in Section 3.2.6.

3.2.5.2 Resets

When power is applied it is expected that all on board DPLL devices come out of reset with a default
configuration loaded from their incorporated Flash. This configuration includes input and output buffer
types, tolerance settings, bandwidth configuration, hysteresis settings, synthesizer frequencies, and so
on. These devices are not reset by the init board activity and only the small subset of configuration is
updated by the defined Link Manager flows.

When coming out of reset it is expected that all PHY devices have their recovered clock outputs
disabled.

3.2.5.3 Initialization

During initialization all clock I/O connections need to be configured according to their corresponding
Mode configuration from the link topology netlist. The Link Manager applies the initial configuration in
the following order: first the PHY recovered clock outputs, second the DPLL clock reference inputs and
last the DPLL clock outputs.

Note: DPLL configuration in Netlist is informative only and reflect the DPLL power-on settings.
Actual DPLL default configuration is taken from NVM PFA TLV 0x152.

Figure 3-15 illustrates the initialization loops implemented within the Link Manager.

613875-009 145

Intel® Ethernet Controller E810 Datasheet
Interconnects

Note: This initial configuration is carried out within the init board activity. However, the
configuration of PHY recovered clock outputs is also triggered after every reset of the PHY
(either part of the init flow, PHY FW load, or reset initiated via the Set PHY Debug command).

3.2.5.4 Configuration Flow

Once initialization is complete, the Link Manager attempts link on the relevant ports as configured by
the link topology netlist. For each link that has been established, synce4l determines the quality of the
clock they are traceable to, makes a decision on which of the ports to source recovered clocks from,
and configures it via the SyncE commands. This information is then used by the Link Manager to
configure the muxes and dividers in the path of the recovered clocks as well as the connected DPLL
inputs.

Based on the quality of the clocks the ports are traceable to, synce4l also makes decisions on the
priority of the DPLL inputs, and configures the DPLL to automatically switch between these sources
(these may include recovered clocks as well as external or on-board GPS clocks) or instructs it to enter
holdover or freerun on the high-precision local oscillator. The application monitors the status of the
ports as well as the DPLL and this configuration is updated on every detected change in link status or
clock quality. However, the change from one clock source to another is intended to happen
automatically as the DPLL qualifies or disqualifies the configured inputs.

3.2.5.4.1 Link Status Changes

When link status changes the configuration of associated reference clock outputs and the configuration
of the reference clock inputs driven by them needs to be automatically updated. This update flow is
triggered by a link status change detected based on get link status output regardless of the condition
resulting in the link status change.

When a link up event is detected, if there is a recovered clock output associated with the port, the
output is enabled (only in “Auto” mode) and its divider is updated with the divider value stored in the
netlist corresponding to the current baud rate. If there are any I/O connections captured in the netlist
for this clock output, the connected clock input is enabled (only in “Auto” mode) and its expected
frequency is set based on the current baud rate and configured output divider value.

When a link down event is detected, any associated recovered clock outputs (only in “Auto” mode) and
potentially connected clock inputs (only in “Auto” mode) are disabled.

If an input or output is not configured as “Auto” mode in Netlist, then no enabling or disabling is done to
that input or output based on link status.

Figure 3-16 illustrates the configuration applied in the event of link status changes.

Figure 3-15. SyncE Initialization

Intel® Ethernet Controller E810 Datasheet
Interconnects

146 613875-009

3.2.5.4.2 Reference Input Changes

The DPLL, for several reasons, might switch to a different reference input, or the frequency on the
current active reference input might change. In such cases, the DPLL parameters might need to be
re-configured.

The firmware detects the change of the validity of all reference clocks and their frequencies. If the
validity has changed, it means DPLLs will start (or have already started) switching to another reference
clock. Firmware checks if the current parameters are valid for the highest priority valid reference and its
frequency (this is the reference clock the DPLLs try to lock on, already acquiring or already locked on).

If the parameters are not valid for the highest priority valid reference (and its frequency), firmware
re-configures the DPLL to the correct parameters for the new reference frequency. If the parameters
are valid for the highest priority valid reference and its frequency, firmware does nothing in this
iteration of the polling loop.

Note: The input frequency might change without changing the reference clock when the port speed
changes. In such case, there is no change in the reference clock (still the same clock) but the
frequency changes, and the DPLL tries to lock to this new frequency. The parameters must be
updated for this new frequency.

Figure 3-16. SyncE Link Status Changes

613875-009 147

Intel® Ethernet Controller E810 Datasheet
Interconnects

Note: There are two scenarios when the DPLL changes the reference clock:

1. The clock that the DPLL has been locked on is invalid

2. The higher priority clock became valid. For that reason, firmware needs to monitor all
reference clocks (not only the clock the DPLL is/has been locked to).

Note: Different clocks might have the same frequency but different parameters. This is related to
the type of the clock. Therefore, the parameters are mapped to both frequency and the input
index. The input index identifies the clock.

The flow chart in Figure 3-17 depicts the procedure. The procedure executes every 500 ms. Firmware
starts by checking enable flag and continues only if it is set.

Figure 3-17. SyncE Reference Input Changes

Polling every
500ms

Enable flag?

Get the highest priority valid
reference input index

End

Yes

Read the DPLL configured
parameters

Parameters match?

Set correct DPLL parameters

No

Yes

No

Intel® Ethernet Controller E810 Datasheet
Interconnects

148 613875-009

3.2.6 SyncE Commands

3.2.6.1 Overview

The E810’s Link Manager supports the following commands for configuring and managing the SyncE
clocks associated with the PHY and Clock Controller (DPLL/Synthesizer/Divider) nodes within the link
topology netlist. They provide control and status of available clock inputs, recovered clocks, associated
cleanup PLLs and clock outputs.

The Link Manager provides SyncE clock configuration and status services to the software driver through
these commands exposed as AQ Commands.

3.2.6.1.1 SyncE Commands Summary

Table 3-44 summarizes the clock configuration commands. These commands can be used by software
for SyncE clock configuration and maintenance purposes. Typically these commands are used for
normal configuration operations.

Note: All reserved fields within the command arguments must be 0.

Table 3-44. SyncE Commands

Command Opcode Description Section Reference

Set PHY Recovered Clock
Configuration

0x0630 Applies new configuration for the specified recovered clock
output.

Section 3.2.6.2

Get PHY Recovered Clock
Configuration

0x0631 Returns the current configuration of the specified recovered
clock output.

Section 3.2.6.3

Get CCU Capabilities 0x0C61 Retrieves the clock configuration capabilities. Section 3.2.6.4

Set CCU Input Configuration 0x0C62 Applies new configuration for the specified clock input. Section 3.2.6.5

Get CCU Input Configuration 0x0C63 Returns the current configuration of the specified clock input. Section 3.2.6.6

Set CCU Output Configuration 0x0C64 Applies new configuration for the specified clock output. Section 3.2.6.7

Get CCU Output Configuration 0x0C65 Returns the current configuration of the specified clock
output.

Section 3.2.6.8

Get CCU DPLL Status 0x0C66 Returns the current status and configuration of the specified
DPLL.

Section 3.2.6.9

Set CCU DPLL Configuration 0x0C67 Applies new configuration for the specified DPLL. Section 3.2.6.10

Set CCU Reference Priority 0x0C68 Applies new priority configuration for the specified clock
input.

Section 3.2.6.11

Get CCU Reference Priority 0x0C69 Returns the current priority configuration of the specified
clock output.

Section 3.2.6.12

Get CCU Info 0x0C6A Retrieves stepping and firmware versions from the clock
controller node.

Section 3.2.6.13

Get Input Frequency List 0x0C6C Reads the list of allowed input frequencies on a specified
input.

Section 3.2.6.14

Get Output Frequency List 0x0C6D Reads the list of allowed output frequencies on a specified
output.

Section 3.2.6.15

613875-009 149

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.2 Set PHY Recovered Clock Configuration (0x0630)

This command maps PHY lanes (PHY Port numbers) to the recovered clocks (PHY output).

3.2.6.2.1 Set PHY Recovered Clock Configuration Command

Table 3-45 details the input arguments of the Set PHY Recovered Clock Configuration command.

Table 3-45. Set PHY Recovered Clock Configuration Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0630 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

PHY Output Index 16 PHY reference clock output pin index.

PHY Port Number 17 The number of the PHY port associate with the specified output.
Note: A value of 0xFF associates the output with the recovered clock of

the PHY port that is assigned to the PF initiating the command.

Reserved 18.[7:1] 0 Reserved. Must be 0x0.

Output Enable 18.[0] 0b = Disable the recovered clock output.
1b = Enable the recovered clock output.

Reserved 19:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] The configuration is applied to the outermost PHY node (i.e. PHY[0]) in the
PHY chain of the port associated with the PF the command is issued from.
The netlist needs to capture two nodes for the outermost PHY device: one
with Node Type of PHY and one with Node Type of CCU and a valid Node
Parent section pointing to the corresponding former PHY node. The
command uses the Node Handle of the latter, the node with Node Type of
CCU.

0b = The configuration will be applied to the PHY node identified by the
Node Handle input. Use Node Handle of CCU identified by Index=0 in
link topology netlist.

1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the PHY node.

Intel® Ethernet Controller E810 Datasheet
Interconnects

150 613875-009

3.2.6.2.2 Set PHY Recovered Clock Configuration Command Response

Table 3-46 details the output arguments of the Set PHY Recovered Clock Configuration command.

3.2.6.2.3 Set PHY Recovered Clock Configuration Command Errors

The following errors can be returned by the Set PHY Recovered Clock Configuration command:

Table 3-46. Set PHY Recovered Clock Configuration Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0630 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

PHY Output Index 16 PHY reference clock output pin index.

PHY Port Number 17 The number of the PHY port associate with the specified output.

Reserved 18.[7:1] 0 Reserved. Must be 0x0.

Output Enable 18.[0] 0b = The recovered clock output is disabled.
1b = The recovered clock output is enabled.

Reserved 19:31 0 Reserved. Must be 0x0.

Table 3-47. Set PHY Recovered Clock Configuration Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters. This error is reported when the parameter is either out of a valid range or it
cannot be set in the PHY.

613875-009 151

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.3 Get PHY Recovered Clock Configuration (0x0631)

This command reads the mapping of the PHY lanes to the recovered clocks.

3.2.6.3.1 Get PHY Recovered Clock Configuration Command

Table 3-48 details the input arguments of the Get PHY Recovered Clock Configuration command.

Table 3-48. Get PHY Recovered Clock Configuration Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0631 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

PHY Output 16 PHY reference clock output pin.

Reserved 17:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] The configuration is applied to the outermost PHY node (i.e. PHY[0]) in the
PHY chain of the port associated with the PF the command is issued from.
The netlist needs to capture two nodes for the outermost PHY device: one
with Node Type of PHY and one with Node Type of CCU and a valid Node
Parent section pointing to the corresponding former PHY node. The
command uses the Node Handle of the latter, the node with Node Type of the
CCU.
The configuration is retrieved from the PHY node identified by the Node
Handle input.

0b = The configuration will be applied to the PHY node identified by the
Node Handle input. Use Node Handle of CCU identified by Index=0 in
link topology netlist.

1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the PHY node.

Intel® Ethernet Controller E810 Datasheet
Interconnects

152 613875-009

3.2.6.3.2 Get PHY Recovered Clock Configuration Command Response

Table 3-49 details the output arguments of the Get PHY Recovered Clock Configuration command.

3.2.6.3.3 Get PHY Recovered Clock Configuration Command Errors

The following errors can be returned by the Get PHY Recovered Clock Configuration command:

Table 3-49. Get PHY Recovered Clock Configuration Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0631 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

PHY Output 16 PHY reference clock output pin.

PHY Port Number 17 The number of the PHY port (PHY lane) associate with the specified output.

Reserved 18.[7:1] 0 Reserved. Must be 0x0.

Output Enable 18.[0] 0b = The recovered clock output is disabled.
1b = The recovered clock output is enabled.

Reserved 19:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = Use Node Handle of CCU identified by Index=0 in link topology netlist.
1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the PHY node.

Table 3-50. Get PHY Recovered Clock Configuration Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters.

613875-009 153

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.4 Get CCU Capabilities (0x0C61)

This command reads the capabilities of the CCU. If the value is not defined or cannot be evaluated, the
value returned is 0xFF for 8-bit fields and 0xFFFF FFFF for 32-bit fields.

3.2.6.4.1 Get CCU Capabilities Command

Table 3-51 details the input arguments of the Get CCU Capabilities command.

3.2.6.4.2 Get CCU Capabilities Command Response

Table 3-52 details the output arguments of the Get CCU Capabilities command.

Table 3-51. Get CCU Capabilities Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.2.1 for details.

Opcode 2:3 0x0C61 Command opcode.

Datalen 4:5 0x0018 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Reserved 16:23 0 Reserved. Must be 0x0.

Data Address High 24:27 Address of response buffer.

Data Address Low 28:31 Address of response buffer.

Table 3-52. Get CCU Capabilities Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.2.2 for details.

Opcode 2:3 0x0C61 Command opcode.

Datalen 4:5 0x0018 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Reserved 16:23 0 Reserved. Must be 0x0.

Data Address High 24:27 Address of data buffer.

Data Address Low 28:31 Address of data buffer.

Intel® Ethernet Controller E810 Datasheet
Interconnects

154 613875-009

3.2.6.4.3 Get CCU Capabilities Command Errors

The following errors can be returned by the Get CCU Capabilities command:

Table 3-53. Get CCU Capabilities Command Response Data Structure

Name Byte.[Bits] Value Remarks

Number of CCU Inputs 0 Number of CCU inputs in use.

Number of CCU Outputs 1 Number of CCU outputs in use.

PPS DPLL Index 2 Index of DPLL block of CCU that generates 1 Hz frequency to specific
output.
This index is used in the following commands to select a relevant DPLL
block in the CCU chip.

SyncE DPLL Index 3 Index of DPLL block of CCU that generates 156.25 MHz frequency to
specific output.
This index is used in the following commands to select a relevant DPLL
block in the CCU chip.

Maximum Input
Frequency

4:7 Maximum input frequency supported.

Maximum Input Phase
Adjustment

8:11 Maximum input phase adjustment in ps.

Maximum Output
Frequency

12:15 Maximum output frequency supported.

Maximum Output Phase
Adjustment

16:19 Maximum output phase adjustment in ps.

Node Part Number of CCU 20 Part Number stored in link topology netlist.

Reserved 21:23 0 Reserved. Must be 0x0.

Table 3-54. Get CCU Capabilities Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters (for example, buffer too small).

613875-009 155

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.5 Set CCU Input Configuration (0x0C62)

This command configures the specified reference clock input of a given CCU (DPLL) node. If the setting/
capability is not supported in hardware or the value of the parameter is invalid (i.e., cannot be set in
hardware), then return EINVAL (see errors in Table 3-57).

3.2.6.5.1 Set CCU Input Configuration Command

Table 3-55 details the input arguments of the Set CCU Input Configuration command.

Table 3-55. Set CCU Input Configuration Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C62 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Input Index 16 The index of the DPLL reference clock input to be configured.

Update Phase Delay 17.[7] 0b = The Phase Delay field is ignored and the input’s current phase delay
configuration is kept.

1b = The Phase Delay field is valid.

Update Frequency 17.[6] 0b = The Frequency field is ignored and the input’s current frequency
configuration is kept.

1b = The Frequency field is valid.

Reserved 17.[5:0] 0 Reserved. Must be 0x0.

Reserved 18.[7] 0 Reserved. Must be 0b.

ESync Enable 18.[6] 0b = Disable embedded sync.
1b = Enable embedded sync.

Input Enable 18.[5] 0b = Disable the clock input.
1b = Enable the clock input.

Reserved 18.[4:0] 0 Reserved. Must be 0x0.

Reserved 19 0 Reserved. Must be 0x0.

Frequency 20:23 Input frequency in Hz.
If the Any Frequency field of 0x0C63 response is 0, this field accepts values
that are present in the input frequency list.
If the Any Frequency field of 0x0C63 response is 1, this field accepts any
frequency that Firmware/DPLL supports.
Note: Firmware and DPLL can support only discrete values for frequency

and Any Frequency field is 1. When this AQC is called with
unsupported frequency, EINVAL is returned.

Phase Delay 24:27 The phase delay to be configured represented as a signed value with 1 ps
resolution.

Reserved 28:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = Use Node Handle of CCU identified by Index=0 in link topology netlist.
1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the CCU node.

Intel® Ethernet Controller E810 Datasheet
Interconnects

156 613875-009

3.2.6.5.2 Set CCU Input Configuration Command Response

Table 3-56 details the output arguments of the Set CCU Input Configuration command.

3.2.6.5.3 Set CCU Input Configuration Command Errors

The following errors can be returned by the Set CCU Input Configuration command:

Table 3-56. Set CCU Input Configuration Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C62 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Input Index 16 Input index as set in the request.

Reserved 17:31 0 Reserved. Must be 0x0.

Table 3-57. Set CCU Input Configuration Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist or when attempting to change the
configuration of RO pins.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters. This error is reported when the parameter is either out of a valid range or it
cannot be set in the DPLL.

613875-009 157

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.6 Get CCU Input Configuration (0x0C63)

This command reads the current configuration of the specified reference clock input of a given CCU
(DPLL) node.

3.2.6.6.1 Get CCU Input Configuration Command

Table 3-58 details the input arguments of the Get CCU Input Configuration command.

3.2.6.6.2 Get CCU Input Configuration Command Response

Table 3-59 details the output arguments of the Get CCU Input Configuration command.

Table 3-58. Get CCU Input Configuration Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C63 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Input Index 16 The index of the DPLL reference clock input.

Reserved 17:29 0 Reserved. Must be 0x0.

Reserved 18.[7] 0 Reserved. Must be 0b.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = Use Node Handle of CCU identified by Index=0 in link topology netlist.
1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the CCU node.

Table 3-59. Get CCU Input Configuration Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C63 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Input Index 16 Input index as set in the request.

ESync Capable 17.[7] Indicates whether the input can accept a 1PPS sync signal embedded in the
clock signal.

0b = Input cannot receive embedded sync signal.
1b = Input can receive embedded sync signal (1PPS embedded in 10 MHz).

ESync Fail 17.[6] Embedded sync error.
0b = No embedded sync errors detected.
1b = Embedded sync error detected.

Intel® Ethernet Controller E810 Datasheet
Interconnects

158 613875-009

Reserved 17.[5] 0 Reserved. Must be 0b.

PFM Fail 17.[4] Precise Frequency Monitor failure.
0b = No Precise Frequency Monitor failure detected.
1b = Precise Frequency Monitor failure detected.

GST Fail 17.[3] Guard Soak Timer error.
0b = No Guard Soak Timer failure detected.
1b = Guard Soak Timer failure detected.

CFM Fail 17.[2] Coarse Frequency Monitor error.
0b = No Coarse Frequency Monitor failure detected.
1b = Coarse Frequency Monitor failure detected.

SCM Fail 17.[1] Single Cycle Monitor error.
0b = No single cycle monitor failure detected.
1b = The Single cycle monitor failed.

LOS 17.[0] Loss of Signal
0b = No loss of signal detected.
1b = Loss of signal detected.

Reserved 18.[7] 0 Reserved. Must be 0b.

Recovered Clock 18.[6] 0b = Input does not originate from PHY recovered clock.
1b = Input originates from PHY recovered clock.

External Clock 18.[5] 0b = Input does not originate from External input.
1b = Input originates from External input.

GPS Clock 18.[4] 0b = Input does not originate from internal GPS.
1b = Input originates from internal GPS.

Reserved 18.[3:1] 0 Reserved. Must be 000b

Configurable 18.[0] 0b = This input is read only (input configuration comes from link topology
netlist).

1b = Configuration of input is possible.

Any Frequency 19.[7] 0b = Only values that are in the input frequency list are allowed in the
Frequency field in 0x0C62 AQC.

1b = Any frequency is allowed in the Frequency field in 0x0C62 AQC.

Reserved 19.[6:4] 0 Reserved. Must be 000b.

10MHz Support 19.[3] 0b = The input cannot accept a 10 MHz clock.
1b = The input can accept a 10 MHz clock.

1PPS Support 19.[2] 0b = 1PPS input is not supported.
1b = 1PPS input is supported.

Reserved 19.[1] 0 Reserved. Must be 0b.

Input Phase Delay
Support

19.[0] 0b = Input phase delay adjustment is not supported.
1b = Input phase delay adjustment is supported.

Frequency 20:23 Configured Input Frequency in Hz.

Phase Delay 24:27 The phase delay to be configured represented as a signed value with 1 ps
resolution.

Reserved 28.[7] 0 Reserved. Must be 0b.

ESync Enable 28.[6] 0b = Embedded sync signal is disabled.
1b = Embedded sync signal is enabled.

Input Enable 28.[5] 0b = Clock input is disabled.
1b = Clock input is enabled.

Table 3-59. Get CCU Input Configuration Command Response [continued]

Name Byte.[Bits] Value Remarks

613875-009 159

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.6.3 Get CCU Input Configuration Command Errors

The following errors can be returned by the Get CCU Input Configuration command:

Reserved 28.[4:0] 0 Reserved. Must be 0x0.

Reserved 29 0 Reserved. Must be 0x0.

Driving Clock Number 30:31.[15:10] The number of the connected clock output on the device pointed to by
Driving Node Handle.

Driving Node Handle 30:31.[9:0] Unique identifier of the node in the topology which the I/O is connected to.

Table 3-60. Get CCU Input Configuration Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EAGAIN 8 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters (for example, buffer too small).

Table 3-59. Get CCU Input Configuration Command Response [continued]

Name Byte.[Bits] Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

160 613875-009

3.2.6.7 Set CCU Output Configuration (0x0C64)

This command configures the output frequency, phase compensation, and embedded sync configuration
of the specified clock output of a given CCU (DPLL) node. If the setting/capability is not supported in
hardware or the value of the parameter is invalid (i.e., cannot be set in hardware), then return EINVAL
(see errors in Table 3-63).

The following frequencies can be set for the ZL80032 DPLL on OUT0P, OUT0N, OUT1P, and OUT1N:
1PPS, 10 MHz, 25 Hz, 25 MHz and 100 MHz.

3.2.6.7.1 Set CCU Output Configuration Command

Table 3-61 details the input arguments of the Set CCU Output Configuration command.

Table 3-61. Set CCU Output Configuration Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C64 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Output Index 16 The index of DPLL clock output.

Reserved 17.[7:5] 0 Reserved. Must be 000b.

Update SrcSel 17.[4] 0b = The SrcSel field is ignored and the current index of DPLL is kept.
1b = The SrcSel field is valid.

Update Phase Delay 17.[3] 0b = The Phase Delay field is ignored and the current phase delay
configuration of output is kept.

1b = The Phase Delay field is valid.

Update Frequency 17.[2] 0b = The Frequency field is ignored and the output’s current frequency
configuration is kept.

1b = The value of the Frequency field is used to update the
output’s frequency configuration.

ESync Enable 17.[1] 0b = Disable embedded sync.
1b = Enable embedded sync.

Output Enable 17.[0] 0b = Disable the clock output.
1b = Enable the clock output.

Reserved 18.[7:5] 0 Reserved. Must be 000b.

DPLL Index
(or SrcSel)

18.[4:0] The index of the DPLL block to be configured.

Reserved 19 0 Reserved. Must be 0x0.

Frequency 20:23 Output frequency in Hz.
If the Any Frequency field of 0x0C65 response is 0, this field accepts values
that are present in the output frequency list.
If the Any Frequency field of 0x0C65 response is 1, this field accepts any
frequency that Firmware/DPLL supports.
Note: Firmware and DPLL can support only discrete values for frequency

and Any Frequency field is 1. When this AQC is called with
unsupported frequency, EINVAL is returned.

613875-009 161

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.7.2 Set CCU Output Configuration Command Response

Table 3-62 details the output arguments of the Set CCU Output Configuration command.

3.2.6.7.3 Set CCU Output Configuration Command Errors

The following errors can be returned by the Set CCU Output Configuration command:

Phase Delay 24:27 The phase delay to be configured represented as a signed value with 1 ps
resolution.

Reserved 28:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = Use Node Handle of CCU identified by Index=0 in link topology netlist.
1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the CCU node.

Table 3-62. Set CCU Output Configuration Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C64 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Output Index 16 Output index as set in the request.

Reserved 17:31 0 Reserved. Must be 0x0.

Table 3-63. Set CCU Output Configuration Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist or when attempting to change the
configuration of RO pins.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters. This error is reported when the parameter is either out of a valid range or it
cannot be set in the DPLL

Table 3-61. Set CCU Output Configuration Command [continued]

Name Byte.[Bits] Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

162 613875-009

3.2.6.8 Get CCU Output Configuration (0x0C65)

This command reads the current frequency, phase compensation and embedded sync configuration of
the specified clock output of a given PHY or CCU (DPLL) node.

3.2.6.8.1 Get CCU Output Configuration Command

Table 3-64 details the input arguments of the Get CCU Output Configuration command.

3.2.6.8.2 Get CCU Output Configuration Command Response

Table 3-65 details the output arguments of the Get CCU Output Configuration command.

Table 3-64. Get CCU Output Configuration Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C65 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Output Index 16 The index of DPLL clock output.

Reserved 17:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = Use Node Handle of CCU identified by Index=0 in link topology netlist.
1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the CCU node.

Table 3-65. Get CCU Output Configuration Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C65 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Output Index 16 Output index.

Reserved 17.[7:3] 0 Reserved. Must be 0x0.

ESync Ability 17.[2] 0b = The output cannot generate embedded sync.
1b = The output can generate embedded sync.

ESync Enable 17.[1] 0b = Embedded sync disabled.
1b = Embedded sync enabled.

Output Enable 17.[0] 0b = Clock output disabled.
1b = Clock output enabled.

613875-009 163

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.8.3 Get CCU Output Configuration Command Errors

The following errors can be returned by the Get CCU Output Configuration command:

Mode 18.[7:5] Clock Output Mode configuration from link topology netlist.
000b = Disabled
001b = Enabled
010b = ForceEnabled
111b = SiDefault (i.e., Flash)
All other values are reserved.

Note: When the Mode is configured to ForceEnabled, all configuration
attempts are denied and result in an error.

DPLL Index
(or SrcSel)

18.[4:0] DPLL block that is selected as source for the specified clock output (Output
Index).

Reserved 19.[6:0] 0 Reserved. Must be 0x0.

Any Frequency 19.[7] 0b = Only values that are in the input frequency list are allowed in the
Frequency field in 0x0C64 AQC.

1b = Any frequency is allowed in the Frequency field in 0x0C64 AQC.

Frequency 20:23 Configured Output Frequency in Hz.

Source Frequency 24:27 The synthesizer frequency feeding the divider associated with the clock
output (Output Index) represented with a 1 Hz resolution (used to calculate
the divider).

Reserved 28:29 0 Reserved. Must be 0x0.

Driving Clock Number 30:31.[15:10] The index of the clock input on the node identified by Driven Node Handle to
which the clock output is connected.

Driving Node Handle 30:31.[9:0] The handle of the node to which the specified clock output is connected.

Table 3-66. Get CCU Output Configuration Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist or when attempting to change the
configuration of RO pins.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters. This error is reported when the parameter is either out of a valid range or it
cannot be set in the DPLL.

Table 3-65. Get CCU Output Configuration Command Response [continued]

Name Byte.[Bits] Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

164 613875-009

3.2.6.9 Get CCU DPLL Status (0x0C66)

This command configures the selected DPLL block within the selected CCU node.

3.2.6.9.1 Get CCU DPLL Status Command

Table 3-67 details the input arguments of the Get CCU DPLL Status command.

3.2.6.9.2 Get CCU DPLL Status Command Response

Table 3-68 details the output arguments of the Get CCU DPLL Status command.

Table 3-67. Get CCU DPLL Status Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C66 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

DPLL Index 16 The index of DPLL block.

Reserved 17:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = Use Node Handle of CCU identified by Index=0 in link topology netlist.
1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the CCU node.

Table 3-68. Get CCU DPLL Status Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C66 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

DPLL Index 16 The index of DPLL block.

Reserved 17.[7] 0 Reserved. Must be 0b.

REF SW ESync 17.[6] Reference Switch on ESync Fail
0b = DPLL does not switch reference on embedded sync failure.
1b = DPLL switches reference on embedded sync failure.

Fast Lock Enable 17.[5] Fast Lock Enable
0b = Fast Lock is disabled.
1b = Fast Lock is enabled.

613875-009 165

Intel® Ethernet Controller E810 Datasheet
Interconnects

REF SW PFM 17.[4] Reference Switch on Precision Frequency Monitor Fail
0b = DPLL does not switch reference on Precision Frequency Monitor

failure.
1b = DPLL switches reference on Precision Frequency Monitor failure.

REF SW GST 17.[3] Reference Switch on Guard Soak Timer Fail
0b = DPLL does not switch reference on Guard Soak Timer failure.
1b = DPLL switches reference on Guard Soak Timer failure.

REF SW CFM 17.[2] Reference Switch on Coarse Frequency Monitor Fail
0b = DPLL does not switch reference on Coarse Frequency Monitor failure.
1b = DPLL switches reference on Coarse Frequency Monitor failure

REF SW SCM 17.[1] Reference Switch on Single Cycle Monitor Fail
0b = DPLL does not switch reference of Single Cycle Monitor failure.
1b = DPLL switches reference of Single Cycle Monitor failure.

REF SW LOS 17.[0] Reference Switch on Loss of Signal
0b = DPLL does not switch reference on Loss of Signal.
1b = DPLL switches reference on Loss of Signal.

PSL Hit 18.[7] Phase Slope Limit Hit
0b = Phase has not hit the configured phase slope limit.
1b = Phase has hit the configured phase slope limit.

Reserved 18.[6] 0 Reserved. Must be 0b.

FL Hit 18.[5] Frequency Limit Hit
0b = The frequency of the selected reference is within of the allowed

pull-in/hold-in range.
1b = The frequency of the selected reference is outside of the allowed

pull-in/hold-in range.

Reserved 18.[4:3] 0 Reserved. Must be 00b.

Holdover Ready 18.[2] DPLL ready for holdover flag
0b = The DPLL is not ready for holdover.
1b = The DPLL is ready for holdover.

Holdover 18.[1] DPLL Holdover state flag
0b = The DPLL is not in holdover.
1b = The DPLL is in holdover.

Lock 18.[0] DPLL Locked state flag
0b = DPLL is not locked.
1b = DPLL is locked.

Mode 19.[7:5] DPLL Mode
000b = FreeRun mode.
001b = Forced Holdover mode.
010b = Force Reference Lock mode.
011b = Automatic mode.
100b = Numerically Controlled Oscillator mode.

All other values are reserved.

Clk Ref Sel 19.[4:0] The Index of currently selected reference clock input.

Phase Offset High 20:23 Measured Phase Error
The measured phase error relative to the currently selected reference clock
input with a 0.01 ps resolution.
Bits [31:16] - Reserved.
Bits [15:0] - Offset to the current input in ps (high part).

Phase Offset Low 24:27 Measured Phase Error
Offset to the current input in ps (low part)

Table 3-68. Get CCU DPLL Status Command Response [continued]

Name Byte.[Bits] Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

166 613875-009

3.2.6.9.3 Get CCU DPLL Status Command Errors

The following errors can be returned by the Get CCU DPLL Status command:

EEC Mode 28 Configured clock quality level.
0xA = QL-EEC2/QL-ST3
0xB = QL-EEC1/QL-SEC
0xF = QL-DUS
All other values are reserved.

Reserved 29:31 0 Reserved. Must be 0xo.

Table 3-69. Get CCU DPLL Status Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters.

Table 3-68. Get CCU DPLL Status Command Response [continued]

Name Byte.[Bits] Value Remarks

613875-009 167

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.10 Set CCU DPLL Configuration (0x0C67)

This command configures the selected DPLL block within the selected CCU node. If the setting/
capability is not supported in hardware, then return EINVAL (see errors in Table 3-72).

3.2.6.10.1 Set CCU DPLL Configuration Command

Table 3-70 details the input arguments of the Set CCU DPLL Configuration command.

Table 3-70. Set CCU DPLL Configuration Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C67 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

DPLL Index 16 The index of DPLL block.

Reserved 17.[7] 0 Reserved. Must be 0b.

REF SW ESync 17.[6] Reference Switch on embedded sync failure.
0b = The DPLL does not switch references on embedded sync failures.
1b = When configured to automatic mode, the DPLL switches references on

embedded sync failures.

Fast Lock Enable 17.[5] Enable fast lock to 1PPS signals.
Will increase loop bandwidth frequency of the DPLL to lock faster to 1PPS
signals.

0b = Fast Lock disabled.
1b = Fast Lock enabled.

REF SW PFM 17.[4] Reference Switch on Precision Frequency Monitor Fail
0b = The DPLL does not switch references on Precision Frequency Monitor

failures.
1b = When configured to automatic mode, the DPLL switches references on

Precision Frequency Monitor failures.

REF SW GST 17.[3] Reference Switch on Guard Soak Timer Fail
0b = The DPLL does not switch references on Guard Soak Timer failures.
1b = When configured to automatic mode, the DPLL switches references on

Guard Soak Timer failures.

REF SW CFM 17.[2] Reference Switch on Coarse Frequency Monitor Fail
0b = The DPLL does not switch references on Coarse Frequency Monitor

failures.
1b = When configured to automatic mode, the DPLL switches references on

Coarse Frequency Monitor failures.

REF SW SCM 17.[1] Reference Switch on Single Cycle Monitor Fail
0b = The DPLL does not switch references on Single Cycle Monitor failures.
1b = When configured to automatic mode, the DPLL switches references on

Single Cycle Monitor failures.

REF SW LOS 17.[0] Reference Switch on Loss of Signal
0b = The DPLL does not switch references on Loss of Signal detected.
1b = When configured to automatic mode, the DPLL switches references on

Loss of Signal detected.

Reserved 18 0 Reserved. Must be 0b.

Intel® Ethernet Controller E810 Datasheet
Interconnects

168 613875-009

3.2.6.10.2 Set CCU DPLL Configuration Command Response

Table 3-71 details the output arguments of the Set CCU DPLL Configuration command.

Mode 19.[7:5] DPLL Mode
000b = FreeRun mode.
001b = Forced Holdover mode.
010b = Force Reference Lock mode.
011b = Automatic mode.
100b = Numerically Controlled Oscillator mode.
All other values are reserved.

Clk Ref Sel 19.[4:0] The Index of currently selected reference clock input.
Will work only if forced reference lock mode is set.

Reserved 20:27 0 Reserved. Must be 0x0.

EEC Mode 28 Configured clock quality level to configure.
0xA = QL-EEC2/QL-ST3
0xB = QL-EEC1/QL-SEC
0xF = QL-DUS
All other values are reserved.

Reserved 19 0 Reserved. Must be 0xo.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = The configuration is applied to the first CCU node in the netlist (i.e. CCU
with index 0).

1b - The configuration is applied to the CCU node identified by the Node
Handle input.

Node Handle 30:31.[9:0] The handle of the CCU node.

Table 3-71. Set CCU DPLL Configuration Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C67 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

DPLL Index 16 The index of DPLL block.

Reserved 17:31 0 Reserved. Must be 0b.

Table 3-70. Set CCU DPLL Configuration Command [continued]

Name Byte.[Bits] Value Remarks

613875-009 169

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.10.3 Set CCU DPLL Configuration Command Errors

The following errors can be returned by the Set CCU DPLL Configuration command:

Table 3-72. Set CCU DPLL Configuration Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters. This error is reported when the parameter is either out of a valid range or it
cannot be set in the DPLL.

Intel® Ethernet Controller E810 Datasheet
Interconnects

170 613875-009

3.2.6.11 Set CCU Reference Priority (0x0C68)

This command configures the priority of the selected Input Index within a given DPLL block of CCU
node.

3.2.6.11.1 Set CCU Reference Priority Command

Table 3-73 details the input arguments of the Set CCU Reference Priority command.

Table 3-73. Set CCU Reference Priority Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C68 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

DPLL Index 16 The index of DPLL block.

Ref Index 17 The index of the reference input.

Ref Priority 18 The priority to be assigned to the reference clock input identified by Ref
Index. A value of 0 denotes the highest priority.
Note: A value of 0xFF results in removing the specified reference clock

input from the list of allowed reference clock options for the
specified DPLL block.

Reserved 19:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = Use Node Handle of CCU identified by Index=0 in link topology netlist.
1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the CCU node.

613875-009 171

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.11.2 Set CCU Reference Priority Command Response

Table 3-74 details the output arguments of the Set CCU Reference Priority command.

3.2.6.11.3 Set CCU Reference Priority Command Errors

The following errors can be returned by the Set CCU Reference Priority command:

Table 3-74. Set CCU Reference Priority Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C68 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

DPLL Index 16 The index of the DPLL block copied from the request.

Ref Index 17 The index of the reference input copied from the request.

Ref Priority 18 Reference clock priority copied from the request

Reserved 19:31 0 Reserved. Must be 0x0.

Table 3-75. Set CCU Reference Priority Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters. This error is reported when the parameter is either out of a valid range or it
cannot be set in the DPLL.

Intel® Ethernet Controller E810 Datasheet
Interconnects

172 613875-009

3.2.6.12 Get CCU Reference Priority (0x0C69)

This command reads the currently configured priority of the selected reference clock for a given DPLL
block within a given CCU (DPLL) node.

3.2.6.12.1 Get CCU Reference Priority Command

Table 3-76 details the input arguments of the Get CCU Reference Priority command.

3.2.6.12.2 Get CCU Reference Priority Command Response

Table 3-77 details the output arguments of the Get CCU Reference Priority command.

Table 3-76. Get CCU Reference Priority Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C69 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

DPLL Index 16 The index of DPLL block.

Ref Index 17 The index of the reference input.

Reserved 18:31 0 Reserved. Must be 0x0.

Table 3-77. Get CCU Reference Priority Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C69 Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

DPLL Index 16 The index of the DPLL block copied from the request.

Ref Index 17 Reference pin index copied from the request.

Ref Priority 18 The priority to be assigned to the reference clock input identified by Ref
Index. A value of 0 denotes the highest priority., and num_pins the lowest.
Note: A value of 0xFF results in removing the specified reference clock

input from the list of allowed reference clock options for the
specified DPLL block - NEVER USE THIS.

Reserved 19:31 0 Reserved. Must be 0x0.

613875-009 173

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.12.3 Get CCU Reference Priority Command Errors

The following errors can be returned by the Get Clock Controller Reference Priority command:

Table 3-78. Get CCU Reference Priority Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters.

Intel® Ethernet Controller E810 Datasheet
Interconnects

174 613875-009

3.2.6.13 Get CCU Info (0x0C6A)

This command retrieves information about the CCU. If a parameter is unsupported, it should contain
0xFFFF FFFF for 32-bit values or 0xFF for 8-bit values.

3.2.6.13.1 Get CCU Info Command

Table 3-79 details the input arguments of the Get CCU Info command.

3.2.6.13.2 Get CCU Info Command Response

Table 3-80 details the output arguments of the Get CCU Info command.

Table 3-79. Set CCU Info Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.

Opcode 2:3 0x0C6A Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Reserved 16:29 0 Reserved. Must be 0x0.

Reserved 30:31.[15:11] 0 Reserved. Must be 0x0.

Node Handle Valid 30:31.[10] 0b = Use Node Handle of CCU identified by Index=0 in link topology netlist.
1b = Use provided Node Handle.

Node Handle 30:31.[9:0] The handle of the CCU node.

Table 3-80. Set CCU Info Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C6A Command opcode.

Datalen 4:5 0 Length of the data buffer in bytes.

Return Value 6:7 Return value.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Manufacturer's Part
Number

4:7.[31:0] Reflects the Manufacturer’s Part Number or Device ID retrieved from the
device.

Custom Configuration
Version

8:11.[31:0] Reflects the Custom Configuration Version retrieved from the device.

FW Version 12:15.[31:0] Reflects the Firmware Version retrieved from the device.

Node Part Number 16.[7:0] Reflects the corresponding Node Part Number from the link topology netlist.

Device Revision 17.[7:0] Device Revision
Reflects the silicon stepping version retrieved from the device.

Reserved 30:31 0 Reserved. Must be 0x0.

613875-009 175

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.2.6.13.3 Get CCU Info Command Errors

The following errors can be returned by the Get Clock Controller Info command:

Table 3-81. Get Clock Controller Info Command Errors

Error Code Value Description

OK 0 No error.

EPERM 1 The command is not allowed due to an unsecured netlist.

EBUSY 12 PHY/module interface currently busy, retry.

EINVAL 14 Invalid parameters.

Intel® Ethernet Controller E810 Datasheet
Interconnects

176 613875-009

3.2.6.14 Get Input Frequency List (0x0C6C)

The command reads the list of allowed input frequencies on a specified input.

3.2.6.14.1 Get Input Frequency List Command

Table 3-82 details the input arguments of the Get Input Frequency List command.

3.2.6.14.2 Get Input Frequency List Command Response

Table 3-83 details the output arguments of the Get Input Frequency List command.

Table 3-82. Get Input Frequency List Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.
Driver must clear.

Opcode 2:3 0x0C6C Command opcode.

Datalen 4:5 0x0020 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Input Index 16 Input index (pin).

Reserved 17:23 0 Reserved. Must be 0x0.

Data Address High 24:27 Address of response buffer.

Data Address Low 28:31 Address of response buffer.

Table 3-83. Get Input Frequency List Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C6C Command opcode.

Datalen 4:5 0x0020 Length of the data buffer in bytes.

Return Value 6:7 Return value:
EINVAL - Invalid parameters, e.g. buffer too small EBUSY - PHY/module

interface currently busy, retry.
EPERM - The command is not allowed due to an unsecured netlist.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Input Index 16 Input index (pin).

Length 17 The length of the frequency list.

Reserved 18:23 0 Reserved. Must be 0x0.

Data Address High 24:27 Address of response buffer.

Data Address Low 28:31 Address of response buffer.

613875-009 177

Intel® Ethernet Controller E810 Datasheet
Interconnects

Table 3-84. Get Input Frequency List Command Response Data Structure

Name Byte.[Bits] Value Remarks

Input Frequency[0] 0:3 All input frequencies in Hz.

Input Frequency[1] 4:7 All input frequencies in Hz.

Input Frequency[2] 8:11 All input frequencies in Hz.

Input Frequency[3] 12:15 All input frequencies in Hz.

Input Frequency[4] 16:19 All input frequencies in Hz.

Input Frequency[5] 20:23 All input frequencies in Hz.

Input Frequency[6] 24:27 All input frequencies in Hz.

Input Frequency[7] 28:31 All input frequencies in Hz.

Input Frequency[8] 32:25 All input frequencies in Hz.

Input Frequency[9] 36:39 All input frequencies in Hz.

Input Frequency[10] 40:43 All input frequencies in Hz.

Input Frequency[11] 44:47 All input frequencies in Hz.

Input Frequency[12] 48:51 All input frequencies in Hz.

Input Frequency[13] 52:55 All input frequencies in Hz.

Input Frequency[14] 56:59 All input frequencies in Hz.

Intel® Ethernet Controller E810 Datasheet
Interconnects

178 613875-009

3.2.6.15 Get Output Frequency List (0x0C6D)

The command reads the list of allowed output frequencies on a specified output.

3.2.6.15.1 Get Output Frequency List Command

Table 3-85 details the input arguments of the Get Output Frequency List command.

3.2.6.15.2 Get Output Frequency List Command Response

Table 3-83 details the output arguments of the Get Output Frequency List command.

Table 3-85. Get Output Frequency List Command

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.1 for details.
Driver must clear.

Opcode 2:3 0x0C6D Command opcode.

Datalen 4:5 0x0020 Length of the data buffer in bytes.

Return Value 6:7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Output Index 16 Output index (pin).

Reserved 17:23 0 Reserved. Must be 0x0.

Data Address High 24:27 Address of response buffer.

Data Address Low 28:31 Address of response buffer.

Table 3-86. Get Output Frequency List Command Response

Name Byte.[Bits] Value Remarks

Flags 0:1 See Section 9.5.5.1.2 for details.

Opcode 2:3 0x0C6D Command opcode.

Datalen 4:5 0x0020 Length of the data buffer in bytes.

Return Value 6:7 Return value:
EINVAL - Invalid parameters, e.g. buffer too small.
EBUSY - PHY/module interface currently busy, retry.
EPERM - The command is not allowed due to an unsecured netlist.

Cookie High 8:11 Cookie Opaque value copied by firmware into the completion of this command.

Cookie Low 12:15 Cookie Opaque value copied by firmware into the completion of this command.

Input Index 16 Input index (pin).

Length 17 The length of the frequency list.

Reserved 18:23 0 Reserved. Must be 0x0.

Data Address High 24:27 Address of response buffer.

Data Address Low 28:31 Address of response buffer.

613875-009 179

Intel® Ethernet Controller E810 Datasheet
Interconnects

Table 3-87. Get Output Frequency List Command Response Data Structure

Name Byte.[Bits] Value Remarks

Output Frequency[0] 0:3 All output frequencies in Hz.

Output Frequency[1] 4:7 All output frequencies in Hz.

Output Frequency[2] 8:11 All output frequencies in Hz.

Output Frequency[3] 12:15 All output frequencies in Hz.

Output Frequency[4] 16:19 All output frequencies in Hz.

Output Frequency[5] 20:23 All output frequencies in Hz.

Output Frequency[6] 24:27 All output frequencies in Hz.

Output Frequency[7] 28:31 All output frequencies in Hz.

Output Frequency[8] 32:25 All output frequencies in Hz.

Output Frequency[9] 36:39 All output frequencies in Hz.

Output Frequency[10] 40:43 All output frequencies in Hz.

Output Frequency[11] 44:47 All output frequencies in Hz.

Output Frequency[12] 48:51 All output frequencies in Hz.

Output Frequency[13] 52:55 All output frequencies in Hz.

Output Frequency[14] 56:59 All output frequencies in Hz.

Intel® Ethernet Controller E810 Datasheet
Interconnects

180 613875-009

3.3 Link Topology

3.3.1 Overview

In the E810, the Ethernet link management task is performed by firmware, using scripting language to
allow flexible programming of each link component. To manage the link, the firmware must know which
components are connected to the link, how those components are connected to perform the link, and
how each component can be accessed to configure it. The scheme of component connections to
perform the link is referred as link topology. The link topology might include internal PHYs (within an
SoC), external on-board PHY and re-timers, and additional optical or electrical modules and cables
either mounted on board or plugged into a cage (for example, SFP+ or QSFP cages). Firmware must
know the type of each device connected to the Ethernet link, the sequence of connections between the
devices, how to access each device registers, and how to configure it. Internal PHYs might be connected
using the SoC internal bus, while external devices are usually connected using the I2C bus or MDIO,
optionally using I2C multiplexers at the I2C path. In addition, some control signals are needed for those
devices, (for example, RST_N, PRSNT_N and INTR_N). Those control signals are either connected
directly to the SoC SDP, or indirectly using an I2C port replicator connected at the I2C tree. Finally, the
link management task also includes control of link-related LEDs. Firmware must know how to access
the LEDs associated with each Ethernet link. Those LEDs might be connected directly to the SoC or
indirectly using an I2C LED driver.

The way that the internal or external components are connected to the Ethernet link is referred to as
the link topology. The topology describes how components connected to the Ethernet link and how to
access them for configuration. The topology also includes a description of the low-speed devices, such
as I2C multiplexers and port expanders. Link management tasks must configure those I2C multiplexers
to allow access to link components. In addition, link management task must know the port expander
connectivity to access the reset and interrupt signals of the link components, and to know if those
components exist on the board.

The topology of the main board is stored within an NVM section. During initialization, firmware should
read the topology and initialize all devices accordingly. However, some parts of the topology might
change dynamically. For example, if an SFP module is inserted into an SFP cage, firmware must detect
this event and configure the link appropriately.

Note: The E810 does not support topologies with mezzanine cards.

This section describes the structure of such topology descriptions and how firmware reads and process
the topology.

• Section 3.3.2 defines link topology and illustrates the framework of link topology.

• Section 3.3.3 describes the structures needed for link topology in the platform NVM. A high-level
overview of all link structures including the link topology netlist structures is given.

• Section 3.3.5 discusses an example for the link topology netlist for main board topology.

• Section 3.3.8 gives detailed information about the link topology netlist structures.

• Section 3.3.9 discuss sizes, conventions, and constraints of the netlist.

• Section 3.3.10 describes the link topology software interface using admin commands.

613875-009 181

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.2 Link Topology Definition

The link topology describes any device connected to the Ethernet link (for example, PHY or re-timer).
The topology also describes the associated devices used for managing the link devices (for example,
I2C multiplexer). In addition, the associated SDPs and LEDs that are used to indicate link changes are
defined within the topology description. Those devices are located on NIC.

Figure 3-18 illustrates link topology.

Figure 3-18. Topology Schematic

Contoller

Retimer BASE-T PHY RJ-45

I2C IO EXP

I2C LED CTRL

I2C MUX

Retimer

SFP+

LED
LED
LED

Module

MediaSFP+

SFP+

SFP+

Media

Media

Media

LED
LED
LED

QSFP Cage

Intel® Ethernet Controller E810 Datasheet
Interconnects

182 613875-009

3.3.3 Topology Structures

The link topology is described using the link topology netlist structure in the platform NVM. The E810
registers that are affected by the link topology are modified using the adaptive NVM tables that are
stored in the platform NVM.

The link topology netlist describes all topology components and the connection(s) between them, and is
composed of several sections. The first one is stored in the link topology NVM section, and describes the
motherboard topology.

Some topology-related parameters, referred as link topology capabilities registers, are stored directly
as NVM words, and therefore can be modified using adaptive NVM configuration tables. For example,
the number of available ports and link speeds is determined by the link topology netlist, and is applied
to E810 registers using adaptive NVM. Those parameters are therefore located in the NVM and are
subject to adaptive NVM configuration.

The link topology netlist and link topology capabilities sections are also used by the link establishment
state machine to bring up the link with the link partner. The NVM stores the adaptive NVM features
table, which describes the link topology capabilities registers values and other NVM values, per Ethernet
link for a list of predefined link modes.

The link modes configurations for the Ethernet links implemented on the NIC are also held in the
platform NVM.

At initialization stage, when a module is plugged into a cage, the firmware reads the different topology
structures and builds the current topology of the links.

3.3.3.1 High-Speed PHY Chain

One part of the link topology can be viewed as a chain of PHYs, re-timers, and modules that are
connected in a chain to perform a link. For the sake of simplicity, we treat all the elements in the chain
as PHYs, with two ports: the line port, and the host port, where the line port is the port connected to
the chain ended in the line side of the link, and the host port is the port connected to the chain ended at
the host.

Figure 3-19 illustrates the PHY chain.

Figure 3-19. High-Speed PHY Chain

MAC iPHY CageePHY
Module

/
Media

Retimer

- Port Speed
- Activity indication

- PCS
- FEC
- Lane setup
- Auto neg

- 1G-BT
- 4x1G-BT
- 4x10G-BT

- Parkvale

- SFP / QSFP

 - SX/LX
- SR
- LR
- DAC
-
- Backplane
- AOC
- Breakout
- UTP

Ethernet MAC Internal PHY Retimer External PHY Q/SFP cage Module / Media

613875-009 183

Intel® Ethernet Controller E810 Datasheet
Interconnects

Notes:

• Some topologies do not include all components (for example, re-timer or a cage).

• The high speed PHY chain might contain components that are shared between several Ethernet
links. For example, an external PHY might support four Ethernet links, or a QSFP cage might be
plugged with breakout cable, that creates four different Ethernet links.

3.3.3.2 PHY Capabilities Structures

Ethernet link might work in different speeds and different electrical parameters. In general, each speed
is specified with several different electrical specifications, to support different media. Such are
short-reach cables (SR), long-reach cables (LR), different types of backplanes, and BASE-T pairs. We
use single structure to describe the available modes, while each mode might have additional options
that are described in adjacent parameters. The PHY capabilities structure, which is also referred to as
PHY_TYPE, is used in several topology structures, admin command parameters, and in PHY
configuration scripts as a parameter. For the topology description, it is used as a link topology NVM
word, that describes the outermost PHY capabilities. It is also used twice, for each PHY node in the
topology structures, to indicate the supported modes at the line side and at the host side.

Some capabilities are valid only for the outermost PHY, while others can be reflected also at the board
connection between two PHYs in a chain. Table 3-88 and Table 3-89 describe the PHY capabilities for
outermost PHYs, which covers all types of links.

Note: For the sake of readability, these tables are organized with capabilities bit per speed.

To avoid explosion of the topology netlist, we implement two different structures. The extended
structure is used for the line side of the outermost PHY, which includes all capabilities. The basic
structure used for the host side of the outermost PHY and both line side and host side for the other
PHYs in the chain.

The extended structure is implemented as 128-bit words (84 bits used and the rest reserved for future
use) and is described in Table 3-90. The basic structure is implemented as 64-bit words (31 bits used
and the rest reserved for future use) and is described in Table 3-91. Both PHY capabilities structures are
implemented in the topology netlist PHY capabilities section, as described in Section 3.3.8.6.

128 bits for outermost line side. 64 bits for everything else.

Table 3-88. PHY Capabilities Bit Matrix (Part 1)

Speed/Media Type 100M 1G 2.5G 5G 10G

BASE-T 100BASE-TX 1000BASE-T 2.5GBASE-T 5GBASE-T 10GBASE-T

Short Reach 1000BASE-SX1

1. 1000BASE-SX running at speed of 100 Mb/s

1000BASE-SX 10GBASE-SR

Long Reach 1000BASE-LX2

2. 1000BASE-LX running at speed of 100 Mb/s

1000BASE-LX 10GBASE-LR

Back Plane 1000BASE-KX 2.5GBASE-KX 5GBASE-KR 10GBASE-KR

Serial/Direct Attach 100M-SGMII 1G-SGMII 2.5GBASE-X 10G-SFI-DA

Active Optical/Copper Cable 10G-SFI-ACC /
10G-SFI-AOC

Chip to Chip 10G-SFI-C2C

Intel® Ethernet Controller E810 Datasheet
Interconnects

184 613875-009

Note: As NVM word, the capabilities structure describes the enabled options for the outermost PHY.
These link speeds and link options might or might not be supported at the specified device
level, or for specific link. The enabled speeds/options in Table 3-88 and Table 3-89 should be
selected in such a way that the device would be able to support them. For example, the E810
does not support 2.5G/40G/200G speeds, and therefore those options should not be selected
for this device.

Table 3-89. PHY Capabilities Bit Matrix (Part 2)

Speed/
Media
Type

25G 40G 50G 100G 200G 400G

BASE-T 25GBASE-T

Short
Reach

25GBASE-SR 40GBASE-SR4 100GBASE-SR4 200GBASE-SR4

Long
Reach

25GBASE-LR 40GBASE-LR4 100GBASE-LR4 200GBASE-LR4 400GBASE-LR8

Back Plane 25GBASE-KR 40GBASE-KR4 50GBASE-KR2 100GBASE-KR4 200GBASE-KR4-PAM4

KR-S 25GBASE-KR-S

AUI 25G-AUI-C2C 40G-XLAUI 50GBASE-LAUI2 100G-CAUI4 200G-AUI4 400G-AUI8

Active
Optical/
Copper
Cable

25G-AUI-ACC /
25G-AUI-AOC

40G-XLAUI-ACC /
40G-XLAUI-AOC

50G-LAUI2-AOC /
50G-LAUI2-ACC

100G-CAUI4-ACC /
100G-CAUI4-AOC

200G-AUI4-ACC /
200G-AUI4-AOC

400G-AUI8-ACC /
400G-AUI8-AOC

CR 25GBASE-CR 40GBASE-CR4 50GBASE-CR2 100GBASE-CR4

CR-S 25GBASE-CR-S

CP 50GBASE-CR-PAM4 100GBASE-CR2-PAM4 200GBASE-CR4-PAM4

25GBASE-CR1 50GBASE-KR-PAM4 100GBASE-KR2-PAM4

50GBASE-LR 100GBASE-DR 200GBASE-DR4 400GBASE-DR4

50GBASE-SR 100GBASE-SR2

50GBASE-FR 200GBASE-FR4 400GBASE-FR8

25GBASE-KR1 50GBASE-AUI1 100G-AUI4 200G-AUI8

50G-AUI1-AOC /
50G-AUI1-ACC

100G-AUI4-AOC /
100G-AUI4-ACC

200G-AUI8-ACC /
200G-AUI8-AOC

50GBASE-AUI2 100G-AUI2

50G-AUI2-AOC/
50G-AUI2-ACC

100G-AUI2-AOC /
100G-AUI2-ACC

100GBASE-CR-PAM4

100GBASE-KR-PAM4

613875-009 185

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.3.2.1 Extended PHY Capabilities 128-Bit Word Structure

Table 3-90. 128-Bit Word Extended PHY Capabilities

Bit Word[3] Word[2] Word[1] Word[0]

0 Reserved 100GBASE-KR2-PAM4 Reserved 100BASE-TX

1 Reserved Reserved Reserved 100M-SGMII

2 Reserved Reserved Reserved 1000BASE-T

3 Reserved 100G-AUI2-AOC/ACC Reserved 1000BASE-SX

4 Reserved 100G-AUI2 50GBASE-CR2 1000BASE-LX

5 Reserved 100GBASE-CR1 50G-LAUI2-AOC/ACC w/
CL133 PCS 1000BASE-KX

6 Reserved 100GBASE-KR1 50G-LAUI2 w/ CL133 PCS 1G-SGMII

7 Reserved 100GBASE-SR1[30m] 50GBASE-KR2 Reserved

8 Reserved 100GBASE-SR1[100m] 50G-LAUI2-AOC/ACC Reserved

9 Reserved 100GBASE-LR 50G-LAUI2 Reserved

10 Reserved 100GBASE-FR 50G-AUI2-AOC/ACC 5GBASE-T

11 Reserved 100GBASE-DR [AUI1] 50G-AUI2 5GBASE-KR

12 Reserved 100GBASE-AUI1-AOC/ACC 50GBASE-CP Reserved

13 Reserved 100G-AUI1-C2C 50GBASE-SR 10G-SFI-DA

14 Reserved 200G-AUI8-AOC/ACC 50GBASE-FR 10GBASE-SR

15 Reserved 200G-AUI8 50GBASE-LR 10GBASE-LR

16 Reserved 200GBASE-CR4-PAM4 50GBASE-KR-PAM4 10GBASE-KR

17 Reserved 200GBASE-SR4 50G-AUI1-AOC/ACC 10G-SFI-AOC/ACC

18 Reserved 200GBASE-FR4 50G-AUI1 10G-SFI-C2C

19 Reserved 200GBASE-LR4 100GBASE-CR4 Reserved

20 Reserved 200GBASE-DR4 100GBASE-SR4 25GBASE-CR

21 Reserved 200GBASE-KR4-PAM4 100GBASE-LR4 25GBASE-CR-S

22 Reserved 200G-AUI4-AOC/ACC 100GBASE-KR4 25GBASE-CR1

23 Reserved 200G-AUI4 100G-CAUI4-AOC/ACC 25GBASE-SR

24 Reserved 200G-CR2 100G-CAUI4 25GBASE-LR

25 Reserved 200GBASE-KR2 100G-AUI4-AOC/ACC 25GBASE-KR

26 Reserved 200GBASE-SR2[30m] 100G-AUI4 25GBASE-KR-S

27 Reserved 200GBASE-SR2[100m] 100GBASE-DR [CAUI4] 25GBASE-KR1

28 Reserved 200GBASE-DR2 100GBASE-KR4-PAM4 25G-AUI-AOC/ACC

29 Reserved 200GBASE-AUI2-AOC/ACC 100GBASE-CR2 25G-AUI-C2C

30 Reserved 200G-AUI2-C2C 100GBASE-SR2 Reserved

31 Reserved Reserved 100GBASE-DR [AUI2] Reserved

Intel® Ethernet Controller E810 Datasheet
Interconnects

186 613875-009

3.3.3.2.2 Basic PHY Capabilities 64-Bit Word Structure

Table 3-91. 64-Bit Word Extended PHY Capabilities

Bit Word[1] Word[0]

0 Reserved 100M-SGMII

1 Reserved 1000BASE-KX

2 Reserved 1G-SGMII

3 Reserved Reserved

4 Reserved Reserved

5 Reserved 5GBASE-KR

6 Reserved 10G-SFI-DA

7 Reserved 10GBASE-KR/CR1

8 Reserved 10G-SFI-C2C

9 Reserved 25GBASE-KR

10 Reserved 25GBASE-KR-S

11 Reserved 25GBASE-KR1

12 Reserved 25G-AUI-C2C

13 Reserved Reserved

14 Reserved Reserved

15 Reserved 50GBASE-KR2

16 Reserved 50G-LAUI2

17 Reserved 50G-AUI2

18 Reserved 50GBASE-KR-PAM4

19 Reserved 50G-AUI1

20 Reserved 100GBASE-KR4

21 Reserved 100G-CAUI4

22 Reserved 100G-AUI4

23 Reserved 100GBASE-KP4-PAM4

24 Reserved 100GBASE-KR-PAM42

25 Reserved Reserved

26 Reserved 100G-AUI2

27 Reserved 200GBASE-KR4

28 Reserved 200G-AUI4

29 Reserved 200G-AUI8

30 Reserved Reserved

31 Reserved Reserved

613875-009 187

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.3.3 Link Modes Adaptive NVM Features Tables

The link topology applied by the link topology netlist might affect can E810 CSRs. This is done using
adaptive NVM method. The link topology netlist references two types of adaptive NVM features tables.:

• Global super-feature tables — Affect E810 configurations that should be modified according to
the combination of the valid ports and their corresponding maximal speed.

• Per-port/Per function features tables — Affect configurations relevant for the specific port type
and speed.

The global super-feature table is applied by the adaptive NVM configuration ID at the innermost PHY
attached to the selected port option. There should be a different port option for each valid combination
of E810 ports, as described in Table 3-12, “Port Configurations”.

Table 3-92 describes the main E810 settings that are affected by the global super-feature.

Table 3-93 describes the main E810 settings that are affected by the Per-port feature.

Table 3-94 describes the main E810 settings that are affected by the Per-function feature.

Table 3-92. Global Super-Feature Affected Settings

Feature Description

E810 port topology mode Controls the allocation of E810 resources according to the number of ports and speed of those
ports.

Additional DCB configurations DCB-to-UP translation tables.
Congestion domain configurations.

VSI/VEB allocation Allocations of resources to physical functions (see Section 7.8.10).

Max number of virtual functions
allocated to physical function

Physical function port association Association of physical function to port (see Section 4.5).

Table 3-93. Per-Port Super Feature Affected Settings

Feature Description

Port enabling Enable or disable the port (see Section 4.5).

Port WoL setting Enable/Disable this port for WoL setting.

Table 3-94. Per-Function Super Feature Affected Settings

Feature Description

Physical function enabling Enabling the physical function that is associated with the port (see Section 4.5).

Device ID

Intel® Ethernet Controller E810 Datasheet
Interconnects

188 613875-009

3.3.3.4 Link Topology Netlist

The topology netlist is a description of all components associated with the Ethernet link, a description of
the way to control those components and the connectivity between them. The topology netlist includes
an entry for each topology device (node), with a description of its interfaces, capabilities, device types,
associated configuration, and any information needed to setup this device to bring up the Ethernet link.

Each topology node is composed of several sections. Two sections are common for all topology nodes
and are reflected the topology netlist:

• Node Header Section — Includes the basic description of the node and pointers to the other
sections.

• Node I/O Section Includes pointers and descriptions of the node I/Os that connect the node
toward the host.

Some topology devices do not need any additional description besides the Node Header Section and the
Node I/O Section, while others include additional sections to reflect topology-related properties that are
specific to the node. Some nodes need and additional scratch section, which is used by the scripts to
store scratch data.

The following basic topology devices contain only the Node Header Section and the Node I/O Section,
with some of the nodes also containing also the scratch area (Node Scratch Section):

• GPIO controller node

• MUX controller node

• LED controller node

• ID EEPROM node

• Cage node

The Node Header Section and the Node I/o Section that compose the basic topology device structure
include the following information:

• Node Header Section — Contains information on the following:

— Node type, node handle, node address, node part number, and node options.

— I/O section pointer.

— Port options section pointer — Relevant for PHY, LED, and Temperature sensor nodes and
includes Port option count and the pointer to the Port options section.

— Line-side analog Port options section pointer — Relevant for PHY nodes and includes the pointer
to the analog Port options section.

— Host-side analog Port options section pointer — Relevant for PHY nodes and includes the pointer
to the analog Port options section.

• Node I/O Section — Includes a list of interfaces that are connected to this node. As all topology
devices are eventually controlled by the SoC, the link topology netlist is built as a tree, where the
roots of the tree are the SoC nodes that represent I/Os that are directly controlled by the SoC
firmware. Therefore, it is sufficient that each topology node would list only the interfaces (I/Os)
that connect between the node and other nodes that are up in the topology tree. Those I/Os could
be either I/Os that are controlled by this node (master I/Os), or I/Os that are used to control this
node (secondary I/Os). Within the Node I/O Section, each such interface contains the following
information:

— Driving node handle — This includes a node handle, used to point to the topology device that
this interface is connected to, and the I/O number at that topology device.

613875-009 189

Intel® Ethernet Controller E810 Datasheet
Interconnects

— I/O type and driving interface — Contains information about the type of the interface (for
example, I2C, MDIO, SDP, LED), and the function of the interface (for example, when is the
type SDP, what is the functionality of that SDP - INT_N / PRESET_N / TX_DISABLE, and so on).

— Other properties of the I/Os, like Polarity, Strapped, Strap value, Interrupt, and Speed. Those
properties might be used with the proper I/O type.

For some devices, like the LEDs and the thermal sensors, we need to add an information about the
association of the topology device with another topology device, referred as its parent device. The port
option selected for the parent device is also applied for the current topology device. Therefore, LED and
thermal sensor nodes include additional node parent section.

The LED topology node includes the basic node sections, the node parent section and additional LED
configuration section for each port option, with the following information:

• LED link affinity (Lo /High) — Up to 24 bits (lowest 24 bits) are used to associate the Ethernet link
with the LED. When the bit is set, the relevant Ethernet link affects the LED. The highest two bits
are used to select the logic operation between the ports (AND or OR).

• LED flag (Low / High)

• LED color and condition

The Temperature Sensor node includes the basic node sections, the node parent section, and additional
Thermal Sensor Configuration Section for each port option, with the following information:

• Temperature sensor link Affinity (Low / High) — Up to 32 bits are used to associate the Ethernet link
with the temperature sensor. Each link should be associated with one temperature sensor.

• Temperature alarm threshold — The threshold temperature for this sensor.

The PHY node includes several sections that are added to the basic node description. A PHY node would
include two sections of PMD analog options (one for the host side and one for the line side) and two
sections of PMD miscellaneous analog options (one for the host side and one for the line side). The PMD
analog options contain configurations and coefficients for the analog side of the PHY lines, while the
PMD miscellaneous analog section might contain additional configuration that is PHY-specific.

In addition to the above sections, the PHY node also contains one port option pointer section and port
option header sections per port option. Each port option contains several PMDs, with PHY capability
section per PMD within the port option. See Section 3.3.8.18 for an example of a PHY node.

The PMD Analog Section contains the following information:

• Coefficients for 1G/5G/10G/25G/50G AUI modes.

• Coefficients for 10G KR, 25G KR/CR and 50G KR modes.

• Link establishment state machine timeouts for 1G/5G/10G/25G/50G AUI modes.

• Link establishment state machine timeouts for 10G KR, 25G KR/CR and 50G KR modes.

• Lane transmit and receive polarity.

The Port Option Pointer Section includes the following information, per Port option:

• A pointer to the relevant port option section.

The Port Option Header Section includes the following information:

• Adaptive NVM Global Super Configuration ID — A pointer to the adaptive NVM super-feature table
that sets NVM parameters per-port option.

• Adaptive NVM PHY Configuration ID — A pointer to the adaptive NVM feature table of the relevant
PHY that sets NVM parameters per-port option of the PHY.

Intel® Ethernet Controller E810 Datasheet
Interconnects

190 613875-009

• Minimum SKU — The minimum SKU that this port option can work with.

• PMD count — The number of PMDs within this port option.

• A pointer to the Node PHY capabilities section per PMD.

The Node PHY Capabilities Section includes the following information:

• Feature IDs and configuration IDs of adaptive NVM tables of the port and the function, relevant for
this port option.

• Link options (EEE enable, FEC abilities advertise and request for 25G (cl. 74,91), FEC abilities
advertise and request for 10G, PCS enable, Low power mode enable, LPLU enable, Rx and Tx
pause, auto-negotiation options (cl. 28, 37,73), LESM enable, Auto FEC enable, host and line lane
reversal, and outermost indication).

• PMD width for host side and line side.

• First lane (lane 0) ID for host side and line side.

• EEE TWSysTX timer value.

• PHY capabilities structure for host side and line side per Section 3.3.8.5.5.

Table 3-95 summarize the link topology node structure, for different nodes:

Table 3-95. Link Topology Node Structure

Section Description Applies to
Node Types Number of Sections in a Node

Header Section The header section contains basic
information for all node types, such as
node type, section length, address and
pointers to the other node sections.

All nodes
types

One section. Fixed size

I/O Section The IO section contains information about
the connectivity of the node within the
topology netlist.

All node types One section. Size is linear with the number
of I/Os.

Led Configuration
Section

This section contains information about the
configuration of the LED, such as polarity,
port affinity and color.

LED nodes One section. Size is linear with the number
of port options of the parent PHY node.

Thermal Configuration
Section

This section contains information dealing
with the configuration of the thermal
sensor, such as port affinity and alarm
threshold.

Temperature
sensor nodes

One section. Size is linear with the number
of port options of the parent PHY node.

PMD Analog Section This section contains the configuration of
the PHY lanes analog side.

PHY nodes Two section per PHY node, for the host and
line side. Size is linear with the number of
lanes.

PMD Analog Misc
Section

This section contains PHY specific
configuration of the PHY lanes analog side.

PHY nodes Two section per PHY node, for the host and
line side. Size is linear with the number of
lanes.

Port Option Pointer
Section

This section contains the pointers for all
PMD options within a single PHY node.

PHY nodes One section per PHY node. Size is linear
with the number of port options.

Port Option Header
Section

This section contains the number of PMDs
per port option and pointers to Node PHY
capabilities section.

PHY nodes Each PHY node has sections for each port
option. Size is linear with the number of
PMDs within the port option.

Node PHY Capabilities
Section

This section contains the configuration of
the PHY in a specific port option.

PHY nodes Each port option has sections for each
PMD. Size is fixed.

613875-009 191

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.3.5 MD Link Topology NVM Section

In addition to the link topology netlist, there is an additional NVM section for link topology parameters
that might be updated by the link topology firmware. The following parameters are included in this
section.

3.3.4 Link Default Override Mask NVM Section

This is per-port structure in the NVM PFA, which allows overriding some of the link topology netlist
settings.

Table 3-96. Link Topology NVM Section

Parameter Word/Bit Offset Description

Netlist Map Version Byte 0x2 - Generic Info / Bits [15:8] The version of the netlist field definition

Load Mode Byte 0x2 - Generic Info / Bit 0 Netlist Loading Mode — Controls the steps taken at the netlist
load time. Valid only for the motherboard’s netlist.
Two modes defined:

0x0 = Normal mode — the active port options are loaded.
0x1 = resolution mode — The active port options of the

non-innermost nodes are updated and then the active
port options are loaded. The update is performed based
on matching the active port option of the connected
innermost PHY. If the port option was forced, the active
option is not updated.

Netlist Version Byte 0x3 - Netlist Version / Bits [15:0] The version of the netlist.

Active Port Option Bytes 0x4-0x13 - Pair PHY Type[n] /
Bits [3:0] and Bits [11:8]

The active port option selected for each PHY in the netlist. Up to
32 PHYs are supported, where each word holds the active option
for two PHYs. The first is in Bits [3:0] and the second is in Bits
[11:8].

Port Bitmap Byte 0x14 - Port Bitmap 0 / Bits [15:0]
Byte 0x15 - Port Bitmap 1 / Bits [3:0]

Port Bitmap

Table 3-97. Link Default Override Mask Structure

Offset Content Default
Value Notes Override

0x0 Type 0x134 N/A

0x1 Length 0x50 4 bytes per port for options plus 16 bytes per-port
for PHY types.

N/A

0x2 - 0x3 32 bits defined as
follows:

Bits [0:7] - Options:

0 = Lenient / Strict 0b 0b = Lenient
1b = Strict

1 = EPCT ability to
change Lenient /
Strict enable

0b 0b = Enable
1b = Disable

Intel® Ethernet Controller E810 Datasheet
Interconnects

192 613875-009

2 = Port Disable
behavior mode

0b Controls how to disable the port when requested.
0b = The request is honored only if WoL and

Manageability are not enabled on this port.
1b = The request is honored even if WoL or

manageability are enabled on this port.
Note: This field should be set by UEFI driver if

PermitTotalPortShutdown attribute is set.

3 = Override Enable 0b Enables the override ability from PFA for this port.
When this bit is set for a specific port, the
parameters of this port that are specified in the
right column are taken from the PFA and not from
the link topology structures.

0b = Disable
1b = Enable

4 = Disable Automatic
Link on Startup

0b When Override Enable bit is set and Override
Disable Automatic Link on Startup (Bit 25) is set,
the Disable Automatic link on Startup feature is
taken from here and not from the link topology.

0b = Automatic Link on startup feature is enabled.
1b = Automatic Link on startup feature is

disabled.

Override Enable
& Bit 25

5 = EEE Enable From netlist When Override Enable bit is set and Override EEE
Setting (Bit 26) is set, the EEE can be enabled or
disabled according to this bit, assuming that the
PHY_TYPE is supporting EEE.

0b = Disable
1b = Enable

Override Enable
& Override EEE
Setting - Bit 26

6:7 = Reserved N/A

Bits [8:15] - “Set PHY
Config” - Byte 16

8:9 = PAUSE Ability From netlist When Override Enable bit is set and Override PAUSE
Setting (Bit 27) is set, the PAUSE Ability bits are
taken from here and not from the topology netlist.

Override Enable
& Override
PAUSE Setting -
Bit 27

10:13 = Reserved N/A

14 = LESM Enable From netlist When Override Enable bit is set and Override LESM
Enable (Bit 28) is set, the LESM Enable bit is taken
from here and not from the topology netlist.

Override Enable
& Override LESM
Enable - Bit 28

15 = Auto FEC Enable From netlist When Override Enable bit is set and Override FEC
Setting (Bit 29) is set, the Auto FEC Enable bit is
taken from here and not from the topology netlist.

Override Enable
& Override FEC -
Bit 29

Bits [16:23] - “Set
PHY Config” - Byte 22
(FEC options)

From netlist When Override Enable bit is set and Override FEC
Setting (Bit 29) is set, the FEC options bits as
described in Set PHY Config - Byte 22 are taken
from here and not from the topology netlist.

Override Enable
& Override FEC -
Bit 29

Bits [24:31] -
Override by Function

24 = Override PHY
Types

0b Enables the override ability from PFA PHY Types for
this port. When this bit is set for a specific port, the
PHY Types capabilities of this port are masking the
link topology capabilities.

0b = Disable
1b = Enable

N/A

Table 3-97. Link Default Override Mask Structure [continued]

Offset Content Default
Value Notes Override

613875-009 193

Intel® Ethernet Controller E810 Datasheet
Interconnects

25 = Override Disable
Automatic Link on
Startup

0b Enable the override ability from PFA Disable
Automatic Link on Startup bit.

0b = Disable
1b = Enable

N/A

26 = Override EEE
Setting

0b Enable the override ability from PFA EEE Enable bit.
0b = Disable
1b = Enable

N/A

27 = Override PAUSE
Setting

0b Enable the override ability from PFA PAUSE bits.
0b = Disable
1b = Enable

N/A

28 = Override LESM
Enable

0b Enable the override ability from PFA LESM Enable
bit.

0b = Disable
1b = Enable

N/A

29 = Override FEC
Setting

0b Enable the override ability from PFA FEC fields
0b = Disable
1b = Enable

N/A

30:31 = Reserved N/A

0x4 - 0xB PHY Types Either from
netlist or

0xFFFF_FFFF
0xFFFF_FFFF

PHY Types for Port 0
8 Words per port.
PHY types as defined in Table 3-90.

Override Enable
and Override PHY
Types

0xC - 0xD 32 bits defined as above
for Options for Port 1

Options for Port 1. Override Enable
and Override PHY
Types

0xE - 0x15 PHY Types for Port 1 PHY Types for Port 1. Override Enable
and Override PHY
Types

0x16 - 0x17 32 bits defined as above
for Options for Port 2

Options for Port 2. Override Enable
and Override PHY
Types

0x18 - 0x1F PHY Types for Port 2 PHY Types for Port 2. Override Enable
and Override PHY
Types

0x20 - 0x21 32 bits defined as above
for Options for Port 3

Options for Port 3. Override Enable
and Override PHY
Types

0x22 - 0x29 PHY Types for Port 3 PHY Types for Port 3. Override Enable
and Override PHY
Types

0x2A - 0x2B 32 bits defined as above
for Options for Port 4

Options for Port 4. Override Enable
and Override PHY
Types

0x2C - 0x33 PHY Types for Port 4 PHY Types for Port 4. Override Enable
and Override PHY
Types

0x34 - 0x35 32 bits defined as above
for Options for Port 5

Options for Port 5. Override Enable
and Override PHY
Types

0x36 - 0x3D PHY Types for Port 5 PHY Types for Port 5. Override Enable
and Override PHY
Types

Table 3-97. Link Default Override Mask Structure [continued]

Offset Content Default
Value Notes Override

Intel® Ethernet Controller E810 Datasheet
Interconnects

194 613875-009

3.3.5 Link Topology Use Cases

This section illustrates the resulting link topology netlist, with a specific use case. We take our use cases
from the NAC Hardware Topology Design Specification document.

The following use case is taken:

• NIC use case, where all link topology components are on NIC.

3.3.5.1 NIC Use Case

Figure 3-20 describes typical Network Interface Card (NIC) use case. Figure 3-21 describes the
resulting topology data structures.

0x3E - 0x3F 32 bits defined as above
for Options for Port 6

Options for Port 6. Override Enable
and Override PHY
Types

0x40 - 0x47 PHY Types for Port 6 PHY Types for Port 6. Override Enable
and Override PHY
Types

0x48 - 0x49 32 bits defined as above
for Options for Port 7

Options for Port 7. Override Enable
and Override PHY
Types

0x4A - 0x51 PHY Types for Port 7 PHY Types for Port 8. Override Enable
and Override PHY
Types

Figure 3-20. NIC Topology Use Case

Table 3-97. Link Default Override Mask Structure [continued]

Offset Content Default
Value Notes Override

PMD_L[3..0]
(site 0)

E810 Retimer QSFP0
PMD (x4) Pins

MDIO Addr[4:0]
=00010

MDIO_0
GPIO6
GPIO7

I2C_0
GPIO_LED9

GPIO_LED11
GPIO_LED10

MDIO
PHY_ResetN
PHY_IntN

I2C
QSPF_ResetN
QSFP_IntN
QSFP_PresentN

GPIO_LED[0..2] LED

LED

LED

613875-009 195

Intel® Ethernet Controller E810 Datasheet
Interconnects

Figure 3-21. NIC Topology Use Case Data Structures

Node: IOW

IO count: 0

Type: GPIO, PN:CPK
Node Header

Node: QSFP 0

IO count: 8
IO 0: Type: I2C, DN: IOW - 0, F: 0
IO 1: Type: GPIO, DN: IOW - 9, F: RESET_N
IO 2: Type: GPIO, DN: IOW - 10, F: INT_N
IO 3: Type: GPIO, DN: IOW - 11: F: PRESENT_N
IO [4:7]: Type: PMD, DN: PKVL0[0:3]: F:[4:7]

Node Header

ACT LED 0

SPD A LED 0

SPD B LED 0

Node: Parkvale Retimer 0

Type:PHY, Addr: MDIO - 0xTBD, PN: PKVL

IO count: 8
IO 0: Type: MDIO, DN: IOW - 5: F: 0
IO 1: Type: MDIO Addr, Driven, Value = 00010
IO 2: Type: GPIO, DN: IOW - 6, F:RESET_N
IO 3: Type: GPIO, DN: IOW - 7, F: INT_N
IO [4:7]: Type: PMD, DN RMN0 - [0:3], F:[0:3]

Node Header

Type: Cage, Addr: I2C - 0xTBD, PN: QSFP+

Node IO

Node: PHY core

Type: PHY, PN:PHY core
Node Header

Node IO

Node IO

IO count: 0
Node IO

Type: LED, PN: Monochrome LED
Node Header

IO count: 1
IO 0: Type: LED, DN: IOW - 0: F: Red

Node IO

LED section
PMD op #0 Port Affinity: P0
Blink: No, Condition: Link_Activity

Type: LED, PN: Monochrome LED
Node Header

IO count: 1
IO 0: Type: LED, DN: IOW - 1: F: Green

Node IO

LED section
PMD op #0 Port Affinity: P0
Blink: No, Condition: Link_=_100G

Type: LED, PN: Monochrome LED
Node Header

IO count: 1
IO 0: Type: LED, DN: IOW - 2: F: Green

Node IO

LED section
PMD op #0 Port Affinity: P0
Blink: No, Condition: Link_<_100G

PHY sections
TBD

E810

PHY sections
TBD

Intel® Ethernet Controller E810 Datasheet
Interconnects

196 613875-009

3.3.6 Topology Device Loading and Programming

External topology devices (e.g. PHYs) connected to the E810 might have a firmware engine within the
device and the firmware is usually loaded from NVM connected to the topology device.

In some cases, those firmware packages might need to be regularly updated in a secure way to prevent
malicious user to burn malicious firmware into the topology device. In other cases, the topology device
firmware might be burned independently, as burning the NVM attached to the device might cause the
device to stop function but could be fixed without permanent damage.

The topology device NVM images can be updated using software tools (like LANConf, nvmupdate, and
so on). However, when the images are not protected, it might present a security risk, if there is no
validation of the integrity of those images before programming it to the device NVM. Malicious or
unverified images can cause disruption and “Denial of Service” scenarios. These topology device
firmware images come from the vendor.

To prevent security risk, the topology device NVM image might be included as part of the E810 NVM
image. When the topology device NVM image is present in the E810 NVM image, it is authenticated and
might be loaded to the topology device at startup. Due to size restriction of the E810 NVM image and
depending on the image size needed for the external topology device, the topology device images
might not fit into the main E810 NVM. In such case, it is recommended to attach NVM into the topology
device, so it can start working independently. The update process for such NVMs that are attached to
the topology devices depends on the availability of an image for the topology device NVM within the
E810 NVM package. Systems that will have external devices with NVM images that cannot fit their NVM
will not be able to update all external device NVMs using this flow, or it will be possible to update one
external device NVM at a time.

3.3.6.1 Topology Device NVM Image

External topology device NVM images should be attached to the main E810 NVM image. There might be
up to four sections in the NVM, one for each type of external topology device.

• The topology device NVM image is authenticated as part of the overall E810 NVM bank.

• The external topology device might not have its own NVM attached to it. The E810 firmware should
load the external topology device firmware from the NVM into the external device as part of the
initialization process. This option can be determined by setting the FW Download Enable bit in the
Node Part Number and Node Options field of the Node Header section of the PHY node in the
topology netlist. This indication is valid only when the there is an NVM section for the external
topology device with a valid image for loading and Part Number that matches the PHY Part Number
in the topology netlist.

• When the PHY is not configured within the topology netlist for FW Download Enable, it might still
have image for programming in the NVM bank. The Program Topology Device NVM admin command
should be used in this case. The E810 firmware should check for availability of external topology
device images in the main NVM bank, it should reflect that with the device capabilities. Software
tools. such as the NVM update tool, can read this capability and trigger an update for the NVM that
is attached to the external topology device.

Note: The PLDM firmware update flow can update NVM packages that embed external topology
device NVM images. However, triggering the Program Topology Device NVM admin command
is currently not covered by the PLDM firmware update flow. The programming of external
device NVMs must be done manually after updating the NVM with the PLDM flow using
additional tool that supports programming of topology devices (fir example, NVM update
tool).

613875-009 197

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.6.2 External Topology Device NVM Section Format

Each external topology device NVM section includes a package for loading/programming the external
topology device with the following format.

NVM Section Header: Contains the following fields

• Section Length (4 bytes) — The total size of the NVM section in 16 bits words.

• Topology Device Image Version Number (8 bytes) — A version number for the external
topology device image.

• Device Part number (1 bytes) — This should match the node part number of the corresponding
PHY within the netlist (for example, 0x31 for C827).

• Flags

— LoadEn — This bit indicates that the image is in a format that enables loading it to the topology
device.

— ProgEn — This bit indicates that the image is in a format that enabled programming it to the
topology device NVM.

• Number of Sub-Sections (2 bytes) — The number of sections to program.

Table 3-98. External Topology Device NVM Section Format

31:24 23:16 15:8 7:0

Section Length (In 16 bits words)

Topology Device Image Version Number (4 high bytes)

Topology Device Image Version Number (4 Low bytes)

Number of Sub-Sections Device Part Number

Flags
Bits 7:2 = Reserved
Bit 1 = ProgEn
Bit 0 = LoadEn

Subsection Flag
0x0: Default
0x1: Pre-load Section
Else: Reserved future use

Sub Section Length (in bytes)

Sub-Section Start Address

Sub-Section Content

Sub-Section Content

Subsection Flag
0x0: Default
0x1: Pre-load Section
Else: Reserved future use

Sub Section Length (in bytes)

Sub-Section Start Address

Sub-Section Content

Sub-Section Content

Additional sub-sections, according to the Number of Sub-Sections field

Intel® Ethernet Controller E810 Datasheet
Interconnects

198 613875-009

NVM Section Body: Contains the sub-sections to load/program within the external device, each
sub-section contains

• Sub-Section Length in bytes (3 bytes)

• Sub-Section Start Address (4 bytes) — The start address within the topology device.

• Sub-Section Content (according to sub-section length, but rounded up to 4 bytes)

Note: The first four 32-bits words should be defined within the NVM map (default values for all fields
is 0x0). Those fields are:

• Section Length (in 16 bits words)

• Topology Device Image Version Number (4 high bytes)

• Topology Device Image Version Number (4 low bytes)

• Number of Sub-Sections

• Device Part Number

• Flags

The rest of the section is provided in RAW format and appended to the image.

3.3.7 Block Access to External PHY During Its NVM
Programming

Firmware blocks changes in the configurations of links that their external PHY is currently programmed
or to links that their external PHY firmware is currently loading.

• Blocking “Set PHY Config” and “Setup link and Restart Auto-negotiation” admin
commands: Firmware returns an error to “Set PHY Config” and “Setup link and Restart Auto-
negotiation” when the PHY attached to the port is being programmed. Error code is “12 – EBUSY”
with a meaning of “External PHY attached to this port is currently programmed – port cannot be
configured”.

• Blocking “Set PHY Loopback” and “Set PHY Debug” debug admin commands: Firmware
blocks link debug commands “Set PHY Loopback” and “Set PHY Debug”, when they targeting any
port mapped into the PHY node that is currently being loaded or its NVM is programmed. Error code
is “12 – EBUSY” with a meaning of “External PHY attached to this port is currently programmed –
port cannot be configured”.

• Blocking NC-SI commands that change link configurations: Firmware blocks any command
that changes link configurations that is coming from MNG/NC-SI/PLDM. For NC-SI, “Set Link” and
“Get Link” commands are blocked and return with response code = 0x1 (command failed) and the
reason code is “channel not ready” – 0x0003.

• Blocking answers to PLDM sensors that need access to the PHY: Firmware blocks any
response to PLDM sensor that require access to the PHY that is being loading or its NVM being
programmed. This may include PLDM thermal sensor, power plug or Health sensor, which needs
direct reading from the PHY. For such sensors, answer is “ERROR_NOT_READY” - (0x04).

613875-009 199

Intel® Ethernet Controller E810 Datasheet
Interconnects

• Blocking RDE operations that change link configurations: Firmware blocks RDE operations
that change link configurations targeting ports that mapped into a PHY node whose FW is currently
loading or its NVM currently being updated. The blocking is by returning “NOT_READY” answer to
the RDEOperationInit command. Any other RDE command later in the process should always
succeed. If a PHY NVM update or PHY FW load is received after RDEOperationInit command was
answered, FW responds with EBUSY to the admin command request. The software might respond
to EBUSY with waiting and re-trying the PHY NVM programming or the PHY FW load. The waiting for
the RDE task to complete is done in software, before the PHY NVM update or PHY FW load is
starting, as the RDE task is relatively short. Note that this is true for both GET and PUT tasks.

• Blocking any access using topology I2C/MDIO access commands to the external PHY:
Firmware blocks any access to the external PHY, via I2C or MDIO. It returns “EBUSY” error, to “Read
I2C”, “Write I2C”, “Read MDIO” and “Write MDIO” commands, when the access is done to the
external PHY which is currently programmed. In addition, when the “context” field of those
commands is “direct” or “address override”, FW cannot know the exact device that is accessed and
the access is blocked with “EBUSY” during external PHY loading or programming.

• Blocking any GPIO that controls the loaded/programmed PHY: Firmware blocks “Set GPIO”,
when the GPIO resets the loaded/programmed PHY. Any GPIO connected via the netlist in any way
to the PHY and is defined as the reset signal to the PHY that SW attempts to configure through any
Set GPIO mechanism (Set GPIO or Set GPIO by Function) shall be blocked.

• Blocking any direct access using “Neighbor Device Request” command: Direct access to
I2C or MDIO, e.g. via “Neighbor Device Request” command is blocked during the time that the
external PHY is loaded or programmed. In order to simplify firmware implementation, firmware
blocks any access to IO widget via “Neighbor Device Request” command during the time that the
external PHY is loaded or programmed. Firmware responds with EBUSY when it blocks “Neighbor
Device Request” command due to external PHY being loaded or its NVM being programmed.

3.3.8 Topology Netlist

This section defines the structure of the topology netlist module of the NVM and the mezzanine ID
EEPROM. The module begins with a header followed by DWord aligned blocks describing the netlist
nodes in the following order: PHY Nodes, GPIO Controller Nodes, MUX Controller Nodes, LED Controller
Nodes, LED Nodes, Temperature Sensor Nodes, ID EEPROM Node, Cage Nodes, and Mezzanine
Connector Nodes.

For each of the nodes the netlist contains a block with separate sections dedicated to different features
of the node. Presence of certain sections depends on the node type.

Note: This section defines the topology netlist for several products, therefore some entries include
descriptions of values that are not supported in the current product. Those values are usually
marked in the Magenta color.

Intel® Ethernet Controller E810 Datasheet
Interconnects

200 613875-009

3.3.8.1 Topology Netlist Header

This section describes the length of the Topology Netlist Section and the number of nodes it holds.

Netlist Identifier Block:

Word Offset Description Section
Reference

0x0000 Module Length 3.3.8.1.1

0x0001 Node Count 3.3.8.1.2

0x0002 Netlist Map Version and CRC 3.3.8.1.3

0x0003 Netlist Version 3.3.8.1.4

0x0004 + n*2
(0x0004 for n=0)

Node Handle (for Node 0) 3.3.8.1.5

0x0005 + n*2
(0x0005 for n=0)

Node Block Offset (for Node 0) 3.3.8.1.6

0x0004 + n*2
(0x0006 for n =1)

Node Handle (for Node 1) 3.3.8.1.5

0x0005 + n*2
(0x0007 for n =1)

Node Block Offset (for Node 1) 3.3.8.1.6

...

0x0004 + (Node
Count - 1)*2

Node Handle for last node (n = Node Count -1) 3.3.8.1.5

0x0005 + (Node
Count - 1)*2

Node Block Offset for last node (n = Node Count -1) 3.3.8.1.6

0x0004 + Node
Count*2

First Word (Offset 0x0) of the Netlist Identifier Block

...

0x0033 + Node
Count*2

Last Word (0ffset 0x2F) of the Netlist Identifier Block 3.3.8.1.30

Word Offset Description Section
Reference

0x0000 Module ID - Netlist Identifier Block 3.3.8.1.7

0x0001 Module Length - Netlist Identifier Block 3.3.8.1.8

0x0002 Base Release Version - Major Low Word- Netlist Identifier Block 3.3.8.1.9

0x0003 Base Release Version - Major High Word - Netlist Identifier Block 3.3.8.1.10

0x0004 Base Release Version - Minor Low Word - Netlist Identifier Block 3.3.8.1.11

0x0005 Base Release Version - Minor High Word - Netlist Identifier Block 3.3.8.1.12

0x0006 Base Release Version: Type Low Word - Netlist Identifier Block 3.3.8.1.13

0x0007 Base Release Version: Type High Word - Netlist Identifier Block 3.3.8.1.14

0x0008 Base Release Version: Revision Low Word - Netlist Identifier Block 3.3.8.1.15

0x0009 Base Release Version: Revision High Word - Netlist Identifier Block 3.3.8.1.16

0x000A - 0x0019 Netlist Binary Hash Word - Netlist Identifier Block 3.3.8.1.17

0x001A Netlist Origin Flags: Low - Netlist Identifier Block 3.3.8.1.18

0x001B Netlist Origin Flags: High - Netlist Identifier Block 3.3.8.1.19

613875-009 201

Intel® Ethernet Controller E810 Datasheet
Interconnects

The section is not accessible through the GETNODEATTR action.

3.3.8.1.1 Module Length (0x0000)

3.3.8.1.2 Node Count (0x0001)

3.3.8.1.3 Netlist Map Version and CRC (0x0002)

0x001C Netlist Modification Date: Year - Netlist Identifier Block 3.3.8.1.20

0x001D Netlist Modification Date: Day/Month - Netlist Identifier Block 3.3.8.1.21

0x001E Netlist Modification Date: Time - Netlist Identifier Block 3.3.8.1.22

0x001F ETT Version Used for Netlist Compile: Major - Netlist Identifier Block 3.3.8.1.23

0x0020 ETT Version Used for Netlist Compile: Minor - Netlist Identifier Block 3.3.8.1.24

0x0021 ETT Version Used for Netlist Compile: Revision - Netlist Identifier Block 3.3.8.1.25

0x0022 ETT Version Used for Netlist Compile: Patch - Netlist Identifier Block 3.3.8.1.26

0x0023 - 0x002C Full git Netlist SHA-1 Hash Word - Netlist Identifier Block 3.3.8.1.27

0x002D Customer IANA: Low Word - Netlist Identifier Block 3.3.8.1.28

0x002E Customer IANA: High Word - Netlist Identifier Block 3.3.8.1.29

0x002F Customer Netlist Version Word - Netlist Identifier Block 3.3.8.1.30

Bits Field Name Default
NVM Value Description

15:0 Module Length Module length in double words.
Does not include the first DWord that contains the Module Length field itself and the Node
Count field.

Bits Field Name Default
NVM Value Description

15:12 Netlist Version The version of the Netlist.
This field changes when the content of a tracked netlist changes, In other words, the
values of some of the fields in the netlist change. It reflects the short hash of the GIT
commit corresponding with the last change.
This 4-bit field is added as LSB [3:0] to the 16 bits Netlist Version field below
(Section 3.3.8.1.4) to form a 20-bit Netlist Version field.

11:10 Reserved Reserved.

9:0 Node Count The number of nodes captured in the topology netlist.

Bits Field Name Default
NVM Value Description

15:8 Netlist Map Version 0x01 The version of the netlist field definition.
This field changes every time there is a change in the definition of the netlist, like
fields, structures, or nodes are added, removed, or modified.

7:0 CRC8 CRC-8-CCITT:
Start Section -> Word offset = 0x0004
End Section -> Word offset = Module Length

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Interconnects

202 613875-009

3.3.8.1.4 Netlist Version (0x0003)

3.3.8.1.5 Node Handle (0x0004 + n*2)

3.3.8.1.6 Node Block Offset (0x0005 + n*2)

Note: The next nodes are referenced with Netlist Identifier Block offset, which is equal to Node
Block Offset + 0x0004 + NodeCount * 2.

3.3.8.1.7 Module ID - Netlist Identifier Block Offset + 0x0000

3.3.8.1.8 Module Length - Netlist Identifier Block Offset + 0x0001

Bits Field Name Default
NVM Value Description

15:0 Netlist Version 1 The version of the netlist.
This field changes when the content of a tracked netlist changes. That is, the values of
some of the fields in the netlist change. It reflects the short hash of the GIT commit
corresponding with the last change.
This field is added as MSB [19:4] to the 4-bit Netlist Version field from Section 3.3.8.1.2
to form a 20-bit Netlist Version field.

Bits Field Name Default
NVM Value Description

15:10 Reserved Reserved.

9:0 Node Handle Unique identifier of the node in the topology.
Matches the Node Handle field inside the corresponding Node Header Section. See
Section 3.3.8.2.2.

Bits Field Name Default
NVM Value Description

15:0 Node Block Offset The word offset of the node section relative to the beginning of the module.

Bits Field Name Default
NVM Value Description

15:0 Module ID 0x0000 Module ID.

Bits Field Name Default
NVM Value Description

15:0 Module Length 0x0000 Module length in double words.
Does not include the Module Length field.

613875-009 203

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.1.9 Base Release Version: Major Low Word - Netlist Identifier
Block Offset + 0x0002

3.3.8.1.10 Base Release Version: Major High Word - Netlist Identifier
Block Offset + 0x0003

3.3.8.1.11 Base Release Version: Minor Low Word - Netlist Identifier
Block Offset + 0x0004

3.3.8.1.12 Base Release Version: Minor High Word - Netlist Identifier
Block Offset + 0x0005

3.3.8.1.13 Base Release Version: Type Low Word - Netlist Identifier
Block Offset + 0x0006

Bits Field Name Default
NVM Value Description

15:0 Base Release Version:
Major Low Word

0x0000 Low word of the Base Release version: Major value.
Stored in BCD (binary coded decimal). Similar to NVM version.

Bits Field Name Default
NVM Value Description

15:0 Base Release Version:
Major High Word

0x0000 High word of the Base Release version: Major value.
Stored in BCD (binary coded decimal). Similar to NVM version.

Bits Field Name Default
NVM Value Description

15:0 Base Release Version:
Minor Low Word

0x0000 Low word of the Base Release version: Minor value.
Stored in BCD (binary coded decimal). Similar to NVM version.

Bits Field Name Default
NVM Value Description

15:0 Base Release Version:
Minor High Word

0x0000 High word of the Base Release version: Minor value.
Stored in BCD (binary coded decimal). Similar to NVM version.

Bits Field Name Default
NVM Value Description

15:0 Base Release Version:
Type Low Word

0x0000 Low word of the Base Release version: Type value.
Each unique netlist from Intel has a different Type value.
Stored in BCD (binary coded decimal). Similar to NVM version.

Intel® Ethernet Controller E810 Datasheet
Interconnects

204 613875-009

3.3.8.1.14 Base Release Version: Type High Word - Netlist Identifier
Block Offset + 0x0007

3.3.8.1.15 Base Release Version: Revision Low Word - Netlist Identifier
Block Offset + 0x0008

3.3.8.1.16 Base Release Version: Revision High Word - Netlist
Identifier Block Offset + 0x0009

3.3.8.1.17 Netlist Binary Hash Word: Netlist Identifier Block Offset +
0x000A-0x0019

Bits Field Name Default
NVM Value Description

15:0 Base Release Version:
Type High Word

0x0000 High word of the Base Release version: Type value.
Each unique netlist from Intel will have a different Type value.
Stored in BCD (binary coded decimal). Similar to NVM version.

Bits Field Name Default
NVM Value Description

15:0 Base Release Version:
Revision Low Word

0x0000 Low word of the Base Release revision.
This is updated by ETT on any change to the template. Automatic by ETT.
Note: A value of 0 in the Revision field means that this is a draft/pre-production

netlist/ Otherwise, it is a published/production netlist.

Bits Field Name Default
NVM Value Description

15:0 Base Release Version:
Revision High Word

0x0000 High word of the Base Release revision.
This is updated by ETT on any change to the template. Automatic by ETT.
Note: A value of 0 in the Revision field means that this is a draft/pre-production

netlist/ Otherwise, it is a published/production netlist.

Bits Field Name Default
NVM Value Description

15:0 Hash Value of Netlist 0x0000 Hash of Netlist complied binary. Inserted by ETT.
It should be the SHA3 256 bit hash of the netlist where the Hash Field is set to all
zeros.
The binary hash should be calculated assuming that both the binary hash field and
the CRC8 field in the netlist header is zero. And once the binary hash is injected, the
CRC8 for the netlist header should be calculated as the final step for the netlist
binary compilation.

613875-009 205

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.1.18 Netlist Origin Flags Low: Netlist Identifier Block Offset +
0x001A

3.3.8.1.19 Netlist Origin Flags High: Netlist Identifier Block Offset +
0x001B

3.3.8.1.20 Netlist Modification Date: Year - Netlist Identifier Block
Offset + 0x001C

3.3.8.1.21 Netlist Modification Date: Day/Month - Netlist Identifier
Block Offset + 0x001D

Bits Field Name Default
NVM Value Description

15:3 Reserved 0x0000 Reserved.

2 Intel Created Custom 0b = Not custom.
1b = Intel-created net for use with a customer netlist by OEM.

1 Intel Factory Created 0b = Not created by Intel factory.
1b = Intel factory-created net for use as a reference netlist.

0 Netlist Origin 0 0b= Intel-created and unmodified by customer.
1b= Customer modified netlist. ETT must set this bit on any customer change of

the netlist.

Bits Field Name Default
NVM Value Description

15:0 Reserved 0x0000 Reserved.

Bits Field Name Default
NVM Value Description

15:0 Netlist Modification
Date: Year

0x0000 Year of the last netlist modification in BCD (binary coded decimal).
Set by ETT on any Intel or customer modification of the netlist.
Example:

0x2019 = 2019.

Bits Field Name Default
NVM Value Description

15:8 Netlist Modification
Date: Day

0x00 Day of the month of last netlist modification in BCD (binary coded decimal).
Set by ETT on any Intel or customer modification of the netlist.
Example:

0x20 = 20th day of the month.

7:0 Netlist Modification
Date: Month

0x00 Numerical representation of the Month of last netlist modification in BCD (binary
coded decimal).
Set by ETT on any Intel or customer modification of the netlist.
Example:

0x11 = the 11th months, which is November.

Intel® Ethernet Controller E810 Datasheet
Interconnects

206 613875-009

3.3.8.1.22 Netlist Modification Date: Time - Netlist Identifier Block
Offset + 0x001E

3.3.8.1.23 ETT Version Used for Netlist Compile: Major - Netlist
Identifier Block Offset + 0x001F

3.3.8.1.24 ETT Version Used for Netlist Compile: Minor - Netlist
Identifier Block Offset + 0x0020

3.3.8.1.25 ETT Version Used for Netlist Compile: Revision - Netlist
Identifier Block Offset + 0x0021

3.3.8.1.26 ETT Version Used for Netlist Compile: Patch - Netlist
Identifier Block Offset +0x0022

Bits Field Name Default
NVM Value Description

15:0 Netlist Modification
Date: Time

0x0000 Time of the last netlist modification in BCD (binary coded decimal).
Set by ETT on any Intel or customer modification of the netlist.
Example:

0x1300 is 1:00 pm.

Bits Field Name Default
NVM Value Description

15:0 ETT Major Version Used
for Netlist Compile

0x0000 Major version of ETT used to compile the most recent version of the netlist.
This should be inserted and updated on any netlist change by Intel or customer.

Bits Field Name Default
NVM Value Description

15:0 ETT Minor Version Used
for Netlist Compile

0x0000 Minor version of ETT used to compile the most recent version of the netlist.
This should be inserted and updated on any netlist change by Intel or customer.

Bits Field Name Default
NVM Value Description

15:0 ETT Revision Version Used
for Netlist Compile

0x0000 Revision version of ETT used to compile the most recent version of the netlist.
This should be inserted and updated on any netlist change by Intel or
customer.

Bits Field Name Default
NVM Value Description

15:0 ETT Patch Version Used
for Netlist Compile

0x0000 Patch version of ETT used to compile the most recent version of the netlist.
This should be inserted and updated on any netlist change by Intel or customer.

613875-009 207

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.1.27 Full git Netlist SHA-1 Hash Word - Netlist Identifier Block
Offset + 0x0023-0x002C

3.3.8.1.28 Customer IANA: Low Word - Netlist Identifier Block Offset +
0x002D

3.3.8.1.29 Customer IANA: High Word - Netlist Identifier Block Offset
+ 0x002E

3.3.8.1.30 Customer Netlist Version Word - Netlist Identifier Block
Offset + 0x0002F

Bits Field Name Default
NVM Value Description

15:0 Full Git Hash Value 0x0000 Full git commit hash of netlist.
Should be set by ETT when committing changes to git.

Bits Field Name Default
NVM Value Description

15:0 Customer IANA - Low Word 0x0157 Customer IANA low.
Intel to set Intel IANA 0x0157. Customer to fill in their IANA.

Bits Field Name Default
NVM Value Description

15:0 Customer IANA - High Word 0x0000 Customer IANA high.
Intel to set Intel IANA 0x0000. Customer to fill in their IANA.

Bits Field Name Default
NVM Value Description

15:0 Customer Netlist Version 0x0000 Customer version that customer can set in customer ETT.
Template images from Intel would set this to 0.

Intel® Ethernet Controller E810 Datasheet
Interconnects

208 613875-009

3.3.8.2 Node Header Section

This section describes the structure of the Node Header Section, detailing the node type, node block
length, node handle and node part number. Based on node type where applicable, the number of I/Os,
port options, Module Qualification options, firmware download options and conflict resolution options
are also defined.

The section is accessible through the GETNODEATTR action starting at the DWord-aligned Attribute ID
offset 0x0000. The Node Address within Attribute ID 0x0001 can also be modified through the
SETNODEATTR action.

3.3.8.2.1 Node Type and Section Length (0x0000)

Word Offset Description Section
Reference

0x0000 Node Type and Node Section Length 3.3.8.2.1

0x0001 Node Handle 3.3.8.2.2

0x0002 Node Address 3.3.8.2.3

0x0003 Node Part Number and Node Options 3.3.8.2.4

0x0004 Node I/O Section Pointer 3.3.8.2.5

0x0005 Node Port Options Section Pointer 3.3.8.2.6

0x0006 Node PMD Line Analog Section Pointer 3.3.8.2.7

0x0007 Node PMD Host Analog Section Pointer 3.3.8.2.8

Bits Field Name Default
NVM Value Description

15:12 Node Type Defines the node type.
Valid values are:

0x00 = PHY device
0x01 = GPIO Controller (Port Expander)
0x02 = MUX Controller (Bus Expander)
0x03 = LED Controller (LED Driver)
0x04 = LED
0x05 = Temperature Sensor
0x06 = Cage (SFP, SFP28, QSFP, QSFP28)
0x07 = Mezzanine Connector
0x08 = ID EEPROM
0x09 = Clock Controller (DPLL/Synthesizer/Divider)
0x0A = Clock MUX
0x0B = GPS device
0x0C-0xFF = Reserved

11:0 Node Section Length Node section length in double words.
Does not include the first double word, the Node Section Length field itself.

613875-009 209

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.2.2 Node Handle (0x0001)

3.3.8.2.3 Node Address (0x0002)

Bits Field Name Default
NVM Value Description

15:10 Reserved Reserved.

9:0 Node Handle Unique identifier of the node in the topology.
Values must be assigned sequentially from 0 to Node Count - 1.

Bit 9 = Board Type — Identifies if the node is on the motherboard or a mezzanine card.
0b = LOM
1b = Mezzanine Card

For LOM:
Bit 8:0 = Unique node identifier within the context of the motherboard.

For Mezzanine Cards:
Bit 8:6 = Mezzanine card number. Populated by firmware during the mezzanine

discovery flow. The value in the mezzanine topology is always 3’b0.
Bit 5:0 = Unique node identifier within the context of the mezzanine card.

Bits Field Name Default
NVM Value Description

15:14 Module Max Power Hi Module Max Power [5:4] - The upper two bits of Module Max Power.
The field represents the maximum allowed module power with a 0.5 W resolution.
Valid for Cage nodes only and reserved for all other node types. Note: The value of
Module Max Power shall be greater than or equal to 2 (1.0 W) for SFP cage nodes
and 3 (1.5 W) for QSFP cages.

13:12 Bus Address Type Defines whether the bus address is absolute or relative to the mezzanine card
(CEI) slot.

00b = Reserved
01b = Absolute address. The uniqueness of the address is ensured by the

topology.
10b = Relative address. The address must be updated on board initialization to

avoid conflicts.
11b = Reserved.

Not applicable to LED nodes.

11:10 Bus Type Defines the bus type.
Valid options are:

00b = SoC internal bus
01b = I2C
10b = MDIO
11b = Reserved

Not applicable to LED nodes.

Intel® Ethernet Controller E810 Datasheet
Interconnects

210 613875-009

3.3.8.2.4 Node Part Number and Node Options (0x0003)

9:0 Bus Address For all node types other than LED:
The bus address that the node can be accessed at. The range of valid addresses
depends on the bus type.

For SoC internal bus, the assignment is as follows:
0x000 = PHY Core 0
0x001 = PHY Core 1
0x002 = PHY Core 2
0x003 = I/O Widget
0x004-0x3FF - Reserved

For I2C, the field represents the 7-bit or 10-bit address of the I2C attached node:
0x000-0x07F =For 7-bit addressable I2C devices, the 3 high MSB should be set to

0x0.
0x000-0x3FF =For 10-bit addressable I2C devices.

For MDIO, the field represents the 5-bit Port Address:
0x000-0x01F = 5bit MDIO Port Address.
0x020-0x3FF = Reserved.

Bits Field Name Default
NVM Value Description

15:8 Node Part Number The part number assigned to each of the POR devices supported by the
topology and link management.
The defined part numbers are:

0x00 = I/O Widget (Node type - GPIO controller)
0x10 = CEI Connector (Node type - mezzanine connector)
0x11 = SFP+ Cage (Node type - Cage)
0x12 = SFP28 Cage (Node type - Cage)
0x13 = QSFP+ Cage (Node type - Cage)
0x14 = QSFP28 Cage (Node type - Cage)
0x15 = Monochrome LED (Node type - LED)
0x16 = RGB LED (Node type - LED)
0x20 = PCA9545A \ PCA9546A (Node type - MUX controller)
0x21 = PCA9575 (Node type - GPIO controller)
0x22 = PCA9685 (Node type - LED controller)
0x23 = PCA9552 (Node type - LED controller)
0x24 = ZL30632/ZL80032 (Node type - Clock Controller)
0x25 = SI5383 (Node type - Clock Controller)
0x30 = PHY Core (Node type - PHY)
0x31 = C827 (Node type - PHY)
0x32 = X557-AT4 (Node type - PHY) (Not supported)
0x33 = 88E1543 (Node type - PHY)
0x34 = 88E1512 (Node type - PHY)
0x35 = 88E1514 (Node type - PHY)
0x36 = E810 internal PHY (Node type - PHY)
0x37 = X557-AT2 (Node type - PHY) (Not supported)
0x43 = AT24C32 (ID EEPROM 32K bit) (Node type - ID EEPROM)
0x44 = SFPx Module Temperature Sensor
0x45 = QSFPx Module Temperature Sensor
0x47 = Generic Clock MUX
0x48 = Generic GPS
All other values are reserved.

Bits Field Name Default
NVM Value Description

613875-009 211

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.2.5 Node I/O Section Pointer (0x0004)

7:4 Module Max Power Lo Module Max Power [3:0] - The lower four bits of Module Max Power.
The field represents the maximum allowed module power with a 0.5 W
resolution.
Valid for Cage nodes only and reserved for all other node types. Note: The
value of Module Max Power shall be greater than or equal to 2 (1.0 W) for
SFP cage nodes and 3 (1.5 W) for QSFP cages.

3 Module Qualification Enable Module qualification enable.
0b = Pluggable module qualification is disabled for the cage.
1b = Pluggable module qualification is enabled for the cage.

Valid for Cage nodes only. Reserved for all other node types.

2 Innermost PHY Defines whether the PHY is the innermost PHY:
0b = The PHY has host side PMD connections to another PHY node.
1b = The PHY has host side connections to the MAC.

Valid for PHY nodes only. Reserved for all other node types.

1 Auto Conflict Resolution Auto conflict resolution.
depending on the node type, enables automatic Topology or Media Conflict
resolution.
Applicable to Innermost PHY and Cage nodes only:
• When set on an Innermost PHY node, it enables automatic Topology

Conflict resolution.
• When set on a Cage node, it enables automatic Media Conflict resolution.

Valid for PHY and Cage nodes only. Reserved for all other node types.

0 FW Download Enable Firmware download enable.
0b = The PHY load its firmware from a dedicated EEPROM/Flash after reset.
1b = The PHY firmware should be downloaded from NVM at initialization

Valid for PHY nodes only. Reserved for all other node types.

Bits Field Name Default
NVM Value Description

15:12 I/O Count The number of host side I/O connections of the node.
This defines the length of the Node I/O Section.

11:0 Node I/O Section Offset The word offset of the Node I/O Section relative to the beginning of the node
section.

Bits Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Interconnects

212 613875-009

3.3.8.2.6 Node Port Options Section Pointer (0x0005)

3.3.8.2.7 Node PMD Line Analog Section Pointer (0x0006)

3.3.8.2.8 Node PMD Host Analog Section Pointer (0x0007)

Bits Field Name Default
NVM Value Description

15:12 Port Option Count Defines the number of Port Options supported by the node.
This defines the number Node PHY Port Options. The LED node and
Thermal sensor LED inherit the number of Port Options from their
Parent PHY node.
Not applicable to nodes of type other than PHY. For those nodes this
field is reserved and must be 0x0.

11:0 Node Port Options Section Offset For PHY nodes:
The word offset of the Node Port Options Section relative to the
beginning of the node section.

For LED nodes:
The word offset of the first Node LED Configuration Section relative to
the beginning of the node section.

For Temperature Sensor nodes:
The word offset of the Node Thermal Configuration Section relative to
the beginning of the node section.

Not applicable to any other node types.

Bits Field Name Default
NVM Value Description

15:12 Line Lane Count The number of line side lanes on the PHY node.

11:0 Node PMD Line Analog Section Offset The word offset of the Node PMD Line Analog Section relative to the
beginning of the node section.

Bits Field Name Default
NVM Value Description

15:12 Host Lane Count The number of host side lanes on the PHY node.

11:0 Node PMD Host Analog Section Offset The word offset of the Node PMD Host Analog Section relative to
the beginning of the node section.

613875-009 213

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.3 Node I/O Section

This section describes the structure of the Node I/O Section, detailing the I/O connections of a topology
node.

The section is accessible through the GETNODEATTR action starting at the DWord-aligned Attribute ID
offset 0x2000.

3.3.8.3.1 Driving Node Handle (0x0000 + n*2)

3.3.8.3.2 I/O Type and Driving Interface (0x0001 + n*2)

Word Offset Description Section
Reference

0x0000 + n*2 Driving Node Handle 3.3.8.3.1

0x0001 + n*2 I/O Type and Driving Interface 3.3.8.3.2

Bits Field Name Default
NVM Value Description

15:10 Driving I/O Number The number of the interface with the specified I/O Type on the device pointed to by
Driving Node Handle to which the connection leads.

9:0 Driving Node Handle Unique identifier of the node in the topology to which the I/O is connected.

Bits Field Name Default
NVM Value Description

15 Driven 1b Defines if the I/O is strapped to a certain value or is driven by another node
in the topology.

0b = The I/O is strapped to a value defined by the Value field.
1b = The I/O is driven by the device identified by the Driving Node Handle.

Only applicable to I/Os with I/O Type of GPIO and MDIO Address.
Note: For I/Os that use inverted I/O function (e.g. RESET_N or INT_N) and

the I/O is defined as “Driven”, it is driven to the inverse of the Value
field.

14 Value For driven I/Os, defines the default value.
For strapped I/Os, defines the static value of the I/O is configured to.
Only applicable to I/Os with I/O Type of GPIO and MDIO Address.

13 Polarity Polarity configuration for the I/O.
0b = The signal is active low.
1b = The signal is active high.

Only applicable to I/Os with I/O Type of GPIO.

12:11 Interrupt Interrupt configuration for the I/O.
00b = No interrupt.
01b = Interrupt on rising edge.
10b = Interrupt on falling edge.
11b = Interrupt on change (rising or falling edge).

Only applicable to I/Os with I/O Type of GPIO.

Intel® Ethernet Controller E810 Datasheet
Interconnects

214 613875-009

The I/O connections are grouped by I/O Type. For a given I/O connection, on the node describing the
connection, the I/O Number/Function is used to identify the interface within the group. On the node
identified by the Driving Node Handle, the driving I/O (located within the group with matching I/O
Type) is pointed to by the Driving I/O Number.

10:8 I2C/MDIO Speed The bus speed.
For I2C, the I/O Widget supports the following speeds:

000b = 100 kHz
001b = 400 kHz
010b = 1 MHz
All other values are reserved.

For MDIO, the I/O Widget supports the following speeds:
000b = 2.441 MHz
All other values are reserved.

Only applicable to I/Os with I/O Type of I2C Bus and MDIO Bus.

7:5 I/O Type The type of the I/O.
The defined I/O types are:

000b = PMD
001b = I2C Bus
010b = MDIO Bus
011b = GPIO
100b = MDIO Address
101b = Clk In
110b = Clk Out
111b = Reserved

4:0 I/O Function / I/O Number I/O Function:
For I/Os with I/O Type of GPIO defines the specific use of the GPIO

0x00 = GPIO
0x01 = RESET_N
0x02 = INT_N
0x03 = PRESENT_N
0x04 = TX_DISABLE
0x05 = MODSEL_N
0x06 = LPMODE
0x07 = TX_FAULT
0x08 = RX_LOSS
0x09 = RS0
0x0A = RS1
0x0B = EEPROM_WP
0x0C = LED/LED.Red
0x0D = LED.Green
0x0E = LED.Blue
0x0F-0x13 = Reserved
0x14 = Clk Dir
0x15 = Clk Out En
0x16 = Clk In Sel
0x17 = Safe Boot N
0x18-0x1F = Reserved

I/O Number:
For I/Os with I/O Type of PMD, I2C Bus, MDIO Bus, and MDIO Address,
defines the index of the I/O on the node.

Bits Field Name Default
NVM Value Description

613875-009 215

Intel® Ethernet Controller E810 Datasheet
Interconnects

Figure 3-22. I/O Numbering Convention

Node

PRSNT_N
RESET_N
INT_N
...

PMD[0]
PMD[1]
PMD[2]
PMD[3]

MDIO[0]

I2C[0]

ADDR[0]
ADDR[1]
ADDR[2]
ADDR[3]
ADDR[4]

I2C[0]
I2C[1]
...

ADDR[0]
ADDR[1]
ADDR[2]
ADDR[3]
ADDR[4]

PMD[0]
PMD[1]
PMD[2]
PMD[3]
PMD[4]
PMD[5]
PMD[6]
PMD[7]

MDIO[0]
MDIO[1]
...

GPIO[0]
GPIO[1]
GPIO[2]
...

I/O
N

um
ber

I/O
Type

I/O
N

um
ber

I/O
N

um
I/O

N
um

I/O
Function

Driving
I/O

N
um

I/O
Type

Driving
I/O

N
um

DrI/O
N

um
DrI/O

N
um

DrI/O
N

um

Node Driving Node Handle

Node I/O
Section

Intel® Ethernet Controller E810 Datasheet
Interconnects

216 613875-009

3.3.8.4 Node Port Option Pointer Section

This section describes the structure of the Node Port Option Pointer Section, detailing the available Port
Options.

The section is not accessible through the GETNODEATTR action.

3.3.8.4.1 Node Port Option Pointer (0x0000 + n)

3.3.8.5 Node Port Option Header Section

This section describes the structure of the Node Port Option Header Section, detailing the available Port
Options.

The section is not accessible through the GETNODEATTR action.

3.3.8.5.1 Adaptive NVM Global (per Port Option) Super Configuration
ID (0x0000)

Word Offset Description Section
Reference

0x0000 + n Port Option Pointer 3.3.8.4.1

Bits Field Name Default
NVM Value Description

15 Invalid This bit marks the port option as valid or invalid,
0b = Port option is valid.
1b = Port option is invalid.

14:12 Reserved Reserved.

11:0 Port Option Pointer The Port Option’s word offset relative to the beginning of the node section.

Word Offset Description Section
Reference

0x0000 Adaptive NVM Global (per Port Option) Super Configuration ID 3.3.8.5.1

0x0001 Adaptive NVM PHY Configuration ID 3.3.8.5.2

0x0002 Minimum SKU 3.3.8.5.3

0x0003 Adaptive NVM PF-to-Port mapping Configuration ID 3.3.8.5.4

0x0004 PMD Count and PHY Capabilities [0] Pointer 3.3.8.5.5

0x0005 + n - 1 PHY Capabilities [n] Pointer 3.3.8.5.6

Bits Field Name Default
NVM Value Description

15:0 Adaptive NVM Global
(per port option) Super
Configuration ID

Global adaptive NVM Super Configuration ID [15:0].
Used to identify the adaptive NVM configuration needed to apply to configure the
controller for this Port Option (E810 port mode - 2/4/8 ports; DCB Configuration -
pipe monitors, RPB thresholds, VSI/VEB allocation, and so on). See
Section 3.3.3.3.

613875-009 217

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.5.2 Adaptive NVM PHY (per Innermost PHY) Super
Configuration ID (0x0001)

3.3.8.5.3 Minimum SKU (0x0002)

3.3.8.5.4 Adaptive NVM PF-to-Port Mapping Configuration ID
(0x0003)

3.3.8.5.5 PMD Count and PHY Capabilities Pointer (0x0004)

Bits Field Name Default
NVM Value Description

15:0 Adaptive NVMPHY
Configuration ID
(per Innermost PHY)

Adaptive NVM PHY Configuration ID[15:0].
Used to identify the adaptive NVM configuration ID needed to apply to configure the
PHY for the innermost PHY at this Port Option). See Section 3.3.3.3.

Bits Field Name Default
NVM Value Description

15:12 Adaptive NVM RDMA
& MTU Global Super
Configuration ID

Adaptive NVM RDMA & MTU Global Super Configuration ID - Used to identify the
adaptive NVM configuration ID for super feature ID (0xF0FD). This super feature
controls the RDMA setting together with the MTU setting. The value here must
match the number of ports defined in the port option.

11:8 Reserved Reserved.

7 Required Lane Speed Maximum lane speed required.
0b = 50G serial required.
1b = 25G serial required.

6:4 Reserved Reserved.

3:2 Required Bandwidth Specificities the Required bandwidth for this port option:
00b = 200 Gb/s required.
01b = 100 Gb/s required.
10b = 50 Gb/s required.
11b = 25 Gb/s required.

1:0 Required Ports Number of ports required:
00b = 8 ports required.
01b = 4 ports required.
10b = 2 ports required.
11b = 1 port required.

Bits Field Name Default
NVM Value Description

15:0 Adaptive NVM PF to
Port Mapping
Configuration ID

This is the adaptive NVM configuration ID that selects the relevant PF-to-port
mapping using the adaptive NVM PF-to-port mapping feature ID.

Bits Field Name Default
NVM Value Description

15:12 PMD Count The number of PMDs within the Port Option.

11:0 PHY Capabilities [0] Pointer The PHY Capabilities Section’s word offset relative to the beginning of the
Node Port Option Header Section.

Intel® Ethernet Controller E810 Datasheet
Interconnects

218 613875-009

3.3.8.5.6 Capabilities Pointer (0x0005 + n - 1)

3.3.8.6 Node PHY Capabilities Section

This section describes the structure of the Node PHY Capabilities Section, detailing the PHY capabilities
for a PHY for a given Port Option. It is used within the PHY node, as described in Section 3.3.8.18.

The section is accessible through the GETNODEATTR action starting at the DWord-aligned Attribute ID
offset 0x4000. Attribute ID 0x4006-4009 (Line Side PHY Capabilities 4-7) are only defined for PMDs
with the Outermost PMD bit set.

Bits Field Name Default
NVM Value Description

15:12 Reserved Reserved.

11:0 PHY Capabilities [n] Pointer The PHY Capabilities Section’s word offset relative to the beginning of the
Node Port Option Header Section.

Word Offset Description Section
Reference

0x0000 Per-Port Adaptive NVM Configuration ID 3.3.8.6.1

0x0001 Per-Function Adaptive NVM Configuration ID 3.3.8.6.2

0x0002 Per-Port/Function Adaptive NVM Feature ID 3.3.8.6.3

0x0003 PMD Width 3.3.8.6.4

0x0004 Link Options 0 3.3.8.6.5

0x0005 Link Options 1 3.3.8.6.6

0x0006 EEE Options 0 3.3.8.6.7

0x0007 EEE Options 1 3.3.8.6.8

0x0008 Host Side PMD Capabilities 0 3.3.8.6.9

0x0009 Host Side PMD Capabilities 1 3.3.8.6.10

0x000A Host Side PMD Capabilities 2 3.3.8.6.11

0x000B Host Side PMD Capabilities 3 3.3.8.6.12

0x000C Line Side PHY Capabilities (PHY Types) 0 3.3.8.6.13

0x000D Line Side PHY Capabilities (PHY Types) 1 3.3.8.6.14

0x000E Line Side PHY Capabilities (PHY Types) 2 3.3.8.6.15

0x000F Line Side PHY Capabilities (PHY Types) 3 3.3.8.6.16

0x0010 Line Side PHY Capabilities (PHY Types) 4 3.3.8.6.17

0x0011 Line Side PHY Capabilities (PHY Types) 5 3.3.8.6.18

0x0012 Line Side PHY Capabilities (PHY Types) 6 3.3.8.6.19

0x0013 Line Side PHY Capabilities (PHY Types) 7 3.3.8.6.20

613875-009 219

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.6.1 Per-Port Adaptive NVM Configuration ID (0x0000)

3.3.8.6.2 Per-Function Adaptive NVM Configuration ID (0x0001)

3.3.8.6.3 Per-Port/Function Adaptive NVM Feature ID (0x0002)

3.3.8.6.4 PMD Width (0x0003)

Bits Field Name Default
NVM Value Description

15:0 Per Port Adaptive NVM
Configuration ID

Per port adaptive NVM Configuration ID [15:0].
Used to identify the adaptive NVM Configuration ID needed to apply to
configure the port associated with the PMD. The field applies to the Innermost
PHY node only and is reserved for all other nodes.

Bits Field Name Default
NVM Value Description

15:0 Per Function Adaptive
NVM Configuration ID

Per function adaptive NVM Configuration ID [15:0].
Used to identify the adaptive NVM feature needed to apply to configure the port
associated with the PMD (PF assignment). The field applies to the Innermost PHY
node only and is reserved for all other nodes.

Bits Field Name Default
NVM Value Description

15:8 Port Feature ID Port Feature ID.
Used to specify the adaptive NVM feature ID of the port.

7:0 Function Feature ID Function Feature ID.
Used to specify the adaptive NVM feature ID of the function.

Bits Field Name Default
NVM Value Description

15:12 Host PMD Width The number of lanes assigned to the Host side PMD.
The Host side PMD’s lanes will range from PHY Node Lane [Host PMD Lane 0] to PHY
Node Lane [Host PMD Lane 0 + Host PMD Width - 1].

11:8 Host PMD Lane 0 The number of the Host side PMD’s Lane 0 on the PHY Node.

7:4 Line PMD Width The number of lanes assigned to the Line side PMD.
The Line side PMD’s lanes will range from PHY Node Lane [Line PMD Lane 0] to PHY
Node Lane [Line PMD Lane 0 + Line PMD Width - 1].

3:0 Line PMD Lane 0 The number of the Line side PMD’s Lane 0 on the PHY Node.

Intel® Ethernet Controller E810 Datasheet
Interconnects

220 613875-009

3.3.8.6.5 Link Options 0 (0x0004)

Bits Field Name Default
NVM Value Description

15 Rx PAUSE Controls Link Flow control Rx PAUSE default for this link.
0b = Rx PAUSE is disabled by default.
1b = Rx PAUSE is enabled by default.

14 Tx PAUSE Controls Link Flow control Tx PAUSE default for this link.
0b = Tx PAUSE capability is disabled by default.
1b = Tx PAUSE capability is enabled by default.

13 AN Clause 37 Enable Controls Clause 37 auto-negotiation for the line side PMD.
0b = Clause 37 auto-negotiation is disabled.
1b = Clause 37 auto-negotiation is enabled.

12 AN Clause 73 Enable Controls Clause 73 auto-negotiation for the line side PMD.
0b = Clause 73 auto-negotiation is disabled.
1b = Clause 73 auto-negotiation is enabled.

11 AN Clause 28 Enable Controls Clause 28 auto-negotiation for the line side PMD.
0b = Clause 28 auto-negotiation is disabled.
1b = Clause 28 auto-negotiation is enabled.

10:8 Reserved Reserved.

7 CL74_ConFEC_Abl Controls KR FEC (Fire Code FEC) ability advertisement for 25G KR1/CR1.
0b = KR FEC is not supported.
1b = KR FEC is supported.

6 CL91_ConFEC_Abl Controls RS FEC ability advertisement for 25G KR1/CR1.
0b = RS FEC is not supported.
1b = RS FEC is supported.

5 Reserved Reserved.

4 RS FEC 544 Request Controls RS FEC 544 capability request for 25G/50G/100G KR/KR-S/KR1/CR/CR-
S/CR1.

0b = RS FEC is not requested.
1b = RS FEC is requested.

3 25G KR FEC Request Controls KR FEC (Fire Code FEC) capability request for 25G KR/KR-S/KR1/CR/CR-
S/CR1.

0b = KR FEC is not requested.
1b = KR FEC is requested.

2 RS FEC 528 Request Controls RS FEC 528 capability request for 25G KR/KR-S/KR1/CR/CR-S/CR1.
0b = RS FEC is not requested.
1b = RS FEC is requested.

1 10G KR FEC Request Controls FEC (Fire Code FEC) capability request for 10G KR.
0b = FEC is not requested.
1b = FEC is requested.

0 10G KR FEC Enable Controls FEC (Fire Code FEC) capability advertisement for 10G KR.
0b = FEC is disabled.
1b = FEC is enabled and is advertised.

613875-009 221

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.6.6 Link Options 1 (0x0005)

Bits Field Name Default
NVM Value Description

15:12 Max LPLU Speed Max LPLU speed.
Limits the maximum speed that can be enabled using Low Power Link Up (LPLU)
algorithm for BASE-T PHYs.

0x0 = 10M
0x1 = 100M
0x2 = 1G
0x3 = Reserved
0x4 = 5G
0x5 = 10G
0x6-0xF = Reserved

Note: This option is valid when LPLU is enabled (See bit 3 - LPLU enable).

11 Disable automatic Link
on Start-Up

This bit, when set, disables the automatic link on start-up.
When the port is defined as manageability port, the LESM ignores this bit and
tries to start the link anyway.

10 Reserved Reserved.

9 Flow Control ASM_DIR
Capability

Controls Link Flow control ASM_DIR (A6) ability to advertise.
0b = 0ASM_DIR is advertised as 0.
1b = ASM_DIR is advertised as 1.

8 Flow Control PAUSE
capability

Controls Link Flow control PAUSE (A5) ability to advertise.
0b = PAUSE is advertised as 0.
1b = PAUSE is advertised as 1.

7 PCS Enable 1b Controls the PCS of the PMD.
• PCS is disabled, the PHY is operating in a transparent re-timer mode.
• PCS is enabled.

6 LESM Auto FEC Enable 1b Controls the FEC options for the Link Establishment State Machine (LESM). This
option is valid, when the LESM is enabled.

0b = LESM uses the default FEC mode based on the current media.
1b = LESM automatically detects the link partner’s FEC type. This might include

FEC types not specifically supported by the spec.

5 LESM Enable 1b Controls the Link Establishment State Machine for the PMD.
0b = LESM is disabled.
1b = LESM is enabled.

4 Low Power Mode 0b Controls the Low Power Mode for the module.
0b = The device is allowed to operate at high power.
1b = The device must operate in low power mode. Pluggable modules are only

allowed to operate at their lowest power level.

3 LPLU Support Enable 0b Enables or disables the Low Power Link-up (LPLU) support for the PMD.
0b = LPLU support is disabled.
1b = LPLU support is enabled.

2 Host Lane Reversal
Enable

0b Controls lane reversal on the host side of the PMD.
0b = The lane order is normal.
1b = The lane order needs to be reversed.

1 Line Lane Reversal
Enable

0b Controls lane reversal on the line side of the PMD.
0b = The lane order is normal.
1b = The lane order needs to be reversed.

0 Outermost PMD Defines whether the PMD is the outermost PMD.
0b = The PMD has no outside of box connections.
1b = The PMD has outside of the box connection on the line side.

Intel® Ethernet Controller E810 Datasheet
Interconnects

222 613875-009

3.3.8.6.7 EEE Options 0 (0x0006)

3.3.8.6.8 EEE Options 1 (0x0007)

Bits Field Name Default
NVM Value Description

15:0 EEE_TWsysTX EEE_TWsysTX. See Section 5.3.1.

Bits Field Name Default
NVM Value Description

15:11 Reserved Reserved.

10 EEE Enable 100GBASE-KR2-PAM4 0b Controls the EEE functionality for 100GBASE-KR2-PAM4.
0b = EEE is disabled.
1b = EEE is enabled.

9 EEE Enable 100GBASE-KR4 0b Controls the EEE functionality for 100GBASE-KR4.
0b = EEE is disabled.
1b = EEE is enabled.

8 EEE Enable 50GBASE-KR-PAM4 0b Controls the EEE functionality for 50GBASE-KR-PAM4.
0b = EEE is disabled.
1b = EEE is enabled.

7 EEE Enable 50GBASE-KR2 0b Controls the EEE functionality for 50GBASE-KR2.
0b = EEE is disabled.
1b = EEE is enabled.

6 Reserved Reserved.

5 EEE Enable 25GBASE-KR 0b Controls the EEE functionality for 25GBASE-KR.
0b = EEE is disabled.
1b = EEE is enabled.

4 EEE Enable 10GBASE-KR 0b Controls the EEE functionality for 10GBASE-KR.
0b = EEE is disabled.
1b = EEE is enabled.

3 EEE Enable 1000BASE-KX 0b Controls the EEE functionality for 1000BASE-KX.
0b = EEE is disabled.
1b = EEE is enabled.

2 EEE Enable 10GBASE-T 0b Controls the EEE functionality for 10GBASE-T.
0b = EEE is disabled.
1b = EEE is enabled.

1 EEE Enable 1000BASE-T 0b Controls the EEE functionality for 1000BASE-T.
0b = EEE is disabled.
1b = EEE is enabled.

0 EEE Enable 100BASE-TX 0b Controls the EEE functionality for 100BASE-TX.
0b = EEE is disabled.
1b = EEE is enabled.

613875-009 223

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.6.9 Host Side PMD Capabilities 0 (0x0008)

Host-side PMD capabilities are mapped based on line side link speed.

3.3.8.6.10 Host Side PMD Capabilities 1 (0x0009)

Host-side PMD capabilities are mapped based on line side link speed.

Bits Field Name Default
NVM Value Description

15 50GBASE-KR2

14:13 Reserved Reserved.

12 25G-AUI-C2C

11 25GBASE-KR1

10 25GBASE-KR-S

9 25GBASE-KR

8 10G-SFI-C2C

7 10GBASE-KR/CR1

6 10G-SFI-DA

5 5GBASE-KR

4:3 Reserved Reserved.

2 1G-SGMII

1 1000BASE-KX

0 100M-SGMII

Bits Field Name Default
NVM Value Description

15:14 Reserved Reserved.

13 200G-AUI8

12 200G-AUI4

11 200GBASE-KR4-PAM4

10 100G-AUI2

9 Reserved Reserved.

8 100GBASE-KR2-PAM4

7 100GBASE-KP4-PAM4

6 100G-AUI4

5 100G-CAUI4

4 100GBASE-KR4

3 50G-AUI1

2 50GBASE-KR-PAM4

1 50G-AUI2

0 50G-LAUI2

Intel® Ethernet Controller E810 Datasheet
Interconnects

224 613875-009

3.3.8.6.11 Host Side PMD Capabilities 2 (0x000A)

Host-side PMD capabilities are mapped based on line side link speed.

3.3.8.6.12 Host Side PMD Capabilities 3 (0x000B)

Host-side PMD capabilities are mapped based on line side link speed.

3.3.8.6.13 Line Side PHY Capabilities (PHY Types) 0 (0x000C)

The following table defines the Line Side PHY Capabilities for the outermost PMD. If the Outermost PMD
bit is not set, the Line Side PHY Capabilities match the Host Side PHY Capabilities structure. See
Section 3.3.8.6.9.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15 10GBASE-LR

14 10GBASE-SR

13 10G-SFI-DA

12 10GBASE-T

11 5GBASE-KR

10 5GBASE-T

9:7 Reserved Reserved.

6 1G-SGMII

5 1000BASE-KX

4 1000BASE-LX

3 1000BASE-SX

2 1000BASE-T

1 100M-SGMII

0 100BASE-TX

613875-009 225

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.6.14 Line Side PHY Capabilities (PHY Types) 1 (0x000D)

The following table defines the Line Side PHY Capabilities for the outermost PMD. If the Outermost PMD
bit is not set, the Line Side PHY Capabilities match the Host Side PHY Capabilities structure. See
Section 3.3.8.6.10.

3.3.8.6.15 Line Side PHY Capabilities (PHY Types) 2 (0x000E)

The following table defines the Line Side PHY Capabilities for the outermost PMD. If the Outermost PMD
bit is not set, the Line Side PHY Capabilities match the Host Side PHY Capabilities structure. See
Section 3.3.8.6.11.

Bits Field Name Default
NVM Value Description

15:14 Reserved Reserved.

13 25G-AUI-C2C

12 25G-AUI-AOC/ACC

11 25GBASE-KR1

10 25GBASE-KR-S

9 25GBASE-KR

8 25GBASE-LR

7 25GBASE-SR

6 25GBASE-CR1

5 25GBASE-CR-S

4 25GBASE-CR

3 25GBASE-T

2 10G-SFI-C2C

1 10G-SFI-AOC/ACC

0 10GBASE-KR/CR1

Bits Field Name Default
NVM Value Description

15 50GBASE-LR

14 50GBASE-FR

13 50GBASE-SR

12 50GBASE-CP

11 50G-AUI2

10 50G-AUI2-AOC/ACC

9 50G-LAUI2

8 50G-LAUI2-AOC/ACC

7 50GBASE-KR2

6:5 Reserved

4 50GBASE-CR2

3:0 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

226 613875-009

3.3.8.6.16 Line Side PHY Capabilities (PHY Types) 3 (0x000F)

The following table defines the Line Side PHY Capabilities for the outermost PMD. If the Outermost PMD
bit is not set, the Line Side PHY Capabilities match the Host Side PHY Capabilities structure. See
Section 3.3.8.6.12.

3.3.8.6.17 Line Side PHY Capabilities (PHY Types) 4 (0x0010)

The following table defines the Line Side PHY Capabilities for the outermost PMD. Not defined for PMDs
with the Outermost PMD bit not set.

Bits Field Name Default
NVM Value Description

15 100GBASE-DR

14 100GBASE-SR2

13 100GBASE-CR2-PAM4

12 100GBASE-KP4-PAM4

11 Reserved Reserved.

10 100G-AUI4

9 100G-AUI4-AOC/ACC

8 100G-CAUI4

7 100G-CAUI4-AOC/ACC

6 100GBASE-KR4

5 100GBASE-LR4

4 100GBASE-SR4

3 100GBASE-CR4

2 50G-AUI1

1 50G-AUI1-AOC/ACC

0 50GBASE-KR-PAM4

Bits Field Name Default
NVM Value Description

15 400GBASE-FR8 0b

14 200G-AUI8 0b

13 200G-AUI8-AOC/ACC 0b

12 200G-AUI4 0b

11 200G-AUI4-AOC/ACC 0b

10 200GBASE-KR4-PAM4 0b

9 200GBASE-DR4 0b

8 200GBASE-LR4 0b

7 200GBASE-FR4 0b

6 200GBASE-SR4 0b

5 200GBASE-CR4-PAM4 0b

4 100G-AUI2

3 100G-AUI2-AOC/ACC

2:1 Reserved Reserved.

0 100GBASE-KR2-PAM4

613875-009 227

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.6.18 Line Side PHY Capabilities (PHY Types) 5 (0x0011)

The following table defines the Line Side PHY Capabilities for the outermost PMD. Not defined for PMDs
with the Outermost PMD bit not set.

3.3.8.6.19 Line Side PHY Capabilities (PHY Types) 6 (0x0012)

The following table defines the Line Side PHY Capabilities for the outermost PHY. Not defined for PMDs
with the Outermost PHY bit not set.

3.3.8.6.20 Line Side PHY Capabilities (PHY Types) 7 (0x0013)

The following table defines the Line Side PHY Capabilities for the outermost PHY. Not defined for PMDs
with the Outermost PHY bit not set.

Bits Field Name Default
NVM Value Description

15:4 Reserved Reserved.

3 400G-AUI8 0b

2 400G-AUI8-AOC/ACC 0b

1 400GBASE-DR4 0b

0 400GBASE-LR8 0b

Bits Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Bits Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

228 613875-009

3.3.8.7 Node PMD Analog Section

This section describes the structure of the Node PMD Analog Section, detailing the analog configuration
of a PHY Lane.

Notes: There is no standard definition for how the device must implement the coefficient values set
in this section. The values set in this section of the netlist are PHY-specific, and must align
with the definition conventions for the PHY which they are specifying, as well as the
PHY-specific script which configures the device.

C2C Coefficients are used for link modes directly connecting PHY devices, such as 10G SFI DA and 25G
AUI C2C. C2M coefficients are used for link modes that use a module, such as 10GBASE-LR and 25G-
AUI AOC/ACC

This section is accessible through the GETNODEATTR action starting at the DWord-aligned Attribute ID
offset 0x6800 for the line side and 0x7000 for the host side.

Word Offset Description Section
Reference

0x0000 + n*14 1G/5G C2C Coefficients Low 3.3.8.7.1

0x0001 + n*14 Polarity and 1G/5G C2C Coefficients High 3.3.8.7.2

0x0002 + n*14 10G C2C Coefficients Low 3.3.8.7.3

0x0003 + n*14 10G C2C Coefficients High 3.3.8.7.4

0x0004 + n*14 10G C2M Coefficients Low 3.3.8.7.5

0x0005 + n*14 10G C2M Coefficients High 3.3.8.7.6

0x0006 + n*14 25G C2C Coefficients Low 3.3.8.7.7

0x0007 + n*14 25G C2C Coefficients High 3.3.8.7.8

0x0008 + n*14 25G C2M Coefficients Low 3.3.8.7.9

0x0009 + n*14 25G C2M Coefficients High 3.3.8.7.10

0x000A + n*14 50G C2C Coefficients Low 3.3.8.7.11

0x000B + n*14 50G C2C Coefficients High 3.3.8.7.12

0x000C + n*14 50G C2M Coefficients Low 3.3.8.7.13

0x000D + n*14 50G C2M Coefficients High 3.3.8.7.14

613875-009 229

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.7.1 1G/5G C2C Coefficients Low (0x0000 + n*14)

Defines the transmit equalizer settings for 1G/5G serial AUI/C2C interfaces.

Note: It is important to understand that each PHY uses its own definition for TXFFE values, including
format and sign. It is required that the values saved in the netlist align with the format used
by the specific PHY they are defining. Therefore, there is no standardized way that the
coefficients are defined in this section. The convention used must also align with the script
that manages the link up process for that individual PHY. Overriding TXFFE values should only
be done by an advanced user with specific knowledge of how the PHY should be configured
for the given mode, such as tuning the coefficients based on conformance testing results.

3.3.8.7.2 Polarity and 1G/5G C2C Coefficients High (0x0001 + n*14)

Defines the lane polarity and transmit equalizer settings for 1G/5G serial AUI/C2C interfaces.

Bits Field Name Default
NVM Value Description

15:8 C[0][7:0] Cursor value for C2C 1G/5G speeds.

7:0 C[1][7:0] Post-Cursor value for C2C 1G/5G speeds.

Bits Field Name Default
NVM Value Description

15 Rx Polarity 0b Lane Rx Polarity control.
0b = Normal Rx polarity.
1b = Inverted Rx polarity.

14 Tx Polarity 0b Lane Tx Polarity control.
0b = Normal Tx polarity.
1b = Inverted Tx polarity.

13 TXFFE Override 50G AUI-C2M TXFFE Override 50G AUI-C2M control.
0b = Use silicon default TXFFE values for AUI-C2M PHY modes with 50G

lane speeds.
1b = Use netlist defined TXFFE values for AUI-C2M PHY modes with 50G

lane speeds.

12 TXFFE Override 50G AUI-C2C TXFFE Override 50G C2C control.
0b = Use silicon default TXFFE values for AUI-C2C PHY modes with 50G

lane speeds.
1b = Use netlist defined TXFFE values for AUI-C2C PHY modes with 50G

lane speeds.

11:10 Reserved Reserved.

9 TXFFE Override Enable TXFFE Override Enable control.
0b = Always silicon default TXFFE values for all PHY modes.
1b = Use netlist defined TXFFE values for PHY modes based on the TXFFE

Override bit corresponding to each mode.

8 TXFFE Override 1G/5G TXFFE Override 1G/5G control.
0b = Use silicon default TXFFE values for PHY modes with 1G/5G lane

speeds.
1b = Use netlist defined TXFFE values for PHY modes with 1G/5G lane

speeds.

7:0 C[-1][7:0] Pre-Cursor value for C2C 1G/5G speeds.

Intel® Ethernet Controller E810 Datasheet
Interconnects

230 613875-009

3.3.8.7.3 10G C2C Coefficients Low (0x0002 + n*14)

Defines the transmit equalizer settings for 10G serial C2C interfaces.

3.3.8.7.4 10G C2C Coefficients High (0x0003 + n*14)

Defines the transmit equalizer settings for 10G serial AUI-C2C interfaces.

3.3.8.7.5 10G C2M Coefficients Low (0x0004 + n*14)

Defines the transmit equalizer settings for 10G serial AUI-C2M interfaces.

3.3.8.7.6 10G C2M Coefficients High (0x0005 + n*14)

Defines the transmit equalizer settings for 10G serial AUI-C2M interfaces.

Bits Field Name Default
NVM Value Description

15:8 C[0][7:0] Cursor value for AUI-C2C 10G speeds.

7:0 C[1][7:0] Post-Cursor value for AUI-C2C 10G speeds.

Bits Field Name Default
NVM Value Description

15:9 Reserved Reserved.

8 TXFFE Override 10G AUI-C2C TXFEE Override 10G AUI-C2C control.
0b = Use silicon default TXFFE values for AUI-C2C PHY modes with 10G

lane speeds.
1b = Use netlist defined TXFFE values for AUI-C2C PHY modes with 10G

lane speeds.

7:0 C[-1][7:0] Pre-Cursor value for 10G speeds.

Bits Field Name Default
NVM Value Description

15:8 C[0][7:0] Cursor value for AUI-C2M 10G speeds.

7:0 C[1][7:0] Post-Cursor value for AUI-C2M 10G speeds.

Bits Field Name Default
NVM Value Description

15:9 Reserved Reserved.

8 TXFFE Override 10G AUI-C2M TXFFE Override 10G AUI-C2M control.
0b = Use silicon default TXFFE values for AUI-C2M PHY modes with 10G

lane speeds.
1b = Use netlist defined TXFFE values for AUI-C2M PHY modes with 10G

lane speeds.

7:0 C[-1][7:0] Pre-Cursor value for C2M 10G speeds.

613875-009 231

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.7.7 25G C2C Coefficients Low (0x0006 + n*14)

Defines the transmit equalizer settings for 25G serial AUI-C2C interfaces.

3.3.8.7.8 25G C2C Coefficients High (0x0007 + n*14)

Defines the transmit equalizer settings for 25G serial AUI-C2C interfaces.

3.3.8.7.9 25G C2M Coefficients Low (0x0008 + n*14)

Defines the transmit equalizer settings for 25G serial AUI-C2M interfaces.

3.3.8.7.10 25G C2M Coefficients High (0x0009 + n*14)

Defines the transmit equalizer settings for 25G serial AUI-C2M interfaces.

Bits Field Name Default
NVM Value Description

15:8 C[0][7:0] Cursor value for AUI-C2C 25G speeds.

7:0 C[1][7:0] Post-Cursor value for AUI-C2C 25G speeds.

Bits Field Name Default
NVM Value Description

15:9 Reserved Reserved.

8 TXFFE Override 25G AUI-C2C TXFFE Override 25G AUI-C2C control.
0b = Use silicon default TXFFE values for AUI-C2C PHY modes with 25G

lane speeds.
1b = Use netlist defined TXFFE values for AUI-C2C PHY modes with 25G

lane speeds.

7:0 C[-1][7:0] Pre-Cursor value for AUI-C2C 25G speeds.

Bits Field Name Default
NVM Value Description

15:8 C[0][7:0] Cursor value for AUI-C2M 25G speeds.

7:0 C[1][7:0] Post-Cursor value for AUI-C2M 25G speeds.

Bits Field Name Default
NVM Value Description

15:9 Reserved Reserved.

8 TXFFE Override 25G AUI-C2M TXFFE Override 25G AUI-C2M control.
0b = Use silicon default TXFFE values for AUI-C2M PHY modes with 25G

lane speeds.
1b = Use netlist defined TXFFE values for AUI-C2M PHY modes with 25G

lane speeds.

7:0 C[-1][7:0] Pre-Cursor value for AUI-C2M 25G speeds.

Intel® Ethernet Controller E810 Datasheet
Interconnects

232 613875-009

3.3.8.7.11 50G C2C Coefficients Low (0x000A + n*14)

Defines the transmit equalizer settings for 50G serial AUI-C2C interfaces.

3.3.8.7.12 50G C2C Coefficients High (0x000B + n*14)

Defines the transmit equalizer settings for 50G serial AUI-C2C interfaces.

3.3.8.7.13 50G C2M Coefficients Low (0x000C + n*14)

Defines the transmit equalizer settings for 50G serial AUI-C2M interfaces.

3.3.8.7.14 50G C2M Coefficients High (0x000D + n*14)

Defines the transmit equalizer settings for 50G serial AUI-C2M interfaces.

Bits Field Name Default
NVM Value Description

15:8 C[0][7:0] Cursor value for AUI-C2C 50G speeds.

7:0 C[1][7:0] Post-Cursor value for AUI-C2C 50G speeds.

Bits Field Name Default
NVM Value Description

15:8 C[-2][7:0] Pre-Cursor 2 (C[-2]) value for AUI-C2C 50G speeds.

7:0 C[-1][7:0] Pre-Cursor 1 (C[-1]) value for AUI-C2C 50G speeds.

Bits Field Name Default
NVM Value Description

15:8 C[0][7:0] Cursor value for AUI-C2M 50G speeds.

7:0 C[1][7:0] Post-Cursor value for AUI-C2M 50G speeds.

Bits Field Name Default
NVM Value Description

15:8 C[-2][7:0] Pre-Cursor 2 (C[-2]) value for AUI-C2M 50G speeds

7:0 C[-1][7:0] Pre-Cursor 1 (C[-1]) value for AUI-C2M 50G speeds

613875-009 233

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.8 Node PMD Analog Misc Section

An extension of the Node PMD Analog Section, this section contains PHY device specific lane
configuration. The section is located immediately at after the Node PMD Analog Section for both the
host and line sides.

The section is accessible through the GETNODEATTR action starting at the DWord-aligned Attribute ID
offset 0x8800 for the line side and 0x9000 for the host side.

3.3.8.8.1 PMD Analog Misc Length (0x0000)

3.3.8.8.2 Auto-Neg LESM Timeout (0x0001)

3.3.8.8.3 1G/5G/10G Serial AUI LESM Timeout (0x0002)

3.3.8.8.4 25G/50G Serial AUI LESM Timeout (0x0003)

Note: This parameter applies to all link modes that are using 50G serial signaling. For example,
100G implemented as 2x50G.

Word Offset Description Section
Reference

0x0000 PMD Analog Misc Length 3.3.8.8.1

0x0001 Auto-neg LESM Timeout 3.3.8.8.2

0x0002 1G/5G/10G serial AUI LESM Timeout 3.3.8.8.3

0x0003 25G/50G serial AUI LESM Timeout 3.3.8.8.4

Bits Field Name Default
NVM Value Description

15:8 Reserved Reserved.

7:0 PMD Analog Misc Length The length of the PMD analog miscellaneous section in words.

Bits Field Name Default
NVM Value Description

15:8 Auto-Neg LESM Timeout Auto-negotiation LESM timeout defined in 200 ms increments.

7:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:8 10G Serial AUI LESM Timeout 10G AUI LESM timeout defined in 200 ms increments.

7:0 1G/5G Serial AUI LESM Timeout 1G/5G AUI LESM timeout defined in 200 ms increments.

Bits Field Name Default
NVM Value Description

15:8 50G Serial AUI LESM Timeout 50G AUI LESM Timeout defined in 200 ms increments.

7:0 25G Serial AUI LESM Timeout 25G AUI LESM Timeout defined in 200 ms increments.

Intel® Ethernet Controller E810 Datasheet
Interconnects

234 613875-009

3.3.8.9 Node LED Configuration Section

This section describes the structure of the Node LED Configuration Section, detailing the configuration
of an LED for a given Port Option. The length of the section is dependent on the number of conditions
defined for the LED to indicate. See Section 3.3.8.9.3.

The section is accessible through the GETNODEATTR action starting at the DWord-aligned Attribute ID
offset 0xA000.

3.3.8.9.1 Port Option Port Affinity Low (0x0000)

Defines the port affinity of the LED for a given Port Option.

If the netlist describes the LOM, the ports are referring to Physical MAC Ports. If the netlist describes a
mezzanine card, the ports are referring to PHY Ports within the context of the mezzanine card. These,
during the mezzanine card topology detection, are re-mapped into the Physical MAC Ports within the
context of the system in which the mezzanine card was inserted. Therefore, when accessed through the
GETNODEATTR action, the Port Affinity bits always refer to Physical MAC Ports.

Word Offset Description Section
Reference

0x0000 Port Option Port Affinity Low 3.3.8.9.1

0x0001 Port Option Port Affinity High 3.3.8.9.2

0x0002 + n*1 Port Option Color and Condition [n], where n = 0:3 3.3.8.9.3

Bits Field Name Default
NVM Value Description

15 Port 15 If set, the LED is associated with Port 15

14 Port 14 If set, the LED is associated with Port 14

13 Port 13 If set, the LED is associated with Port 13

12 Port 12 If set, the LED is associated with Port 12

11 Port 11 If set, the LED is associated with Port 11

10 Port 10 If set, the LED is associated with Port 10

9 Port 9 If set, the LED is associated with Port 9

8 Port 8 If set, the LED is associated with Port 8

7 Port 7 If set, the LED is associated with Port 7

6 Port 6 If set, the LED is associated with Port 6

5 Port 5 If set, the LED is associated with Port 5

4 Port 4 If set, the LED is associated with Port 4

3 Port 3 If set, the LED is associated with Port 3

2 Port 2 If set, the LED is associated with Port 2

1 Port 1 If set, the LED is associated with Port 1

0 Port 0 If set, the LED is associated with Port 0

613875-009 235

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.9.2 Port Option Port Affinity High (0x0001)

3.3.8.9.3 Port Option Color and Condition [n] (0x0004 + n*1)

The state of the LED is controlled by four conditions defined separately for each Port Option. The
conditions are prioritized: Condition[0] being the highest in priority and Condition[3] the lowest. The
true condition with the highest priority defines the Color and Blink configuration of the LED.

To allow for more flexibility, two adjacent conditions can be combined through the defined Logic
Operator. If the expression Condition[i] <Operator[i]> Condition[i+1] is true, the LED is configured
with the Color and Blink configuration associated with Condition[i].

Bits Field Name Default
NVM Value Description

15:14 Logic Operator 10b The logic operator to be used between port flags.
00b = Reserved
10b = AND
10b = OR
11b = Reserved

13:9 Reserved Reserved.

8 Port ID If set, the LED is used for port identification based on software request.

7:4 Reserved Reserved.

3 Port 19 If set, the LED is associated with Port 19.

2 Port 18 If set, the LED is associated with Port 18.

1 Port 17 If set, the LED is associated with Port 17.

0 Port 16 If set, the LED is associated with Port 16.

Bits Field Name Default
NVM Value Description

15:14 Reserved Reserved.

13:11 Blink Blink configuration for the LED.
000b = No Blink
001b = Blink
010b = Blink on MAC Activity
All other values are reserved.

Blinking results in a cadence of 200 ms on / 200 ms off.

Intel® Ethernet Controller E810 Datasheet
Interconnects

236 613875-009

10:8 Color Defines the color of an RGB LED.
The color is mixed though driving the associated Red, Green and Blue LEDs with the
appropriate PWM signals through a PCA9585 LED controller.
The possible colors are as follows:

000b = SKIP — Skip Condition: The LED state should be driven based on the result of
evaluating the next condition.

001b = RED
010b = ORANGE
011b = YELLOW
100b = GREEN
101b = BLUE
110b = PURPLE
111b = Reserved

Colors are only supported if the Node Part Number is RGB LED. The node has three I/Os
defined, and they all are driven by the same PCA9585 LED controller.

7:6 Logic Operator The logic operator to be used between Condition[i] and Condition[i+1].
00b = NONE
01b = AND
10b = OR
11b = Reserved

The field is ignored for Condition[3].

Bits Field Name Default
NVM Value Description

613875-009 237

Intel® Ethernet Controller E810 Datasheet
Interconnects

5:0 Condition Defines the condition in which the LED should be asserted.
Valid conditions are:

0x00 = FALSE
0x01 = TRUE
0x02 = LINK
0x03 = LINK_ACTIVITY
0x04 = MAC_ACTIVITY
0x05 = FILTER_ACTIVITY
0x06 = INVALID_MEDIA
0x07 = LINK_LESS_THAN_1G
0x08 = Reserved
0x09 = LINK_LESS_THAN_5G
0x0A = LINK_LESS_THAN_10G
0x0B = LINK_LESS_THAN_25G
0x0C = Reserved
0x0D = LINK_LESS_THAN_50G
0x0E = LINK_LESS_THAN_100G
0x0F = LINK_LESS_THAN_200G
0x10 = LINK_LESS_THAN_400G
0x11 = LINK_100M
0x12 = LINK_1G
0x13 = Reserved
0x14 = LINK_5G
0x15 = LINK_10G
0x16 = LINK_25G
0x17 = Reserved
0x18 = LINK_50G
0x19 = LINK_100G
0x1A = LINK_200G
0x1B = LINK_400G
0x1C = NO_LINK
0x1E:0x1F = Reserved
0x20 = TEMP_WARN_N
0x21 = TEMP_CRIT_N
0x22 = FAN_ON_AUX
0x23:0x3F - Reserved

Bits Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Interconnects

238 613875-009

3.3.8.10 Node Thermal Configuration Section

This section describes the structure of the Node Thermal Configuration Section, detailing the
configuration of the temperature sensor.

The section is accessible through the GETNODEATTR action starting at the DWord-aligned Attribute ID
offset 0xC000. The Temperature Sensor Port Affinity is replicated for each Port Option of the associated
Parent PHY node. Only the copy with the same index as the Parent PHY’s active Port Option is loaded to
RAM and accessible through GETNODEATTR.

Note: For SFP and QSFP standard sensors, E810 firmware follows the standard and should not
modify parameters from the netlist. The firmware should not take (i.e. ignore) the critical
thresholds from the netlist, where SFP or QSFP standard sensor is defined. Instead, it should
use the thresholds as read from the module itself (SFF-8436 defines them in bytes 128-129)

3.3.8.10.1 Min and Max Readable Value (0x0000)

3.3.8.10.2 Tolerance and Hysteresis (0x0001)

Word Offset Description Section
Reference

0x0000 Min and Max Readable Value 3.3.8.10.1

0x0001 Tolerance and Hysteresis 3.3.8.10.2

0x0002 Resolution Low 3.3.8.10.3

0x0003 Resolution High 3.3.8.10.4

0x0004 Offset Low 3.3.8.10.5

0x0005 Offset High 3.3.8.10.6

0x0006 Normal Max and Warning High Thresholds 3.3.8.10.7

0x0007 Critical High and Fatal High Threshold 3.3.8.10.8

0x0008 Accuracy 3.3.8.10.9

0x0009 Reserved 3.3.8.10.10

0x000A + n*2 Temperature Sensor Port Affinity Low 3.3.8.10.11

0x000B + n*2 Temperature Sensor Port Affinity High 3.3.8.10.12

Bits Field Name Default
NVM Value Description

15:8 Max Readable Value 0xFF Thermal Sensor maxReadable value.

7:0 Min Readable Value 0x00 Thermal Sensor minReadable value.

Bits Field Name Default
NVM Value Description

15:8 Hysteresis 0x02 Thermal Sensor Hysteresis (°C).

7:0 Tolerance 0x01 Thermal Sensor plusTolerance and minusTolerance (°C).

613875-009 239

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.10.3 Resolution Low (0x0002)

3.3.8.10.4 Resolution High (0x0003)

3.3.8.10.5 Offset Low (0x0004)

3.3.8.10.6 Offset High (0x0005)

3.3.8.10.7 Normal Max and Warning High Thresholds (0x0006)

Bits Field Name Default
NVM Value Description

15:0 Resolution [15:0] 0x0000 Lower two bytes of the Thermal Sensor resolution.
The field uses a real32 representation.
Note: The available resolution is 0.125 °C, but the supported value is 1 °C.
Note: For the internal thermal sensor definition, the resolution is not taken from the

netlist, but it is set to the NVM default.

Bits Field Name Default
NVM Value Description

15:0 Resolution [31:16] 0x3F80 Higher two bytes of the Thermal Sensor resolution.
The field uses a real32 representation.
Note: The available resolution is 0.125 °C, but the supported value is 1 °C.
Note: For the internal thermal sensor definition, the resolution is not taken from the

netlist, but it is set to the NVM default.

Bits Field Name Default
NVM Value Description

15:0 Offset [15:0] 0x0000 Lower two bytes of the Thermal Sensor offset.
The field uses a real32 representation.

Bits Field Name Default
NVM Value Description

15:0 Offset [31:16] 0x0000 Higher two bytes of the Thermal Sensor offset.
The field uses a real32 representation.

Bits Field Name Default
NVM Value Description

15:8 Warning High Warning High - High temperature warning threshold (°C).

7:0 Normal Max Normal Max - Maximum normal temperature threshold (°C).

Intel® Ethernet Controller E810 Datasheet
Interconnects

240 613875-009

3.3.8.10.8 Critical High and Fatal High Thresholds (0x0007)

3.3.8.10.9 Accuracy (0x0008)

3.3.8.10.10 Reserved (0x0009)

3.3.8.10.11 Temperature Sensor Port Affinity Low (0x000A + n*2)

This section describes the port affinity of the temperature sensor. Each bit, if set, indicates the
temperature sensor is associated with the respective port.

If the netlist describes the LOM, the ports are referring to Physical MAC Ports. If the netlist describes a
mezzanine card, the ports are referring to PHY Ports within the context of the mezzanine card. These,
during the mezzanine card topology detection, are re-mapped into the Physical MAC Ports within the
context of the system into which the mezzanine card was inserted. Therefore, when accessed through
the GETNODEATTR action, the Port Affinity bits always refer to Physical MAC Ports.

Bits Field Name Default
NVM Value Description

15:8 Fatal High Fatal High - Fatal temperature alarm threshold (°C).
Note: For any thermal sensor, this threshold must be set between the “Internal Thermal

Sensor Minimum Threshold” and “Internal Thermal Sensor Maximum Threshold”
NVM parameters.

7:0 Critical High Critical High - Critical temperature alarm threshold (°C).

Bits Field Name Default
NVM Value Description

15:0 Accuracy Thermal sensor accuracy (percentage of readable value).

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15 Port 15 If set, the temperature sensor is associated with Port 15

14 Port 14 If set, the temperature sensor is associated with Port 14

13 Port 13 If set, the temperature sensor is associated with Port 13

12 Port 12 If set, the temperature sensor is associated with Port 12

11 Port 11 If set, the temperature sensor is associated with Port 11

10 Port 10 If set, the temperature sensor is associated with Port 10

9 Port 9 If set, the temperature sensor is associated with Port 9

8 Port 8 If set, the temperature sensor is associated with Port 8

7 Port 7 If set, the temperature sensor is associated with Port 7

6 Port 6 If set, the temperature sensor is associated with Port 6

5 Port 5 If set, the temperature sensor is associated with Port 5

4 Port 4 If set, the temperature sensor is associated with Port 4

3 Port 3 If set, the temperature sensor is associated with Port 3

613875-009 241

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.10.12 Temperature Sensor Port Affinity High (0x000B + n*2)

3.3.8.11 Node Clock Configuration Header Section

This section defines the structure of the Node Clock Configuration Header holding the pointers to the
Clock Input, Clock Output, and DPLL Configuration sections.

The section is accessible through the GETNODEATTR DNL action starting at the DWord-aligned Attribute
ID offset 0x0004.

3.3.8.11.1 Node Clock Input Configuration Section Pointer (0x0000)

Applicable only to nodes with Node Type of Clock Controller.

2 Port 2 If set, the temperature sensor is associated with Port 2

1 Port 1 If set, the temperature sensor is associated with Port 1

0 Port 0 If set, the temperature sensor is associated with Port 0

Bits Field Name Default
NVM Value Description

15:8 Sensor Location Defines the location of the sensor.

7:4 Reserved Reserved.

3 Port 19 If set, the temperature sensor is associated with Port 19.

2 Port 18 If set, the temperature sensor is associated with Port 18.

1 Port 17 If set, the temperature sensor is associated with Port 17.

0 Port 16 If set, the temperature sensor is associated with Port 16.

Word Offset Description Section
Reference

0x0000 Node Clock Input Configuration Section Pointer 3.3.8.11.1

0x0001 Node Clock Output Configuration Section Pointer 3.3.8.11.2

0x0002 Node DPLL Configuration Section Pointer 3.3.8.11.3

0x0003 Reserved 3.3.8.11.4

Bits Field Name Default
NVM Value Description

15:12 Clock Input Count The number of clock inputs on the Clock Controller node.
Note: A value of 0 indicates no Node Clock Input Configuration Sections

captured within the netlist.

11:0 Clock Input Configuration
Section Offset

The word offset of the Node Clock Input Configuration Section relative to the
beginning of the node section.

Bits Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Interconnects

242 613875-009

3.3.8.11.2 Node Clock Output Configuration Section Pointer (0x0001)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.11.3 Node DPLL Configuration Section Pointer (0x0002)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.11.4 Reserved (0x0003)

3.3.8.12 Node Clock Input Configuration Section

Note: In this context, n refers to the index of the frequency option allowed for the clock input and
ranges from 0 to Frequency Option Count -1.

This section is accessible through the GETNODEATTR DNL action starting at the DWord-aligned Attribute
ID offset 0x2800.

Bits Field Name Default
NVM Value Description

15:12 Clock Input Count The number of clock inputs on the Clock Controller node.
Note: A value of 0 indicates no Node Clock Input Configuration Sections

captured within the netlist.

11:0 Clock Output Configuration
Section Offset

The word offset of the Node Clock Output Configuration Section relative to
the beginning of the node section.

Bits Field Name Default
NVM Value Description

15:12 DPLL Count The number of DPLLs within the Clock Controller node.
Note: A value of 0 indicates no Node DPLL Configuration Sections captured

within the netlist.

11:0 Node DPLL Configuration
Section Offset

The word offset of the Node DPLL Configuration Section relative to the
beginning of the node section.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Word Offset Description Section
Reference

0x0000 Clock Input Mode 3.3.8.12.1

0x0001 Frequency Option Count and Clock I/O Number 3.3.8.12.2

0x0002 Phase Offset Compensation Lo 3.3.8.12.3

0x0003 Phase Offset Compensation Hi 3.3.8.12.4

0x0004 Max Phase Offset Compensation Lo 3.3.8.12.5

0x0005 Max Phase Offset Compensation Hi 3.3.8.12.6

0x0006 + n*2 Option[n] Frequency Lo 3.3.8.12.7

0x0007 + n*2 Option[n] Frequency Hi 3.3.8.12.8

613875-009 243

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.12.1 Clock Input Mode (0x0000)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.12.2 Frequency Option Count and Clock I/O Number (0x0001)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.12.3 Phase Offset Compensation Lo (0x0002)

Applicable only to nodes with Node Type of Clock Controller.

Bits Field Name Default
NVM Value Description

15 eSync Ability eSync ability of the clock input.
0b = Not eSync capable.
1b = eSync capable.

14 eSync Enable Default eSync configuration for the clock input.
0b = Disabled
1b = Enabled

13:8 Reserved Reserved.

7:5 Mode Specifies the default mode of operation for the clock input.
000b = Disabled — The input is disabled during board initialization.
001b = Enabled — The input is enabled during board initialization.
011b = Auto — The input is configured based on link status of the relevant port.
111b = Silicon Default — The input is not configured until explicitly requested via an

admin command.
All other values are reserved.

4:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:12 Frequency Option Count The number of allowed frequency options for the clock input.

11:8 Default Frequency Option The index of the default frequency option for the clock input.

7:5 Clock I/O Type Specifies type of the clock input.
000b = Single ended GPS clock.
001b = Single ended PHY recovered clock.
010b = Single ended external clock.
011b = Reserved.
100b = Differential GPS clock.
101b = Differential PHY recovered clock.
110b = Differential external clock.
111b = Reserved.

4:0 Clock I/O Number The number of the clock Input I/O Connections associated with this clock input
configuration.
Note: A value of 0x1F designates a clock input with no associated I/O

Connections captured within the netlist.

Bits Field Name Default
NVM Value Description

15:0 Phase Offset
Compensation Lo

Phase Offset Compensation with 1 ps resolution (signed integer).
Phase Offset Compensation [15:0].

Intel® Ethernet Controller E810 Datasheet
Interconnects

244 613875-009

3.3.8.12.4 Phase Offset Compensation Hi (0x0003)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.12.5 Max Phase Offset Compensation Lo (0x0004)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.12.6 Max Phase Offset Compensation Hi (0x0005)

Applicable only to nodes with Node Type of Clock Controller.

Note: The Phase Offset Compensation shall be within the Max Phase Offset Compensation limits:
-(Max Phase Offset) < Phase Offset < Max Phase Offset.

3.3.8.12.7 Option[n] Frequency Lo (0x0006 + n*2)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.12.8 Option[n] Frequency Hi (0x0007 + n*2)

Applicable only to nodes with Node Type of Clock Controller.

Bits Field Name Default
NVM Value Description

15:0 Phase Offset
Compensation Hi

Phase Offset Compensation with 1 ps resolution (signed integer).
Phase Offset Compensation [31:16].

Bits Field Name Default
NVM Value Description

15:0 Max Phase Offset
Compensation Lo

Max Phase Offset Compensation with 1 ps resolution (max absolute offset).
Max Phase Offset Compensation [15:0]

Bits Field Name Default
NVM Value Description

15:0 Max Phase Offset
Compensation Hi

Max Phase Offset Compensation with 1 ps resolution (max absolute offset).
Max Phase Offset Compensation [31:16]

Bits Field Name Default
NVM Value Description

15:0 Option[n] Frequency Lo Option[n] Frequency with 1 Hz resolution.
Option[n] Frequency [15:0]

Bits Field Name Default
NVM Value Description

15:0 Option[n] Frequency Hi Option[n] Frequency with 1 Hz resolution.
Option[n] Frequency [31:16]

613875-009 245

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.13 Node Clock Output Configuration Section

Note: In this context, n refers to the index of the frequency option allowed for the clock output and
ranges from 0 to Frequency Option Count -1.

This section is accessible through the GETNODEATTR DNL action starting at the DWord-aligned Attribute
ID offset 0x3000.

3.3.8.13.1 Clock Output Mode and Source Select (0x0000)

Applicable only to nodes with Node Type of Clock Controller.

Word Offset Description Section
Reference

0x0000 Clock Output Mode Source Select 3.3.8.13.1

0x0001 Frequency Option Count and Clock I/O Number 3.3.8.13.2

0x0002 Phase Offset Compensation Lo 3.3.8.13.3

0x0003 Phase Offset Compensation Hi 3.3.8.13.4

0x0004 Max Phase Offset Compensation Lo 3.3.8.13.5

0x0005 Max Phase Offset Compensation Hi 3.3.8.13.6

0x0006 + n*2 Option[n] Frequency Lo 3.3.8.13.7

0x0007 + n*2 Option[n] Frequency Hi 3.3.8.13.8

Bits Field Name Default
NVM Value Description

15 eSync Ability eSync ability of the clock output.
0b = Not eSync capable.
1b = eSync capable.

14 eSync Enable Default eSync configuration for the clock output.
0b = Disabled
1b = Enabled

13:8 Reserved Reserved.

7:5 Mode Specifies the default mode of operation for the clock output.
000b = Disabled — The output is disabled during board initialization.
001b = Enabled — The output is enabled during board initialization.
010b = Force Enabled — The output is forced to enabled. Any configuration attempt is

denied and results in a configuration error.
Note: This mode is intended for clock outputs driving the network controller's
reference clock input.

111b = Silicon Default — The output is not configured until explicitly requested via an
admin command.

All other values are reserved.

4:0 Source Select Default source configuration.
Specifies the index of the DPLL confirmed as a source in Enabled and Force Enabled
modes.

Intel® Ethernet Controller E810 Datasheet
Interconnects

246 613875-009

3.3.8.13.2 Frequency Option Count and Clock I/O Number (0x0001)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.13.3 Phase Offset Compensation Lo (0x0002)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.13.4 Phase Offset Compensation Hi (0x0003)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.13.5 Max Phase Offset Compensation Lo (0x0004)

Applicable only to nodes with Node Type of Clock Controller.

Bits Field Name Default
NVM Value Description

15:12 Frequency Option Count The number of allowed frequency options for the clock output.

11:8 Default Frequency Option The index of the default frequency option for the clock output.

7:5 Clock I/O Type Specifies type of the clock input.
000b = Single ended clock.
100b = Differential clock.
All other values are reserved.

4:0 Clock I/O Number The number of the clock Input I/O Connections associated with this clock
output configuration.
Note: A value of 0x1F designates a clock output with no associated I/O

Connections captured within the netlist.

Bits Field Name Default
NVM Value Description

15:0 Phase Offset
Compensation Lo

Phase Offset Compensation with 1 ps resolution.
Phase Offset Compensation [15:0].

Bits Field Name Default
NVM Value Description

15:0 Phase Offset
Compensation Hi

Phase Offset Compensation with 1 ps resolution.
Phase Offset Compensation [31:16].

Bits Field Name Default
NVM Value Description

15:0 Max Phase Offset
Compensation Lo

Max Phase Offset Compensation with 1 ps resolution.
Max Phase Offset Compensation [15:0]

613875-009 247

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.13.6 Max Phase Offset Compensation Hi (0x0005)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.13.7 Option[n] Frequency Lo (0x0006 + n*2)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.13.8 Option[n] Frequency Hi (0x0007 + n*2)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.14 Node Recovered Clock Output Configuration Section

Note: In this context, n refers to the index of the frequency option allowed for the clock output and
ranges from 0 to Frequency Option Count -1.

This section is accessible through the GETNODEATTR DNL action starting at the DWord-aligned Attribute
ID offset 0x3000.

Bits Field Name Default
NVM Value Description

15:0 Max Phase Offset
Compensation Hi

Max Phase Offset Compensation with 1 ps resolution.
Max Phase Offset Compensation [31:16]

Bits Field Name Default
NVM Value Description

15:0 Option[n] Frequency Lo Option[n] Frequency with 1 Hz resolution.
Option[n] Frequency [15:0]

Bits Field Name Default
NVM Value Description

15:0 Option[n] Frequency Hi Option[n] Frequency with 1 Hz resolution.
Option[n] Frequency [31:16]

Word Offset Description Section
Reference

0x0000 Clock Output Mode Source Select 3.3.8.14.1

0x0001 Frequency Option Count and Clock I/O Number 3.3.8.14.2

0x0002 - 0x0005 Reserved 3.3.8.14.3

0x0006 + n*2 Option[n] Frequency Lo 3.3.8.14.4

0x0007 + n*2 Option[n] Frequency Hi 3.3.8.14.5

Intel® Ethernet Controller E810 Datasheet
Interconnects

248 613875-009

3.3.8.14.1 Clock Output Mode and Source Select (0x0000)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.14.2 Frequency Option Count and Clock I/O Number (0x0001)

Applicable only to nodes with Node Type of Clock Controller.

Bits Field Name Default
NVM Value Description

15:8 Source Enable Specifies the PHY Lanes allowed as recovered clock source. A lane may only be
configured as a source of the clock output if the corresponding source enable bit is
asserted.

Bit Description
 0 Lane 0
 1 Lane 1
 2 Lane 2
 3 Lane 3
 4 Lane 4
 5 Lane 5
 6 Lane 6
 7 Lane 7

7:5 Mode Specifies the default mode of operation for the clock output.
000b = Disabled — The output is disabled during board initialization.
001b = Enabled — The output is enabled during board initialization.
010b = Force Enabled — The output is forced to enabled. Any configuration attempt is

denied and results in a configuration error.
Note: This mode is intended for clock outputs driving the network controller's
reference clock input.

011b = Auto — The output is configured based on link status of the relevant port.
111b = Silicon Default — The output is not configured until explicitly requested via an

admin command.
All other values are reserved.

4:0 Source Select Default source configuration
Specifies the PHY Lane number configured as a recovered clock source in Enabled and
Force Enabled modes.

Bits Field Name Default
NVM Value Description

15:12 Frequency Option Count The number of allowed frequency options for the clock input.

11:8 Reserved Reserved.

7:5 Clock I/O Type Specifies type of the clock input.
000b = Single ended clock.
100b = Differential clock.
All other values are reserved.

4:0 Clock I/O Number The number of the clock Input I/O Connections associated with this clock
output configuration.
Note: A value of 0x1F designates a clock output with no associated I/O

Connections captured within the netlist.

613875-009 249

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.14.3 Reserved (0x0002 - 0x0005)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.14.4 Option[n] Frequency Lo (0x0006 + n*2)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.14.5 Option[n] Frequency Hi (0x0007 + n*2)

Applicable only to nodes with Node Type of Clock Controller.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:12 Reserved Reserved.

11:0 Option[n] Frequency Divider The frequency divider to be configured for Option[n].

Bits Field Name Default
NVM Value Description

15:12 Option[n] Baud Rate The Baud Rate associated with the Option[n].
0x0 = 1.25G
0x1 = 3.125G
0x2 = 5.15625G
0x3 = 10.3125G
0x4 = 25.78125G
0x5 = 26.5625G
All other values are reserved.

11:0 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

250 613875-009

3.3.8.15 Node Clock DPLL Configuration Section

Note: In this context, n ranges from 0 to the Clock Controller node's Clock Input Count / 2. When n
is odd, the section is padded with one Word of 0x0000 to ensure DWord-alignment of the
following sections.

This section is accessible through the GETNODEATTR DNL action starting at the DWord-aligned Attribute
ID offset 0x8000.

3.3.8.15.1 DPLL Mode and Reference Select (0x0000)

Applicable only to nodes with Node Type of Clock Controller.

Word Offset Description Section
Reference

0x0000 DPLL Mode and Reference Select 3.3.8.15.1

0x0001 Source Type and EEC Mode 3.3.8.15.2

0x0002 Synthesizer Frequency Lo 3.3.8.15.3

0x0003 Synthesizer Frequency Hi 3.3.8.15.4

0x0004 + n Reference Priority 3.3.8.15.5

Bits Field Name Default
NVM Value Description

15 Reserved Reserved.

14 Ref SW eSync Reference switch on eSync failure.

13 Reserved Reserved.

12 Ref SW PFM Reference switch on Precision Frequency Monitor failure.

11 Ref SW GST Reference switch on Guard Soak Timer failure.

10 Ref SW CFM Reference switch on Coarse Frequency Monitor failure.

9 Ref SW SCM Reference switch on Single Cycle Monitor Failure.

8 Ref SW LOS Reference switch on Loss of Signal.

7:5 Mode Specifies the default mode of operation for the DPLL.
000b = FreeRun
001b = Force Holdover
010b = Force Lock
011b = Auto
100b = NCO
111b = Silicon Default
All other values are reserved.

4:0 Reference Select Default reference configuration.
Specifies the Clock Input number to be configured in Force Lock mode.

613875-009 251

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.15.2 Source Type and EEC Mode (0x0001)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.15.3 Synthesizer Frequency Lo (0x0002)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.15.4 Synthesizer Frequency Hi (0x0003)

Applicable only to nodes with Node Type of Clock Controller.

Bits Field Name Default
NVM Value Description

15:8 Reserved Reserved.

7:5 Source Type Specifies type of associated reference clock inputs.
000b = Single ended 1 pulse per second.
001b = Single ended recovered clock.
100b = Differential 1 pulse per second.
101b = Differential recovered clock.
All other values are reserved.

4 Reserved Reserved.

3:0 ECC Mode Ethernet Equipment Clock Mode.
Specifies the default clock quality requirement.

0xA = QL-EEC2
0xB = QL-EEC1
0xF = QL-DUS (i.e. Unknown)
All other values are reserved.

Bits Field Name Default
NVM Value Description

15:0 Synthesizer Frequency Lo Synthesizer Frequency with 1 Hz resolution.
Synthesizer Frequency [15:0]

Bits Field Name Default
NVM Value Description

15:0 Synthesizer Frequency Hi Synthesizer Frequency with 1 Hz resolution.
Synthesizer Frequency [31:16]

Intel® Ethernet Controller E810 Datasheet
Interconnects

252 613875-009

3.3.8.15.5 Reference Priority (0x0004 + n)

Applicable only to nodes with Node Type of Clock Controller.

3.3.8.16 Node Parent Section

This section describes the structure of a node’s parent node section. LED and Temperature Sensor
nodes might be associated with a PHY node as they might contain different configuration for all Port
Options of the specified PHY node. Used by firmware to select which configuration section to load.

3.3.8.16.1 Parent Node Handle (0x0000)

3.3.8.16.2 Reserved (0x0001)

Bits Field Name Default
NVM Value Description

15:13 Reserved Reserved.

12:8 Reference Priority[n/2+0] Default reference priority for Clock Input [n/2+1].
A value of 0 designates the highest priority, and higher values correspond to
lower priorities.
Note: A value of 0x1F invalidates the corresponding reference clock input for

the DPLL.

7:5 Reserved Reserved.

4:0 Reference Priority[n/4+0] Default reference priority for Clock Input [n/2+0].

Word Offset Description Section
Reference

0x0000 Parent Node Handle 3.3.8.16.1

0x0001 Reserved 3.3.8.16.2

Bits Field Name Default
NVM Value Description

15:11 Reserved Reserved.

10 Parent Valid 1b Indicates whether the Parent Node ID is valid.
0b = The node does not have a parent node. The Parent Node Handle field should

be ignored.
1b = The node is associated with a parent node. The parent node is identified by

the Parent Node Handle.

9:0 Parent Node Handle The node handle of the parent node.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

613875-009 253

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.17 Node Scratch Section

This section describes the structure of the Node Scratch Section. Used by scripts to store node-related
temporary variables. This section is implemented only in EMP firmware RAM and is not stored in the
NVM. The exact use of the scratch section is subject to script implementation and it is beyond the scope
of this specification. The section must be initialized to 0x0000 on POR, EMPR, and script engine reset.

The section is accessible through the GETNODEATTR and SETNODEATTR action starting at the
DWord-aligned Attribute ID offset 0x3800.

3.3.8.17.1 Scratch 0 (0x0000)

3.3.8.17.2 Scratch 1 (0x0001)

3.3.8.17.3 Scratch 2 (0x0002)

3.3.8.17.4 Scratch 3 (0x0003)

Word Offset Description Section
Reference

0x0000 Scratch 0 3.3.8.17.1

0x0001 Scratch 1 3.3.8.17.2

0x0002 Scratch 2 3.3.8.17.3

0x0003 Scratch 3 3.3.8.17.4

0x0004 Scratch 4 3.3.8.17.5

0x0005 Scratch 5 3.3.8.17.6

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

254 613875-009

3.3.8.17.5 Scratch 4 (0x0004)

3.3.8.17.6 Scratch 5 (0x0005)

3.3.8.18 PHY Node

This section describes the block structure of a PHY node. The block contains several sections of variable
length: the Node I/O Section, host and line side PMD Analog Sections, host and line side PMD Analog
Misc Sections, Port Option Pointer Section, Port Option Header Sections, and the Node PHY Capabilities
Sections.

A PHY can support multiple Port Options. The number of the supported Port Options is defined by the
Port Option Count field in the Node Header Section. The netlist captures the Port Options in order of
decreasing priority.

For each of these options, the Node PHY Options Header Section captures the number of PMDs
available. For each of the PMDs in a given Port Option the node includes a Node PHY Capabilities
Section.

The Adaptive NVM Pointer of the active Port Option on the innermost PHY node identifies the Adaptive
NVM Feature required to configure the controller for the current Port Option. The active Port Option of
all connected PHY nodes is selected as a function of the active Port Option of the innermost PHY. The
active Port Option of the PHY node identified by the Parent PHY Handle of an LED node determines the
active Port Option of the LED node.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

613875-009 255

Intel® Ethernet Controller E810 Datasheet
Interconnects

The Node I/O Section should define the following I/Os: I2C or MDIO, Int_N, Reset_N, PMD[0:n].
Additionally if the Bus Address Type defined in the Node Header Section is Relative Address ADDR[0:4]
can also be defined.

Figure 3-23. Port Options

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

0x6800 PMD Line Analog Section 3.3.8.7

0x8800 PMD Line Analog Misc Section 3.3.8.8

0x7000 PMD Host Analog Section 3.3.8.7

0x9000 PMD Host Analog Misc Section 3.3.8.8

N/A Port Option Pointer Section 3.3.8.4

N/A Port Option Header Section [0:Port Option Count] 3.3.8.5

0x4000 PHY Capabilities Section [0:PMD Count - 1][0:Port Option Count] 3.3.8.6

Intel® Ethernet Controller E810 Datasheet
Interconnects

256 613875-009

3.3.8.19 GPIO Controller Node

This section describes the block structure of a GPIO Controller node. The block contains one section of
variable length: the Node I/O Section.

The Node I/O Section should define the following I/Os: I2C, Int_N, and Reset_N.

3.3.8.20 MUX Controller Node

This section describes the block structure of an MUX Controller node. The block contains one section of
variable length: the Node I/O Section.

The Node I/O Section should define the following I/Os: I2C and Reset_N.

3.3.8.21 LED Controller Node

This section describes the block structure of an LED Controller node. The block contains one section of
variable length: the Node I/O Section.

The Node I/O Section should define the following I/Os: I2C and Reset_N.

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

N/A 0x3800 Node Scratch Section 3.3.8.17

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

N/A 0x3800 Node Scratch Section 3.3.8.17

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

N/A 0x3800 Node Scratch Section 3.3.8.17

613875-009 257

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.8.22 LED Node

This section describes the block structure of an LED node. The block contains two or more sections of
variable length: the Node I/O Section and the Node LED Configuration Section.

An LED node can have one or three I/O connections. The number is reflected by the I/O Count field of
the Node Header Section (Section 3.3.8.2). If the LED is a monochrome indicator, the I/O Section
defines a single I/O (I/O Type LED) and if the LED is an RGB color indicator then the I/O Section defines
three I/Os (I/O types LED.Red, LED.Green, and LED.Blue).

The LED can have a different configuration for each of the Port Options of the PHY it is associated with.
Therefore the LED Node block contains a Node LED Configuration Section for each of the Port Options of
the PHY with which the LED is associated. When the Parent Node Handle is valid, the number of the Port
Options captured in the Node Header Section (Section 3.3.8.2) must match the number of Port Options
defined for the PHY node with which the LED is associated. Otherwise, the number of Port Options in the
node header should be 1.

3.3.8.23 Temperature Sensor Node

This section describes the block structure of a Temperature Sensor node. The block contains one section
of variable length: the Node I/O Section.

The Temperature Sensor node can have a different configuration for each of the Port Options of the PHY
with which it is associated. Therefore, the Temperature Sensor node block contains a Node Thermal
Configuration Section for each of the Port Options of the PHY with which the Temperature Sensor is
associated. When the parent node handle is valid, the number of the Port Options captured in the Node
Header Section (Section 3.3.8.2) must match the number of Port Options defined for the PHY node with
which the Temperature Sensor is associated. Otherwise, the number of Port Options in the node header
should be 1.

The Node I/O Section should define the following I/Os: I2C, Int_N, and Reset_N.

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

0x000A / 0x000E N/A Node Parent Section 3.3.8.16

0x000C + n*6 / 0x00010 + n*6 0xA000 Node LED Configuration Section. n - port option index 3.3.8.9

N/A 0x3800 Node Scratch Section 3.3.8.17

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

0x000C N/A Node Parent Section 3.3.8.16

0x0010 0xC000 Node Thermal Configuration Section 3.3.8.10

Intel® Ethernet Controller E810 Datasheet
Interconnects

258 613875-009

3.3.8.24 ID EEPROM Node

This section describes the block structure of an ID EEPROM node. The block contains one section of
variable length: the Node I/O Section.

The Node I/O Section should define the following I/Os: I2C and EEPROM_WP.

3.3.8.25 Cage Node

This section describes the block structure of a Cage node. The block contains one section of variable
length: the Node I/O Section.

The Node Header Section should indicate a Bus Type of I2C and the Bus Address should be 0xA0.

For an SFP+ or SFP28 cage, the following I/Os must be defined: I2C, Present_N. Optionally, the
following I/Os could be also defined: TX_Disable.

For a QSFP+ or QSFP28 cage, the following I/Os must be defined: I2C, Present_N, Reset_N, Int_N.
Optionally, the following I/Os could be also defined: Modsel_N, LPMode.

3.3.8.26 Mezzanine Connector Node

This section describes the block structure of an Mezzanine Connector node. The block contains one
section of variable length: the Node I/O Section.

The Node Header Section should indicate a Bus Type of I2C and the Bus Address should be 0xA8.

Setting the path to this mezzanine connector and using this bus allows for reading the mezzanine card’s
ID EEPROM.

For a CEI mezzanine connector, part of the motherboard topology, the following I/Os must be defined:
I2C, Present_N, Int_N, Reset_N, MDIO, ADDR[0:2], and PMD[0:3].

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

N/A 0x3800 Node Scratch Section 3.3.8.17

Word Offset Attribute ID Description Section
Reference

0x0000 0x0000 Node Header Section 3.3.8.2

0x0008 0x2000 Node I/O Section 3.3.8.3

613875-009 259

Intel® Ethernet Controller E810 Datasheet
Interconnects

When the topology of a mezzanine card is discovered, the connections with the motherboard are
determined by matching the I/O types of the mezzanine connector from the mezzanine card topology
with the I/Os of the mezzanine connector of the motherboard topology according to the below in
Figure 3-24.

3.3.8.27 Clock Controller Node

This section describes the block structure of a Clock Controller node. The block contains several
sections of variable length: the Node I/O Section (Section 3.3.8.3), the Node Clock Input Configuration
Section (Section 3.3.8.12), the Node Clock Output Configuration Section (Section 3.3.8.13), the Node
Recovered Clock (Section 3.3.8.14), and Node Clock DPLL Configuration Section (Section 3.3.8.15).

Figure 3-24. Mezzanine Connector Mapping

Word Offset Attribute ID Description

0x0000 0x0000 Node Header Section

0x0008 0x2000 Node I/O Section

N/A Node Parent Section

0x0004 Node Clock Configuration Header Section

0x2800 Node Clock Input Configuration Sections

0x3000 Node Recovered Clock/Clock Output Configuration Sections
Part Section Num.
0x24 ZL30632/ZL80032: Node Clock Output Configuration Sections
0x31 C287: Node Recovered Clock Output Configuration Sections

0x8000 Node Clock DPLL Configuration Sections

N/A 0x3800 Node Scratch Section

Intel® Ethernet Controller E810 Datasheet
Interconnects

260 613875-009

3.3.8.28 Clock MUX Node

This section describes the block structure of a Clock MUX node. The block contains one section of
variable length: the Node I/O Section (Section 3.3.8.3).

3.3.8.29 GPS Node

This section describes the block structure of a GPS node. The block contains one section of variable
length: the Node I/O Section (Section 3.3.8.3).

3.3.9 Topology Netlist Constraints and Conventions

The topology netlist describes design-specific configuration and connections between various
motherboard or mezzanine card components, referred to as nodes.

The E810 link management engine imposes the following constraints:

3.3.9.1 Netlist Size Constraints

• The maximum size of the netlist supported in EMP firmware RAM is 12 KB, including the
motherboard and all potential mezzanine cards. For PHY and LED nodes, this includes only the
currently-active Port Option.

• The maximum size of the motherboard netlist in the NVM is 28 KB.

• The maximum size of the mezzanine card netlist in the IDEEPROM is 4 KB.

• The maximum size of the motherboard netlist in RAM is 12 KB. For all PHY and LED nodes, this
includes only the currently-active Port Option.

• The maximum size of the mezzanine card netlist in RAM is 2 KB. For all PHY and LED nodes, this
includes only the currently-active Port Option.

3.3.9.2 Node Constraints

• The maximum number of nodes supported on a motherboard is 128.

• The maximum number of nodes supported on a mezzanine card is 32.

• The maximum number of nodes of Mezzanine Connector type supported on a motherboard is 5.

• The maximum number of nodes of Mezzanine Connector type supported on a mezzanine card is 1.

• The maximum depth of cascaded PHY nodes (PHY chain length) is 4.

Word Offset Attribute ID Description

0x0000 0x0000 Node Header Section

0x0008 0x2000 Node I/O Section

Word Offset Attribute ID Description

0x0000 0x0000 Node Header Section

0x0008 0x2000 Node I/O Section

613875-009 261

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.9.3 Node I/O Constraints

• The maximum number of I/O connections supported on the motherboard is 384.

• The maximum number of I/O connections supported on a mezzanine card is 64.

• The maximum number of I/O connections supported on a node is 16.

• The maximum number of I/O connections of a given I/O type to a node is 64.

• The maximum number of I/O connections with I/O Type of PMD supported on a motherboard is 40.

• The maximum number of I/O connections with I/O Type of PMD supported on a mezzanine card is
8.

• The maximum number of I/O connections with I/O Type of PRESENT_N supported on a
motherboard is 20.

• The maximum number of I/O connections with I/O Type of PRESENT_N supported on a mezzanine
card is 4.

• The maximum number of I/O connections with I/O Type of INT_N supported on a motherboard is
16.

• The maximum number of I/O connections with I/O Type of INT_N supported on a mezzanine card is
4.

• Each node can have up to one I/O connection with I/O type GPIO and a given I/O Function / I/O
Number.

• All I/O connections to the a specific driving I/O on any given node must have matching
configuration. For example, all I/O connections with I/O Type of GPIO and I/O Function of RESET_N
connecting to the same driving GPIO input must have matching Polarity and Default Value
configuration.

• With the exception of I/O connections with I/O Type of I2C Bus, MDIO Bus and GPIO with I/O
Function of RESET_N must be dedicated point to point connections. Another exception to this rule is
GPIO signal driving the rate select pins of modules (RS0 and RS1).

• If a node is accessible through an I2C or MDIO, the connection must be described by the first entry
in the I/O connections.

• On each board the I2C attached MUX Controllers, GPIO Controllers, and LED Drivers must have a
shared reset signal. Each of these nodes must have and I/O connection with I/O Type of GPIO and
I/O Function of RESET_N pointing to the same driving I/O on the same driving node.

• PHY nodes must not share their reset signal with other devices. The driving I/O on the driving node
pointed to by a PHY node’s I/O connection with I/O Type of GPIO and I/O Function of RESET_N
must not have more than one connection to it.

• Mezzanine cards that implements more than one PHY, should not share their reset signal.

• The maximum number of MDIO/I2C I/Os on the I/O Widget node is 16.

• The maximum number of MDIO/I2C I/Os on a Mux node is 62.

Intel® Ethernet Controller E810 Datasheet
Interconnects

262 613875-009

3.3.9.4 Node I/O Conventions

3.3.9.4.1 I/O Widget

• Pins MDC[0:4]/SCL[0:5], MDIO[0:4]/SDA[0:4] are referred to as MDIO[0:4] or I2C[0:4],
depending on the I/O Type of the connected I/O connection.

• Pins GPIO[0:31] are referred to as GPIO[0:31].

3.3.9.4.2 PCA9545A

• Pins SD0 and SC0 defined in Chapter 6 of the PCA9545A Datasheet are referred to as I2C[0].

• Pins SD1 and SC1 defined in Chapter 6 of the PCA9545A Datasheet are referred to as I2C[1].

• Pins SD2 and SC2 defined in Chapter 6 of the PCA9545A Datasheet are referred to as I2C[2].

• Pins SD3 and SC3 defined in Chapter 6 of the PCA9545A Datasheet are referred to as I2C[3].

3.3.9.4.3 PCA9575

• Pins P0_0 through P0_7 defined in Table 3 of the PCA9575 Datasheet are referred to as GPIO[0:7].

• Pins P1_0 through P1_7 defined in Table 3 of the PCA9575 Datasheet are referred to as
GPIO[8:15].

3.3.9.4.4 PCA9685

• Pins LED0 through LED15 defined in Table 3 of the PCA9685 Datasheet are referred to as
GPIO[0:15].

3.3.9.4.5 C827

• Pins LIP0, LIN0, LOP0, and LON0 defined in Table 2 of the C827 Datasheet are referred to as
PMD[0].

• Pins LIP1, LIN1, LOP1, and LON1 defined in Table 2 of the C827 Datasheet are referred to as
PMD[1].

• Pins LIP2, LIN2, LOP2, and LON2 defined in Table 2 of the C827 Datasheet are referred to as
PMD[2].

• Pins LIP3, LIN3, LOP3, and LON3 defined in Table 2 of the C827 Datasheet are referred to as
PMD[3].

• Pins HIP0, HIN0, HOP0, and HON0 defined in Table 2 of the C827 Datasheet are referred to as
PMD[0].

• Pins HIP1, HIN1, HOP1, and HON1 defined in Table 2 of the C827 Datasheet are referred to as
PMD[1].

• Pins HIP2, HIN2, HOP2, and HON2 defined in Table 2 of the C827 Datasheet are referred to as
PMD[2].

• Pins HIP3, HIN3, HOP3, and HON3 defined in Table 2 of the C827 Datasheet are referred to as
PMD[3].

613875-009 263

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.9.4.6 Generic Clock Mux

The Generic Clock MUX node is dedicated for describing muxing options available on external clock input
and output connections. The node only captures the internal facing pins and connections and the
external connections are omitted.

Figure 3-25 displays the assumed internal topology of the clock mux node.

Note: The Generic Clock MUX nodes are not configured by the Link Manager and as a result the
node may also be used to abstract other clock muxing topologies.

3.3.9.5 PHY Node Constraints

• The maximum number of lanes on line or host side of a PHY node is 8.

• The maximum number of Port Options supported for a PHY node is 16.

• The E810 has one PHY node defined for each of the three PHY Cores.

• The first two PHY Core nodes allow for a total of eight line-side lanes, while the third one only four
line-side lanes. None of the PHY Core nodes have host-side lanes. Therefore, the Host Lane Count is
0, the Node PMD Host Analog Section Pointer is ignored, and the corresponding Node PMD Analog
Section does not exist.

• The netlist must capture the PHY nodes in a well defined order. All PHY nodes must be preceded by
the PHY nodes that it has host side connections to (I/O Connections with I/O Type of PMD). This
results in the innermost PHY nodes needing to be captured first.

• All I/O connections with I/O Type of PMD from any PHY node must connect to the same node.

Figure 3-25. Clock MUX I/O Conventions

Intel® Ethernet Controller E810 Datasheet
Interconnects

264 613875-009

3.3.9.6 GPIO Controller Node Constraints

• • The E810 has one GPIO Controller node defined for the I/O Widget.

• The netlist must capture the GPIO nodes in a well-defined order. The first node captured by the
netlist must be the I/O Widget with a node handle equal to 0.

3.3.9.7 LED Node Constraints

• All I/O connections of an LED node must be to the same driving node.

• The parent PHY node of a LED node, should be described in the netlist prior to the description of the
LED node.

• The LED node configuration sections that are linked to the LED node must be ordered with
respected to the port option order at the parent PHY node.

3.3.9.8 Temperature Node Constraints

• The parent PHY node of a Temperature node, should be described in the netlist prior to the
description of the Temperature node.

• The Node Thermal configuration sections that are linked to the Temperature node must be ordered
with respected to the port option order at the parent PHY node.

3.3.9.9 Cage Node Constraints

• The I/O connection with I/O Type of I2C must point to an I2C interface dedicated to the cage. All
cages must have dedicated I2C interfaces. The MODSEL_N pin of the QSFP cages must be asserted
low through a strapping.

3.3.10 Link Topology Admin Commands

Most components of the link topology are accessed by the device firmware, either directly or using PHY
configuration scripts. However, sometimes there is a need for direct access of the software driver, or
tools driver to the link topology components. As link topology components are owned by the firmware,
any such access should be coordinated and conducted thorough firmware admin command, where the
firmware can synchronize and control the required access.

The following link topology firmware admin commands are defined:

Table 3-99. Link topology Admin Commands

Command Opcode Description Section
Reference

Set GPIO by Function 0x06E6 Set value to GPIO signal referenced by its function 3.3.10.1

Get GPIO by Function 0x06E7 Get value from GPIO signal referenced by its function 3.3.10.2

Set Port Identification LED 0x06E9 Set the LED used for identification of this port. 3.3.10.3

Read/Write SFF EEPROM 0x06EE Read or Write 1-16 bytes from SFF EEPROM. 3.3.10.4

Program Topology Device NVM 0x06F2 Triggers the write of the topology device NVM. 3.3.10.5

613875-009 265

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.10.1 Set GPIO by Function (0x06E6)

The Set GPIO By Function admin command is used to set a GPIO signal which is part of the topology
structures. The GPIO signal is referenced by its function within the netlist (in other words, it can be
used to set the RST signal of specific topology node). The software driver might provide the node
handle of the node that is using the GPIO directly, or use context search and provide the Port number,
node type, and node index and firmware retrieves the node handle. The software should also provide
the GPIO function and the value to set.

Table 3-100. Set GPIO by Function Admin Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x06E6 Command opcode.

Datalen 4-5 0x0 No external buffer for this command.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16-17 Software uses this field to send the logical port number when the Context field is
“Port”. Software might mark the logical port number as not valid. In this case,
firmware might use the port that is owned by the function.
Byte 16: Logical Port number

This field specifies the port number, and it is used when the physical function owns
more than one port or when the physical function owns single port, but the Logical
Port number is valid bit (Bit 17.0) is turned on.

Bit 17.0: Logical Port number is valid
All other bits = Reserved.

Node Type /
Context

18 Bits 7:4: Context
Software indicates the context within which the handle should be identified.
0x0 = Global — The index and node type are used to identify the node within the

context of the entire topology.
0x1 = Board — The index and node type are used to identify the node within the

context of a single board.
0x2 = Port — The index and node type are used to identify the node within the

context of a single port, as specified in the Logical Port Number field.
0x3 = Node — The index and node type are used to identify the node within the

context of a single node. In other words, the requested node must be
connected in the topology netlist using I/O connection to a specified reference
node.

0x4 = Provided Node — The reference node is provided by software and no search is
conducted.

Bits 3:0: Node Type
Software indicates the requested node type. For a list of node types, refer to
Section 3.3.8.2.1.

Index 19 Software indicates the requested node index.
When a PHY device is requested and the context of the search is “Port”, PHYs are
indexed according to their place in the PHY chain, while 0 means the outermost PHY.
For other node types, the nodes are indexed according to their appearance in the
netlist.
An error is returned when the index is bigger than the number of topology node
retrieved in the context search.

Intel® Ethernet Controller E810 Datasheet
Interconnects

266 613875-009

Reference Node
Handle / Node
Handle

20-21 Bits 9:0: Reference Node Handle / Node Handle
Software uses this field to specify the reference node handle when the context of the
search is “Node”.
When the context is “Provided Node”, software uses this field to provide the node
handle directly. See description of node handle in Section 3.3.8.2.2.
This field is used as input.

All other bits = Reserved.

I/O Function 22 Software provides the I/O Function of the GPIO that needs to be set. The five LSB are
used. See Section 3.3.8.3.2.

I/O Value 23 Software provides the I/O value to set in the LSB.

Reserved 24-31 Reserved. Set to zero.

Table 3-100. Set GPIO by Function Admin Command [continued]

Name Byte.Bit Value Remarks

613875-009 267

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.10.2 Get GPIO by Function (0x06E7)

The Get GPIO By Function admin command is used to get the value of a GPIO signal which is part of the
topology structures. The GPIO signal is referenced by its function within the net-list (in other words, it
can be used to set the RST signal of specific topology node). The software driver might provide the
node handle of the node that is using the GPIO directly, or use context search and provide the Port
number, node type, and node index and firmware retrieves the node handle. The software should also
provide the GPIO function and firmware returns the value read from the GPIO.

Table 3-101. Get GPIO by Function Admin Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x06E7 Command opcode.

Datalen 4-5 0x0 No external buffer for this command.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16-17 Software uses this field to send the logical port number when the Context field is
“Port”. Software might mark the logical port number as not valid. In this case,
firmware might use the port that is owned by the function.
Byte 16: Logical Port number

This field specifies the port number, and it is used when the physical function owns
more than one port or when the physical function owns single port, but the Logical
Port number is valid bit (Bit 17.0) is turned on.

Bit 17.0: Logical Port number is valid
All other bits = Reserved.

Node Type /
Context

18 Bits 7:4: Context
Software indicates the context within which the handle should be identified.
0x0 = Global — The index and node type are used to identify the node within the

context of the entire topology.
0x1 = Board — The index and node type are used to identify the node within the

context of a single board.
0x2 = Port — The index and node type are used to identify the node within the

context of a single port, as specified in the Logical Port Number field.
0x3 = Node — The index and node type are used to identify the node within the

context of a single node. In other words, the requested node must be
connected in the topology netlist using I/O connection to a specified reference
node.

0x4 = Provided Node — The reference node is provided by software and no search is
conducted.

Bits 3:0: Node Type
Software indicates the requested node type. For a list of node types, refer to
Section 3.3.8.2.1.

Index 19 Software indicates the requested node index.
When a PHY device is requested and the context of the search is “Port”, PHYs are
indexed according to their place in the PHY chain, while 0 means the outermost PHY.
For other node types, the nodes are indexed according to their appearance in the
netlist.
An error is returned when the index is bigger than the number of topology node
retrieved in the context search.

Intel® Ethernet Controller E810 Datasheet
Interconnects

268 613875-009

Reference Node
Handle / Node
Handle

20-21 Bits 9:0: Reference node handle / Node handle
Software uses this field to specify the reference node handle when the context of the
search is “Node”.
When the context is “Provided Node”, software uses this field to provide the node
handle directly. See description of node handle in Section 3.3.8.2.2.
This field is used as input.

All other bits = Reserved.

I/O Function 22 Software provides the I/O Function of the GPIO that needs to be set. The five LSB are
used. See Section 3.3.8.3.2.

I/O Value 23 Software provides the I/O value to set in the LSB.

Reserved 24-31 Reserved. Set to zero.

Table 3-101. Get GPIO by Function Admin Command [continued]

Name Byte.Bit Value Remarks

613875-009 269

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.10.3 Set Port Identification LED (0x06E9)

The Set Port Identification LED admin command is used to set the LED that is used to identify the port
as indicated in the topology structures (see Section 3.3.8.9.2). The software driver should provide the
Logical Port Number.

Table 3-102. Set Port Identification LED Admin Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x06E9 Command opcode.

Datalen 4-5 0x0 No external buffer for this command.

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16-17 Software uses this field to send the logical port number. Software might mark the
logical port number as not valid. In this case, firmware might use the port that is
owned by the function.
Byte 16: Logical Port number

This field specifies the port number, and it is used when the physical function owns
more than one port or when the physical function owns single port, but the Logical
Port number is valid bit (Bit 17.0) is turned on.

Bit 17.0: Logical Port number is valid
All other bits = Reserved.

Set Indent Mode 18 Bit 0: Set the LED into identification mode
0b = The LED is configured to its original mode (by the netlist).
1b = The LED is configured to identification mode and will blink.

All other bits = Reserved.

Reserved 19-31 Reserved. Set to zero.

Intel® Ethernet Controller E810 Datasheet
Interconnects

270 613875-009

3.3.10.4 Read/Write SFF EEPROM (0x06EE)

The Read/Write SFF EEPROM admin command is an immediate and indirect admin command used to
read or write 1 to 16 bytes of data from SFF EEPROM at a user defined I2C bus address. Using this
command, the software driver can set the Page bit and the firmware checks the appropriate Page
byte(s) from the EEPROM to verify operation on the right page of the module. When firmware detects
that the module is currently configured to different page access, it updates the module page before the
desired read or write action.

The checking and setting of the module page and the actual read or write operation are done as an
atomic block, where no other I2C access to this module is performed between those actions. The page
aware SFF module access should be used by software to access SFF EEPROM module, as it is done in
coordination with DNL preventing potential problem where the page setting and the actual read or write
are interleaved between DNL and other host access.

To find the topology node for the I2C SFP/QSFP module relevant to the user in this command, firmware
searches the topology node based on the function that the admin command is being called from or the
Logical Port that is explicitly specified in this command (that is, Node type = cage, Context = port,
Index = 0, Node Handle/Reference Node Handle = 0).

Table 3-103. Read/Write SFF EEPROM Admin Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x06EE Command opcode.

Datalen 4-5 1-16 bytes Size of external buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by Firmware.
0 = No error (success)
1 = EPERM. The module pointer location specified in the command does not

permit the required operation.
12 = EBUSY. Either Link Management blocked us from even talking to the

device, or it was unable to finish writing the page in the
allotted time. Please retry your request.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16 Software uses this field to send the logical port number. Software might mark
the logical port number as not valid. In this case, firmware might use the port
that is owned by the function.
Byte 16: Logical Port Number

This field specifies the port number, and it is used when the physical
function owns more than one port or when the physical function owns single
port, but the Logical Port Number Valid bit (Bit 17.0) is turned on.

Logical Port
Number Valid

17 Bit 17.0: Logical Port number is valid.
All other bits = Reserved.

I2C Bus Address 18.0-19.1 Slave address (10 bits). For 7-bit address, only bits 18.0-18.6 are used.
When all bits in 18.0-18.6 are equal to 0, the slave address is taken from the
topology netlist.
Bits 18.7-19.1: Extra bits

Extra bits for 10-bit address. Ignored if bit 19.2=0

10-Bit Address
Select

19.2 0b 10-Bit Address Select
0b = 7-bit address used.
1b = 10-bit address used.

613875-009 271

Intel® Ethernet Controller E810 Datasheet
Interconnects

Set EEPROM Page 19.3-19.4 Set EEPROM Page
00b = Do not change page.
01b = Read offset 127 of EEPROM, set it to Byte 23 on mismatch.
10b = Read offset 126 of EEPROM, set it to Byte 22 on mismatch.
11b = Reserved.

Reserved 19.5-19.6 Reserved. Software should set to zero.

Command 19.7 SFF EEPORM module access command.
0b = Read
1b = Write

I2C Memory
Address (Offset)

20-21 Offset within the RRPROM to start reading from, up to 16 bits.
Note: SFF compliant modules requires 8-bit address and therefore the high

8 MSB are ignored and only the low 8 LSB are sent during the I2C
transaction. Software should set the high 8 MSB to 0.

EEPORM Page 22-23 Byte 22: Set offset 126 to this value.
If not already set, set offset 126 to this value immediately before accessing
each block.

Byte 23: Set offset 127 to this value.
If not already set, set offset 127 to this value immediately before accessing
each block. (QSFP)

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address low 28-31 Buffer Address Low bits of buffer address.

Table 3-104. Read/Write SFF EEPROM Response Buffer Format

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x06EE Command opcode.

Datalen 4-5 1-16 bytes Size of external buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by Firmware.
0 = No error (success)
1 = EPERM. The module pointer location specified in the command does not

permit the required operation.
12 = EBUSY. Either Link Management blocked us from even talking to the

device, or it was unable to finish writing the page in the allotted
time. Please retry your request.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address low 28-31 Buffer Address Low bits of buffer address.

Table 3-103. Read/Write SFF EEPROM Admin Command [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

272 613875-009

3.3.10.5 Program Topology Device NVM (0x06F2)

This command triggers the write of the external device NVM taken from one of the NVM sections that
includes the external topology device image. The programming of the new device firmware into the
external device NVM is done using MDIO or I2C commands, depending on the topology device.

This admin command is optionally called from the NVM update tool.

The format of this command is similar to the other topology commands, as follows:

Table 3-105. Program Topology Device NVM Admin Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x06F2 Command opcode.

Datalen 4-5 0 Direct command. No external buffer should be attached.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by Firmware.
0 = Success
2 = ENOENT. No such element. For example, node handle was not found (e.g. Index

was higher than the number of handles found for the given context)
6 = ENXIO. No such resource. Firmware did not find a valid external topology device

image in the NVM to match the requested device.
12 = EBUSY. For example, when the command is called when a previous request to

program or read the external topology device is ongoing. This code also
returned when RDE operation is currently executed.

14 = EINVAL. Invalid argument. For example, wrong search context. When using
“Node” context, input node handle is not valid.

17 = ENOSYS. Device programming not implemented for this device or the device
image in NVM is not enabled for programming.

18 = ERANGE - Parameter out of range. For example, when using “Port” context,
port number is out of range.

21 = EMODE. Operation not allowed in current device mode. For example, when it is
called when link module is disabled or not initialized.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Logical Port
Number

16-17 Software uses this field to send the logical port number, when the context field is
“Port”. Software might mark the logical port number as not valid. In this case,
firmware might use the port that is owned by the function.
Byte 16: Logical Port number

This field specifies the port number, and it is used when the physical function owns
more than one port or when the physical function owns single port, but the Logical
Port Number Valid bit (Bit 17.0) is turned on.

Bit 17.0: Logical Port number is valid.
All other bits = Reserved.

613875-009 273

Intel® Ethernet Controller E810 Datasheet
Interconnects

Notes:

• Device must be in the netlist in order to be accessed. For the typical case of accessing an external
PHY, it can be searched by “Port” content. Specifying port number and node type equal to “PHY”
and Index of zero provides the outermost PHY. When an external PHY is used for multiple ports, any
port number that is connected to the external PHY, should give the same Node ID.

• Firmware must check that a valid section present in the NVM with the topology device image.
Otherwise, it should return with error (ENXIO - Firmware did not find a valid external topology
device image in the NVM to match the requested device).

• Firmware must check that the device part number within the package match the device pointed in
the topology netlist. Otherwise, it should return with error (ENXIO - Firmware did not find a valid
external topology device image in the NVM to match the requested device).

• Firmware must check that the device part number is one of the supported devices that it knows
how to program. Otherwise, it should return with error (ENOSYS - Device programming not
implemented for this device).

• Firmware programs the device using I2C or MDIO, according to the device part number and the
programming rules of the specific device.

Node Type/Context 18 Bits 7:4: Context
Software indicates the context within which the handle should be identified.
0x0 = Global — The index and node type are used to identify the node within the

context of the entire topology.
0x1 = Board — The index and node type are used to identify the node within the

context of a single board.
0x2 = Port — The index and node type are used to identify the node within the

context of a single port, as specified in the Logical Port Number field.
0x3 = Node — The index and node type are used to identify the node within the

context of a single node. In other words, the requested node must be
connected in the topology netlist using I/O connection to a specified reference
node.

0x4 = Provided Node — The reference node is provided by software and no search is
conducted.

Note: The “Board” context is not available in this command. Firmware should
respond with EINVAL.

Note: The “Node” context is not available in this command. Firmware should
respond with EINVAL.

Note: The “Provided Node” context is not available in this command. Firmware
should respond with EINVAL.

Note: The “Direct” context is not relevant for this command. Firmware should
respond with EINVAL in that case.

Bits 3:0: Node Type
Software indicates the requested node type. For a list of node types, refer to
Section 3.3.8.2.1.

Index 19 For topology searches, software indicates the requested node index.
When a PHY device is requested and the context of the search is “Port”, PHYs are
indexed according to their place in the PHY chain, while 0 means the outermost PHY.
For other node types, the nodes are indexed according to their appearance in the
netlist.
An error is returned when the index is bigger than the number of topology node
retrieved in the context search.

Reserved 20-31 Reserved.

Table 3-105. Program Topology Device NVM Admin Command [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

274 613875-009

• This command is asynchronous. Firmware reads this command from the admin queue and writes
back immediate completion. The immediate completion indicates that the topology device NVM
programming started/did not start. Once the topology device NVM programming finishes, firmware
should respond with additional completion (event) to acknowledge programming is finished
successfully or not.

• Upon unsuccessful programming of the external topology device, or when the programming is
interrupted (for example, with GLOBR), depending on the PHY, it might be that the PHY is not
recovering and link is not started, it will be marked with “link configuration error”. Software might
recover that with re-programming of the PHY.

• This command should block additional calls to Program Topology Device NVM command or calls to
the Read Topology Device NVM command until the current process is completed. This command is
also blocked when external topology device programming or read is done.

• The programming process should be split into smaller DNL activities that should fit the DNL
execution window. Firmware should monitor the programming process to make sure each activity
finishes successfully and might execute other DNL activities in the middle of the process to keep
monitoring the link management process.

3.3.10.5.1 Response Buffer Format

The response buffer is identical to the admin command and it is returned twice as follows:

• Immediate response — Firmware should check if it can trigger the topology device NVM write. It
should return error if it cannot trigger it and success if the write is triggered. The following error
codes apply at this stage:

0 - Success — Means that the external topology device NVM write is triggered.

2 - ENOENT — No such element. For example, node handle was not found (Index was higher
than the number of handles found for the given context).

6 - ENXIO — No such resource. Firmware did not find a valid external topology device image in
the NVM to match the requested device.

12 - EBUSY — For example, when the command is called when a previous request to program
or read the external topology device is ongoing. This code also returned when RDE operation is
currently executed.

14 - EINVAL — Invalid argument. For example, wrong search context. When using “Node”
context, input node handle is not valid.

17 - ENOSYS — Device programming not implemented for this device or the device image in
NVM is not enabled for programming.

18 - ERANGE — Parameter out of range. For example, when using “Port” context, port number
is out of range.

21 - EMODE — Operation not allowed in current device mode. For example, when it is called
when link module is disabled or not initialized.

• Event message — Firmware returns this message when the programming is completed. The event
is sent to the same admin queue that generated the original message. The following error codes
apply at this stage:

0 - Success — Means that the external topology device NVM write has completed successfully.

5 - EIO — When the programming was not completed due to some error with accessing the
topology device.

613875-009 275

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.3.10.5.2 Using the Program Topology Device NVM Admin Command

The NVM Update tool should use the following flow:

1. Determine the sections in the NVM bank that are available for the topology device NVM update. This
is done by reading capabilities 0x81, 0x82, 0x83, 0x84. It can read the Node P/N and Version fields
to determine which part numbers can be updated and what is the target version.

2. Search for all PHYs in the topology netlist and find out Node P/N for each PHY and the port that this
PHY is serving. Some PHYs might serve several ports (for example, the C827 serves four ports) and
need one firmware update.

3. Read the current PHY firmware version of the PHY using the Get PHY Abilities command (see
Section 3.2.4.1.4).

4. Allow the user to update to the new version if available, or automatically update all PHYs to the
newer version. The update can be done using the Program Topology Device NVM admin command,
proving it the right PHY handle.

Intel® Ethernet Controller E810 Datasheet
Interconnects

276 613875-009

3.4 Non-Volatile Memory (NVM)

3.4.1 General Overview

The following conditions specific to the E810 induced an approach to NVM access:

• LAN and RDMA traffic can be handled only if the EMP code runs.

• For flexibility reasons, the main EMP code is retrieved from the NVM and not from ROM.

• Unless authenticated, the EMP/PE firmware code presents a potential security threat for the
system:

— Modification/tampering firmware code is presently undetectable to the rest of the system.

— The E810’s various virtualization capabilities (like SR-IOV with VFs and PFs) can virtually reach
into any VM or VMM address space.

— A malicious firmware is capable of sending out the harvested data from the server to
unauthorized recipients via DMA reads … again, undetected. The host CPU is not involved in this
process.

— A malicious firmware is capable of injecting malware into the host, bypassing other
platform-level access control.

• The E810 controller core IP is part of several products with specific NVM needs, while the NVM
design is common for all of them and consequently it has to meet the most strict requirements.

• Host should only acquire NVM semaphore for NVM commands (commands 0x7xx), or a deadlock
might occur.

• Non-NVM Host commands should be able to accept EBUSY as a response. This indication means
that either SPI is busy with other operation, or that NVM resource is owned by another flow such as
NVM update.

3.4.1.1 Requirements on NVM Access

The basic requirements from NVM access in the E810 include the following:

• Guarantee that only Intel-provided firmware code (EMP, PE, PHY) is run and device-critical data is
used by the E810.

— The firmware code and device-critical data is cryptographically signed and authenticated prior
to execution.

— The Intel ECSS/EDSS is used for signing.

— PKCS #1 v2.2 format with 2048-bit RSA keys and SHA-256 hash is used for signing EMSA-
PKCS1-v1.5.

• Protect NVM image against compromised supply chains and at least partial protection against
physical attacks, such as NVM content replacement en-route. Full protection against physical
attacks is not required at the moment but can be requested in future. It implies security on read
approach, where the firmware ROM code is the Root of Trust and the authentication is done at every
step of the Chain of Trust. That is, ROM-Miniload-NVM image.

— Authentication of the NVM bank is only at major resets, but not performed on every NVM
access. The resets on which the NVM bank is re-authenticated are: POR and EMPR.

613875-009 277

Intel® Ethernet Controller E810 Datasheet
Interconnects

— The hash value of the public key is stored in fuses, while the public key is part of the NVM
image.

• Compromised key revocation is supported, while only level two keys can be revoked by providing a
new CA certificate. The key for CA authentication cannot be changed in the field.

• Protection against rollback to the NVM version with known security issues is provided.

— This is achieved by guaranteeing that the NVM image security revision is not decreased during
NVM update.

— A way to override the security revision rollback protection with BMC manageability commands is
provided.

• Initial NVM programming is responsible to program blank fuses encoding the hash of the public
verification key if fuses are not configured as part of the packaging process.

• The ROM firmware supports blank Flash programming mode, where the Flash can be written by
host software, and then subsequently verified on device reset. Blank Flash programming mode
assumes known good device initialization parameters are built into the ROM.

• Protect NVM update flow from power failure before completion. This implies the image-update
procedure of modules uses a double-bank policy.

• Meet the boot time requirements described in PCIe specification.

• Reduce the surface for security attacks and protect as much NVM content a possible taking the
“allowlist” approach. Consequently, only a small PFA area with system-specific settings surviving
NVM update is unprotected by design. All other NVM settings are read only and/or signed.

• Provide a simple way to update NVM shifting responsibility for system specific configuration
preservation to the device firmware. This is required to support the update over PLDM DMTF
emerging standard and any to any NVM update.

• Prevent a malicious software from causing permanent damage to the system, and to the NVM (and
the E810 in particular) so that Flash parts or NICs are not returned to Intel. It implies some
countermeasure be taken against a malicious software that would excessively write access the
Flash to precipitate its wear-out.

3.4.1.2 Operational Limitations

The NVM protection method selected in the E810 relies on authenticating key sections on initial load,
also known as authenticate on read. Protected modules are authenticated before their first usage
following a power-on reset, in addition to validating image updates prior to committing an update. NVM
protection is implemented using a ROM-based firmware digital signature authentication algorithm,
which uses fuse-encoded hashes of the public verification keys. Authenticating images on every initial
load greatly reduces the possibility of unwanted modification to device firmware being introduced from
compromised supply chains or physical tampering.

There is small set of PCIe-related time-critical CSRs, which are auto-loaded speculatively without
authentication. This content is verified later at initialization time. If the verification fails, the NVM
content is fixed and the error is reported to the software (using GL_MNG_FWSW CSR), with the request
to initiate a corresponding reset.

In normal operating mode, NVM write accesses are access controlled by the EMP firmware and cannot
be performed directly from the host to the NVM device via the memory-mapped accesses.
Memory-mapped NVM access remains available for NVM read accesses only. For simplicity and flexibility
reasons, NVM write accesses (except for VPD) can be initiated only via an admin command or following
a BMC command, which are both handled by the EMP.

Intel® Ethernet Controller E810 Datasheet
Interconnects

278 613875-009

The ROM-based EMP firmware supports a blank Flash programming mode in the event the initial EMP
firmware loader detects either a blank, corrupt, or invalid NVM image. In blank Flash programming
mode, the host software program can program an image directly to the Flash device without any
security limitations, nor is the EMP firmware involved. The host software has direct access to the SPI
Flash controller with the same permission as the EMP firmware in the blank Flash programming mode.
It should be noted that the new image is not functional without a reset. Upon a reset, the image is
authenticated.

When the host debug mode is entered, the host can remove address protection of the PF space and
write into the register that controls the blank Flash programming mode.

Note: This is not an error flow. Thus, the main firmware is loaded, the auto-load process still occurs,
and the state of the device might not be the hardware default state.

3.4.2 External Flash

In the E810, the LAN controller core is the main client of the internal SPI controller. The E810’s full Flash
image must also contain a descriptor for the SPI controller as described below.

The SPI controller is responsible for the following tasks:

• Perform arbitration between the different clients.

• Manage the access control to the different regions.

• Reflect a zero-base address to each of the clients such as each client’s first address is address zero.

• Enable access for a software tool for global blank Flash programming.

Note: External Flash must have Descriptor for SPI controller preprogrammed. The External
Flash used by the device must have Descriptor for SPI controller pre-programmed in the Flash
for the device to function. Until the Flash contains this information, Software Tools cannot
program an NVM image.

3.4.2.1 E810 NVM Regions

In the E810, the NVM uses a 16 or 32 MB Flash and contains the following regions:

• Descriptor region — The first 4 KB of the Flash that contains the following data:

— Signature

— Content section (3 DWords)

— Component section

— Region section

— Masters section

— Soft-Straps

Presence of the descriptor region is a requirement of the SPI Controller block. This region must be
pre-programmed before the host or firmware can access the Flash device via the SPI controller. This
programming can be done off-line during the manufacturing process, or via the host interface using
the “bit bang” mode.

• Core region — The core NVM used by the IP as described in Section 6.3. It is mapped as region 3
and has a size of 8-10 MB.

613875-009 279

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.3 Shadow RAM

NVM modules that meet one of these criteria must also be mirrored internally into a Shadow RAM that
is loaded once after POR:

• Software must be able to partially update the module without being forced to rewrite the entire
module (like SMBus address, VPD, and so on).

Unlike an EEPROM, Flash devices require rewriting an entire sector even if it comes to updating a
single byte. The partial update is first performed against the Shadow RAM. Later on, the E810
commits the entire updated Shadow RAM into the Flash.

• On device-level resets (in contrast to function-level resets), the module (or parts of it) is
auto-loaded by the E810 into registers that are mapped to the host memory BAR.

Auto-load done after PCIe fundamental resets (POR and PERST#) must be completed within a
bounded time, and cannot wait for the delays involved by a sector erase operation (hundreds of
milliseconds) that could have been initiated just before. Flash read accesses are suspended until a
Flash sector erase operation completes. NVM auto-load performed further to device-level resets are
done from the internal Shadow RAM into the registers, without involving Flash read cycles.

The E810 maintains the first 32 x 4 KB sectors of the Flash area allocated to it for the configuration
content that must be mirrored into the Shadow RAM. These sectors are organized in two equally-sized
banks, each one capable of containing the PFA of the Shadow RAM contents (See Figure 3-26, this
includes also the init module). These banks are referred to as the basic NVM banks. At any time one of
these two banks must be valid or else the E810 is set by hardware default and enters into blank Flash
programming mode (refer to Section 3.4.4.2).

Following a Power-on Reset (POR), the E810 firmware copies the valid Persistent Shadow RAM bank of
the Flash device and Non-persistent Shadow RAM area of the valid NVM Bank into the internal Shadow
RAM (see Figure 3-26 and Figure 3-27), which is made resilient to device-level resets that might occur
later on. The valid bank is the lowest indexed bank with the validity field content read as 01b. The NVM
Validity field is located at NVM Control Word 1. At any time, the valid bank is referred to as the current
basic bank, while the other is referred as the next basic bank. Any further accesses of software to this
section of the NVM are directed to the internal Shadow RAM. Modifications made to the Persistent
Shadow RAM area content are then copied by the E810 into the next bank of the NVM, flipping circularly
the valid Persistent Shadow RAM bank between bank 0 and bank 1 of the Flash.

This mechanism also provides a way for software to protect an image-update procedure from
power-down events by establishing a dual-bank policy even when performing a module partial update.

Intel® Ethernet Controller E810 Datasheet
Interconnects

280 613875-009

Figure 3-26. NVM Shadow RAM

Figure 3-27. Shadow RAM Structure

NVM

Shadow RAM (Local RAM)

64 KB 64 KBPadding to 64 KB
Persistent Shadow RAM Bank A

64 KBPadding to 64 KB
Persistent Shadow RAM Bank B

Persistent Shadow RAM area
Non-persistent Shadow RAM area

NVM Bank 1

Persistent Shadow RAM - Defaults
Non-persistent Shadow RAM area

NVM Bank 2

Persistent Shadow RAM - Defaults
Non-persistent Shadow RAM area

Update

Init

Init

Other NVM content

Shadow RAM

Non-Persistent

Persistent
Shadow RAM
Area

Init Module

NVM Control Word 1

Preserved Field

Shadow RAM
Area

Area

613875-009 281

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.4 NVM Access Modes

The NVM is connected to the device through SPI. Every access method eventually uses the SPI.

The NVM is accessed in multiple ways according to the entity and the state of the NVM image. following
are the different access modes.

• SPI access mode

• Normal access mode

— Through admin commands.

— VPD register set

— Memory map

• Blank Flash programming mode.

3.4.4.1 Normal Mode

For BIOS read accesses and VPD accesses, any read or write access to the NVM by the host must be
preceded by taking ownership of the NVM resource via the Request Resource Ownership admin
command (see Section 9.5.13.5). This prevents the following situations:

• Reading a module that is currently being modified by another entity.

• Concurrent modifying a module contents.

3.4.4.1.1 Normal Read Access

Memory-mapped read accesses to the NVM do not require the EMP to be involved. EMP is involved when
the read is performed via the NVM Read admin command.

Available read accesses are as follows:

• An NVM Read admin command from the PF.

• VPD register set.

• Memory mapped read via the memory/Option ROM BAR. To save host memory addresses, memory
BAR access to the NVM is not always available. It is enabled/disabled by setting the Flash_Expose
bit in the NVM (or setting the GLPCI_LBARCTRL.FLASH_EXPOSE CSR bit).

3.4.4.1.2 Normal Write Access

Write accesses to the NVM are controlled by the EMP.

Two accesses are provided:

• An NVM Update admin command from the PF.

• VPD register set. The EMP asserts the Done bit.

NVM write access attempts performed via the memory/Option ROM BARs are not performed by the
E810, although PCIe transactions are completed normally.

Intel® Ethernet Controller E810 Datasheet
Interconnects

282 613875-009

3.4.4.2 Blank Flash Programming Mode

The E810 enters local blank Flash programming mode based on the following:

• When a blank Flash is detected. It means that the NVM Blank Validity field (NVM Control Word 1)
read from the two basic banks is not equal to 01b.

• When the EMP image read at initialization time does not belong to the E810.

• When the ROM code fails to authenticate the mini-loader image.

• When the mini-loader fails to authenticate the whole NVM bank.

• When the GLNVM_FLA.LOCKED bit is cleared. This bit can be cleared from the PF space if host
debug mode is entered. It is recommended that Flash programming platforms at manufacturing
sites be provided with the JTAG as a back-up means.

This mode is not safe and must be used only at manufacturing time and/or as a last resort to recover
from initial mis-configurations. Only host access to the Flash and Shadow RAM is guaranteed when in
this mode.

It is not recommended to enter this mode at run-time because no resource ownership taking is required
prior to accessing the NVM. Also, taking resource ownership requires an operational EMP, which is not
the case when in this mode.

When the E810 is in this mode (see conditions in the previous list), the EMP/PE codes are not loaded
from the NVM and the EMP/PE remains disabled. The E810 is not able to exchange any kind of traffic
over the lines and no admin command can be posted. The E810 is in an unknown operational state
where only the Flash programming flow is operational.

3.4.5 NVM Update Flows

The flows described in this section affect only normal programming mode. When in the Blank Flash
Programming mode, refer to the NVM access procedures described in Section 3.4.8.

It is firmware's responsibility to keep track of Shadow RAM consistency between Internal RAM and
Flash. If GLOBR/CORER occurs while Shadow RAM is inconsistent, EMPR is triggered, which eventually
results in coherent Shadow RAMs by rolling-back the internal RAM changes.

It is assumed that an NVM update sequence does not last beyond the NVM ownership timeout for a
write of three minutes (refer to Table 9-45). Failing to complete an update (by setting LAST bit in the
command flag) within that time, results in EMPR which causes a roll-back of the non-completed update.

The firmware is responsible to re-compute and update the software checksum (PFA section with
TLV Type = 0x3F) each time the Shadow RAM content is changed.

613875-009 283

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.5.1 Flash High-Level Map

Figure 3-28 shows the high level mapping of the NVM in the E810, while the exact mapping is given in
Chapter 6. It is made of the following areas:

• Two Basic Persistent Shadow RAM Banks A,B — It contains a modifiable content. including
NVM Control Word 1 (offset 0x00) along with the Preserved Fields Area (PFA) that includes the VPD
area and other modules to be preserved upon a new image release. It might also contain other
content for convenience, which is overwritten with the clean copy of the Shadow RAM at POR. The
current valid bank is mirrored into the internal Shadow RAM at POR events. Changes that are made
in the Shadow RAM are finally dumped into the next bank, which becomes the current valid, and so
forth, cyclically. Refer to Section 3.4.5.3 and Section 3.4.5.4, and Section 3.4.5.6 for the Shadow
RAM update flows.

• Two Authenticated NVM Banks — They contain the basic NVM image from which specific images
are created. One of the banks is valid, and the other is used for updating. Each area contains:

— A clean copy of the Shadow RAM area, with default values in the Preserved Field Area.

— The mini-loader image signed along with the time critical configurations.

— EMP Image area, containing the code to be run by EMP embedded processor.

— PE Image area, containing the code to be run by the Protocol Engine.

— PHY Configuration scripts.

— Parts CORER and GLOBR reset register auto-load sections, which are not modifiable by the
Adaptive NVM features.

Figure 3-28. Flash High-Level Map

Option ROM Bank 1

Option ROM Bank 2

600 KB
Signed
Area

600 KB
Signed
Area

NVM

Shadow RAM (Local RAM)

CSS Header

CSS Header

64 KB 64 KBPadding to 64 KB
Persistent Shadow RAM Bank A

64 KBPadding to 64 KB
Persistent Shadow RAM Bank B

Persistent Shadow RAM area
Non-persistent Shadow RAM area

NVM Bank 1
3-4 MB
Signed
Area

CSS Header

Extended Mini-loader - signed

Persistent Shadow RAM - Defaults
Non-persistent Shadow RAM area

NVM Bank 2
3-4 MB
Signed
Area

CSS Header

Extended Mini-loader – signed

Persistent Shadow RAM - Defaults
Non-persistent Shadow RAM area

Scratch Pad Areas

Intel® Ethernet Controller E810 Datasheet
Interconnects

284 613875-009

— EMP Global and Setting modules, containing basic configurations common to all images.

— Adaptive NVM metadata, which is a data structure containing the metadata required to modify
an image to match a given configuration.

— PHY Analog modules (internal Ethernet PHY microcode and configuration) loaded by the E810 at
power-up events only.

— PE Settings module, containing defaults to PE registers.

— Recovery Mode firmware image, separately signed. See Section 15.4.

See Section 3.4.5.6 for the update flow of the signed area.

• Two Expansion/Option ROM Areas (OROM area) — It contains pre-boot code and settings
read by BIOS. Refer to Section 3.4.5.5 for the update flow. Pre-boot code is authenticated by BIOS
at initialization time before being executed. Pre-boot code is also internally authenticated on
update. One of the banks is valid, and the other is used for updating.

• Netlist Module — A pair of RW modules used to store the netlist structure.

• Scratch Pads — A set of RW areas that are not double banked, where software and firmware can
store data for logging and debug.

Refer to Section 6.3 for the detailed NVM map.

3.4.5.2 Generic Flows

This section describes the flows that are used as building blocks by other flows.

3.4.5.2.1 Shadow Ram Dump

1. The firmware sets internal bit indicating Flash and Shadow RAM are inconsistent.

2. The firmware erases the next bank. It erases the contents of the next basic bank sectors.

3. The firmware copies first part of the Shadow RAM (from the first word until the end of the PFA) into
the next bank sector with the exception of the Validity field, which is left as all ones.

4. The firmware checks the Flash write. The new bank content is read and checked to be identical to
the Shadow RAM contents. This can be done in the course of writing to the Flash using previous
step.

a. If not identical (such as Flash defect), exit the flow. Refer to Section 9.5.13.6.

b. If the check was successful (identical), the EMP validates the new bank and invalidates the old
bank.

1. The Validity field of the new bank is set to 01b. The EMP checks that the Validity field is read
as written in the Flash. If not, then go to the previous sub-step.

2. The EMP toggles the state of the BANK1VAL bit in the GLNVM_GENS register to indicate that
the non-valid bank became the valid one and vice versa.

3. The current (old) bank is invalidated by setting its Validity field to 00b.

4. Firmware clears internal bit indicating Flash and Shadow RAM are inconsistent.

613875-009 285

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.5.3 VPD Update

3.4.5.3.1 First VPD Area Programming

The VPD capability is exposed on the PCIe interface only if the GLPCI_CAPCTRL.VPD_EN bit is set to 1b,
regardless to any other sanity check that is performed on the VPD area contents.

The VPD area and VPD pointer must be written on a blank Flash and must contain a valid contents from
this first programming. If VPD tags were modified, it is required to issue a PCIe reset before write
accessing the VPD area from PCIe configuration space.

3.4.5.3.2 VPD Area Update from PCIe Configuration Space

The flow described on this section is used once the VPD area contents and pointer have been already
programmed in the NVM and loaded into the E810.

1. A PF VPD software performs a VPD write. It sets write offset/data into VPD register set of the
relevant PF configuration space, setting the VPD Flag (bit 15 in VPD Address register 0x0E2).

2. Hardware notifies the EMP. It issues an internal VPD access interrupt to the EMP to notify it of the
VPD access and of the PF affected.

3. The EMP checks that the VPD write is allowed. It checks that the write offset points to the VPDRW
area (and not to a VPD RO area).

— If not, the EMP clears the VPD Flag in the PF configuration space to notify PF VPD software that
the transaction completed and then exits the flow.

4. EMP writes the change into Shadow RAM.

5. The EMP completes the VPD access to software. The EMP clears the VPD Flag in the PF configuration
space to notify PF VPD software that the access completed.

6. The EMP dumps the Shadow RAM to Flash.

a. The EMP takes ownership over the NVM resources for a write.

b. EMP performs the dump as described in Section 3.4.5.2.1.

c. If the Flash is busy by a previous sector erase operation, Flash erase is blocked by the wear-out
protection mechanism (lack of credits) or if NVM ownership is held by software, it might indicate
that the flow needs to be restarted from step 1 at this stage by successive VPD write accesses
initiated by VPD software.

d. The EMP releases the NVM ownership.

Notes: Users must be made aware that dumping the VPD change into the Flash might take a few
hundredths of a millisecond after the VPD transaction completes to software (by clearing the
VPD flag). As a result, they must wait few seconds before they can shut down the system.

If the VPD write access is attempted by the host when the E810 has just started a Shadow
RAM dump (Step 6), then it might be that the write request times out.

Intel® Ethernet Controller E810 Datasheet
Interconnects

286 613875-009

3.4.5.4 Updating Items in the Preserved Fields Area (PFA)

Figure 3-29 describes the PFA update flow:

The update flow detailed description is as follows:

1. Software takes ownership over the NVM resource for a write (see Section 9.5.13.5).

2. Software issues one or several NVM Write commands or NVM Config Write commands. For NVM
Write admin command see Section 3.4.10.3. For NVM Config Write admin command see
Section 3.4.10.5.

Figure 3-29. PFA Update Flow

Start

Software takes ownership

Software issues Write/Config commands

Firmware does some checks and

Firmware writes to Shadow RAM

Shadow RAM dump

Event completion on ARQ

Software releases ownership

Error

Not lastSet FE on all

Firmware indicates that Shadow RAM

Firmware indicates that Shadow RAM

responds with Nack/Ack

is inconsistent with Flash

is consistent with Flash

commands
except the last

End

613875-009 287

Intel® Ethernet Controller E810 Datasheet
Interconnects

3. In update flows, if the Last Command bit is cleared in the command, it means that the command
belongs to a complex NVM update operation made of several elementary NVM update commands
that are posted in the Admin Queue. In between completions of elementary commands in a chain,
other commands can be posted by a PF, besides other NVM-related commands. The entire NVM
change is committed to the Flash part only once the last NVM command of the sequence is
processed.

The Flush on Error (FE) bit must be set for all the commands of a sequence, with the exception of
the last one.

4. The firmware checks that the command is valid and posts a response to software. It performs the
following command validity checks and posts a response (ACK/NACK) to software. If one check
fails, the EMP flushes the remaining NVM update commands (if any) of the sequence and exits the
flow. Otherwise, if no error is encountered, the EMP runs the command (NVM update) or schedules
the NVM command to run in a separate thread, resuming from the next step.

• The pointer points to a section within the PFA area. The start/end offsets, once applied to the
module’s location in the basic bank, do not lead to addresses beyond the PFA size. In case of
“Dynamic NVM Update” command, the offset/length must be within the selected module.

5. The firmware sets internal bit, indicating Flash and Shadow RAM are inconsistent.

6. The firmware writes the change into Shadow RAM.

7. If the Last Command bit is set in the command, the firmware dumps the Shadow RAM to Flash (see
Section 3.4.5.2.1). Otherwise, it completes the command to software and exits the flow. When the
next command is posted by software the flow continues from Step 2.

8. The firmware clears internal bit, indicating Flash and Shadow RAM are inconsistent.

9. The firmware posts an event completion on ARQ to software.

• If the NVM ownership timeout for write ends before reaching this step, the EMP flushes the
remaining NVM update commands (if any) of the sequence, reporting a timeout error status.

10. In config write flows, the software should initiate a Shadow RAM dump by sending a NVM Write
Activate command with no activation bits set.

11. Software releases NVM ownership (see Section 9.5.13.6).

12. Software initiates a reset for loading the modifications into the E810.

3.4.5.4.1 Limitations on PFA Updates/Handling

To allow seamless upgrade and downgrade updates, the following limitations and assumptions are
made as to how PFA can be modified:

• When new TLVs are added, they must be added at the end of the PFA, replacing part of the padding
TLV.

• Firmware ignores unknown TLVs and does not treat their presence as an error.

• Reserved fields in existing TLVs must not be reused.

• The size of TLVs must not change between versions. One exception is the ANVM feature selection
TLV, which might expand into the next padding area.

• TLVs are never removed from PFA, even if no longer used.

Intel® Ethernet Controller E810 Datasheet
Interconnects

288 613875-009

3.4.5.5 Scratch Pads Update

The following flow supports only the full module replacement without the double-bank policy. The
following NVM modules are affected by this flow:

• Firmware Scratch Pad Area (pointed by NVM word 0x50)

• Link Topology Scratch Pad Area (pointed by NVM word 0x4B)

Figure 3-30 shows the non-authenticated module update flow:

The flow details are below:

1. Software takes ownership over the NVM resource for a write (see Section 9.5.13.5).

2. Software issues a single NVM Erase command to the EMP, providing the following parameters (see
Section 3.4.10.2):

• Address in the NVM of the pointer to the relevant scratch pad area of one of the modules
previously listed.

Figure 3-30. Non-Authenticated Module Update Flow

Scratch Pad

Software takes ownership

Software issues Erase command

Firmware does some checks and

Firmware writes to Flash

Software checks content

Event completion on ARQ

Software releases ownership

Error

Not lastSet FE on all

responds with Nack/Ack

commands
except the last

End

Software issues Write commands

Error (retry)

613875-009 289

Intel® Ethernet Controller E810 Datasheet
Interconnects

3. Software issues one or several NVM Write commands to the EMP, providing the following
parameters (see Section 3.4.10.3):

• Address in the NVM of the pointer to one of the modules previously listed.

• Offset inside the module.

• Buffer in host memory.

• Buffer length (maximum supported is 4 KB).

The Flush on Error (FE) bit must be set for all the commands of a sequence with the exception of
the last one.

4. The firmware checks that the command is valid and posts a response to software. It performs the
following command validity checks and posts a response (ACK/NACK) to software. If one check
fails, the firmware flushes the remaining NVM update commands (if any) of the sequence and exits
the flow. Otherwise, if no error is encountered, the EMP schedules the NVM command to run in a
separate thread, resuming from the next step.

a. The pointer location belongs to one of the modules in the list.

b. The offset and length, once applied to the relevant area, do not lead to addresses beyond the
device’s NVM area size.

c. The offset and length, once applied to the relevant area, do not spread over two consecutive 4 KB
sectors.

5. The firmware posts an event completion on ARQ to software.

• If the NVM ownership timeout for write ends before reaching this step, the EMP flushes the
remaining NVM update commands (if any) of the sequence, reporting a timeout error status.

6. Software releases NVM ownership (see Section 9.5.13.6).

7. Software takes ownership over the NVM resource for a read (see Section 9.5.13.5).

8. Software reads from Flash the contents of the new module to check that it has been correctly
recorded into the Flash.

• In case it was not, Software re-does the flow.

9. Software releases NVM ownership (see Section 9.5.13.6).

10. Software initiates a device reset (PCIR, CORER, or GLOBR) for loading the modifications into the
E810.

3.4.5.6 Updating a Double Bank Module

The following flow supports only the full bank replacement via a double-bank policy. The following
banks are affected by this flow:

• NVM — Word 0x42 holds the 1st NVM bank pointer and word 0x43 holds the NVM bank size. The
valid bank is indicated by a bit in Control Word 1. The 2nd NVM bank is right after the 1st NVM bank
and has the same size.

• OROM — Word 0x44 holds the 1st OROM bank pointer and word 0x45 holds the OROM bank size.
The valid bank is indicated by a bit in Control Word 1. The 2nd OROM bank is right after the 1st
OROM bank and has the same size.

• Netlist — Word 0x46 holds the 1st TLV bank pointer and word 0x47 holds the netlist bank size. The
valid bank is indicated by a bit in Control Word 1. The 2nd netlist bank is right after the 1st netlist
bank and has the same size.

Intel® Ethernet Controller E810 Datasheet
Interconnects

290 613875-009

Figure 3-31 shows the double banked modules update flow:

Figure 3-31. Authenticated Module Update Flow

Start

Update
allowed? SW issues Erase commands

(0x0702)

Stop
YesNo

SW takes ownership (0x0008)

SW sends Set Package
Data (0x070A)

SW sends Pass
Component Table

(0x070B)

SW issues Write command
(0x0703)

Command
valid?

FW writes to Flash

Yes

Last?

No

Respond with 0xFE on all
commands but last.

FW Authenticates new module YesModule valid?

No

SW issues Write Activate
command (0x0707)

Yes
FW updates PFA based on Package

Data

FW indicates Shadow RAM not
consistent with flash

FW changes bank validity bit

FW dumps shadow RAM

FW indicates Shadow RAM is
consistent with flash

FW completes Write Activate
command (0x0707) on event queue

Wait for
activation reset

FW flow

SW Flow

FW resets internal shadow RAM to
reflect status before PFA changes

FW updates PFA in SR with new
TLV/features/Immediate fields

New TLV/features/
Immediate fields in

Signed PFA?

Yes

No

613875-009 291

Intel® Ethernet Controller E810 Datasheet
Interconnects

The detailed flow is described as follows:

1. Software Tools verifies that the source/destination NVM images are compatible:

a. Takes ownership on the NVM (see Section 9.5.13.5) and reads valid NVM sections through admin
commands (see Section 3.4.10.1).

b. Send a Set Package Data (0x070A) command to provide package metadata to firmware.

c. Send a Pass Component Table (0x070B) command to check if images are compatible.

d. If the images are not compatible, Software Tools notifies users of the error and exits the flow.

Note: This step is not performed by EEUpdate, LANConf and NUR-a tools, which are not using
config files. These tools are used by OEMs and Hardware manufacturers only (not end-
users), who refer to Intel documentation for compatibility check.

2. If not done previously, software takes ownership over the NVM resource for a write (see
Section 9.5.13.5).

3. Software issues a single NVM Erase command to the EMP, providing the following parameters (see
Section 3.4.10.2):

• TypeId of the module to be replaced.

Firmware knows to erase the non valid bank.

4. Software issues several NVM Write commands to the EMP, providing the following parameters (see
Section 3.4.10.3):

• TypeId of the module to be replaced.

• Offset inside the module.

• Buffer in host memory.

• Buffer length (maximum supported is 4 KB).

If the Last Command bit is cleared in the command, it means that the command belongs to a
complex NVM update operation made up of several elementary NVM Write commands that are
posted in the Admin Queue. In between completions of elementary commands in a chain, other
commands can be posted by a PF, besides other NVM-related commands. The entire non-valid bank
must always be written.

The Flush on Error (FE) bit must be set for all commands of a sequence with the exception of the
last one.

5. The firmware checks that the command is valid and posts a response to software. It performs the
following command validity checks and posts a response (ACK/NACK) to software. If one check
fails, the EMP flushes the remaining NVM Update commands (if any) of the sequence and then exits
the flow. Otherwise, if no error is encountered, the EMP schedules the NVM command to run in a
separate thread, resuming from the next step.

a. The module TypeID belongs to one of the banks in the list.

b. The offset and length, once applied to the relevant non valid bank area, do not lead to addresses
beyond the non valid bank area size.

c. The offset and length, once applied to the relevant non valid bank area, do not spread over two
consecutive 4 KB sectors.

6. The firmware writes the non valid bank area. The firmware writes the change required by the
(elementary) command into it. If the last bit is cleared, the firmware posts an event completion on
ARQ to software and completes the command. The flow continues from Step 4 for the next
(elementary) command of the sequence.

Intel® Ethernet Controller E810 Datasheet
Interconnects

292 613875-009

7. If the Last flag is set, the firmware performs the following security checks and authenticates the
next NVM bank. It reads the new bank from the Flash and authenticates its signature according to
the procedure described in Section 3.4.9. If one of the security check fails or if authentication fails,
firmware posts an error event on ARQ to Software Tools (either the Public Key Check Failed or the
Module Signature Check Failed bit). The flow goes to Step 22.

a. The lad_srev in the destination is equal or greater than the one in the source.

b. The Blank NVM Device ID field in the destination corresponds to the E810 device ID (0x1590).

c. The lad_module_id in the destination corresponds to bank currently being updated.

d. In case of PLDM firmware update, GFID match is checked, as described in Section 3.4.5.6.1.

e. The checks for the netlist update are specified in Section 3.4.9.3.

Note: Note that before authenticating the Option ROM and netlist modules, the module must be
appended with the last 330 words of the module's area, as the CSS header has been
moved to the module's trailer. See Section 6.1.5.2 for more details.

8. Firmware posts an event completion on ARQ to software.

a. Where applicable, software driver must save RESET_FLAG as returned by this command.

9. Software driver can release NVM ownership, or keep it until NVM Write Activate is completed.

Note: An attempt to write to a ready double bank at this stage results in rollback of the previous
write so that authentication must be done again on new write completion.

10. A Write command that modifies PFA TLV configuration (including VPD) can be called with the Last
bit cleared to activate (dump to Flash) in the same time of the Bank Update Activation command.
However, it is recommended to use the package data provided in the Get Package Data command
to request PFA modifications.

11. If not already taken, software driver takes ownership over the NVM resource for a write.

12. Software driver sends an NVM Write Activate Command and states which modules need activation
by setting a flag per module (NVM Bank, OROM, Topology Netlist). Shadow RAM Bank is written by
default and does not require setting any flag. Only banks that were written completely (that is, the
Last bit was set) can be activated. Firmware posts a fail response to the command if one of the
following checks fails:

a. All specified banks were written.

b. If an NVM bank was written, it is also activated.

13. Firmware sets internal bit indicating that Flash and Shadow RAM are inconsistent.

14. If the command was issued from ACQ: From this point until command completion (Step 21), in case
of a CORER/GLOBR/PFR, firmware triggers EMPR.

15. Firmware parses the content of the package data provided by the Set Package Data command and
modifies the PFA accordingly.

16. Depending on preservation mode, firmware overwrites current PFA with the default PFA from the
image (no preservation), replaces selected PFA fields in current PFA with the default ones from the
image (selective preservation), copies the factory setting region to the PFA (restore to factory
settings), or makes no changes to current PFA (full preservation).

613875-009 293

Intel® Ethernet Controller E810 Datasheet
Interconnects

17. In case of NVM module update, firmware compares the TLVs present in signed version of the PFA
with the ones in the actual PFA. If a TLV is present in the signed PLA and is not the actual PFA, it is
added to the actual PFA, replacing part of the padding TLV. It also checks if new features or new
immediate fields are added to the PFA version of the signed NVM. If there are new features or
immediate fields, they are copied with their default values to the PFA in the Shadow RAM.

a. If features changed, the firmware runs the ANVM flow to ensure that any affected PFA TLVs are
updated.

Note: From this point until initiating the reset that will switch to the new firmware, NVM Write
(0x703) to PFA or to any of the double banks is rejected.

18. The firmware changes the valid bit indication in Control Word 1.

19. The firmware dumps the Shadow RAM to Flash (see Section 3.4.5.2.1).

20. Firmware clears internal bit indicating that Flash and Shadow RAM are inconsistent.

21. The firmware posts an event completion on ARQ to software. It posts a completion/response to the
last admin command of the sequence.

22. Software releases NVM ownership (see Section 9.5.13.6).

23. At this stage, if a new update is needed, the software can revert to previous state by using the NVM
Write Active command with revert flag set. After that it can restart the flow for a new image.

24. Software checks the RESET_FLAG field.

25. Software Tools checks the value of the RESET_FLAG field in the event posted by firmware:

• If RESET_FLAG == PERST, Software Tools notifies the user to reboot the system since it no
ability to issue a PERST cycle (it can only ask the OS to do so).

• If RESET_FLAG == POR, Software Tools notifies the users to reboot the system (to initiate a
PERST cycle) as before.

Note: In PLDM firmware update case, firmware sends feedback to BMC with the requested reset
to activate the update.

26. Software may choose to activate the new Firmware in two ways:

• Wait for the next PERST event — On the next PERST event, firmware also resets itself by
issuing an EMPR cycle. In this case, the PERST can take a longer time to complete and might
violate PCIe rules.

• Send a NVM Update EMPR command, and then request for an immediate PERST event. In this
case, the NVM Update EMPR command creates an EMPR, and the PERST will be faster and
compliant with the PCIe rules. The software should not initiate any NVM change between
the two resets.

27. Auto-load (driven by new Firmware) occurs from the new SR contents.

28. Software Tools checks that the destination map EETrackID was loaded in Internal SR to verify that
there was no spurious reset during update, causing ROM to load the wrong Shadow RAM bank.

a. In case the original map EETrackID is read from Internal SR, Software Tools restarts the flow
from the beginning.

29. (New) firmware loads the new firmware code and other NVM settings into its Internal RAM.

Note: Contents of the old module cannot be erased by a software command prior to completing this
flow.

Intel® Ethernet Controller E810 Datasheet
Interconnects

294 613875-009

3.4.5.6.1 GFID Handling

GFID is used to identify if two images are compatible. If the GFID of the current image is the same as
the GFID of the new image, the new image can be used to upgrade the current one. In some cases, it is
needed to allow a split of a single family of images to multiple families. As GFIDs must be defined as
part of the first image released, a mechanism to move from one GFID to another is needed. Hence each
image contains two GFIDs: an original GFID and a current one. The following algorithm is used to
define if an image can be updated based on the two GFIDs in the current (Adapter) and next (Update)
images:

The GFIDs are stored in the non-PFA part of the Shadow RAM for the current image and in the package
data of the PLDM header for the new image.

3.4.5.6.2 Recovery from Reset During Flash Update

In case a spurious reset occurs (other than POR) before the update sequence is fully completed, the
following flow is used to recover:

1. Firmware issues a graceful EMPR cycle, notifying Software Tools about the event.

2. Software Tools report to user that the update has failed. Software is notified by interrupt on the
fact the firmware was reset.

3. User restarts the flow from the beginning.

Figure 3-32. GFID Handling Flow

PLDM Package:

Adapter Original =
Update Original

Adapter Current =
Update Current

Adapter Original =
Adapter Current

Update to new
image

Split to OEM specific
Downgrade from OEM specific

to OEM GEN

Update Original =
Update Current

Yes

Yes

No No

Yes

Reject updateDowngrade?Yes No

No

No

613875-009 295

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.5.7 Flash Wear-Out Protection

This mechanism prevents Flash part wearing out by malicious software. This mechanism blocks
excessive Flash erase operations.

Assuming a typical Flash device endurance is ~100,000 erase/program cycles and the required system
lifespan is 10 years, a Flash erase can happen every 10 (years)*365(days/
year)*24(hours)*60(minutes)/100,000 = ~53 minutes.

The E810 does not have access to the real-time clock, and its clocks do not survive a POR reset. As a
result, the algorithm has some limitations related to POR resets. Assuming a POR is not a frequent
event that can not be initiated by malicious software, it does not pose a problem.

Note: An entry to the Sx power state is equivalent to power-on reset for the systems with no AUX
power.

The simple algorithm described in Figure 3-33 is credit-based. Separate credits are counted for every
erase unit. To avoid credit counter proliferation, the number of erase units is limited to the following
blocks, while more blocks can be added in future if there is such a need:

• Two NVM Banks

• Two OROM Banks

• Two persistent SR Banks

• Two TLV Extension Banks

• Link topology Scratch Pad Area

• Firmware Scratch Pad Area

It is noted that limiting the number of units requires modification of the NVM update flows to allow only
the whole unit erase at a time, blocking the per-sector erase operations. To simplify system validation
and Flash content update after the first power-on of the system, there are initial credits assigned to
each unit.

The recommended values for the initial and maximal credits are 2000 (2%) and 5000 (5%),
correspondingly. These values are stored in the signed part of the NVM image.

The algorithm is presented in Figure 3-33.

Intel® Ethernet Controller E810 Datasheet
Interconnects

296 613875-009

Figure 3-33. Flash Wear-Out Protection Algorithm1

1. Credit update time is once per hour.

Report failure

Erase flow

NVM Erase request

Credit balance > 0

Credit balance = Credit balance - 1

YES

Perform erase

Report success

NO

Set initial credits per unite from static
NVM area
1. SR Banks (persistent) x 2
2. NVM Banks x 2
3. OROM Banks x 2
4. Scratch pad area x 1

POR de-assertion

Is credit update timer ticks?

NO

Credit balance >= Max

YES YES

Credit balance = Credit balance + 1

NO

Initialize periodic credit update time

Credit increment flow

613875-009 297

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.5.8 Save Factory Settings AQC

This section describes the flow executed by the Save Factory Settings Command (see
Section 3.4.10.9).

3.4.5.8.1 Save Factory Settings Flow

The following flow is run by the Save Factory Settings admin command (opcode 0x0708) and can be
used by manufacturing tools to modify the image before programming the device.

• Word pointer to PFA in internal Shadow RAM (iSR) is located at iSR word offset 0x40.

• PFA word size is at first PFA word.

• Word pointer to netlist is located at iSR word offset 0x46.

• Netlist word size is at second netlist word.

• Word pointer to Factory Settings is located at iSR word offset 0x61

Flow:

1. Verify PFA checksum.

2. Check that Factory Settings (FS) password is “0xFFFF”.

3. Setup a variable to keep FS size within limits in init module word offset 0x62.

4. Copy PFA content from iSR to Factory settings PFA area (offset 32B from address in word 0x61).

5. Copy netlist content from valid netlist bank to Factory Settings netlist area (offset 32B + PFA size
from address in word 0x61).

6. Set FS header fields located at the first 32 bytes of Factory Settings:

• password = 0x2811

• Size = 32B + PFA size + netlist size

• TLV_Extension_Offset = 32B + PFA size

• TLV_Extension_Size = netlist size

• CIR_AL_Offset = PCIR AL section byte offset relative to PFA start. TLV 0x133.

• POR_AL_Offset = POR AL section byte offset relative to PFA start. TLV 0x118.

• PCI_Serial_ID_MAC_Offset = PCI Serial ID MAC section byte offset relative to PFA start. TLV
0x133.

• Set all reserved bytes to '0'

Intel® Ethernet Controller E810 Datasheet
Interconnects

298 613875-009

3.4.6 NVM Clients and Low-Level Interfaces

There are several clients that can access the NVM to different address ranges via different access
modes, methods, and low-level interfaces. The various clients to the NVM are hardware, Software Tools
(BIOS, and so on), drivers, EMP, PE, BMC (via EMP), and VPD software.

Table 3-106 lists the different accesses to the NVM.

3.4.6.1 Memory-Mapped Host Interface

The Flash is read by the E810 each time the host CPU performs a read operation to a memory location
that is within the Flash address mapping, or upon boot via accesses in the space indicated by the
Option ROM Base Address register. Accesses to the Flash are based on a direct decode of CPU accesses
to a memory window defined in either:

• Memory CSR + Flash Base Address register (PCIe Control register at offset 0x10) — The
Flash address space is exposed to the host memory BAR when the Flash Expose bit is set in the
NVM (or the GLPCI_LBARCTRL.FLASH_EXPOSE CSR bit is set), or when the E810 is in blank Flash
programming mode. The Flash size exposed is 16 MB. Refer to Section 13.1.1.2 for more details.

• The Option ROM Base Address register (PCIe Control register at offset 0x30) — The OROM
module address space is exposed to the Option ROM BAR if the Flash is not blank and the Expansion
ROM base address register contains a valid (non-zero) base memory address. Otherwise the BAR is
not exposed. The Flash size exposed is retrieved from the GLPCI_LBARCTRL.EXROM_SIZE CSR
field, and is 1 MB by default. The E810 is responsible to map read accesses via the Option ROM BAR
to the physical NVM. Write attempts to the Flash through this BAR are not performed, and are
silently dropped. The offset in the NVM of the Option ROM module is defined by the PCIe expansion/
Option ROM pointer (Flash word address 0x05). This pointer is loaded by the E810 from the Flash
before enabling any access to the Option ROM memory space.

— When modifying the PXE driver section pointer in the NVM, it is required to issue a PCIe reset
on which the updated offset is sampled by hardware.

— If there is no valid NVM validity field in the two basic banks, the Option ROM BAR is disabled.

The E810 controls accesses to the Flash when it decodes a valid access. Out of range memory-mapped
read access returns arbitrary data.

Refer to Section 3.1.2.2.1 for details on memory/Option ROM BAR access rules.

Table 3-106. Clients and Access Types to the NVM

Client NVM Access
Method

Accessed
Programmed

Against

Logical Byte
Address Range NVM Access Interface (CSRs or Other)

VPD Software Parallel (32-bits) Shadow RAM 0x000000 - 0x0003FF
from VPD module
beginning

VPD Address and Data registers. Any write access
is immediately pushed by the E810 into the Flash.

PF Software Parallel via Memory
(CSR) BAR (32-bit
read)

Flash Part 0x000000 - 0xFFFFFF The address is relative to the beginning of the
Flash. See Section 13.1.2.1 for details of the Flash
offset within the CSR BAR.

Parallel via Option
ROM BAR (32-bit
read only).

Flash Part 0x020000 - 0xFFFFFF This logical address range is relative to the
beginning of the Option ROM module.

Via AQC Flash Part/
Shadow RAM

0x000000 - 0x00FFFF NVM Read, NVM Erase, and NVM Write admin
commands as described in Section 3.4.10.

613875-009 299

Intel® Ethernet Controller E810 Datasheet
Interconnects

Notes:

• Flash read accesses are assembled by the E810 each time the access is greater than a byte-wide
access.

• The E810 byte reads to the Flash take about 2 to 30 μs. The E810 continues to issue retry accesses
during this time.

• During normal operation, the host avoids memory-mapped accesses to the first two basic banks of
the Flash because it might be non-coherent with the Shadow RAM contents.

Prior to initiating an NVM read cycle via memory-mapped access, PF software is required to take
ownership over the NVM resources. Refer to Section 9.5.13.5.

3.4.7 Flash Access Contention

Flash read accesses initiated through PFs might occur concurrently to the firmware modifying the NVM
contents. The E810 does not synchronize between the different entities accessing the Flash, so
contentions caused from one entity reading and the other modifying the same locations is possible.

To avoid such a contention between software and firmware accesses, these entities are required to
make use of the NVM ownership take/release flows for any read or write access to NVM (see
Section 9.5.13.5 and to Section 9.5.13.6 for more details). This is also useful to avoid the timeout of
the PCIe transaction made to a memory mapped Flash address while the Flash is currently busy with a
long sector erase operation.

However, two software entities cannot use the NVM ownership acquire/release mechanisms: BIOS
reading through Expansion ROM BAR and VPD software. A BMC requesting firmware update via PLDM
firmware update also does not require a semaphore.

• Since VPD software accesses only the VPD module, which is located in the first valid bank of the
NVM, VPD accesses are always performed against Shadow RAM first. In this case, the firmware
must take/release ownership over the NVM as if it was the originator of the Flash access. It is then
the responsibility of hardware/firmware to update the NVM according to the Flash update sequence
described in Section 3.4.5.3.

• No contention can occur between BIOS and any other software entity (VPD included) as it accesses
the NVM while the operating system is down.

• The firmware takes care of the semaphore ownership for PLDM firmware updates.

However, since BIOS cannot take ownership over the NVM resource, it might be that the Flash part is
not accessible when BIOS attempts reading it. This might occur if a Flash erase operation was
performed just before PCIe reset. In such a case, read accesses via the Option ROM BAR returns
0xDEADBEEF.

• It is assumed that the Option ROM signature check performed by BIOS fails in this case.

• The firmware must avoid initiating sector erase operations at boot time.

• It is assumed and recommended that users do not attempt to update the NVM contents via the BMC
while the system is rebooting.

• The BMC delays PERST# de-assertion or boot running until after the BMC completes any OOB
accesses to Flash memory. It is required to route the wake-up signal from the standby button to the
BMC and not to the chipset. The BMC issues a system reboot signal to the chipset only after any
NVM write access completes.

• If a system reboot is issued by a local user running on the host, there is no technical way to avoid
contention in this case.

Intel® Ethernet Controller E810 Datasheet
Interconnects

300 613875-009

Note: It is the user’s responsibility when accessing the NVM remotely via the BMC to ensure
that another user is not currently initiating a local host reboot there.

• The firmware’s responsibility to take NVM ownership on the BMC account prior to performing any
NVM read or write access, which is needed for handling an NC-SI command. The NVM ownership is
released by the firmware together with completing the NC-SI command. If NVM ownership is not
free when processing the NC-SI command, the command completes with a Package Not Ready
status.

3.4.8 NVM Access Procedures

Any software read/write or firmware write flow described in this section (except flows executed by VPD
software or by BIOS or to flows executed when in blank Flash programming mode) must be preceded
by taking NVM ownership. Anytime software is taking NVM ownership, it must re-read the pointers to
the module it plans to access because they might have been modified by the firmware in between two
ownership takings.

Refer to Section 9.5.13.5 and Section 9.5.13.6 for the NVM ownership taking/releasing procedures as
well for the associated timeouts.

3.4.8.1 Auto-Load

This section describes only the auto-load/init tasks relative to NVM. Firmware is solely responsible for
all auto-loads and initialization flows described in this section.

Firmware initialization performed at power-up and EMPR events consists for three steps, while DIGEST
updating (discussed in Section 3.4.8.1.2) is done at each step:

1. ROM flow:

a. Find a valid NVM content.

b. Load the Extended mini-loader to the local RAM and authenticate it.

c. Jump to the mini-loader code entry point.

2. Mini-loader flow:

a. Auto-load time-critical NVM section, which is a part of the Extended mini-loader and the
persistent Shadow RAM bank. Starting from this point, mini-loader is ready to handle
time-critical PCIe auto-loads.

b. Read the Shadow RAM content to the local RAM from the NVM.

c. Read the whole NVM bank to the local RAM and authenticate it. The EMP firmware is placed in
the local RAM at this moment, while most of the other content is discarded after the
authentication.

d. Jump to the EMP Firmware entry point.

3. EMP Firmware flow:

a. Perform auto-load on every PCIe, CORER, and GLOBR resets.

b. Initialize all firmware code being ready to handling all runtime events.

c. Report initialization completion to the host software.

Simplified NVM Bank and Extended mini-Loader maps are shown in Figure 3-34 for better
understanding of the initialization flows.

613875-009 301

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.8.1.1 EMP Firmware Init Flow

The firmware is ready to PERST de-assertion handing during the flow. Such an event must be handled
within 20 ms.

1. Run the adaptive NVM initialization flow using feature selections in PFA on the Shadow RAM copy in
RAM. No Shadow RAM dump is required since the same initialization occurs after every POR reset.

2. Proceed initialization firmware initialization.

3.4.8.1.2 Firmware Measurement for Remote Attestation

A new Controller Firmware Management System Architecture Specification requires performing of
remote attestation to prove the firmware identity. The EMP firmware is required to expose firmware
measurement to the host software. This measurement is represented by a cryptographic identity of all
firmware components.

Two 32-byte DIGEST registers (GL_MNG_SHA_EXTEND in Section 13.2.2.29.3 and
GL_MNG_SHA_EXTEND_ROM in Section 13.2.2.29.5) are implemented in the E810 for this purpose.
Another GL_MNG_SHA_EXTEND_STATUS register (Section 13.2.2.29.4) exposes the measurement
status.

Note: The GL_MNG_SHA_EXTEND_ROM and GL_MNG_SHA_EXTEND are writable only once after
each EMP reset.

Figure 3-34. Simplified NVM Bank and Extended Mini-Loader Maps

ML image

ML CSS Header

Rimon PLL configuration

CSR Protected list

PCIe Analog (Stand Alone only)

Security Control Word
Pointer to PCIe Analog

Pointer to CSR Protected List
Pointer to PHY PLL

Extended
Header

lad_fw_entry_offset

Controller Core FW image,
PHY uCode and configuration
(excluding CLR),
NVM auto-load/FW/SW sections

NVM Bank CSS Header

Full SR Bank

ML image and time critical RO
sections (extended ML)

ML CSS Header

lad_fw_entry_offset

64 KB

Aligned to
64 Bytes

NVM Bank Extended Mini-Loader

Intel® Ethernet Controller E810 Datasheet
Interconnects

302 613875-009

CSR firmware attestation flow:

1. The E810 ROM locates the E810 mini-loader.

a. If the mini-loader is not found1, the E810 ROM sets GL_MNG_SHA_EXTEND_ROM to the ROM
version, sets GL_MNG_SHA_EXTEND_STATUS.STAGE to 001b, sets
GL_MNG_SHA_EXTEND_STATUS.FW_HALTED, sets GL_MNG_SHA_EXTEND_STATUS.DONE, and
moves to blank Flash programming.

2. If mini-loader is found, the mini-loader header contains a SHA256 hash of the mini-loader and
signature over the hash. The E810 ROM authenticates mini-loader.

a. If the authentication is successful, the E810 ROM writes the mini-loader hash value to the
GL_MNG_SHA_EXTEND_ROM register and sets GL_MNG_SHA_EXTEND_STATUS.STAGE to 010b.
In this case, the computed mini-load hash matches what is in the header, and the ROM loads the
mini-loader and passes control to it.

b. If the authentication fails, the E810 ROM writes the computed mini-loader hash value to the
GL_MNG_SHA_EXTEND_ROM register, sets GL_MNG_SHA_EXTEND_STATUS.STAGE to 010b,
sets GL_MNG_SHA_EXTEND_STATUS.FW_HALTED, sets
GL_MNG_SHA_EXTEND_STATUS.DONE, and halts.

3. The E810 mini-loader locates the E810 firmware header. If the firmware is not found, the E810
mini-loader sets GL_MNG_SHA_EXTEND_STATUS.STAGE to 011b, sets
GL_MNG_SHA_EXTEND_STATUS.FW_HALTED, sets GL_MNG_SHA_EXTEND_STATUS.DONE, and
moves to blank Flash programming.

4. NVM Bank header contains a SHA256 hash of the NVM Bank content. Note that the E810
mini-loader itself is contained within the NVM Bank. The E810 mini-loader authenticates the
complete NVM Bank content.

a. If the authentication is successful, the E810 mini-loader writes the firmware hash value to the
GL_MNG_SHA_EXTEND register. In this case, the computed firmware hash matches what is in
the header. The E810 mini-loader sets the following:

• GL_MNG_SHA_EXTEND_STATUS.STAGE to 100b
• GL_MNG_SHA_EXTEND_STATUS.DONE

b. If the authentication fails, the E810 mini-loader writes the computed firmware hash value to the
GL_MNG_SHA_EXTEND register. The E810 mini-loader sets the following, then halts:

• GL_MNG_SHA_EXTEND_STATUS.STAGE to 100b
• GL_MNG_SHA_EXTEND_STATUS.FW_HALTED
• GL_MNG_SHA_EXTEND_STATUS.DONE

Software flow:

1. Poll the GL_MNG_SHA_EXTEND_STATUS.DONE until set.

2. Keep value of GL_MNG_SHA_EXTEND_STATUS

3. Read the GL_MNG_SHA_EXTEND and GL_MNG_SHA_EXTEND_STATUS registers.

4. Reread the GL_MNG_SHA_EXTEND_STATUS register and check the value is the same as saved. If
not, the firmware might have been reset during the read process.

Note: The complete read flow should complete within 100 ms to guarantee that a full reset cycle
did not occur in between.

5. If GL_MNG_SHA_EXTEND_STATUS.FW_HALTED, the firmware load did not succeed.

1. If the RSA key verification fails, this is considered as if mini-loader is not found.

613875-009 303

Intel® Ethernet Controller E810 Datasheet
Interconnects

6. The GL_MNG_SHA_EXTEND_STATUS.STAGE indicates the latest firmware stage authenticated.

3.4.8.2 VPD Accesses

The VPD module (VPD area) is mapped into the valid basic bank and it is thus mirrored in Shadow RAM.
It is accessed by VPD software via the PCIe VPD capability structure. Refer to Section 3.4.5.3 for more
details.

3.4.9 NVM Authentication Procedure

The NVM update integrity feature ensures that only Intel-approved firmware code (or another protected
NVM module) is able to run on E810 devices after manufacturing. This procedure is performed by
mini-loader and ROM-code on every initial program load and by a RAM-based firmware each time an
attempt is made to update one of the protected modules. Refer to NVM update flows in Section 3.4.5
for more details. The OROM image is not authenticated by EMP on device boot. It is authenticated only
on OROM updates under the assumption that the system BIOS will authenticate the OROM prior to
executing it during platform boot.

Integrity validation of NVM updates is provided by means of a digital signature. The digital signature is
a SHA256 hash computed over the protected content that is then encrypted by a 2048-bit RSA
encryption using an Intel private key. This digital signature is stored in what is called the manifest in the
NVM module image. Also stored in the manifest is the corresponding RSA modulus (public key) and RSA
exponent to be used to verify the digital signature. Refer to Section 6.1.5 for more details.

To verify the authenticity of the digital signature of the mini-loader, EMP ROM must first verify that the
SHA256 hash of the RSA Modulus and RSA Exponent fields in the new module loaded are identical to
those retrieved from fuses. If the hash of the RSA Modulus and Exponent fields match the value in the
fuses, EMP decrypts the digital signature using the 2048-bit RSA Modulus and Exponent fields stored in
the manifest to extract the expected SHA256 hash of content (stored hash). EMP then performs an
independent SHA256 hash over the protected content (computed hash). If the stored hash matches the
computed hash, the digital signature is accepted and the NVM module update is applied.

When the mini-loader authenticates the digital signature of the full firmware or the recovery firmware,
or when authentication occurs as part of a firmware update, the key hash in the authenticated firmware
is compared with the one of three key hash values stored in the extended mini-loader:

• NVM Key hash (used for NVM and recovery)

• OS package key hash

• OROM key hash

• Netlist key hash

NVM updates are validated prior to invalidating the old NVM configuration, such that the old NVM
configuration is still usable if the update fails to validate. After the new NVM is successfully verified, the
updated image is committed to the E810’s Flash by the EMP.

Intel® Ethernet Controller E810 Datasheet
Interconnects

304 613875-009

3.4.9.1 Digital Signature Algorithm Details

As previously mentioned, the digital signature generation is a hash computation followed by an RSA
signature. This is performed within Intel as part of the NVM update image generation process and not
performed by Intel software in the field, nor by the E810.

The algorithms used are described in the following locations:

• PKCS #1 v2.2: Encoding method - EMSA-PKCS1-v1_5:

https://tools.ietf.org/html/rfc8017

• SHA family definition:

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

• SHA usage with digital signatures:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/ nistspecialpublication800-107r1.pdf

• SHA validation vectors:

http://csrc.nist.gov/groups/STM/cavp/documents/shs/SHAVS.pdf

Note: The protected module contents shown in Figure 3-35 starts with the CSS header, skips the
RSA Pubic key, RSA exponent and Encrypted SHA256 hash, continues from the E810’s Blank
NVM Device ID word of the NVM header described in Section 6.1.5.2, and ends at the offset
defined by the size field in the CSS header.

Figure 3-35. Sign and Verify Procedures for Authenticated NVM Modules

Protected
Module

Contents

Digest

SHA256
Hash

Verify

CSS Header

Digital
Signature

Module’s
Manifest

2048-bits
RSA Modulus
RSA Exponent Private key

RSA encryption

Protected
Module

Contents

Digest

SHA256
Hash

CSS Header
2048-bits

RSA Modulus
RSA Exponent

Public key
RSA decryption

= ?

Sign

New = Old ?

https://tools.ietf.org/html/rfc8017
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/shs/SHAVS.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/ nistspecialpublication800-107r1.pdf

613875-009 305

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.9.2 Intel Key Generation and Intel Code Signing System

The integrity of NVM digital signatures requires not only robust private RSA key generation but also
continued protection of these private keys into the indefinite future as well as a method to generate
new signed images using the existing private keys.

Intel’s CSS follows the PKCSv2.2 format with 2048-bit RSA keys and SHA-256 hash - RSA-PSS. The
CSS algorithm requires a standard manifest header to appear at the beginning of all signed modules.

The manifest header (represented in C syntax) is as follows:

typedef struct _CssHeader {
 uint32 moduleType; // Reserved CSS field.
 uint32 headerLen; // Reserved CSS field.
 uint32 headerVersion; // Reserved CSS field.
 uint32 moduleID; // Reserved CSS field.
 uint32 moduleVendor; // Reserved CSS field.
 uint32 date; // Reserved CSS field.
 uint32 size; // In DWords - Reserved CSS field.
 uint32 keySize; // Reserved CSS field.
 uint32 modulusSize; // Reserved CSS field.
 uint32 exponentSize; // Reserved CSS field.
 uint32 lad_srev; // Internal security revision field.
 uint32 reserved; // Reserved for future use.
 uint32 lad_fw_entry_offset;// ND-specific offset from start of CSS header of the
 firmware code in WORDS.
 int32 reserved; // Mandatory field, in use by previous project.
 uint32 lad_image_unique_id;// Internal unique identifier for the specific NVM image
 version.
 // Taken from NVM Software Reserved Words 22, 23 (a.k.a.
 EETRACK ID). N/A for mini-loader and Recovery
 Firmware CSS header.
 uint32 lad_module_id; // Internal and per device unique identifier for NVM
 module. Is one of the following values:
 * 0x5 for Option ROM
 * 0x6 NVM Bank
 uint32 reserved[16]; // Mandatory field, but free for use.
} CssHeader;

The CSS header must be placed at the beginning of the integrity-checked data. Software Tools are also
required to pre-process raw NVM images to prepend the manifest prior to CSS tool chain submission. All
fields marked Reserved CSS Field must be zero when submitting to the CSS tool chain.

The E810 CSS header includes a Security Revision (lad_srev) field. This field is monotonically updated
for each and every security-related update to the NVM. If a security exploit is detected and an updated
NVM image is released with an incremental security revision, the E810 does not allow an NVM image
roll-back to an earlier version because this might expose previously known vulnerabilities.

Security version checking can only be temporarily disabled by a specific manageability command. There
are multiple instances of the Security Revision (lad_srev) field:

• NVM Module security revision

• Extended Mini-Loader security revision

• Recovery Firmware security revision

• OROM security revision

• Netlist security revision

Intel® Ethernet Controller E810 Datasheet
Interconnects

306 613875-009

All these security revisions must be the same and must be increased together.

Notes:

• Not all NVM updates need to have an incremental security revision. A roll back of updates to
non-security related parameters (such as firmware patches where the Security Revision field is
equal to the existing image) are allowed.

• The size field gives the entire module size including the CSS header itself. It is expressed in
DWords.

The usage of SREV is optional, and users should opt in for the SREV to take effect. Opting in is done by
updating the matching Min Srev value in the MinSrev TLV (for NVM bank, OROM) and NetlistMinSrev
TLV (for Netlist).

Note: NVM Module and OROM module MinSrev are represented in the MinSrev TLV, as the Recovery
Firmware Security Revision is always the same as the NVM module Security Revision, and the
Extended Mini-loader Security Revision is always lower or equal to the NVM module Security
Revision. Netlist MinSrev is represented in NetlistMinSrev TLV. All MinSrev values must be the
same when the NVM image is generated. During the Opt-In process, if the opt-in request is
different for the different modules, all MinSrevs must be updated to the highest number from
the list.

3.4.9.3 Netlist Authentication During Update

Usage of signed netlist is optional and users should opt in for netlist authentication to take effect.
Opting is done by updating the matching Min Srev and setting valid to 1 in the NetlistMinSrev TLV.

The following figure shows the netlist update flow in normal mode and recovery mode. This flow forms
the “FW Authenticates the new module” function in the Figure 3-31.

613875-009 307

Intel® Ethernet Controller E810 Datasheet
Interconnects

Figure 3-36. Netlist Authenticated Update Flow

Authenticate the New
netlist

Y

Recovery Mode?

New netlist is Signed

Netlist authentic?

PFA can be parsed?

N

N

localSrev <= newSREV

Y

Y

Y
N

Y N

Unsigned
netlist

Signed
netlist

New netlist is signed

NetlistMinSrev.
valid == 1?

Y

N

NetlistMinSrev.
valid == 1?

Y opted in

N

Security Version
 Check Disabled?

N

Y

N

Y

N

Y Security Version
Check disabled?

N

Not
opted in

Not opted in

opted in

Unsigned
netlist

Y
Signed
netlist

Select localSREV
localSREV = current

netlist SREV

Is current
Netlist signed and

authnetic?
Y

N

Is current
Netlist signed?

N

Authenticate the Current
netlist

Is current
netlist authentic?

Select localSREV
localSREV =

min(NetlistMinSrev.MinSrev,
current netlist SREV)

Select localSREV
localSREV =

min(NetlistMinSrev.MinSrev,
MinSrev from factory settings)

Y

N

Select localSREV
localSREV = MinSrev

from factory settings)

Factory settings
Contains

NetlistMinSrev?

Y

N

Factory settings
Contains

NetlistMinSrev?

Y

N

Start

Accept update
Return valid

Reject update
Return invalid

Accept update
Return valid

Reject update
Return invalid

Accept update
Return valid

Reject update
Return invalid

Intel® Ethernet Controller E810 Datasheet
Interconnects

308 613875-009

The detailed flow is described as follows:

Signed netlist is identified by the presence of a valid CSS header and non-zero Key and Signature
(NVM blank DeviceID = 0xTBD AND lad_moduleID = 0x8 AND Key != 0 AND Signature != 0)

New unsigned netlist update in normal mode:

• If netlist signing is not opted in, the new unsigned netlist is updated.

• If netlist signing is opted in, the update fails.

New signed netlist update in normal mode:

• If netlist signing is not opted in, the signed netlist is authenticated and updated if the
authentication passes.

• If netlist signing is opted in and if Security Version Check is disabled, the new netlist is
authenticated and updated if the authentication passes.

• If netlist signing is opted in and if Security Version Check is enabled:

— If the netlist in the current active bank (current netlist) is authentic and the new netlist
lad_srev is greater than or equal to minimum (NetlistMinSrev.MinSrev, lad_srev of current
netlist), the new netlist is authenticated and updated if the authentication passes.

— If the current netlist is not authentic:

• If the factory settings contain NetlistMinSrev TLV, then if the new netlist lad_srev is greater
than or equal to minimum (NetlistMinSrev.MinSrev, NetlistMinSrev.MinSrev from factory
settings), the new netlist is authenticated and updated if the authentication passes.

• If the factory settings do not contain the NetlistMinSrev TLV, the new netlist is
authenticated and updated if the authentication passes.

New netlist update in recovery mode when the PFA can be parsed is considered similar to the update in
non recovery mode.

New unsigned netlist update in recovery mode when the PFA cannot be parsed:

• If the current netlist is signed, the update fails.

New signed netlist update in recovery mode when the PFA cannot be parsed:

• If Security Version Check is disabled, the new netlist is authenticated and updated if the
authentication passes.

• If Security Version Check is enabled:

— If the current netlist is authentic and the new netlist lad_srev is greater than or equal to
lad_srev of current netlist, the new netlist is authenticated and updated if the authentication
passes.

— If the current netlist is not authentic:

• If the factory settings contain NetlistMinSrev TLV, then if the new netlist lad_srev is greater
than or equal to NetlistMinSrev.MinSrev from factory settings, the new netlist is
authenticated and updated if the authentication passes.

• If the factory settings do not contain the NetlistMinSrev TLV, the new netlist is
authenticated and updated if the authentication passes.

613875-009 309

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.9.4 Protected Modules

Any data that is modified in the field (either by the OEM during manufacturing or by the end user)
cannot be included in the signed region of the NVM. The E810 cannot generate a signed image by itself
because the private key is not available to it to generate the digital signature in the NVM.

Only the following NVM modules require authentication in the E810. Each module is with its own digital
signature:

• Option ROM

• NVM bank

• Netlist

3.4.9.5 Software Requirements

A software tool must prepare NVM images for the CSS signing step, pre-pending the CSS manifest, and
applying an Intel security revision field. After receiving the signed image, the tool merges the excluded
fields back into the NVM image and performs an internal integrity check to verify that the merge was
successful (such as a software computation of the digital signature passes).

SVTools (LANConf) MUST implement an NVM update image integrity check option in software prior to
applying NVM updates to hardware. SVTools might integrate capabilities to generate self-signed NVM
images to assist in the SV and debug process by developers.

CELO (or equivalent manufacturing diagnostics tool) must implement a test to check the
GLNVM_FLA.LOCKED bit state as part of manufacturing qualification. If after the NVM is programmed,
and the E810 powers up with the GLNVM_FLA.LOCKED bit not set, an inappropriate NVM image has
been loaded during manufacturing (an NVM image with incorrect Flash opcodes). This represents a
critical error. With GLNVM_FLA unlocked, unauthorized in-the-field updates can bypass designed
firmware integrity checks.

Host software device drivers might implement an interface enabling a network administrator to perform
an internal verification check of the signed NVM image. Using Windows drivers, this would take the form
of an OID, which reports a SUCCESS or INVALID_PARAMETER. Using Linux, an ethtool command
extension is advised to enable command line interrogation of the NVM content using the hash value
built into the hardware, as well as the saved CSS manifest in the NVM image.

3.4.9.6 Manufacturing Requirements

3.4.9.6.1 Factory Settings Preservation Flow

Manufacturing information should be stored at the end of board manufacturing to the 'Factory Settings'
section that is read only to software and is located outside of NVM banks. This section includes the
active PFA, active Topology Netlist and a 32B header.

Update of this section can be done only once, by firmware via the Save Factory Settings AQC (see
Section 3.4.10.9 or by Software Tools in Blank Flash Programming mode.

The AQC will fail with EMODE error if the 'Factory Settings' section is not entirely erased.

This section will never be modified in any NVM update.

The entire active PFA can be reset to factory settings by software via the NVM Write Activate Command
AQC (see Section 3.4.10.8) using preservation mode 10b.

Intel® Ethernet Controller E810 Datasheet
Interconnects

310 613875-009

Software default to recover PFA & netlist should be 'return to factory settings'.

If software uses the 'return to signed default' option, following the update, firmware is required to
restore MAC Addresses from factory settings at the next firmware load.

After recovery has been completed and normal mode firmware is running, software can do additional
updates to modify PFA.

3.4.9.6.2 End-of-Line Verification

OEMs must execute CELO (or an equivalent manufacturing diagnostics tool) to verify the
GLNVM_FLA.LOCKED bit state (as described in Section 3.4.9.5).

3.4.10 NVM Access Admin Commands and Events

NVM access commands are not supported when the E810 is in the blank Flash programming mode.
They are available only to the PFs once it has acquired NVM ownership via the commands described in
Section 9.5.13.5.

Note: All parameters in the admin commands are defined in little endian.

Table 3-107. NVM Access Admin Commands and Events

Command Opcode Description Section
Reference

NVM Read 0x0701 Read a segment from the NVM into a host buffer. 3.4.10.1

NVM Erase 0x0702 Erase consecutive 4 KB sectors of the Flash. 3.4.10.2

NVM Write 0x0703 Write a segment of the NVM from a host buffer. 3.4.10.3

NVM Config Read 0x0704 Read feature selections. 3.4.10.4

NVM Config Write 0x0705 Program Feature Selections. 3.4.10.5

NVM Checksum 0x0706 Update PFA checksum. 3.4.10.7

NVM Write Activate 0x0707 Activate new NVM. 3.4.10.8

Save Factory Settings 0x0708 Save factory settings 3.4.10.9

NVM Update EMPR 0x0709 Reset after new firmware update. 3.4.10.10

Set Package Data 0x070A Provide package data to firmware. 3.4.10.11

Pass Component Table 0x070 Check if new module is compatible with current one. 3.4.10.12

613875-009 311

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.1 NVM Read (0x0701)

Table 3-108. NVM Read Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0701 Command opcode.

Datalen 4-5 Length in bytes of command buffer

Return Value/VFID 6-7 Return value. Zeroed by the device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Offset 16-18 Offset in the module, which is expressed in bytes from the pointed module’s
beginning.
This is the byte offset of the first byte returned in the data buffer.

Command Flags 19 NVM Access Admin Command Parameters
Bit 19.0: Last Command Bit

Used to notify EMP that this is the last admin command of a sequence.
Bit 19.7: Read from Flash

When Bit 7 is set, the read is done directly from the Flash and not from
Shadow RAM. Relevant only if access address is below 64 KB. Ignored
otherwise, so above 64 KB the read is always from the Flash, only when
Module_TypeID is zero.

All other bits = Reserved. Must be zeroed.
Only one Module type is read at a time.
For PFA TLVs only the length+data portion of the TLV is read (not the TLV
Type).
See Table 6-5 for TypeID values.

Module_TypeID 20-21 A value of 0x0000 means that the command is performed over the Flash part
seen as a flat memory.

Length 22-23 Length of the section to be read, which is expressed in bytes from the offset in
the module.
A value of 0xFFFF means the last byte to be returned is the last byte of the
module (if byte 17 was not set to 0x0000). In any case, a (single) read
command is limited up to 4 KB.

Data Address High 24-27
Address of command buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Interconnects

312 613875-009

Table 3-109. NVM Read Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0701 Command opcode.

Datalen 4-5 Number of bytes the were read.
If a value of 0xFFFF was set in the admin command (and if byte 17 was not set
to 0x0000), this field returns the length from the offset to the module’s end
unless it is above 4K.

Return Value 6-7 Return value.
0x0 = No error (success).
EPERM = The module pointer location specified in the command does not

permit the required operation. The word contents is not a pointer.
EINVAL = Out of range offset/length (beyond the module’s size).
EIO = Flash defect.
EBUSY = The PF is not permitted to post this command because it does not

own the NVM resource. This error code is also returned if the PF
attempts to post a command while another NVM command is in
process.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Offset 16-18 Offset in the module, copied from the command.

Reserved 19 Reserved.

Module_TypeID 20-21 Module_TypeID copied from the command.

Length 22-23 Length in bytes of command buffer.

Data Address High 24-27
Address of command buffer. The buffer contains the read data.

Data Address Low 28-31

613875-009 313

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.2 NVM Erase (0x0702)

This command is used to erase the contents of 4 KB Flash sectors.

This is an asynchronous command. The EMP reads the command from the ATQ and writes back an
immediate completion, intended only as an ACK/NACK that the command has been addressed by the
EMP. The EMP checks the validity of the command and returns an error (NACK) on the ATQ completion
if it is unable to process the command. If successful (ACK), the EMP then schedules the NVM Erase
operation to be performed by a lower priority thread, which can be preempted by other AQ commands.

Once completed, the EMP posts a completion event on the ARQ. Software must hold the NVM resource
lock while performing this operation and must release it once the full NVM operations complete
(assuming the erase is part of an update sequence).

Software must not post another NVM command while this command is in process. For example, during
the time between posting the request on the ATQ and receiving the completion event on the ARQ.

Table 3-110. NVM Erase Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0702 Command opcode.

Datalen 4-5 Must be zeroed by the software device driver.

Return Value/VFID 6-7 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-18 Reserved.

Command Flags 19 NVM Access Admin Command Parameters
Bit 19.0: Last Command Bit

Used to notify the EMP that this is the last admin command of a sequence.
All other bits = Reserved. Must be zeroed.

Module_TypeID 20-21 The only valid TypeIDs are:
• 1st NVM Bank Pointer (0x42): Non-valid bank erase.
• 1st OROM Bank Pointer (0x44): Non-valid bank erase.
• 1st TLV Extension Bank Pointer (0x46): Non-valid bank erase.
• One of the scratch pad pointers (0x4B, 0x50, 0x59).

Reserved 22-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

314 613875-009

Table 3-111. NVM Erase Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0702 Command opcode.

Datalen 4-5 Reserved.

Return Value 6-7 Return value.
0x0 = No error (success).
EPERM = The module pointer location specified in the command does not permit

the required operation. The word contents is not a pointer to a next
bank area.

EBUSY = The PF is not permitted to post this command because it does not own
the NVM resource. This error code is also returned if the PF attempts to
post a command while another NVM command is in process.

EACCESS =Attempt to erase a non erasable area.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 Reserved.

Table 3-112. NVM Erase Completion (on ARQ)

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0702 Command opcode.

Datalen 4-5 Reserved

Return Value 6-7 Return value.
0x0 = No error (success).

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-17 0x0 Reserved. Must be zeroed

Reserved 19 Reserved.

Module_TypeID 20-21 Copied from the command.

Length 22-23 Copied from the command.
If a value of 0xFFFF was set in the admin command, this field returns the length
from the offset to the module's end in 4 KB units.

Reserved 24-31 Reserved.

613875-009 315

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.3 NVM Write (0x0703)

This command is used to write the data given by the attached buffer into a specified location in the
NVM. Erasing the relevant sector(s) by posting NVM erase command(s) (see Section 3.4.10.2) is
required prior to posting this command.

For double bank updates (like Module_TypeId = 0x42, 0x44, 0x46), the command must be followed by
the NVM Write Activate command for a bank update to take effect.

Table 3-113. NVM Write Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0703 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value/VFID 6-7 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Offset 16-18 Offset, which is expressed in bytes from the pointed module’s beginning.
This is the byte offset of the first byte to be written.
Offset of zero points to the section length. However the length is not
overwritten.

Command Flags 19 NVM Access Admin Command Parameters
Bit 19.0: Last Command Bit

Used to notify EMP that this is the last admin command of a sequence.
Note: Setting the Last bit causes a Shadow RAM dump, but it is

recommended to use the NVM Write Activate to achieve this.
Bit 19.6: Allow Special Update

Set to allow change of MinSrev TLV and NetlistMinSrev TLV.
All other bits = Reserved. Must be zeroed.

Intel® Ethernet Controller E810 Datasheet
Interconnects

316 613875-009

Module_TypeID 20-21 Module TypeID
The only valid init module pointers are:
• 0x00: Flat memory view
• 1st NVM bank pointer (0x42): Non-valid bank.
• 1st OROM bank pointer (0x44): Non-Valid Bank.
• 1st TLV Extension Bank Pointer (0x46): Non-valid bank.
• One of the scratch pad pointers:

 — Firmware scratch pad pointer (0x50)
 — Link Topology scratch pad pointer (0x4B)

• PFA TypeIDs not included in the list below (see Table 6-5).
A value of 0x00 here means that the command is performed over the Shadow
RAM part seen as a flat memory. No reset or pointer switch is initiated by the
E810 in such a case. A flat write attempt to the first 64 KB of the Flash is
performed against the Shadow RAM first, and then dumped to the next
Shadow RAM bank in the Flash (see Section 3.4.5.4).
A flat write (0x00) attempt to a Shadow RAM area other than within the PFA,
or words listed below or out side the Shadow RAM is rejected as well.
The following PFA TLV sections cannot be updated by this AQC:
• Immediate values
• Feature configuration
• POR auto-load section
• PCIR auto-load section
• TLVs Header
• VPD when the VPD_WRITE_ENABLE is cleared
• RDMA control
• HII port/PF disable
• Padding TLV
• Software Checksum

The MinSrev and NetlistMinSrev modules can be updated only if Allow Special
Update is set. The following checks are applied when the MinSrev and
NetlistMinSrev modules are updated:
• MinSrev valid is not cleared (1 → 0).
• If MinSrev valid and Current MinSrev <= Srev in signed image, then check

that Current MinSrev < New Srev <= Srev in signed image.
• If Current MinSrev valid and Current MinSrev > Srev in signed image OR

Current MinSrev NOT valid, then check that New NVM Srev <= NVM Srev
in signed image.

Note: Srev in signed image = Srev of the new image if exists - if not of
current image.

Note: MinSrev and NetlistMinSrev cannot be updated in recovery mode.
In debug mode, a value of 0x00 writes to the entire Flash seen as flat memory
without any protection. Only one module is updated at a time.
For TLVs only the data portion of the TLV is updated.

Length 22-23 Length of the section to be written, which is expressed in bytes from the offset
in the module.
A (single) write command is limited up to 4 KB and must not spread over two
(consecutive) 4 KB sectors. Also, attempting to write a RO word invalidates the
entire command.Length is truncated to size of TLV in bytes +2.

Data Address High 24-27
Address of command buffer.

Data Address Low 28-31

Table 3-113. NVM Write Command [continued]

Name Byte.Bit Value Remarks

613875-009 317

Intel® Ethernet Controller E810 Datasheet
Interconnects

This is an asynchronous command. EMP reads the command from the ATQ and writes back an
immediate completion, intended only as an ACK/NACK that the command has been addressed by the
EMP. The EMP checks the validity of the command and returns an error (NACK) on the ATQ completion
if it is unable to process the command. If successful (ACK), the EMP then schedules the NVM write
operation to be performed by a lower priority thread, which can be preempted by other AQ commands.

Once completed, the EMP posts a completion event on the ARQ. Software must hold the NVM resource
lock while performing this operation and must release it once NVM operations complete.

Software must not post another NVM command while this command is in process. For example, during
the time between posting the request on the ATQ and receiving the completion event on the ARQ.

Table 3-114. NVM Write Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0703 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value 6-7 Return value.
0x0 = No error (success).
EPERM = The module type specified in the command does not permit the

required operation. The word contents is not a pointer, or an attempt to
write a RO module or word, or command is received not at the right
place in the flow.

EINVAL = Out of range offset/length (beyond the relative free area module’s
limits), or write spread over two (consecutive) sectors.

EBUSY = The PF is not permitted to post this command because it does not own
the NVM resource. This error code is also returned if the PF attempts to
post a command while another NVM command is in process.

EACCESS =Attempt to write to read only area or authentication failure.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

318 613875-009

Table 3-115. NVM Write Completion (on ARQ)

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0703 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value 6-7 Return value.
0x0 = No error (success).
EIO = Flash defect.
EACCES =Security check failed:

 • Public key check failed.
 • Module digest (CRC) check failed.
 • Module security revision check failed.
 • Device ID check failed.
 • Module ID check failed.

EINVAL = Invalid parameters

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Offset 16-18 Copied from the command.

Response Flags 19 RESET_FLAG
A reset flag to indicate the type of reset required to get the NVM bank update
effective.

0 = POR
1 = PERST
2 = EMPR
All other bits = Reserved

Note: Relevant only for NVM Bank update.

Module_TypeID 20-21 Module_TypeID that was used for this update

Length 22-23 Copied from the command.

Data Address High 24-27
Address of command buffer.

Data Address Low 28-31

613875-009 319

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.4 NVM Config Read (0x0704)

This admin command reads currently configured feature/super-feature selections and immediate field
values/entries. The features/fields to be read are specified in the command’s buffer. It can also be used
for reading all features or fields. In case one buffer is not enough Feature or field iteration is used. The
next Feature_ID/Field_ID to read are returned in the command response in this case.

Table 3-116. NVM Config Read Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0704 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value/VFID 6-7 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Command Flags 16 NVM access admin command parameters.
Bit 16.0: Single/Multiple elements.

0b = Only a single Feature_ID/Field_ID is read.
1b = Feature_ID/Field_ID iteration is used.

Bit 16.1: Feature/Field
0b = Feature selections are read.
1b = Immediate fields are read.

All other bits = Reserved. Must be set to zero.

Reserved 17 0x0 Reserved. Must be set to zero.

Element Count 18-19 0x0 The number of features/fields returned.
Zeroed by driver, written by firmware.

Feature_ID/
Field_ID

20-21 See description Single Feature_ID/Field_ID when Bit 16.0 is 0b.
Feature_ID when Bit 16.1 is 0b.
Field_ID when Bit 16.1 is 1b.
Iterator:

Feature_ID/Field_ID to start reading from (iterator) when Bit 16.0 is 1b.
Note: When Bit 16.0 is 0b, Feature_ID/Field_ID = 0 is not valid. When Bit

16.0 is 1b, it indicates that the command reads the data starting from
the first Feature_ID/Field_ID in the array.

Reserved 22-23 Reserved.

Data Address High 24-27
Address of command buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Interconnects

320 613875-009

Table 3-117. NVM Config Read Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0704 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value 6-7 Return value.
0x0 = No error (success).

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Command Flags 16 NVM access admin command parameters.
Bit 16.0: Single/Multiple elements.

0b = Only a single Feature_ID/Field_ID is read.
1b = Feature_ID/Field_ID iteration is used.

Bit 16.1: Feature/Field
0b = Feature selections are read.
1b = Immediate fields are read.

All other bits = Reserved. Must be set to zero.

Reserved 17 0x0 Reserved. Must be set to zero.

Element Count 18-19 See description The number of features/fields returned.

Feature_ID/Field_ID 20-21 See description Same as the command.

Reserved 22-23 Reserved.

Data Address High 24-27
Address of command buffer. See Section 3.4.10.6.

Data Address Low 28-31

613875-009 321

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.5 NVM Config Write (0x0705)

This admin command writes the feature selections and the values of the immediate fields provided in
the attached command buffer to the NVM.

After this command is completed, an NVM Write Activate (0x0707) must be called to make the
configuration persistent.

Table 3-118. NVM Config Write Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0705 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value/VFID 6-7 0x0 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Command Flags 16 NVM Access Admin Command Parameters
Bit 16.0: Reserved.
Bit 16.1: Feature/Field

0b = Feature selections are written.
1b = Immediate fields are written.

Bit 16.2: Add New Configuration
0b = Existing configuration.
1b = New configuration added.

All other bits = Reserved. Must be set to zero.

Reserved 17 0x0 Reserved. Must be set to zero.

Element Count 18-19 0x0 The number of features/fields in the command buffer.

Reserved 20-23 0x0 Reserved. Must be set to zero.

Data Address High 24-27
Address of command buffer.

Data Address Low 28-31

Table 3-119. NVM Config Write Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0705 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value 6-7 Return value.
0x0 = No error (success).

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

322 613875-009

3.4.10.6 NVM Config Read/Write Command Buffer

Described below is the format of the command buffer attached to the NVM Config Read Response and
to the NVM Config Write commands. The buffer can either be filled with Feature Selection fields or
Immediate Field fields, depending on Bit 16.1 in the command.

Table 3-120. Feature Buffer for NVM Config Read/Write

Parameter Bytes.Bits Description

Feature_ID 0-1 Feature_ID

Feature Flags 2-3 Feature options for NVM_Config_Read only. Reserved for NVM_Config_Write.
Bit 0: OEM only (is set).
Bits 1:2: Reserved.
Bit 3: If set the Feature fields are mapped in DWORD-wise, otherwise are

WORD.
Bit 4: Should be set when using a POR CSR.
Bit 5:15: Reserved.

Feature selection/Field Value 4-5 Configured feature selection for NVM Config Read.
Requested feature selection for NVM Config Write.

Table 3-121. Immediate Buffer for NVM Config Read/Write

Parameter Bytes.Bits Description

Field_ID 0-1 Field_ID

Field flags 2-3 Field options for NVM Config Read.
Reserved for NVM Config Write.

Field Value 4-5 Field value.

613875-009 323

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.7 NVM Update Checksum (0x0706)

This admin command recalculates/verifies the PFA checksum. This command is used by software once it
fixed a corrupted PFA or to check the validity of the PFA after reset.

Table 3-122. NVM Update Checksum Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0706 Command opcode.

Datalen 4-5 0x0 Length in bytes of command buffer.

Return Value/VFID 6-7 0x0 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Command Flags 16 Bit 17.0: Verify Checksum
Bit 17.1: Recalculate Checksum
All other bits = Reserved.
Note: Only one bit of the above can be set in a command.
Note: After a recalculate action, the software must initiate a Shadow RAM

dump.

Reserved 17-31 0x0 Reserved. Must be set to zero.

Table 3-123. NVM Update Checksum Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0706 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value 6-7 0x0 Return value.
0x0 = No error (success).
INVAL = Both 17.0 and 17.1 bits are set.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-17 Reserved.

Checksum 18-19 0x0 A value of 0xBABA indicates a valid checksum.
Returned only if Verify Checksum flag was set in command.

Reserved 20-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

324 613875-009

3.4.10.8 NVM Write Activate (0x0707)

This admin command updates the control word with the required banks' validity bits and dumps the
Shadow RAM to Flash.

It must be called after NVM Write AQ Command was successfully completed in order for the new
bank(s) to be updated.

If no flag is set, this command acts as an SR-dump command.

Table 3-124. NVM Write Activate Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0707 Command opcode.

Datalen 4-5 0x0 Length in bytes of command buffer.

Return Value/VFID 6-7 0x0 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-17 0x0 Reserved. Must be set to zero.

Command Flags 2 18 0x0 Bit 18.0: Set to Elevate next PERST to EMPR. Clear has no effect.
All other bits = Reserved. Must be set to zero.

Command Flags 19 0x0 Bit 19.0: Reserved.
Bits 19.2-19.1: Preservation Mode (relevant only if Bit 3 is set):

00b = No preservation — Notify EMP to avoid any field preservation during
NVM bank update. Returns to the values in the copy of the PFA stored
in the signed NVM module.

01b = Preserve all (Default) — Used to notify EMP to preserve all the
necessary customization fields during NVM bank update.

10b = Return to factory settings.
11b = Preserve Only Selected Fields — Used to notify EMP to preserve only

the immediate fields and section marked as such during NVM bank
update. The following sections are currently included:

• PCI Serial ID
• PF MAC Addresses TLV
• MNG MAC Address TLV section
• HLP MAC Address TLV section
• SMBus addresses
• MinSrev
• NetlistMinSrev

Bit 19.3:
0b = Keep current NVM Bank.
1b = Switch to invalid NVM Bank

Bit 19.4:
0b = Keep current NV OROM Bank.
1b = Switch to invalid OROM Bank

Bit 19.5:
0b = Keep current EXT TLV Bank.
1b = Switch to invalid EXT TLV Bank

Bit 19.6:
0b = No event.
1b = Revert Last Activate.

Bit 19.7: Reserved.
Note: If Bits 3:5 are clear, Shadow RAM is dumped and swapped with no

validity bits change.

Reserved 20-31 0x0 Reserved. Must be set to zero.

613875-009 325

Intel® Ethernet Controller E810 Datasheet
Interconnects

Table 3-125. NVM Write Activate Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0707 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value 6-7 Return value.
0x0 = No error (success).
0x0A = EPERM — Returned when at least one of the specified bank(s) is not

in the expected state for being updated, or command is received not
at the right place in the flow.

0x15 = EMODE — NVM module not included in activation.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 Reserved.

Table 3-126. NVM Write Activate Completion (on ARQ)

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0707 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value 6-7 Return value.
0x0 = No error (success).
0xC = EBUSY - Unavailable resource.
0xA = EACCES - Not available for activation (no image was loaded successfully).
0x15 = EMODE - Internal firmware error.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 0x0 Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

326 613875-009

3.4.10.9 Save Factory Settings (0x0708)

This admin command saves the PFA, active Topology Netlist, and 32B header to a permanent read-only
NVM location. This command should be executed at the end of product manufacturing after NVM
content has been programmed, including MAC Addresses. For more information refer to Section
3.4.9.6.1, “Factory Settings Preservation Flow”.

Table 3-127. Save Factory Settings Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0708 Command opcode.

Datalen 4-5 0x0 Length in bytes of command buffer.

Return Value/VFID 6-7 0x0 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 0x0 Reserved. Must be set to zero.

Table 3-128. Save Factory Settings Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0707 Command opcode.

Datalen 4-5 0x0 Length in bytes of command buffer.

Return Value 6-7 0x0 Return value.
0x0 = No error (success).
EACCESS =Save Factory Settings command was previously executed.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 0x0 Reserved.

613875-009 327

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.10 NVM Update EMPR (0x0709)

This admin command allows the software the request an EMPR after a successful reset to allow
activation of the new firmware.

Table 3-129. NVM Update EMPR Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0709 Command opcode.

Datalen 4-5 0x0

Return Value/VFID 6-7 0x0 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 0x0 Reserved. Must be set to zero.

Table 3-130. NVM Update EMPR Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0709 Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value/VFID 6-7 Return value.
0x0 = No error (success).
EMODE = No successful update pending. Reset not allowed.
EPERM = Command is received not at the right place in the flow.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 0x0 Reserved.

Intel® Ethernet Controller E810 Datasheet
Interconnects

328 613875-009

3.4.10.11 Set Package Data (0x070A)

This command is equivalent to the reception of a PLDM FW Update GetPackageData command. This
command assumes that any package data is smaller than 4K and hence is contained within a single
command. This command should be sent as part of the NVM update as the first command in the flow.

Table 3-131. NVM Set Package Data Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x070A Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value/VFID 6-7 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-18 Reserved.

Command Flags 19 Bit 19.0: Delete PackageData
If set, the current PackageData stored by firmware is deleted. If this bit is
set, buffer size is zero.

All other bits = Reserved. Must be set to zero.

Reserved 20-23 Reserved.

Data Address High 24-27
Address of command buffer. The buffer contains the PackageData.

Data Address Low 28-31

Table 3-132. NVM Set Package Data Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x070A Command opcode.

Datalen 4-5

Return Value 6-7 Return Value.
0x0 = No error (success).
EPERM = NVM update is not allowed (between activate and reset or

lock-down).
EINVAL = Error in parsing of the content of the package data.
EBUSY = The PF is not permitted to post this command because it does not

own the NVM resource. This error code is also returned if the PF
attempts to post a command while another NVM command is in
process.

EACCESS =Attempt to request an update of a RO area.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-18 Reserved.

Flags 19 Bit 19.0: Skipped Entries
If set, some of the update requests will be skipped due to unknown PFA TLVs
or unknown VPD keys.

All other bits = Reserved.

Reserved 20-23 Reserved.

613875-009 329

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.11.1 Buffer of NVM Set Package Data Command

The content of the buffer is the PackageData as read by the tool from the PLDM header. The size of this
buffer is up to 1 KB.

The content is as follows:

• Byte [0].Bit 0 — PFA Preserve (default mode). Should be set to zero.

• Byte [0].Bits [7:1] — Reserved

• Byte[1] — Reserved

• TLV as follows:

— Type — 2 bytes:

• GFID - 0x1

— Length — 2 bytes:

• 36 words

— Value:

• 17:0 = Current GFID

• 35:18 = Original GFID

• The following set of TLVs as needed:

— Type — 2 bytes:

• TLV + Offset update - 0x10 // used to update TLVs

— Length — 2 bytes:

• According to size of value (in words)

— Value:

• uint16: TLV number

• uint16: Offset in words (offset 0 is the beginning of the TLV data)

• uint16: Data length in words

• Variable: Data

• The following set of TLVs as needed:

— Type — 2 bytes:

• VPD Key update - 0x11 // Used to update VPD entries

— Length — 2 bytes:

• According to size of value (in words)

Data Address High 24-27
Address of command buffer.

Data Address Low 28-31

Table 3-132. NVM Set Package Data Response [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

330 613875-009

— Value:

• uint16: VPD key (ascii - e.g. V2 = 0x5632 (ascii('V'), ascii('2')))

• uint16: Data length (in bytes) // should match current VPD entry size - error otherwise

Note: If Data Length is odd, add a pad byte at end of data to make the TLV word
aligned.

• Variable: Data

Notes:

• The TLVs can be in any order.

• Although this command is received at the beginning of the update flow, the actual programming of
the PFA happens at the end (before the activation).

• The treatment of a PackageData received via GetPackageData PLDM firmware update command
should be the same as described above.

• For all changes received via this package, regular PFA protection applies as defined in NVM Write
admin command. The MinSrev and NetlistMinSrev can be changed according to the regular checks.

• After updating the VPD, the checksum in the VPD RV tag should be updated.

• If a modification of an unknown PFA tag or VPD key is requested, the command is accepted, and
this tag/key is ignored. This is indicated via the Skipped Entries flag.

• To be able to modify parts of the VPD RO tag, the VPD Write Enable bit in NVM should be set. If not
set, and modifications of the RO VPD area are requested the command will fail.

• If command 0x070A is received more than once, the last version is retained, even if faulty.

• If unknown TLVs or PFA TLVs with wrong size or VPD keys with wrong size are part of the
PackageData, the command will fail.

• An NVM Write Activate command (0x0707) or PLDM CancelUpdate or PLDM ActivateFirmware or
PLDM timeout will invalidate the content received in this command. For a new update, the
command should be sent again.

Note: In Recovery Firmware mode, the following applies for the PackageData:

• The flags must follow the same rules as the normal firmware.

• The GFID check is not done, as the current GFID is not trusted.

• TLV data is ignored and no changes are done to the PFA. The Skipped Entries flag is set in
the response. This also means that an update in Recovery mode that successfully
restored to regular firmware should be reapplied when the regular firmware is running, to
apply PFA change.

613875-009 331

Intel® Ethernet Controller E810 Datasheet
Interconnects

3.4.10.12 Pass Component Table (0x070B)

This command is equivalent to the reception of a PLDM firmware Update PassComponentTable
command. This command is sent once per component. This command should be sent as part of the
NVM update only after the Set Package Data command is sent and before the update actually starts.
The E810 assumes these commands are going to be sent until the TransferFlag is set to End or
StartAndEnd.

Table 3-133. NVM Pass Component Table Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x070B Command opcode.

Datalen 4-5 Length in bytes of command buffer.

Return Value/VFID 6-7 Must be zeroed by the software device driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-18 Reserved.

TransferFlag 19 Possible values:
0x1 = Start
0x2 = Middle
0x4 = End
0x5 = StartAndEnd

Note: This TransferFlag is ignored by firmware for now.

Reserved 20-23 Reserved.

Data Address High 24-27
Address of command buffer. Contains the component table.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Interconnects

332 613875-009

Table 3-134. NVM Pass Component Table Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x070B Command opcode.

Datalen 4-5

Return Value 6-7 Return Value.
0x0 = No error (success).
EPERM = NVM update is not allowed (between activate and reset or

lock-down).
EBUSY = The PF is not permitted to post this command because it

does not own the NVM resource. This error code is also
returned if the PF attempts to post a command while
another NVM command is in process.

EINVAL = Wrong parameters.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

ComponentResponse 16 ComponentResponse as described in DSP0267:
0 = Component can be updated - ComponentResponseCode must be

set to 0x00.
1 = Component cannot be updated - A ComponentResponseCode

greater than zero must be provided to explain the reason why the
component cannot be updated, or if a flag is required to be set in
UpdateOptionFlags field within the UpdateComponent request.

2 = Component should not be updated with this image (this is not
part of the DSP0267 spec, but provides more information to
host). The matching ComponentResponseCodes are denoted
below.

All other values reserved.
This value reflects the update status of this module.
Possible ComponentResponse in Recovery Firmware:

Netlist:
Same as in regular firmware (0x1|0x2|0x3).

NVM:
0x3 = Partial Check.
0x2 - Component should not be updated with this image in case of

ComponentResponseCode = 0x6|0x5|0x7.

613875-009 333

Intel® Ethernet Controller E810 Datasheet
Interconnects

ComponentResponseCode 17 ComponentResponseCode as defined in DSP0267 and as described in
Section 12.8.4.2.4:

0x00 = Component can be updated.
0x01 = Component comparison stamp is identical to the firmware

component comparison stamp in the FD. The device accepts
such an update, but the software should reflect this to the
user.

0x02 = Component comparison stamp is lower than the firmware
component comparison stamp in the FD (downgrade). The
device accepts such an update, but the software should reflect
this to the user.

0x03 = Invalid component comparison stamp. The device rejects the
request and returns a ComponentResponse = 2. Returned,
among others, if GFID does not match.

0x04 = Component has conflict with another component provided in a
separate PassComponentTable command.

0x05 = Prerequisites for this component have not been met. Returned
if 0x70A was not sent before this command. The device rejects
the request and returns a ComponentResponse = 2.

0x06 = Component is not supported on FD. The device rejects the
request and returns a ComponentResponse = 2.

0x07 = Security restrictions prevent component from being
downgraded. Should include Srev check. The device rejects the
request and returns a ComponentResponse = 2.

0x08 = Incomplete component image set was received. Not used.
0x09 = Reserved.
0x0A = Component version string is identical to the firmware

component version string in the FD. The device accepts such
an update, but the software should reflect this to the user.

0x0B = Component version string is lower to the firmware component
version string in the FD. The device accepts such an update,
but the software should reflect this to the user.

All other values are reserved.
In case or Recovery Firmware, the following values are returned based
on partial data:

0x00 = Component can be updated.
0x05 = Pre-requisites for this component have not been met. Returned

if 0x70A was not sent before this command. The device rejects
the request and returns a ComponentResponse = 2

0x06 = Component is not supported on FD. The device rejects the
request and returns a ComponentResponse = 2

0x07 = Security restrictions prevent component from being
downgraded. Should include Srev check. The device rejects the
request and returns a ComponentResponse = 2 (NVM SREV)

0x0A = Component version string is identical to the firmware
component version string in the FD. The device accepts such
an update, but the software can reflect this to the user.
(netlist)

0x0B = Component version string is lower to the firmware component
version string in the FD. The device accepts such an update,
but the software can reflect this to the user. (netlist)

Reserved 18-23 Reserved.

Data Address High 24-27
Address of command buffer.

Data Address Low 28-31

Table 3-134. NVM Pass Component Table Response [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Interconnects

334 613875-009

3.4.10.12.1 Buffer of NVM Pass Component Table Command

The buffer of NVM Pass Component Table command contains the Component Table as passed to the
device by the PassComponentTable PLDM firmware command as described in DSP0267
PassComponentTable command and described in Table 3-135. For more information, see Section 12.8.5

3.4.11 VPD Support

The Flash image can contain an area for VPD. This area is managed by the OEM vendor and does not
influence the behavior of hardware. The VPD area is stored in the PFA with a TLV Type of 0x2F. A value
of 0b in the GLPCI_CAPCTRL.VPD_EN register bit means VPD is not supported and the VPD capability
does not appear in the configuration space. The register bit must be set to 1b in NVM only once the VPD
area has been programmed. Refer to Section 3.4.5.3.1.

The maximal VPD area size provisioned in Shadow RAM is 1 KB, but it can be smaller. The VPD block is
built from a list of resources. A resource can be either large or small. The structure of these resources
are listed in Table 3-136 and Table 3-137.

The E810 parses the VPD structure during the auto-load process following PCIe reset to detect the
read-only and read/write area boundaries. The E810 assumes the following VPD fields with the
limitations listed:

Table 3-135. Component

Type Name Format/Value

uint16 ComponentClassification Should be 0x000A - Firmware for all components.

uint16 ComponentIdentifier NVM = 0x6
OROM = 0x5
Topology Net List = 0x8

uint8 ComponentClassificationIndex 0x0 - Not used.

uint32 ComponentComparisonStamp As defined in Section 12.8.5.2.1

enum8 ComponentVersionStringType ASCII = 1

uint8 ComponentClassificationIndex The length, in bytes, of the ComponentVersionString.

Variable ComponentVersionString As defined in Section 12.8.5.2.1.

Table 3-136. Small Resource Structure

Offset Content

0 Tag = 0xxx,xyyyb (Type = Small(0), Item Name = xxxx, length = yy bytes)

1-n Data

Table 3-137. Large Resource Structure

Offset Content

0 Tag = 1xxx,xxxxb (Type = Large(1), Item Name = xxxxxxx)

1:2 Length

3-n Data

613875-009 335

Intel® Ethernet Controller E810 Datasheet
Interconnects

VPD structure limitations:

• The structure must start with a tag = 0x82.

• The structure must end with a tag = 0x78 before the Shadow RAM’s end. The tag must also be
word-aligned.

• If the E810 does not detect a value of 0x82 in the first byte of the VPD area, or if no end tag is
detected, or if the structure does not follow the information listed in Table 3-138, it assumes the
area is not programmed:

— Any read/write access through the VPD registers set are ignored.

— EMP considers the VPD area as an empty module and thus allows NVM Update commands to be
performed over the area pointed by the VPD area pointer, up to the start of another RO module.

— The VPD pointer itself remains RO.

• The RO area and RW area are both optional and can appear in any order. A single area is supported
by per-tag type. Refer to Appendix I in the PCI 3.0 specification for details of the different tags.

• If a VPD-W tag is found, the area defined by its size is writable via the VPD structure.

• The VPD area can be accessed through the PCIe configuration space VPD capability structure listed
in Table 3-138. Write accesses to a RO area or any accesses outside of the VPD area via this
structure are ignored. If the VPD Write Enable field is set to 1b in the NVM Security Control word
and the entire VPD area can be modified via the NVM Update AQ command. Otherwise, the
command is completed with an error status.

• VPD area must be mapped into the first valid basic bank of the Flash.

• VPD software does not check the NVM ownership before attempting to access the Flash via
dedicated VPD registers (refer to Section 14.3.4). VPD software write access is recorded in the
Flash immediately once the Flash part is available (such as not busy by a previous sector erase
operation). Refer to Section 3.4.5.3 for more details.

Table 3-138. VPD Structure Tags

Tag Length (Bytes) Data Resource Description

0x82 Length of identifier string Identifier Identifier string.

0x90 Length of RO area RO data VPD-R list containing one or more VPD keywords.

0x91 Length of RW area RW data VPD-W list containing one or more VPD keywords. This part is optional.

0x78 n/a n/a End tag.

Intel® Ethernet Controller E810 Datasheet
Interconnects

336 613875-009

3.5 General Purpose I/O (GPIO) and LED

The E810 provides two types of GPIOs:

• Low latency GPIOs, that are directly controlled by the device registers.

• Standard GPIOs that are provided by an I/O Widget.

Four direct, low latency GPIOs are connected directly to single-ended 3.3 V IO pads, plus one
differential output. In addition to the direct low latency GPIOs, the E810 controls an I/O Widget that
provides an additional 20 GPIOs, which can be used either as SDPs or LEDs.

In total the E810 provides the following:

• Four direct low latency single-ended GPIOs, plus one differential output, mostly used for TimeSync
application.

• An additional 20 GPIOs, controlled using an I/O Widget. The I/O Widget IP is able to provide up to
32 general-purpose GPIO pins. However, the following SDP/LED are externally connected.

— 8 SDP pins, mostly for allowing direct control of SFP modules (for example, the MOD_ABS pin).

— 12 LED pins that can be divided into 3 LEDs per port in 4 SFP+ configuration.

Note: The I/O Widget generates LEDs and SDPs with the same feature set, so the division to 12
LEDs and 8 SDPs is provided only as an example to typical low port count application

3.5.1 E810 I/O Widget SDP and LED

The E810 controls an I/O Widget, which provides 8 SDPs and 12 LEDs. The I/O Widget is accessed
using register access commands.

The eight widget SDPs are used for Ethernet link management purposes, as follows:

• Directly controlling link topology components, such as external PHY or re-timer. This is mostly used
in low port count applications (such as reset or interrupt line).

• Detecting SFP module existence, in low port count applications (such as MOD_ABS).

The 12 widget SDP/LED pins can be used as additional SDPs, for functions as described above or can be
used as LEDs for low port count applications, up to three LEDs per port in 4-port configurations.

When a port has three dedicated LED pins, they are be configured as follows:

• One activity LED.

• One LED indicating the LINK is running at highest available speed (firmware only sets the highest
Link speed in the LED control).

• One LED indicating the LINK is up but not at the highest speed available (firmware sets all speeds
but the highest).

Another possible configuration is in a case of a break-out cable with QSFP+ cage. In this case there are
only three LED pins for the entire cage that operates this way:

• One activity LED.

• One LED indicating that all LINKs in this cage are running at highest available speed (firmware
configuration is TBD).

• One LED indicating at least one LINK in this cage is up (firmware sets all speeds but the highest).

613875-009 337

Intel® Ethernet Controller E810 Datasheet
Interconnects

The link topology netlist define how to use the I/O Widget SDP and LEDs. See Section 3.3.

3.5.1.1 E810 GPIO Pin Names

Table 3-139 summarize the GPIO pin names:

Table 3-139. E810 GPIO Pins

Pin Name Source Signal Name Control Register Usage

SDP0 I/O Widget iow_gpio_o/i[0] IOW/GPIO_CTL[0] LED or SDP assigned via the link topology
netlist.

SDP1 I/O Widget iow_gpio_o/i[1] IOW/GPIO_CTL[1]

SDP2 I/O Widget iow_gpio_o/i[2] IOW/GPIO_CTL[2]

SDP3 I/O Widget iow_gpio_o/i[3] IOW/GPIO_CTL[3]

SDP4 I/O Widget iow_gpio_o/i[4] IOW/GPIO_CTL[4]

SDP5 I/O Widget iow_gpio_o/i[5] IOW/GPIO_CTL[5]

SDP6 I/O Widget iow_gpio_o/i[6] IOW/GPIO_CTL[6]

SDP7 I/O Widget iow_gpio_o/i[7] IOW/GPIO_CTL[7]

SDP8 I/O Widget iow_gpio_o/i[8] IOW/GPIO_CTL[8]

SDP9 I/O Widget iow_gpio_o/i[9] IOW/GPIO_CTL[9]

SDP10 I/O Widget iow_gpio_o/i[10] IOW/GPIO_CTL[10]

SDP11 I/O Widget iow_gpio_o/i[11] IOW/GPIO_CTL[11]

SDP12 I/O Widget iow_gpio_o/i[12] IOW/GPIO_CTL[12]

SDP13 I/O Widget iow_gpio_o/i[13] IOW/GPIO_CTL[13]

SDP14 I/O Widget iow_gpio_o/i[14] IOW/GPIO_CTL[14]

SDP15 I/O Widget iow_gpio_o/i[15] IOW/GPIO_CTL[15]

SDP16 I/O Widget iow_gpio_o/i[16] IOW/GPIO_CTL[16]

SDP17 I/O Widget iow_gpio_o/i[17] IOW/GPIO_CTL[17]

SDP18 I/O Widget iow_gpio_o/i[18] IOW/GPIO_CTL[18]

SDP19 I/O Widget iow_gpio_o/i[19] IOW/GPIO_CTL[19]

SDP20 Controller Core gbe_o/i_gpio[0] GLGEN_GPIO_CTL[0] 1588 timing support.

SDP21 Controller Core gbe_o/i_gpio[1] GLGEN_GPIO_CTL[1]

SDP22 Controller Core gbe_o/i_gpio[2] GLGEN_GPIO_CTL[2]

SDP23 Controller Core gbe_o/i_gpio[3] GLGEN_GPIO_CTL[3]

CLK_OUT_p/n Controller Core gbe_o/i_gpio[5] GLGEN_GPIO_CTL[5]

Intel® Ethernet Controller E810 Datasheet
Interconnects

338 613875-009

NOTE: This page intentionally left blank.

613875-009 339

Intel® Ethernet Controller E810 Datasheet
Initialization

Chapter 4 Initialization

4.1 Reset Operation

The following sections lists the hardware and software reset sources that initialize the entire portions of
the E810 and function-level resets. The reset sources are listed in Section 4.1.1 and the reset flows are
detailed in Section 4.1.2.

4.1.1 Reset Sources

This section lists the reset sources supported by the E810, while the complete list of initialized logic is
listed in Table 4-1.

A hierarchical reset tree is shown in the Figure 4-1. Any logic initialized by a specific reset is initialized
also by any other reset source that is linked to it and located above it in the reset tree.

Figure 4-1. Hierarchical Hardware Reset Tree

Power-On Reset
(POR)

EMP Reset
(EMPR)

Reset Source Cause List of the Reset Source

 Power-On Reset
(POR) Power applied to the device.

 PCIE Reset IOSF Primary/secondary reset input signal.

 In-Band Reset
(PCIR) In-Band PCIe message signaling.

 Core Reset
(CORER)

 Device driver setting the CORER bit in the
 GLGEN_RTRIG register.

 Global Reset
(GLOBR)

 Device driver setting the GLOBR bit in the
 GLGEN_RTRIG register.

 EMP Reset
(EMPR)

 EMP watchdog timer expiration or Force TCO
 command.

 PCIE Reset Sticky Reset
(STRST)

 Internal reset that clears PCIe sticky registers
 following PCIe reset.

Global Reset
(GLOBR)

Core Reset
(CORER)

In-Band Reset
(PCIR)

Sticky Reset
(STRST)

If no AUX
Power

Intel® Ethernet Controller E810 Datasheet
Initialization

340 613875-009

Hardware Resets:

• Power-On Reset (POR) — A full power-on flow is translated to sideband reset and global reset
signals to the E810.

• PCIe Reset (primary reset de-assertion) — The primary reset signal is kept at the low level
when the system is at power-down state and at system boot. PCIe reset triggers de-assertion of
primary reset. If there is no AUX power, the PCI reset generates an internal STRST signal that
clears PCIe sticky bits as listed in Table 4-1. De-assertion of primary reset also triggers internally a
PCIR, which is detailed later in this section. Global reset is also de-asserted if link is not needed for
APM and manageability is disabled.

• Sticky Reset (STRST) — Sticky reset is internal signal triggered by PCIe reset when the E810 is
not powered by AUX power. This reset clears sticky registers in the PCIe interface (as defined by the
PCIe specification). The sticky reset is also initiated by POR.

• In-Band Reset (PCIR) — PCIe supports in-band signaling for PCIe reset (called PCIR). Any cycles
on the PCIe bus are gated instantly as well and packet transmission generated by software. The
entire data path is initialized other than the EMP cluster. Although the EMP subsystem is not
initialized, some packets of the EMP might be lost during a short window of about 1 μs.

• Core Reset (CORER) — CORER initializes the shared data path for all functions excluding the EMP
subsystem, PCI interface, and MAC/PHY logic of all ports. Any further master cycles of all PFs and
VFs are not initiated while some packets that were already fetched completely might still be sent
out. Even though the EMP subsystem is not cleared, pass-through traffic might be inhibited during
the initialization cycle that might take ~20 ms. Also, SMBus accesses are responded with NACK
during the initialization cycle. This reset is not expected to be used other than as an escape
mechanism in case the E810 hangs and the PFR did not resolve the problem. This reset is initiated
by the PFs by setting the CORER bit in the GLGEN_RTRIG register. The EMP initiates this reset by
setting a bit in an internal register. As seen in Figure 4-1, this reset is also set as part of EMPR reset
or Global reset (higher level reset).

• Global Reset (GLOBR) — GLOBR is a superset CORER initializing any logic initialized by the
CORER, plus the MAC/PHY logic of all ports (both internal PHY and external PHY if connected). This
reset is not expected to be used other than escape mechanism in case CORER did not resolve the
problem. This reset is initiated by the PFs by setting the GLOBR bit in the GLGEN_RTRIG register.
The EMP initiates this reset by setting a bit in an internal register. Global reset is also initiated
following a Force TCO command (if it is not disabled by the Force TCO Reset Disable bit in the NVM).
As seen in Figure 4-1, this reset is also set as part of EMPR reset (higher level reset) and this reset
also generates CORE reset.

Figure 4-2. Function Virtual Resets

Reset Source Cause List of the Reset Source

PF Reset
(PFR)

 FLR assertion via the PCIe configuration space.
 D0 to D3 transition or Clearing the BME.
 Device driver setting the PFSWR bit in the
 PFGEN_CTRL register.

 VM Reset
(VMR)

 Device driver setting the VMR bit in the
 VSIGEN_RTRIG register.

PF Reset
(PFR)

VF Reset
(VFR)

VFLR

 PF Level reset
(FLR)

 Operating system sets the FLR bit in the PF PCIe
 configuration.

 VF Level reset
(VFLR)

 Operating system sets the FLR bit in the VF PCIe
 configuration or clearing the VFE bit in the
 parent s PF PCIe configuration.

 VF Reset
(VFR)

 VFLR assertion or setting the VFSWR bit in the
 GLGEN_VFRTRIG registe.r

FLR

VM Reset
(VMR)

613875-009 341

Intel® Ethernet Controller E810 Datasheet
Initialization

• EMP Reset (EMPR) — EMPR initializes the resources and data path connected to the EMP including
its firmware reload (excluding internal-SR). EMPR is triggered internally by the EMP watchdog timer
expiration or by EMP setting an internal flag or due to Force TCO command or due to uncorrectable
ECC error in one of the EMP memory shells. As seen in Figure 4-1, this reset generates CORE reset
and global reset.

Function-Level Resets:

• Function Level Reset (FLR) — The E810 supports the standard FLR interface in the Device
Control register of the PCIe capability structure within the PCI configuration space of the PFs.
Setting the FLR bit initializes the PCI configuration of the PF (including the VFE flag in the SR-IOV
Control/ Status register that disables all the VFs of the PF) and initiates an internal PFR described
later in this section.

• PF Reset (PFR) — PFR initializes the resources and data path of the PF and its VFs with no impact
on other PFs, VFs, or the EMP subsystem. Any further master cycles of the PF are not initiated while
some packets that were already fetched completely might still be sent out. The PFR is generated by
one of the following four causes:

— D0 to D3hot transition, which is also known as ACPI reset.

— FLR

— PF software sets the PFSWR bit in the PFGEN_CTRL register.

— De-assertion of the Bus Master Enable flag in the PCI configuration space.

• VF Level Reset (VFLR) — The E810 supports the standard VFLR interface in the Device Control
register of the PCIe capability structure within the PCI configuration space of the VFs. Setting the
VFLR bit initializes the PCI configuration of the VF and initiates an interrupt to the PF that completes
the VFR reset described later in this section. Clearing the VFE flag in the PF configuration space also
impacts all its VFs the same as a VFLR.

• VF Reset (VFR) — VFR initializes the resources and data path of the VF with no impact on other
PFs, VFs, or the EMP subsystem. Any further master cycles of the VF are not initiated, while some
packets that were already fetched completely might still be sent out. The VFR is generated by one
of the following two causes:

— VFLR or clearing the VFE bit of the parent PF. Note that after the VFE bit is cleared, the PF driver
should follow the VFR flow for all the VFs of the PF, including those VFs that are not enabled.

— PF software sets the VFSWR bit in the VPGEN_VFRTRIG register of its VF.

• VM Reset (VMR) — There are 768 VSIs. VMR is a mechanism to reset a VSI. VMR initializes the
resources and data path of the VM with no impact on other PFs, VFs, VMs, or the EMP subsystem.
Any further master cycles of the VM are not initiated, while some packets that were already fetched
completely might still be sent out. The VMR is generated by the PF software setting the VMSWR bit
in the VSIGEN_RTRIG register.

Intel® Ethernet Controller E810 Datasheet
Initialization

342 613875-009

Table 4-1. Device Logic Affected by the Reset Sources

Reset Activation POR
STRST /
PCIR /
PERST

EMPR GLOBR CORER FPR /
FLR VMR VFR/

VFLR

Load the NVM to the Shadow RAM in the
hardware and clear the alternate structure +

Load the EMP and PE firmware from the NVM Both+ PE Both+ PE PE

Load device settings from NVM shadow and
alternate structure (see details listed in
Table 6-2 and the reset flow sections that
follow)

Shad Both Both Both Both

PF MAC Addresses (switch and WoL)1 + +1 + + + +

MAC and PHY interface + 1 + +

EMP subsystem including firmware reload + +

Sticky PCIe context + 2

PCIe HWInit parameters + PERST
only

PCIe RO registers + +

PCIe RW/RW1C registers + + +3 VF by
VFLR

Bus master disable4 + + + + + PF VM VF

All CSRs (Refer to Section 13, “Programming
Interface” for the reset source of each
register.)

Most of the PF and VF registers (PF registers
are named “PFxxx”, and VF registers named
“VFxxx” and “VPxxx”). Refer to Section 13,
“Programming Interface” for the reset source
of each register.

+ + + + + PF and
its VFs VF only

Cache contexts (Quad hash filters, PE
context) and FPMs settings (sector
descriptors and cache entries)

+ + + + + PF and
its VFs VM VF

Invalidate VF queue mapping tables
(VPLAN_QTABLE) + + + + + VFs of

the PF VF

Invalidate VSI context (including the switch,
VSILAN_QTABLE and all other VSI registers) + + + + + PF and

its VFs
By the
PF SW5

By the
PF SW5

Load the PFs MAC Address to the switch and
the WOL filters from the NVM (not all PFs
must have a WOL filter)

+ +6 + + + PF

Tx and Rx data path + Tx-Scheduler + + + + + PF and
its VFs VM VF

Tx and Rx packet buffers + + + + +

Tx and Rx queue disable + + + + + PF and
its VFs

By the
PF SW

VFs
(Done
by FW
for Rx

queues)

Admin queue disable (POR and EMP also clear
the queue context memories.) + + + + + PF and

its VFs VF

Disable interrupts + + + + + PF and
its VFs VF

Interrupt cause control registers + + + + + By the
PF SW

By the
PF SW

By the
PF SW

613875-009 343

Intel® Ethernet Controller E810 Datasheet
Initialization

RSS key and table + + + + + PF VF

Invalidate FD filters + + + + + PF

VM (FW
clears

all
filters
on VSI
clear)

VF

Invalidate all internal caches: transmit and
receive queue contexts; PE Quad Hash. + + + + +

Invalidate the FPM tables of the PF and its
VFs (function private memory). + + + + + PF and

its VFs VF

1. PF MAC Addresses (switch and WoL) are cleared by hardware at POR and loaded from NVM by the firmware at any of the highlighted
reset causes. Following PCIR, the switch MAC Addresses are loaded following the assertion of the PCIe reset or in-band reset, and
the WoL MAC Addresses are loaded only following the de-assertion of the PCIe reset.The MAC and PHY are cleared only if link is
not needed for APM and MNG is disabled. GLOBR if link is not needed for APM and MNG is disabled. If the WUC filter is inactive and
no port is needed by firmware/MNG (PRTPM_GC.EMP_LINK_ON is clear), GLOBR is maintained low by hardware during PCIR de-
assertion for power savings.

2. Sticky PCIe context is cleared on PERST if no AUX power as documented in Section 14.2.1).
3. For exception list of registers that are not cleared on PFR, see Section 14.2.1.
4. The E810 has several flags that control the Bus Master Enable (BME). BME flags on the PCI configuration space (for each PF and

VF) and the VMRD flag in the VSIGEN_RSTAT registers for each VM that is not a VF. The BME flags of all PFs are cleared by all reset
causes indicated by + symbol and a specific PF by FLR. The BME flags of all VFs are cleared by all reset causes indicated by +
symbol and a specific VF by VFLR. The VMRD flags of all VSIs are set by all reset causes indicated by + symbol and a specific VSI
by VMR. Note that as opposed to BMEs of the function that are cleared by the previous resets (disabling master accesses), the
VMRD flags are set (enabling bus master accesses when the BME of their parent PF is set as well).

5. VSIs and its related switch context are cleared by admin command(s) initiated by the software.
6. Note that as opposed to any logic in the E810 that is initialized at the leading edge of PERST#, the WOL filters are initialized at the

de-assertion of PERST# (entering the D0u state).

Table 4-2. NVM Section Loaded by Reset Source Covered by GLNVM_ULD Register

NVM Section POR PERST PCIR EMPR GLOBR CORER

POR Registers Auto-Load +

PCIe Analog Configuration +

PCIR Registers Auto-Load + + +

PCIe Transaction Layer (TL) Shared + + +

CORER Registers Auto-Load + + + + + +

GLOBR Registers Auto-Load + + +

PHY Analog Configuration +

EMPR Registers Auto-Load + +

Table 4-1. Device Logic Affected by the Reset Sources [continued]

Reset Activation POR
STRST /
PCIR /
PERST

EMPR GLOBR CORER FPR /
FLR VMR VFR/

VFLR

Intel® Ethernet Controller E810 Datasheet
Initialization

344 613875-009

4.1.2 Hardware Reset Flows

This section describes the reset flows in the E810 and software interaction.

4.1.2.1 POR Flow

Power-up sequence described in this document starts at power-on reset towards the E810.

1. Power-on reset is de-asserted. Crystal clocks are stable and toggling, and memory repair process
has completed.

2. IPs perform fuse polling. At that stage, the SPI controller is ready to accept messages from other
IPs.

3. The E810 derives an ECDSA384 key-pair from the Unique Device Secret (UDS). The private key is
stored in secure memory in the crypto accelerator block, while the public key is exposed to the host
in device registers.

4. The E810 starts its boot process, checks the validity of the NVM, and loads the initial firmware code
(mini-loader). The mini-loader code is authenticated by the E810.

Note: PCI reset de-assertion occurs at least 100 ms after power-up flow is started. Since flow
duration is less than 100 ms, it is guaranteed that firmware is ready for PCI reset
de-assertion at the end of this stage.

a. E810 firmware loads a small subset of configurations from the NVM into Shadow RAM (timing
critical configurations or ones that might be later modified by software).

5. First load process. E810 firmware loads:

a. HIP’s PLL configuration to the HIP modules. HIP’s auto-loaded data is pushed over SB-IOSF by
the E810.

b. CSR protected list.

c. POR section from Shadow RAM.

6. E810 firmware loads and authenticates the full firmware code content.

7. Second load process:

a. E810 firmware loads the full HIP configuration.

Figure 4-3 shows the stages through the power-up sequence. The numbers relate to the steps
previously described.

Figure 4-3. External Power-On Flow

Reset flow Fuse

Power on Reset#

Clock sources

1

2

POR
section

Nvm load -
Fw Mini loader
+ shadow ram

Nvm load-
HIP PLL section

Nvm load -
Full fw

Nvm load -
Full HIP

3 4a 5 64c

613875-009 345

Intel® Ethernet Controller E810 Datasheet
Initialization

Table 4-3 lists the timing of each of the steps.

4.1.2.2 Primary Reset and In-Band PCI Reset Flow

The internal reset flow is shown in Figure 4-4 and described in this section. In case of multiple hosts,
these resets are per host.

Note: Core reset might be extended if none of the functions are enabled for WoL or Path-through.

Hardware response:

1. Avoid any further master accesses on the PCIe bus and discard any completions for the host.

2. Reset PCIe registers and core registers as listed in Table 4-1.

3. The following flags are cleared by the E810 when:

• The *_DONE bits in GLNVM_ULD register are cleared.

4. The E810 loads the NVM section into hardware. After loading, the EMP might start responding to the
Get Version Admin command, which is blocked until this stage.

• When checking for hardware configuration to complete, software device driver should either
wait for a response to Get Version Admin command, or poll on the *_DONE bits.

Following these steps, hardware is ready to accept operating system configuration cycles.

Note: EMP packets might be lost as well in a window frame of tens of milliseconds.

Table 4-3. External Power-Up Sequence

Step Duration (ms)1

1. The time it takes to complete the respective step (usually defines the maximum duration).

Completion Time
from Start (ms)2

2. The time the respective step ends, counting from beginning of the power-up sequence. It usually defines the latest time this step
might end.

1 Power-on reset. 0 40

2 Read fuse and straps information. 4 44

3 Load mini-loader from the NVM3 + Load Shadow RAM from the NVM.

3. All NVM loads assumes an NVM clock speed of 50 MHz and a quad SPI interface + authentication process done by firmware.

20 64

4 Initial configuration of hardware blocks (auto-load).

Figure 4-4. PCI Reset Flow

PERST# or in-band reset

Reset Impact HW Clean

Internal Reset

Auto-Load from NVM Shadow
and Alternate Structure

EEP_DONE

Intel® Ethernet Controller E810 Datasheet
Initialization

346 613875-009

4.1.2.3 Core, Global, and EMP Reset Flows

The global resets can be initiated by the PF software or the EMP firmware. It is expected to be used as
a mechanism to resolve potential hardware locks or synchronization lose, bringing the E810 to a known
functional state. These global resets impact all PFs (and their VFs) as well as the EMP subsystem (EMP
reset only). Therefore, graceful flow is enabled by hardware as shown in Figure 4-5 and described in
the following sections. The software initiates the global resets by the GLGEN_RTRIG register. The EMP
can access the same register or use an internal register.

As seen in the “Hierarchical Reset Tree” diagram (Figure 4-1):

• EMPR reset also triggers a global reset and a core reset.

• Global reset can be self asserted. When asserted, it also triggers a core reset.

• Core reset can be self-asserted.

4.1.2.3.1 Software and Firmware Interface

• GLOBR/CORER — Setting the GLOBR flag or CORER flag in the GLGEN_RTRIG register triggers a
graceful global/core reset, respectively.

• EMPFWR — EMP firmware watchdog expiration or EMP setting internal EMP reset flag, triggers a
graceful EMP reset (EMPR).

• DEVSTATE — Global device state exposed to all PFs in the GLGEN_RSTAT registers. The DEVSTATE
can be at one of the following states: device active, reset requested, or reset in progress.

• RESET_TYPE — The RESET_TYPE reflects the last reset cause initiated to the E810. It changes its
state once any of the following reset sources is triggered. The RESET_TYPE can be at one of the
following states: POR, CORER, GLOBR, or EMPR.

• RST_CNT — The GLGEN_RSTAT reflects the following counters: CORERCNT, GLOBRCNT, and
EMPRCNT. These fields are each 2-bit counters. They count the matched reset completion events
since POR.

Figure 4-5. Global Reset Flow

DEVSTATE =
Device Active

DEVSTATE =
Reset Requested /

Interrupt all PFs
and the EMP

DEVSTATE =
Reset In Progress /

EMP Trigger the
Reset

Reset Request by
the PF or EMP

HW clean
Completed

TIME_TO_RST
expired

613875-009 347

Intel® Ethernet Controller E810 Datasheet
Initialization

4.1.2.3.2 CORER Flow

The PF software or EMP firmware initiates a graceful core reset by setting the CORER flag in the
GLGEN_RTRIG register and polling the E810 state in the GLGEN_RSTAT register.

Note: If a CORER occurs while internal Shadow RAM is inconsistent with Flash Shadow RAM content,
an EMPR is triggered as part of the CORER flow.

Hardware/EMP firmware response:

1. Changes to the GLGEN_RSTAT register are as follows:

a. Set DEVSTATE to reset requested.

b. Set RESET_TYPE to CORER indicating the requested reset.

c. Initiate a GRST interrupt to all PFs and EMP that the reset is about to be fired by hardware.

2. As a response to interrupt, EMP reads TIME_TO_RST by the GLGEN_RSTCTL.GRSTDEL value and
start counting down. When timer expires, EMP triggers the reset via the GLGEN_IMRTRIG register.
The *_DONE bits in GLNVM_ULD are cleared by the E810 when reset is asserted.

3. The EMP firmware performs a re-authentication of the currently active NVM bank. This can take
place in parallel to the countdown to reset.

4. Clear the entire transmit and receive data path and core registers as listed in Table 4-1.

5. Avoid any further master accesses on the PCIe bus and discard any completions for the entire
device, and abort any transmission in progress (including packets sent by the EMP).

6. Reset internal device logic excluding EMP cluster, PCI interface, and MAC/PHY cluster as listed in
Table 4-1.

7. Once the reset flow is completed, update the GLGEN_RSTAT register as follows:

a. Set DEVSTATE to device active.

b. Increment the CORERCNT by one.

8. The E810 loads the NVM section into hardware. After loading, the EMP might start responding to the
Get Version Admin command, which is blocked until this stage.

Following the GRST interrupt, all PFs poll the E810 state in the GLGEN_RSTAT register.

1. Keep polling the register as long as DEVSTATE is not equal to device active. The GLGEN_RSTAT
register also indicates the number of the initiated global resets via the GLGEN_RTRIG register
(CORER, GLOBR, EMPR). These counters might be needed in case a function initiated consecutive
global reset before all other functions had the chance to realized that the previous reset was
completed. It is a good practice to avoid too frequent global resets to avoid such cases.

2. Check the RESET_TYPE that indicates the reset that was initiated and follow the required
initialization flow.

Note: Also, the function that initiated the reset should check the RESET_TYPE, since it might
reflect a stronger reset initiated by another function.

3. Check that the hardware completed to auto-load its settings from the NVM shadow and the
alternate structure by polling the *_DONE flags in GLNVM_ULD register.

Note: When checking for the EMP configuration to be done, software should either wait for a
response to a Get Version Admin command or poll on the *_DONE bits.

4. The PFs proceeds with their software initialization flow.

Intel® Ethernet Controller E810 Datasheet
Initialization

348 613875-009

4.1.2.3.3 GLOBR Flow

Global reset is initiated by the PFs or the EMP by setting the GLOBR flag in the GLGEN_RTRIG.

As seen in the “Hierarchical Reset Tree” diagram (Figure 4-1),global reset also triggers core reset.

The GLOBR flow is identical to the CORER flow with the following changes:

• GLOBR also initializes the MAC/PHY units.

• GLGEN_RSTAT.RESET_TYPE is set by the hardware to GLOBR (rather than CORER).

• Increment the GLOBRCNT by one (rather than CORERCNT).

• Loading the E810 setting from the NVM is listed by the GLOBR column in Table 4-2.

Note: If a GLOBR occurs while internal Shadow RAM is inconsistent with Flash Shadow RAM content,
an EMPR is triggered as part of the CORER flow.

4.1.2.3.4 EMPR Flow

EMP reset is expected to be used by the EMP as a mechanism to resolve potential hardware locks or
potential loss of synchronization between the firmware and hardware that are not expected to be
resolved by CORER nor by GLOBR. The EMPR impacts also all PFs and their VFs. Therefore, the following
graceful flow is recommended.

As seen in the “Hierarchical Reset Tree” diagram (Figure 4-1) EMPR reset also triggers and global reset
and a core reset.

The EMP flow is identical to the CORER flow with the following changes:

• During normal operation, the EMPR can be initiated only by the EMP by setting an internal EMP
reset flag.

• EMPR initializes also the MAC/PHY units as well as the EMP cluster.

• GLGEN_RSTAT.RESET_TYPE is set by hardware to EMPR (rather than CORER).

• Increment the EMPRCNT by one (rather than CORERCNT).

• Loading the E810 setting from the NVM is listed by the EMPR column in Table 4-2.

4.1.3 Function-Level Reset Flows

VF/VM/PF reset requests (VPGEN_VFRTRIG for VF reset, VSIGEN_RTRIG for VM reset, and
PFGEN_CTRL.PFSWR for PF reset) are ignored in the following cases:

• CORER reset is asserted (also during pre-indication of CORER)

• Between CORER de-assertion and CORER NVM load completion (fleep_al_corer_done set)

Note: During a function-level reset, spurious malicious events might occur due to anti-spoof.

4.1.3.1 PFR Flow

PFR resets a specific PF. For SR-IOV, it also resets the VFs of this PF. The reset flow is shown in
Figure 4-6. It is initiated by the PF driver (setting the PFSWR bit in the PFGEN_CTRL register) or
operating system (setting the FLR flag in the Device Control register) or D0 to D3hot transition.

613875-009 349

Intel® Ethernet Controller E810 Datasheet
Initialization

The PF hardware response to PFR is listed in Table 4-1.

The E810 hardware initiates two orthogonal flows as a response to FLR:

PCIe clean-up flow:

1. Emulate internal VFR to all its VFs (the hardware response to VFR is described in Section 4.1.3.3.3
with the exception that the VF’s CSRs are not gated on read).

2. Avoid any further master accesses on the PCIe bus and discard any completions for the PF and its
VFs.

a. Once all pending requests of the PF are completed, the Transaction Pending bit in the Device
Status register in the PCIe configuration space is cleared.

b. Once all pending requests of each VF of the PF are completed, the Transaction Pending bit in the
Device Status register the VF PCIe configuration space is cleared (per each VF).

Data path clean up flow:

1. Upon event, EMP does the next “pre hardware drain” clean ups:

a. Cleans up switch population of the PF.

b. Cleans up ACL population of the PF (as described in Section 7.9.2.10).

c. Cleans up RSS population of the PF (as described in Section 7.10.11.2).

d. Cleans and disables FD filters of the PF (as described in Section 7.10.12).

e. Disables mailbox queues and sideband queues of the PF and its VFs in SR-IOV mode, or its VMs
when working in PASID mode (as described in Section 9.5.3).

f. Clears the enable bit of doorbell queues of the PF (doorbell queue context layout is described in
Section 10.5.5.6).

g. Halts all the initialized transmit queues using the following flow (firmware must not halt an
uninitialized queue):

1. Set count down register GL_TCVMLR_QCNTR to the number of disabled queues

2. Per each halted Tx-Queue, EMP sends queue halt command using GL_TCVMLR_QCTL
register. Queue IDs are described in the global space.

3. Tracks the completion of the multiple Q halt commands using GL_TCVMLR_QCNTR register.
The entire Q halt operation is completed when this register is zeroed. Firmware can load
value to this register only when it is equal to zero. Must not initiate any Q halt flow before
the previous one is completed.

Figure 4-6. PFR Triggers

PFSWR

Transaction Pending

Reset Functionality HW Clean SW Clean

1

2 3

4

Block New Master Cycles

FLR D0 to D3hot

PF ResetInit PCIe Config
Auto set PFSWR

PF driver set
the PFSWR

Intel® Ethernet Controller E810 Datasheet
Initialization

350 613875-009

2. Via the GL_XLR_MARKER_TRIG* registers, EMP indicates to hardware to send a drain marker that
drains the Tx data path, Rx data path, and PE data path orthogonally.

• The specific GL_XLR_MARKER_TRIG* registers are:

— GL_XLR_MARKER_TRIG_VMLR

— GL_XLR_MARKER_TRIG_TCVMLR

— GL_XLR_MARKER_TRIG_RCU_PRS

— GL_XLR_MARKER_TRIG_PE (should be written only if PW is enabled).

• Draining the Tx and Rx data paths might take some time when the TC is paused by flow control.
Hardware includes a timeout mechanism that prevents indefinite latency, as described in
Section 8.2.4.4.1.

• As the second part of the data path clean up flow (cache clean-up phase after main data path is
drained), PE firmware, cleans and disables QH filters of the PF (as described in
Section 7.10.12).

PFGEN_PFRSTAT.PFRD indication is cleared when GL_XLR_MARKER_TRIG_VMLR is written.

3. When hardware drain flow ends, hardware sets the PFGEN_PFRSTAT.PFRD and issues an interrupt
to EMP.

4. Upon interrupt (or firmware polling of PFRD), EMP sees that PFGEN_PFRSTAT.PFRD is set, then does
the following “post hardware drain” clean-ups

a. Firmware releases all resource of the PF and its VFs (for example, nodes in PSM and in PE
scheduler, function profile, switch population).

5. Firmware resets (zeros all fields) the QINT_TXQCTL, QINT_RXQCTL, and GLINT_CEQCTL registers
for the queues of the PF.

a. Disable the receive queues of the PF using the fast queue disable flow per each queue.

b. EMP polls that Transactions Pending flag in the PCI configuration space of the PF and of all its
VFs until they are cleared.

6. After all the previous steps are complete, firmware clears the PFSWR bit in the PFGEN_CTRL
register. As a response to PFSWR clearing, hardware releases bus master cycles for the PF and its
VFs.

• Before clearing the PFSWR bit in the PFGEN_CTRL, the firmware must clear VFSWR bit in the
respective VPGEN_VFRTRIG register for all the PF’s VF, and the VMSWR bit in the
VSIGEN_VFRTRIG register for all the PF’s VSIs.

• Firmware should clear the VFLRS bit of the corresponding VFs in the GLGEN_VFLRSTAT register.

The PF software polls the PFSWR bit until it is cleared (indicating that hardware completed its reset
flow). Additionally, software should also poll the Transactions Pending flag in the PCI configuration
space of the PF (indicating that all outstanding requests of the PF were completed).

• Once the Transactions Pending flag is cleared, the PF software can release the pinned memory
structures.

• Once the PFSWR bit is cleared as well, the PF software can proceeds to the following steps.

Note: If the PFSWR bit is not cleared within ~100 ms, it can be assumed that the shared data
path inhibits the PFR completion. In such a case, the software can initiate the CORER to
overcome any possible lock.

613875-009 351

Intel® Ethernet Controller E810 Datasheet
Initialization

As part of the initialization flow, the PF driver checks the pending transactions of its VFs (by setting the
VF index and the offset of the VF Device Status register in the PF_PCI_CIAA register, and then polling
the pending flag in the PF_PCI_CIAD register). As part of the software/hardware initialization flow, the
PF software should check for potential race condition with another PF or EMP initiating a global reset
(CORER, GLOBR. or EMPR):

1. Query the reset counters (CORERCNT, GLOBRCNT, and EMPRCNT) in the GLGEN_RSTAT register.

2. Interrupt enable flow.

3. Read the GLGEN_RSTAT register for the device state (DEVSTATE) and the reset counters
(CORERCNT, GLOBRCNT, and EMPRCNT).

• If DEVSTATE = “Reset requested” or “Reset in progress”, go to the global reset flow.

• If DEVSTATE = “Device active”, if the updated values of the global reset counters equal to the
value sampled at the beginning of this procedure, then “all good”. Software can continue with
the rest of the software/hardware initialization flow.

• Else, go to the global reset flow.

The PF should also read the PFINT_OICR register in case there were “other cause” interrupts during
reset.

Figure 4-7. PFR Flow

PF HW FW

Set PFSWR

HW clean up trigger
Clearing PFRD

HW drain -
Data path
clean up

PCIE clean up

Interrupt
Setting PFRD

FW post HW drain cleanu
Clr PFSWR

OS

Polling
Transaction

pending == 0

Release
Memory
buffers

interrupt

FW pre HW drain
clean

Polling
PFSWR == 0

Polling
Transaction

pending == 0

Intel® Ethernet Controller E810 Datasheet
Initialization

352 613875-009

4.1.3.2 FLR Flow

FLR resets a specific PF. In the case of SR-IOV, it also resets the VFs of this PF.

1. The following steps are optional:

a. The operating system is expected to clear the BME bit in the Command register in the PCI
configuration register of the PF.

b. For SR-IOV, the operating system is expected to also clear the BME bit in the VF Command
register in the PCI configuration register of all VFs of this PF.

c. As a response, hardware avoids any new master cycles of the PF and its VFs (including MSI-X
initiation).

d. The operating system should poll the Transaction Pending bit in the Device Status register of the
PF until it is cleared.

e. For SR-IOV, the operating system should poll also the Transaction Pending bit in the VF Device
Status register of all VFs of the PF until they are cleared.

Note: All the previous steps are expected and recommended, but not enforced by the PCI
specification.

2. The operating system sets the FLR bit in the Device Control register of the PF. The operating system
is required by PCIe specification to wait 100 ms before it can assume that the FLR sequence is
completed by hardware.

3. The PF hardware response as follows:

a. Initialize the PCIe configuration space of the PF including clearing the BME bit of the PF and the
VFE bit.

• By clearing the BME bit, hardware avoids any further master accesses on the PCIe bus and
discards any completions for the PF.

• By clearing the VFE bit, all VFs of the PF avoid any further master accesses on the PCIe bus,
discards any completions targeted for these VFs, and become hidden on the PCIe bus.

• As part of the PCIe configuration initialization, the completion timeout is set to its hardware
default.

• Once all pending requests of the PF and its VFs are completed or completion timeout
expires (whichever comes first), the Transaction Pending bits in the PCIe configuration
space are cleared.

b. Auto-set the PFSWR bit in the PFGEN_CTRL register (triggering a PFR described in the section
that follows).

Once the Transaction Pending bit in the PCIe configuration space of each VF is cleared, the operating
system can release all VF memory structures and unload the VF driver (if required). Once the
Transaction Pending bit in the PCIe configuration space of the PF is cleared, the operating system can
release all PF memory structures and unload the PF driver (if required).

613875-009 353

Intel® Ethernet Controller E810 Datasheet
Initialization

Figure 4-8. FLR Flow

PF HW FW

HW clean up trigger
Clearing PFRD

HW drain -
Data path
clean up

PCIE clean up

Interrupt
Setting PFRD

FW post HW drain cleanu
Clr PFSWR

OS

Release
Memory
buffers

interrupt

FW pre HW drain
cleanup

Polling
PFSWR == 0

Polling
Transaction

pending == 0

Set PFSWR

FLR setting

Polling
Transaction

pending == 0

Intel® Ethernet Controller E810 Datasheet
Initialization

354 613875-009

4.1.3.3 VFR/VFLR Flows

The VF reset flow is shown in Figure 4-9 and detailed in the sections that follow.

4.1.3.3.1 VF Reset Request by the VF Driver

The VF driver requests the VF reset from its parent PF as follows, and is shown in Figure 4-9. Also see
Section 4.1.3.3.3, which describes the PF response to the VF reset request.

The VFR_STATE in the VFGEN_RSTAT register in this step is expected to be VFR completed.

Note: The VF software gets a control over its VF only after any prior VF reset flow is completed (step
1 in Figure 4-9).

1. The VF driver initiates a request to its parent PF to initiate a VF reset. The mechanism for sending
this request is outside the scope of this document. It could be done using a VF-to-PF or any other
software-based sideband channel (Step 2 in Figure 4-9).

2. The VF polls the VFR_STATE in the VFGEN_RSTAT register until it is set by the PF to VFR completed
(Step 9 in Figure 4-9, and explained in Section 4.1.3.3.3).

3. The VF software proceeds activating the function.

At some point prior to requesting the PF for reset once again, VF must set VFR_STATE value to “reset in
progress”. When called, the PF software is called to initiate the VFR by the VF software. It sets the
VFSWR bit in the VPGEN_VFRTRIG register of the VF (Step 3 in Figure 4-9) to initiate VFR (described in
Section 4.1.3.3.3).

Figure 4-9. VF Reset (VFR) Flow

VFSWRST

VFRD

Transaction Pending

Reset Functionality SW Clean SW Clean

3

4 6

7

8

9

VFR_STATE VFR completed VFR in progress VFR completed

1

VFLR or VF Reset request 2

Block New Master Cycles

VF CSRs on Read DEADBEEFNominal Values Nominal Values

VFLR

HW Clean

5

613875-009 355

Intel® Ethernet Controller E810 Datasheet
Initialization

4.1.3.3.2 VF Reset Request by the Operating System (VFLR)

The VF reset initiation by the operating system is described as follows and shown in Figure 4-9.

1. The following steps are optional:

a. Clear the BME bit in the VF Command register.

b. As a response, hardware avoids any new master cycles of the VF (including MSI-X initiation). Old
completions are trashed by hardware.

c. The operating system polls the Transaction Pending bit in the VF Device Status register until it
is cleared.

2. The operating system sets the FLR bit in the VF Device Control register (Step 2 in Figure 4-9).

3. The operating system is required by PCIe specification to wait 100 ms before it can assume that the
VFLR sequence is completed by hardware.

4. If required, the operating system brings up a new VF (or the same VF). The VF software driver
should poll the VFR_STATE in the VFGEN_RSTAT register until it equals to VFR completed (set by
the PF software).

Figure 4-10. VFR Requested by VF Driver Flow

VF PF HW FW

VFR request
(mailbox) Set VFSWR

SW pre HW
drain cleanup

Lan transmit Q
disable AQ

HW drain -
Data path
clean up

PCIE clean up
VFR_STATE == in proc

Interrupt
Setting VFRD

SW post HW drain cleanup
Clr VFSWR

VFR_STATE = complete

Polling
VFR_STATE == complete

OS

Release
Memory
buffers

Polling
Transaction

pending == 0

HW clean up trigger
Clearing VFRD

Polling
Transaction

pending == 0

Interrupt
(VFLRS)

Intel® Ethernet Controller E810 Datasheet
Initialization

356 613875-009

5. The VF software proceeds activating the function.

Hardware responses to VFLR are as follows:

1. Initialize the PCIe configuration space of the VF including the Bus Master Enable flag.

2. Set internally the VFSWR bit in the VPGEN_VFRTRIG register of the VF, which initiates a VFR (Step
3 in Figure 4-9, and explained in Section 4.1.3.3.3).

4.1.3.3.3 VF Reset Flow by the PF Software Driver

Figure 4-11. VFR Requested by OS

VF PF HW FW

Interrupt(VFLRS)

SW pre HW
drain cleanup

Lan transmit Q
disable AQ

HW clean up trigger
Clearing VFRD

HW drain -
Data path
clean up

PCIE clean up
VFR_STATE == in proc

Interrupt
Setting VFRD

SW post HW drain cleanup
Clr VFSWR

VFR_STATE = complete

Polling
VFR_STATE == complete

OS

Release
Memory
buffers

Polling
Transaction

pending == 0

Set VFSWR

VFLR setting

Polling
Transaction

pending == 0

613875-009 357

Intel® Ethernet Controller E810 Datasheet
Initialization

1. As a response to setting the VFSWR, hardware does the following:

a. Reflects the VFSWR bit through VFLRS flags in the GLGEN_VFLRSTAT registers.

b. Only in case of VFLR (OS initiated reset) an interrupt is issued to the parent PF. The PF response
to the VFLR interrupt is described below.

c. The hardware response to setting the VFSWR bit is listed in Table 4-1.

Note: As part of the VF registers, the VFGEN_RSTAT register is cleared as well, reflecting
VFR in progress state. Furthermore, hardware also gates read accesses to the CSRs
of the VF returning DEADBEEF or DEADBEAF values and also gates any master
accesses.

d. The Transaction Pending bit is cleared when there are no more pending completions. Once the
Transaction Pending bit in the VF Device Status register is cleared, the operating system can
release all VF memory structures and unload the VF driver (if required).

2. The PF software responds to the interrupt and queries the VFLRS flags in the GLGEN_VFLRSTAT
registers to identify to which of its VFs a reset was issued (of the VFs that it owns). When set, PF
software executes “pre hardware drain” clean-ups (Step 4 in Figure 4-9):

a. PF software cleans up switch population of the VF.

b. PF software cleans up ACL population of the VF (as described in Section 7.9.2.10).

c. PF software cleans up RSS population of the VF (as described in Section 7.10.11.2).

d. PF software cleans and disables FD and QH filters of the VF (as described in Section 7.10.12.1
and Section 7.10.12.2, respectively).

e. PF software clears the enable bit of doorbell queues that are associated with the doorbell queues
of the reset VF. Tx-Queues and Admin queues are automatically disabled by hardware

f. When working in SR-IOV mode, PF software disables mailbox queues and sideband queues of the
reset VF (as described in Section 9.5.3).

3. The PF software, via VM/VF Reset admin command, indicates firmware to initiate VF hardware drain
(data path clean up) flow, it passes to firmware the Tx-Queue IDs of the VF (VM/VF Reset Admin
queue command is described in Section 9.5.13.8). Queue IDs are described in the PF space. PF
software must limit the amount of reset flows concurrently processed by hardware to maximum 4
for all its VFs and VMs (from GL_XLR_MARKER_TRIG* setting to data path clean in indication
setting by hardware)

a. EMP initiates and monitors the process of halting the Tx-Queues (as described in
Section 9.5.13.8) via GL_XLR_MARKER_TRIG* registers, EMP indicates hardware to send a drain
marker that drains the Tx data path, Rx data path, PE data path and logic orthogonally.

• The specific GL_XLR_MARKER_TRIG* registers are:

— GL_XLR_MARKER_TRIG_VMLR

— GL_XLR_MARKER_TRIG_TCVMLR

— GL_XLR_MARKER_TRIG_RCU_PRS

— GL_XLR_MARKER_TRIG_PE (should be written only if PW is enabled)

b. Draining the Tx and Rx data paths might take some time when the TC is paused by flow control.
Hardware includes a timeout mechanism that prevents indefinite latency as described in
Section 8.2.4.4.1.

c. VPGEN_VFRSTAT.VFRD indication is cleared when GL_XLR_MARKER_TRIG_VMLR is written.

Intel® Ethernet Controller E810 Datasheet
Initialization

358 613875-009

4. When hardware drain flow ends (reset flow is completed - Step 5 in Figure 4-9), hardware sets
VPGEN_VFRSTAT.VFRD and issues an interrupt to parent PF.

5. Once the VFRD flag in the VPGEN_VFRSTAT register is found active, the PF software writes 1b to
clear to the matched FVLRS bit in the GLGEN_VFLRSTAT registers for the VF under reset.

Note: The GLGEN_VFLRSTAT registers are composed of 256 bits for the 256 VFs. All PFs have
access to the bits of all VFs. However, it is expected that the PFs writes 1b to clear to
those bits that match its VFs and only to those bits.)

6. After that PF software proceeds with the VF reset flow (Step 6 in Figure 4-9) and executes the “post
hardware drain” clean-ups:

a. Disable the receive queues of the VF following the fast queue disable flow per each queue as
described in Section 10.4.3.1.2.

Note: The hardware auto-disables the transmit queues of the VF.

b. PF releases all resource of the VF (for example, nodes in PSM and in PE scheduler, function
profile, switch population, and queue allocation as described in Section 10.2.1 and
Section 10.2.2).

c. PF resets (zeros all fields) the QINT_TXQCTL, QINT_RXQCTL, and GLINT_CEQCTL registers for
the queues of the VF.

d. Resets the VPINT_ALLOC, VPINT_ALLOC_PCI, and GLINT_VECT2FUNC registers of the VF
(registers that define the vectors assignment to the VF).

7. The PF driver checks the pending transactions of its VF (by setting the VF index and the offset of the
VF Device Status register in the PF_PCI_CIAA register and then polling the pending flag in the
PF_PCI_CIAD register) (Step 7 in Figure 4-9).

8. The following steps in this bullet item are part of re-enabling the VF. It can be executed at this
phase before notifying the VF that the reset flow is completed or at a later phase (depending on
software implementation):

a. Add the VSIs for the VF (including its Transmit and Receive queues and its scheduler).

b. Add the MAC/VLAN filters for the VSI.

c. Enable the VFLAN_QTABLE by setting the VPLAN_MAPENA and then program the VFLAN_QTABLE
to the queues of the VF.

9. The PF software completes the flow by notifying the VF that the reset flow is completed. It sets the
VFR_STATE field in the VFGEN_RSTAT register to VFR completed and clears the VFSWR bit in the
VPGEN_VFRTRIG register (Step 8 in Figure 4-9).

10. Hardware response to cleared VFSWR flag:

a. The VF CSRs are unlocked. As a result, the VF software can see the updated VFR_STATE in the
VFGEN_RSTAT register that equals to VFR completed (Step 9 in Figure 4-9).

b. Master cycles are not blocked anymore by the reset logic.

c. The hardware is ready to be used by the VF.

613875-009 359

Intel® Ethernet Controller E810 Datasheet
Initialization

4.1.3.4 VMR Flow

1. PF sets the VMSWR bit in the VSIGEN_RTRIG register of the VM.

2. PF initiates “pre hardware drain” clean-up flow.

a. PF software cleans up switch population of the VM.

b. PF software cleans up ACL population of the VM (as described in Section 7.9.2.10).

c. PF software cleans up RSS population of the VM (as described in Section 7.10.11.2).

d. PF software removes the QH and FD filters of the VM.

e. PF software sends dummy doorbell for all the doorbell queues of the VM and waits for all dummy
doorbells (generated at “pre hardware drain” flow) to be pulled from doorbell queues. Dummy
doorbell is a regular doorbell description that has its RS and Dummy fields set to 1 (doorbell
descriptor format is described at Section 10.5.5.6).

f. When working in PASID mode, PF software disables mailbox queues of the reset VM.

g. PF software removes the interrupt causes of the VM from the active linked list (as described in
Section 9.1.3.1.2).

3. As a response to VMSWR bit setting, hardware does the following:

a. The hardware response to setting the VFSWR bit is listed in Table 4-1.

Note: As part of the VM registers, the VSIGEN_RSTAT register is cleared.

b. The Transaction Pending bit is cleared when there are no more pending completions. Once the
Transaction Pending bit in the VM Device Status register is cleared, the operating system can
release all VM memory structures.

4. The PF software, via VM/VF Reset admin command, indicates firmware to initiate VM reset flow. It
passes to firmware the VM Tx-Queues identifiers (VM/VF Reset Admin Queue command is described
in Section 9.5.13.8). Queue IDs are relative to the PF space.

5. PF software must limit the amount of reset flows concurrently processed by hardware to maximum
4 for all its VFs and VMs (from GL_XLR_MARKER_TRIG* setting to data path clean in indication
setting by hardware).

a. EMP initiates and monitor the process of halting the Tx-Queues (as described in
Section 9.5.13.8) via GL_XLR_MARKER_TRIG* registers, EMP indicates hardware to send a drain
marker that drains the Tx data path, Rx data path, and PE data path and logic orthogonally.

• The specific GL_XLR_MARKER_TRIG* registers are:

— GL_XLR_MARKER_TRIG_VMLR

— GL_XLR_MARKER_TRIG_TCVMLR

— GL_XLR_MARKER_TRIG_RCU_PRS

— GL_XLR_MARKER_TRIG_PE (should be written only if PW is enabled)

• Draining the Tx and Rx data paths might take some time when the TC is paused by flow
control. Hardware includes a timeout mechanism that prevents indefinite latency as
described in Section 8.2.4.4.1.

• VSIGEN_VFRSTAT.VMRD indication is cleared when GL_XLR_MARKER_TRIG_VMLR is
written.

b. When hardware drain flow ends (reset flow is completed - Step 5 in Figure 4-9), Figure 4-9 sets
the VPGEN_VFRSTAT.VFRD and issues an interrupt to parent PF.

Intel® Ethernet Controller E810 Datasheet
Initialization

360 613875-009

6. After that, PF software proceeds with the VF reset flow (step 6 in Figure 4-9) and executes the
“post Figure 4-9 drain” clean-ups.

a. Disables the receive queues of the VF following the fast queue disable flow per each queue.

b. Sends a CQ drain marker for all the completion queue of the VMs. it waits for all completions to
be pulled from completion queues. CQ drain marker is generated by writing GLCOMM_CQ_CTL
with the CMD field set to VM_reset_marker value.

c. PF releases all resource of the VM (For example, nodes in PSM and in PE scheduler, function
profile, switch population). The PF driver checks the pending transactions of its VM and waits
until it is cleared.

d. PF resets (zeros all fields) in the QINT_TXQCTL, QINT_RXQCTL, and GLINT_CEQCTL registers for
the queues of the VM.

7. The PF driver checks the pending transactions of its VM and waits until it is cleared.

8. The PF software clears the VMSWR bit in the VSIGEN_VFRTRIG register.

9. Hardware response to cleared VMSWR flag:

a. Master cycles are not blocked anymore by the reset logic.

b. The hardware is ready to be used by the VM.

10. After PF driver polls the VMR done indication in the VSIGEN_RSTAT register, it:

a. Polls the Transactions Pending flag of the VM, verifying that there are no transaction pending of
the VM as follows:

• Set the VSI index in the PFPCI_VMINDEX and then poll the PFPCI_VMPEND register.

b. Does not clear the interrupts settings that might be shared with the PF (or other VMs).

c. Does not check pending transactions of the VM that does not exist.

d. Completes the flow by clearing the VMSWR bit in the VSIGEN_RTRIG register.

613875-009 361

Intel® Ethernet Controller E810 Datasheet
Initialization

Notes: Overall number of reset flows concurrently processed by hardware is limited to 40 (from
GL_XLR_MARKER_TRIG* setting to data path clean in indication setting by hardware):

• Max 32 VF or VM reset flows - PF software limits the amount of reset flows concurrently
processed by hardware to maximum 4 for all its VFs and VMs.

• Max 8 PF reset flows for 8 PFs.

Figure 4-12. VMR Flow

PF HW FW

Set VMSWR

SW pre HW
drain clean ups

Lan transmit Q
disable AQ

HW clean up trigger
Clearing VMRD

HW drain -
Data path
clean up

PCIE clean up

Interrupt
Setting VMRDSW post HW drain clean ups

Clr VMSWR

Polling
Transaction

pending == 0

Intel® Ethernet Controller E810 Datasheet
Initialization

362 613875-009

4.2 Power-On and Reset

This section describes the flow of the E810 power-up. The initialization sequence for the E810 is broken
down into phases: power on, BIOS initialization, and software device driver load.

• Power on (Section 4.1.2.1) is the first phase that includes all steps required to support pre-boot
power management and manageability, satisfy the PCIe requirements for exiting cold reset, and
prepare for the BIOS initialization phase. This stage also covers firmware initialization.

• BIOS initialization (Section 4.3) begins when Option ROM code is loaded by BIOS to provide boot
services for PXE. Other Option ROM capabilities include configuration images for certain OEM
environments, such as SMASH/CLP.

• The final phase of the E810 initialization is the software device driver load, where the operating
system loads the various software device drivers and the E810 has been initialized for post-boot
operation. See Section 4.4.

4.2.1 Auto-Load Shadow RAM

This phase of auto-load determines if a properly-configured Flash device is attached:

• If the attached Flash device is not properly configured, the default hardware settings are kept. The
power-on flow continues without loading from the NVM.

— The NVM is expected to be reprogrammed. See Section 3.4.4.2 for more details on how this is
done.

• If the attached Flash device is properly configured, auto-load proceeds with its first stage. NVM
modules loaded to the on-die Shadow RAM are read from the NVM.

Once the Shadow RAM is ready, an internal indication is set that the device enumeration may proceed.
This indication is also set when the NVM is found blank.

4.2.1.1 Auto-Load into Device Units

The NVM configurations are loaded into the device units directly from the NVM or indirectly through
Shadow RAM.

The loading process of the NVM modules that are specified in Table 4-2 are tracked and reported.

The following CSR fields track the progress of loading the NVM modules following power-on and the
various resets:

• GLNVM_ULD.*_DONE bits (one per module) indicates the unit is ready to use.

Default hardware values:

• GLNVM_ULD.*_DONE = 0b

The flow during a power-on stage is as follows:

• If the NVM is found blank:

— All GLNVM_ULD.*_DONE bits are set by the E810.

• If the NVM is found valid:

— After process is done by EMP firmware, it sets the GLNVM_ULD.*_DONE bit to 1b.

613875-009 363

Intel® Ethernet Controller E810 Datasheet
Initialization

4.2.1.2 Firmware Initialization

There are two sets of firmware loaded for the E810. The first is for the Embedded Management
Processor (EMP). This firmware is first to load and is required for all E810 deployments. It is optionally
followed by loading Protocol Engine firmware required for RDMA operation.

Once EMP firmware loads, the following E810 features are enabled:

• The external Ethernet link is active.

• Default internal switching components have been configured.

• Communication with the BMC is possible if supported by the E810 and the system (optional).

• OEM-specific manageability agents are active and responding to commands from the Ethernet
fabric (optional).

• Admin queues for all enabled PCI functions are ready for commands - EMP responds to each
function’s Get Version AQ command to indicate that it is safe for software to start using the E810
for device driver initialization (see Section 9.5.3).

• HMC default profile has been configured.

Once EMP firmware is up and running, the E810 can be configured via its management interfaces, and
certain device capabilities are then enabled or disabled (such as soft SKUing).

Protocol Engine firmware is responsible for processing configuration requests for RDMAUDA
functionality that is provided by the Protocol Engine. See Section 11.5.2 for more information on the
specifics of the commands supported by Protocol Engine Firmware. Protocol Engine firmware load
begins once the EMP firmware has finished loading and initialization and only after primary reset was
de-asserted. When the Protocol Engine firmware is loaded and initialized, the GLPE_CPUSTATUS0-2
registers indicate that it is safe to start using Protocol Engine capabilities.

Protocol Engine firmware is loaded only when the protocol engine is enabled in the NVM.

4.2.1.3 MAC Address Initialization

The E810 supports a port MAC Address for each of its ports. These addresses are used by the internal
switch for L2 filtering of packets, by the classification filters, for WoL purposes, and for link-level
functionality, such as flow control frames and LLDP. The addresses are loaded from the NVM
PRTPM_SAL and PRTPM_SAH registers.

Table 4-4 lists how each address can be set or read and where it is stored.

Intel® Ethernet Controller E810 Datasheet
Initialization

364 613875-009

The following rules apply:

• The PF_NUM field in the PRTPM_SAH register is deducted from the PF issuing the command.

• The AV field in PRTPM_SAH is set by the EMP when writing a MAC Address.

The per-PF MAC Address used by the internal switch is managed via the Remove MAC/VLAN Pair and
Add MAC/VLAN Pair commands.

Table 4-4. MAC Address Information

MAC Address Type Where Stored How Reported How Modified Modified at
Manufacturing?

LAN MAC Address -
factory

NVM PF MAC Address
section (TLV type = 0x10F)
Loaded by firmware to:
• Internal switch entries
• PRTPM_SAL/H
• PRTMAC_HSEC_CTL_TX_S

A_PART1/2

N/A Yes

LAN MAC Address –
BIOS setting

Alternate RAM (Current LAN
MAC Address (Low/High))
Loaded by firmware to:
• Internal switch entries
• PRTPM_SAL/H
• PRTMAC_HSEC_CTL_TX_S

A_PART1/2

Manage MAC Address read
(LAN address valid) - if no
LAA

Write Alternate AQ
command:
• Alternate LAN MAC

Address (LS)
• Alternate LAN MAC

Address (MS)
• NC-SI Set Address OEM

command

No

WoL MAC Address PRTPM_SAL/H Manage MAC Address read
(WoL address valid)

Manage MAC Address Write
AQ command (update LAA
and WoL address).

Yes

WoL MAC Address
preserve on PFR

RAM Manage MAC Address read
(WoL_preserve_on_PFR)

Manage MAC Address Write
AQ command
(WoL_preserve_on_PFR).
Set by software before
D0->Dr/D3 transition.
Cleared by software after
returning to D0).
0 by default after POR/
EMPR.

No

LAA MAC Address Local firmware variable Manage MAC Address read
(LAN address valid)

AQ command (update LAA
address)
Note: Changing the LAA

only does not
impact the address
used to detect
Magic Packets.

No

MNG MAC Address MNG MAC Address NVM
module

NVM Read command
(module type = 0x110)

NVM Write command
(module type = 0x110)

No

PCIe serial address PCIe serial address NVM
module

NVM Read command
(module type = 0x133)

NVM Write command
(module type = 0x133)

Yes

613875-009 365

Intel® Ethernet Controller E810 Datasheet
Initialization

4.2.1.3.1 Manage MAC Address Read Command (0x0107)

This command is used by the PF driver to read the per-PF station MAC Address. This is an indirect
command.

4.2.1.3.1.1 Manage MAC Address Read Response (0x0107)

A firmware acknowledge to the Manage MAC Address Read command. This is an indirect response.

Table 4-5. Manage MAC Address Read Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0107 Command opcode.

Datalen 4-5 0x0 0x18 (the response buffer size).

Return Value/VFID 6-7 0x0 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command Flags 16-17 Reserved Reserved.

Port Number 18-19.0 Port Number Byte 18: Logical Port Number
This field specifies the logical port number, and is used when the physical
function owns more than one port. A value of 0xFF means that a dump of all
ports addresses is requested. A port number of 20 (logical port number of the
E810) returns the local MAC Address of the E810.

Bit 19.0: Logical Port Number is valid.

19.1-19.7 Reserved Reserved.

Reserved 20-23 0x0 Reserved.

Data Address High 24-27 Buffer Address High bits of the return buffer address.

Data Address Low 28-31 Buffer Address Low bits of the return buffer address.

Table 4-6. Manage MAC Address Read Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0107 Command opcode.

Datalen 4-5 0x0 0x18 (the response buffer size).

Return Value/VFID 6-7 Return Value Return value.
Firmware supplies in the Return Value field an indication on the completion
of the Manage MAC Address Read command.

0x0 = No error.
Others = Error detected in the command.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this
command.

Intel® Ethernet Controller E810 Datasheet
Initialization

366 613875-009

Note: All MAC Addresses are a byte stream in network order.

The buffer is as follows:

Command Flags 16.0-16.3 Reserved Zeroed by the EMP.

16.4 LAN Address Valid This bit is set if any of the addresses reported in the buffer is of type LAN.

16.5 SAN Address Valid Reserved for the E810.

16.6 Port Address Valid Reserved for the E810.

16.7 WoL Address Valid This bit is set if any of the addresses reported in the buffer is of type WoL.

17.0 MC_MAG_EN If set, multicast Magic Packets generate a WoL event (if WoL is enabled for
this function).

17.1 WoL_preserve_on
_PFR

Set to preserve WoL MAC on PFR (to be set by software before D0->Dr/D3
transition. Cleared by software after returning to D0 state).
0 by default after POR/EMPR.
Relevant only if WOL MAC was set.

17.2-17.7 Reserved Reserved.

Reserved 18-23 0x0 Reserved.

Data Address High 24-27 Buffer Address High bits of the return buffer address.

Data Address Low 28-31 Buffer Address Low bits of the return buffer address.

Address Offset Description

Port Number 0 The port number associated with this MAC address.
Equivalent to the port through which the command was sent. Can be ignored.

Address Type 1 Address type:
0b = LAN Address
1b = WoL Address

PF LAN SA 2-7 Current device value of the PF LAN MAC Address.
Validated by LAN Address Valid flag.
This address is returned from LAA address if valid, otherwise from Alternate RAM if valid, otherwise
from the NVM if valid.

Table 4-6. Manage MAC Address Read Response [continued]

Name Byte.Bit Value Remarks

613875-009 367

Intel® Ethernet Controller E810 Datasheet
Initialization

4.2.1.3.2 Manage MAC Addresses Write Command (0x0108)

This command is used by the PF driver to write the per-PF station MAC Address. This is a direct
command.

Table 4-7. Manage MAC Address Write Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0108 Command opcode.

Datalen 4-5 0x0 Must be 0x0. Value is ignored.

Return Value/VFID 6-7 0x0 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this
command.

Command Flags 16 Port Number Port Number
This field specifies the port number, and it is used when the physical
function owns more than one port.

17.0 MC_MAG_EN Used to set the MC_MAG_EN bit.

17.1 LAA_WOL_PRESERVE LAA WoL preserve on PFR
Relevant only if WOL MAC was set.

17.2 Valid Port number in byte 16 is valid.

17.5-17.3 0x0 Reserved.

17.7-17.6 Write Type 00b = Update LAA only.
01b = Update LAA and WOL address.
All other values are reserved.

SAH 18-23 MAC Address MAC Address as a byte stream in network order.

Reserved 24-31 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Initialization

368 613875-009

4.2.1.3.2.1 Manage MAC Address Write Response (0x0108)

A firmware acknowledge to the Manage MAC Address Write command. This is a direct response.

4.2.1.4 Power-On Device State

This section describes the specific setting of each of the E810’s components required for pre-boot
operation. It describes the information loaded from the NVM (per component) and the state attained by
each.

• Manageability — System management functionality, if enabled, is fully operational by the end of
the EMP firmware initialization sub-stage. Some configuration is loaded from the NVM during the
power-on stage. Capabilities might include the following:

— Sideband interfaces

— Pass-through manageability (including packet filtering)

— Preparation for OS-to-BMC traffic

— Preparation for MCTP over PCIe operation

Table 4-8. Manage MAC Address Write Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0108 Command opcode.

Datalen 4-5 0x0 Must be 0x0. Value is ignored.

Return Value/VFID 6-7 Return value Return value.
Firmware supplies in the Return Value field an indication on the
completion of the Manage MAC Address Write command.

0x0 = No error.
Others = Error detected in the command.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this
command.

Command Flags 16 Port Number Port Number
This field specifies the port number, and it is used when the physical
function owns more than one port.
Copied from command.

17.0 MC_MAG_EN Used to set the MC_MAG_EN bit.

17.1 LAA_WOL_PRESERVE LAA WoL preserve on PFR
Relevant only if WOL MAC was set.

17.2 Valid Port number in byte 16 is valid.

17.5-17.3 0x0 Reserved.

17.7:17.6 Write Type 00b = Update LAA only.
01b = Update LAA and WOL address.
All other values are reserved.

Reserved 18-31 Reserved Reserved.

613875-009 369

Intel® Ethernet Controller E810 Datasheet
Initialization

• Internal MAC and PHY — If either system management or APM WoL are enabled, enabled LAN
ports are brought up by firmware once EMP firmware initialization completes. Otherwise, enabled
LAN ports are brought up following PERST# de-assertion.

— See Section 3.2 for more details.

• Admin Queue (AQ) — A queue (Tx and Rx pair) is activated per enabled PCI function. For
example, an AQ is needed for BIOS to change the switch or scheduler configuration.

— See Section 9.5.3 for more details.

• Internal Switch — The internal switch is configured from the NVM for basic switching capabilities
to the EMP and the enabled PCI functions. First, the switch programmable logic is loaded, followed
by configuration of a basic switch topology. The topology is for basic L2 functionality.

• DCB — The NVM loads the LLDP and DCBx setting into the E810. Once EMP firmware initializes and
link is up, firmware engages in DCBx negotiation. Firmware then makes the appropriate changes in
the E810’s configuration based on the outcome of the DCBx protocol. At this stage, DCB capabilities
(TCs, ETS, PFC) can be enabled.

• Tx-Scheduler — As the switch VSIs are enabled, firmware allocates Tx-Scheduler per each PF VSI
based on the NVM configuration. Each queue is configured to default behavior. Firmware also
generates the required handles to enable system software to update the configuration of each
queue. If DCBx protocol runs, the outcome of the protocol exchange might translate into changes in
scheduler configuration.

• Host Memory Cache (HMC) — NVM settings supply the initial HMC configuration using a simple
set of rules that enable equal distribution of HMC resources to all PFs that are connected to external
Ethernet ports.

• Power Management — Some power management capabilities are supported pre-boot or during
BIOS initialization.

— The E810 might be enabled for APM wake during power up. See Section 5.3.1 for more details
on how APM Wake is configured.

— EEE might be enabled once EMP firmware is initialized.

• LAN — LAN queues are available for network boot in the BIOS initialization phase. Some LAN
configuration is loaded from the NVM during power on, including partitioning of the LAN queues
among PFs.

• Protocol Engine (PE) — NVM setting can disable PE operation in the device. The Protocol Engine
is not enabled during Power-On and BIOS Initialization stages. It is configured and initialized in the
Driver Load phase.

Intel® Ethernet Controller E810 Datasheet
Initialization

370 613875-009

4.3 BIOS Initialization

This section describes how BIOS code might update the E810’s configuration and the capabilities for
network boot. The following sections are provided:

• Section 4.3.2 describes how BIOS code might change the E810’s configuration on each boot.

• Section 4.3.3 describes some aspects of supporting network boot.

• Section 4.3.4 describes the specific setting of each of the E810’s components required for the BIOS
initialization stage

4.3.1 Initial State

The state of the E810 when BIOS begins to access it is described in Section 4.3.4.

BIOS code must check that the EMP completed device initialization. This is done through the Get
Version AQ command described in Section 9.5.13.1.

4.3.2 Non-Persistent Configuration

During power up, the E810 is factory-configured from the NVM. However, the factory configuration can
be overridden in two possible ways:

• Persistent Configuration — System tools (such as software agents and SMCLP commands) can
write into the NVM and change the factory defaults. It is also possible to add alternate values into
the NVM so that the factory defaults are preserved and can be restored at a later time.

• Non-Persistent Configuration — An on-die Alternate RAM structure is provided to store
configuration values that are not supposed to be maintained between cold resets. The information
in this structure is retained during all resets other than a cold reset of the device. The specific fields
are loaded by the device Firmware according to Table 4-9.

During a cold reset sequence, the alternate structure might be written by either an external system
management agent (via the device management interfaces) or by BIOS level code (like SMASH/CLP
commands).

4.3.2.1 Alternate RAM Structure

The alternate structure is 6 KB, partitioned into 32-bit entries. Accessing the structure is done by
addressing 32-bit entries. An address is therefore 11 bits (1.5K DWords), where address 0x000 points
to the beginning of the memory.

During a cold reset sequence, the alternate structure can be written by either an external system
management agent (via the device management interfaces) or by BIOS level code (like SMASH/CLP
commands).

The structure is partitioned as follows:

613875-009 371

Intel® Ethernet Controller E810 Datasheet
Initialization

4.3.2.1.1 Per-PF Sections

4.3.2.1.1.1 Current LAN MAC Address (Offset 0x0, 0x1)

Lower DWord:

Upper DWord:

Actions taken on a change in this entry:

• When valid, it overrides the MAC Address loaded from the NVM.

Section Address (DW) Size (DW) Content

Per PF 0-511 512-64 per PF 8 per-PF sections, one per PF. These sections are described in Section 4.3.2.1.1
and can be accessed by each PF.

Reserved 512-1023 Reserved for more functions.

EMP 1024-1536 512 Reserved for EMP use, including error logging. Can be written and read only by
the EMP. In debug mode, this section can be read by the PFs.

Table 4-9. Per-PF Alt RAM Content

Scope Address (DW) Contents Done Alternate
Write Required1

1. The “Done Alternate Write Required” column indicates whether the Done Alternate Write (Opcode: 0x0904) command needs to be
issued to the device for the configuration to take place on the conditions specified by the “Load Conditions” column. If “Done
Alternate Write” is not required, just writing the value into the Alternate RAM and meeting the load conditions is sufficient for the
configuration to take place. If the “Done Alternate Write” command was required, but not sent, the configuration is not applied,
even if the condition is met. Issuing the “Done Alternate Write” command when it is not explicitly required does not have any
adverse effects on the operation of the device.

NVM Dump
Required2

2. Some changes are persistent. To make sure the data is stored in NVM, the Shadow RAM must be written back to the Flash using
the NVM Write Activate command (Section 3.4.10.8).

Load Conditions

PF 0 Current LAN MAC Address (Low) No No PFR, CORER

PF 1 Current LAN MAC Address (High) No No PFR, CORER

PF 2-18 Reserved N/A N/A Never

PF 19 RDMA Yes Yes POR

PF 20-63 Reserved N/A N/A Never

Field Bit(s) Description

MAC Address 31:0 MAC Address
Contains the LS 32-bit of the address.

Field Bit(s) Description

MAC Address 15:0 MAC Address
Contains the MS 16-bit of the address.

Reserved 30:16 Reserved.

Valid 31 Valid Bit
0b = The MAC Address two DWords are invalid and should be skipped.
1b = The MAC Address two DWords are valid and should be processed.

Intel® Ethernet Controller E810 Datasheet
Initialization

372 613875-009

4.3.2.1.1.2 RDMA (Offset 0x19)

4.3.2.2 AQ Commands

Table 4-10 lists the different AQ commands used to manage the alternate structure.

Field Bit(s) Description

Override Enable 0 Enable BIOS override of netlist configuration recommendation for topology of 4 ports and below.

RDMA Enable 1 Enable RDMA for topology of 4 ports and below.

Reserved 30:2 Reserved.

Valid 31 Valid bit
0b = DW is invalid and should be skipped.
1b = Entry is valid and should be processed.

Table 4-10. List of AQ commands for the Alternate Structure

Command Opcode Description Section
Reference

Write Alternate - Direct 0x0900 Write up to two parameters into the alternate structure. 4.3.2.2.1

Write Alternate - Indirect 0x0901 Write a block of parameters into the alternate structure. 4.3.2.2.2

Read Alternate - Direct 0x0902 Read up to two parameters from the alternate structure. 4.3.2.2.3

Read Alternate - Indirect 0x0903 Read a block of parameters from the alternate structure. 4.3.2.2.4

Done Alternate Write 0x0904 Indication that all CLP strings (for the entire E810 in legacy BIOS mode, and
per LAN Port in UEFI mode) have been sent to the E810.

4.3.2.2.5

Clear Port Alternate 0x0906 Clear content of Alternate RAM relevant to this port. 4.3.2.2.6

613875-009 373

Intel® Ethernet Controller E810 Datasheet
Initialization

4.3.2.2.1 Write Alternate - Direct Command (0x0900)

The Write Alternate - Direct command writes to the alternate structure up to two parameters.

The following completion is sent for the Write Alternate - Direct command:

Table 4-11. Write Alternate - Direct Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0900 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 0x0 N/A

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

First Parameter
Address

16-19 Accessing the alternate structure is done by addressing 32-bit entries.

First Parameter
Data

20-23

Second Parameter
Address

24-27 Address should be within the range allocated to the function inside the
alternate structure.
Value of 0xFF..FF means only the first parameter is written.
Accessing the alternate structure is done by addressing 32-bit entries.

Second Parameter
Data

28-31

Table 4-12. Completion for the Write Alternate - Direct Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0900 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 Some comments on specific errors:
0x0 = No error.
ENOMEM = Out of memory (access outside the alternate structure).
EACCES = Permission denied (access to another PF’s area).

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved. Might contain the values sent in the original command.

Intel® Ethernet Controller E810 Datasheet
Initialization

374 613875-009

4.3.2.2.2 Write Alternate - Indirect Command (0x0901)

The Write Alternate - Indirect command writes a block of parameters to the alternate structure. The
command defines the number of DWords to be written and the starting address inside the alternate
structure.

The following completion is sent for the Write Alternate - Indirect command:

Table 4-13. Write Alternate - Indirect Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0901 Command opcode.

Datalen 4-5 Size of buffer accompanying the command (in bytes).

Return Value/VFID 6-7 0x0 N/A

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alternate Structure
Address

16-19 Lowest address to be written into the alternate structure.
Accessing the alternate structure is done by addressing 32-bit entries.

Alternate Structure
Length

20-23 Number of DWords to be written into the alternate structure.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

Table 4-14. Completion for the Write Alternate - Indirect Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0901 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 Some comments on specific errors:
0x0 = No error.
ENOMEM = Out of memory (access outside the alternate structure).
EACCES = Permission denied (access to another PF’s area).

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

613875-009 375

Intel® Ethernet Controller E810 Datasheet
Initialization

4.3.2.2.3 Read Alternate - Direct Command (0x0902)

The Read Alternate - Direct command reads from the alternate structure up to two parameters. This
command, and the next one, returns the values as stored in the Alternate RAM, which might not reflect
the current hardware configuration.

The following completion is sent for the Read Alternate - Direct command:

Table 4-15. Read Alternate - Direct Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0902 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 0x0 N/A

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

First Parameter
Address

16-19 Address should be within the range allocated to the function inside the
alternate structure.
Accessing the alternate structure is done by addressing 32-bit entries.

Reserved 20-23 0x0 Reserved.

Second Parameter
Address

24-27 Address should be within the range allocated to the function inside the
alternate structure.
Value of 0xFF..FF means only the first parameter is read.
Accessing the alternate structure is done by addressing 32-bit entries.

Reserved 28-31 0x0 Reserved.

Table 4-16. Completion for the Read Alternate - Direct Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0902 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 Some comments on specific errors:
0x0 = No error.
ENOMEM = Out of memory (access outside the alternate structure).
EACCES = Permission denied (access outside of PF’s area).

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

First Parameter
Address

16-19 Copied from the command.

First Parameter
Data

20-23 Data read.

Second Parameter
Address

24-27 Copied from command.
Value of 0xFF..FF means only the first parameter is read.

Second Parameter
Data

28-31 Data read.

Intel® Ethernet Controller E810 Datasheet
Initialization

376 613875-009

4.3.2.2.4 Read Alternate - Indirect Command (0x0903)

The Read Alternate - Indirect command reads a block of parameters to the alternate structure. The
command defines the number of DWords to be read and the starting address inside the alternate
structure.

The following completion is sent for the Read Alternate - Indirect command:

Table 4-17. Read Alternate - Indirect Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0903 Command opcode.

Datalen 4-5 Size of buffer accompanying the command (in bytes).

Return Value/VFID 6-7 0x0 N/A

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alternate Structure
Address

16-19 Lowest address to be read from the alternate structure.
Accessing the alternate structure is done by addressing 32-bit entries.

Alternate Structure
Length

20-23 Number of DWords to be read from the alternate structure.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

Table 4-18. Completion for the Read Alternate - Indirect Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0903 Command opcode.

Datalen 4-5 0x0 Actual length of data returned by the command.

Return Value/VFID 6-7 Some comments on specific errors:
0x0 = No error.
ENOMEM = Out of memory (access outside the alternate structure).
EACCES = Permission denied (access to another PF’s area).

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alternate Structure
Address

16-19 Lowest address read from the alternate structure.

Alternate Structure
Length

20-23 Number of DWords read from the alternate structure.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

613875-009 377

Intel® Ethernet Controller E810 Datasheet
Initialization

4.3.2.2.5 Done Alternate Write Command (0x0904)

The Done Alternate Write command indicates to the E810 that the CLP strings have been sent to it:

• Legacy BIOS mode — Sent once per device after all CLP strings have been sent to the E810 (for
all LAN ports). Following the command, firmware loads the contents of the alternate structure into
the device functional units.

• UEFI mode — Sent once per each enabled LAN port. Once the command is received from all
enabled ports, firmware loads the contents of the alternate structure into the E810’s functional
units.

After this command, the software should trigger a Shadow RAM dump using a dummy NVM update with
LAST flag set (Bit 19.0 in Table 3-113).

The following completion is sent for the Done Alternate Write command:

Table 4-19. Done Alternate Write Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0904 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 0x0 N/A

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

BIOS Mode 16.0 See remarks 0b = Legacy BIOS
1b = UEFI

Reserved 16.1-31 0x0 Reserved.

Table 4-20. Completion for the Done Alternate Write Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0904 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 ENOSPC = More than 128 VFs are requested.
EBUSY = Failed to perform command due to busy NVM.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16.0 0b Reserved.

Return Flags 16.1 Reset Needed
When set, indicates that software should do a global reset for the Alternate
RAM content to take effect.

Reserved 16.1-31 0x0 Reserved.

Intel® Ethernet Controller E810 Datasheet
Initialization

378 613875-009

4.3.2.2.6 Clear Port Alternate Write Command (0x0906)

The Clear Port Alternate command indicates to the E810 to clear the alternate sections of the PF. The
port is inferred from the PF that sent the command.

The following completion is sent for the Clear Port Alternate Write command:

4.3.2.3 Example of a SMASH/CLP Flow - Legacy BIOS

The following pseudo code provides an example of how such a flow might be performed by legacy BIOS
using SMASH/CLP commands. The following guidelines should be kept:

• If a certain PCI function is disabled via this mechanism, pre-boot software does not access any
resource of that function (such as any CSR) once it sends the Done Alternate Write AQ command.
The E810 confirms the command, resets, and disables the function.

• By the time the SMASH/CLP commands are executed and a function is disabled, there is no Tx/Rx
activity in the E810 (since no queues have been initialized).

• All ports enabled in the NVM have the Option ROM enabled (such as the lowest PCI function per port
has an Expansion ROM BAR).

• BIOS calls all CLP entry points for all functions before getting into the initialization phase.

• It is not guaranteed that a system reset is issued immediately following this sequence. For
example, the configuration settings must take place even if such a reset is not issued.

• During the initialization phase, pre-boot software has to issue a global reset followed by a Start
LLDP Agent AQ command to start the LLDP agent in firmware.

Table 4-21. Clear Port Alternate Write Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0906 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 0x0 N/A

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 0x0 Reserved.

Table 4-22. Completion for the Clear Port Alternate Write Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0906 Command opcode.

Datalen 4-5 0x0 N/A

Return Value/VFID 6-7 0x0 N/A

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 0x0 Reserved.

613875-009 379

Intel® Ethernet Controller E810 Datasheet
Initialization

// Initial state:
// The device is configured from NVM.
// The following flow runs per each device.

BIOS does PCI enumeration and discovers functions with Option ROM enabled.

For each LAN Port with Option ROM enabled // sent to the lowest number PCI function on the port,
 BIOS loads the Option ROM into system RAM.
 Set First-Init to true // When Init is later called, it's the 1st call to Init.

 For each CLP string received by BIOS for a function within the port,

 If the Option ROM for the port supports SMCLP entry point,
 BIOS calls SMCLP entry point for port with CLP string.
 SMCLP section in Option ROM processes the CLP string.
 Option ROM keeps track of SMCLP status for the port.
 End-If

 End-For
End-For

For each LAN port with Option ROM enabled,
 BIOS calls INIT entry point for the port.
End-For

SMCLP Entry Point:

If CLP type is SET and action is “Return to default” // clear any pre-existing CLP configuration,
 Send the "Clear Port Alternate" admin command to invalidate all Alternate Memory parameters
 for the port and its PFs.
End-If

If CLP type is SET,
 Generate “Write Alternate - Direct” admin command(s) to the device.
End-If

If CLP type is EXIT // Apply any configuration changes from previous commands that have not
been applied,
 Send appropriate admin commands with default values for the PF parameters not specified by
 the CLP string that have a default behavior in this mode, different than the hardware
 default.
End-If

End SMPCLP Entry Point.

SMCLP INIT Entry point:

If First-Init is true // the flow below should only be executed on the 1st call to Init,

 If SMCLP status is false // means no CLP strings have been received for any functions for the
 device,
 // Option ROM INIT configures the device in a standard operating mode (i.e. not an OEM
 specific mode).
 End-If

 If SMCLP status is true // means at least one function had CLP strings,
 // This is the time to load the CLP parameters from the Alternate Structure into the
 device.
 Send "Done Alternate Write" command indicating end of CLP strings for the device.
 End-If

 // Global Reset should be done only once per device.

 If firmware required a reset in the "Done Alternate Write" response,
 Issue Global Reset of the device.
 Set First-Init to false.
 End-If

End-If

Intel® Ethernet Controller E810 Datasheet
Initialization

380 613875-009

Continue with INIT code...

End SMCLP INIT Entry Point.

4.3.2.4 Example of a SMASH/CLP Flow - UEFI

The following pseudo code provides an example of how such a flow might be performed by the UEFI
drivers using SMASH/CLP commands. The following guidelines should be kept:

• If a certain PCI function is disabled via this mechanism, pre-boot software does not access any
resource of that function (such as any CSR) once it sends the Done Alternate Write AQ command
for that function. The E810 confirm the command, resets, and disables the function.

• By the time the SMASH/CLP commands are executed and a function is disabled, there is no Tx/Rx
activity in the E810 (since no queues have been initialized).

• A UEFI driver is executed for each enumerated LAN port. For example, any port enabled in the NVM
and not disabled by strapping.

• It is not guaranteed that a system reset is issued immediately following this sequence. For
example, the configuration settings must take place even if such a reset is not issued.

// Initial state:
// The device is configured from NVM.
// The following flow runs per each device.

BIOS does PCI enumeration and discovers PCI functions.

For each enabled LAN Port,
 BIOS calls driver START entry point.

 For each CLP string received by BIOS for a function within the port,
 SMCLP section processes the CLP string.
 End-For

 Driver sends a "Done Alternate Write" command indicating end of CLP strings for the port.

 If firmware required a reset in the "Done Alternate Write" response,
 Issue Global Reset of the device.
 End-If

End-For

SMCLP section in START:

If CLP type is SET and action is "Return to default" // clear any pre-existing CLP configuration,
 Send the "Clear Port Alternate" admin command to invalidate all Alternate Memory parameters
 for the port and its PFs.
End-If

If CLP type is SET.
 Generate "Write Alternate - Direct" admin command(s) to the device.
End-If

If CLP type is EXIT // Apply any configuration changes from previous commands that have not been
applied,
 Send appropriate admin commands with default values for the PF parameters not specified by
 the CLP strings that have a default behavior in this mode, different than the hardware
 default.
End-If

End SMPCLP section.

613875-009 381

Intel® Ethernet Controller E810 Datasheet
Initialization

4.3.2.5 Processing the Alternate Structure

As a result of each Done Alternate Write AQ command, the EMP loads the relevant alternate structure
parameters into the E810 according to the following sequence:

• EMP loads any required parameters from the alternate structure into the hardware.

• EMP ACKs the Done Alternate Write command.

• Global reset is performed:

— Initiated by software.

— Reset is done only once and not per each instance of the Done Alternate Write AQ command.

• Hardware is initialized, including loading of the relevant sections of the Alternate Structure into the
Hardware.

4.3.3 Network Boot

Any functions can be a PXE or UEFI boot function (up to 8 such functions).

4.3.4 Device State

This section is limited to changes in the E810’s state made in the BIOS initialization stage. For units not
mentioned here, behavior is as described in Section 4.2.1.4.

4.3.4.1 Switch/Tx-Scheduler

Some parameters of the switch and Tx-Scheduler configuration might change by the contents of the
alternate structure. Such changes take effect when the alternate structure is enabled.

4.3.4.2 LAN

Expansion ROM code might set LAN QPs for network boot. The sequence of setting a LAN QP is
described in Table 10-32 and Section 10.4.3.6.1.

4.3.4.3 Interrupts

Interrupts must be set if used for Admin Queue or LAN queues operation. See Section 9.1.1.1 for the
exact flow.

Intel® Ethernet Controller E810 Datasheet
Initialization

382 613875-009

4.4 Driver Load

4.4.1 Introduction

4.4.1.1 Driver Load (non-Virtualized)

As described earlier in this section, by the time the device driver loads, the NVM configuration is already
complete and PCIe configuration has taken place. During a device driver load, the following sequence of
commands is typically issued to the E810 to initialize it for normal operation. The major initialization
steps are:

1. Device driver probes the E810 for resource allocations.

2. Disable interrupts.

3. Initialize the Admin Queue (see Section 9.5.3).

4. Initialize HMC (see Section 9.3.4).

5. Initialize MAC/PHY.

6. Initialize power management - wake-up (see Section 5.3.5).

7. Initialize DCB, including Rx-PB.

8. Initialize the switch and Tx-Scheduler (see Section 7.8.12 and Section 8.3.4.1).

9. Initialize statistics by reading the counter’s initial values to serve as a baseline.

10. Init Protocol Engine (see Section 11.5.1).

11. Initialize 1588.

12. Enable interrupts.

At this point, the E810 is ready to initialize VSIs and LAN/PE flows. These are done dynamically during
operation:

• Initialize VSI.

• Initialize LAN QP, including its interrupts (see Section 10.4.3 and Section 10.5.5) or Init PE QP (see
Section 11.5.1).

• Configure filters (see Section 7.10).

613875-009 383

Intel® Ethernet Controller E810 Datasheet
Initialization

4.4.1.2 Driver Load (SR-IOV)

The E810 approach for virtualized device drivers is to depend heavily on the PF device driver for
management of chip resources. The device driver models for newer virtualized operating systems are
moving in a direction that requires such functionality. Figure 4-13 shows the high-level initialization
flow for virtualized device drivers that use a VF in a guest operating system.

4.4.1.2.1 PF Initialization Details

In addition to the regular device driver initialization flow described in Section 4.4.1.1, the PF device
driver should apply the following steps to enable support for VMs:

1. After the operating system enables virtual bridging, the PF device driver should create a VEB or a
VEPA switching element using the following flow:

a. Query the switch structure using the Get Switch Configuration command (Section 7.8.12.2.1) to
get the initial VSI and initial switch ID associated with the port.

b. Define mirroring rules using the Mirroring Rules commands (Section 7.8.12.7.1).

c. Define storm control rules using the Set Storm Control Configuration command
(Section 7.8.12.4.1).

d. Activate malicious driver protection as described in Section 9.2.2.2.1.

2. When the VMM requests that a virtual port be created, the PF driver should:

a. Create a set of VSIs according to the flow described in the paragraphs that follow. The exact flow
depends on the VMM-to-PF API.

b. Define the bandwidth allocated to the VSI and each of its TCs using the Scheduler Configuration
commands (Section 8.3.4.3.6).

c. If the virtual port is a VF, allow VF access to the network by clearing the associated bit in
GL_VIRT_VFLRE register.

Figure 4-13. Virtualized Device Driver Initialization Flow

Driver loads

Done

Enable interrupts

Map PCI Function BARs

Issue Software Reset
(VF->PF cmd)

Initialize data queues,
Interrupt Vectors

Request Resources
(MAC Address, etc)

(VF->PF cmd)

Create QPs
(VF->PF cmd)

Intel® Ethernet Controller E810 Datasheet
Initialization

384 613875-009

4.4.1.2.2 VF Initialization Details

This section describes the flow used to initialize a VF. It refers to various stages shown in Figure 4-13.
Only stages involving the hardware are detailed.

4.4.1.2.2.1 Software Reset

A VF software reset can be asserted only by the PF using the VPGEN_VFRTRIG.VFSWR field. Following a
VF software reset, the VF should request re-initialization of the queues from the PF.

Following the reset, the PF should preform the clean-up steps described in Section 4.1.3.3.

4.4.1.2.2.2 Request Resources and Create/Initialize Data Queues

On top of the resources statically allocated to a VF (interrupts, RSS table, and so on), a VF might have
a set of VSIs. Each VSI contains objects such as:

• User priorities (transmit queue groups)

• Queue pairs

• Queuing filters

VSIs can be requested either for LAN or iWARP.

The resources should be requested in the following order (operations with the same stage number can
be done in any order):

Step Resource Requested PF Action Rules

1 VSI and UPs Allocate VSIs according to allocation policies
using the Add VSI AQ command
(Section 7.8.12.3.1).

The PF should activate the security features
in the VSI (anti spoof, port based VLAN)
according to the VF settings.

2 Forwarding table entries
(MAC and VLANs)

Add the requested filters using the Add
Switch Rules command (Section 7.8.12.6.1).

3 Data queue pairs Create the requested queue contexts as
described in Section 10.4.3 and
Section 10.5.5.

Protocol Engine resources The resources for the Protocol Engine are
described in Section 11.1 and the PF flow is
described in Section 11.5.1.

Before using any Protocol Engine related
resources, the Host Memory Cache must be
properly programmed. See section
Section 9.3 for more details on the Host
Memory Cache initialization.
Virtual function HMC initialization must be
performed by the PF driver on behalf of the
VF driver.

613875-009 385

Intel® Ethernet Controller E810 Datasheet
Initialization

4.5 Device/Port/Function Configuration

4.5.1 General

The E810 provides several mechanisms to configure which PCI functions and Ethernet ports are
exposed.

The functions and ports can be hidden or exposed:

• Through NVM configuration.

• Based on power management policy.

• Through strapping pins.

4.5.1.1 Port-to-Function Mapping

The PFGEN_PORTNUM.PORT_NUM per-PF register field (loaded from the NVM) associates each PF with a
port.

4.5.2 Disable Through Strapping Pins

For a LAN on Motherboard (LOM) design, it might be desirable for the system to provide BIOS setup
capability for selectively enabling or disabling E810 PCI devices, PCI functions, or external Ethernet
ports and the associated PCI function. It provides end users more control over system resource
management and avoids conflicts with add-in NIC solutions. The E810 provides support for selectively
enabling or disabling one or more LAN PCI device(s) in the system.

The E810 provides options to disable its external Ethernet ports and/or PCI functions:

• A strapping pin (DEV_DIS_N) is sampled on LAN_PWR_GOOD and PCIe resets to disable Ethernet
ports. The specific port(s) to be disabled is determined from NVM. Additional NVM configuration is
provided to determine which PCI functions are disabled at the same time. The expected usage is to
disable the PCI functions associated with the disabled ports.

• A strapping pin (PCI_DIS_N) is sampled on LAN_PWR_GOOD and PCIe resets to disable PCI
functions. The specific functions that are disabled are determined from the NVM.

Following are some guidelines on usage of these straps:

• During power up, the PCI_DIS_N and DEV_DIS_N pins are ignored until the NVM is read. From that
point, the E810 might disable all PCI functions if either PCI_DIS_N or DEV_DIS_N is asserted.

• De-assertion of the PCI_DIS_N or DEV_DIS_N pins requires the system to issue a power-on reset/
LAN_PWR_GOOD/PE_RST_N/in-band reset to the E810 to re-enable any disabled PCI functions or
external Ethernet ports.

• The PCI_DIS_N and DEV_DIS_N pins should maintain their state during system reset and system
sleep states. It should also insure the proper default value on system power-up. For example, one
could use a GPIO pin that defaults to 1b (enable) and is on system suspend power (such that it
maintains its state in S0-S5 ACPI states).

Intel® Ethernet Controller E810 Datasheet
Initialization

386 613875-009

4.5.3 Port and Device Disable

The following mechanisms are provided to enable and disable Ethernet ports:

• NVM configuration

— Ports are enabled or disabled from the NVM. The PRTGEN_CNF.PORT_DIS per-port register bit
(loaded from the NVM) disables external ports other than Port 0 (PORT_DIS for Port 0 is
hard-wired to always enabled).

— When cleared, the respective port is enabled.

— The hardware default value is for Port 0 to be enabled and other ports to be disabled.

• Power management

— If the Ethernet ports are not required in Dr state (such as if manageability is disabled and APME
WoL is disabled as well), all ports are disabled during Dr state. See Section 5.1.3.4.

• Strapping (DEV_DIS_N)

— When the DEV_DIS_N pin is asserted low, the PRTGEN_CNF.ALLOW_PORT_DIS per-port bits
(loaded from the NVM) determine if the port is disabled.

— The hardware default value for these bits is 0x0 (do not disable).

— If a bit is set to 0b, DEV_DIS_N has no effect on the port.

Note: If a port is required for manageability purposes, it should not be disabled by the mechanisms
previously described.

The result of the previous mechanisms is reflected in the PRTGEN_STATUS.PORT_VALID bit (per port),
which denotes if the port is enabled. A bit is cleared (port disabled) if at least one of the previous
mechanisms disables the port. The port is then powered down (including MAC, PCS, PHY).

If all ports are disabled, the E810 is put in a power-down, reset state. Specifically, the E810 does not
respond to PCI configuration cycles, the PCIe link is in L3 state, and Ethernet ports are in power-down.
All PCI functions must be disabled as well via the mechanisms previously described (such as the proper
NVM configuration must be set to disable for PFs).

4.5.3.1 Dynamic Port Shutdown

Another related, per-port status bit is the PRTGEN_STATUS.PORT_ACTIVE indication. This is a dynamic
state indicating that the port is temporarily inactive and is powered down. When the port is inactive,
reactivating it does not require any reset, and the related PCIe function is still active.

A port is active (PRTGEN_STATUS.PORT_ACTIVE = 1b) based on the following rules:

• PRTGEN_STATUS.PORT_VALID = 1b, as previously described above AND the E810 is in D0 state
(PMCSR.PowerState = D0).

— If link is requested by manageability, the link is kept on. Specifically, hardware ignores disabling
the link using the PRTGEN_CNF2.ACTIVATE_PORT_LINK.

— Else,

• In systems where the application needs to prevent any traffic on link before the device
driver is loaded, the PRTGEN_CNF2.ACTIVATE_PORT_LINK is loaded from the NVM with the
value of 0b (disable).

613875-009 387

Intel® Ethernet Controller E810 Datasheet
Initialization

• Once the device driver loads, it uses the Set Link and Restart AN with the command bit 2
set (Enable Link). Following this, the EMP enables the link by writing the value of 1b to the
PRTGEN_CNF2.ACTIVATE_PORT_LINK and starts the link bring-up sequence.

• If the device driver is about to be removed or disabled, then before going down the device
driver might disable the link by the Set link and Restart AN with the command bit 2 cleared
(Disable Link). Following this, firmware disables the link by writing the value of 0b to the
PRTGEN_CNF2.ACTIVATE_PORT_LINK.

• PRTGEN_STATUS.PORT_VALID = 1b, as previously described, AND the E810 is in Dr state
(PMCSR.PowerState = D3).

— If port is enabled for wake-up. See the description in Section 5.3.

— Else,

• The link should be down as it is not required for EMP functionality.

• BMC might enable manageability by sending the appropriate command (see
Section 12.6.3.1). As a result, EMP transitions to pass-through manageability-on state,
enables the respective port (if disabled), and starts the link bring-up sequence.

• If the channel is disabled by the BMC (by sending the appropriate command - see
Section 12.6.3.1), and EMP has no other needs for the LAN port in Dr state (like proxy), the
EMP reverts to the value of EMP_LINK_ON bit in the NVM manageability module or is set to
zero (in case of the Disable Channel command with the ALD bit set).

4.5.4 Function Disable

The following mechanisms are provided to enable and disable PCI functions.

• NVM configuration

— PCI functions are enabled or disabled from the NVM. The PFPCI_FUNC.FUNC_DIS per-PF bit
(loaded from the NVM) disables PCI functions (other than function 0. FUNC_DIS for function 0
is hard-wired to enabled).

— When cleared, the respective function is enabled.

— The hardware default value is for function 0 to be enabled and other functions to be disabled.

• Strapping through PCI_DIS_N

— When the PCI_DIS_N pin is asserted low, the PFPCI_FUNC.ALLOW_FUNC_DIS per-PF register
bit (loaded from the NVM) determines if the function is disabled.

— If this bit is set to 0b, PCI_DIS_N has no effect on the PCI function.

— The hardware default value is 0b (keep enabled).

• Strapping through DEV_DIS_N

— When the DEV_DIS_N pin is asserted low, the PFPCI_FUNC.DIS_FUNC_ON_PORT_DIS per-PF
bit (loaded from the NVM) determines if the function is disabled.

— If this bit is set to 0b, DEV_DIS_N has no effect on the PCI function.

— The hardware default value is 0 (do not disable).

Intel® Ethernet Controller E810 Datasheet
Initialization

388 613875-009

• Soft SKU commands

— The soft SKU commands are executed either before or after PERST# was de-asserted and in
any case, before the first access by BIOS to the E810 (such as before the first PCIe
configuration cycle to the E810).

— When a LAN port is enabled or disabled via a Soft SKU command, the EMP identifies (through
the PFGEN_PORTNUM registers) the PCI functions associated with the port.

— EMP then updates the configuration of the functions enabled or disabled by writing to the
PFPCI_FUNC.FUNC_DIS register bits.

— PFPCI_FUNC.FUNC_DIS for function 0 is hard-wired to enabled, so is not affected by this
mechanism.

The result of the previous mechanisms is reflected in the PFPCI_STATUS1.FUNC_VALID bit (per PF),
which denotes if the function is enabled. A bit is cleared (function disabled) if at least one of the
previous mechanisms disables the function.

When a function is disabled:

• It does not respond to PCI configuration cycles (unless specified otherwise). Effectively, the function
becomes invisible to the system.

• The PME_En bit is cleared to avoid issuing PME.

The Ethernet ports associated with disabled PCI functions are still available for manageability purposes.

4.5.4.1 Dummy Function

When PCI function 0 is disabled, it does not disappear from the PCIe configuration space. Rather, the
function presents itself as a dummy function. The Device ID and Class Code of this function change to
other values (dummy function Device ID 0x10A6, Class Code 0xFF0000, with an option to load from the
NVM) that claims 4 KB of memory. In addition, the function does not require any I/O space and does
not require an interrupt line. All other PCI functions keep their respective locations.

4.5.5 Port Enable and Disable from BIOS (HII)

The E810 allows disabling a port and its corresponding function as a BIOS setup option (for example,
using HII). The operation involves setting adaptive NVM feature, triggering Shadow RAM dump to make
this configuration persistent, and request PCIe reset, so the new configuration would take effect on
enumeration.

The following set of adaptive NVM features is defined.

Table 4-23. HII Port Disable of Physical Function X

Adaptive NVM Feature Description

HII Port Disable of physical function X Eight feature IDs, one for each PF.
Two configuration IDs:

Enable = Set HII Port Disable by Function bit for function X to 0.
Disable = Set HII Port Disable by Function bit for function X to 1.

613875-009 389

Intel® Ethernet Controller E810 Datasheet
Initialization

The adaptive NVM features controls the following bit in NVM PFA area at a new TLV 0x139.

4.5.6 Event Flow for Enable/Disable Ports and PCI
Functions

This section describes the expected flow to disable or enable PCI functions or Ethernet ports. Following
a power-on reset/LAN_PWR_GOOD/PE_RST_N/in-band reset, the DEV_DIS_N and PCI_DIS_N signals
should be driven high (or left unconnected) for normal operation.

The following example assumes that PCI functions and/or Ethernet ports are being disabled during the
BIOS initialization phase:

1. 1.Following a power-up sequence, the DEV_DIS_N and PCI_DIS_N signals are driven high.

2. The PCIe link is established following PE_RST_N.

3. BIOS goes through PCI bus enumeration.

4. BIOS recognizes that the PCI functions in the E810 should be disabled.

5. The BIOS drives the DEV_DIS_N or PCI_DIS_N signal to a low level.

6. The BIOS asserts PCIe reset, either in-band or via PE_RST_N.

7. As a result, the E810 samples the DEV_DIS_N and PCI_DIS_N signals and disables the PCI
functions and/or external Ethernet ports.

8. BIOS might do device enumeration a second time (the disabled PCI functions are invisible or
changed to dummy function).

9. Proceed with normal operation.

10. Re-enable could be done by driving the DEV_DIS_N and PCI_DIS_N signals high and re-issuing a
power-on reset/LAN_PWR_GOOD/PE_RST_N/in-band reset.

4.5.6.1 Multi-Function Advertisement

If all but one of the PCI functions are disabled, the E810 is no longer a multi-function device. The E810
normally reports a 0x80 in the PCI configuration header field header type, indicating multi-function
capability. However, if only a single LAN is enabled, the E810 reports a 0x0 in this field to signify
single-function capability.

Table 4-24. HII Port Disable by Function

Field Name Description

HII Port Disable by Function One bit per PF. When the bit is set, the firmware should disable the port that is associated with the
PF according to PFGEN_PORTNUM. The disable of the port should be done using the relevant
EMP_PORT_DIS field of register PRTGEN_CNF.

Intel® Ethernet Controller E810 Datasheet
Initialization

390 613875-009

4.5.6.2 Legacy Interrupts Use

Each NVM PF configuration module specifies the interrupt line used for each PCI function. When more
than one PCI function is enabled, the E810 uses the INTA# to INTD# interrupts for interrupt reporting.
The specific interrupt pin used is reported in the PCI Configuration Header Interrupt Pin field associated
with each PCI function.

However, if only one PCI function is enabled, the INTA# must be used for this PCI function, regardless
of the NVM configuration. Under these circumstances, the Interrupt Pin field of the PCI header always
reports a value of 0x1, indicating INTA# usage.

4.5.6.3 Power Reporting

When more than one PCI function is enabled, the PCI power management register block has the
capability of reporting a common power value. The common power value is reflected in the Data field of
the PCI Power Management registers. The value reported as common power is specified via the LAN
Power Consumption NVM word (word 0x22), and is reflected in the Data field each time the Data_Select
field has a value of 0x8 (0x8 = common power value select).

When only one PCI function is enabled, the E810 appears as a single-function device, the common
power value, if selected, reports 0x0 (undefined value), as common power is undefined for a
single-function device.

613875-009 391

Intel® Ethernet Controller E810 Datasheet
Initialization

4.6 Shared Resource Management

The E810 is a device with multiple external Ethernet ports and that supports multiple PCI functions.
Several on-chip resources are shared between device drivers that load the PCI functions exposed by the
E810. Additionally, some resources for SR-IOV VFs are managed by the associated PFs. In general, the
E810 minimizes the requirement for coordination between device drivers running on different PCI PFs
through a combination of resource partitioning and programming interface assistance for remaining
resources that are shared.

The E810 handles shared resources using a number of allocation mechanisms and/or access control
mechanisms. Table 4-25 lists the supported mechanisms.

4.6.1 Resource Profiles

The concept of resource profiles is used in order to make the E810’s resource allocation mechanisms
easier to understand. Resource profiles dictate how resources listed in Table 4-25 as profiles are
distributed among PCI functions so that software drivers do not need to coordinate allocation of these
resources.

A resource profile is made up of the set of equations that take input parameters from the system
configuration and distributes each resource. Each resource has a different equation for distribution (see
the Description column in Table 4-25). Also, the following tables list examples of the result calculations
for a full set of resources. Since some of the resource distribution equations simply take the number of
PCI functions as input, while others might need additional input (such as the number of external
Ethernet ports or the software usage model that a device driver needs to implement), Table 4-26 lists
which input parameters effect the allocation of each resource.

Table 4-25. Supported Mechanisms

Class Description

Dedicated This resource is associated with a particular E810 element and is always available without respect to any other
configuration or setting. Examples of elements in this context could be a PCI function or external Ethernet port.

Administered Administered resources can be re-assigned based on BMC, BIOS settings, or other OEM specific mechanisms.
These resources can be changed with a PCI reset but do not change dynamically after the PCI reset.

Profiles Resources that are allocated via profiles are typically divided up among different entities based on some
combination of other input. A profile might dictate that a resource is divided among the active PCI functions in a
particular manner. Another possible usage of a profile is to divide resources based on both the number of PCI
functions and the number of external Ethernet ports. The division of resources that are allocated by profiles
happens between the time that a PCI reset occurs and might be impacted by an initial device driver load, but
resource allocation based on profiles require a PCI reset to change after the initial device driver load.

Pool Resources that are allocated from pools are typically allocated in a fashion that guarantees no resource starvation
to an individual consumer of a resource but enables flexible allocation of remaining resources to any consumer
that requires additional resources beyond the minimum. Pools are used for resources that do not need to have a
maximum number of resources allocated to all consumers at the same time and that the consumers are
reasonably able to fail an allocation.

Service Resources that are possibly allocated on a per-device or per-port basis but are accessed by a software service
that has visibility to multiple device driver interfaces that do not need the E810 to provide an arbitration
mechanism. In these cases each PCI function associated with a given resource provides equal access to the
resource as other PCI functions associated with the resource. This enables the software service to have the
flexibility to access such resources from any device driver instance that it finds available and to switch between
device driver instances as the device drivers are stopped and started. Resources that need to accesses directly by
a device driver without support from an overlaying software service cannot be handled in this fashion.

Arbitrated Resources that are allocated on a per-device or per-port basis need an access control mechanism that enables
multiple consumers of the resource to operate in an independent manner. The E810 does this by either providing
a firmware interface to access the resource where firmware handles the requests one at a time or by other
hardware based arbitration scheme.

Intel® Ethernet Controller E810 Datasheet
Initialization

392 613875-009

Table 4-27 lists a few sample sets of typical input parameters that are used with the E810. The initial
values of these resources are found in the NVM, but might be overridden by OEM-specific configuration
mechanisms followed by a PCI reset.

Note: The device driver usage model can be changed and locked by the first device driver to load
following a PCI reset. All other inputs are set at PCI reset.

Table 4-28 lists the resulting resource distribution for each of the input scenarios listed in Table 4-27.
With the exception of the switch topology, none of the resource distribution can be changed after the
initial device driver load without a PCI reset occurring. If the resource distribution changes while an
active device driver is running, unpredictable results can occur. For example, repartitioning the Host
Memory Cache segment descriptor table while a device driver is active causes the E810 to improperly
interpret the host memory used for caching resource objects. The E810 provides various mechanisms
(such as the HMC resource profile locking) to prevent software from unknowingly causing these types of
reconfigurations.

Table 4-26. Resource Profiles

Resource # External
Ethernet Ports

PCI Physical
Functions

PCI Function to
External

Ethernet Port
Assignment

PCI Virtual
Functions

Driver Usage
Model

LAN Queues No Yes No Yes No

MSI-X Vectors No Yes No Yes No

Multicast MAC Address Filters No Yes No No No

Internal Switching Elements1

1. Resource profiles only impact the default settings for internal switching elements. Run-time switch management software has the
ability to override the default number of internal switching components and the internal switch topology.

Yes Yes Yes No No

Protocol Engine Resources No Yes No Yes Yes

Table 4-27. Resources per Configuration

Scenario Name
External
Ethernet

Ports

PCI
Physical

Functions

PCI Function
to External

Ethernet Port
Assignment

PCI
Virtual

Functions
Driver Usage Model

Single Port Default 1 1 PF0 -> Port 0 256 Default

Dual Port Default 2 2 PF0 -> Port 0
PF1 -> Port 1

256 Default

Quad Port Default1

1. In this mode, the ports are ordered so that a single 100G port can be used in a 4x25G port configuration. See Table 3-22.

4 4 PF0 -> Port 0
PF1 -> Port 1
PF2 -> Port 2
PF3 -> Port 3

256 Default

Octal Port Default2

2. See Table 3-21.

8 8 PF0 -> Port 0
PF1 -> Port 1
PF2 -> Port 2
PF3 -> Port 3
PF4 -> Port 4
PF5 -> Port 5
PF6 -> Port 6
PF7 -> Port 7

256 Default

Single Port SR-IOV VF Primary 1 1 PF0 -> Port 0 256 SR-IOV PF Primary

Single Port SR-IOV Even Distribution 1 1 PF0 -> Port 0 256 SR-IOV Even Distribution

613875-009 393

Intel® Ethernet Controller E810 Datasheet
Initialization

Table 4-28. Resource Distribution

Resource

#LAN
QPs
Per
PF

#LAN
QPs
Per
VF

#MSI-X
Vectors
Per PF

#MSI-X
Vectors
Per VF

Default
Internal
Switch

Topology

HMC and Protocol Engine Resources

No
SR-IOV

SR-IOV Primary
Distribution

SR-IOV Even
Distribution1

1. The SR-IOV Even Distribution is shown with 16 VFs enabled for Protocol Engine operation.

PF Per PF Per VF Per PF Per VF

Single
Port
Default

512 8 129 5 PF0 -> Port 0 4096 SDs
256K QPs
512K CQs
768 CEQs

10 SDs
1024 QPs
2048 CQs
8 CEQs

127 SDs
8160 QPs
16320 CQs
23 CEQs

127 SDs
7943 QPs
15887 CQs
23 CEQs

127 SDs
7943 QPs
15887 CQs
23 CEQs

Dual Port
Default

256 8 129 5 PF0 -> Port 0
PF1 -> Port 1

2048 SDs
128K QPs
256K CQs
384 CEQs

10 SDs
1024 QPs
2048 CQs
8 CEQs

127 SDs
8128 QPs
16256 CQs
23 CEQs

120 SDs
7710 QPs
15420 CQs
23 CEQs

120 SDs
7710 QPs
15420 CQs
23 CEQs

Quad Port
Default

128 8 129 5 PF0 -> Port 0
PF1 -> Port 1
PF2 -> Port 2
PF3 -> Port 3

1024 SDs
64K QPs
128K CQs
192 CEQs

10 SDs
1024 QPs
2048 CQs
8 CEQs

126 SDs
8064 QPs
16128 CQs
23 CEQs

113 SDs
7281 QPs
14562 CQs
23 CEQs

113 SDs
7281 QPs
14562 CQs
23 CEQs

Octal
Ports
Defaults

64 8 129 5 PF0 -> Port 0
PF1 -> Port 2
PF2 -> Port 4
PF3 -> Port 6
PF4 -> Port 7
PF5 -> Port 5
PF6 -> Port 3
PF7 -> Port 1

512 SDs
32K QPs
64K CQs
96 CEQs

10 SDs
1024 QPs
2048 CQs
8 CEQs

125 SDs
7936 QPs
15872 CQs
22 CEQs

102 SDs
6553 QPs
13107 CQs
19 CEQs

102 SDs
6553 QPs
13107 CQs
19 CEQs

Intel® Ethernet Controller E810 Datasheet
Initialization

394 613875-009

NOTE: This page intentionally left blank.

613875-009 395

Intel® Ethernet Controller E810 Datasheet
Power Management

Chapter 5 Power Management

This section defines how Power Management is implemented in the E810.

5.1 PCIe Power Management

5.1.1 Auxiliary Power Usage

Auxiliary power can be used for powering the E810 while the system is in low power state (D3cold). The
E810 uses the AUX_PWR pin as an indication that auxiliary power is available to it. The E810 uses this
indication to advertise D3cold wake-up support in the PMC.PME_Support field and to set the Aux Power
Detected bit in the PCIe capability structure Device Status Register. The AUX_PWR pin is strapped
during Power-On Reset (POR). The E810 only uses the auxiliary power if one of the functions requiring
it (as indicated below) are enabled (and, if auxiliary power is available). If the usage of auxiliary power
is not enabled (that is, none of the functions requiring it are enabled), the E810 must be power-gated
and does not consume auxiliary power in D3cold.

If AUX power usage during D3cold is supported (as indicated below), all of the E810’s sticky bits
preserve their values and only get reset by the power-up reset (detection of power rising).

When AUX power is applied to the E810, the actual usage of AUX power during D3cold is controlled
through the following factors:

• NVM loaded bits:

— Manageability — Bit per port loaded from NVM, which indicates if the relevant port link should
be established for EMP functionality. The E810 provides the proper clocking to establish the
required port link/s at this state.

— APME — Bit per function (loaded to PFPM_APM[PF]) indicates if the relevant PF associated to a
port link should be established to enable APM WoL. The E810 provides the proper clocking to
establish the required port link/s at this state.

• PCIe configuration bits:

— PME_En — This bit in the PMCSR PCI config space is used to determine if the E810 is allowed to
consume AUX power for WoL.

• EMP firmware decision:

— The EMP firmware might prevent the device from being power-gated in Sx states, and thus
consume auxiliary power. The E810 should be specifically configured by the EMP firmware to
provide the proper clocking or to establish the required port link/s at this state.

The following pseudo code defines AUX Power usage where APME and PME_En bits refer to a logical OR
over all the PFs attached to the port:

If (AUX_PWR = 1),
 If ((APME or EMP_LINK_ON or PME_En) = 1),
 AUX power is used to preserve link functionality.
 Else,
 Link functionality is not preserved during AUX power supply.
 End-IF
End-If

Intel® Ethernet Controller E810 Datasheet
Power Management

396 613875-009

5.1.2 PCIe Link Power Management

The PCIe link state follows the power management state of the device. Since the E810 incorporates
multiple PCI functions, the device power management state is defined as the power management state
of the most awake function:

• If any function is in D0a state in ARI mode or either D0a or D0u in non-ARI mode, the PCIe link
assumes the device is in D0 state.

• Else, If in ARI mode, at least one of the functions is in D3 state and the other functions are not in
D0a state, or if in non-ARI mode all of the functions are in the D3 state, the PCIe link assumes the
device is in D3 state.

• Else, the device is in Dr state (PE_RST_N is asserted to all functions).

The E810 supports all PCIe power management link states:

• L0 state is used in D0u and D0a states.

• The L0s state is used in D0a and D0u states each time link conditions apply.

• The L1 state is used in D0a and D0u states each time link conditions apply, as well as in the D3
state.

• The L2 state is used in the Dr state following a transition from a D3 state if PCI-PM PME is enabled.

• The L3 state is used in the Dr state following power up, on transition from D0a and also if PME is not
enabled in other Dr transitions.

Figure 5-1. Link Power Management State Diagram

L3

L1

PERST # de-
assertion

PERST #
assertion

PERST #
assertion

PERST #
assertion

Write 11 b
to Power State

Write 00b to Power
State

& master and slave
accesses disabled

Enable
master or slave

access

LAN_PWR_GOOD
assertion

L2

L0

L0s

Dr D0u

L0

L0s

D0a

D3 L1

L1

Write 00b to Power State
 & master or slave access

enabled

613875-009 397

Intel® Ethernet Controller E810 Datasheet
Power Management

While in L0 state, the E810 transitions the transmit lane(s) into L0s state once the idle conditions are
met for a period of time defined as follows.

• L0s configuration fields are:

— L0s enable — The default value of the Active State Link PM Control field in the PCIe Link Control
register is set to 00b (both L0s and L1 disabled). System software can later write a different
value into the Link Control register.

— L0s exit latency (as published in the L0s Exit Latency field of the Link Capabilities register) is
loaded from/to the GLPCI_PMSUP.L0S_EXIT_LAT NVM/register field. Separate values are loaded
when the E810 shares the same reference PCIe clock with its partner across the link, and when
the E810 uses a different reference clock than its partner across the link. The E810 reports
whether it uses the slot clock configuration through the PCIe Slot Clock Configuration bit loaded
from/to the GLPCI_PMSUP.SLOT_CLK NVM/register bit.

— L0s acceptable latency (as published in the Endpoint L0s Acceptable Latency field of the Device
Capabilities register) is loaded from the GLPCI_PMSUP.L0S_ACC_LAT NVM/register field.

The E810 transitions the link into L0s state once the PCIe link has been idle for a period of time defined
in the l0s_idle_timer field of PMIDLTMR register loaded from RO PCIe LCB module in NVM. The E810
then transitions the link into L1 state once the PCIe link has been in L0s state for a further period as
defined in the l1_idle_timer register field of the same register.

The following NVM fields control L1 behavior:

• L1 support — Indicates support for ASPM L1 in the PCIe configuration space (loaded into the Active
State Link PM Support field).

• L1 exit latency — Defines L1 active exit latency. The default value is loaded from/to the
GLPCI_PMSUP.L1_EXIT_LAT NVM/register field.

• L1 acceptable latency — Defines L1 active acceptable exit latency. The default value is loaded
from/to the GLPCI_PMSUP.L1_ACC_LAT NVM/register field.

5.1.3 Power States

The E810 supports the D0 and D3 architectural power states as described earlier. Internally, the E8100
supports the following power states:

• D0u (D0un-initialized) — An architectural sub-state of D0.

• D0a (D0active) — An architectural sub-state of D0.

• D3 — Architecture state D3hot.

• Dr — Internal state that contains the architecture D3cold state. Dr state is entered when PE_RST_N
is asserted, a PCIe in-band reset is received, or if the function is disabled.

Figure 5-2 shows the power states and transitions between them.

Note: PCI resets (cold/warm and hot) are reflected to the E8100 as primary bus reset (in case of
cold/warm reset) or secondary bus reset (in case of a hot reset).

Intel® Ethernet Controller E810 Datasheet
Power Management

398 613875-009

5.1.3.1 D0uninitialized (D0u) State

The D0u state is an architectural low-power state. In this state, the device is out of reset (conventional
and FLR) but did not complete the enumeration and configuration stage.

5.1.3.1.1 Entry to a D0u State

D0u is reached from either the Dr state (on de-assertion of internal PE_RST_N and auto-load of
hardware configuration done) or the D3hot state (by configuration software writing a value of 00b to
the Power State field of the PCI PM registers while primary and secondary accesses are disabled).
De-assertion of internal PE_RST_N causes the entire state of the E810 to be cleared except for bits
defined as sticky in configuration space. PCIe configuration is loaded from the NVM, followed by
establishment of the PCIe enumeration. Once this is done, configuration software can access the E810.

5.1.3.2 D0active (D0a) State

A E810 Function enters the D0active state whenever any single or combination of the function’s Memory
Space Enable, I/O Space Enable, or Bus Master Enable bits are enabled by system software in the PCI
Command configuration register.

In this state, it can transmit and receive packets if properly configured by the software device driver.

The PHY is enabled (or re-enabled) by the software device driver to operate/auto-negotiate to full line
speed/power if not already operating at full capability.

Figure 5-2. Power Management State Diagram

Dr D0u

D0aD3

PERST# de-
assertion

PERST#
assertion

PERST#
assertion

WR 11b to Power State

Enable
master or

slave access

Internal Power On
Reset assertion

Hot (in-band)
Reset

WR 00b to Power State
and master or slave

access enabled

FLR

613875-009 399

Intel® Ethernet Controller E810 Datasheet
Power Management

Notes:

• Wake behavior:

— An APM wake event (PM_PME message) due to reception of a Magic Packet is not generated
when the function is in D0active state.

— Any APM wake up previously active remains active when moving from D3 to D0. That is, APM
enable is loaded from NVM and is not reset by any reset but POR.

— WAKE# pin is never toggled for an APM wake event when a function is in D0.

• If APM wake is required in D3, software driver should not disable APM wake-up via clearing the
PFPM_APM.APME bit on entry into D0. Otherwise, APM wake following a system crash and entry into
S3, S4, or S5 system power management state are not enabled. Following entry into D0, software
device driver can activate the wake-up filters by writing to the Wake Up Filter Control (PFPM_WUFC)
register.

5.1.3.2.1 Entry to a D0a State

D0a is entered from either the D0u state (by writing a 1b to the Memory Access Enable or the I/O
Access Enable bit, or the BME bit of the PCI Command configuration register) or from the D3hot state
(by configuration software writing a value of 00b to the Power State field of the PCI PM configuration
registers while primary or secondary accesses is enabled). The receive and transmit flows of the
appropriate LAN function are enabled.

5.1.3.3 D3 State (PCI-PM D3hot)

The E810 functions can transition to D3 when the system writes a 11b to the Power State field of the
Power Management Control/Status Register (PMCSR). Any wake-up filter settings that were enabled
before entering this state are maintained. The E810 does not clear any bit in the PCIe configuration
space of a function during the function’s transition to D3 state. While in D3, the appropriate function of
the E810 does not generate master cycles.

Configuration and message requests are the only TLPs accepted by a function in the D3hot state. All
other received requests must be handled as unsupported requests, and all received completions are
handled as unexpected completions. If an error caused by a received TLP (such as an unsupported
request) is detected while in D3hot and reporting is enabled, the link must be returned to L0 if it is not
already in L0, and an error message must be sent. See section 5.3.1.4.1 in the PCIe Base Specification.

5.1.3.3.1 Entry to D3 State

Transition to D3 state is through a configuration write to the Power State field of the PMCSR PCIe
configuration register.

Prior to transition from D0 to the D3 state, the device driver disables scheduling of further tasks to the
E810. It masks all interrupts, and it does not write to the Transmit Descriptor Tail register or to the
Receive Descriptor Tail register.

If wake up capability is needed, system software should enable wake capability by setting to 1b the
PME_En bit in the PMCSR PCIe configuration register of the PF. After Wake capability is enabled the
software device driver should set up the required wake up functionality using the flow described in
Section 5.3.5 prior to the D3 transition.

Intel® Ethernet Controller E810 Datasheet
Power Management

400 613875-009

Notes:

• The PMCSR.PME_En bit setting can be overridden via the PFPM_APM.APME bit.

• If operation during D3cold is required, even when wake capability is not required (for example, for
manageability operation), system should also set the Auxiliary (AUX) Power PM Enable bit in the
PCIe Device Control register.

If all PCI functions are programmed into D3 state, the E810 attempts to brings its PCIe link into the L1
link state. As part of the transition into L1 state, the E810 suspends scheduling of new host TLPs, MCTP
over PCIe VDMs is not suspended. The E810 waits for the completion of all previous TLPs it has sent.
Any receive packets that have not been transferred into system memory are kept in the device (and
discarded later on D3 exit). Any transmit packets that have not be sent can still be transmitted
(assuming the Ethernet link is up).

In preparation for a possible transition to D3cold state, the device driver might disable up to all but one
of its LAN ports (LAN disable) and/or transition the remaining link(s) to GbE speed (if supported by the
network interface).

5.1.3.3.2 Exit from D3 State

A D3 state is followed by either a D0u state (in preparation for a D0a state) or by a transition to Dr
state (PCI-PM D3cold state). To transition back to D0u, the system writes a 00b to the Power State field
of the Power Management Control/Status Register (PMCSR). Transition to Dr state is through PE_RST_N
assertion.

The No_Soft_Reset bit in the PCIe Power Management Control/Status (PMCSR) register in the E810 is
always set to 1b to indicate that the E810 does not perform an internal reset on transition from D3hot to
D0, so that transition does not disrupt the proper operation of other active functions. Software is not
required to re-initialize the function’s configuration space after a transition from D3hot to D0 (the
function is in the D0 state).

The function is reset if the Link state had transition to the L2/L3 Ready state, on transition from D3cold
to D0, if FLR is asserted, or if transition D3hot to D0 is caused by assertion of PCIe reset (PE_RST pin).

5.1.3.4 Dr State (D3cold)

Transition to Dr state is initiated on system power-up. Dr state begins with the assertion of the internal
power detection circuit (LAN_PWR_GOOD) and ends after the completion of the NVM auto-load.

Any wake-up settings that were enabled before entering this reset state are maintained.

The system can maintain PE_RST_N asserted for an arbitrary time. The de-assertion (rising edge) of
PE_RST_N causes a transition to D0u state.

While in Dr state, the E810 can maintain functionality (for WoL or manageability) or can enter a Dr
Disable state (if no WoL and no manageability) for minimal device power. The Dr Disable mode is
described in Section 5.1.3.4.1.

5.1.3.4.1 Dr Disable Mode

The E810 enters a Dr disable mode on transition to D3cold state when it does not need to maintain any
functionality. The conditions to enter either state are:

• The device (all PCI functions) is in Dr state.

• APM WOL is inactive for all PCI functions.

613875-009 401

Intel® Ethernet Controller E810 Datasheet
Power Management

• Pass-through manageability is disabled.

Entry into Dr disable is usually done on assertion of PCIe PE_RST_N. It can also be possible to enter Dr
disable mode by reading the NVM while already in Dr state. The usage model for this later case is on
system power-up, assuming that manageability and wake up are not required. Once the device enters
Dr state on power-up, the NVM is read. If the NVM contents determine that the conditions to enter Dr
disable are met, the device then enters this mode (assuming that PCIe PE_RST_N is still asserted).

Exit from Dr disable is through de-assertion of PCIe PE_RST_N.

If Dr disable mode is entered from D3 state, the platform can remove the E810 power. If the platform
removes the E810 power, it must remove all power rails from the device if it needs to use this capability.
Exit from this state is through power-up cycle to the E810.

Note: The state of the TX_DIS (Optical module Tx disable connected to SDP pins) or any of the
other SDP pins is undefined once power is removed from the device.

5.1.3.4.2 Entry to Dr State

Dr entry on platform power-up is as follows:

• Assertion of the internal power detection circuit (LAN_PWR_GOOD). Device power is kept to a
minimum by keeping the network interfaces in low power.

• The NVM is then read and determines device configuration.

• If the APM Enable bit in the NVM is set, APM wake up is enabled (for each port independently).

• If the MNG Enable bit in the NVM word is set, pass-through manageability is enabled.

• Each of the LAN ports can be enabled if required for WoL or manageability. See Section 5.2 for
exact condition to enable a port.

• The PCIe link is not enabled in Dr state following system power up (since PE_RST_N is asserted).

Entry to Dr state from D0a state is through assertion of the PE_RST_N signal. An ACPI transition to the
G2/S5 state is reflected in a device transition from D0a to Dr state. The transition can be orderly (such
as a user selected a shut down operating system option), in which case the device driver can intervene.
Or, it can be an emergency transition (like power button override), in which case, the device driver is
not notified.

Transition from D3 state to Dr state is done by assertion of PE_RST_N signal. Prior to that, the system
initiates a transition of the PCIe link from L1 state to either the L2 or L3 state (assuming all functions
were already in D3 state). The link enters L2 state if PCI-PM PME is enabled.

5.1.3.5 Protocol Engine Power Save Modes

Internally, the E810 supports two modes to reduce component power opportunistically by disabling the
internal RDMA Protocol Engine (PE) via PE Clock Gating.

If the RDMA functionality is available, but not activated by software (for example, when PCIe reset is
asserted), the E810 supports clock gating the PE block. Hardware determines whether RDMA is enabled
if the GLHMC_PEHTEOBJSZ register is programmed to any non-zero value. GLHMC_PEHTEOBJSZ is
reset by CORER. As with power gating, register accesses which would be decoded to the PE block are
handled gracefully. Write transactions are silently discarded, and read accesses return deterministic
values (0xDEADBEEF).

Intel® Ethernet Controller E810 Datasheet
Power Management

402 613875-009

5.2 Network Interfaces Power Management

The E810 disables a network interface and transitions the interface into low-power state in the following
cases:

• All LAN ports are in LAN disable mode as a result of the DEV_DIS_N pin.

• Low power state functionality as described in Section 5.1.1.

When the E810 is in low-power state, it asserts the respective TX_DIS pin (connected to an SDP pin) to
enable powering down an external PHY or optical module as well.

The E810 enters Low Power Idle (LPI) mode on transmit or receive independently whenever the device
detects no data is scheduled for transmission, or the link partner indicates no data is pending for
reception

Low Power Idle (LPI) mode defined in IEEE802.3az enables power saving by switching off part of E810
functionality when no data needs to be transmitted or/and received. Decision on whether the E810
transmit path should enter Low Power Idle mode or exit Low Power Idle mode is done according to need
to transmit. Information on whether Link Partner has entered Low Power Idle mode is detected by the
E810 and utilized for power saving in the receive circuitry.

When no data needs to be transmitted a request to enter transmit Low Power Idle is issued on the
internal xxMII TX interface causing the Backplane PHY to transmit sleep symbols for a predefined period
of time followed by a quiet period. During LPI the Backplane PHY periodically transmits refresh symbols
that are used by the link partner to update adaptive filters and timing circuits in order to maintain link
integrity. This quiet-refresh cycle continues until transmission of “normal inter-frame” encoding on the
internal xxMII TX interface. The Backplane PHY communicates to the link partner the move to link
active state by sending Wake symbols for a predefined period of time. The PHY then enters normal
operating state where data or idle symbols are transmitted.

In the receive direction, entering Low Power Idle mode is triggered by the reception of sleep symbols
from the link partner. This signals that the link partner is about to enter Low Power Idle mode. After
sending the sleep symbols, the link partner ceases transmission. When the Link partner initiates the
move to LPI the Backplane PHY indicates “assert low power idle” on the internal xxMII RX interface and
the E810 receiver disables functionality to reduce power consumption.

5.2.1 Low Power Link Up (LPLU)

Auto-negotiation enables establishment of link speed at the Highest Common Denominator (HCD).
When all PCIe functions belonging to a port are in Dx low power state, and the E810 is connected to an
auxiliary power supply and main power is down, power saving might be more important than
performance.

The E810 supports a mode where it auto-negotiates to the Lowest Common Denominator (LCD) link
speed (that is, the lowest commonly-supported speed) in low power states. Initially, in this mode, the
E810 attempts to negotiate to the lowest link rate. If the link partner does not support the lowest link
rate, the E810 auto-negotiates to the lowest link rate advertised by the link partner.

613875-009 403

Intel® Ethernet Controller E810 Datasheet
Power Management

5.2.1.1 LPLU-Related Link Speed Change

Figure 5-3 describes the flow for changing the link speed when entering/existing LPLU state.

The E810 attempts to lower the link to the lowest commonly-supported speed when entering to LPLU
state. Entering LPLU state, and switching to a lower link speed is done by clearing the relevant bits in
the auto-negotiation advertised capabilities in the (internal/external) PHY configuration (advertising
only the lowest common speed), and triggering an auto-negotiation process. The device is expected to
link at lower speed as higher speeds are not advertised as supported.

Similarly, exiting LPLU state and switching to a higher link speed is done by setting the relevant bits in
the auto-negotiation advertised capabilities in the PHY configuration, and restarting auto-negotiation.
The device is now expected to link at the highest common speed.

Note: Given the above, a temporary link loss (and a disruption to traffic) is expected when
entering/exiting LPLU state.

Figure 5-3. Link Speed Change on LPLU Assert/Clear

port LPLU mode asserted

AN enable

Speed @ LCD

Restart AN to LCD

Do Nothing

NO

NO

YES

YES

port LPLU mode de-asserted

AN enable

Speed @HCD

Do Nothing

NO

YES

YES

Restart AN to HCD

NO

Intel® Ethernet Controller E810 Datasheet
Power Management

404 613875-009

5.3 Wake-Up

The E810 supports wake up functionality in accordance with the APM and ACPI specifications. The
following list provides a high-level view of the functionality supported in each specification, while the
following sub-section provide more details and elaboration.

• Advanced Power Management (APM) wake-up (enabled via PFPM_APM.APME), which means
support for wake from S5 (Soft Off) states using the well-known Magic Packet wake packet format.

• ACPI wake-up capabilities (enabled via PMCSR.PME_En):

— Link State Change (LNKC) wake-up, which means the ability to wake up the host from S5 when
a LAN link state goes up.

— Magic Packet (MAG) wake-up, which means support for wake from S5 (Soft Off) states using
the well-known Magic Packet wake packet format.

— Firmware Reset (FW_RST_WK) wake-up, which means the ability to wake up the host from S5
when an EMPR event occurs.

— Manageability (MNG) wake-up, which means the ability for the EMP to wake up the host from
S5, on its own initiative. No usage model is actually defined for this option.

These wake-up mechanisms are basically controlled by the PF via the corresponding bit in the
PFPM_WUFC and PFPM_WUS registers.

5.3.1 Advanced Power Management Wake-Up

This feature has existed in the 10/100 Mb/s NICs for several generations. System was activated from
S3, S4, or S5 low power states on reception of a Magic Packet, which is a broadcast or unicast packet
with an explicit data pattern. On reception of a Magic Packet, the E810 can wake up the system by also
asserting the PCIe PE_WAKE_N signal and optionally via an in-band PM_PME message.

APM wake-up operation is controlled by the per-PF APM Control (PFPM_APM) register. At power-up, the
E810 reads the APM Enable bit from the NVM into the APM Enable (PFPM_APM.APME) bit. This bit is
used to enable WoL by overriding the PME_En bit. This bit controls enabling of the APM wake-up.
Software enables or disables APM wake-up using the flows described in Section 5.3.5.1 and
Section 5.3.5.2, respectively.

When APM wake-up is enabled, the E810 checks all incoming packets passing L2 filters (BCST, MCST,
UCST) for Magic Packets. See Section 5.3.3.1.1 for a definition of Magic Packets. BCST and UCST
(according to PFPM_SAL/H that are loaded from NVM and properly assigned by firmware to the
PRTPM_SAL/H registers) Magic Packet filtering is enabled by default. To enable promiscuous MCST
Magic Packets, WoL PRTPM_SAH.MC_MAG_EN must be set to 1b.

Once the E810 receives a matching Magic Packet, and the PFPM_APM.APME bit is set to 1b, it executes
the ACPI flow described in Section 5.3.5.3.

Note: When the PFPM_APM.APME bit is set, a wake event is issued (PE_WAKE_N pin is asserted and
a PM_PME PCIe message is issued), even if the PMCSR.PME_En bit in configuration space is
cleared. To disable system wake-up when PMCSR.PME_En is cleared, software driver should
clear the PFPM_APM.APME bit after power-up or PCIe reset.

613875-009 405

Intel® Ethernet Controller E810 Datasheet
Power Management

5.3.2 ACPI Power Management Wake-Up

The E810 supports ACPI power management-based wake-up. It can generate system wake-up events
from a number of sources:

• Detection of a change in network link (cable connected or disconnected).

• Firmware Reset (FW_RST_WK) wake-up, which means the ability to wake up the host from S5
when an EMPR event occurs.

• Magic Packet (MAG) wake-up, which means support for wake from S5 (Soft Off) states using the
well-known Magic Packet wake packet format.

• Manageability (MNG) wake up, which means the ability for the EMP to wake up the host from S5, on
its own initiative. No usage model is actually defined for this option.

Note: ACPI wake-up operation is controlled by the per-PF Wake Up Filter Control (PFPM_WUFC)
register, and wake-up status is reported in the per PF Wake Up Status (PFPM_WUS) register.
In the PCIe configuration space, the PMCSR register supports wake up. Software enables
ACPI wake-up using the flow described in Section 5.3.5.

5.3.3 Wake-Up Filters

The E810 supports issuing wake-up indication to the Host on reception of non-errored packets when the
device is in D3 low power state or in Dr with WoL enabled, using Magic Packet filters set from NVM.

Support of wake-up in Dr is only if the AUX_PWR bit is asserted.

5.3.3.1 Wake-Up Filter Types

Magic Packets are detected per-PF by the E810 as a possible wake-up.

5.3.3.1.1 Magic Packet

Magic Packets are defined in http://support.amd.com/TechDocs/20213.pdf as:

“Once the LAN controller has been put into the Magic Packet mode, it scans all incoming frames
addressed to the node for a specific data sequence. This sequence indicates to the controller that
this is a Magic Packet frame. A Magic Packet frame must also meet the basic requirements for the
LAN technology chosen, such as Source Address, Destination Address (which can be the receiving
station's IEEE address or a Multicast address which includes the Broadcast address), and CRC. A
Magic Packet must also be a valid non error L2 packet. The specific data sequence consists of 16
repetitions of the IEEE address of this node, with no breaks or interruptions. This sequence can be
located anywhere within the packet, but must be preceded by a synchronization stream. The
synchronization stream allows the scanning state machine to be much simpler. The synchronization
stream is defined as 6 bytes of 0xFF. The device will also accept a Broadcast frame, as long as the
16 repetitions of the IEEE address match the address of the machine to be awakened.”

The E810 expects the destination address to either:

• Be the broadcast address (FF.FF.FF.FF.FF.FF).

• Match the value of the port L2 Ethernet destination MAC Address (DA) set by firmware to the
relevant filters PRTPM_SAL/H.

http://support.amd.com/TechDocs/20213.pdf

Intel® Ethernet Controller E810 Datasheet
Power Management

406 613875-009

On power-up, the firmware loads the PRTPM_SAL/H addresses from NVM, each address entry contains:

• MAC Address for Magic Packet filtering.

• Address Valid (AV) indication.

• Promiscuous Multicast magic filtering enable (MC) indicating the L2 destination address can be any
multicast address.

• The PF number (PF_NUM) to be reported if a Magic Packet matches this filter.

The firmware uses the PFGEN_PORTNUM registers to map the per PF MAC Address to the relevant
ports.

The E810 searches for the contents of the port’s Ethernet Destination MAC Address Receive Address as
the embedded IEEE address. It considers any non-0xFF byte after a series of at least 6 0xFFs to be the
start of the IEEE address for comparison purposes. For example, it catches the case of 7 0xFFs followed
by the IEEE address). As soon as one of the first 96 bytes after a string of 0xFFs do not match, it
continues to search for another set of at least 6 0xFFs followed by the 16 copies of the IEEE address
later in the packet.

Note: This definition precludes the first byte of the destination address from being FF.

A Magic Packet's destination address must match the address filtering enabled in the configuration
registers, with the exception that broadcast packets are considered to match even if broadcast packet
reception is not enabled. If APM wake-up (wake-up by a Magic Packet) is enabled in the NVM, the E810
starts up with the Ethernet MAC Destination Address loaded from the NVM. This enables the E810 to
accept packets with the matching IEEE address before the software device driver loads.

5.3.4 Wake-Up and Virtualization

When operating in a virtualized environment, all wake-up capabilities are managed by a single entity
(such as the VMM or an IOVM). In an IOV architecture, the physical (PF) driver controls wake-up and
none of the Virtual Machines (VMs) has direct access to the wake-up registers. The wake-up registers
are not replicated per VF.

Table 5-1. Magic Packet Structure

Offset # of Bytes Field Value Action Comment

0 6 Destination Address Compare MAC header – processed by main
address filter.

6 6 Source Address Skip

12 T=(0/4/8) Possible STag Skip

12 + T S=(0/4) Possible VLAN Tag Skip

12 + T + S D=(0/8) Possible Length + LLC/SNAP Header Skip

12 + T+ S + D 2 Type Skip

Any 6 Synchronizing Stream FF*6+ Compare

Any+6 96 16 copies of Node Address A*16 Compare
Compared to relevant Station
Addresses (PRTPM_SAH,
PRTPM_SAL) registers.

613875-009 407

Intel® Ethernet Controller E810 Datasheet
Power Management

5.3.5 Wake-Up Flows

5.3.5.1 Wake-Up Enable Flow

A WoL register set exists in each PF. Each set consists of the following wake-up filters and registers:

• PFPM_WUC — Wake Up Control Register.

• PFPM_WUS — Wake Up Status Register.

On power-up, values loaded from the NVM into the following per PF register define enablement of APM
wake-up functionality:

• The NVM APM Enable bit is loaded to the PFPM_APM.APME register bit to enable detection of a Magic
Packet destined to the PF.

Note: The EN_APM_D0 bit also enables the wake functionality in ACPI mode while the device is in
D0. Therefore, if any of the ACPI wake filters are enabled (See Section 5.3.2) and wake
events in DO are not desired, EN_APM_DO must be cleared by the software. Similarly, if
software wishes to enable wake events in D0, the EN_APM_D0 bit must be set by the
software in addition to enabling the relevant ACPI wake filters.

5.3.5.2 Wake-Up Disable Flow

Once the E810 wakes the system following transition to D0, the software driver can disable
Wake-on-LAN directly by:

1. Clearing all the pending wake-up status bits in the Wake Up Status (PFPM_WUS) register.

2. Clearing the relevant bits in the PFPM_WUC register.

Note: This flow is not used by regular Intel drivers.

5.3.5.3 ACPI Wake-Up Flow

Once wake up is enabled, the E810 monitors the enabled wake functions. If at least one of the enabled
wake events occurs, the E810 does the following:

• Sets the PME_Status bit in the PFPM_WUS and PCI PMCSR registers.

• Sets the proper bit, corresponding to the wake reason in PFPM_WUS:

— LINKC for link status change.

— MAG for Magic Packet reception.

— MNG for general manageability wake-up.

— FW_RST_WK for EMP reset event.

• If the PME_En bit in the PMCSR configuration register is set, asserts PE_WAKE_N and/or sends a
PM_PME PCIe message.

Note: The PE_WAKE_N signal remains asserted, PM_PME Messages are periodically sent to the host,
and the E810 ignores any subsequent ACPI wake-up packets and link change events for that
function until the operating system either writes a 1b to the PME_Status bit of the PMCSR
register or writes a 0b to the PME_En bit, or until de-assertion of PERST.

Intel® Ethernet Controller E810 Datasheet
Power Management

408 613875-009

NOTE: This page intentionally left blank.

613875-009 409

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

Chapter 6 Non-Volatile Memory Map

Note: In the tables of this chapter, contents of the Default NVM Value column might not reflect
the value programmed in the specific NVM image provided to the customer.

6.1 NVM Organization

Note: All the offsets in this chapter are relative to the E810 Configuration region. This region is
located in the flash at offset 4 KB as described in Section 3.4.2.1. So to obtain the actual
offset in the flash, 0x800 should be added to the requested word address.

6.1.1 NVM Map High Level

Table 6-1. Flat NVM Map - High Level

Area Section Size
(Words) Description

Shadow RAM -
Non-Preserved Init Module 256 Pointers to other sections and legacy software word.

Shadow RAM -
Preserved PFA Area 12K A set of TLV sections as described in section TBD containing all the

information that should be preserved across updates.

Shadow RAM -
Non-Preserved

Auto-Load Sections Variable Sections containing the auto-loaded registers at different resets.

EMP Configuration Sections Variable Sections containing configurations of the EMP. Includes EMP SR
settings, manageability sections and OEM sections.

Shadow Ram -
Second Copy SRb 32K A second copy of the Shadow RAM for updates.

Flash

NVM Bank 1
Signed section containing the basic map from which all the other
maps are generated via adaptive NVM. It also contains a copy of the
Shadow RAM and extended mini-loader.

NVM Bank 2 A second copy of the NVM Bank for updates.

OROM Section Signed section containing the Option ROM image.

OROM Section - Second Copy A second copy of the OROM section for updates.

Extended TLVs - 1st Copy Extension of the PFA module.

Extended TLVs - 2nd Copy

Scratch Pad Area Areas used for data not double banked.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

410 613875-009

6.1.2 NVM Header

Table 6-2 lists the format of the NVM Header section. It includes words with specific content and
pointers to the first level of NVM modules.

• Items which are pointers to modules end with the pointer in there name.

— The pointer to non-Shadow RAM modules that are part of NVM bank are relative to the
beginning of the Flash, assuming 1st NVM bank is valid. In case the 2nd NVM bank is valid,
there is a need to add NVM Bank Area Size to the pointer.

— The pointer to Shadow RAM modules are relative to the beginning of the Shadow RAM.

• The “For Section [Auth] column indicates the following for modules pointed by pointers in the
header:

— Auth - The pointed module is authenticated.

— Adaptive - Format of pointed module is Authenticated, but content can be changed by adaptive
NVM flows.

— RW - The module is read/write.

A read-only item can be written only when in the blank Flash programming mode.

• The “CSR Format” column indicates whether the pointed module uses the formats described in
Section 6.1.3.\

• The “Module is in Shadow RAM” column indicates whether the module is mapped into the basic
banks mirrored into the internal Shadow RAM. If marked as No, the most significant bit of the
pointer (Bit 15) must be set to 1b to indicate that the pointer value (in Bits 14:0) is expressed in
4 KB sector units. Otherwise, it is expressed in word units.

Table 6-2. NVM Header Map

Word
Address

Pointed Module/Word
Name

For Section
[Auth] Accessed by Loading

Trigger CSR Format Module is in
Shadow RAM

0x00 NVM Control Word 1 EMP POR

0x01 Non-Persistent End Pointer EMP No Yes

0x02 Last PFA Word Pointer No Yes

0x03 - 0x05 Reserved

0x06 RO PCIR Registers Auto-Load
Module Pointer Auth EMP PCIR Yes Yes

0x07 Auto Generated Pointers
Pointer Auth EMP/SW POR No Yes

0x08 Reserved

0x09 EMP Global Module Pointer Auth EMP GLOBR No No

0x0A Guarded Zone Pointer Hidden from
Software EMP No No

0x0B EMP Image Pointer Auth EMP EMPR No No

0x0C PE Image Pointer Auth PE CORER No No

0x0D Reserved

0x0E Manageability Module Pointer Adaptive EMP EMPR No Yes

0x0F EMP Settings Module Pointer Auth EMP CORER/EMPR No No

613875-009 411

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x10 SW Compatibility Word 1 SW/BIOS POR

0x11 SW Compatibility Word 2 SW/BIOS POR

0x12 SW Compatibility Word 3 SW/BIOS POR

0x13 SW Compatibility Word 4 SW/BIOS POR

0x14 SW Compatibility Word 5 SW/BIOS POR

0x15 PBA Flags SW/BIOS POR

0x16 PBA Block Pointer Auth SW/BIOS POR No Yes

0x17 Reserved

0x18 Software Reserved Word 1 -
Dev Starter Revision SW/BIOS/EMP POR

0x19 Software Reserved Word 2 SW/BIOS POR

0x1A Software Reserved Word 3 SW/BIOS POR

0x1B Software Reserved Word 4 SW/BIOS POR

0x1C Software Reserved Word 5 SW/BIOS POR

0x1D Software Reserved Word 6 SW/BIOS POR

0x1E Software Reserved Word 7 SW/BIOS POR

0x1F Software Reserved Word 8 SW/BIOS POR

0x20 Software Reserved Word 9 SW/BIOS POR

0x21 Software Reserved Word 10 SW/BIOS POR

0x22 Software Reserved Word 11 SW/BIOS POR

0x23 Software Reserved Word 12 SW/BIOS POR

0x24 Software Reserved Word 13 SW/BIOS POR

0x25 Software Reserved Word 14 SW/BIOS POR

0x26 Software Reserved Word 15 SW/BIOS POR

0x27 Software Reserved Word 16 SW/BIOS POR

0x28 Software Reserved Word 17 SW/BIOS POR

0x29 Software Reserved Word 18 -
Map Version SW/BIOS POR

0x2A Software Reserved Word 19 -
NVM Image Version SW/BIOS POR

0x2B Software Reserved Word 20 -
NVM Structure Version SW/BIOS POR

0x2C Software Reserved Word 21

0x2D Software Reserved Word 22 -
EETRACK ID 1 SW/BIOS POR

0x2E Software Reserved Word 23 -
EETRACK ID 2 SW/BIOS POR

0x2F - 0x32 Reserved

0x33 IBA Capabilities BIOS POR

Table 6-2. NVM Header Map [continued]

Word
Address

Pointed Module/Word
Name

For Section
[Auth] Accessed by Loading

Trigger CSR Format Module is in
Shadow RAM

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

412 613875-009

0x34 Software Reserved Word 24 -
Original EETRACK ID 1 BIOS POR

0x35 Software Reserved Word 25 -
Original EETRACK ID 2 BIOS POR

0x36 - 0x3A Reserved

0x3B GLOBR Registers Auto-Load
Pointer Adaptive EMP GLOBR Yes Yes

0x3C CORER Registers Auto-Load
Pointer Adaptive EMP CORER Yes Yes

0x3D PHY Configuration Scripts
Pointer Auth EMP POR No No

0x3E Reserved

0x3F Reserved (was: Software
Checksum) - moved to PFA

0x40 Preserved Field Area Pointer RO SW/EMP POR No Yes

0x41 Reserved

0x42 1st NVM Bank pointer RO EMP N/A No No

0x43 NVM Bank Area Size EMP

0x44 1st OROM Bank pointer RO EMP N/A No No

0x45 OROM Bank Area Size RO EMP

0x46 1st TLV Extension Bank Pointer RW EMP

0x47 TLV Extension Bank Area Size EMP

0x48 EMP SR Settings Pointer Adaptive EMP EMPR Yes

0x49 Reserved

0x4A PE CORER Registers Auto-Load
Pointer CORER1

0x4B Link Topology Scratch Pad Area
Pointer RW SW POR No No

0x4C Link Topology Scratch Pad Area
Size SW POR

0x4D Configuration Metadata Pointer Auth EMP EMPR No No

0x4E - 0x4F Reserved

0x50 FW Scratch Pad Area Pointer RW EMP No No

0x51 FW Scratch Pad Area Size EMP No

0x52 Reserved

0x53 PE Settings Module Pointer Auth PE CORER No No

0x54 PHY Core Post PLL
Configuration Module Pointer Auth EMP POR No No

0x55 Soft SKUs EMP No

0x56 External CORER Registers
Auto-load Pointer Auth EMP CORER Yes No

0x57 Reserved

Table 6-2. NVM Header Map [continued]

Word
Address

Pointed Module/Word
Name

For Section
[Auth] Accessed by Loading

Trigger CSR Format Module is in
Shadow RAM

613875-009 413

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.1.3 Structure of NVM Modules

An NVM module read by the EMP to configure hardware (as listed Table 6-2) is built according to one of
the following structures:

• Fixed Functionality Structure — Each NVM word is allocated to one or more fixed fields, and the
contents of the NVM word are loaded to fixed CSRs in the E810. In Table 6-2, these modules are
referred to as CSR format = No modules.

• Flexible Functionality Module — The structure defines the device address or addresses into
which the NVM words are loaded. Therefore, the module might be used for different purposes based
on its contents. In Table 6-2, these modules are referred as CSR format = Yes modules.

The remainder of this section describes the structure of the contents of a flexible functionality module
(excluding the module header described in Section 6.1.5). The general structure of the module is shown
in Figure 6-1.

A CSR format module can be made of a mix of repeating Type 1, 2, 3 and 4 segments. Type 5 should be
kept separate. Each segment is described by its own header (the shaded fields in Figure 6-1).

A sideband CSR format module includes a special Type F - subtype 0 segment, which includes the
information needed to access the sideband module. The rest of the module can be made of a mix of
repeating Type 1, 2, and 5 segments. This kind of module can only be loaded by firmware without any
hardware acceleration. The Type F segment can repeat several times inside the module and is used to
change access parameters to the sideband module. The sideband CSR format module is described in
Section 6.1.3.6.

0x58 DCB Rx Module Pointer Auth EMP No

0x59 - 0x5A Reserved

0x5B DCB Rx Module Pointer Auth EMP CORER Yes No

0x5C DCB Tx Module Pointer Auth EMP CORER Yes No

0x5D Allowlist Pointer EMP CORER

0x5E Sideband Auto-Load Pointer EMP CORER

0x5F RDE Dictionaries Pointer EMP EMPR No

0x60 Reserved

0x61 Factory Setting Pointer EMP

0x62 Factory Setting Size EMP

1. Loaded after a CORER and Protocol Engine is enabled.

Table 6-2. NVM Header Map [continued]

Word
Address

Pointed Module/Word
Name

For Section
[Auth] Accessed by Loading

Trigger CSR Format Module is in
Shadow RAM

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

414 613875-009

Following are descriptions of the fields in Figure 6-1:

• (Port) Address — A 28-bit value that defines the starting address to which data DWords are
loaded. Serves as either a direct address to load into (Types 1 and 2), or as an indirect address
referred to as a port address (Type 3 and 4). A port is made of a 32-bit address register followed by
data registers of total size width. Address low is a 12-bit field mapped to Word[15:4].

• Type — A 4-bit command field mapped to Word[3:0] bits that defines the type of flexible module.
Descriptions are as follows:

— Type 1 (0001b) — Loads a single 32-bit data segment.

— Type 2 (0010b) — Load a set of 32-bit data DWords into consecutive addresses.

— Type 3 (0011b) — Loads a set of 32-bit data DWords through an address port.

— Type 4 (0100b) — Loads, through an address port, a sequence of data blocks into arbitrary
addresses.

— Type 5 (0101b) - Loads a single 64-bit data segment.

— Type F (1111b) - Used to define access parameters to sideband module.

• Attributes — A 16-bit optional word that defines attributes of the module:

— Width — A 3-bit field mapped to Word[2:0] bits that describes the width (in 32-bit DWords) of
a data element.

• 000b = Data is 32-bits wide.

• 001b = Data is 64-bits wide.

• 010b = Data is 128-bits wide.

• 011b = Data is 256-bits wide.

• Else = Reserved.

Figure 6-1. Structure of a Flexible Functionality Module

(Port) Address Low + Type
NVM Word

(Port) Address High
Attributes (Types 2 and 3 only)

Payload Element 0

Payload Element 1

...

Payload Element (Last)

613875-009 415

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

— Skip — A 2-bit field mapped to Word[4:3] bits that describes the number of address bytes to
be skipped for getting the address of the next payload element (Type 2) or port register
involved (Type 3 or 4).

• 00b = Skip 4 bytes.

• 01b = Skip 8 x 4 bytes = 32 bytes.

• 10b = Skip 32 x 4 bytes = 128 bytes.

• 11b = Skip 0 bytes.

— Length — An 11-bit field mapped to Word[15:5] bits that contains the number of data
elements, each of Width bits. Length of zero is illegal.

• Payload Elements — A sequence of address or data elements to be loaded into the E810. The
structure of the Payload field varies with each type and is described in the sections that follow.

6.1.3.1 Type 1 Module

Used to specify a single 32-bit data segment.

• The Address field defines the address into which the 32-bit data is loaded. See Figure 6-2.

The common use of a Type 1 module is to concatenate a list of such structure to load a set of 32-bit
values into various CSRs.

6.1.3.2 Type 2 Module

Used to load a sequence of data into consecutive addresses, such as a memory array. See Figure 6-3.

• The Address field defines the first address to be loaded. Data is loaded as width-size elements into
consecutive addresses.

• The Attributes field applies the following information:

— Width = 000b

— Skip = see previous description

— Length = see previous description

Figure 6-2. Structure of a Type 1 Module

Address Low + Type
NVM Word

Address High
Data Low
Data High

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

416 613875-009

6.1.3.3 Type 3 Module

Used to load a sequence of data through an address port.

Figure 6-4 shows the structure of a Type 3 module. The following fields have special values:

• The Port Address field defines the address of the port address register through which address/data
is loaded. The Port Address register is followed by the Port Data registers.

• The Attributes field applies with the following fields:

— Width — The size of a single data element written into the port during one port load cycle.

— Length — Number of data elements written through the port.

— Skip — Encodes the number of bytes between the addresses of the port registers involved.

• The Indirect Address field defines the first consecutive address to write to. It is written into the Port
Address register for the first item and from then on the indirect address is increased (by the E810)
with each write of a new data element from the list. Consecutive data elements are written into the
port.

• The Data Element fields are made of length elements, each of the width DWords. Each port load
cycle handles one data element

Figure 6-3. Structure of a Type 2 Module

Address Low + Type
NVM Word

Address High
Attributes
Data 0 Low
Data 0 High
Data 1 Low
Data 1 High

...

Data (Last) Low
Data (Last) High

613875-009 417

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

The following figures describe two cases of using a Type 3 module:

• Figure 6-5 shows a case of loading 32-bit values into a Global (GL) port.

• Figure 6-6 shows a case of loading 64-bit values into a PRT port.

Figure 6-4. Structure of a Type 3 Module

Figure 6-5. Access Through a Type 3 Module of 32-Bit Wide Data Elements

(Port) Address Low + Type
NVM Word

(Port) Address High
Attributes

Indirect Address Low
Indirect Address High

Data Element 0

Data Element 1

...

Data Element (Last)

Indirect Address Data 0, Word Low
Data 0, Word High
Data 1, Word Low
Data 1, Word High

...

Port Address

Data Port Address + 4

NVM word

Data 2, Word Low
Data 2, Word High

Data N, Word Low
Data N, Word High

Register (4 bytes)

Word High Word Low

Skip = 00bIndirect Address + 1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

418 613875-009

6.1.3.4 Type 4 Module

Used to load, through an address port, a sequence of scattered data elements at arbitrary addresses.

Figure 6-7 shows the structure of a Type 4 module. The following fields have special values:

• The Port Address field defines the address of the port address register through which address/data
is loaded. The port address register is followed by the port data registers.

• The Attributes field applies with the following fields:

— Width — The size of a single data element written into the port during one port load cycle.

— Length — Number of data elements written through the port, not including the indirect address
words (the words colored in gray in Figure 6-8 and Figure 6-9).

— Skip — Encodes the number of bytes between the addresses of the port registers involved.

• The Indirect Address fields define the address that the following data element is written into. It is
written into the Port Address register.

• The Data Element is written into the port data register. The sequence of writing (the Indirect
Address and its Data Element) into the port is repeated per each data element (length times).

Figure 6-6. Access Through a Type 3 Module of 64-Bit Wide per-Port Data Elements

Indirect Address Data 0 Low, Word Low
Data 0 Low, Word High
Data 0 High, Word Low
Data 0 High, Word High

...

Port Address

Data Low Port Address + 32

NVM word

Data 1 Low, Word Low
Data 1 Low, Word High
Data 1 High, Word Low
Data 1 High, Word High

Data N Low, Word Low
Data N Low, Word High
Data N High, Word Low
Data N High, Word High

Data High Port Address + 64

Register (4 bytes)

Word High Word Low

Skip = 01b

Skip = 01b

Indirect Address + 1

613875-009 419

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

The following figures show two cases of using a Type 4 module:

• Figure 6-8 shows a case of loading 32-bit values into a global (GL) port.

• Figure 6-9 shows a case of loading 64-bit values into a PRT port.

Figure 6-7. Structure of a Type 4 Module

(Port) Address Low + Type
NVM Word

(Port) Address High
Attributes

Indirect Address Low
Indirect Address High

Data Element 0

Data Element 1

...

Data Element (Last)

Indirect Address Low
Indirect Address High

Indirect Address Low
Indirect Address High

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

420 613875-009

Figure 6-8. Access Through a Type 4 Module of 32-Bit Wide Data Elements

Figure 6-9. Access Through a Type 4 Module of 64-Bit Wide per-Port Data Elements

Indirect Address

Data 0, Word Low
Data 0, Word High

Data 1, Word Low
Data 1, Word High

...

Port Address

Data Port Address + 4

NVM word

Data N, Word Low
Data N, Word High

Register (4 bytes)

Word High Word Low

Indirect Address Low
Indirect Address High

Skip = 00b

Indirect Address Low
Indirect Address High

Indirect Address Low
Indirect Address High

Indirect Address

Data 0 Low, Word Low
Data 0 Low, Word High

...

Port Address

Data Low Port Address + 32

NVM word Register (4 bytes)

Word High Word Low

Indirect Address Low
Indirect Address High

Data High Port Address + 64
Word High Word Low

Skip = 01b

Skip = 01b

Data 0 High, Word Low
Data 0 High, Word High

Data 1 Low, Word Low
Data 1 Low, Word High
Data 1 High, Word Low
Data 1 High, Word High

Data N Low, Word Low
Data N Low, Word High
Data N High, Word Low
Data N High, Word High

Indirect Address Low
Indirect Address High

Indirect Address Low
Indirect Address High

613875-009 421

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.1.3.5 Type 5 Module

Used to load, a single 64-bit data segment addressed by 32-bit address. Firmware handles this module
type without any hardware acceleration. It is intended for loading into external IPs.

6.1.3.6 Type F Module

This is a special type, which is not used to directly load a specific address, but it is used to indicate
specific access conditions for the register in the auto-load module. Specifically, subtype 0 within Type F
module indicates that this module is used to load sideband device. A Type F module should be followed
by one or more Type 1,2 or 5 modules, which indicates the actual data to load. Figure 6-11 describes
the format of Type F, subtype 0.

Two additional 16-bits word are attached to Type F, subtype 0, with the following indications:

• Opcode — A 4-bit value that defines the sideband opcode that is used for loading the data in the
following Type 1, 2, or 5 modules. Type 1 and 5 should typically use post or non-posted MWr or
CRWr opcodes. Type 2 might use posted or non-posted MBWr opcode.

• Select ID - Indicates the sideband device to be loaded.

• BAR - Indicates BAR number of the sideband address (ignored - set to zero).

Figure 6-10. Structure of a Type 5 Module

Figure 6-11. Structure of a Type F Module

Address Low + Type
NVM Word

Address High
Data Word 0 (LSB)

Data Word 1
Data Word 2

Data Word 3 (MSB)

Type = F

NVM Word

Opcode

Subtype = 0 (IOSF-SB/RDA)

AL BARTAG Select ID
4 bits

Function IDFirst Byte EnSecond Byte En
4 bits

8 bits

1 3 bits3 bits 4 bits

4 bits4 bits

12 bits

R
1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

422 613875-009

• AL — Address length flag. Indicates the length of the sideband address. For a 16-bit address, the
16 low significant bits are taken from the 28 bits of Type 1, 2, or 5 address. For a 48-bit address,
the 28 bits of Type 1, 2, or 5 address are taken and padded with 20 bits of 0.

— 0 = 16-bit address

— 1 = 48-bit address

• TAG - Indicates TAG field of the sideband command (ignored - set to zero).

• R - Reserved. Set to 0.

• Function ID - Indicates the function ID of the sideband transaction (ignored - set to zero).

• First Byte Enable - Indicates the byte enable bits for the first 32 bits word written.

• Second Byte Enable - Indicates the byte enable bits for the second 32 bits word written.

Figure 6-12 illustrates the format of a Type F Auto-Load section.

Figure 6-12. Type F Auto-Load Section

613875-009 423

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.1.3.7 Format of the Hardware Modules in Flash

Some modules are not loaded directly from the Shadow RAM but read from Flash to the local RAM by
firmware before loading to the hardware. Such modules could be too big to be copied to the local RAM
as a single chunk. They could also be too big to be loaded with the hardware accelerator in a single run.

The module structure described shown in Figure 6-13 allows reading the module from NVM in chunks,
which fit the allocated buffer in the local RAM and can be sent to the hardware accelerator. The chunk
size is up to 4 KB. All length values are in 16-bit words not including the length itself. The firmware
reads the module content chunk by chunk to the local RAM and runs the hardware accelerator for the
loaded chunk.

6.1.3.8 Auto-Generated Pointers

Type 1 and Type 2 items are generated by the auto map generation tool from the project’s register
database. These items are automatically mapped into the Registers Auto-Load NVM modules according
to their loading trigger (see Table 6-2) and with no possibility to perform manual changes.

EMP code and software tools cannot accommodate these variations in mapping offset. Hence, they need
a fixed method for accessing some predefined Type 1/2 items. The Auto-Generated Pointers module is
pointed to by NVM Word 0x07. It lists the mapping address in NVM of the pre-defined Type 1/2 items
via a 2-word structure per item.

The word address in Shadow RAM of an item is given by the sum of the contents of its two associated
words: pointer + offset. If the item is relative to an array of registers and/or to a register with a scope
different than global, the offset is given for the first data word of the Type 1/2 array, for array instance
[0] and scope instance [0].

In the Auto-Generated Pointers module, the location of the 2-word structures relative to an item is
made invariant along the project’s life. The alias name of the Type 1/2 register appears in the names of
the two words in the structure.

See Auto-Generated Pointers module on the detailed NVM map for the list of auto-generated pointers
(Section 6.3.68).

Figure 6-13. Format of Hardware Modules in Flash

Module length Low
NVM Word

Module length High
Chunk 1 length

Data Word 0
Data Word 1

...
Last Data Word in chunk 1

Chunk 2 length
Data Word 0

...

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

424 613875-009

6.1.4 NVM Integrity Checks by Software

This section describes the NVM integrity fields inserted in the E810 NVM map to provide a basic
detection of a faulty Flash part.

A software checksum is performed by the PF driver just after completion of its initialization sequence. It
covers only PFA modules and the init section modules, which are mapped into Shadow RAM.

If the checks fails, another try is attempted, and if it fails again, the PF driver disables Tx/Rx operations
with the E810.

Modules mapped outside the Shadow RAM are signed, except for the scratch pad areas. EMP is
responsible for checking the signature of the modules at POR/EMPR.

6.1.4.1 Software Checksum

The Software Checksum section (TLV Type 0x3F in PFA) covers the PFA content (reserved words
included).

The Software Checksum word in the TLV above is computed such that after adding all the covered
words, including the Software Checksum word itself, the sum is 0xBABA.

Each time software tools are modifying one of these areas, EMP updates the Software Checksum field
accordingly.

Each time EMP is updating the contents of one of these areas by its own initiative (not as part of an
NVM Update AQ command) or for handling an MC command received over SMBus or NC-SI, it also
updates the Software Checksum field accordingly.

The software device driver can check if the checksum is valid using the NVM Checksum Command
(0x0706). See Section 3.4.10.7.

6.1.5 Header of NVM Modules

6.1.5.1 Header of All NVM Modules Mapped to Shadow RAM

Modules read by hardware do not contain pointers to sub-modules and they are not authenticated.

Table 6-3. NVM Header of Modules Mapped to Shadow RAM

Number of
Words Field or Segment Name Description and Comments

1 Module Length
Length of the module contents expressed in words (Module Length field excluded). It
must be set to N.
Modules are size limited to the size of the Shadow RAM (64 KB).

N

Word 1

Word 2

...

Word N

613875-009 425

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.1.5.2 Header of Authenticated NVM Modules

This section concerns the following modules:

• NVM Bank (pointed by NVM word 0x42).

• Option ROM (pointed by NVM word 0x44).

For the NVM Bank, the first 330 words listed in Table 6-4 are mapped at the beginning of the module.

For the Option ROM, the first 330 words listed in Table 6-4 are mapped at the end of the area allocated
to the module (at its trailer), though for the sake of the authentication, these words are mapped at the
module's header, as listed in Table 6-4.

In Table 6-4, fields colored in cyan are protected by the authentication signature.

6.1.5.3 Module TypeIDs

Each module has a TypeID. The TypeID uniquely identifies the module. The TypeID is used in admin
commands to access the module. All modules can be read through the TypeID without knowing the
exact location of the module in the NVM. PFA modules that allow direct update can be written using
their TypeID.

Table 6-4. Header of Authenticated NVM Modules

Number
of Words Field or Segment Name Description and Comments

64 CSS Header Refer to Section 3.4.9.2.

128 RSA Public Key Refer to Section 3.4.9. This field is skipped due to SHA256 Hash computing.

2 RSA Exponent Refer to Section 3.4.9. This field is skipped due to SHA256 Hash computing.

128 Encrypted SHA256 Hash Refer to Section 3.4.9. This field is skipped due to SHA256 Hash computing.

1 E810 Blank NVM Device ID
A unique, Intel-provided Device ID that identifies the E810 controller among other
Intel controllers. It must be set to 0x1590 in 25x25 mm package and 0x1598 in the
21x21 mm package.

2 Max Module Area
It is the maximum Flash area expressed in words that can be used by the module,
starting from CSS header (included). It is set to 580K words (1160 KB) for an EMP
and PE image modules and to 4K words (8 KB) for other authenticated modules.

2 Current Module Area It is the Flash area expressed in words that is currently used by the module,
starting from CSS header (included).

1 Module Format Version + CRC8

Bit 15 = CRC8 field is used. Set to 1b if a CRC8 is computed over the module, set
to 0b otherwise. It is not used and must always be set to 0b.

Bits 14:8 = Module format version. Set to 0x02 to use the currently-defined format.
Bits 7:0 = CRC8 value.

1 Code Revision
Bits 15:8 = Major revision number.
Bits 7:0 = Minor revision number.

1 Reserved Spare Word Must be zeroed.

N

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

426 613875-009

Table 6-5 list the TypeIDs of all of the modules in the NVM.

Table 6-5. Module TypeID Table

Module
TypeID Section In PFA Read Only

0x00 Reserved (Has special meaning in admin commands) N/A

0x03 GFID Module No N/A

0x06 RO PCIR Registers Auto-Load Module RO

0x07 Auto Generated Pointers Module RO

0x08 PCIR Registers Auto-Load Module RO

0x09 EMP Global Module RO

0x0A Guarded Zone Module RO

0x0B EMP Image Module RO

0x0C PE Image Module RO

0x0E Manageability Module RO

0x0F EMP Settings Module RO

0x16 PBA Block Module Yes RO after manufacturing

0x2F VPD Module Yes RW via VPD access

0x38 POR Registers Auto-Load Module RO?

0x3B GLOBR Registers Auto-Load Module RO

0x3C CORER Registers Auto-Load Module RO

0x3D PHY Configuration Scripts Module RO

0x3F PFA Checksum Module Yes RO

0x40 Preserved Field Area Module Yes RO

0x42 1st NVM Bank Module Writable through authenticated update

0x44 1st OROM Bank Module Writable through authenticated update

0x46 1st TLV Extension Bank Module RW

0x48 EMP SR Settings Module RO

0x49 Feature Configuration Module Yes Writable via ANVM only

0x4A PE CORER Registers Auto-Load Module RO

0x4B Link Topology Scratch Pad Area Module RO

0x4D Configuration Metadata Module RO

0x4E Immediate Values Module Yes Writable via ANVM only

0x4F 1588 Parameters Module Yes RW

0x50 FW Scratch Pad Area Module RW

0x53 PE Settings Module RO

0x54 PHY Core Post PLL Configuration Module RO

0x56 External CORER Registers Auto-Load Module RO

0x58 FW Switch Parameters Module RO

0x5B HLP Scratch Pad Area Module

0x107 MNG Filters Module Yes RW

613875-009 427

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x108 Pass-through Control Words Structure 0 Module Yes RW

0x109 Pass-through Control Words Structure 1 Module Yes RW

0x10A Pass-through Control Words Structure 2 Module Yes RW

0x10B Pass-through Control Words Structure 3 Module Yes RW

0x10C Original EETrack ID Module Yes ?

0x10F PF MAC Addresses Module Yes RW

0x110 MNG MAC Addresses Module Yes RW

0x113 Early PCIR Auto-Load Module (512 bytes) Yes RO

0x114 Pass-Through Control Words Structure 4 Module Yes RW

0x115 Pass-Through Control Words Structure 5 Module Yes RW

0x116 Pass-Through Control Words Structure 6 Module Yes RW

0x117 Pass-Through Control Words Structure 7 Module Yes RW

0x118 Early POR Auto-Load Module (512 bytes) Yes RO

0x119 PSM Preserved Module Yes RW

0x11B Link Topology Netlist Module No Updateable via Netlist update flow

0x11D UART Debug Defaults Module Yes RW

0x120 Link Topology Module Yes RW

0x127 Component Image Set Version String Yes RW

0x128 OEM-Specific Modules Yes RW

0x129 LLDP Preserved Yes RW

0x130 MinSrev Yes RW (with limitations)

0x131 Redfish to the Endpoint (RDE) Parameters Yes RW

0x132 CIVD Yes RW (as part of NVM update)

0x133 PCIe Serial Number Yes RO after manufacturing

0x134 Link Default Override Yes RW

0x135 RDMA Control Yes RW

0x136 Redfish to the Endpoint (RDE) Parameters - Part II Yes RW

0x137 Default DCB Parameters Yes RW

0x138 Current DCB Parameters Yes RW

0x139 HII Port Disable by Function Yes RW

0x14A OEM RoT Key Revocation Module Yes RW

0x14B Tx Scheduler Topology User Selection (TST-US) Yes RW

0x14D LLDP Preserved 2 Yes RO (updated via RDE)

0x14E WA Enable Flags Yes RO

0x14F FRU Data TLV Yes RO

0xFFFF Padding Module Yes RO

Table 6-5. Module TypeID Table [continued]

Module
TypeID Section In PFA Read Only

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

428 613875-009

6.1.5.4 Preserved Fields Area Structure

The PFA is a structure built as a set of TLVs as follows:

• PFA Header

— First word of PFA is the Length. Current value is 23 KB in Words (0x2F00).

• PFA Sub-Modules Format

— The PFA Sub-Modules is in Type-Length-Data (TVL) Format.

— Every TLV Type appears only once.

— TLVs can come in any order, in Shadow RAM or in the Extension TLV area.

— TLVs Format:

• TypeID — 1 Word (taken from Table 6-5 only types that exists in PFA).

• Length — 1 Word: Max area provisioned for the section.

• Data — A variable number of words according to the Length field.

6.1.6 Adaptive NVM Structures

6.1.6.1 Metadata Structure

Metadata is a structure within the signed area that describes the different features, immediate fields
and information on how to modify them.

The structure of the metadata is as follows:

6.1.6.1.1 Feature Fields Module

The feature fields module contains the following sub-modules:

• Features Header Array

— Contain a list of features, where each feature specifies number of options and fields.

— Points to feature configuration pointer array and feature field description.

• Features Configuration Option Array

— Contain a list of options, where each option points to a feature data array.

• Features Field Descriptor Array

— Contain a list of fields, where each field is identified by its NVM address and mask.

Section Length (1W) Super Feature Module Offset
(1W) Immediate Module Offset (1W) Reserved (1W)

Features Fields Module

Super-features Fields Module

Immediate Fields Module

Description Text Module

CRC8 (1W)

613875-009 429

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

• Features Data Array

— Contains a list of data per field.

Figure 6-14 describes the connection between the various feature tables.

6.1.6.1.1.1 Features Header Array

The features header array is built as follows:

Figure 6-14. Feature Tables Diagram

Number of
Features (1W)

Feature ID (0)
1W

Pointer1 to
Description Text

1W

1. The pointer is the word offset inside the metadata.

Feature (0)
Flags 1W

Number of
Options 1W

Number of
Fields 1W

Pointer to
Options Array

1W

Pointer to Fields
Descriptor Array

1W

Feature ID (1)
1W

Pointer to
Description Text

1W

Feature (1)
Flags 1W

Number of
Options 1W

Number of
Fields 1W

Pointer to
Options Array

1W

Pointer to Fields
Descriptor Array

1W

...

Feature ID (n)
1W

Pointer to
Description Text

1W

Feature (n)
Flags 1W

Number of
Options 1W

Number of
Fields 1W

Pointer to
Options Array

1W

Pointer to Fields
Descriptor Array

1W

Features
Header
Array

Options
Array

Fields descriptor Array

Feature Data Array

Feature Data Array

options
Array

Feature Data Array

Feature Data Array

Fields descriptor Array

feature: 0...i-1
options: 0...ji-1
fields: 0...ki-1

0

i-1

0

ji-1-1

0 ki-1-1

Config.

0

ji-1

0 ki-1

j0,k0

ji-1,ki-1

Config.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

430 613875-009

The feature flags are as follows:

6.1.6.1.1.2 Features Configuration Option Array

The features configuration option array is described as follows:

6.1.6.1.1.3 Feature Field Descriptor Array – Case 1

• DWord flag = 0

• i = 0...Number of features -1

• j = 0...Number of fields -1

6.1.6.1.1.4 Feature Field Descriptor Array – Case 2 (Generic)

• DWord flag = 1

• i = 0...Number of features -1

• j = 0...Number of fields -1

Bit(s) Content

15:4 Reserved

3 DWord

2 Hidden1

1. The hidden flag is set by default for features included in a super-feature.

1 Reserved

0 OEM2

2. Feature cannot be set by software as adaptive NVM feature. It is set during map generation per OEM.

Option ID (0) 1W Pointer1 to Option Description Text 1W

1. The pointer is the word offset inside the metadata.

Pointer in Features Data Array 1W

Option ID (1) 1W Pointer to Option Description Text 1W Pointer in Features Data Array 1W

...

Option ID (n) 1W Pointer to Option Description Text 1W Pointer in Features Data Array 1W

Field[0] (0) Address1 2W

1. The address is the absolute word address from the beginning of the NVM.

Field[0] (0) Mask 1W ... Field[0] (j) Address 2W Field[0] (j) Mask 1W

Field[1] (0) Address 2W Field[1] (0) Mask 1W ... Field[1] (j) Address 2W Field[1] (j) Mask 1W

Field[i] (0) Address 2W Field[i] (0) Mask 1W ... Field[i] (j) Address 2W Field[i] (j) Mask 1W

Field[0] (0)
Address1 2W

1. The address is the absolute word address from the beginning of the NVM.

Field[0] (0)
Mask LSB 1W

Field[0] (0)
Mask MSB 1W

Reserved
2W ... Field[0] (j)

Address 2W
Field[0] (j)

Mask LSB 1W
Field[0] (j)

Mask MSB 1W
Reserved

2W

Field[1] (0)
Address 2W

Field[1] (0)
Mask LSB 1W

Field[1] (0)
Mask MSB 1W

Reserved
2W ... Field[1] (j)

Address 2W
Field[1] (j)

Mask LSB 1W
Field[1] (j)

Mask MSB 1W
Reserved

2W

Field[i] (0)
Address 2W

Field[i] (0)
Mask LSB 1W

Field[i] (0)
Mask MSB 1W

Reserved
2W ... Field[i] (j)

Address 2W
Field[i] (j)

Mask LSB 1W
Field[i] (j)

Mask MSB 1W
Reserved

2W

613875-009 431

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.1.6.1.1.5 Feature Field Descriptor Array – Case 2

• DWord flag = 1

— If field is a POR CSR:

THEN the CSR address is attached.

ELSE 0xFFFFFFFF to other fields of this feature.

• i = 0...Number of features -1

• j = 0...Number of fields -1

6.1.6.1.1.6 Feature Data Array

The fourth part of a featured fields module includes a 3D (ixjxk) feature data array.

Each data cell is by default 1W width.

If a DWord is set, it is 2W.

• i = 0...Number of features -1

• j = 0...Number of options -1

• k = 0...Number of fields -1

Note: Number of options and Number of fields are feature-dependent. See Section 6.1.6.1.1.1.

Field[0] (0)
Address1

2W

1. The address is the absolute word address from the beginning of the NVM.

Field[0] (0)
Mask LSB

1W

Field[0] (0)
Mask MSB

1W

Field[0] (0)
CSR Address2

LSB 1W

2. The CSR address is added to enable E810 firmware patches (update CSR on next reset). The CSR address is the physical address
of this CSR.

Field[0] (0)
CSR Address

MSB 1W
... Field[0] (j)

Address 2W

Field[0] (j)
Mask LSB

1W

Field[0] (j)
Mask MSB

1W

Field[0] (j)
CSR Address

LSB 1W

Field[0] (j)
CSR Address

MSB 1W

Field[1] (0)
Address 2W

Field[1] (0)
Mask LSB

1W

Field[1] (0)
Mask MSB

1W

Field[1] (0)
CSR Address

LSB 1W

Field[1] (0)
CSR Address

MSB 1W
... Field[1] (j)

Address 2W

Field[1] (j)
Mask LSB

1W

Field[1] (j)
Mask MSB

1W

Field[1] (j)
CSR Address

LSB 1W

Field[1] (j)
CSR Address

MSB 1W

Field[i] (0)
Address 2W

Field[i] (0)
Mask LSB

1W

Field[i] (0)
Mask MSB

1W

Field[i] (0)
CSR Address

LSB 1W

Field[i] (0)
CSR Address

MSB 1W
... Field[i] (j)

Address 2W

Field[i] (j)
Mask LSB

1W

Field[i] (j)
Mask MSB

1W

Field[i] (j)
CSR Address

LSB 1W

Field[i] (j)
CSR Address

MSB 1W

Feature(0)

Data[0] (0) Data[0] (1) ... Data[0] (k)

Data[1] (0) Data[1] (1) ... Data[1] (k)

Data[j] (0) Data[j] (1) ... Data[j] (k)

Feature(1)

Data[0] (0) Data[0] (1) ... Data[0] (k)

Data[1] (0) Data[1] (1) ... Data[1] (k)

Data[j] (0) Data[j] (1) ... Data[j] (k)

Feature(i)

Data[0] (0) Data[0] (1) ... Data[0] (k)

Data[1] (0) Data[1] (1) ... Data[1] (k)

Data[j] (0) Data[j] (1) ... Data[j] (k)

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

432 613875-009

6.1.6.1.2 Super-Feature Fields Module Structure

The super-feature fields module contains the following sub-modules:

• Super-Features Header Array

— Contains a list of supper-features, where for each super-feature, the number of options and
number of Feature Configuration IDs (FCIDs) is specified.

— Points to Super-features Configuration Option Array.

• Super-Features Configuration Option Array

— Contain a list of options, where each options points to a Super-Features Data Array.

• Super-Features Data Array

— Contain a list of (Feature ID, Feature Configuration option number) pairs.

Figure 6-15 describes the connection between the various feature tables.

Figure 6-15. Super-Feature Tables Diagram

Features
Header
Array

Options
Array

Super-Feature Data Array

feature: 0...i-1
options: 0...ji-1
FCIDs: 0...ki-1

0

i-1

0

ji-1-1

0 ki-1-1

Config.

0

ji-1

j0,k0

ji-1,ki-1

Super- Features
Super-

Options
Array

Config.
Features
Super-

Super-Feature Data Array

Super-Feature Data Array

Super-Feature Data Array

0 ki-1-1

613875-009 433

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.1.6.1.2.1 Super-Feature Header Array

6.1.6.1.2.2 Super-Feature Configuration Option Array

6.1.6.1.2.3 Super-Feature Data Array

3D (ixjxk) super-feature data array with a 2W data size.

• i = 0...Number of super-features -1

• j = 0...Number of options -1

• k = 0...Number of FCIDs -1

Number of Super-
Features (1W)

Super-feature ID
(0) 1W

Pointer1 to
Description Text 1W

1. The pointer is the word offset inside the metadata.

Feature (0) Flags2
1W

2. Feature flags bit 0 is the OEM flag. Other bits are reserved in this DCR.

Number of Options
1W

Number of
selectable FCIDs

1W

Pointer to Options
Array 1W

Super-feature ID
(1) 1W

Pointer to
Description Text 1W

Feature (1) Flags
1W

Number of Options
1W

Number of
Selectable FCIDs

1W

Pointer to Options
Array1W

...

Super-feature ID
(n) 1W

Pointer to
Description Text 1W

Feature (n) Flags
1W

Number of Options
1W

Number of
Selectable FCIDs

1W

Pointer to Options
Array 1W

Super-feature Option ID (0) 1W Pointer1 to Option Description Text 1W

1. The pointer is the word offset inside the metadata.

Pointer in Super-Features Data Array 1W

Super-feature Option ID (1) 1W Pointer to Option Description Text 1W Pointer in Super-Features Data Array 1W

...

Super-feature Option ID (n) 1W Pointer to Option Description Text 1W Pointer in Super-Features Data Array 1W

Super-Feature(0)

Data[0] (0) 2W Data[0] (1) 2W ... Data[0] (k) 2W

Data[1] (0) 2W Data[1] (1) 2W ... Data[1] (k) 2W

Data[j] (0) 2W Data[j] (1) 2W ... Data[j] (k) 2W

Super-Feature(1)

Data[0] (0) 2W Data[0] (1) 2W ... Data[0] (k) 2W

Data[1] (0) 2W Data[1] (1) 2W ... Data[1] (k) 2W

Data[j] (0) 2W Data[j] (1) 2W ... Data[j] (k) 2W

Super-Feature(i)

Data[0] (0) 2W Data[0] (1) 2W ... Data[0] (k) 2W

Data[1] (0) 2W Data[1] (1) 2W ... Data[1] (k) 2W

Data[j] (0) 2W Data[j] (1) 2W ... Data[j] (k) 2W

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

434 613875-009

6.1.6.1.3 Immediate Fields Module

The immediate ID allows to change predefined fields through management commands without knowing
their location in the NVM. The location is written in the module specified as follows:

The immediate fields module flags are as follows:

6.1.6.1.4 Description Text Module

Number of
Immediate Fields

(1W)

Immediate ID (0) 1W Pointer1 to
Description Text 1W

1. The pointer is the word offset inside the metadata.

Immediate Flags 1W Mask 1W Word Address2 LSB
1W

2. Word address is the word offset inside the metadata.

Word Address MSB
1W

Immediate ID (1) 1W Pointer to Description
Text 1W Immediate Flags 1W Mask 1W Word Address LSB

1W
Word Address MSB

1W

...

Immediate ID (i)3 1W

3. i=0...Number of immediate fields-1.

Pointer to Description
Text 1W

Immediate Flags (i)3
1W Mask 1W Word Address LSB

1W
Word Address MSB

1W

Bit(s) Content

15:5 Reserved

4 Always preserved1

1. This flag indicates that this field is preserved in case of partial preservation.

3 Pattern=0

2 Hidden

1 Reserved

0 OEM2

2. 2.Feature cannot be set by software as adaptive NVM feature. It is set during map generation per OEM.

Description (0) Length 1W X words description in ASCII

Description (1) Length 1W Y words description in ASCII

... ...

Description (n) Length 1W Z words description in ASCII

613875-009 435

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.1.6.2 Feature Configuration

This section contains the current configurations chosen for the specific image. It is stored in the PFA
with a TLV Type of 0x49.

Section Length is in word units, excluding the section length itself.

FCID is the feature configuration ID and consists of these four bytes:

• Feature Major #

• Feature Minor #

• Configuration Major #

• Configuration Minor #

FCID also represents the order of features in the adaptive NVM tool.

Notes:

• Super-features have FCID = 0xFXXX (0xFFFF value is reserved).

• Super-feature FCIDs should precede subordinated features FCIDs (or feature FCIDs placeholders).

• The feature configuration section can be finished by an end-of-list string of 0xFFFF + padding zeros.

6.1.6.3 Immediate Field Values

This section contains the current configurations chosen for the specific image that are immediate fields.
It is stored in the PFA and pointed from address 0x4E.

Section Length is in word units and excludes the section length itself.

Immediate ID has 1 Word – Major # (1B) and Minor # (1B).

The immediate ID number should be unique on a per-project step.

• n=0...Number of immediate fields-1.

• The immediate field configuration section can be finished by an end-of-list string of 0xFFFF +
padding zeros.

Section Length 1W FCID (0) 2W FCID (1) 2W ... FCID (n) 2W

Section Length 1W Immediate Field ID (0) 2W Data (0) 1W ... Immediate Field ID (n) 1W Data (n) 1W

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

436 613875-009

6.2 PLDM Header

6.2.1 PLDM Header Section

This section is part of the PLDM package header. The PLDM header is not part of the NVM image.

Table 6-6. PLDM Header Section Summary Table

Word Address Used By Word Name Section
Reference

0x0000 HW PackageHeaderIdentifier_0 6.2.1.1

0x0001 HW PackageHeaderIdentifier_1 6.2.1.2

0x0002 HW PackageHeaderIdentifier_2 6.2.1.3

0x0003 HW PackageHeaderIdentifier_3 6.2.1.4

0x0004 HW PackageHeaderIdentifier_4 6.2.1.5

0x0005 HW PackageHeaderIdentifier_5 6.2.1.6

0x0006 HW PackageHeaderIdentifier_6 6.2.1.7

0x0007 HW PackageHeaderIdentifier_7 6.2.1.8

0x0008 HW FormatRevision_HeaderSize_LSB 6.2.1.9

0x0009 HW Headersize_MSB 6.2.1.10

0x000A HW ReleaseDateTime_0 6.2.1.11

0x000B HW ReleaseDateTime_1 6.2.1.12

0x000C HW ReleaseDateTime_2 6.2.1.13

0x000D HW ReleaseDateTime_3 6.2.1.14

0x000E HW ReleaseDateTime_4 6.2.1.15

0x000F HW ReleaseDateTime_5 6.2.1.16

0x0010 HW ComponentBitmapBitLength 6.2.1.17

0x0011 HW PackageVersionStringType_Length 6.2.1.18

0x0012 HW PackageVersionString_0 6.2.1.19

0x0013 HW PackageVersionString_1 6.2.1.20

0x0014 HW PackageVersionString_2 6.2.1.21

0x0015 HW PackageVersionString_3 6.2.1.22

0x0016 HW PackageVersionString_4 6.2.1.23

0x0017 HW PackageVersionString_5 6.2.1.24

0x0018 HW PackageVersionString_6 6.2.1.25

0x0019 HW PackageVersionString_7 6.2.1.26

0x001A HW PackageVersionString_8 6.2.1.27

0x001B HW DeviceIDRecordCount and Last Byte of PackageVersionString 6.2.1.28

0x001C HW Recordlength 6.2.1.29

0x001D HW DescriptorCount and DeviceUpdateOptionFlags LSB 6.2.1.30

0x001E HW DeviceUpdateOptionFlags - Middle 6.2.1.31

613875-009 437

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x001F HW DeviceUpdateOptionFlags - MSB and String Type 6.2.1.32

0x0020 HW ComponentImageSetVersionStringLength and FirmwareDevicePackageDataLength -
LSB 6.2.1.33

0x0021 HW FirmwareDevicePackageDataLength - MSB and ApplicableComponents 6.2.1.34

0x0022 HW ComponentImageSetVersionString_0 6.2.1.35

0x0023 HW ComponentImageSetVersionString_1 6.2.1.36

0x0024 HW ComponentImageSetVersionString_2 6.2.1.37

0x0025 HW ComponentImageSetVersionString_3 6.2.1.38

0x0026 HW ComponentImageSetVersionString_4 6.2.1.39

0x0027 HW ComponentImageSetVersionString_5 6.2.1.40

0x0028 HW ComponentImageSetVersionString_6 6.2.1.41

0x0029 HW ComponentImageSetVersionString_7 6.2.1.42

0x002A HW ComponentImageSetVersionString_8 6.2.1.43

0x002B HW InitialDescriptorType 6.2.1.44

0x002C HW InitialDescriptorLength 6.2.1.45

0x002D HW InitialDescriptorData 6.2.1.46

0x002E HW AdditionalDescriptorType - DeviceID 6.2.1.47

0x002F HW AdditionalDescriptorLength - DeviceID 6.2.1.48

0x0030 HW AdditionalDescriptorIdentifierData - Device ID 6.2.1.49

0x0031 HW AdditionalDescriptorType - SubVendorID 6.2.1.50

0x0032 HW AdditionalDescriptorLength - SubVendorID 6.2.1.51

0x0033 HW AdditionalDescriptorIdentifierData - SubVendorID 6.2.1.52

0x0034 HW AdditionalDescriptorType - SubSystemD 6.2.1.53

0x0035 HW AdditionalDescriptorLength - SubSystemD 6.2.1.54

0x0036 HW AdditionalDescriptorIdentifierData - SubSystemD 6.2.1.55

0x0037 HW FirmwareDevicePackageData - Header 6.2.1.56

0x0038 HW FirmwareDevicePackageData - GFID TLV Type 6.2.1.57

0x0039 HW FirmwareDevicePackageData - GFID TLV Length 6.2.1.58

0x003A HW FirmwareDevicePackageData - GFID TLV Value - Current GFID IANA 6.2.1.59

0x003B HW FirmwareDevicePackageData - GFID TLV Value - Current GFID DeviceID 6.2.1.60

0x003C HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros 6.2.1.61

0x003D HW FirmwareDevicePackageData - GFID TLV Value - Current GFID.SOFTFUSE 6.2.1.62

0x003E HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros1 6.2.1.63

0x003F HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros2 6.2.1.64

0x0040 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros3 6.2.1.65

0x0041 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros4 6.2.1.66

0x0042 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros5 6.2.1.67

0x0043 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros6 6.2.1.68

Table 6-6. PLDM Header Section Summary Table [continued]

Word Address Used By Word Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

438 613875-009

0x0044 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros7 6.2.1.69

0x0045 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros8 6.2.1.70

0x0046 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros9 6.2.1.71

0x0047 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros10 6.2.1.72

0x0048 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros11 6.2.1.73

0x0049 HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros12 6.2.1.74

0x004A HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros13 6.2.1.75

0x004B HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros14 6.2.1.76

0x004C HW FirmwareDevicePackageData - GFID TLV Value - Original GFID IANA 6.2.1.77

0x004D HW FirmwareDevicePackageData - GFID TLV Value - Original GFID DeviceID 6.2.1.78

0x004E HW FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros 6.2.1.79

0x004F HW FirmwareDevicePackageData - GFID TLV Value - Original GFID.SOFTFUSE 6.2.1.80

0x0050 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros1 6.2.1.81

0x0051 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros2 6.2.1.82

0x0052 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros3 6.2.1.83

0x0053 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros4 6.2.1.84

0x0054 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros5 6.2.1.85

0x0055 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros6 6.2.1.86

0x0056 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros7 6.2.1.87

0x0057 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros8 6.2.1.88

0x0058 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros9 6.2.1.89

0x0059 HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros10 6.2.1.90

0x005A HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros11 6.2.1.91

0x005B HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros12 6.2.1.92

0x005C HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros13 6.2.1.93

0x005D HW FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros14 6.2.1.94

0x005E HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV - Update Type 6.2.1.95

0x005F HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV - Update Length 6.2.1.96

0x0060 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV - TLV Type 6.2.1.97

0x0061 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV - Update Offset 6.2.1.98

0x0062 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV - Data Length 6.2.1.99

0x0063 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_0 6.2.1.100

0x0064 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_1 6.2.1.101

0x0065 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_2 6.2.1.102

0x0066 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_3 6.2.1.103

Table 6-6. PLDM Header Section Summary Table [continued]

Word Address Used By Word Name Section
Reference

613875-009 439

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x0067 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_4 6.2.1.104

0x0068 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_5 6.2.1.105

0x0069 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_6 6.2.1.106

0x006A HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_7 6.2.1.107

0x006B HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_8 6.2.1.108

0x006C HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_9 6.2.1.109

0x006D HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_10 6.2.1.110

0x006E HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_11 6.2.1.111

0x006F HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_12 6.2.1.112

0x0070 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_13 6.2.1.113

0x0071 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_14 6.2.1.114

0x0072 HW FirmwareDevicePackageData - Additional TLVs - PLDM TLV -
ComponentImageSetVersionString_15 6.2.1.115

0x0073 HW FirmwareDevicePackageData - Additional TLVs - PXE TLV - Update Type 6.2.1.116

0x0074 HW FirmwareDevicePackageData - Additional TLVs - PXE TLV - Update Length 6.2.1.117

0x0075 HW FirmwareDevicePackageData - Additional TLVs - PXE TLV - TLV Type 6.2.1.118

0x0076 HW FirmwareDevicePackageData - Additional TLVs - PXE TLV - Update Offset 6.2.1.119

0x0077 HW FirmwareDevicePackageData - Additional TLVs - PXE TLV - Data Length 6.2.1.120

0x0078 HW FirmwareDevicePackageData - Additional TLVs - PXE TLV - Version 6.2.1.121

0x0079 HW FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Update Type 6.2.1.122

0x007A HW FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Update Length 6.2.1.123

0x007B HW FirmwareDevicePackageData - Additional TLVs - CIVD TLV - TLV Type 6.2.1.124

0x007C HW FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Update Offset 6.2.1.125

0x007D HW FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Data Length 6.2.1.126

0x007E HW FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Version High 6.2.1.127

0x007F HW FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Version Low 6.2.1.128

0x0080 - 0x00A8 HW Reserved 6.2.1.129

0x00A9 HW FirmwareDevicePackageData - Additional TLVs - VPD Update - Update Type 6.2.1.130

0x00AA HW FirmwareDevicePackageData - Additional TLVs - VPD Update - Update Length 6.2.1.131

0x00AB HW FirmwareDevicePackageData - Additional TLVs - VPD Update - VPD V0 Key 6.2.1.132

0x00AC HW FirmwareDevicePackageData - Additional TLVs - VPD Update - Data Length 6.2.1.133

0x00AD HW FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 0 6.2.1.134

Table 6-6. PLDM Header Section Summary Table [continued]

Word Address Used By Word Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

440 613875-009

0x00AE HW FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 1 6.2.1.135

0x00AF HW FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 2 6.2.1.136

0x00B0 HW FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 3 6.2.1.137

0x00B1 HW FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 4 6.2.1.138

0x00B2 HW FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 5 6.2.1.139

0x00B3 HW FirmwareDevicePackageData - Additional TLVs 6.2.1.140

0x00B4 HW FirmwareDevicePackageData - Additional TLVs - IBA TLV - Update Type 6.2.1.141

0x00B5 HW FirmwareDevicePackageData - Additional TLVs - IBA TLV - Update Length 6.2.1.142

0x00B6 HW FirmwareDevicePackageData - Additional TLVs - IBA TLV - TLV Type 6.2.1.143

0x00B7 HW FirmwareDevicePackageData - Additional TLVs - IBA TLV - Update Offset 6.2.1.144

0x00B8 HW FirmwareDevicePackageData - Additional TLVs - IBA TLV - Data Length 6.2.1.145

0x00B9 HW FirmwareDevicePackageData - Additional TLVs - IBA TLV - Version 6.2.1.146

0x00BA HW ComponentImageCount 6.2.1.147

0x00BB HW ComponentClassification 6.2.1.148

0x00BC HW ComponentIdentifier 6.2.1.149

0x00BD HW ComponentComparisonStamp LSB 6.2.1.150

0x00BE HW ComponentComparisonStamp MSB 6.2.1.151

0x00BF HW ComponentOptions 6.2.1.152

0x00C0 HW RequestedComponentActivationMethod 6.2.1.153

0x00C1 HW ComponentLocationOffset LSB 6.2.1.154

0x00C2 HW ComponentLocationOffset MSB 6.2.1.155

0x00C3 HW ComponentSize LSB 6.2.1.156

0x00C4 HW ComponentSize MSB 6.2.1.157

0x00C5 HW ComponentVersionStringTypeAndLength 6.2.1.158

0x00C6 HW ComponentVersionString- Dev Starter Major 6.2.1.159

0x00C7 HW ComponentVersionString - Dev Starter Minor 6.2.1.160

0x00C8 HW ComponentVersionString - EETRACK-ID MSB 6.2.1.161

0x00C9 HW ComponentVersionString - EETRACK-ID LSB 6.2.1.162

0x00CA HW ComponentVersionString - Dot and Srev Byte 7 6.2.1.163

0x00CB HW ComponentVersionString - Srev Bytes 6-5 6.2.1.164

0x00CC HW ComponentVersionString - Srev Bytes 4-3 6.2.1.165

0x00CD HW ComponentVersionString - Srev Bytes 2-1 6.2.1.166

0x00CE HW ComponentVersionString - Srev Byte 0 and Null 6.2.1.167

0x00CF HW ComponentClassification 6.2.1.168

0x00D0 HW ComponentIdentifier 6.2.1.169

0x00D1 HW ComponentComparisonStamp LSB 6.2.1.170

0x00D2 HW ComponentComparisonStamp MSB 6.2.1.171

Table 6-6. PLDM Header Section Summary Table [continued]

Word Address Used By Word Name Section
Reference

613875-009 441

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x00D3 HW ComponentOptions 6.2.1.172

0x00D4 HW RequestedComponentActivationMethod 6.2.1.173

0x00D5 HW ComponentLocationOffset LSB 6.2.1.174

0x00D6 HW ComponentLocationOffset MSB 6.2.1.175

0x00D7 HW ComponentSize LSB 6.2.1.176

0x00D8 HW ComponentSize MSB 6.2.1.177

0x00D9 HW ComponentVersionStringTypeAndLength 6.2.1.178

0x00DA HW ComponentVersionString - CIVD High MSB 6.2.1.179

0x00DB HW ComponentVersionString - CIVD High LSB 6.2.1.180

0x00DC HW ComponentVersionString - CIVD Low MSB 6.2.1.181

0x00DD HW ComponentVersionString - CIVD Low LSB 6.2.1.182

0x00DE HW ComponentVersionString - Dot and Srev Byte 7 6.2.1.183

0x00DF HW ComponentVersionString - Srev Bytes 6-5 6.2.1.184

0x00E0 HW ComponentVersionString - Srev Bytes 4-3 6.2.1.185

0x00E1 HW ComponentVersionString - Srev Bytes 2-1 6.2.1.186

0x00E2 HW ComponentVersionString - Srev Byte 0 and Null 6.2.1.187

0x00E3 HW ComponentClassification 6.2.1.188

0x00E4 HW ComponentIdentifier 6.2.1.189

0x00E5 HW ComponentComparisonStamp LSB 6.2.1.190

0x00E6 HW ComponentComparisonStamp MSB 6.2.1.191

0x00E7 HW ComponentOptions 6.2.1.192

0x00E8 HW RequestedComponentActivationMethod 6.2.1.193

0x00E9 HW ComponentLocationOffset LSB 6.2.1.194

0x00EA HW ComponentLocationOffset MSB 6.2.1.195

0x00EB HW ComponentSize LSB 6.2.1.196

0x00EC HW ComponentSize MSB 6.2.1.197

0x00ED HW ComponentVersionStringTypeAndLength 6.2.1.198

0x00EE HW ComponentVersionString - ReleaseVersion Major Bytes 7-6 6.2.1.199

0x00EF HW ComponentVersionString - ReleaseVersion Major Bytes 5-4 6.2.1.200

0x00F0 HW ComponentVersionString - ReleaseVersion Major Bytes 3-2 6.2.1.201

0x00F1 HW ComponentVersionString - ReleaseVersion Major Bytes 1-0 6.2.1.202

0x00F2 HW ComponentVersionString - Dot and ReleaseVersion Minor Byte 7 6.2.1.203

0x00F3 HW ComponentVersionString - ReleaseVersion Minor Bytes 6-5 6.2.1.204

0x00F4 HW ComponentVersionString - ReleaseVersion Minor Bytes 4-3 6.2.1.205

0x00F5 HW ComponentVersionString - ReleaseVersion Minor Bytes 2-1 6.2.1.206

0x00F6 HW ComponentVersionString - ReleaseVersion Minor Byte 0 and Dot 6.2.1.207

0x00F7 HW ComponentVersionString - ReleaseVersion Type Bytes 7-6 6.2.1.208

Table 6-6. PLDM Header Section Summary Table [continued]

Word Address Used By Word Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

442 613875-009

6.2.1.1 PackageHeaderIdentifier_0 (0x0000)

6.2.1.2 PackageHeaderIdentifier_1 (0x0001)

6.2.1.3 PackageHeaderIdentifier_2 (0x0002)

6.2.1.4 PackageHeaderIdentifier_3 (0x0003)

0x00F8 HW ComponentVersionString - ReleaseVersion Type Bytes 5-4 6.2.1.209

0x00F9 HW ComponentVersionString - ReleaseVersion Type Bytes 3-2 6.2.1.210

0x00FA HW ComponentVersionString - ReleaseVersion Type Bytes 0-1 6.2.1.211

0x00FB HW ComponentVersionString - Dot and Customer Netlist IANA Byte 7 6.2.1.212

0x00FC HW ComponentVersionString - Customer Netlist IANA Bytes 6-5 6.2.1.213

0x00FD HW ComponentVersionString - Customer Netlist IANA Bytes 4-3 6.2.1.214

0x00FE HW ComponentVersionString - Customer Netlist IANA Bytes 2-1 6.2.1.215

0x00FF HW ComponentVersionString - Customer Netlist IANA Byte 0 and Dot 6.2.1.216

0x0100 HW ComponentVersionString - Customer Netlist Version Bytes 3-2 6.2.1.217

0x0101 HW ComponentVersionString - Customer Netlist Version Bytes 1-0 6.2.1.218

0x0102 HW ComponentVersionString - Nulls 6.2.1.219

0x0103 HW PackageHeaderChecksum - LSB 6.2.1.220

0x0104 HW PackageHeaderChecksum - MSB 6.2.1.221

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderIdentifier 0x18F0

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderIdentifier 0x18F0

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderIdentifier 0x7DCB

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderIdentifier 0x4349

Table 6-6. PLDM Header Section Summary Table [continued]

Word Address Used By Word Name Section
Reference

613875-009 443

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.5 PackageHeaderIdentifier_4 (0x0004)

6.2.1.6 PackageHeaderIdentifier_5 (0x0005)

6.2.1.7 PackageHeaderIdentifier_6 (0x0006)

6.2.1.8 PackageHeaderIdentifier_7 (0x0007)

6.2.1.9 FormatRevision_HeaderSize_LSB (0x0008)

6.2.1.10 Headersize_MSB (0x0009)

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderIdentifier 0x0098

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderIdentifier 0x2FA0

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderIdentifier 0x9A05

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderIdentifier 0x02CA

Bit(s) Field Name Default
NVM Value Description

15:8 HeaderSize_LSB

7:0 FormatRevision 0x01

Bit(s) Field Name Default
NVM Value Description

15:8 RelelaseDateTimeUTC_offset_LSB 0x0 timestamp104 byte 0.

7:0 Headersize_MSB

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

444 613875-009

6.2.1.11 ReleaseDateTime_0 (0x000A)

6.2.1.12 ReleaseDateTime_1 (0x000B)

6.2.1.13 ReleaseDateTime_2 (0x000C)

6.2.1.14 ReleaseDateTime_3 (0x000D)

6.2.1.15 ReleaseDateTime_4 (0x000E)

6.2.1.16 ReleaseDateTime_5 (0x000F)

Bit(s) Field Name Default
NVM Value Description

15:8 RelelaseDateTimeMsec_0 0x0 timestamp104 byte 2.

7:0 RelelaseDateTimeUTC_offset_MSB_by 0x0 timestamp104 byte 1.

Bit(s) Field Name Default
NVM Value Description

15:0 RelelaseDateTimeMsec_1_2 0x0 timestamp104 byte 3:4.

Bit(s) Field Name Default
NVM Value Description

15:8 ReleaseDateTimeMin 0x0 timestamp104 byte 6.

7:0 ReleaseDateTimeSec 0x0 timestamp104 byte 5.

Bit(s) Field Name Default
NVM Value Description

15:8 ReleaseDateTimeDay 0x0 timestamp104 byte 8.

7:0 ReleaseDateTimeHour 0x0 timestamp104 byte 7.

Bit(s) Field Name Default
NVM Value Description

15:8 ReleaseDateTimeYear_LSB 0x0 timestamp104 byte 10.

7:0 ReleaseDateTimeMonth 0x0 timestamp104 byte 9.

Bit(s) Field Name Default
NVM Value Description

15:12 ReleaseDateTime UTC Resolution 0x2 timestamp104 byte 12 [7:4]. Resolution is minutes.

11:8 ReleaseDateTime Resolution 0x7 timestamp104 byte 12 [3:0]. Resolution is minutes.

7:0 ReleaseDateTimeYear_MSB 0x0 timestamp104 byte 11.

613875-009 445

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.17 ComponentBitmapBitLength (0x0010)

6.2.1.18 PackageVersionStringType_Length (0x0011)

6.2.1.19 PackageVersionString_0 (0x0012)

6.2.1.20 PackageVersionString_1 (0x0013)

6.2.1.21 PackageVersionString_2 (0x0014)

6.2.1.22 PackageVersionString_3 (0x0015)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentBitmapBitLength 0x8

Bit(s) Field Name Default
NVM Value Description

15:8 PackageVersionStringLength 0x13 Assuming a string length of 31.
The last byte is part of the Firmware Device Identification Area.

7:0 PackageVersionStringType 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_0 0x2E30 Dev-stater major followed by a period (ASCII).
Default value: “0.”

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_1 0x3030 Dev-stater minor (ASCII).
Default value: “0.”

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_2 0x2820 Space and open parenthesis (ASCII).
“ (”

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_3 0x7830 Hex prefix (ASCII).
“0x”

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

446 613875-009

6.2.1.23 PackageVersionString_4 (0x0016)

6.2.1.24 PackageVersionString_5 (0x0017)

6.2.1.25 PackageVersionString_6 (0x0018)

6.2.1.26 PackageVersionString_7 (0x0019)

6.2.1.27 PackageVersionString_8 (0x001A)

6.2.1.28 DeviceIDRecordCount and Last Byte of
PackageVersionString (0x001B)

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_4 0x3030 Bytes 7-6 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_5 0x3030 Bytes 5-4 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_6 0x3030 Bytes 3-2 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_7 0x3030 Bytes 1-0 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 PackageVersionString_8 0x0029 Close parenthesis and null terminator (ASCII).
“)<null>”

Bit(s) Field Name Default
NVM Value Description

15:8 DeviceIDRecordCount 0x1

7:0 PackageVersionString Last Byte 0x0

613875-009 447

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.29 Recordlength (0x0x001C)

6.2.1.30 DescriptorCount and DeviceUpdateOptionFlags LSB
(0x001D)

6.2.1.31 DeviceUpdateOptionFlags - Middle (0x001E)

6.2.1.32 DeviceUpdateOptionFlags - MSB and String Type
(0x001F)

Bit(s) Field Name Default
NVM Value Description

15:0 RecordLength Length in: 1 Byte unit
First Section -> Word: PLDM Header -> Recordlength
Last Section -> Word: PLDM Header -> FirmwareDevicePackageData - Additional TLVs -
IBA TLV - Version

The total length in bytes for this record. The length shall include the RecordLength,
DescriptorCount, DeviceUpdateOptionFlags, ComponentImageSetVersionStringType,
ComponentSetVersionStringLength, FirmwareDevicePackageDataLength,
ApplicableComponents, ComponentImageSetVersionString, RecordDescriptors, and
FirmwareDevicePackageData fields.

Bit(s) Field Name Default
NVM Value Description

15:9 DeviceUpdateOptionFlags LSB 0x0 Bits [31:24] reserved.

8 DeviceUpdateOptionFlags LSB - Continue
Component Updates After Failure

0b Bits [31:24] reserved.

7:0 DescriptorCount 0x1 The number of descriptors included within the
RecordDescriptors field for this record.

Bit(s) Field Name Default
NVM Value Description

15:0 DeviceUpdateOptionFlaDeviceUpdateOptionFlags
- Middlegs -Middle

0x0 Bits [23:8] reserved.

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentImageSetVersionStringType 0x1 Valid values are:
0x0 = Unknown
0x1 = ASCII
0x2 = UTF-8
0x3 = UTF-16
0x4 = UTF-16LE
0x5 = UTF-16BE

7:0 DeviceUpdateOptionFlags - MSB 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

448 613875-009

6.2.1.33 ComponentImageSetVersionStringLength and
FirmwareDevicePackageDataLength - LSB (0x0020)

6.2.1.34 FirmwareDevicePackageDataLength - MSB and
ApplicableComponents (0x0021)

6.2.1.35 ComponentImageSetVersionString_0 (0x0022)

6.2.1.36 ComponentImageSetVersionString_1 (0x0023)

6.2.1.37 ComponentImageSetVersionString_2 (0x0024)

Bit(s) Field Name Default
NVM Value Description

15:8 FirmwareDevicePackageDataLength - LSB

7:0 ComponentImageSetVersionStringLength 0x12

Bit(s) Field Name Default
NVM Value Description

15:11 Reserved ApplicableComponents 0x0

10 FW Link topology ApplicableComponent 0b 0b = Non Applicable
1b = Applicable

9 OROM ApplicableComponent 1b 0b = Non Applicable
1b = Applicable

8 NVM ApplicableComponent 1b 0b = Non Applicable
1b = Applicable

7:0 FirmwareDevicePackageDataLength - MSB

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_0 0x2E30 Dev-stater major followed by period (ASCII).
Default value: “0.”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_1 0x3030 Dev-stater minor (ASCII).
Default value: “00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_2 0x2820 Space and open parenthesis (ASCII).
“ (”

613875-009 449

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.38 ComponentImageSetVersionString_3 (0x0025)

6.2.1.39 ComponentImageSetVersionString_4 (0x0026)

6.2.1.40 ComponentImageSetVersionString_5 (0x0027)

6.2.1.41 ComponentImageSetVersionString_6 (0x0028)

6.2.1.42 ComponentImageSetVersionString_7 (0x0029)

6.2.1.43 ComponentImageSetVersionString_8 (0x002A)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_3 0x7830 Hex prefix (ASCII).
“0x”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_4 0x3030 Bytes 3 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_5 0x3030 Bytes 2 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_6 0x3030 Bytes 1 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_7 0x3030 Bytes 0 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_8 0x0029 Close parenthesis and null terminator (ASCII).
“)<null>”

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

450 613875-009

6.2.1.44 InitialDescriptorType (0x002B)

6.2.1.45 InitialDescriptorLength (0x002C)

6.2.1.46 InitialDescriptorData (0x002D)

Bit(s) Field Name Default
NVM Value Description

15:0 InitialDescriptorType 0x0 Indicates the type of the Initial descriptor.
The initial descriptor for a device must be defined by one of the following (PCI
Vendor ID, IANA Enterprise ID, UUID, PnP Vendor ID, or ACPI Vendor ID).
Valid values are:

0x0 = PCI Vendor ID
0x1 = IANA Enterprise ID
0x2 = UUID
0x3 = PnP Vendor ID
0x4 = ACPI Vendor ID
0x100 = PCI Device ID
0x101 = PCI Subsystem Vendor ID
0x102 = PCI Subsystem ID
0x103 = PCI Revision ID
0x104 = PnP Product Identifier
0x105 = ACPI Product Identifier
0xFFFF = Vendor Defined

Bit(s) Field Name Default
NVM Value Description

15:0 InitialDescriptorLength 0x2 Indicates the length, in bytes, of the InitialDescriptorData field.

Bit(s) Field Name Default
NVM Value Description

15:0 VendorID 0x8086 PCI Vendor ID assigned to the FD vendor.

613875-009 451

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.47 AdditionalDescriptorType - DeviceID (0x002E)

6.2.1.48 AdditionalDescriptorLength - DeviceID (0x002F)

6.2.1.49 AdditionalDescriptorIdentifierData - Device ID
(0x0030)

Bit(s) Field Name Default
NVM Value Description

15:0 AdditionalDescriptorType 0x100 Indicates the type of the Initial descriptor.
The initial descriptor for a device must be defined by one of the following (PCI
Vendor ID, IANA Enterprise ID, UUID, PnP Vendor ID, or ACPI Vendor ID).
Valid values are:

0x0 = PCI Vendor ID
0x1 = IANA Enterprise ID
0x2 = UUID
0x3 = PnP Vendor ID
0x4 = ACPI Vendor ID
0x100 = PCI Device ID
0x101 = PCI Subsystem Vendor ID
0x102 = PCI Subsystem ID
0x103 = PCI Revision ID
0x104 = PnP Product Identifier
0x105 = ACPI Product Identifier
0xFFFF = Vendor Defined

Bit(s) Field Name Default
NVM Value Description

15:0 AdditionalDescriptorLength 0x2 Indicates the length, in bytes, of the InitialDescriptorData field.

Bit(s) Field Name Default
NVM Value Description

15:0 DeviceID PCI Vendor ID assigned to the FD vendor.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

452 613875-009

6.2.1.50 AdditionalDescriptorType - SubVendorID (0x0031)

6.2.1.51 AdditionalDescriptorLength - SubVendorID (0x0032)

6.2.1.52 AdditionalDescriptorIdentifierData - SubVendorID
(0x0033)

Bit(s) Field Name Default
NVM Value Description

15:0 AdditonialDescriptorType 0x101 Indicates the type of the Initial descriptor.
The initial descriptor for a device must be defined by one of the following (PCI
Vendor ID, IANA Enterprise ID, UUID, PnP Vendor ID, or ACPI Vendor ID).
Valid values are:

0x0 = PCI Vendor ID
0x1 = IANA Enterprise ID
0x2 = UUID
0x3 = PnP Vendor ID
0x4 = ACPI Vendor ID
0x100 = PCI Device ID
0x101 = PCI Subsystem Vendor ID
0x102 = PCI Subsystem ID
0x103 = PCI Revision ID
0x104 = PnP Product Identifier
0x105 = ACPI Product Identifier
0xFFFF = Vendor Defined

Bit(s) Field Name Default
NVM Value Description

15:0 AdditonialDescriptorLength 0x2 Indicates the length, in bytes, of the InitialDescriptorData field.

Bit(s) Field Name Default
NVM Value Description

15:0 SubVendorID PCI Vendor ID assigned to the FD vendor.

613875-009 453

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.53 AdditionalDescriptorType - SubSystemD (0x0034)

6.2.1.54 AdditionalDescriptorLength - SubSystemD (0x0035)

6.2.1.55 AdditionalDescriptorIdentifierData - SubSystemD
(0x0036)

6.2.1.56 FirmwareDevicePackageData - Header (0x0037)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 AdditonialDescriptorType 0x102 Indicates the type of the Initial descriptor.
The initial descriptor for a device must be defined by one of the following (PCI
Vendor ID, IANA Enterprise ID, UUID, PnP Vendor ID, or ACPI Vendor ID).
Valid values are:

0x0 = PCI Vendor ID
0x1 = IANA Enterprise ID
0x2 = UUID
0x3 = PnP Vendor ID
0x4 = ACPI Vendor ID
0x100 = PCI Device ID
0x101 = PCI Subsystem Vendor ID
0x102 = PCI Subsystem ID
0x103 = PCI Revision ID
0x104 = PnP Product Identifier
0x105 = ACPI Product Identifier
0xFFFF = Vendor Defined

Bit(s) Field Name Default
NVM Value Description

15:0 AdditonialDescriptorLength 0x2 Indicates the length, in bytes, of the InitialDescriptorData field.

Bit(s) Field Name Default
NVM Value Description

15:0 SubSystemD PCI Vendor ID assigned to the FD vendor.

Bit(s) Field Name Default
NVM Value Description

15:2 Reserved 0x0 Reserved.

1 O-ROM Version to be Set in VPD 0x0 0b = Do not set O-ROM version in VPD.
1b = Set O-ROM version in VPD.

0 PFA Preserve 0x0 PFA Preserve (default mode). Should be set to zero

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

454 613875-009

6.2.1.57 FirmwareDevicePackageData - GFID TLV Type (0x0038)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.58 FirmwareDevicePackageData - GFID TLV Length
(0x0039)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.59 FirmwareDevicePackageData - GFID TLV Value -
Current GFID IANA (0x003A)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Type 0x0001 CURRENT_GFID

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Length

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value-IANA

613875-009 455

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.60 FirmwareDevicePackageData - GFID TLV Value -
Current GFID DeviceID (0x003B)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.61 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros (0x003C)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.62 FirmwareDevicePackageData - GFID TLV Value -
Current GFID.SOFTFUSE (0x003D)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value - device ID

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:5 Reserved Reserved for future use.

4:3 MaxBW Restrict to 50G. Relevant only if soft fuse is applied.

2:1 NumOfPorts For future use and compatibility. Relevant only if soft fuse is applied.

0 ApplyFuses “Soft” Firmware Fuse
0b = Fuses not applied.
1b = Fuses applied.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

456 613875-009

6.2.1.63 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros1 (0x003E)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.64 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros2 (0x003F)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.65 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros3 (0x0040)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

613875-009 457

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.66 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros4 (0x0041)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.67 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros5 (0x0042)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.68 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros6 (0x0043)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

458 613875-009

6.2.1.69 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros7 (0x0044)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.70 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros8 (0x0045)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.71 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros9 (0x0046)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

613875-009 459

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.72 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros10 (0x0047)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.73 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros11 (0x0048)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.74 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros12 (0x0049)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

460 613875-009

6.2.1.75 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros13 (0x004A)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.76 FirmwareDevicePackageData - GFID TLV Value -
Current GFID Zeros14 (0x004B)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.77 FirmwareDevicePackageData - GFID TLV Value -
Current GFID IANA (0x004C)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value-IANA

613875-009 461

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.78 FirmwareDevicePackageData - GFID TLV Value -
Current GFID DeviceID (0x004D)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.79 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros (0x004E)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.80 FirmwareDevicePackageData - GFID TLV Value -
Original GFID.SOFTFUSE (0x004F)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value - device ID

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:5 Reserved Reserved for future use.

4:3 MaxBW Restrict to 50G. Relevant only if soft fuse is applied.

2:1 NumOfPorts For future use and compatibility. Relevant only if soft fuse is applied.

0 ApplyFuses “Soft” Firmware Fuse
0b = Fuses not applied.
1b = Fuses applied.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

462 613875-009

6.2.1.81 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros1 (0x0050)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.82 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros2 (0x0051)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.83 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros3 (0x0052)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

613875-009 463

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.84 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros4 (0x0053)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.85 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros5 (0x0054)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.86 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros6 (0x0055)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

464 613875-009

6.2.1.87 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros7 (0x0056)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.88 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros8 (0x0057)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.89 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros9 (0x0058)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

613875-009 465

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.90 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros10 (0x0059)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.91 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros11 (0x005A)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.92 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros12 (0x005B)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

466 613875-009

6.2.1.93 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros13 (0x005C)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.94 FirmwareDevicePackageData - GFID TLV Value -
Original GFID Zeros14 (0x005D)

An optional data field that can be provided within the firmware update package that the UA transfers to
the FD during the firmware update process. The UA has no knowledge of what data is contained within
this field, and simply passes the contents of this field when the FD requests it via the GetPackageData
command response.

If the FirmwareDevicePackageDataLength field is set to 0x0000, this field contains no data and is zero
bytes in length.

6.2.1.95 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - Update Type (0x005E)

6.2.1.96 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - Update Length (0x005F)

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Value 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV - Update Type

1x10

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV - Update Length

0x13

613875-009 467

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.97 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - TLV Type (0x0060)

6.2.1.98 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - Update Offset (0x0061)

6.2.1.99 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - Data Length (0x0062)

6.2.1.100 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_0 (0x0063)

6.2.1.101 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_1 (0x0064)

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV - TLV Type

0x127

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV - Update Offset

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV - Data Length

0x10

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_0

0x2E30 Dev-stater major followed by period (ASCII).
Default value: “0.”

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_1

0x3030 Dev-stater minor (ASCII).
Default value: “00”

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

468 613875-009

6.2.1.102 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_2 (0x0065)

6.2.1.103 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_3 (0x0066)

6.2.1.104 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_4 (0x0067)

6.2.1.105 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_5 (0x0068)

6.2.1.106 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_6 (0x0069)

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_2

0x2820 Space and open parenthesis (ASCII).
“ (”

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_3

0x7830 Hex prefix (ASCII).
“0x”

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_4

0x3030 Bytes 3 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_5

0x3030 Bytes 2 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_6

0x3030 Bytes 1 of EETTrackID (ASCII).
“00”

613875-009 469

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.107 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_7 (0x006A)

6.2.1.108 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_8 (0x006B)

6.2.1.109 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_9 (0x006C)

6.2.1.110 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_10 (0x006D)

6.2.1.111 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_11 (0x006E)

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_7

0x3030 Bytes 0 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_8

0x0029 Close parenthesis and null terminator (ASCII).
“)<null>”

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_9

0x0 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_10

0x0 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_11

0x0 Null padding.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

470 613875-009

6.2.1.112 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_12 (0x006F)

6.2.1.113 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_13 (0x0070)

6.2.1.114 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_14 (0x0071)

6.2.1.115 FirmwareDevicePackageData - Additional TLVs - PLDM
TLV - ComponentImageSetVersionString_15 (0x0072)

6.2.1.116 FirmwareDevicePackageData - Additional TLVs - PXE
TLV - Update Type (0x0073)

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_12

0x0 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_13

0x0 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_14

0x0 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV -
ComponentImageSetVersionString_15

0x0 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PXE TLV - Update Type

0x10

613875-009 471

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.117 FirmwareDevicePackageData - Additional TLVs - PXE
TLV - Update Length (0x0074)

6.2.1.118 FirmwareDevicePackageData - Additional TLVs - PXE
TLV - TLV Type (0x0075)

6.2.1.119 FirmwareDevicePackageData - Additional TLVs - PXE
TLV - Update Offset (0x0076)

6.2.1.120 FirmwareDevicePackageData - Additional TLVs - PXE
TLV - Data Length (0x0077)

6.2.1.121 FirmwareDevicePackageData - Additional TLVs - PXE
TLV - Version (0x0078)

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PXE TLV - Update Length

0x4

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PXE TLV - TLV Type

0x32

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PXE TLV - Update Offset

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PXE TLV - Data Length

0x1

Bit(s) Field Name Default
NVM Value Description

15:12 Major Version 0x02

11:8 Minor Version 0x02

7:0 Build Number 0x01

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

472 613875-009

6.2.1.122 FirmwareDevicePackageData - Additional TLVs - CIVD
TLV - Update Type (0x0079)

6.2.1.123 FirmwareDevicePackageData - Additional TLVs - CIVD
TLV - Update Length (0x007A)

6.2.1.124 FirmwareDevicePackageData - Additional TLVs - CIVD
TLV - TLV Type (0x007B)

6.2.1.125 FirmwareDevicePackageData - Additional TLVs - CIVD
TLV - Update Offset (0x007C)

6.2.1.126 FirmwareDevicePackageData - Additional TLVs - CIVD
TLV - Data Length (0x007D)

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - CIVD TLV - Update Type

0x10

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - CIVD TLV - Update Length

0x5

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - PLDM TLV - TLV Type

0x132

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - CIVD TLV - Update Offset

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - CIVD TLV - Data length

0x2

613875-009 473

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.127 FirmwareDevicePackageData - Additional TLVs - CIVD
TLV - Version High (0x007E)

6.2.1.128 FirmwareDevicePackageData - Additional TLVs - CIVD
TLV - Version Low (0x007F)

6.2.1.129 Reserved (0x0080 - 0x00A8)

6.2.1.130 FirmwareDevicePackageData - Additional TLVs - VPD
Update - Update Type (0x00A9)

6.2.1.131 FirmwareDevicePackageData - Additional TLVs - VPD
Update - Update Length (0x00AA)

6.2.1.132 FirmwareDevicePackageData - Additional TLVs - VPD
Update - VPD V0 Key (0x00AB)

Bit(s) Field Name Default
NVM Value Description

15:8 Major 0x01

7:0 Build 0x0B

Bit(s) Field Name Default
NVM Value Description

15:8 Build 0x17

7:0 Patch 0x00

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - VPD update - Update Type

0x11

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - VPD update - Update Length

0x08

Bit(s) Field Name Default
NVM Value Description

15:0 V0 Key 0x3056

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

474 613875-009

6.2.1.133 FirmwareDevicePackageData - Additional TLVs - VPD
Update - Data Length (0x00AC)

6.2.1.134 FirmwareDevicePackageData - Additional TLVs - VPD
Update - V0 Key Data 0 (0x00AD)

6.2.1.135 FirmwareDevicePackageData - Additional TLVs - VPD
Update - V0 Key Data 1 (0x00AE)

6.2.1.136 FirmwareDevicePackageData - Additional TLVs - VPD
Update - V0 Key Data 2 (0x00AF)

6.2.1.137 FirmwareDevicePackageData - Additional TLVs - VPD
Update - V0 Key Data 3 (0x00B0)

Bit(s) Field Name Default
NVM Value Description

15:0 Data Length 0xC

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - VPD Update - V0 Key Data

0x4646

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - VPD Update - V0 Key Data

0x3256

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - VPD Update - V0 Key Data

0x2E30

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - VPD Update - V0 Key Data

0x3030

613875-009 475

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.138 FirmwareDevicePackageData - Additional TLVs - VPD
Update - V0 Key Data 4 (0x00B1)

6.2.1.139 FirmwareDevicePackageData - Additional TLVs - VPD
Update - V0 Key Data 5 (0x00B2)

6.2.1.140 FirmwareDevicePackageData - Additional TLVs
(0x00B3)

Raw data module length: variable

Used for TLVs that do not exist explicitly in the PLDM header in the map.

6.2.1.141 FirmwareDevicePackageData - Additional TLVs - IBA
TLV - Update Type (0x00B4)

6.2.1.142 FirmwareDevicePackageData - Additional TLVs - IBA
TLV - Update Length (0x00B5)

6.2.1.143 FirmwareDevicePackageData - Additional TLVs - IBA
TLV - TLV Type (0x00B6)

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - VPD Update - V0 Key Data

0x302E

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - VPD Update - V0 Key Data

0x0030

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - IBA TLV - Update Type

0x10

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - IBA TLV - Update Length

0x4

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - IBA TLV - TLV Type

0x33

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

476 613875-009

6.2.1.144 FirmwareDevicePackageData - Additional TLVs - IBA
TLV - Update Offset (0x00B7)

6.2.1.145 FirmwareDevicePackageData - Additional TLVs - IBA
TLV - Data Length (0x00B8)

6.2.1.146 FirmwareDevicePackageData - Additional TLVs - IBA
TLV - Version (0x00B9)

6.2.1.147 ComponentImageCount (0x00BA)

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - IBA TLV - Update Offset

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 FirmwareDevicePackageData - Additional
TLVs - IBA TLV - Data Length

0x1

Bit(s) Field Name Default
NVM Value Description

15:14 Signature

13 Allow PXE Disable 0b = Ignore PXE Disable – PXE is always load regardless the settings in bits 2:0 in
Main Setup Options word.

1b = Allow PXE Disable – PXE is loaded when bits 2:0 in Main Setup Options are set
to 0 (PXE enabled on this port).

12:5 Reserved 0x0

4 iSCSI Boot

3 EFI EBD Driver

2 RPL

1 PXE/UNDI Driver

0 PXE Base Code

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageCount 0x3

613875-009 477

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.148 ComponentClassification (0x00BB)

6.2.1.149 ComponentIdentifier (0x00BC)

6.2.1.150 ComponentComparisonStamp LSB (0x00BD)

6.2.1.151 ComponentComparisonStamp MSB (0x00BE)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentClassification 0xA Valid values are:
0x0 = Unknown
0x1 = Other
0x2 = Driver
0x3 = Configuration Software
0x4 = Application Software
0x5 = Instrumentation
0x6 = Firmware/BIOS
0x7 = Diagnostic Software
0x8 = Operating System
0x9 = Middleware
0xA = Firmware
0xB = BIOS/FCode
0xC = Support/Service Pack
0xD = Software Bundle

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentIdentifier 0x6 Valid values are:
0x1 = TLV Extension
0x2 = Link Topology Scratch Pad Area
0x3 = Descriptor Block
0x5 = OROM
0x6 = NVM
0x8 = Topology Netlist

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentComparisonStamp Low 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentComparisonStamp High 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

478 613875-009

6.2.1.152 ComponentOptions (0x00BF)

6.2.1.153 RequestedComponentActivationMethod (0x00C0)

6.2.1.154 ComponentLocationOffset LSB (0x00C1)

6.2.1.155 ComponentLocationOffset MSB (0x00C2)

6.2.1.156 ComponentSize LSB (0x00C3)

Bit(s) Field Name Default
NVM Value Description

15:2 Reserved 0x0 Reserved.

1 Use Component Comparison Stamp 1b 0b = Disabled
1b = Enabled

0 Force Update 1b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15:6 Reserved Reserved.

5 AC Power Cycle 0b 0b = Disabled
1b = Enabled

4 DC Power Cycle 0b 0b = Disabled
1b = Enabled

3 System Reboot 1b 0b = Disabled
1b = Enabled

2 Medium-Specific Reset 0b 0b = Disabled
1b = Enabled

1 Self-Contained 0b 0b = Disabled
1b = Enabled

0 Automatic 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentLocationOffset 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentLocationOffset 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentSize LSB 0x0

613875-009 479

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.157 ComponentSize MSB (0x00C4)

6.2.1.158 ComponentVersionStringTypeAndLength (0x00C5)

6.2.1.159 ComponentVersionString- Dev Starter Major (0x00C6)

6.2.1.160 ComponentVersionString - Dev Starter Minor (0x00C7)

6.2.1.161 ComponentVersionString - EETRACK-ID MSB (0x00C8)

6.2.1.162 ComponentVersionString - EETRACK-ID LSB (0x00C9)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentSize MSB 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionStringLength 0x12

7:0 ComponentVersionStringType 0x1 Valid values are:
0x0 = Unknown
0x1 = ASCII
0x2 = UTF-8
0x3 = UTF-16
0x4 = UTF-16LE
0x5 = UTF-16BE

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Dev Starter Major 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Dev Starter Minor 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
EETRACK-ID MSB

0x3030 MSB of EETRACK-ID. [17:0] bits of the EETRACK-ID (in ASCII).

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
EETRACK-ID LSB

0x3030

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

480 613875-009

6.2.1.163 ComponentVersionString - Dot and Srev Byte 7
(0x00CA)

6.2.1.164 ComponentVersionString - Srev Bytes 6-5 (0x00CB)

6.2.1.165 ComponentVersionString - Srev Bytes 4-3 (0x00CC)

6.2.1.166 ComponentVersionString - Srev Bytes 2-1 (0x00CD)

6.2.1.167 ComponentVersionString - Srev Byte 0 and Null
(0x00CE)

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionString - Srev Byte7 0x30 MSB of 8-byte SREV version (in ASCII).

7:0 ComponentVersionString - Dot 0x2E

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Srev Bytes 6-5 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Srev Bytes 4-3 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Srev Bytes 2-1 0x3030

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionString - Null 0x0

7:0 ComponentVersionString - Srev LSB 0x30 LSB of 8-byte SREV version (in ASCII).

613875-009 481

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.168 ComponentClassification (0x00CF)

6.2.1.169 ComponentIdentifier (0x00D0)

6.2.1.170 ComponentComparisonStamp LSB (0x00D1)

6.2.1.171 ComponentComparisonStamp MSB (0x00D2)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentClassification 0xA Valid values are:
0x0 = Unknown
0x1 = Other
0x2 = Driver
0x3 = Configuration Software
0x4 = Application Software
0x5 = Instrumentation
0x6 = Firmware/BIOS
0x7 = Diagnostic Software
0x8 = Operating System
0x9 = Middleware
0xA = Firmware
0xB = BIOS/FCode
0xC = Support/Service Pack
0xD = Software Bundle

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentIdentifier 0x5 Valid values are:
0x1 = TLV Extension
0x2 = Link Topology Scratch Pad Area
0x3 = Descriptor Block
0x5 = OROM
0x6 = NVM
0x8 = Topology Netlist

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentComparisonStamp Low 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentComparisonStamp High 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

482 613875-009

6.2.1.172 ComponentOptions (0x00D3)

6.2.1.173 RequestedComponentActivationMethod (0x00D4)

6.2.1.174 ComponentLocationOffset LSB (0x00D5)

6.2.1.175 ComponentLocationOffset MSB (0x00D6)

6.2.1.176 ComponentSize LSB (0x00D7)

Bit(s) Field Name Default
NVM Value Description

15:2 Reserved 0x0 Reserved.

1 Use Component Comparison Stamp 1b 0b = Disabled
1b = Enabled

0 Force Update 1b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15:6 Reserved 0x0 Reserved.

5 AC Power Cycle 0b 0b = Disabled
1b = Enabled

4 DC Power Cycle 0b 0b = Disabled
1b = Enabled

3 System Reboot 0b 0b = Disabled
1b = Enabled

2 Medium-Specific Reset 0b 0b = Disabled
1b = Enabled

1 Self-Contained 0b 0b = Disabled
1b = Enabled

0 Automatic 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentLocationOffset 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentLocationOffset 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentSize LSB 0x0

613875-009 483

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.177 ComponentSize MSB (0x00D8)

6.2.1.178 ComponentVersionStringTypeAndLength (0x00D9)

6.2.1.179 ComponentVersionString- CIVD High MSB (0x00DA)

6.2.1.180 ComponentVersionString - CIVD High LSB (0x00DB)

6.2.1.181 ComponentVersionString - CIVD Low MSB (0x00DC)

6.2.1.182 ComponentVersionString - CIVD Low LSB (0x00DD)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentSize MSB 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionStringLength 0x12

7:0 ComponentVersionStringType 0x1 Valid values are:
0x0 = Unknown
0x1 = ASCII
0x2 = UTF-8
0x3 = UTF-16
0x4 = UTF-16LE
0x5 = UTF-16BE

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - CIVD High MSB 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - CIVD High LSB 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - CIVD Low MSB 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - CIVD Low LSB 0x3030

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

484 613875-009

6.2.1.183 ComponentVersionString - Dot and Srev Byte 7
(0x00DE)

6.2.1.184 ComponentVersionString - Srev Bytes 6-5 (0x00DF)

6.2.1.185 ComponentVersionString - Srev Bytes 4-3 (0x00E0)

6.2.1.186 ComponentVersionString - Srev Bytes 2-1 (0x00E1)

6.2.1.187 ComponentVersionString - Srev Byte 0 and Null
(0x00E2)

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionString - Srev Byte7 0x30 MSB of 8-byte SREV version (in ASCII).

7:0 ComponentVersionString - Dot 0x2E

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Srev Bytes 6-5 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Srev Bytes 4-3 0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Srev Bytes 2-1 0x3030

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionString - Null 0x0

7:0 ComponentVersionString - Srev LSB 0x30 LSB of 8-byte SREV version (in ASCII).

613875-009 485

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.188 ComponentClassification (0x00E3)

6.2.1.189 ComponentIdentifier (0x00E4)

6.2.1.190 ComponentComparisonStamp LSB (0x00E5)

6.2.1.191 ComponentComparisonStamp MSB (0x00E6)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentClassification 0xA Valid values are:
0x0 = Unknown
0x1 = Other
0x2 = Driver
0x3 = Configuration Software
0x4 = Application Software
0x5 = Instrumentation
0x6 = Firmware/BIOS
0x7 = Diagnostic Software
0x8 = Operating System
0x9 = Middleware
0xA = Firmware
0xB = BIOS/FCode
0xC = Support/Service Pack
0xD = Software Bundle

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentIdentifier 0x8 Valid values are:
0x1 = TLV Extension
0x2 = Link Topology Scratch Pad Area
0x3 = Descriptor Block
0x5 = OROM
0x6 = NVM
0x8 = Topology Netlist

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentComparisonStamp Low 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentComparisonStamp High 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

486 613875-009

6.2.1.192 ComponentOptions (0x00E7)

6.2.1.193 RequestedComponentActivationMethod (0x00E8)

6.2.1.194 ComponentLocationOffset LSB (0x00E9)

6.2.1.195 ComponentLocationOffset MSB (0x00EA)

6.2.1.196 ComponentSize LSB (0x00EB)

Bit(s) Field Name Default
NVM Value Description

15:2 Reserved 0x0 Reserved.

1 Use Component Comparison Stamp 0b 0b = Disabled
1b = Enabled

0 Force Update 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15:6 Reserved Reserved.

5 AC Power Cycle 0b 0b = Disabled
1b = Enabled

4 DC Power Cycle 0b 0b = Disabled
1b = Enabled

3 System Reboot 1b 0b = Disabled
1b = Enabled

2 Medium-Specific Reset 0b 0b = Disabled
1b = Enabled

1 Self-Contained 0b 0b = Disabled
1b = Enabled

0 Automatic 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentLocationOffset 0x0 Points to Link Topology Netlist CSS Header Section. For Link Topology Netlist
CSS Header inner structure, see Section 6.3.111

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentLocationOffset 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentSize LSB 0x0

613875-009 487

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.197 ComponentSize MSB (0x00EC)

6.2.1.198 ComponentVersionStringTypeAndLength (0x00ED)

6.2.1.199 ComponentVersionString- ReleaseVersion Major Bytes
7-6 (0x00EE)

6.2.1.200 ComponentVersionString - ReleaseVersion Major Bytes
5-4 (0x00EF)

6.2.1.201 ComponentVersionString - ReleaseVersion Major Bytes
3-2 (0x00F0)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentSize MSB 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionStringLength 0x2A

7:0 ComponentVersionStringType 0x1 Valid values are:
0x0 = Unknown
0x1 = ASCII
0x2 = UTF-8
0x3 = UTF-16
0x4 = UTF-16LE
0x5 = UTF-16BE

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Major Bytes 7-6

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Major Bytes 5-4

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Major Bytes 3-2

0x3030

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

488 613875-009

6.2.1.202 ComponentVersionString - ReleaseVersion Major Bytes
1-0 (0x00F1)

6.2.1.203 ComponentVersionString - Dot and ReleaseVersion
Minor Byte 7 (0x00F2)

6.2.1.204 ComponentVersionString - ReleaseVersion Minor Bytes
6-5 (0x00F3)

6.2.1.205 ComponentVersionString - ReleaseVersion Minor Bytes
4-3 (0x00F4)

6.2.1.206 ComponentVersionString - ReleaseVersion Minor Bytes
2-1 (0x00F5)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Major Bytes 1-0

0x3030

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionString -Dot and
ReleaseVersion Minor Byte 7

0x30

7:0 ComponentVersionString - Dot 0x2E

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Minor Bytes 6-5

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Minor Bytes 4-3

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Minor Bytes 2-1

0x3030

613875-009 489

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.207 ComponentVersionString - ReleaseVersion Minor Byte 0
and Dot (0x00F6)

6.2.1.208 ComponentVersionString - ReleaseVersion Type Bytes
7-6 (0x00F7)

6.2.1.209 ComponentVersionString - ReleaseVersion Type Bytes
5-4 (0x00F8)

6.2.1.210 ComponentVersionString - ReleaseVersion Type Bytes
3-2 (0x00F9)

6.2.1.211 ComponentVersionString - ReleaseVersion Type Bytes
0-1 (0x00FA)

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionString - Dot 0x2E

7:0 ComponentVersionString -Dot and
ReleaseVersion Minor Byte 0

0x30

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Type Bytes 7-6

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Type Bytes 5-4

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Type Bytes 3-2

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
ReleaseVersion Type Bytes 0-1

0x3030

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

490 613875-009

6.2.1.212 ComponentVersionString - Dot and Customer Netlist
IANA Byte 7 (0x00FB)

6.2.1.213 ComponentVersionString - Customer Netlist IANA Bytes
6-5 (0x00FC)

6.2.1.214 ComponentVersionString - Customer Netlist IANA Bytes
4-3 (0x00FD)

6.2.1.215 ComponentVersionString - Customer Netlist IANA Bytes
2-1 (0x00FE)

6.2.1.216 ComponentVersionString - Customer Netlist IANA Byte
0 and Dot (0x00FF)

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionString -
Customer Netlist IANA Byte 7

0x30

7:0 ComponentVersionString - Dot 0x2E

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
Customer Netlist IANA Byte 6-5

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
Customer Netlist IANA Byte 4-3

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
Customer Netlist IANA Byte 2-1

0x3030

Bit(s) Field Name Default
NVM Value Description

15:8 ComponentVersionString - Dot 0x2E

7:0 ComponentVersionString -
Customer Netlist IANA Byte 0

0x30

613875-009 491

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.2.1.217 ComponentVersionString - Customer Netlist Version
Bytes 3-2 (0x0100)

6.2.1.218 ComponentVersionString - Customer Netlist Version
Bytes 1-0 (0x0101)

6.2.1.219 ComponentVersionString - Nulls (0x0102)

6.2.1.220 PackageHeaderChecksum - LSB (0x0103)

6.2.1.221 PackageHeaderChecksum - MSB (0x0104)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
Customer Netlist Version Bytes 3-2

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString -
Customer Netlist Version Bytes 1-0

0x3030

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentVersionString - Nulls 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderChecksum CRC-32:
Start Section -> Word: PLDM Header -> PackageHeaderIdentifier_0
End Section -> Word: PLDM Header -> ComponentVersionString - Nulls

Bit(s) Field Name Default
NVM Value Description

15:0 PackageHeaderChecksum

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

492 613875-009

6.3 NVM Content

Caution: In the tables of this section, contents of the NVM Default Value column might not reflect the
value programmed in the specific NVM image provided to the customer.

6.3.1 NVM General Summary

Table 6-7. NVM General Summary Table

NVM Section Section
Reference

SPI Descriptor Section 6.3.2

Init Module Section 6.3.3

PFA Header Section 6.3.4

PFA Features Module Section 6.3.5

Feature Configuration Padding Module Section 6.3.6

PFA Immediate Values Module Section 6.3.7

Immediate Fields Padding Module Section 6.3.8

PFA VPD Module Section 6.3.9

PFA MNG Filter Section 6.3.10

PFA PT Configuration 0 Section 6.3.11

PFA PT Configuration 1 Section 6.3.12

PFA PT Configuration 2 Section 6.3.13

PFA PT Configuration 3 Section 6.3.14

PFA PT Configuration 4 Section 6.3.15

PFA PT Configuration 5 Section 6.3.16

PFA PT Configuration 6 Section 6.3.17

PFA PT Configuration 7 Section 6.3.18

Original EETrack ID Section 6.3.19

IBA Capabilities Module Section 6.3.20

PXE Setup Options Module Section 6.3.21

PXE Configuration Customization Options Module Section 6.3.22

PXE Version Module Section 6.3.23

VLAN Module Section 6.3.24

Boot Configuration Block Section 6.3.25

PBA Header Section 6.3.26

PBA Block Section 6.3.27

PCIR Registers PFA Auto-Load Module Section 6.3.28

POR Registers PFA Auto-Load Module Section 6.3.29

PSM Preserved Section 6.3.30

MinSrev Section 6.3.31

613875-009 493

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

PF MAC Address Section 6.3.32

MNG MAC Address Section 6.3.33

FW Logging Defaults Section 6.3.34

1588 Parameters Section 6.3.35

MD Link Topology Section 6.3.36

LLDP Preserved Section 6.3.37

RDE Module Section 6.3.38

Identical Content as PLDM Header ComponentImageSetVersionString Section 6.3.39

Software Checksum Module Section 6.3.40

RDMA Control Section 6.3.41

Link Default Override Mask Section 6.3.42

RDE Ethernet MTU Section 6.3.43

Default DCB Parameters Section 6.3.44

Current DCB Parameters Section 6.3.45

HII Port Disable by Function Section 6.3.46

NetlistMinSrev Section 6.3.47

Tx-Scheduler Topology User Selection Section 6.3.48

LLDP Preserved 2 Section 6.3.49

WA Enable TLV Section 6.3.50

FRU Data Section 6.3.51

SyncE DPLL Input Settings Section 6.3.52

Padding Module Section 6.3.53

PCIR Type 1/2 Section 6.3.54

POR Type 1/2 Section 6.3.55

CORER Registers Auto-Load Module Section 6.3.56

Mailbox Register Auto-Load Module Section 6.3.57

GLOBR Registers Auto-Load Module Section 6.3.58

PE CORER Registers Section 6.3.59

Sideband Bus Auto-Load Section 6.3.60

EMP SR Settings Module Header Section 6.3.61

SR PF Allocations Section 6.3.62

LLDP Configuration Section 6.3.63

GFID Module Section 6.3.64

Manageability Module Header Section 6.3.65

Sideband Configuration Structure Section 6.3.66

OEM Section 6.3.67

Auto-Generated Pointers Module Section 6.3.68

Table 6-7. NVM General Summary Table [continued]

NVM Section Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

494 613875-009

NVM Image CSS Header Section 6.3.69

NVM Key and Signature Section 6.3.70

NVM Image Auth Header Section 6.3.71

SR1 - Should Be Copy of Shadow RAM: Section Clone 6.3.72

ML CSS Header Section 6.3.73

ML Key and Signature Section 6.3.74

ML Auth Header Section 6.3.75

Extended ML Header Section 6.3.76

ML Image Section 6.3.77

Analog PHY pre PLL Configuration Section 6.3.78

CSR Protected List Section 6.3.79

PCIe Analog Module Section 6.3.80

PCIR Registers Auto-Load Module Section 6.3.81

POR Registers Auto-Load Module Section 6.3.82

PCIR_PFA Auto-Load Allowlist Module Section 6.3.83

POR_PFA Auto-Load Allowlist Module Section 6.3.84

LVK Hashes Section 6.3.85

Recovery FW CSS Header Section 6.3.86

Recovery FW Key and Signature Section 6.3.87

Recovery FW Auth Header Section 6.3.88

DCB Rx Module Section 6.3.89

DCB Tx Module Section 6.3.90

QoS DCB Auto-Load Section 6.3.91

QoS no-DCB Auto-Load Section 6.3.92

Ext. CORER Registers Auto-Load Module Section 6.3.93

EMP Global Module Section 6.3.94

EMP Settings Module Header Section 6.3.95

DL Scripts Section 6.3.96

Allowlist Section 6.3.97

Analog PHY Configuration Section 6.3.98

Configuration Metadata Section 6.3.99

Control Pipe Package Section 6.3.100

EMP Image Section 6.3.101

RDE Dictionaries Section 6.3.102

External Topology Device Image 0 Section 6.3.103

External Topology Device Image 1 Section 6.3.104

External Topology Device Image 2 Section 6.3.105

Table 6-7. NVM General Summary Table [continued]

NVM Section Section
Reference

613875-009 495

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.2 SPI Descriptor Section

6.3.2.1 SPI Flash Descriptor (0x0000)

Raw data module length: 2048 words

External Topology Device Image 3 Section 6.3.106

NVM Provisioning Area Section 6.3.107

OROM Section 6.3.108

OROM Provisioning Area Section 6.3.109

Link Topology Netlist Raw Data Section 6.3.110

Link Topology Netlist CSS Header Section 6.3.111

Link Topology Netlist Key and Signature Section 6.3.112

Link Topology Netlist Auth Header Section 6.3.113

TLV Extension Provisioning Area Section 6.3.114

Link Topology Scratch Pad Area Section 6.3.115

FW Scratch Pad Area Section 6.3.116

Factory Settings Header Section 6.3.117

Factory Settings Area Section 6.3.118

Guarded Zone Section 6.3.119

Table 6-8. SPI Descriptor Section Summary Table

Word Offset Description Section
Reference

0x0000 SPI Flash Descriptor 6.3.2.1

Table 6-7. NVM General Summary Table [continued]

NVM Section Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

496 613875-009

6.3.3 Init Module Section

This is the NVM header module that contains pointers to all other first-level sections. It also includes
words that are relative to the whole NVM map.

Table 6-9. Init Module Section Summary Table

Word Offset Description Section
Reference

0x0000 NVM Control Word 1 6.3.3.1

0x0001 Non-Persistent End Pointer 6.3.3.2

0x0002 Last PFA Word Pointer 6.3.3.3

0x0003 GFID Pointer 6.3.3.4

0x0004 - 0x0006 Reserved 6.3.3.5

0x0007 Auto Generated Pointers Pointer 6.3.3.6

0x0008 Reserved 6.3.3.7

0x0009 EMP Global Module Pointer 6.3.3.8

0x000A Guarded Zone Pointer 6.3.3.9

0x000B EMP Image Pointer 6.3.3.10

0x000C - 0x000D Reserved 6.3.3.11

0x000E Manageability Module Pointer 6.3.3.12

0x000F EMP Settings Module Pointer 6.3.3.13

0x0010 SW Compatibility Word 1 6.3.3.14

0x0011 SW Compatibility Word 2 6.3.3.15

0x0012 SW Compatibility Word 3 6.3.3.16

0x0013 SW Compatibility Word 4 6.3.3.17

0x0014 SW Compatibility Word 5 6.3.3.18

0x0015 - 0x0016 Reserved 6.3.3.19

0x0017 Reserved - Boot Block Virtual Pointer 6.3.3.20

0x0018 Software Reserved Word 1 - Dev Starter Version 6.3.3.21

0x0019 Software Reserved Word 2 6.3.3.22

0x001A Software Reserved Word 3 6.3.3.23

0x001B Software Reserved Word 4 - OEM Product Version Address Block Pointer 6.3.3.24

0x001C Software Reserved Word 5 6.3.3.25

0x001D Software Reserved Word 6 6.3.3.26

0x001E Software Reserved Word 7 6.3.3.27

0x001F Software Reserved Word 8 6.3.3.28

0x0020 Software Reserved Word 9 6.3.3.29

0x0021 Software Reserved Word 10 6.3.3.30

0x0022 Software Reserved Word 11 6.3.3.31

0x0023 Software Reserved Word 12 6.3.3.32

0x0024 Software Reserved Word 13 6.3.3.33

613875-009 497

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x0025 Software Reserved Word 14 6.3.3.34

0x0026 Software Reserved Word 15 6.3.3.35

0x0027 Software Reserved Word 16 6.3.3.36

0x0028 Software Reserved Word 17 6.3.3.37

0x0029 Software Reserved Word 18 - Map Version 6.3.3.38

0x002A Software Reserved Word 19 - NVM Image Version 6.3.3.39

0x002B Software Reserved Word 20 - NVM Structure Version 6.3.3.40

0x002C Software Reserved Word 21 - FCoE Offload 6.3.3.41

0x002D Software Reserved Word 22 - EETRACK ID 1 6.3.3.42

0x002E Software Reserved Word 23 - EETRACK ID 2 6.3.3.43

0x002F Reserved 6.3.3.44

0x0030 Reserved - PXE Configuration Virtual Pointer 6.3.3.45

0x0031 Reserved - PXE Configuration Customization Virtual Pointer 6.3.3.46

0x0032 Reserved - PXE Version Virtual Word 6.3.3.47

0x0033 Reserved 6.3.3.48

0x0034 Software Reserved Word 24 - Original EETRACK ID 1 6.3.3.49

0x0035 Software Reserved Word 25 - Original EETRACK ID 2 6.3.3.50

0x0036 Reserved 6.3.3.51

0x0037 Reserved - VLAN Configuration Block Virtual Pointer 6.3.3.52

0x0038 - 0x003A Reserved 6.3.3.53

0x003B GLOBR Registers Auto-Load Pointer 6.3.3.54

0x003C CORER Registers Auto-Load Pointer 6.3.3.55

0x003D PHY Configuration Scripts (DNL) Pointer 6.3.3.56

0x003E Reserved 6.3.3.57

0x003F Reserved - Checksum 6.3.3.58

0x0040 Preserved Field Area Pointer 6.3.3.59

0x0041 HLP SR Module Pointer 6.3.3.60

0x0042 1st NVM Bank Pointer 6.3.3.61

0x0043 NVM Bank Area Size 6.3.3.62

0x0044 1st OROM Bank Pointer 6.3.3.63

0x0045 OROM Bank Area Size 6.3.3.64

0x0046 1st TLV Extension Bank Pointer 6.3.3.65

0x0047 TLV Extension Bank Area Size 6.3.3.66

0x0048 EMP SR Settings Pointer 6.3.3.67

0x0049 Reserved 6.3.3.68

0x004A PE CORER Registers Auto-Load Pointer 6.3.3.69

0x004B Link Topology Scratch Pad Area Pointer 6.3.3.70

Table 6-9. Init Module Section Summary Table [continued]

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

498 613875-009

0x004C Link Topology Scratch Pad Area Size 6.3.3.71

0x004D Configuration Metadata Pointer 6.3.3.72

0x004E - 0x004F Reserved 6.3.3.73

0x0050 FW Scratch Pad Area Pointer 6.3.3.74

0x0051 FW Scratch Pad Area Size 6.3.3.75

0x0052 - 0x0053 Reserved 6.3.3.76

0x0054 Analog PHY Configuration Module Pointer 6.3.3.77

0x0055 Soft SKUs 6.3.3.78

0x0056 Extended CORER Registers Auto-Load Pointer 6.3.3.79

0x0057 Recovery Firmware Pointer 6.3.3.80

0x0058 Control Pipe Package Pointer 6.3.3.81

0x0059 - 0x005A Reserved 6.3.3.82

0x005B DCB Rx Module Pointer 6.3.3.83

0x005C DCB Tx Module Pointer 6.3.3.84

0x005D Allowlist Pointer 6.3.3.85

0x005E Sideband Auto-Load Pointer 6.3.3.86

0x005F RDE Dictionaries Pointer 6.3.3.87

0x0060 - 0x0061 Reserved 6.3.3.88

0x0062 Factory Settings Size 6.3.3.89

0x0063 Mailbox Register Auto-Load Pointer 6.3.3.90

0x0064 QoS DCB Auto-Load Section Pointer 6.3.3.91

0x0065 QoS no-DCB Auto-Load Section Pointer 6.3.3.92

0x0066 Spare NVM Header Words1 6.3.3.93

0x0067 Spare NVM Header Words2 6.3.3.94

0x0068 External Topology Device Image 0 Pointer 6.3.3.95

0x0069 External Topology Device Image 1 Pointer 6.3.3.96

0x006A External Topology Device Image 2 Pointer 6.3.3.97

0x006B External Topology Device Image 3 Pointer 6.3.3.98

0x006C + 1*n, n=7...154 Spare NVM Header Words 6.3.3.99

Table 6-9. Init Module Section Summary Table [continued]

Word Offset Description Section
Reference

613875-009 499

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.1 NVM Control Word 1 (0x0000)

6.3.3.2 Non-Persistent End Pointer (0x0001)

6.3.3.3 Last PFA Word Pointer (0x0002)

Bit(s) Field Name Default
NVM Value Description

15:8 Reserved 0x0 Reserved.

7:6 Bank Validity 01b The Bank Validity (Signature) field indicates to the device that there is a
valid NVM present.
If it is not 01b, the other bits in this word are ignored, no further NVM
read is performed, and the default values are used for the configuration
space IDs.
Valid values are:

00b = Value 0x0
01b = Shadow Ram Bank Valid
10b = Value 0x2
11b = Value 0x3

5 Valid NVM Bank Index 0b First Bank is located at offset 128KB (pointed by 1st NVM bank pointer).
Second Bank is located at 128K + NVM Bank Area Size * 4K.
Valid values are:

0b = First Bank
1b = Second Bank

4 Valid TLV Extension Bank Index 0b First Bank is located at offset 128KB (pointed by 1st NVM bank pointer).
Second Bank is located at 128K + NVM Bank Area Size * 4K.
Valid values are:

0b = First Bank
1b = Second Bank

3 Valid OROM Bank Index 0b First Bank is located at offset 128KB (pointed by 1st NVM bank pointer).
Second Bank is located at 128K + NVM Bank Area Size * 4K.
Valid values are:

0b = First Bank
1b = Second Bank

2:0 Reserved 000b Reserved.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

Only the 4 KB sector unit is supported for this pointer.

14:0 Non-Persistent End Pointer 0x7FFF Pointer to the end of the non-persistent Shadow RAM area

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

Only the 4 KB sector unit is supported for this pointer.

14:0 Last PFA Word Pointer 0x0 Pointer to the end of the PFA excluding the PCI ALT module.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

500 613875-009

6.3.3.4 GFID Pointer (0x0003)

6.3.3.5 Reserved (0x0004 - 0x0006)

6.3.3.6 Auto-Generated Pointers Pointer (0x0007)

6.3.3.7 Reserved (0x0008)

6.3.3.8 EMP Global Module Pointer (0x0009)

6.3.3.9 Guarded Zone Pointer (0x000A)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 PCIR GFID Module Pointer 0x0 Points to GFID Module Section. For GFID Module inner structure, see
Section 6.3.64.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Auto-Generated Pointers
Module Pointer

0x0 Points to Auto-Generated Pointers Module Section. For Auto-Generated
Pointers Module inner structure, see Section 6.3.68.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 EMP Global Module Pointer 0x0 Points to EMP Global Module Section. For EMP Global Module inner structure,
see Section 6.3.94.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Guarded Zone Pointer 0x0 Points to Guarded Zone Section. For Guarded Zone inner structure, see
Section 6.3.119.

613875-009 501

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.10 EMP Image Pointer (0x000B)

6.3.3.11 Reserved (0x000C - 0x000D)

6.3.3.12 Manageability Module Pointer (0x000E)

6.3.3.13 EMP Settings Module Pointer (0x000F)

6.3.3.14 SW Compatibility Word 1 (0x0010)

Five words in the NVM image are reserved for compatibility information. New bits within these fields are
defined as the need arises for determining software compatibility between various hardware revisions.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 EMP Image Pointer 0x7FFF Points to EMP Image Section. For EMP Image inner structure, see Section 6.3.101.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Manageabilty Configuration
Module Pointer

0x0 Points to Manageability Module Header Section. For Manageability
Module Header inner structure, see Section 6.3.65.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 EMP Module Pointer 0x0 Points to EMP Settings Module Header Section. For EMP Settings Module Header inner
structure, see Section 6.3.95.

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11 LOM 0b Indicates whether the NVM attached to LAN silicon contains dedicated module for Option
ROM. Used by Option ROM update applications.

0b = NIC (Attached flash contains module for Option ROM).
1b = LOM (Attached flash has no module for Option ROM).

10 Server 1b Legacy – not currently used.
0b = Client
1b = Server

9 Reserved 0b Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

502 613875-009

6.3.3.15 SW Compatibility Word 2 (0x0011)

Five words in the NVM image are reserved for compatibility information. New bits within these fields are
defined as the need arises for determining software compatibility between various hardware revisions.

6.3.3.16 SW Compatibility Word 3 (0x0012)

Five words in the NVM image are reserved for compatibility information. New bits within these fields are
defined as the need arises for determining software compatibility between various hardware revisions.

6.3.3.17 SW Compatibility Word 4 (0x0013)

Five words in the NVM image are reserved for compatibility information. New bits within these fields are
defined as the need arises for determining software compatibility between various hardware revisions.

6.3.3.18 SW Compatibility Word 5 (0x0014)

Five words in the NVM image are reserved for compatibility information. New bits within these fields are
defined as the need arises for determining software compatibility between various hardware revisions.

6.3.3.19 Reserved (0x0015 - 0x0016)

8 OEM/Retail 0b Legacy – not currently used.
0b = Retail
1b = OEM

7:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

613875-009 503

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.20 Reserved - Boot Block Virtual Pointer (0x0017)

6.3.3.21 Software Reserved Word 1 - Dev Starter Version
(0x0018)

Dev_Starter map version used to produce this image. This word must be filled manually. Used for
upgrade/downgrade algorithm.

6.3.3.22 Software Reserved Word 2 (0x0019)

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:12 Major 0x0 NVM major version - Customer set.

11:8 Decimal Point 0x0 Decimal point, used by automatic NVM reading tools.
Must be always set to 0x0.

7:0 Minor 0x0 NVM minor version - Increased upon each release to customer.

Bit(s) Field Name Default
NVM Value Description

15:8 Reserved 0xFF Reserved.

7 WoL Control Port 7 1b Wake-on-LAN feature for Port 7.
0b = Supported and enabled.
1b = Disabled or not supported.

6 WoL Control Port 6 1b Wake-on-LAN feature for Port 6.
0b = Supported and enabled.
1b = Disabled or not supported.

5 WoL Control Port 5 1b Wake-on-LAN feature for Port 5.
0b = Supported and enabled.
1b = Disabled or not supported.

4 WoL Control Port 4 1b Wake-on-LAN feature for Port 4.
0b = Supported and enabled.
1b = Disabled or not supported.

3 WoL Control Port 3 1b Wake-on-LAN feature for Port 3.
0b = Supported and enabled.
1b = Disabled or not supported.

2 WoL Control Port 2 1b Wake-on-LAN feature for Port 2.
0b = Supported and enabled.
1b = Disabled or not supported.

1 WoL Control Port 1 1b Wake-on-LAN feature for Port 1.
0b = Supported and enabled.
1b = Disabled or not supported.

0 WoL Control Port 0 1b Wake-on-LAN feature for Port 0.
0b = Supported and enabled.
1b = Disabled or not supported.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

504 613875-009

6.3.3.23 Software Reserved Word 3 (0x001A)

6.3.3.24 Software Reserved Word 4 - OEM Product Version
Address Block Pointer (0x001B)

6.3.3.25 Software Reserved Word 5 (0x001C)

6.3.3.26 Software Reserved Word 6 (0x001D)

6.3.3.27 Software Reserved Word 7 (0x001E)

6.3.3.28 Software Reserved Word 8 (0x001F)

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 OEM Product Version Address
Block Pointer

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

613875-009 505

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.29 Software Reserved Word 9 (0x0020)

6.3.3.30 Software Reserved Word 10 (0x0021)

6.3.3.31 Software Reserved Word 11 (0x0022)

6.3.3.32 Software Reserved Word 12 (0x0023)

6.3.3.33 Software Reserved Word 13 (0x0024)

6.3.3.34 Software Reserved Word 14 (0x0025)

6.3.3.35 Software Reserved Word 15 (0x0026)

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

506 613875-009

6.3.3.36 Software Reserved Word 16 (0x0027)

6.3.3.37 Software Reserved Word 17 (0x0028)

6.3.3.38 Software Reserved Word 18 - Map Version (0x0029)

Automatically generated by the tool.

6.3.3.39 Software Reserved Word 19 - NVM Image Version
(0x002A)

Automatically generated by the tool.

6.3.3.40 Software Reserved Word 20 - NVM Structure Version
(0x002B)

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Map Version

Bit(s) Field Name Default
NVM Value Description

15:0 NVM Image Version

Bit(s) Field Name Default
NVM Value Description

15:12 Major 0x0 NVM major version.

11:8 Decimal Point 0x0 Decimal point, used by automatic NVM reading tools.
Must be always set to 0x0.

7:0 Minor 0x0 NVM Structure minor version.

613875-009 507

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.41 Software Reserved Word 21 - FCoE Offload (0x002C)

This word is for Platform/NIC/LOM specific settings.

6.3.3.42 Software Reserved Word 22 - EETRACK ID 1 (0x002D)

This word is for the first word of the eTrack_ID number written by EEPROM Manager Tool.

6.3.3.43 Software Reserved Word 23 - EETRACK ID 2 (0x002E)

This word is for the second word of the eTrack_ID number written by EEPROM Manager Tool.

6.3.3.44 Reserved (0x002F)

6.3.3.45 Reserved - PXE Configuration Virtual Pointer (0x0030)

6.3.3.46 Reserved - PXE Configuration Customization Virtual
Pointer (0x0031)

Bit(s) Field Name Default
NVM Value Description

15:2 Reserved 0x3FFF Reserved.

1 FCoE Offload 1b This bit indicates to software if the device supports FCoE Offload.
0b = FCoE Offload Enabled.
1b = FCoE Offload Disabled.

0 Reserved 1b Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 eTrack_ID Word 1 0xFFFF EEPROM Manager Tool writes a unique 32-bit eTrack_ID number in two sequential
NVM words.
The eTrack_ID is written when EEPROM Manager Tool creates an image on the Intel
network.
The eTrack_ID DB tracks NVM images back to a specific SCM build.

Bit(s) Field Name Default
NVM Value Description

15:0 eTrack_ID Word 2

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

508 613875-009

6.3.3.47 Reserved - PXE Version Virtual Word (0x0032)

6.3.3.48 Reserved (0x033)

6.3.3.49 Software Reserved Word 24 - Original EETRACK ID 1
(0x0034)

6.3.3.50 Software Reserved Word 25 - Original EETRACK ID 2
(0x0035)

6.3.3.51 Reserved (0x0036)

6.3.3.52 Reserved - VLAN Configuration Block Virtual Pointer
(0x0037)

6.3.3.53 Reserved (0x0038 - 0x003A)

6.3.3.54 GLOBR Registers Auto-Load Pointer (0x003B)

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Original EETRACK ID 1 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Original EETRACK ID 2 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 GLOBR Registers Auto-Load
Module Pointer

0x7FFF Points to GLOBR Registers Auto-Load Module Section. For GLOBR Registers
Auto-Load Module inner structure, see Section 6.3.58.

613875-009 509

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.55 CORER Registers Auto-Load Pointer (0x003C)

6.3.3.56 PHY Configuration Scripts (DNL) Pointer (0x003D)

6.3.3.57 Reserved (0x003E)

6.3.3.58 Reserved - Checksum (0x003F)

6.3.3.59 Preserved Field Area Pointer (0x0040)

6.3.3.60 HLP SR Module Pointer (0x0041)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 CORER Registers Auto-Load
Module Pointer

0x7FFF Points to CORER Registers Auto-Load Module Section. For CORER Registers
Auto-Load Module inner structure, see Section 6.3.56.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 DNL Pointer 0x7FFF Points to DL Scripts Section. For DL Scripts inner structure, see Section 6.3.96.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 PFA Pointer 0x7FFF Points to PFA Header Section. For PFA Header inner structure, see Section 6.3.4.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 HLP Module Pointer 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

510 613875-009

6.3.3.61 1st NVM Bank Pointer (0x0042)

6.3.3.62 NVM Bank Area Size (0x0043)

6.3.3.63 1st OROM Bank Pointer (0x0044)

6.3.3.64 OROM Bank Area Size (0x0045)

6.3.3.65 1st TLV Extension Bank Pointer (0x0046)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 1st NVM Bank Pointer 0x7FFF

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 NVM Bank Area Size 0x41A Size expressed in 4 KB sector units.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 1st OROM Bank Pointer 0x0 Pointer to first OROM section (not swapped when section changes)
Note: This value is fixed to 4224 KB - need to be manually changed if location

of section changes.
Points to OROM Section. For OROM inner structure, see Section 6.3.108.

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 OROM Bank Area Size 0x7D Size expressed in 4 KB sector units.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 1st TLV Extension
Bank Pointer

0x0 Pointer to first TLV extension section (not swapped when section changes)
Note: This value is fixed to 4224 KB - need to be manually changed if location of

section changes.
Points to Link Topology Netlist CSS Header Section. For Link Topology Netlist CSS
Header inner structure, see Section 6.3.111.

613875-009 511

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.66 TLV Extension Bank Area Size (0x0047)

6.3.3.67 EMP SR Settings Pointer (0x0048)

6.3.3.68 Reserved (0x0049)

6.3.3.69 PE CORER Registers Auto-Load Pointer (0x004A)

6.3.3.70 Link Topology Scratch Pad Area Pointer (0x004B)

6.3.3.71 Link Topology Scratch Pad Area Size (0x004C)

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 TLV Extension Bank Area Size 0x7 Size expressed in 4 KB sector units.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 EMP SR Settings Pointer 07FFF Points to EMP SR Settings Module Header Section. For EMP SR Settings Module
Header inner structure, see Section 6.3.61.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 PE CORER Config Pointer 07FFF Points to PE CORER Registers Section. For PE CORER Registers inner structure,
see Section 6.3.59.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Link Topology Scratch Pad
Area Pointer

07FFF Points to Link Topology Scratch Pad Area Section. For Link Topology Scratch
Pad Area inner structure, see Section 6.3.115.

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 Link Topology Scratch Pad
Area Size

0x5 Size expressed in 4 KB sector units.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

512 613875-009

6.3.3.72 Configuration Metadata Pointer (0x004D)

6.3.3.73 Reserved (0x004E - 0x004F)

6.3.3.74 FW Scratch Pad Area Pointer (0x0050)

6.3.3.75 FW Scratch Pad Area Size (0x0051)

6.3.3.76 Reserved (0x0052 - 0x0053)

6.3.3.77 Analog PHY Configuration Module Pointer (0x0054)

6.3.3.78 Soft SKUs (0x0055)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Configuration Metadata
Pointer

07FFF Points to Configuration Metadata Section. For Configuration Metadata inner
structure, see Section 6.3.99.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 FW Scratch Pad Area Pointer 07FFF Points to FW Scratch Pad Area Section. For FW Scratch Pad Area inner
structure, see Section 6.3.116.

Bit(s) Field Name Default
NVM Value Description

15:10 Reserved 0x0 Reserved.

9:0 FW Scratch Pad Area Size 0x40 Size expressed in 4 KB sector units.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Internal PHY Configuration
Module Pointer

07FFF Points to Analog PHY Configuration Section. For Analog PHY Configuration
inner structure, see Section 6.3.98.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

613875-009 513

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.79 Extended CORER Registers Auto-Load Pointer (0x0056)

6.3.3.80 Recovery Firmware Pointer (0x0057)

6.3.3.81 Control Pipe Package Pointer (0x0058)

6.3.3.82 Reserved (0x0059 - 0x005A)

6.3.3.83 DCB Rx Module Pointer (0x005B)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Extended CORER Registers
Auto-Load Module Pointer

07FFF Points to Ext. CORER Registers Auto-Load Module Section. For Ext. CORER
Registers Auto-Load Module inner structure, see Section 6.3.93.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Recovery Firmware Pointer 0x0 Points to Recovery FW CSS Header Section. For Recovery FW CSS Header
inner structure, see Section 6.3.86.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Control Pipe Package Pointer 07FFF Points to Control Pipe Package Section. For Control Pipe Package inner
structure, see Section 6.3.100.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 DCB Rx Module Pointer 07FFF Points to DCB Rx Module Section. For DCB Rx Module inner structure, see
Section 6.3.89.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

514 613875-009

6.3.3.84 DCB Tx Module Pointer (0x005C)

6.3.3.85 Allowlist Pointer (0x005D)

6.3.3.86 Sideband Auto-Load Pointer (0x005E)

6.3.3.87 RDE Dictionaries Pointer (0x005F)

6.3.3.88 Reserved (0x0060 - 0x0061)

6.3.3.89 Factory Settings Size (0x0062)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 DCB Tx Module Pointer 07FFF Points to DCB Tx Module Section. For DCB Tx Module inner structure, see
Section 6.3.90.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Allowlist Pointer 07FFF Points to Allowlist Section. For Allowlist inner structure, see Section 6.3.97.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Sideband Auto-Load Pointer 07FFF Points to Sideband Bus Auto-Load Section. For Sideband Bus Auto-Load inner
structure, see Section 6.3.60.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 RDE Dictionaries Pointer 07FFF Points to RDE Dictionaries Section. For RDE Dictionaries inner structure, see
Section 6.3.102.

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 Factory Settings Size 0xD Size expressed in 4 KB sector units.

613875-009 515

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.3.90 Mailbox Register Auto-Load Pointer (0x0063)

6.3.3.91 QoS DCB Auto-Load Section Pointer (0x0064)

6.3.3.92 QoS no-DCB Auto-Load Section Pointer (0x0065)

6.3.3.93 Spare NVM Header Words1 (0x0066)

6.3.3.94 Spare NVM Header Words2 (0x0067)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0x0 Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Mailbox Register Auto-Load Pointer 0x7FFF Points to Mailbox Register Auto-Load Module Section. For Mailbox
Register Auto-Load Module inner structure, see Section 6.3.57.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0x1 Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 QoS DCB Auto-Load Section Pointer 0x7FFF Points to QoS DCB Auto-Load Section. For QoS DCB Auto-Load
Section inner structure, see Section 6.3.91.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0x1 Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 QoS no- DCB Auto-Load Section Pointer 0x7FFF Points to QoS no-DCB Auto-Load Section. For QoS no-DCB
Auto-Load Section inner structure, see Section 6.3.92.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

516 613875-009

6.3.3.95 External Topology Device Image 0 Pointer (0x0068)

6.3.3.96 External Topology Device Image 1 Pointer (0x0069)

6.3.3.97 External Topology Device Image 2 Pointer (0x006A)

6.3.3.98 External Topology Device Image 3 Pointer (0x006B)

6.3.3.99 Spare NVM Header Words[n] (0x006C + 1*n,
n=7...154)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0x1 Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 External Topology Device Image 0
Pointer

0x7FFF Points to External Topology Device Image 0 Section. For External
Topology Device Image 0 inner structure, see Section 6.3.103.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0x1 Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 External Topology Device Image 1
Pointer

0x7FFF Points to External Topology Device Image 0 Section. For External
Topology Device Image 0 inner structure, see Section 6.3.104.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0x1 Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 External Topology Device Image 2
Pointer

0x7FFF Points to External Topology Device Image 0 Section. For External
Topology Device Image 0 inner structure, see Section 6.3.105.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0x1 Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 External Topology Device Image 3
Pointer

0x7FFF Points to External Topology Device Image 0 Section. For External
Topology Device Image 0 inner structure, see Section 6.3.106.

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

613875-009 517

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.4 PFA Header Section

Preserved fields area header.

6.3.4.1 PFA Length (0x0000)

6.3.5 PFA Features Module Section

6.3.5.1 Sub Module Type - Features (0x0101)

Table 6-10. PFA Header Section Summary Table

Word Offset Description Section
Reference

0x0000 PFA Length 6.3.4.1

Bit(s) Field Name Default
NVM Value Description

15:0 PFA Length 0x2F00

Table 6-11. PFA Features Module Section Summary Table

Word Offset Description Section
Reference

0x0101 Sub Module Type - Features 6.3.5.1

Bit(s) Field Name Default
NVM Value Description

15:0 Sub Module Type 0x49 Valid values are:
0x49 = Feature Configuration

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

518 613875-009

6.3.6 Feature Configuration Padding Module Section

6.3.6.1 Sub Module Type - Padding (0x0000)

6.3.6.2 Length (0x0001)

6.3.6.3 Padding (0x0002)

6.3.7 PFA Immediate Values Module Section

6.3.7.1 Sub Module Type - Immediate (0x0901)

Table 6-12. Feature Configuration Padding Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - Padding 6.3.6.1

0x0001 Length 6.3.6.2

0x0002 Padding 6.3.6.3

Bit(s) Field Name Default
NVM Value Description

15:0 Sub Module Type 0xFFFF Valid values are:
0xFFFF = Padding Module

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Feature Configuration Padding Module -> Sub Module Type
Padding
Last Section -> Word: Feature Configuration Padding Module -> Padding

Bit(s) Field Name Default
NVM Value Description

15:0 [New Field]

Table 6-13. PFA Immediate Values Module Section Summary Table

Word Offset Description Section
Reference

0x0901 Sub Module Type - Immediate 6.3.7.1

Bit(s) Field Name Default
NVM Value Description

15:0 Sub Module Type 0x4E Valid values are:
0x4E = Immediate Configuration

613875-009 519

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.8 Immediate Fields Padding Module Section

6.3.8.1 Sub Module Type Padding (0x0000)

6.3.8.2 Length (0x0001)

6.3.8.3 Padding (0x0002)

Table 6-14. Immediate Fields Padding Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type Padding 6.3.8.1

0x0001 Length 6.3.8.2

0x0002 Padding 6.3.8.3

Bit(s) Field Name Default
NVM Value Description

15:0 Sub Module Type 0xFFFF Valid values are:
0xFFFF = Padding Module

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Immediate Fields Padding Module -> Sub Module Type Padding
Last Section -> Word: Immediate Fields Padding Module -> Padding

Bit(s) Field Name Default
NVM Value Description

15:0 [New Field] 0xFFFF

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

520 613875-009

6.3.9 PFA VPD Module Section

VPD area. Vital product data loaded by OEM. It contains RO and RW info about the NIC/LOM.

6.3.9.1 Sub Module Type - VPD (0x0F01)

6.3.9.2 Length (0x0F02)

6.3.9.3 VPD Data (0x0F03)

Raw data module length: 512 words

Table 6-15. PFA VPD Module Section Summary Table

Word Offset Description Section
Reference

0x0F01 Sub Module Type - VPD 6.3.9.1

0x0F02 Length 6.3.9.2

0x0F03 VPD Data 6.3.9.3

Bit(s) Field Name Default
NVM Value Description

15:0 Sub Module Type 0x2F Valid values are:
0x2F = VPD Module

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: PFA VPD Module -> Sub Module Type - VPD
Last Section -> Word: PFA VPD Module -> VPD Data

613875-009 521

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.10 PFA MNG Filter Section

6.3.10.1 Sub Module Type - MNG Filter (0x0000)

6.3.10.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

6.3.10.3 Flexible Filter Data (0x0002)

Raw data module length: variable

Table 6-16. PFA MNG Filter Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - MNG Filter 6.3.10.1

0x0001 Section Length 6.3.10.2

0x0002 Flexible Filter Data 6.3.10.3

Bit(s) Field Name Default
NVM Value Description

15:0 Sub Module Type 0x107 Valid values are:
0x107 = MNG Filters

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: PFA MNG Filter -> Section Length
Last Section -> Word: PFA MNG Filter -> Flexible Filter Data

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

522 613875-009

6.3.11 PFA PT Configuration 0 Section

Pass-through filters of Port 0 PFA section header.

Table 6-17. PFA PT Configuration 0 Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type PT Module 0 6.3.11.1

0x0001 Section Length 6.3.11.2

0x0002 + 2*n, n=0...3 LAN IPv4 Address (LSB) MIPAF0 6.3.11.3

0x0003 + 2*n, n=0...3 LAN IPv4 Address (MSB) MIPAF0 6.3.11.4

0x000A + 2*n, n=0...15 LAN Flexible Filter Port 6.3.11.5

0x000B + 2*n, n=0...15 LAN Flexible Filter Port - Modifiers 6.3.11.6

0x002A + 1*n, n=0...7 LAN VLAN Filter 6.3.11.7

0x0032 LAN MANC Value LSB 6.3.11.8

0x0033 LAN MANC Value MSB 6.3.11.9

0x0034 Receive Enable 1 - LRXEN1 6.3.11.10

0x0035 Receive Enable 2 - LRXEN2 6.3.11.11

0x0036 LAN MNGONLY LSB 6.3.11.12

0x0037 LAN MNGONLY MSB 6.3.11.13

0x0038 + 4*n, n=0...6 Manageability Decision Filters LSB 6.3.11.14

0x0039 + 4*n, n=0...6 Manageability Decision Filters MSB 6.3.11.15

0x003A + 4*n, n=0...6 Manageability Extended Decision Filters LSB 6.3.11.16

0x003B + 4*n, n=0...6 Manageability Extended Decision Filters MSB 6.3.11.17

0x0054 + 2*n, n=0...3 Manageability EtherType Filter (METF) LSB 6.3.11.18

0x0055 + 2*n, n=0...3 Manageability EtherType Filter (METF) MSB 6.3.11.19

0x005C ARP Response IPv4 Address LSB 6.3.11.20

0x005D ARP Response IPv4 Address MSB 6.3.11.21

0x005E + 8*n, n=0...3 IPv6 Address Bytes 0-1 6.3.11.22

0x005F + 8*n, n=0...3 IPv6 Address Bytes 2-3 6.3.11.23

0x0060 + 8*n, n=0...3 IPv6 Address Bytes 4-5 6.3.11.24

0x0061 + 8*n, n=0...3 IPv6 Address Bytes 6-7 6.3.11.25

0x0062 + 8*n, n=0...3 IPv6 Address Bytes 8-9 6.3.11.26

0x0063 + 8*n, n=0...3 IPv6 Address Bytes 10-11 6.3.11.27

0x0064 + 8*n, n=0...3 IPv6 Address Bytes 12-13 6.3.11.28

0x0065 + 8*n, n=0...3 IPv6 Address Bytes 14-15 6.3.11.29

0x007E Manageability Special Modifiers LSB 6.3.11.30

0x007F Manageability Special Modifiers MSB 6.3.11.31

613875-009 523

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.11.1 Sub Module Type PT Module 0 (0x0000)

6.3.11.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

6.3.11.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n,
n=0...3)

6.3.11.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n,
n=0...3)

6.3.11.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x108 Valid values are:
0x108 = Pass-Through Control Words Structure 0

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: PFA PT Configuration 0 -> Section Length
Last Section -> Word: PFA PT Configuration 0 -> Manageability Special Modifiers MSB

Bit(s) Field Name Default
NVM Value Description

15:8 IPv4 Address, Byte 1 0xFF

7:0 IPv4 Address, Byte 0 0xFF

Bit(s) Field Name Default
NVM Value Description

15:8 IPv4 Address, Byte 3 0xFF

7:0 IPv4 Address, Byte 4 0xFF

Bit(s) Field Name Default
NVM Value Description

15:0 LAN UDP Flexible Filter Port0 0xFFFF

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

524 613875-009

6.3.11.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n,
n=0...15)

6.3.11.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)

6.3.11.8 LAN MANC Value LSB (0x0032)

6.3.11.9 LAN MANC Value MSB (0x0033)

Bit(s) Field Name Default
NVM Value Description

15:3 Reserved Reserved.

2 Source Destination 0b 0b = Destination
1b = Source

1 Accept TCP 0b If set, filter match if packet is TCP.
0b = Filter
1b = Accept

0 Accept UDP 0b If set, filter match if packet is UDP.
0b = Filter
1b = Accept

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 VLAN Filter 0 Value 0xFFF

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:11 Reserved 0x0 Reserved.

10 NET_TYPE 0b

9 FIXED_NET_TYPE 0b

8 Reserved 0b Reserved.

7 EN_XSUM_FILTER 0b Should be used to set the RBCR.EN_XSUM_FILTERn bit, where n is the port
number).

6:0 Reserved 0x0 Reserved.

613875-009 525

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.11.10 Receive Enable 1 - LRXEN1 (0x0034)

6.3.11.11 Receive Enable 2 - LRXEN2 (0x0035)

6.3.11.12 LAN MNGONLY LSB (0x0036)

6.3.11.13 LAN MNGONLY MSB (0x0037)

Bit(s) Field Name Default
NVM Value Description

15:9 Receive Enable Byte 12 0x0 BMC SMBus secondary address.

8 Reserved 0b Reserved.

7 Enable BMC Dedicated 0b When set, the BMC will receive traffic sent to the MAC Address defined in
MMAH/MMAL[3].
The Firmware configures MDEF, MDEF_EXT (7) to dedicated MAC configured into
MMAL/H (3) to implement this mode.

6 Reserved 1b Reserved.

5:4 Notification Method 00b This field is valid only in the section of port 0 and defines the notification method
for all ports.
Valid values are:

00b = SMBus Alert
01b = Asynchronous Notify
10b = Direct Receive
11b = Reserved

3 Enable ARP Response 0b When set, the firmware offloads ARP handling sent to the IP Address defined in
ARP Response IPv4 Address NVM words.
The Firmware uses MDEF, MDEF_EXT (6) and MIPAF4[3] to implement this
mode.

2 Enable Status Reporting 0b

1 Enable Receive All 0b

0 Enable Receive TCO 0b

Bit(s) Field Name Default
NVM Value Description

15:8 Receive Enable Byte 14 0x0 Alert value.

7:0 Receive Enable Byte 13 0x0 Interface data.

Bit(s) Field Name Default
NVM Value Description

15:8 Reserved 0x0 Reserved.

7:0 Exclusive to MNG 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

526 613875-009

6.3.11.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n,
n=0...6)

6.3.11.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n,
n=0...6)

6.3.11.16 Manageability Extended Decision Filters LSB[n]
(0x003A + 4*n, n=0...6)

6.3.11.17 Manageability Extended Decision Filters MSB[n]
(0x003B + 4*n, n=0...6)

6.3.11.18 Manageability EtherType Filter (METF) LSB[n] (0x0054
+ 2*n, n=0...3)

6.3.11.19 Manageability EtherType Filter (METF) MSB[n] (0x0055
+ 2*n, n=0...3)

Bit(s) Field Name Default
NVM Value Description

15:0 MDEF0_L 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 MDEF0_M 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 MDEFEXT0_L 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 MDEFEXT0_M 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 METF0_L 0x0 Loaded to 16 LS bits of METF[0] register.

Bit(s) Field Name Default
NVM Value Description

15:0 METF0_M 0x0 Loaded to 16 MS bits of METF[0] register (reserved bits in the METF registers should be
set in the NVM to the register default values).

613875-009 527

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.11.20 ARP Response IPv4 Address LSB (0x005C)

6.3.11.21 ARP Response IPv4 Address MSB (0x005D)

6.3.11.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)

6.3.11.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)

6.3.11.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)

6.3.11.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)

6.3.11.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0 Firmware use.

7:0 Byte 0 0x0 Firmware use.

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0 Firmware use.

7:0 Byte 0 0x0 Firmware use.

Bit(s) Field Name Default
NVM Value Description

15:0 IPv6 Address Bytes 0-1 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 IPv6 Address Bytes 2-3 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 IPv6 Address Bytes 4-5 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 IPv6 Address Bytes 6-7 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 IPv6 Address Bytes 8-9 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

528 613875-009

6.3.11.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)

6.3.11.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)

6.3.11.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)

6.3.11.30 Manageability Special Modifiers LSB (0x007E)

6.3.11.31 Manageability Special Modifiers MSB (0x007F)

Bit(s) Field Name Default
NVM Value Description

15:0 IPv6 Address Bytes 10-11 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 IPv6 Address Bytes 12-13 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 IPv6 Address Bytes 14-15 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 MSFM_L 0x000F

Bit(s) Field Name Default
NVM Value Description

15:0 MSFM_M 0x0

613875-009 529

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.12 PFA PT Configuration 1 Section

Pass-through filters of Port 1 PFA section header.

Table 6-18. PFA PT Configuration 1 Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type PT Module 1 6.3.12.1

0x0001 Section Length 6.3.12.2

0x0002 + 2*n, n=0...3 LAN IPv4 Address (LSB) MIPAF0 6.3.12.3

0x0003 + 2*n, n=0...3 LAN IPv4 Address (MSB) MIPAF0 6.3.12.4

0x000A + 2*n, n=0...15 LAN Flexible Filter Port 6.3.12.5

0x000B + 2*n, n=0...15 LAN Flexible Filter Port - Modifiers 6.3.12.6

0x002A + 1*n, n=0...7 LAN VLAN Filter 6.3.12.7

0x0032 LAN MANC Value LSB 6.3.12.8

0x0033 LAN MANC Value MSB 6.3.12.9

0x0034 Receive Enable 1 - LRXEN1 6.3.12.10

0x0035 Receive Enable 2 - LRXEN2 6.3.12.11

0x0036 LAN MNGONLY LSB 6.3.12.12

0x0037 LAN MNGONLY MSB 6.3.12.13

0x0038 + 4*n, n=0...6 Manageability Decision Filters LSB 6.3.12.14

0x0039 + 4*n, n=0...6 Manageability Decision Filters MSB 6.3.12.15

0x003A + 4*n, n=0...6 Manageability Extended Decision Filters LSB 6.3.12.16

0x003B + 4*n, n=0...6 Manageability Extended Decision Filters MSB 6.3.12.17

0x0054 + 2*n, n=0...3 Manageability EtherType Filter (METF) LSB 6.3.12.18

0x0055 + 2*n, n=0...3 Manageability EtherType Filter (METF) MSB 6.3.12.19

0x005C ARP Response IPv4 Address LSB 6.3.12.20

0x005D ARP Response IPv4 Address MSB 6.3.12.21

0x005E + 8*n, n=0...3 IPv6 Address Bytes 0-1 6.3.12.22

0x005F + 8*n, n=0...3 IPv6 Address Bytes 2-3 6.3.12.23

0x0060 + 8*n, n=0...3 IPv6 Address Bytes 4-5 6.3.12.24

0x0061 + 8*n, n=0...3 IPv6 Address Bytes 6-7 6.3.12.25

0x0062 + 8*n, n=0...3 IPv6 Address Bytes 8-9 6.3.12.26

0x0063 + 8*n, n=0...3 IPv6 Address Bytes 10-11 6.3.12.27

0x0064 + 8*n, n=0...3 IPv6 Address Bytes 12-13 6.3.12.28

0x0065 + 8*n, n=0...3 IPv6 Address Bytes 14-15 6.3.12.29

0x007E Manageability Special Modifiers LSB 6.3.12.30

0x007F Manageability Special Modifiers MSB 6.3.12.31

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

530 613875-009

6.3.12.1 Sub Module Type PT Module 1 (0x0000)

6.3.12.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

For inner structure, see Section 6.3.11.2.

6.3.12.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.3.

6.3.12.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.4.

6.3.12.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)

For inner structure, see Section 6.3.11.5.

6.3.12.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n,
n=0...15)

For inner structure, see Section 6.3.11.6.

6.3.12.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)

For inner structure, see Section 6.3.11.7.

6.3.12.8 LAN MANC Value LSB (0x0032)

For inner structure, see Section 6.3.11.8.

6.3.12.9 LAN MANC Value MSB (0x0033)

For inner structure, see Section 6.3.11.9.

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x109 Valid values are:
0x109 = Pass-Through Control Words Structure 1

613875-009 531

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.12.10 Receive Enable 1 - LRXEN1 (0x0034)

For inner structure, see Section 6.3.11.10.

6.3.12.11 Receive Enable 2 - LRXEN2 (0x0035)

For inner structure, see Section 6.3.11.11.

6.3.12.12 LAN MNGONLY LSB (0x0036)

For inner structure, see Section 6.3.11.12.

6.3.12.13 LAN MNGONLY MSB (0x0037)

For inner structure, see Section 6.3.11.13.

6.3.12.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.14.

6.3.12.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.15.

6.3.12.16 Manageability Extended Decision Filters LSB[n]
(0x003A + 4*n, n=0...6)

For inner structure, see Section 6.3.11.16.

6.3.12.17 Manageability Extended Decision Filters MSB[n]
(0x003B + 4*n, n=0...6)

For inner structure, see Section 6.3.11.17.

6.3.12.18 Manageability EtherType Filter (METF) LSB[n] (0x0054
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.18.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

532 613875-009

6.3.12.19 Manageability EtherType Filter (METF) MSB[n] (0x0055
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.19.

6.3.12.20 ARP Response IPv4 Address LSB (0x005C)

For inner structure, see Section 6.3.11.20.

6.3.12.21 ARP Response IPv4 Address MSB (0x005D)

For inner structure, see Section 6.3.11.21.

6.3.12.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)

For inner structure, see Section 6.3.11.22.

6.3.12.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)

For inner structure, see Section 6.3.11.23.

6.3.12.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.24.

6.3.12.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.25.

6.3.12.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.26.

6.3.12.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.27.

6.3.12.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.28.

6.3.12.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.29.

613875-009 533

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.12.30 Manageability Special Modifiers LSB (0x007E)

For inner structure, see Section 6.3.11.30.

6.3.12.31 Manageability Special Modifiers MSB (0x007F)

For inner structure, see Section 6.3.11.31.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

534 613875-009

6.3.13 PFA PT Configuration 2 Section

Pass-through filters of Port 2 PFA section header.

Table 6-19. PFA PT Configuration 2 Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type PT Module 2 6.3.13.1

0x0001 Section Length 6.3.13.2

0x0002 + 2*n, n=0...3 LAN IPv4 Address (LSB) MIPAF0 6.3.13.3

0x0003 + 2*n, n=0...3 LAN IPv4 Address (MSB) MIPAF0 6.3.13.4

0x000A + 2*n, n=0...15 LAN Flexible Filter Port 6.3.13.5

0x000B + 2*n, n=0...15 LAN Flexible Filter Port - Modifiers 6.3.13.6

0x002A + 1*n, n=0...7 LAN VLAN Filter 6.3.13.7

0x0032 LAN MANC Value LSB 6.3.13.8

0x0033 LAN MANC Value MSB 6.3.13.9

0x0034 Receive Enable 1 - LRXEN1 6.3.13.10

0x0035 Receive Enable 2 - LRXEN2 6.3.13.11

0x0036 LAN MNGONLY LSB 6.3.13.12

0x0037 LAN MNGONLY MSB 6.3.13.13

0x0038 + 4*n, n=0...6 Manageability Decision Filters LSB 6.3.13.14

0x0039 + 4*n, n=0...6 Manageability Decision Filters MSB 6.3.13.15

0x003A + 4*n, n=0...6 Manageability Extended Decision Filters LSB 6.3.13.16

0x003B + 4*n, n=0...6 Manageability Extended Decision Filters MSB 6.3.13.17

0x0054 + 2*n, n=0...3 Manageability EtherType Filter (METF) LSB 6.3.13.18

0x0055 + 2*n, n=0...3 Manageability EtherType Filter (METF) MSB 6.3.13.19

0x005C ARP Response IPv4 Address LSB 6.3.13.20

0x005D ARP Response IPv4 Address MSB 6.3.13.21

0x005E + 8*n, n=0...3 IPv6 Address Bytes 0-1 6.3.13.22

0x005F + 8*n, n=0...3 IPv6 Address Bytes 2-3 6.3.13.23

0x0060 + 8*n, n=0...3 IPv6 Address Bytes 4-5 6.3.13.24

0x0061 + 8*n, n=0...3 IPv6 Address Bytes 6-7 6.3.13.25

0x0062 + 8*n, n=0...3 IPv6 Address Bytes 8-9 6.3.13.26

0x0063 + 8*n, n=0...3 IPv6 Address Bytes 10-11 6.3.13.27

0x0064 + 8*n, n=0...3 IPv6 Address Bytes 12-13 6.3.13.28

0x0065 + 8*n, n=0...3 IPv6 Address Bytes 14-15 6.3.13.29

0x007E Manageability Special Modifiers LSB 6.3.13.30

0x007F Manageability Special Modifiers MSB 6.3.13.31

613875-009 535

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.13.1 Sub Module Type PT Module 2 (0x0000)

6.3.13.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

For inner structure, see Section 6.3.11.2.

6.3.13.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.3.

6.3.13.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.4.

6.3.13.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)

For inner structure, see Section 6.3.11.5.

6.3.13.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n,
n=0...15)

For inner structure, see Section 6.3.11.6.

6.3.13.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)

For inner structure, see Section 6.3.11.7.

6.3.13.8 LAN MANC Value LSB (0x0032)

For inner structure, see Section 6.3.11.8.

6.3.13.9 LAN MANC Value MSB (0x0033)

For inner structure, see Section 6.3.11.9.

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x10A Valid values are:
0x10A = Pass-Through Control Words Structure 2

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

536 613875-009

6.3.13.10 Receive Enable 1 - LRXEN1 (0x0034)

For inner structure, see Section 6.3.11.10.

6.3.13.11 Receive Enable 2 - LRXEN2 (0x0035)

For inner structure, see Section 6.3.11.11.

6.3.13.12 LAN MNGONLY LSB (0x0036)

For inner structure, see Section 6.3.11.12.

6.3.13.13 LAN MNGONLY MSB (0x0037)

For inner structure, see Section 6.3.11.13.

6.3.13.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.14.

6.3.13.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.15.

6.3.13.16 Manageability Extended Decision Filters LSB[n]
(0x003A + 4*n, n=0...6)

For inner structure, see Section 6.3.11.16.

6.3.13.17 Manageability Extended Decision Filters MSB[n]
(0x003B + 4*n, n=0...6)

For inner structure, see Section 6.3.11.17.

6.3.13.18 Manageability EtherType Filter (METF) LSB[n] (0x0054
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.18.

613875-009 537

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.13.19 Manageability EtherType Filter (METF) MSB[n] (0x0055
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.19.

6.3.13.20 ARP Response IPv4 Address LSB (0x005C)

For inner structure, see Section 6.3.11.20.

6.3.13.21 ARP Response IPv4 Address MSB (0x005D)

For inner structure, see Section 6.3.11.21.

6.3.13.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)

For inner structure, see Section 6.3.11.22.

6.3.13.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)

For inner structure, see Section 6.3.11.23.

6.3.13.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.24.

6.3.13.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.25.

6.3.13.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.26.

6.3.13.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.27.

6.3.13.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.28.

6.3.13.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.29.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

538 613875-009

6.3.13.30 Manageability Special Modifiers LSB (0x007E)

For inner structure, see Section 6.3.11.30.

6.3.13.31 Manageability Special Modifiers MSB (0x007F)

For inner structure, see Section 6.3.11.31.

613875-009 539

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.14 PFA PT Configuration 3 Section

Pass-through filters of Port 3 PFA section header.

Table 6-20. PFA PT Configuration 3 Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type PT Module 3 6.3.14.1

0x0001 Section Length 6.3.14.2

0x0002 + 2*n, n=0...3 LAN IPv4 Address (LSB) MIPAF0 6.3.14.3

0x0003 + 2*n, n=0...3 LAN IPv4 Address (MSB) MIPAF0 6.3.14.4

0x000A + 2*n, n=0...15 LAN Flexible Filter Port 6.3.14.5

0x000B + 2*n, n=0...15 LAN Flexible Filter Port - Modifiers 6.3.14.6

0x002A + 1*n, n=0...7 LAN VLAN Filter 6.3.14.7

0x0032 LAN MANC Value LSB 6.3.14.8

0x0033 LAN MANC Value MSB 6.3.14.9

0x0034 Receive Enable 1 - LRXEN1 6.3.14.10

0x0035 Receive Enable 2 - LRXEN2 6.3.14.11

0x0036 LAN MNGONLY LSB 6.3.14.12

0x0037 LAN MNGONLY MSB 6.3.14.13

0x0038 + 4*n, n=0...6 Manageability Decision Filters LSB 6.3.14.14

0x0039 + 4*n, n=0...6 Manageability Decision Filters MSB 6.3.14.15

0x003A + 4*n, n=0...6 Manageability Extended Decision Filters LSB 6.3.14.16

0x003B + 4*n, n=0...6 Manageability Extended Decision Filters MSB 6.3.14.17

0x0054 + 2*n, n=0...3 Manageability EtherType Filter (METF) LSB 6.3.14.18

0x0055 + 2*n, n=0...3 Manageability EtherType Filter (METF) MSB 6.3.14.19

0x005C ARP Response IPv4 Address LSB 6.3.14.20

0x005D ARP Response IPv4 Address MSB 6.3.14.21

0x005E + 8*n, n=0...3 IPv6 Address Bytes 0-1 6.3.14.22

0x005F + 8*n, n=0...3 IPv6 Address Bytes 2-3 6.3.14.23

0x0060 + 8*n, n=0...3 IPv6 Address Bytes 4-5 6.3.14.24

0x0061 + 8*n, n=0...3 IPv6 Address Bytes 6-7 6.3.14.25

0x0062 + 8*n, n=0...3 IPv6 Address Bytes 8-9 6.3.14.26

0x0063 + 8*n, n=0...3 IPv6 Address Bytes 10-11 6.3.14.27

0x0064 + 8*n, n=0...3 IPv6 Address Bytes 12-13 6.3.14.28

0x0065 + 8*n, n=0...3 IPv6 Address Bytes 14-15 6.3.14.29

0x007E Manageability Special Modifiers LSB 6.3.14.30

0x007F Manageability Special Modifiers MSB 6.3.14.31

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

540 613875-009

6.3.14.1 Sub Module Type PT Module 3 (0x0000)

6.3.14.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

For inner structure, see Section 6.3.11.2.

6.3.14.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.3.

6.3.14.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.4.

6.3.14.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)

For inner structure, see Section 6.3.11.5.

6.3.14.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n,
n=0...15)

For inner structure, see Section 6.3.11.6.

6.3.14.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)

For inner structure, see Section 6.3.11.7.

6.3.14.8 LAN MANC Value LSB (0x0032)

For inner structure, see Section 6.3.11.8.

6.3.14.9 LAN MANC Value MSB (0x0033)

For inner structure, see Section 6.3.11.9.

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x10B Valid values are:
0x10B = Pass-Through Control Words Structure 3

613875-009 541

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.14.10 Receive Enable 1 - LRXEN1 (0x0034)

For inner structure, see Section 6.3.11.10.

6.3.14.11 Receive Enable 2 - LRXEN2 (0x0035)

For inner structure, see Section 6.3.11.11.

6.3.14.12 LAN MNGONLY LSB (0x0036)

For inner structure, see Section 6.3.11.12.

6.3.14.13 LAN MNGONLY MSB (0x0037)

For inner structure, see Section 6.3.11.13.

6.3.14.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.14.

6.3.14.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.15.

6.3.14.16 Manageability Extended Decision Filters LSB[n]
(0x003A + 4*n, n=0...6)

For inner structure, see Section 6.3.11.16.

6.3.14.17 Manageability Extended Decision Filters MSB[n]
(0x003B + 4*n, n=0...6)

For inner structure, see Section 6.3.11.17.

6.3.14.18 Manageability EtherType Filter (METF) LSB[n] (0x0054
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.18.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

542 613875-009

6.3.14.19 Manageability EtherType Filter (METF) MSB[n] (0x0055
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.19.

6.3.14.20 ARP Response IPv4 Address LSB (0x005C)

For inner structure, see Section 6.3.11.20.

6.3.14.21 ARP Response IPv4 Address MSB (0x005D)

For inner structure, see Section 6.3.11.21.

6.3.14.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)

For inner structure, see Section 6.3.11.22.

6.3.14.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)

For inner structure, see Section 6.3.11.23.

6.3.14.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.24.

6.3.14.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.25.

6.3.14.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.26.

6.3.14.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.27.

6.3.14.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.28.

6.3.14.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.29.

613875-009 543

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.14.30 Manageability Special Modifiers LSB (0x007E)

For inner structure, see Section 6.3.11.30.

6.3.14.31 Manageability Special Modifiers MSB (0x007F)

For inner structure, see Section 6.3.11.31.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

544 613875-009

6.3.15 PFA PT Configuration 4 Section

Pass-through filters of Port 4 PFA section header.

Table 6-21. PFA PT Configuration 4 Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type PT Module 4 6.3.15.1

0x0001 Section Length 6.3.15.2

0x0002 + 2*n, n=0...3 LAN IPv4 Address (LSB) MIPAF0 6.3.15.3

0x0003 + 2*n, n=0...3 LAN IPv4 Address (MSB) MIPAF0 6.3.15.4

0x000A + 2*n, n=0...15 LAN Flexible Filter Port 6.3.15.5

0x000B + 2*n, n=0...15 LAN Flexible Filter Port - Modifiers 6.3.15.6

0x002A + 1*n, n=0...7 LAN VLAN Filter 6.3.15.7

0x0032 LAN MANC Value LSB 6.3.15.8

0x0033 LAN MANC Value MSB 6.3.15.9

0x0034 Receive Enable 1 - LRXEN1 6.3.15.10

0x0035 Receive Enable 2 - LRXEN2 6.3.15.11

0x0036 LAN MNGONLY LSB 6.3.15.12

0x0037 LAN MNGONLY MSB 6.3.15.13

0x0038 + 4*n, n=0...6 Manageability Decision Filters LSB 6.3.15.14

0x0039 + 4*n, n=0...6 Manageability Decision Filters MSB 6.3.15.15

0x003A + 4*n, n=0...6 Manageability Extended Decision Filters LSB 6.3.15.16

0x003B + 4*n, n=0...6 Manageability Extended Decision Filters MSB 6.3.15.17

0x0054 + 2*n, n=0...3 Manageability EtherType Filter (METF) LSB 6.3.15.18

0x0055 + 2*n, n=0...3 Manageability EtherType Filter (METF) MSB 6.3.15.19

0x005C ARP Response IPv4 Address LSB 6.3.15.20

0x005D ARP Response IPv4 Address MSB 6.3.15.21

0x005E + 8*n, n=0...3 IPv6 Address Bytes 0-1 6.3.15.22

0x005F + 8*n, n=0...3 IPv6 Address Bytes 2-3 6.3.15.23

0x0060 + 8*n, n=0...3 IPv6 Address Bytes 4-5 6.3.15.24

0x0061 + 8*n, n=0...3 IPv6 Address Bytes 6-7 6.3.15.25

0x0062 + 8*n, n=0...3 IPv6 Address Bytes 8-9 6.3.15.26

0x0063 + 8*n, n=0...3 IPv6 Address Bytes 10-11 6.3.15.27

0x0064 + 8*n, n=0...3 IPv6 Address Bytes 12-13 6.3.15.28

0x0065 + 8*n, n=0...3 IPv6 Address Bytes 14-15 6.3.15.29

0x007E Manageability Special Modifiers LSB 6.3.15.30

0x007F Manageability Special Modifiers MSB 6.3.15.31

613875-009 545

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.15.1 Sub Module Type PT Module 4 (0x0000)

6.3.15.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

For inner structure, see Section 6.3.11.2.

6.3.15.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.3.

6.3.15.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.4.

6.3.15.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)

For inner structure, see Section 6.3.11.5.

6.3.15.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n,
n=0...15)

For inner structure, see Section 6.3.11.6.

6.3.15.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)

For inner structure, see Section 6.3.11.7.

6.3.15.8 LAN MANC Value LSB (0x0032)

For inner structure, see Section 6.3.11.8.

6.3.15.9 LAN MANC Value MSB (0x0033)

For inner structure, see Section 6.3.11.9.

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x114 Valid values are:
0x114 = Pass-through Control Word Structure 4

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

546 613875-009

6.3.15.10 Receive Enable 1 - LRXEN1 (0x0034)

For inner structure, see Section 6.3.11.10.

6.3.15.11 Receive Enable 2 - LRXEN2 (0x0035)

For inner structure, see Section 6.3.11.11.

6.3.15.12 LAN MNGONLY LSB (0x0036)

For inner structure, see Section 6.3.11.12.

6.3.15.13 LAN MNGONLY MSB (0x0037)

For inner structure, see Section 6.3.11.13.

6.3.15.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.14.

6.3.15.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.15.

6.3.15.16 Manageability Extended Decision Filters LSB[n]
(0x003A + 4*n, n=0...6)

For inner structure, see Section 6.3.11.16.

6.3.15.17 Manageability Extended Decision Filters MSB[n]
(0x003B + 4*n, n=0...6)

For inner structure, see Section 6.3.11.17.

6.3.15.18 Manageability EtherType Filter (METF) LSB[n] (0x0054
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.18.

613875-009 547

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.15.19 Manageability EtherType Filter (METF) MSB[n] (0x0055
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.19.

6.3.15.20 ARP Response IPv4 Address LSB (0x005C)

For inner structure, see Section 6.3.11.20.

6.3.15.21 ARP Response IPv4 Address MSB (0x005D)

For inner structure, see Section 6.3.11.21.

6.3.15.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)

For inner structure, see Section 6.3.11.22.

6.3.15.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)

For inner structure, see Section 6.3.11.23.

6.3.15.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.24.

6.3.15.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.25.

6.3.15.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.26.

6.3.15.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.27.

6.3.15.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.28.

6.3.15.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.29.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

548 613875-009

6.3.15.30 Manageability Special Modifiers LSB (0x007E)

For inner structure, see Section 6.3.11.30.

6.3.15.31 Manageability Special Modifiers MSB (0x007F)

For inner structure, see Section 6.3.11.31.

613875-009 549

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.16 PFA PT Configuration 5 Section

Pass-through filters of Port 5 PFA section header.

Table 6-22. PFA PT Configuration 5 Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type PT Module 5 6.3.16.1

0x0001 Section Length 6.3.16.2

0x0002 + 2*n, n=0...3 LAN IPv4 Address (LSB) MIPAF0 6.3.16.3

0x0003 + 2*n, n=0...3 LAN IPv4 Address (MSB) MIPAF0 6.3.16.4

0x000A + 2*n, n=0...15 LAN Flexible Filter Port 6.3.16.5

0x000B + 2*n, n=0...15 LAN Flexible Filter Port - Modifiers 6.3.16.6

0x002A + 1*n, n=0...7 LAN VLAN Filter 6.3.16.7

0x0032 LAN MANC Value LSB 6.3.16.8

0x0033 LAN MANC Value MSB 6.3.16.9

0x0034 Receive Enable 1 - LRXEN1 6.3.16.10

0x0035 Receive Enable 2 - LRXEN2 6.3.16.11

0x0036 LAN MNGONLY LSB 6.3.16.12

0x0037 LAN MNGONLY MSB 6.3.16.13

0x0038 + 4*n, n=0...6 Manageability Decision Filters LSB 6.3.16.14

0x0039 + 4*n, n=0...6 Manageability Decision Filters MSB 6.3.16.15

0x003A + 4*n, n=0...6 Manageability Extended Decision Filters LSB 6.3.16.16

0x003B + 4*n, n=0...6 Manageability Extended Decision Filters MSB 6.3.16.17

0x0054 + 2*n, n=0...3 Manageability EtherType Filter (METF) LSB 6.3.16.18

0x0055 + 2*n, n=0...3 Manageability EtherType Filter (METF) MSB 6.3.16.19

0x005C ARP Response IPv4 Address LSB 6.3.16.20

0x005D ARP Response IPv4 Address MSB 6.3.16.21

0x005E + 8*n, n=0...3 IPv6 Address Bytes 0-1 6.3.16.22

0x005F + 8*n, n=0...3 IPv6 Address Bytes 2-3 6.3.16.23

0x0060 + 8*n, n=0...3 IPv6 Address Bytes 4-5 6.3.16.24

0x0061 + 8*n, n=0...3 IPv6 Address Bytes 6-7 6.3.16.25

0x0062 + 8*n, n=0...3 IPv6 Address Bytes 8-9 6.3.16.26

0x0063 + 8*n, n=0...3 IPv6 Address Bytes 10-11 6.3.16.27

0x0064 + 8*n, n=0...3 IPv6 Address Bytes 12-13 6.3.16.28

0x0065 + 8*n, n=0...3 IPv6 Address Bytes 14-15 6.3.16.29

0x007E Manageability Special Modifiers LSB 6.3.16.30

0x007F Manageability Special Modifiers MSB 6.3.16.31

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

550 613875-009

6.3.16.1 Sub Module Type PT Module 5 (0x0000)

6.3.16.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

For inner structure, see Section 6.3.11.2.

6.3.16.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.3.

6.3.16.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.4.

6.3.16.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)

For inner structure, see Section 6.3.11.5.

6.3.16.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n,
n=0...15)

For inner structure, see Section 6.3.11.6.

6.3.16.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)

For inner structure, see Section 6.3.11.7.

6.3.16.8 LAN MANC Value LSB (0x0032)

For inner structure, see Section 6.3.11.8.

6.3.16.9 LAN MANC Value MSB (0x0033)

For inner structure, see Section 6.3.11.9.

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x115 Valid values are:
0x115 = Pass-through Control Word Structure 5

613875-009 551

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.16.10 Receive Enable 1 - LRXEN1 (0x0034)

For inner structure, see Section 6.3.11.10.

6.3.16.11 Receive Enable 2 - LRXEN2 (0x0035)

For inner structure, see Section 6.3.11.11.

6.3.16.12 LAN MNGONLY LSB (0x0036)

For inner structure, see Section 6.3.11.12.

6.3.16.13 LAN MNGONLY MSB (0x0037)

For inner structure, see Section 6.3.11.13.

6.3.16.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.14.

6.3.16.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.15.

6.3.16.16 Manageability Extended Decision Filters LSB[n]
(0x003A + 4*n, n=0...6)

For inner structure, see Section 6.3.11.16.

6.3.16.17 Manageability Extended Decision Filters MSB[n]
(0x003B + 4*n, n=0...6)

For inner structure, see Section 6.3.11.17.

6.3.16.18 Manageability EtherType Filter (METF) LSB[n] (0x0054
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.18.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

552 613875-009

6.3.16.19 Manageability EtherType Filter (METF) MSB[n] (0x0055
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.19.

6.3.16.20 ARP Response IPv4 Address LSB (0x005C)

For inner structure, see Section 6.3.11.20.

6.3.16.21 ARP Response IPv4 Address MSB (0x005D)

For inner structure, see Section 6.3.11.21.

6.3.16.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)

For inner structure, see Section 6.3.11.22.

6.3.16.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)

For inner structure, see Section 6.3.11.23.

6.3.16.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.24.

6.3.16.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.25.

6.3.16.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.26.

6.3.16.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.27.

6.3.16.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.28.

6.3.16.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.29.

613875-009 553

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.16.30 Manageability Special Modifiers LSB (0x007E)

For inner structure, see Section 6.3.11.30.

6.3.16.31 Manageability Special Modifiers MSB (0x007F)

For inner structure, see Section 6.3.11.31.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

554 613875-009

6.3.17 PFA PT Configuration 6 Section

Pass-through filters of Port 6 PFA section header.

Table 6-23. PFA PT Configuration 6 Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type PT Module 6 6.3.17.1

0x0001 Section Length 6.3.17.2

0x0002 + 2*n, n=0...3 LAN IPv4 Address (LSB) MIPAF0 6.3.17.3

0x0003 + 2*n, n=0...3 LAN IPv4 Address (MSB) MIPAF0 6.3.17.4

0x000A + 2*n, n=0...15 LAN Flexible Filter Port 6.3.17.5

0x000B + 2*n, n=0...15 LAN Flexible Filter Port - Modifiers 6.3.17.6

0x002A + 1*n, n=0...7 LAN VLAN Filter 6.3.17.7

0x0032 LAN MANC Value LSB 6.3.17.8

0x0033 LAN MANC Value MSB 6.3.17.9

0x0034 Receive Enable 1 - LRXEN1 6.3.17.10

0x0035 Receive Enable 2 - LRXEN2 6.3.17.11

0x0036 LAN MNGONLY LSB 6.3.17.12

0x0037 LAN MNGONLY MSB 6.3.17.13

0x0038 + 4*n, n=0...6 Manageability Decision Filters LSB 6.3.17.14

0x0039 + 4*n, n=0...6 Manageability Decision Filters MSB 6.3.17.15

0x003A + 4*n, n=0...6 Manageability Extended Decision Filters LSB 6.3.17.16

0x003B + 4*n, n=0...6 Manageability Extended Decision Filters MSB 6.3.17.17

0x0054 + 2*n, n=0...3 Manageability EtherType Filter (METF) LSB 6.3.17.18

0x0055 + 2*n, n=0...3 Manageability EtherType Filter (METF) MSB 6.3.17.19

0x005C ARP Response IPv4 Address LSB 6.3.17.20

0x005D ARP Response IPv4 Address MSB 6.3.17.21

0x005E + 8*n, n=0...3 IPv6 Address Bytes 0-1 6.3.17.22

0x005F + 8*n, n=0...3 IPv6 Address Bytes 2-3 6.3.17.23

0x0060 + 8*n, n=0...3 IPv6 Address Bytes 4-5 6.3.17.24

0x0061 + 8*n, n=0...3 IPv6 Address Bytes 6-7 6.3.17.25

0x0062 + 8*n, n=0...3 IPv6 Address Bytes 8-9 6.3.17.26

0x0063 + 8*n, n=0...3 IPv6 Address Bytes 10-11 6.3.17.27

0x0064 + 8*n, n=0...3 IPv6 Address Bytes 12-13 6.3.17.28

0x0065 + 8*n, n=0...3 IPv6 Address Bytes 14-15 6.3.17.29

0x007E Manageability Special Modifiers LSB 6.3.17.30

0x007F Manageability Special Modifiers MSB 6.3.17.31

613875-009 555

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.17.1 Sub Module Type PT Module 6 (0x0000)

6.3.17.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

For inner structure, see Section 6.3.11.2.

6.3.17.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.3.

6.3.17.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.4.

6.3.17.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)

For inner structure, see Section 6.3.11.5.

6.3.17.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n,
n=0...15)

For inner structure, see Section 6.3.11.6.

6.3.17.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)

For inner structure, see Section 6.3.11.7.

6.3.17.8 LAN MANC Value LSB (0x0032)

For inner structure, see Section 6.3.11.8.

6.3.17.9 LAN MANC Value MSB (0x0033)

For inner structure, see Section 6.3.11.9.

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x116 Valid values are:
0x116 = Pass-through Control Word Structure 6

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

556 613875-009

6.3.17.10 Receive Enable 1 - LRXEN1 (0x0034)

For inner structure, see Section 6.3.11.10.

6.3.17.11 Receive Enable 2 - LRXEN2 (0x0035)

For inner structure, see Section 6.3.11.11.

6.3.17.12 LAN MNGONLY LSB (0x0036)

For inner structure, see Section 6.3.11.12.

6.3.17.13 LAN MNGONLY MSB (0x0037)

For inner structure, see Section 6.3.11.13.

6.3.17.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.14.

6.3.17.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.15.

6.3.17.16 Manageability Extended Decision Filters LSB[n]
(0x003A + 4*n, n=0...6)

For inner structure, see Section 6.3.11.16.

6.3.17.17 Manageability Extended Decision Filters MSB[n]
(0x003B + 4*n, n=0...6)

For inner structure, see Section 6.3.11.17.

6.3.17.18 Manageability EtherType Filter (METF) LSB[n] (0x0054
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.18.

613875-009 557

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.17.19 Manageability EtherType Filter (METF) MSB[n] (0x0055
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.19.

6.3.17.20 ARP Response IPv4 Address LSB (0x005C)

For inner structure, see Section 6.3.11.20.

6.3.17.21 ARP Response IPv4 Address MSB (0x005D)

For inner structure, see Section 6.3.11.21.

6.3.17.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)

For inner structure, see Section 6.3.11.22.

6.3.17.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)

For inner structure, see Section 6.3.11.23.

6.3.17.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.24.

6.3.17.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.25.

6.3.17.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.26.

6.3.17.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.27.

6.3.17.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.28.

6.3.17.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.29.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

558 613875-009

6.3.17.30 Manageability Special Modifiers LSB (0x007E)

For inner structure, see Section 6.3.11.30.

6.3.17.31 Manageability Special Modifiers MSB (0x007F)

For inner structure, see Section 6.3.11.31.

613875-009 559

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.18 PFA PT Configuration 7 Section

Pass-through filters of Port 7 PFA section header.

Table 6-24. PFA PT Configuration 7 Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type PT Module 7 6.3.18.1

0x0001 Section Length 6.3.18.2

0x0002 + 2*n, n=0...3 LAN IPv4 Address (LSB) MIPAF0 6.3.18.3

0x0003 + 2*n, n=0...3 LAN IPv4 Address (MSB) MIPAF0 6.3.18.4

0x000A + 2*n, n=0...15 LAN Flexible Filter Port 6.3.18.5

0x000B + 2*n, n=0...15 LAN Flexible Filter Port - Modifiers 6.3.18.6

0x002A + 1*n, n=0...7 LAN VLAN Filter 6.3.18.7

0x0032 LAN MANC Value LSB 6.3.18.8

0x0033 LAN MANC Value MSB 6.3.18.9

0x0034 Receive Enable 1 - LRXEN1 6.3.18.10

0x0035 Receive Enable 2 - LRXEN2 6.3.18.11

0x0036 LAN MNGONLY LSB 6.3.18.12

0x0037 LAN MNGONLY MSB 6.3.18.13

0x0038 + 4*n, n=0...6 Manageability Decision Filters LSB 6.3.18.14

0x0039 + 4*n, n=0...6 Manageability Decision Filters MSB 6.3.18.15

0x003A + 4*n, n=0...6 Manageability Extended Decision Filters LSB 6.3.18.16

0x003B + 4*n, n=0...6 Manageability Extended Decision Filters MSB 6.3.18.17

0x0054 + 2*n, n=0...3 Manageability EtherType Filter (METF) LSB 6.3.18.18

0x0055 + 2*n, n=0...3 Manageability EtherType Filter (METF) MSB 6.3.18.19

0x005C ARP Response IPv4 Address LSB 6.3.18.20

0x005D ARP Response IPv4 Address MSB 6.3.18.21

0x005E + 8*n, n=0...3 IPv6 Address Bytes 0-1 6.3.18.22

0x005F + 8*n, n=0...3 IPv6 Address Bytes 2-3 6.3.18.23

0x0060 + 8*n, n=0...3 IPv6 Address Bytes 4-5 6.3.18.24

0x0061 + 8*n, n=0...3 IPv6 Address Bytes 6-7 6.3.18.25

0x0062 + 8*n, n=0...3 IPv6 Address Bytes 8-9 6.3.18.26

0x0063 + 8*n, n=0...3 IPv6 Address Bytes 10-11 6.3.18.27

0x0064 + 8*n, n=0...3 IPv6 Address Bytes 12-13 6.3.18.28

0x0065 + 8*n, n=0...3 IPv6 Address Bytes 14-15 6.3.18.29

0x007E Manageability Special Modifiers LSB 6.3.18.30

0x007F Manageability Special Modifiers MSB 6.3.18.31

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

560 613875-009

6.3.18.1 Sub Module Type PT Module 7 (0x0000)

6.3.18.2 Section Length (0x0001)

The length of the section in words. Note that section length does not include a count for the section
length word.

For inner structure, see Section 6.3.11.2.

6.3.18.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.3.

6.3.18.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n,
n=0...3)

For inner structure, see Section 6.3.11.4.

6.3.18.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)

For inner structure, see Section 6.3.11.5.

6.3.18.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n,
n=0...15)

For inner structure, see Section 6.3.11.6.

6.3.18.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)

For inner structure, see Section 6.3.11.7.

6.3.18.8 LAN MANC Value LSB (0x0032)

For inner structure, see Section 6.3.11.8.

6.3.18.9 LAN MANC Value MSB (0x0033)

For inner structure, see Section 6.3.11.9.

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x117 Valid values are:
0x117 = Pass-through Control Word Structure 7

613875-009 561

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.18.10 Receive Enable 1 - LRXEN1 (0x0034)

For inner structure, see Section 6.3.11.10.

6.3.18.11 Receive Enable 2 - LRXEN2 (0x0035)

For inner structure, see Section 6.3.11.11.

6.3.18.12 LAN MNGONLY LSB (0x0036)

For inner structure, see Section 6.3.11.12.

6.3.18.13 LAN MNGONLY MSB (0x0037)

For inner structure, see Section 6.3.11.13.

6.3.18.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.14.

6.3.18.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n,
n=0...6)

For inner structure, see Section 6.3.11.15.

6.3.18.16 Manageability Extended Decision Filters LSB[n]
(0x003A + 4*n, n=0...6)

For inner structure, see Section 6.3.11.16.

6.3.18.17 Manageability Extended Decision Filters MSB[n]
(0x003B + 4*n, n=0...6)

For inner structure, see Section 6.3.11.17.

6.3.18.18 Manageability EtherType Filter (METF) LSB[n] (0x0054
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.18.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

562 613875-009

6.3.18.19 Manageability EtherType Filter (METF) MSB[n] (0x0055
+ 2*n, n=0...3)

For inner structure, see Section 6.3.11.19.

6.3.18.20 ARP Response IPv4 Address LSB (0x005C)

For inner structure, see Section 6.3.11.20.

6.3.18.21 ARP Response IPv4 Address MSB (0x005D)

For inner structure, see Section 6.3.11.21.

6.3.18.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)

For inner structure, see Section 6.3.11.22.

6.3.18.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)

For inner structure, see Section 6.3.11.23.

6.3.18.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.24.

6.3.18.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.25.

6.3.18.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.26.

6.3.18.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.27.

6.3.18.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.28.

6.3.18.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)

For inner structure, see Section 6.3.11.29.

613875-009 563

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.18.30 Manageability Special Modifiers LSB (0x007E)

For inner structure, see Section 6.3.11.30.

6.3.18.31 Manageability Special Modifiers MSB (0x007F)

For inner structure, see Section 6.3.11.31.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

564 613875-009

6.3.19 Original EETrack ID Section

Original EETrack ID PFA section.

6.3.19.1 Sub Module Type - Original EETrackID (0x0000)

6.3.19.2 Length (0x0001)

6.3.19.3 Original EETrackID MSB (0x0002)

6.3.19.4 Original EETrackID LSB (0x0003)

Table 6-25. Original EETrack ID Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - Original EETrackID 6.3.19.1

0x0001 Length 6.3.19.2

0x0002 Original EETrackID MSB 6.3.19.3

0x0003 Original EETrackID LSB 6.3.19.4

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x10C Valid values are:
0x10C = Original EETrack ID

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Original EETrack ID -> Sub Module Type - Original EETrackID
Last Section -> Word: Original EETrack ID -> Original EETrackID LSB

Bit(s) Field Name Default
NVM Value Description

15:0 EETrackID - MSB 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 EETrackID - MLB 0x0

613875-009 565

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.20 IBA Capabilities Module Section

6.3.20.1 Sub Module Type - IBA Capabilities (0x0000)

6.3.20.2 Length (0x0001)

6.3.20.3 IBA Capabilities (0x0002)

This word of the NVM is used to enumerate the boot technologies that have been programmed into the
Flash. This is updated by Flash configuration tools and is not updated or read by IBA.

Table 6-26. IBA Capabilities Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - IBA Capabilities 6.3.20.1

0x0001 Length 6.3.20.2

0x0002 IBA Capabilities 6.3.20.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x33 Valid values are:
0x33 = IBA Capabilities

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: IBA capabilities Module -> Sub Module Type - IBA Capabilities
Last Section -> Word: IBA capabilities Module -> IBA Capabilities

Bit(s) Field Name Default
NVM Value Description

15:14 Signature 01b Signature
Must be set to 01b to indicate that this word has been programmed by the agent or
other configuration software.

13 Allow PXE Disable 0x0 If set to 0b, PXE is always loaded regardless the settings in Bits 2:0 in Main Setup
Options word. If set to 1b, PXE is loaded when Bits 2:0 in Main Setup Options word
are set to 0 (PXE enabled on this port).

0b = Ignore PXE Disable
1b = Allow PXE Disable

12:6 Reserved 0x0 Reserved. Must be 0.

5 Reserved 0b FCoE boot code is present if set to 1b.
0b = Not Present
1b = Present

4 iSCSI Boot 0b iSCSI is present if set to 1b.
0b = Not Present
1b = Present

3 EFI EBD Driver 0b EFI UNDI driver is present if set to 1b.
0b = Not Present
1b = Present

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

566 613875-009

2 RPL 0b RPL module is present if set to 1b. Reserved bit for devices.
0b = Not Present
1b = Present

1 PXE/UNDI Driver 1b PXE UNDI driver is present if set to 1b.
0b = Not Present
1b = Present

0 PXE Base Code 1b PXE Base Code is present if set to 1b.
0b = Not Present
1b = Present

Bit(s) Field Name Default
NVM Value Description

613875-009 567

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.21 PXE Setup Options Module Section

6.3.21.1 Sub Module Type - PXE Setup (0x0000)

6.3.21.2 Length (0x0001)

6.3.21.3 Setup Options PCI Function[n] (0x0002 + 1*n, n=0...7)

The main setup options for PF n are stored in this word. These options are those that can be changed by
the user using the Control-S setup menu.

Table 6-27. PXE Setup Options Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - PXE Setup 6.3.21.1

0x0001 Length 6.3.21.2

0x0002 + 1*n, n=0...7 Setup Options PCI Function 6.3.21.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x30 Valid values are:
0x30 = PXE Setup Options

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: PXE Setup Options Module -> Sub Module Type - PXE Setup
Last Section -> Word: PXE Setup Options Module -> Setup Options PCI Function

Bit(s) Field Name Default
NVM Value Description

15:13 Reserved 0x0 Reserved. Must be 0x0.

12:10 FSD 000b Bits 12-10 control forcing speed and duplex during driver operation.
000b = Auto-negotiate
001b = 10 Mb/s half duplex
010b = 100 Mb/s half duplex
011b = Not valid (treated as 000b)
100b = 10 Mb/s full duplex
101b = 100 Mb/s full duplex
111b = 1000 Mb/s full duplex.

Only applicable for copper-based adapters. Not applicable to 10 GbE. Default value
is 000b.

9 Reserved 0b Reserved to legacy OS Wakeup Support (for 82559-based adapters only), which is
not supported in the E810.

8 DSM 1b Display Setup Message
If the bit is set to 1b, the Press Control-S message is displayed after the title
message. Default value is 1b.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

568 613875-009

7:6 PT 0b Prompt Time
These bits control how long the Press Control-S setup prompt message is displayed,
if enabled by DIM.

00b = 2 seconds (default)
01b = 3 seconds
10b = 5 seconds
11b = 0 seconds

Note: The Ctrl-S message is not displayed if 0 seconds prompt time is selected.

5 iSCSI Boot Disabled 0b When this bit is set and adapter port is neither iSCSI primary nor secondary, setup
code must not be loaded. Otherwise iSCSI banner and Setup menu should be
accessible as in current design.

0b = Enabled
1b = Disabled

This bit must be changed at factory level and not be altered by any end-customer
tools.
For regular NIC and LOM design, this bit should be always cleared in the NVM image.
Otherwise, iSCSI setup will not be accessible for the user.

4:3 DBS 00b Default Boot Selection
These bits select which device is the default boot device. These bits are only used if
the agent detects that the BIOS does not support boot order selection or if the
MODE field of word 31h is set to MODE_LEGACY.

00b = Network boot, then local boot (default)
01b = Local boot, then network boot
10b = Network boot only
11b = Local boot only

2:0 PS 000b Protocol Select
These bits select the active boot protocol.

000b = PXE (default value)
001b = RPL (only if RPL is in the Flash)
010b = iSCSI Primary
011b = iSCSI Secondary
100b = FCoE
All other values are reserved.

Only the default value of 000b should be initially programmed into the adapter.
Other values should only be set by configuration utilities.

Bit(s) Field Name Default
NVM Value Description

613875-009 569

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.22 PXE Configuration Customization Options Module
Section

6.3.22.1 Sub Module Type - PXE Configuration Customization
Options (0x0000)

6.3.22.2 Length (0x0001)

6.3.22.3 Configuration Customization Options PCI Function[n]
(0x0002 + 1*n, n=0...7)

It contains settings that can be programmed by an OEM or network administrator to customize the
operation of the software. These settings cannot be changed from within the Control-S setup menu.
The lower byte contains settings that would typically be configured by a network administrator using an
external utility; these settings generally control which setup menu options are changeable. The upper
byte is generally settings that would be used by an OEM to control the operation of the agent in a LOM
environment, although there is nothing in the agent to prevent their use on a NIC implementation. The
default value for this word is 0x4000.

Table 6-28. PXE Configuration Customization Options Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - PXE Configuration Customization Options 6.3.22.1

0x0001 Length 6.3.22.2

0x0002 + 1*n, n=0...7 Configuration Customization Options PCI Function 6.3.22.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x31 Valid values are:
0x31 = PXE Configuration Customization Options

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: PXE Configuration Customization Options Module -> Sub Module
Type - PXE Configuration Customization Options
Last Section -> Word: PXE Configuration Customization Options Module -> Configuration
Customization Options PCI Function

Bit(s) Field Name Default
NVM Value Description

15:14 Signature 01b Signature
Must be set to 01b to indicate that this word has been programmed by the
agent or other configuration software.

13:12 Reserved 00b Reserved. Must be 0b.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

570 613875-009

11 Continuous Retry 0b Selects Continuous Retry operation.
If this bit is set, IBA does NOT transfer control back to the BIOS if it fails to
boot due to a network error (such as failure to receive DHCP replies). Instead,
it restarts the PXE boot process again. If this bit is set, the only way to cancel
PXE boot is for the user to press ESC on the keyboard. Retry is not attempted
due to hardware conditions such as an invalid NVM checksum or failing to
establish link.

0b = Disable (default)
1b = Enable

10:8 Operating mode 000b Selects the agent's boot order setup mode.
This field changes the agent default behavior in order to make it compatible
with systems that do not completely support the BBS and PnP Expansion ROM
standards. Valid values and their meanings are:

000b = Normal behavior. The agent attempts to detect BBS and PnP
Expansion ROM support as it normally does.

001b = Force legacy mode. The agent does not attempt to detect BBS or PnP
Expansion ROM supports in the BIOS and assumes the BIOS is not
compliant. The user can change the BIOS boot order in the Setup
Menu.

010b = Force BBS mode. The agent assumes the BIOS is BBS compliant,
even though it might not be detected as such by the agent's
detection code. The user CANNOT change the BIOS boot order in the
Setup Menu.

011b = Force PnP Int18 mode. The agent assumes the BIOS allows boot
order setup for PnP Expansion ROMs and hooks interrupt 0x18 (to
inform the BIOS that the agent is a bootable device) in addition to
registering as a BBS IPL device. The user CANNOT change the BIOS
boot order in the Setup Menu.

100b = Force PnP Int19 mode. The agent assumes the BIOS allows boot
order setup for PnP Expansion ROMs and hook interrupt 0x19 (to
inform the BIOS that the agent is a bootable device) in addition to
registering as a BBS IPL device. The user CANNOT change the BIOS
boot order in the Setup Menu.

101b = Reserved for future use. If specified, is treated as a value of 000b.
110b = Reserved for future use. If specified, is treated as a value of 000b.
111b = Reserved for future use. If specified, is treated as a value of 000b.

7:6 Reserved 00b Reserved. Must be 00b

5 Disable Flash Update 0b Disable Flash Update
If this bit is set to 1b, the user is not allowed to update the flash image using
PROSet.

0b = Enable Flash Update (default)
1b = Disable Flash Update

4 Disable Legacy OS
Wakeup Menu

0b Disable Legacy Wakeup Support
If this bit is set to 1b, the user is not allowed to change the Legacy OS Wakeup
Support menu option.

0b = Enable Legacy Wakeup Support (default)
1b = Disable Legacy Wakeup Support

Default value is 0b.

3 Disable Boot Selection
Menu

0b Disable Boot Selection
If this bit is set to 1b, the user is not allowed to change the boot order menu
option.

0b = Enable (default)
1b = Disable

2 Disable Protocol Selection
Menu

0b Disable Protocol Select
If set to 1b, the user is not allowed to change the boot protocol.

0b = Enable (default)
1b = Disable

Bit(s) Field Name Default
NVM Value Description

613875-009 571

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

1 Disable Title Message
Display

0b Disable Title Message
If this bit is set to 1b, the title message displaying the version of the Boot
Agent is suppressed; the Control-S message is also suppressed. This is for
OEMs who do not wish the boot agent to display any messages at system boot.

0b = Enable (default)
1b = Disable

0 Setup Menu 0b Disable Setup Menu
If this bit is set to 1b, the user is not allowed to invoke the setup menu by
pressing Control-S. In this case, the NVM can only be changed via an external
program.

0b = Enable (default)
1b = Disable

Bit(s) Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

572 613875-009

6.3.23 PXE Version Module Section

6.3.23.1 Sub Module Type - PXE Version (0x0000)

6.3.23.2 Length (0x0001)

6.3.23.3 PXE Version (0x0002)

Word 0x32 of the NVM is used to store the version of the boot agent that is stored in the Flash image.
When the Boot Agent loads, it can check this value to determine if any first-time configuration needs to
be performed. The agent then updates this word with its version. Some diagnostic tools to report the
version of the Boot Agent in the Flash also read this word.

Table 6-29. PXE Version Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - PXE Version 6.3.23.1

0x0001 Length 6.3.23.2

0x0002 PXE Version 6.3.23.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x32 Valid values are:
0x32 = PXE version

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: PXE version Module -> Sub Module Type - PXE version
Last Section -> Word: PXE version Module -> PXE Version

Bit(s) Field Name Default
NVM Value Description

15:12 Major Version 0x0 PXE Boot Agent Major Version. Default value is 0.

11:8 Minor Version 0x0 PXE Boot Agent Minor Version. Default value is 0.

7:0 Build Number 0x0 PXE Boot Agent Build Number. Default value is 0.

613875-009 573

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.24 VLAN Module Section

6.3.24.1 Sub Module Type - VLAN (0x0000)

6.3.24.2 Length (0x0001)

6.3.24.3 VLAN Block Signature (0x0002)

Table 6-30. VLAN Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - VLAN 6.3.24.1

0x0001 Length 6.3.24.2

0x0002 VLAN Block Signature 6.3.24.3

0x0003 Structure Version and Size 6.3.24.4

0x0004 Port 0 VLAN Tag 6.3.24.5

0x0005 Port 1 VLAN Tag 6.3.24.6

0x0006 Port 2 VLAN Tag 6.3.24.7

0x0007 Port 3 VLAN Tag 6.3.24.8

0x0008 Port 4 VLAN Tag 6.3.24.9

0x0009 Port 5 VLAN Tag 6.3.24.10

0x000A Port 6 VLAN Tag 6.3.24.11

0x000B Port 7 VLAN Tag 6.3.24.12

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x37 Valid values are:
0x37 = VLAN Configuration

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: VLAN Module -> Sub Module Type - VLAN
Last Section -> Word: VLAN Module -> Port 7 VLAN Tag

Bit(s) Field Name Default
NVM Value Description

15:0 VLAN Block Signature 0x4C56 ‘V’=0x56, ‘L’ = 0x4C

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

574 613875-009

6.3.24.4 Structure Version and Size (0x0003)

6.3.24.5 Port 0 VLAN Tag (0x0004)

6.3.24.6 Port 1 VLAN Tag (0x0005)

For inner structure, see Section 6.3.24.5.

6.3.24.7 Port 2 VLAN Tag (0x0006)

For inner structure, see Section 6.3.24.5.

6.3.24.8 Port 3 VLAN Tag (0x0007)

For inner structure, see Section 6.3.24.5.

6.3.24.9 Port 4 VLAN Tag (0x0008)

For inner structure, see Section 6.3.24.5.

6.3.24.10 Port 5 VLAN Tag (0x0009)

For inner structure, see Section 6.3.24.5.

6.3.24.11 Port 6 VLAN Tag (0x000A)

For inner structure, see Section 6.3.24.5.

6.3.24.12 Port 7 VLAN Tag (0x000B)

For inner structure, see Section 6.3.24.5.

Bit(s) Field Name Default
NVM Value Description

15:8 Structure Version and Size 0x0C Total byte size of the configuration block.
0x06 = 1-port adapter
0x08 = 2-port adapter
0x0C = 4-port adapter (default)

7:0 Structure Version 0x01 The version of this structure. Should be set to 0x01.

Bit(s) Field Name Default
NVM Value Description

15:13 VLAN Priority 0x0 The value of VLAN priority (0-7).

12 Reserved 0b This field is reserved and must be set to 0x0.

11:0 VLAN Tag ID 0x0 The value of VLAN ID (1-4095). 0 means no VLAN configured for port.

613875-009 575

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.25 Boot Configuration Block Section

6.3.25.1 Sub Module Type (0x0000)

6.3.25.2 Length (0x0001)

6.3.25.3 Combo Image Version High (0x0002)

6.3.25.4 Combo Image Version Low (0x0003)

Table 6-31. Boot Configuration Block Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type 6.3.25.1

0x0001 Length 6.3.25.2

0x0002 Combo Image Version High 6.3.25.3

0x0003 Combo Image Version Low 6.3.25.4

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x132 Valid values are:
0x132 = CIVD

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Boot Configuration Block -> Sub Module Type
Last Section -> Word: Boot Configuration Block -> Combo Image Version Low

Bit(s) Field Name Default
NVM Value Description

15:8 Major 0x0

7:0 Build 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Build 0x0

7:0 Patch 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

576 613875-009

6.3.26 PBA Header Section

6.3.26.1 Sub Module Type - PBA (0x0000)

6.3.26.2 Length (0x0001)

Table 6-32. PBA Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - PBA 6.3.26.1

0x0001 Length 6.3.26.2

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x16 Valid values are:
0x16 = PBA block

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit
First Section -> Word: PBA Block -> PBA Section Length
Last Section -> Word: PBA Block -> Word5

613875-009 577

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.27 PBA Block Section

The PBA block contains the complete PBA number, including the dash and the first digit of the 3-digit
suffix.

6.3.27.1 PBA Section Length (0x0000)

6.3.27.2 Word1 (0x0001)

6.3.27.3 Word2 (0x0002)

6.3.27.4 Word3 (0x0003)

Table 6-33. PBA Block Section Summary Table

Word Offset Description Section
Reference

0x0000 PBA Section Length 6.3.27.1

0x0001 Word1 6.3.27.2

0x0002 Word2 6.3.27.3

0x0003 Word3 6.3.27.4

0x0004 Word4 6.3.27.5

0x0005 Word5 6.3.27.6

Bit(s) Field Name Default
NVM Value Description

15:0 PBA Section Length Field 0x6 Length in words of the PBA Block.

Bit(s) Field Name Default
NVM Value Description

15:0 Word1 Field PBA Number stored in hexadecimal ASCII values.

Bit(s) Field Name Default
NVM Value Description

15:0 Word2 Field PBA Number stored in hexadecimal ASCII values.

Bit(s) Field Name Default
NVM Value Description

15:0 Word3 Field PBA Number stored in hexadecimal ASCII values.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

578 613875-009

6.3.27.5 Word4 (0x0004)

6.3.27.6 Word5 (0x0005)

Bit(s) Field Name Default
NVM Value Description

15:0 Word4 Field PBA Number stored in hexadecimal ASCII values.

Bit(s) Field Name Default
NVM Value Description

15:0 Word5 Field PBA Number stored in hexadecimal ASCII values.

613875-009 579

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.28 PCIR Registers PFA Auto-Load Module Section

6.3.28.1 PCIR Registers Auto-Load Type (0x0000)

6.3.28.2 Module Length (0x0001)

Table 6-34. PCIR Registers PFA Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

0x0000 PCIR Registers Auto-Load Type 6.3.28.1

0x0001 Module Length 6.3.28.2

0x0002 - 0x0014 NVM contents for PFINT_ALLOC_PCI 6.3.28.3

0x0015 - 0x0027 NVM contents for PFPCI_SUBSYSID 6.3.28.4

0x0028 - 0x003A NVM contents for PF_VT_PFALLOC_HIF 6.3.28.5

0x003B - 0x004D NVM contents for PFPCI_DEVID 6.3.28.6

0x004E - 0x0052 NVM contents for GLPCI_CAPCTRL 6.3.28.7

0x0053 - 0x0054 NVM contents for GLPCI_CAPSUP 6.3.28.8

0x0055 - 0x0056 NVM contents for GLPCI_LINKCAP 6.3.28.9

0x0057 - 0x005A NVM contents for GLPCI_VENDORID 6.3.28.10

0x005B - 0x005E NVM contents for GLPCI_SUBVENID 6.3.28.11

0x005F - 0x0071 NVM contents for PFPCI_CNF 6.3.28.12

0x0072 - 0x0075 Reserved 6.3.28.13

0x0075 - 0x0088 NVM contents for PF_VT_PFALLOC_PCIE 6.3.28.14

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x113 Valid values are:
0x113 = PCIR Registers Auto-load

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 2
First Section -> Word: PCIR Registers PFA Auto-Load Module -> PCIR Registers Auto-
Load Type
Last Section -> Word: PCIR Registers PFA Auto-Load Module -> Starting Address Low at
PF_VT_PFALLOC_PCIE, for PF[0]

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

580 613875-009

6.3.28.3 PFINT_ALLOC_PCI (0x0002 - 0x0014)

6.3.28.3.1 Starting Address Low at PFINT_ALLOC_PCI (0x0002)

6.3.28.3.2 Starting Address High at PFINT_ALLOC_PCI (0x0003)

6.3.28.3.3 Attributes at PFINT_ALLOC_PCI (0x0004)

6.3.28.3.4 Data Low of PFINT_ALLOC_PCI[PF] (0x0005 + 2*PF,
PF=0...7)

6.3.28.3.5 Data High of PFINT_ALLOC_PCI[PF] (0x0006 + 2*PF,
PF=0...7)

6.3.28.4 PFPCI_SUBSYSID (0x0015 - 0x0027)

6.3.28.4.1 Starting Address Low at PFPCI_SUBSYSID (0x0015)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFINT_ALLOC_PCI, for PF[0]

0x9D800

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFINT_ALLOC_PCI, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPCI_SUBSYSID, for PF[0]

0x9D880

3:0 Type 0x2

613875-009 581

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.28.4.2 Starting Address High at PFPCI_SUBSYSID (0x0016)

6.3.28.4.3 Attributes at PFPCI_FUNC2[PF] (0x0017)

6.3.28.4.4 Data Low of PFPCI_SUBSYSID[PF] (0x0018 + 2*PF,
PF=0...7)

6.3.28.4.5 Data High of PFPCI_SUBSYSID[PF] (0x0019 + 2*PF,
PF=0...7)

6.3.28.5 PF_VT_PFALLOC_HIF (0x0028 - 0x003A)

6.3.28.5.1 Starting Address Low at PF_VT_PFALLOC_HIF (0x0028)

6.3.28.5.2 Starting Address High at PF_VT_PFALLOC_HIF (0x0029)

6.3.28.5.3 Attributes at PF_VT_PFALLOC_HIF (0x002A)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPCI_SUBSYSID, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PF_VT_PFALLOC_HIF, for PF[0]

0x9DD80

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PF_VT_PFALLOC_HIF, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

582 613875-009

6.3.28.5.4 Data Low of PF_VT_PFALLOC_HIF[PF] (0x002B + 2*PF,
PF=0...7)

6.3.28.5.5 Data High of PF_VT_PFALLOC_HIF[PF] (0x002C + 2*PF,
PF=0...7)

6.3.28.6 PFPCI_DEVID (0x003B - 0x004D)

6.3.28.6.1 Starting Address Low at PFPCI_DEVID (0x003B)

6.3.28.6.2 Starting Address High at PFPCI_DEVID (0x003C)

6.3.28.6.3 Attributes at PFPCI_DEVID (0x003D)

6.3.28.6.4 Data Low of PFPCI_DEVID[PF] (0x003E + 2*PF, PF=0...7)

6.3.28.6.5 Data High of PFPCI_DEVID[PF] (0x003F + 2*PF, PF=0...7)

6.3.28.7 GLPCI_CAPCTRL (0x004E - 0x0052)

6.3.28.7.1 Starting Address Low at GLPCI_CAPCTRL (0x004E)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPCI_DEVID, for PF[0]

0x9DE00

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPCI_DEVID, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLPCI_CAPCTRL

0x9DE88

3:0 Type 0X2

613875-009 583

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.28.7.2 Starting Address High at GLPCI_CAPCTRL (0x004F)

6.3.28.7.3 Attributes at GLPCI_CAPCTRL (0x0050)

6.3.28.7.4 Data Low of GLPCI_CAPCTRL (0x0051)

6.3.28.7.5 Data High of GLPCI_CAPCTRL (0x0052)

6.3.28.8 GLPCI_CAPSUP (0x0053 - 0x0054)

6.3.28.8.1 Data Low of GLPCI_CAPSUP (0x0053)

6.3.28.8.2 Data High of GLPCI_CAPSUP (0x0054)

6.3.28.9 GLPCI_LINKCAP (0x0055 - 0x0056)

6.3.28.9.1 Data Low of GLPCI_LINKCAP (0x0055)

6.3.28.9.2 Data High of GLPCI_LINKCAP (0x0056)

6.3.28.10 GLPCI_VENDORID (0x0057 - 0x005A)

6.3.28.10.1 Address Low at GLPCI_VENDORID (0x0057)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLPCI_CAPCTRL

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x3

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLPCI_VENDORID

0x9DEC8

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

584 613875-009

6.3.28.10.2 Address High at GLPCI_VENDORID (0x0058)

6.3.28.10.3 Data Low of GLPCI_VENDORID (0x0059)

6.3.28.10.4 Data High of GLPCI_VENDORID (0x005A)

6.3.28.11 GLPCI_SUBVENID (0x005B - 0x005E)

6.3.28.11.1 Address Low at GLPCI_SUBVENID (0x005B)

6.3.28.11.2 Address High at GLPCI_SUBVENID (0x005C)

6.3.28.11.3 Data Low of GLPCI_SUBVENID (0x005D)

6.3.28.11.4 Data High of GLPCI_SUBVENID (0x005E)

6.3.28.12 PFPCI_CNF (0x005F - 0x0071)

6.3.28.12.1 Starting Address Low at PFPCI_CNF (0x005F)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLPCI_VENDORID

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLPCI_SUBVENID

0x9DEE8

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLPCI_SUBVENID

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPCI_CNF, for PF[0]

0x9DF00

3:0 Type 0x2

613875-009 585

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.28.12.2 Starting Address High at PFPCI_CNF (0x0060)

6.3.28.12.3 Attributes at PFPCI_CNF (0x0061)

6.3.28.12.4 Data Low of PFPCI_CNF[PF] (0x0062 + 2*PF, PF=0...7)

6.3.28.12.5 Data High of PFPCI_CNF[PF] (0x0063 + 2*PF, PF=0...7)

6.3.28.13 Reserved (0x0072 - 0x0075)

6.3.28.14 PF_VT_PFALLOC_PCIE (0x0076 - 0x0088)

6.3.28.14.1 Starting Address Low at PF_VT_PFALLOC_PCIE (0x0076)

6.3.28.14.2 Starting Address High at PF_VT_PFALLOC_PCIE (0x0077)

6.3.28.14.3 Attributes at PF_VT_PFALLOC_PCIE (0x0078)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPCI_CNF, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PF_VT_PFALLOC_PCIE, for PF[0]

0xBE080

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PF_VT_PFALLOC_PCIE, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

586 613875-009

6.3.28.14.4 Data Low of PF_VT_PFALLOC_PCIE[PF] (0x0079 + 2*PF,
PF=0...7)

6.3.28.14.5 Data High of PF_VT_PFALLOC_PCIE[PF] (0x007A + 2*PF,
PF=0...7)

613875-009 587

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.29 POR Registers PFA Auto-Load Module Section

Register addresses and values loaded at Power-On Reset (POR).

6.3.29.1 POR Registers Auto-Load Type (0x0000)

6.3.29.2 Module Length (0x0001)

Table 6-35. POR Registers PFA Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

0x0000 POR Registers Auto-Load Type 6.3.29.1

0x0001 Module Length 6.3.29.2

0x0002 - 0x0012 NVM contents for GLGEN_GPIO_CTL 6.3.29.3

0x0013 - 0x0025 NVM contents for PFPCI_FUNC 6.3.29.4

0x0026 - 0x0038 NVM contents for PFPM_WUC 6.3.29.5

0x0039 - 0x003C NVM contents for GLPCI_LBARCTRL 6.3.29.6

0x003D - 0x0040 NVM contents for GLPCI_CNF 6.3.29.7

0x0041 - 0x0044 NVM contents for GL_MNG_HWARB_CTRL 6.3.29.8

0x0045 - 0x0057 Reserved 6.3.29.9

0x0058 - 0x006A NVM contents for PFPM_APM 6.3.29.10

0x006B - 0x007D NVM contents for PRTGEN_CNF 6.3.29.11

0x007E - 0x008D Reserved 6.3.29.12

0x008E - 0x009D NVM contents for PRTGEN_CNF2 6.3.29.13

0x009E - 0x00A8 Reserved 6.3.29.14

0x00A9 - 0x00AC NVM contents for GL_PWR_MODE_CTL 6.3.29.15

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x118 Valid values are:
0x118 =POR Registers Auto-load

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 2
First Section -> Word: POR Registers PFA Auto-Load Module -> POR Registers Auto-Load
Type
Last Section -> Word: POR Registers PFA Auto-Load Module -> Address Low at
GL_PWR_MODE_CTL

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

588 613875-009

6.3.29.3 GLGEN_GPIO_CTL (0x0002 - 0x0012)

6.3.29.3.1 Starting Address Low at GLGEN_GPIO_CTL (0x0002)

6.3.29.3.2 Starting Address High at GLGEN_GPIO_CTL (0x0003)

6.3.29.3.3 Attributes at GLGEN_GPIO_CTL (0x0004)

6.3.29.3.4 Data Low of GLGEN_GPIO_CTL[n] (0x0005 + 2*n, n=0...6)

6.3.29.3.5 Data High of GLGEN_GPIO_CTL[n] (0x0006 + 2*n, n=0...6)

6.3.29.4 PFPCI_FUNC (0x0013 - 0x0025)

6.3.29.4.1 Starting Address Low at PFPCI_FUNC (0x0013)

6.3.29.4.2 Starting Address High at PFPCI_FUNC (0x0014)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLGEN_GPIO_CTL

0x880C8

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLGEN_GPIO_CTL

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x7

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPCI_FUNC, for PF[0]

0x9D980

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPCI_FUNC, for PF[0]

613875-009 589

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.29.4.3 Attributes at PFPCI_FUNC (0x0015)

6.3.29.4.4 Data Low of PFPCI_FUNC[PF] (0x0016 + 2*PF, PF=0...7)

6.3.29.4.5 Data High of PFPCI_FUNC[PF] (0x0017 + 2*PF, PF=0...7)

6.3.29.5 PFPM_WUC (0x0026 - 0x0038)

6.3.29.5.1 Starting Address Low at PFPM_WUC 0x0026)

6.3.29.5.2 Starting Address High at PFPM_WUC (0x0027)

6.3.29.5.3 Attributes at PFPM_WUC - 0x0028

6.3.29.5.4 Data Low of PFPM_WUC[PF] (0x0029 + 2*PF, PF=0...7)

6.3.29.5.5 Data High of PFPM_WUC[PF] (0x002A + 2*PF, PF=0...7)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPM_WUC, for PF[0]

0x9DC80

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPM_WUC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

590 613875-009

6.3.29.6 GLPCI_LBARCTRL (0x0039 - 0x003C)

6.3.29.6.1 Address Low at GLPCI_LBARCTRL (0x0039)

6.3.29.6.2 Address High at GLPCI_LBARCTRL (0x003A)

6.3.29.6.3 Data Low of GLPCI_LBARCTRL (0x003B)

6.3.29.6.4 Data High of GLPCI_LBARCTRL (0x003C)

6.3.29.7 GLPCI_CNF (0x003D - 0x0040)

6.3.29.7.1 Address Low at GLPCI_CNF (0x003D)

6.3.29.7.2 Address High at GLPCI_CNF (0x003E)

6.3.29.7.3 Data Low of GLPCI_CNF (0x003F)

6.3.29.7.4 Data High of GLPCI_CNF (0x0040)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLPCI_LBARCTRL

0x9DE74

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLPCI_LBARCTRL

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLPCI_CNF

0x9DEA0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLPCI_CNF

613875-009 591

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.29.8 GL_MNG_HWARB_CTRL (0x0041 - 0x0044)

6.3.29.8.1 Address Low at GL_MNG_HWARB_CTRL (0x0041)

6.3.29.8.2 Address High at GL_MNG_HWARB_CTRL (0x0042)

6.3.29.8.3 Data Low of GL_MNG_HWARB_CTRL (0x0043)

6.3.29.8.4 Data High of GL_MNG_HWARB_CTRL (0x0044)

6.3.29.9 Reserved (0x0045 - 0x0057)

6.3.29.10 PFPM_APM (0x0058 - 0x006A)

6.3.29.10.1 Starting Address Low at PFPM_APM (0x0058)

6.3.29.10.2 Starting Address High at PFPM_APM (0x0059)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_MNG_HWARB_CTRL

0xB6130

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_MNG_HWARB_CTRL

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPM_APM, for PF[0]

0xB8080

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPM_APM, for PF[0]

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

592 613875-009

6.3.29.10.3 Attributes at PFPM_APM (0x005A)

6.3.29.10.4 Data Low of PFPM_APM[PF] (0x005B + 2*PF, PF=0...7)

6.3.29.10.5 Data High of PFPM_APM[PF] (0x005C + 2*PF, PF=0...7)

6.3.29.11 PRTGEN_CNF (0x006B - 0x007D)

6.3.29.11.1 Starting Address Low at PRTGEN_CNF (0x006B)

6.3.29.11.2 Starting Address High at PRTGEN_CNF (0x006C)

6.3.29.11.3 Attributes at PRTGEN_CNF (0x006D)

6.3.29.11.4 Data Low of PRTGEN_CNF[PRT] (0x006E + 2*PRT,
PRT=0...7)

6.3.29.11.5 Data High of PRTGEN_CNF[PRT] (0x006F + 2*PRT,
PRT=0...7)

6.3.29.12 Reserved (0x007E - 0x008D)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTGEN_CNF, for PRT[0]

0xB8120

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTGEN_CNF, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x18

4:3 Skip 00b

2:0 Width 000b

613875-009 593

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.29.13 PRTGEN_CNF2 (0x008E - 0x009D)

6.3.29.13.1 Data Low of PRTGEN_CNF2[PRT] (0x008E + 2*PRT,
PRT=0...7)

6.3.29.13.2 Data High of PRTGEN_CNF2[PRT] (0x008F + 2*PRT,
PRT=0...7)

6.3.29.14 Reserved (0x009E - 0x00A8)

6.3.29.15 GL_PWR_MODE_CTL (0x00A9 - 0x00AC)

6.3.29.15.1 Address Low at GL_PWR_MODE_CTL (0x00A9)

6.3.29.15.2 Address High at GL_PWR_MODE_CTL (0x00AA)

6.3.29.15.3 Data Low of GL_PWR_MODE_CTL (0x00AB)

6.3.29.15.4 Data High of GL_PWR_MODE_CTL (0x00AC)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_PWR_MODE_CTL

0xB820C

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_PWR_MODE_CTL

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

594 613875-009

6.3.30 PSM Preserved Section

Tx-Scheduler parameters.

6.3.30.1 PSM Preserved Type (0x0000)

6.3.30.2 PSM Preserved Length (0x0001)

6.3.30.3 Logical Layer Config (0x0002)

Table 6-36. PSM Preserved Section Summary Table

Word Offset Description Section
Reference

0x0000 PSM Preserved Type 6.3.30.1

0x0001 PSM Preserved Length 6.3.30.2

0x0002 Logical Layer Config 6.3.30.3

0x0003 + 1*n, n=0...8 Logical Layer Structure 6.3.30.4

0x000C Max_RDMA_Qsets 6.3.30.5

0x000D + 4*n, n=0...7 Logical L2/L3 CIR/EIR 6.3.30.6

0x000E + 4*n, n=0...7 Logical L4/L5 CIR/EIR 6.3.30.7

0x000F + 4*n, n=0...7 Logical L6/L7 CIR/EIR 6.3.30.8

0x0010 + 4*n, n=0...7 Logical L8/L9 CIR/EIR 6.3.30.9

0x002D + 1*n, n=0...7 Node Allocation per Layer 6.3.30.10

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x119 Valid values are:
0x119 = PSM preserved

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: PSM preserved -> PSM Preserved Type
Last Section -> Word: PSM preserved -> Node Allocation per Layer

Section length in words.

Bit(s) Field Name Default
NVM Value Description

15:14 Reserved 00b Reserved.

13 L8_L9_SRL 0b Selects if SRL is used in Physical L8 vs. Physical L9.
0b = L8
1b = L9

12 L6_L7_SRL 0b Selects if SRL is used in Physical L6 vs. Physical L7.
0b = L6
1b = L7

613875-009 595

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.30.4 Logical Layer Structure[n] (0x0003 + 1*n, n=0...8)

Nine structures, one for each logical layer.

6.3.30.5 Max_RDMA_Qsets (0x000C)

6.3.30.6 Logical L2/L3 CIR/EIR[n] (0x000D + 4*n, n=0...7)

Allocation to PF of dedicated L2/L3 Rate Limiter profiles.

11 L4_L5_SRL 0b Selects if SRL is used in Physical L4 vs. Physical L5.
0b = L4
1b = L5

10 L2_L3_SRL 0b Selects if SRL is used in Physical L2 vs. Physical L3.
0b = L2
1b = L3

9 MFP 0b 0b = False
1b = True

8 DCB 1b 0b = False
1b = True

7:4 Number of Logical Layers 0x9 Including port, DCB, MFP and leaf layers.

3:0 Number of Physical Layers 0x9 Device dependent.

Bit(s) Field Name Default
NVM Value Description

15:13 Allocation Chunk Size 001b Valid values are:
000b = N/A
001b = 2
011b = 4
111b = 8

12:0 Maximum Number of Nodes
in the Logical Layer

0x8 2 - 4096 depends on the Layer ID and flattening setting based on Logical to
Physical layer association.

Bit(s) Field Name Default
NVM Value Description

15:10 Reserved 0x0 Reserved.

9:0 Max_RDMA_Qsets_Index 0x1FF Max index of RDMA QSets.

Bit(s) Field Name Default
NVM Value Description

15:8 L3 CIR/EIR 0x1 L3 EIR/CIR RL profiles.

7:0 L2 CIR/EIR 0x1 L2 EIR/CIR RL profiles.

Bit(s) Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

596 613875-009

6.3.30.7 Logical L4/L5 CIR/EIR[n] (0x000E + 4*n, n=0...7)

Allocation to PF of dedicated L4/L5 Rate Limiter profiles.

6.3.30.8 Logical L6/L7 CIR/EIR[n] (0x000F + 4*n, n=0...7)

Allocation to PF of dedicated L6/L7 Rate Limiter profiles.

6.3.30.9 Logical L8/L9 CIR/EIR[n] (0x0010 + 4*n, n=0...7)

Allocation to PF of dedicated L8/L9 Rate Limiter profiles.

6.3.30.10 Node Allocation per Layer[n] (0x002D + 1*n, n=0...7)

Allocation of nodes for each PF. Allocation is uniform to all PFs.

Bit(s) Field Name Default
NVM Value Description

15:8 L5 CIR/EIR 0x2 L5 EIR/CIR RL profiles.

7:0 L4 CIR/EIR 0x1 L4 EIR/CIR RL profiles.

Bit(s) Field Name Default
NVM Value Description

15:8 L7 CIR/EIR 0x8 L7 EIR/CIR RL profiles.
Note: Max dedicated profiles is 255 out of 256.

7:0 L6 CIR/EIR 0x4 L6 EIR/CIR RL profiles.

Bit(s) Field Name Default
NVM Value Description

15:8 L9 CIR/EIR 0x20 L9 EIR/CIR RL profiles.
Note: Max dedicated profiles is 255 out of 1024.

7:0 L8 CIR/EIR 0x10 L8 EIR/CIR RL profiles.
Note: Max dedicated profiles is 255 out of 512.

Bit(s) Field Name Default
NVM Value Description

15:0 Node Allocation for Layer n 0x1 Number of nodes of Layer n allocated to each valid PF.

613875-009 597

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.31 MinSrev Section

6.3.31.1 MinSrev Module Type (0x0000)

6.3.31.2 Length (0x0001)

Length of section.

6.3.31.3 Validity (0x0002)

Validity of MinSrev words.

Table 6-37. MinSrev Section Summary Table

Word Offset Description Section
Reference

0x0000 MinSrev Module Type 6.3.31.1

0x0001 Length 6.3.31.2

0x0002 Validity 6.3.31.3

0x0003 NVM MinSrev LSB 6.3.31.4

0x0004 NVM MinSrev MSB 6.3.31.5

0x0005 OROM MinSrev LSB 6.3.31.6

0x0006 OROM MinSrev MSB 6.3.31.7

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x130 Valid values are:
0x130 = MinSrev Module

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: MinSrev -> MinSrev Module Type
Last Section -> Word: MinSrev -> OROM MinSrev MSB

Section length in words

Bit(s) Field Name Default
NVM Value Description

15:2 Reserved 0x0 Reserved.

1 OROM 0b OROM MinSrev valid.

0 NVM 0b NVM MinSrev valid.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

598 613875-009

6.3.31.4 NVM MinSrev LSB (0x0003)

6.3.31.5 NVM MinSrev MSB (0x0004)

6.3.31.6 OROM MinSrev LSB (0x0005)

6.3.31.7 OROM MinSrev MSB (0x0006)

Bit(s) Field Name Default
NVM Value Description

15:0 MinSrev LSB 0x0 NVM MinSrev

Bit(s) Field Name Default
NVM Value Description

15:0 MinSrev MSB 0x0 NVM MinSrev

Bit(s) Field Name Default
NVM Value Description

15:0 MinSrev LSB 0x0 OROM MinSrev

Bit(s) Field Name Default
NVM Value Description

15:0 MinSrev MSB 0x0 OROM MinSrev

613875-009 599

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.32 PF MAC Address Section

PF/Port MAC Address PFA section.

6.3.32.1 PCI Serial ID MAC Address Module Type (0x0000)

6.3.32.2 Length (0x0001)

Length of MAC Address section.

6.3.32.3 GLPCI_SERL0 (0x0002)

This word is loaded by firmware to GLPCI_SERL 0:15

Table 6-38. PF MAC Address Section Summary Table

Word Offset Description Section
Reference

0x0000 PCI Serial ID MAC Address Module Type 6.3.32.1

0x0001 Length 6.3.32.2

0x0002 GLPCI_SERL0 6.3.32.3

0x0003 GLPCI_SERL1 6.3.32.4

0x0004 GLPCI_SERH0 6.3.32.5

0x0005 GLPCI_SERH1 6.3.32.6

0x0006 PF MAC Address Module Type 6.3.32.7

0x0007 Section Header 6.3.32.8

0x0008 + 4*n, n=0...7 PFPM_SAL0 6.3.32.9

0x0009 + 4*n, n=0...7 PFPM_SAL1 6.3.32.10

0x000A + 4*n, n=0...7 PFPM_SAH0 6.3.32.11

0x000B + 4*n, n=0...7 PFPM_SAH1 6.3.32.12

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x133 Valid values are:
0x133 = PCI Serial id MAC Addresses Module

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: PF MAC Address -> PCI Serial Id MAC Address Module Type
Last Section -> Word: PF MAC Address -> PFPM_SAH1

Bit(s) Field Name Default
NVM Value Description

15:0 PFPM_SAL0 0x0 See respective bits in the GLPCI_SERL register.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

600 613875-009

6.3.32.4 GLPCI_SERL1 (0x00023)

This word is loaded by firmware to GLPCI_SERL 16:31.

6.3.32.5 GLPCI_SERH0 (0x0004)

This word is loaded by firmware to GLPCI_SERH 0:15.

6.3.32.6 GLPCI_SERH1 (0x0005)

This word is loaded by firmware to GLPCI_SERH 16:31.

6.3.32.7 PF MAC Address Module Type (0x0006)

6.3.32.8 Section Header (0x0007)

Length of MAC Address section.

Bit(s) Field Name Default
NVM Value Description

15:0 PFPM_SAL1 0x0 See respective bits in the GLPCI_SERL register.

Bit(s) Field Name Default
NVM Value Description

15:0 PFPM_SAH0 0x0 See respective bits in the GLPCI_SERH register.

Bit(s) Field Name Default
NVM Value Description

15:0 PFPM_SAH1 0x0 See respective bits in the GLPCI_SERH register.

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x10F Valid values are:
0x10F = PF MAC Addresses Module

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: PF MAC Address -> PF MAC Address Module Type
Last Section -> Word: PF MAC Address -> PFPM_SAH1

Section length in words.

613875-009 601

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.32.9 PFPM_SAL0[n] (0x0008 + 4*n, n=0...7)

This word is loaded by firmware to the appropriate PRTPM_SAL register, bytes [1,0]. One MAC Address
per enabled PF/port. This is a per-device, per-enabled-PF value allocated by manufacturing.

6.3.32.10 PFPM_SAL1[n] (0x0009 + 4*n, n=0...7)

This register is loaded by firmware to the appropriate PRTPM_SAL register, bytes [3:2]. One MAC
Address per enabled PF. This is a per-device, per-enabled-PF value allocated by manufacturing.

6.3.32.11 PFPM_SAH0[n] (0x000A + 4*n, n=0...7)

This register is loaded by firmware to the appropriate PRTPM_SAH register, bytes [1,0]. One MAC
Address per enabled PF/port. This is a per-device, per-enabled-PF value allocated by manufacturing.

6.3.32.12 PFPM_SAH1[n] (0x000B + 4*n, n=0...7)

This register is loaded by firmware to the appropriate PRTPM_SAH register, bytes [3:2]. One MAC
Address per enabled PF/port. This is a per-device, per-enabled-PF value allocated by manufacturing.

Bit(s) Field Name Default
NVM Value Description

15:0 PFPM_SAL0 0x0 See respective bits in the PRTPM_SAL register.

Bit(s) Field Name Default
NVM Value Description

15:0 PFPM_SAL1 0x0 See respective bits in the PRTPM_SAL register.

Bit(s) Field Name Default
NVM Value Description

15:0 PFPM_SAH0 0x0 See respective bits in the PRTPM_SAH register.

Bit(s) Field Name Default
NVM Value Description

15:0 PFPM_SAH1 0x0 See respective bits in the PRTPM_SAH register.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

602 613875-009

6.3.33 MNG MAC Address Section

Manageability MAC Address PFA section.

6.3.33.1 MNG MAC Address Module Type (0x0000)

6.3.33.2 Section Header - Length (0x0001)

6.3.33.3 LAN Ethernet MAC Address (LSB) MMAL[n] (0x0002 +
3*n, n=0...31)

This word is loaded by the firmware to the 16 LS bits of the MMAL[0-3] register of Port n. The index
equals 4*Port#+ MAC#. It is used as the MAC Address when dedicated MAC Address mode is used in
legacy SMBus. This is a per-device, per-port value allocated by manufacturing.

Table 6-39. MNG MAC Address Section Summary Table

Word Offset Description Section
Reference

0x0000 MNG MAC Address Module Type 6.3.33.1

0x0001 Section Header - Length 6.3.33.2

0x0002 + 3*n, n=0...31 LAN Ethernet MAC Address (LSB) MMAL 6.3.33.3

0x0003 + 3*n, n=0...31 LAN Ethernet MAC Address (Mid) MMAL 6.3.33.4

0x0004 + 3*n, n=0...31 LAN Ethernet MAC Address (MSB) MMAH 6.3.33.5

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x110 Valid values are:
0x110 = MNG MAC Addresses Module

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: MNG MAC Address -> MNG MAC Address Module Type
Last Section -> Word: MNG MAC Address -> LAN Ethernet MAC Address (MSB) MMAH

Section length in words.

Bit(s) Field Name Default
NVM Value Description

15:0 Ethernet MAC Address, Byte 1 0xFF

7:0 Ethernet MAC Address, Byte 0 0xFF

613875-009 603

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.33.4 LAN Ethernet MAC Address (Mid) MMAL[n] (0x0003 +
3*n, n=0...31)

This word is loaded by the firmware to the 16 MS bits of the MMAL[0-3] register of Port n. The index
equals 4*Port#+ MAC#. It is used as the MAC Address when dedicated MAC Address mode is used in
legacy SMBus. This is a per-device, per-port value allocated by manufacturing.

6.3.33.5 LAN Ethernet MAC Address (MSB) MMAH[n] (0x0004 +
3*n, n=0...31)

This word is loaded by the firmware to the MMAH register of Port n. The index equals 4*Port#+ MAC#.
It is used as the MAC Address when dedicated MAC Address mode is used in legacy SMBus. This is a
per-device, per-port value allocated by manufacturing.

Bit(s) Field Name Default
NVM Value Description

15:0 Ethernet MAC Address, Byte 3 0xFF

7:0 Ethernet MAC Address, Byte 2 0xFF

Bit(s) Field Name Default
NVM Value Description

15:0 Ethernet MAC Address, Byte 5 0xFF

7:0 Ethernet MAC Address, Byte 4 0xFF

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

604 613875-009

6.3.34 FW Logging Defaults Section

UART debug defaults.

6.3.34.1 Sub Module Type (0x0000)

6.3.34.2 Section Length (0x0001)

6.3.34.3 UART Control (0x0002)

Table 6-40. FW Logging Defaults Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type 6.3.34.1

0x0001 Section Length 6.3.34.2

0x0002 UART Control 6.3.34.3

0x0003 Module Logging Enable [n=0] 6.3.34.4

0x0004 Module Logging Enable [n=1] 6.3.34.5

0x0005 Module Logging Enable [n=2] 6.3.34.6

0x0006 Module Logging Enable [n=3] 6.3.34.7

0x0007 Module Logging Enable [n=4] 6.3.34.8

0x0008 Module Logging Enable [n=5] 6.3.34.9

0x0009 Module Logging Enable [n=6] 6.3.34.10

0x000A Module Logging Enable [n=7] 6.3.34.11

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x11D Valid values are:
0x11D = UART Debug

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 2
First Section -> Word: FW Logging Defaults -> Sub Module Type
Last Section -> Word: FW Logging Defaults -> Module Logging Enable [n=7]

Section length in words.

Bit(s) Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 UART Logging Enable 0b 0b = Disabled
1b = Enabled

613875-009 605

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.34.4 Module Logging Enable [n=0] (0x0003)

6.3.34.5 Module Logging Enable [n=1] (0x0004)

Bit(s) Field Name Default
NVM Value Description

15 Module Link Topology Detection Error Logging Enable 1b 0b = Disabled
1b = Enabled

14 Module Link Topology Detection Warning Logging Enable 0b 0b = Disabled
1b = Enabled

13 Module Link Topology Detection Normal Logging Enable 0b 0b = Disabled
1b = Enabled

12 Module Link Topology Detection Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

11 Module Link Management Error Logging Enable 1b 0b = Disabled
1b = Enabled

10 Module Link Management Warning Logging Enable 0b 0b = Disabled
1b = Enabled

9 Module Link Management Normal Logging Enable 1b 0b = Disabled
1b = Enabled

8 Module Link Management Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

7 Module Control Error Logging Enable 1b 0b = Disabled
1b = Enabled

6 Module Control Warning Logging Enable 1b 0b = Disabled
1b = Enabled

5 Module Control Normal Logging Enable 1b 0b = Disabled
1b = Enabled

4 Module Control Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

3 Module General Error Logging Enable 1b 0b = Disabled
1b = Enabled

2 Module General Warning Logging Enable 1b 0b = Disabled
1b = Enabled

1 Module General Normal Logging Enable 0b 0b = Disabled
1b = Enabled

0 Module General Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15 Module MDIO Error Logging Enable 0b 0b = Disabled
1b = Enabled

14 Module MDIO Warning Logging Enable 0b 0b = Disabled
1b = Enabled

13 Module MDIO Normal Logging Enable 0b 0b = Disabled
1b = Enabled

12 Module MDIO Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

606 613875-009

6.3.34.6 Module Logging Enable [n=2] (0x0005)

11 Module SDP Error Logging Enable 0b 0b = Disabled
1b = Enabled

10 Module SDP Warning Logging Enable 0b 0b = Disabled
1b = Enabled

9 Module SDP Normal Logging Enable 0b 0b = Disabled
1b = Enabled

8 Module SDP Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

7 Module I2C Error Logging Enable 0b 0b = Disabled
1b = Enabled

6 Module I2C Warning Logging Enable 0b 0b = Disabled
1b = Enabled

5 Module I2C Normal Logging Enable 0b 0b = Disabled
1b = Enabled

4 Module I2C Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

3 Module Dreadnought Lake Error Logging Enable 1b 0b = Disabled
1b = Enabled

2 Module Dreadnought Lake Warning Logging Enable 0b 0b = Disabled
1b = Enabled

1 Module Dreadnought Lake Normal Logging Enable 0b 0b = Disabled
1b = Enabled

0 Module Dreadnought Lake Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15 Module DCBx Error Logging Enable 1b 0b = Disabled
1b = Enabled

14 Module DCBx Warning Logging Enable 0b 0b = Disabled
1b = Enabled

13 Module DCBx Normal Logging Enable 0b 0b = Disabled
1b = Enabled

12 Module DCBx Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

11 Module LLDP Error Logging Enable 1b 0b = Disabled
1b = Enabled

10 Module LLDP Warning Logging Enable 0b 0b = Disabled
1b = Enabled

9 Module LLDP Normal Logging Enable 0b 0b = Disabled
1b = Enabled

8 Module LLDP Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

7 Module HDMA Error Logging Enable 0b 0b = Disabled
1b = Enabled

6 Module HDMA Warning Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

613875-009 607

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.34.7 Module Logging Enable [n=3] (0x0006)

5 Module HDMA Normal Logging Enable 1b 0b = Disabled
1b = Enabled

4 Module HDMA Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

3 Module Admin Queue Error Logging Enable 1b 0b = Disabled
1b = Enabled

2 Module Admin Queue Warning Logging Enable 0b 0b = Disabled
1b = Enabled

1 Module Admin Queue Normal Logging Enable 0b 0b = Disabled
1b = Enabled

0 Module Admin Queue Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15 Module Authentication Error Logging Enable 1b 0b = Disabled
1b = Enabled

14 Module Authentication Warning Logging Enable 0b 0b = Disabled
1b = Enabled

13 Module Authentication Normal Logging Enable 0b 0b = Disabled
1b = Enabled

12 Module Authentication Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

11 Module NVM Error Logging Enable 1b 0b = Disabled
1b = Enabled

10 Module NVM Warning Logging Enable 0b 0b = Disabled
1b = Enabled

9 Module NVM Normal Logging Enable 0b 0b = Disabled
1b = Enabled

8 Module NVM Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

7 Module NetProxy -> XLR Error Logging Enable 1b 0b = Disabled
1b = Enabled

6 Module NetProxy -> XLR Warning Logging Enable 1b 0b = Disabled
1b = Enabled

5 Module NetProxy -> XLR Normal Logging Enable 1b 0b = Disabled
1b = Enabled

4 Module NetProxy -> XLR Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

3 Module DCB Error Logging Enable 1b 0b = Disabled
1b = Enabled

2 Module DCB Warning Logging Enable 0b 0b = Disabled
1b = Enabled

1 Module DCB Normal Logging Enable 0b 0b = Disabled
1b = Enabled

0 Module DCB Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

608 613875-009

6.3.34.8 Module Logging Enable [n=4] (0x0007)

6.3.34.9 Module Logging Enable [n=5] (0x0008)

Bit(s) Field Name Default
NVM Value Description

15 Module Switch Error Logging Enable 1b 0b = Disabled
1b = Enabled

14 Module Switch Warning Logging Enable 0b 0b = Disabled
1b = Enabled

13 Module Switch Normal Logging Enable 0b 0b = Disabled
1b = Enabled

12 Module Switch Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

11 Module Parser Error Logging Enable 1b 0b = Disabled
1b = Enabled

10 Module Parser Warning Logging Enable 0b 0b = Disabled
1b = Enabled

9 Module Parser Normal Logging Enable 0b 0b = Disabled
1b = Enabled

8 Module Parser Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

7 Module IOSF Error Logging Enable 1b 0b = Disabled
1b = Enabled

6 Module IOSF Warning Logging Enable 0b 0b = Disabled
1b = Enabled

5 Module IOSF Normal Logging Enable 0b 0b = Disabled
1b = Enabled

4 Module IOSF Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

3 Module VPD Error Logging Enable 1b 0b = Disabled
1b = Enabled

2 Module VPD Warning Logging Enable 0b 0b = Disabled
1b = Enabled

1 Module VPD Normal Logging Enable 0b 0b = Disabled
1b = Enabled

0 Module VPD Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15 Module Post Error Logging Enable 1b 0b = Disabled
1b = Enabled

14 Module Post Warning Logging Enable 0b 0b = Disabled
1b = Enabled

13 Module Post Normal Logging Enable 0b 0b = Disabled
1b = Enabled

12 Module Post Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

613875-009 609

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.34.10 Module Logging Enable [n=6] (0x0009)

11 Module ACL Error Logging Enable 1b 0b = Disabled
1b = Enabled

10 Module ACL Warning Logging Enable 0b 0b = Disabled
1b = Enabled

9 Module ACL Normal Logging Enable 0b 0b = Disabled
1b = Enabled

8 Module ACL Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

7 Module TX Queue Management Error Logging Enable 1b 0b = Disabled
1b = Enabled

6 Module TX Queue Management Warning Logging Enable 0b 0b = Disabled
1b = Enabled

5 Module TX Queue Management Normal Logging Enable 0b 0b = Disabled
1b = Enabled

4 Module TX Queue Management Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

3 Module Scheduler Error Logging Enable 1b 0b = Disabled
1b = Enabled

2 Module Scheduler Warning Logging Enable 0b 0b = Disabled
1b = Enabled

1 Module Scheduler Normal Logging Enable 0b 0b = Disabled
1b = Enabled

0 Module Scheduler Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15 Module Synce Error Logging Enable 1b 0b = Disabled
1b = Enabled

14 Module Synce Warning Logging Enable 0b 0b = Disabled
1b = Enabled

13 Module Synce Normal Logging Enable 0b 0b = Disabled
1b = Enabled

12 Module Synce Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

11 Module Manageability Error Logging Enable 1b 0b = Disabled
1b = Enabled

10 Module Manageability Warning Logging Enable 0b 0b = Disabled
1b = Enabled

9 Module Manageability Normal Logging Enable 0b 0b = Disabled
1b = Enabled

8 Module Manageability Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

7 Module Task Dispatcher Error Logging Enable 1b 0b = Disabled
1b = Enabled

6 Module Task Dispatcher Warning Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

610 613875-009

6.3.34.11 Module Logging Enable [n=7] (0x000A)

5 Module Task Dispatcher Normal Logging Enable 0b 0b = Disabled
1b = Enabled

4 Module Task Dispatcher Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

3 Module Watchdog Error Logging Enable 1b 0b = Disabled
1b = Enabled

2 Module Watchdog Warning Logging Enable 0b 0b = Disabled
1b = Enabled

1 Module Watchdog Normal Logging Enable 0b 0b = Disabled
1b = Enabled

0 Module Watchdog Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

15 Module Version Error Logging Enable 1b 0b = Disabled
1b = Enabled

14 Module Version Warning Logging Enable 0b 0b = Disabled
1b = Enabled

13 Module Version Normal Logging Enable 0b 0b = Disabled
1b = Enabled

12 Module Version Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

11 Module PF Registration Error Logging Enable 1b 0b = Disabled
1b = Enabled

10 Module PF Registration Warning Logging Enable 0b 0b = Disabled
1b = Enabled

9 Module PF Registration Normal Logging Enable 0b 0b = Disabled
1b = Enabled

8 Module PF Registration Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

7 Module Time Sync Error Logging Enable 1b 0b = Disabled
1b = Enabled

6 Module Time Sync Warning Logging Enable 0b 0b = Disabled
1b = Enabled

5 Module Time Sync Normal Logging Enable 0b 0b = Disabled
1b = Enabled

4 Module Time Sync Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

3 Module Health Error Logging Enable 1b 0b = Disabled
1b = Enabled

2 Module Health Warning Logging Enable 0b 0b = Disabled
1b = Enabled

1 Module Health Normal Logging Enable 0b 0b = Disabled
1b = Enabled

0 Module Health Verbose Logging Enable 0b 0b = Disabled
1b = Enabled

Bit(s) Field Name Default
NVM Value Description

613875-009 611

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.35 1588 Parameters Section

1588 functionality parameters.

6.3.35.1 Type (0x0000)

6.3.35.2 Length (0x0001)

6.3.35.3 1588 Timer Ownership (0x0002)

1588 timer ownership by PF.

Table 6-41. 1588 Parameters Section Summary Table

Word Offset Description Section
Reference

0x0000 Type 6.3.35.1

0x0001 Length 6.3.35.2

0x0002 1588 Timer Ownership 6.3.35.3

0x0003 1588 Functionality Enablement 0-7 6.3.35.4

0x0004 1588 Functionality Enablement 8-15 6.3.35.5

0x0005 1588 Functionality Enablement 16-19 6.3.35.6

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x4F Valid values are:
0x4F = 1588 Parameters

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: 1588 parameters -> Type
Last Section -> Word: 1588 parameters -> 1588 Functionality Enablement 16-19

Section length in words.

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11 T1owned 0b 0b = Disabled
1b = Enabled

10:8 T1owner 000b Timer 1 PF owner.
000b = Owned by PF 0
001b = Owned by PF 1
010b = Owned by PF 2
011b = Owned by PF 3
100b = Owned by PF 4
101b = Owned by PF 5
011b = Owned by PF 6
111b = Owned by PF 7

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

612 613875-009

6.3.35.4 1588 Functionality Enablement 0-7 (0x0003)

1588 functionality enablement per port.

6.3.35.5 1588 Functionality Enablement 8-15 (0x0004)

1588 functionality enablement per port.

7:4 Reserved 0x0 Reserved.

3 T0owned 0b 0b = Disabled
1b = Enabled

2:0 T0owner 000b Timer 0 PF owner.
000b = Owned by PF 0
001b = Owned by PF 1
010b = Owned by PF 2
011b = Owned by PF 3
100b = Owned by PF 4
101b = Owned by PF 5
011b = Owned by PF 6
111b = Owned by PF 7

Bit(s) Field Name Default
NVM Value Description

15:14 P7 00b Port 7 same list as Port 0.

13:12 P6 00b Port 6 same list as Port 0.

11:10 P5 00b Port 5 same list as Port 0.

9:8 P4 00b Port 4 same list as Port 0.

7:6 P3 00b Port 3 same list as Port 0.

5:4 P2 00b Port 2 same list as Port 0.

3:2 P1 00b Port 1 same list as Port 0.

1:0 P0 00b Port 0.
00b = Disabled
01b = Reserved
10b = Timer 0
11b = Timer 1

Bit(s) Field Name Default
NVM Value Description

15:14 P15 00b Port 15 same list as Port 8.

13:12 P14 00b Port 14 same list as Port 8.

11:10 P13 00b Port 13 same list as Port 8.

9:8 P12 00b Port 12 same list as Port 8.

7:6 P11 00b Port 11 same list as Port 8.

5:4 P10 00b Port 10 same list as Port 8.

3:2 P9 00b Port 9 same list as Port 8.

Bit(s) Field Name Default
NVM Value Description

613875-009 613

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.35.6 1588 Functionality Enablement 16-19 (0x0005)

1588 functionality enablement per port.

1:0 P8 00b Port 8.
00b = Disabled
01b = Reserved
10b = Timer 0
11b = Timer 1

Bit(s) Field Name Default
NVM Value Description

15:8 Reserved 0x0 Reserved.

7:6 P19 00b Port 19 same list as Port 16.

5:4 P18 00b Port 18 same list as Port 16.

3:2 P17 00b Port 17 same list as Port 16.

1:0 P16 00b Port 16.
00b = Disabled
01b = Reserved
10b = Timer 0
11b = Timer 1

Bit(s) Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

614 613875-009

6.3.36 MD Link Topology Section

This is the Ethernet Link topology description of the motherboard. Link topology is described in
Section 3.3.

6.3.36.1 FW MNG Link Topology Module Type (0x0000)

6.3.36.2 FW MNG Link Topology Module Length (0x0001)

6.3.36.3 Generic Info (0x0002)

Table 6-42. MD Link Topology Section Summary Table

Word Offset Description Section
Reference

0x0000 FW MNG Link Topology Module Type 6.3.36.1

0x0001 FW MNG Link Topology Module Length 6.3.36.2

0x0002 Generic Info 6.3.36.3

0x0003 Netlist Version 6.3.36.4

0x0004 + 1*n, n=0...15 Pair PHY Type 6.3.36.5

0x0014 Port Bitmap 0 6.3.36.6

0x0015 Port Bitmap 1 6.3.36.7

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x120 Valid values are:
0x120 = FW MNG Link Topology

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: MD Link Topology -> FW MNG Link Topology Module Type
Last Section -> Word: MD Link Topology -> Port Bitmap 1

Section length in words.

Bit(s) Field Name Default
NVM Value Description

15:8 Netlist Map Version 0x1 The version of the Netlist field definition.

7:1 Reserved 0x0 Reserved.

613875-009 615

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.36.4 Netlist Version (0x0003)

6.3.36.5 Pair PHY Type[n] (0x0004 + 1*n, n=0...15)

6.3.36.6 Port Bitmap 0 (0x0014)

6.3.36.7 Port Bitmap 1 (0x0015)

0 Load Mode 1b Netlist Loading Mode
0b = Normal Mode
1b = Resolution Mode

Controls the steps taken at netlist load time. Valid only for the motherboard's netlist.
There are two modes:
• Normal Mode — The active Port Options are loaded.
• Resolution Mode — The active Port Options of non-innermost PHY nodes is

updated and then the active Port Options are loaded. The update is performed
based on matching the active Port Option of the connected Innermost PHY. If
the Port Option was forced, the active option is not updated.

Bit(s) Field Name Default
NVM Value Description

15:0 Netlist Version 0x0 The version of the netlist.

Bit(s) Field Name Default
NVM Value Description

15:12 PHY 2*n+1 Reserved 0x0

11:8 PHY 2*n+1 Active Option 0x0 The PHY active port option

7:4 PHY 2*n Reserved 0x0

3:0 PHY 2*n Active Option 0x0 The PHY active port option.

Bit(s) Field Name Default
NVM Value Description

15:0 Port Bitmap 0 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Reserved 0x0 Reserved.

3:0 Port Bitmap 1 0x0

Bit(s) Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

616 613875-009

6.3.37 LLDP Preserved Section

6.3.37.1 Type (0x0000)

6.3.37.2 Length (0x0001)

6.3.37.3 LLDP Admin Status 0 (0x0002)

Defines status of LLDP agent. Each LAN port has independent status.

3: Both receive and transmit enabled.
2: LLDP is configured for transmits only.
1: LLDP is configured for receives only.
0: LLDP agent is disabled.

Table 6-43. LLDP Preserved Section Summary Table

Word Offset Description Section
Reference

0x0000 Type 6.3.37.1

0x0001 Length 6.3.37.2

0x0002 LLDP Admin Status 0 6.3.37.3

0x0003 LLDP Admin Status 1 6.3.37.4

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x129 Valid values are:
0x129 = LLDP Preserved

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: LLDP Preserved -> Type
Last Section -> Word: LLDP Preserved -> LLDP Admin Status 1

Section length in words.

Bit(s) Field Name Default
NVM Value Description

15:12 Port 3 0xF Defines status of LLDP agent. Applies to LAN Port 3.

11:8 Port 2 0xF Defines status of LLDP agent. Applies to LAN Port 2.

7:4 Port 1 0xF Defines status of LLDP agent. Applies to LAN Port 1.

3:0 Port 0 0xF Defines status of LLDP agent. Applies to LAN Port 0.

613875-009 617

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.37.4 LLDP Admin Status 1 (0x0003)

Defines status of LLDP agent. Each LAN port has independent status.

3: Both receive and transmit enabled.
2: LLDP is configured for transmits only.
1: LLDP is configured for receives only.
0: LLDP agent is disabled.

Bit(s) Field Name Default
NVM Value Description

15:12 Port 7 0xF Defines status of LLDP agent. Applies to LAN Port 7.

11:8 Port 6 0xF Defines status of LLDP agent. Applies to LAN Port 6.

7:4 Port 5 0xF Defines status of LLDP agent. Applies to LAN Port 5.

3:0 Port 4 0xF Defines status of LLDP agent. Applies to LAN Port 4.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

618 613875-009

6.3.38 RDE Module Section

LLDP Preserved.

6.3.38.1 Type (0x0000)

6.3.38.2 Length (0x0001)

6.3.38.3 AssetTag[n] (0x0002 + 1*n, n=0...31)

Defines status of LLDP agent. Each LAN port has independent status.

3: Both receive and transmit enabled.
2: LLDP is configured for transmits only.
1: LLDP is configured for receives only.
0: LLDP agent is disabled.

Table 6-44. RDE Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Type 6.3.38.1

0x0001 Length 6.3.38.2

0x0002 + 1*n, n=0...31 AssetTag 6.3.38.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x131 Valid values are:
0x131 = RDE Module

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: RDE Module -> Type
Last Section -> Word: RDE Module -> AssetTag30

Section length in words.

Bit(s) Field Name Default
NVM Value Description

15:0 AssetTag 0x0 Defines status of LLDP agent. Applies to LAN Port 0.

613875-009 619

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.39 Identical Content as PLDM Header
ComponentImageSetVersionString Section

6.3.39.1 Sub Module Type (0x0000)

6.3.39.2 Length (0x0001)

Table 6-45. Identical Content as PLDM Header ComponentImageSetVersionString Section
Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type 6.3.39.1

0x0001 Length 6.3.39.2

0x0002 ComponentImageSetVersionString_0 6.3.39.3

0x0003 ComponentImageSetVersionString_1 6.3.39.4

0x0004 ComponentImageSetVersionString_2 6.3.39.5

0x0005 ComponentImageSetVersionString_3 6.3.39.6

0x0006 ComponentImageSetVersionString_4 6.3.39.7

0x0007 ComponentImageSetVersionString_5 6.3.39.8

0x0008 ComponentImageSetVersionString_6 6.3.39.9

0x0009 ComponentImageSetVersionString_7 6.3.39.10

0x000A ComponentImageSetVersionString_8 6.3.39.11

0x000B ComponentImageSetVersionString_9 6.3.39.12

0x000C ComponentImageSetVersionString_10 6.3.39.13

0x000D ComponentImageSetVersionString_11 6.3.39.14

0x000E ComponentImageSetVersionString_12 6.3.39.15

0x000F ComponentImageSetVersionString_13 6.3.39.16

0x0010 ComponentImageSetVersionString_14 6.3.39.17

0x0011 ComponentImageSetVersionString_15 6.3.39.18

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x127 Valid values are:
0x127 = PLDM Component Image Set Version String

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Identical content as PLDM header
ComponentImageSetVersionString -> Sub Module Type
Last Section -> Word: Identical content as PLDM header
ComponentImageSetVersionString -> ComponentImageSetVersionString15

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

620 613875-009

6.3.39.3 ComponentImageSetVersionString_0 (0x0002)

6.3.39.4 ComponentImageSetVersionString_1 (0x0003)

6.3.39.5 ComponentImageSetVersionString_2 (0x0004)

6.3.39.6 ComponentImageSetVersionString_3 (0x0005)

6.3.39.7 ComponentImageSetVersionString_4 (0x0006)

6.3.39.8 ComponentImageSetVersionString_5 (0x0007)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_0 0x2E30 Dev-stater major followed by period (ASCII).
Default value: “0.”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_1 0x3030 Dev-stater minor (ASCII).
Default value: “00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_2 0x2820 Space and open parenthesis (ASCII).
“ (”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_3 0x7830 Hex prefix (ASCII).
“0x”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_4 0x3030 Bytes 7-6 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_5 0x3030 Bytes 5-4 of EETTrackID (ASCII).
“00”

613875-009 621

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.39.9 ComponentImageSetVersionString_6 (0x0008)

6.3.39.10 ComponentImageSetVersionString_7 (0x0009)

6.3.39.11 ComponentImageSetVersionString_8 (0x000A)

6.3.39.12 ComponentImageSetVersionString_9 (0x000B)

6.3.39.13 ComponentImageSetVersionString_10 (0x000C)

6.3.39.14 ComponentImageSetVersionString_11 (0x000D)

6.3.39.15 ComponentImageSetVersionString_12 (0x000E)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_6 0x3030 Bytes 3-2 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_7 0x3030 Bytes 1-0 of EETTrackID (ASCII).
“00”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_8 0x0029 Close parenthesis and null terminator (ASCII).
“)<null>”

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_9 0x0000 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_10 0x0000 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_11 0x0000 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_12 0x0000 Null padding.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

622 613875-009

6.3.39.16 ComponentImageSetVersionString_13 (0x000F)

6.3.39.17 ComponentImageSetVersionString_14 (0x0010)

6.3.39.18 ComponentImageSetVersionString_15 (0x0011)

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_13 0x0000 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_14 0x0000 Null padding.

Bit(s) Field Name Default
NVM Value Description

15:0 ComponentImageSetVersionString_15 0x0000 Null padding.

613875-009 623

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.40 Software Checksum Module Section

The Software Checksum field covers the PFA portion of Shadow RAM contents (reserved words
included). Its value is computed such that after adding all the covered words, including the software
Checksum word itself, the sum is 0xBABA.

The checksum word is used to ensure that the base NVM image is a valid image. The initial value in the
16-bit summing register should be 0x0000 and the carry bit should be ignored after each addition.

This word is verified and recalculated by Firmware upon Checksum AQC.

6.3.40.1 Sub Module Type - Checksum (0x0000)

6.3.40.2 Checksum Module Length (0x0001)

6.3.40.3 Checksum (0x0002)

Table 6-46. Software Checksum Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - Checksum 6.3.40.1

0x0001 Checksum Module Length 6.3.40.2

0x0002 Checksum 6.3.40.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x3F Valid values are:
0x3F = Checksum

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Software Checksum Module -> Sub Module Type - Checksum
Last Section -> Word: Software Checksum Module -> Checksum

Bit(s) Field Name Default
NVM Value Description

15:0 Checksum Checksum word.
Calculated so that checksum over PFA is 0xBABA.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

624 613875-009

6.3.41 RDMA Control Section

6.3.41.1 RDMA Control Module Type (0x0000)

6.3.41.2 Length (0x0001)

6.3.41.3 RDMA Control Settings (0x0002)

Table 6-47. RDMA Control Section Summary Table

Word Offset Description Section
Reference

0x0000 RDMA Control Module Type 6.3.41.1

0x0001 Length 6.3.41.2

0x0002 RDMA Control Settings 6.3.41.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x135 Valid values are:
0x135 = RDMA Control Module

Bits Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: RDMA Control -> RDMA Control Module Type
Last Section -> Word: RDMA Control -> RDMA Control Settings

Bits Field Name Default
NVM Value Description

15:5 Reserved 0x0 Reserved.

4 High Port Count RDMA Control
Override Value

0b Enable or disable.
0b = Disabled
1b = Enabled

3 High Port Count RDMA Control
Override Enable

0b Enable/Disable alternative configuration request for 5 ports or higher.
0b = Disabled
1b = Enabled

2 Low Port Count RDMA Control
Override Value

0b Enable or disable.
0b = Disabled
1b = Enabled

1 Low port count RDMA Control
Override Enable

0b Enable/Disable alternative configuration request for 4 ports or lower.
0b = Disabled
1b = Enabled

0 RDMA Topology Setting 0b Enable or disable.
0b = Disabled
1b = Enabled

613875-009 625

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.42 Link Default Override Mask Section

6.3.42.1 Link Default Override Mask Type (0x0000)

6.3.42.2 Length (0x0001)

Length of section.

Table 6-48. Link Default Override Mask Section Summary Table

Word Offset Description Section
Reference

0x0000 Link Default Override Mask Type 6.3.42.1

0x0001 Length 6.3.42.2

0x0002 + 10*n, n=0...7 Port Options 0 6.3.42.3

0x0003 + 10*n, n=0...7 Port Options 1 6.3.42.4

0x0004 + 10*n, n=0...7 Port PHY Types 0 6.3.42.5

0x0005 + 10*n, n=0...7 Port PHY Types 1 6.3.42.6

0x0006 + 10*n, n=0...7 Port PHY Types 2 6.3.42.7

0x0007 + 10*n, n=0...7 Port PHY Types 3 6.3.42.8

0x0008 + 10*n, n=0...7 Port PHY Types 4 6.3.42.9

0x0009 + 10*n, n=0...7 Port PHY Types 5 6.3.42.10

0x000A + 10*n, n=0...7 Port PHY Types 6 6.3.42.11

0x000B + 10*n, n=0...7 Port PHY Types 7 6.3.42.12

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x134 Valid values are:
0x134 = Link Default Override Mask

Bits Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Link Default Override Mask -> Link Default Override Mask Type
Last Section -> Word: Link Default Override Mask -> Port PHY Types 7

Words

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

626 613875-009

6.3.42.3 Port Options 0[n] (0x0002 + 10*n, n=0...7)

Port link options.

6.3.42.4 Port Options 1[n] (0x0003 + 10*n, n=0...7)

Port PHY options.

Bits Field Name Default
NVM Value Description

15 Auto FEC Enable 1b When Override Enable bit is set, the Auto FEC Enable bit is taken from here
and not from the topology netlist.

14 LESM Enable 1b When Override Enable bit is set, the LESM Enable bit is taken from here and
not from the topology netlist.

13:10 Reserved 0xF Reserved.

9:8 PAUSE Ability 00b When Override Enable bit is set, the PAUSE Ability bits are taken from here
and not from the topology netlist.

7:6 Reserved 11b Reserved.

5 EEE Enable Override 0b When Override Enable bit is set, the EEE can be enabled or disabled according
to this bit, assuming that the PHY_TYPE is supporting EEE.

0b = Disable
1b = Enable

4 Disable Automatic Link on
Startup Override

0b When Override Enable bit is set, the “Disable Automatic Link on Startup”
feature is taken from here and not from the link topology.

0b = Automatic Link on Startup feature is enabled.
1b = Automatic Link on Startup feature is disabled.

3 Override Enable 0b Enables the override ability from PFA for this port. When this bit is set for a
specific port, the parameters of this port are taken from the PFA and not from
the link topology structures.

0b = Disable
1b = Enable

2 Port Disable Behavior
Mode

0b Controls how to disable the port when requested.
0b = Disables only the host.
1b = Disables all usages.

1 EPCT ability to Change
Lenient/Strict Enable

0b EPCT ability to change Lenient/Strict mode.

0 Lenient/Strict Mode 0b 0b - Lenient
1b = Strict

Bits Field Name Default
NVM Value Description

15:14 Reserved 11b Reserved.

13 Override FEC Setting 0b

12 Override LESM Enable 0b

11 Override PAUSE Setting 0b

10 Override EEE Setting 0b

9 Override “Disable Automatic
Link on Startup”

0b

8 Override PHY Types 0b

7 FIRE_CODE_25_ABILITY 1b Controls KR FEC ability advertisement for 25G KR1/CR1.
0b = FEC Disabled
1b = FEC Enabled (advertised)

613875-009 627

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.42.5 Port PHY Types 0[n] (0x0004 + 10*n, n=0...7)

PHY types. 8 Words per port. 8 ports.

6 RS_528_ABILITY 1b Controls RS FEC ability advertisement for 25G KR1/CR1.
0b = FEC Disabled
1b = FEC Enabled (advertised)

5 No-FEC 0b

4 RS_544_REQUEST 0b Controls RS FEC 544 capability request for 25G/50Glanes KR/KR-S/KR1/
CR/ CR-S/CR1.

0b = FEC Disabled
1b = FEC Enabled (requested)

3 FIRE_CODE_25_REQUEST 1b Controls KR FEC capability request for 25G lanes KR/KR-S/KR1/CR/CR-S/
CR1.

0b = FEC Disabled
1b = FEC Enabled (requested)

2 RS_528_REQUEST 1b Controls RS FEC 528 capability request for 25G lanes KR/KR-S/KR1/CR/
CR-S/CR1.

0b = FEC Disabled
1b = FEC Enabled (requested)

1 FIRE_CODE_10_REQUEST 0b Controls FEC capability request for 10G KR and 40G KR4/CR4.
0b = FEC Disabled
1b = FEC Enabled (requested)

0 FIRE_CODE_10_ABILITY Enable 0b Controls FEC capability advertisement for 10G KR and 40G KR4/CR4.
0b = FEC Disabled
1b = FEC Enabled (advertised)

Bits Field Name Default
NVM Value Description

15 10GBASE-LR 1b

14 10GBASE-SR 1b

13 10G-SFI-DA 1b

12 10GBASE-T 1b

11 5GBASE-KR 1b

10 5GBASE-T 1b

9 2.5GBASE-KX 1b

8 2.5GBASE-X 1b

7 2.5GBASE-T 1b

6 1G-SGMII 1b

5 1000BASE-KX 1b

4 1000BASE-LX 1b

3 1000BASE-SX 1b

2 1000BASE-T 1b

1 100M-SGMII 1b

0 100BASE-TX 1b

Bits Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

628 613875-009

6.3.42.6 Port PHY Types 1[n] (0x0005 + 10*n, n=0...7)

6.3.42.7 Port PHY Types 2[n] (0x0006 + 10*n, n=0...7)

Bits Field Name Default
NVM Value Description

15 40GBASE-SR4 1b

14 40GBASE-CR4 1b

13 25G-AUI-C2C 1b

12 25G-AUI-AOC\ACC 1b

11 25GBASE-KR1 1b

10 25GBASE-KR-S 1b

9 25GBASE-KR 1b

8 25GBASE-LR 1b

7 25GBASE-SR 1b

6 25GBASE-CR1 1b

5 25GBASE-CR-S 1b

4 25GBASE-CR 1b

3 25GBASE-T 1b

2 10G-SFI-C2C 1b

1 10G-SFI-AOC\ACC 1b

0 10GBASE-KR\CR1 1b

Bits Field Name Default
NVM Value Description

15 50GBASE-LR 1b

14 50GBASE-FR 1b

13 50GBASE-SR 1b

12 50GBASE-CP 1b

11 50G-AUI2 1b

10 50G-AUI2-AOC\ACC 1b

9 50G-LAUI2 1b

8 50G-LAUI2-AOC\ACC 1b

7 50GBASE-KR2 1b

6:5 Reserved 11b Reserved.

4 50GBASE-CR2 1b

3 40G-XLAUI 1b

2 40G-XLAUI-AOC\ACC 1b

1 40GBASE-KR4 1b

0 40GBASE-LR4 1b

613875-009 629

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.42.8 Port PHY Types 3[n] (0x0007 + 10*n, n=0...7)

6.3.42.9 Port PHY Types 4[n] (0x0008 + 10*n, n=0...7)

Bits Field Name Default
NVM Value Description

15 100GBASE-DR 1b

14 100GBASE-SR2 1b

13 100GBASE-CP2 1b

12 100GBASE-KP-PAM4 1b

11 Reserved 1b Reserved.

10 100G-AUI4 1b

9 100G-AUI4-AOC\ACC 1b

8 100G-CAUI4 1b

7 100G-CAUI-AOC\ACC 1b

6 100GBASE-KR4 1b

5 100GBASE-LR4 1b

4 100GBASE-SR4 1b

3 100GBASE-CR4 1b

2 50G-AUI1 1b

1 50G-AUI1-AOC\ACC 1b

0 50GBASE-KR-PAM4 1b

Bits Field Name Default
NVM Value Description

15 400GBASE-FR8 1b

14 200G-AUI8 1b

13 200G-AUI8-AOC\ACC 1b

12 200G-AUI4 1b

11 200G-AUI4-AOC\ACC 1b

10 200GBASE-KR4-PAM4 1b

9 200GBASE-DR4 1b

8 200GBASE-LR4 1b

7 200GBASE-FR4 1b

6 200GBASE-SR4 1b

5 200GBASE-CR4-PAM4 1b

4 100G-AUI2 1b

3 100G-AUI2-AOC\ACC 1b

2:1 Reserved 11b Reserved.

0 100GBASE-KR2-PAM4 1b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

630 613875-009

6.3.42.10 Port PHY Types 5[n] (0x0009 + 10*n, n=0...7)

6.3.42.11 Port PHY Types 6[n] (0x000A + 10*n, n=0...7)

6.3.42.12 Port PHY Types 7[n] (0x000B + 10*n, n=0...7)

Bits Field Name Default
NVM Value Description

15:4 Reserved 0xFFF Reserved.

3 400G-AUI8 1b

2 400G-AUI8-
AOC\ACC

1b

1 400GBASE-DR8 1b

0 400GBASE-LR8 1b

Bits Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bits Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

613875-009 631

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.43 RDE Ethernet MTU Section

6.3.43.1 RDE Ethernet MTU Type (0x0000)

6.3.43.2 Length (0x0001)

6.3.43.3 Ethernet MTU Size[n] (0x0002 + 1*n, n=0...7)

Table 6-49. RDE Ethernet MTU Section Summary Table

Word Offset Description Section
Reference

0x0000 RDE Ethernet MTU Type 6.3.43.1

0x0001 Length 6.3.43.2

0x0002 + 1*n, n=0...7 Ethernet MTU Size 6.3.43.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x136 Valid values are:
0x136 = RDE Ethernet MTU Type

Bits Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: RDE Ethernet MTU -> RDE Ethernet MTU Type
Last Section -> Word: RDE Ethernet MTU -> Ethernet MTU size

Bits Field Name Default
NVM Value Description

15:0 Ethernet MTU Size 0xFFFF

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

632 613875-009

6.3.44 Default DCB Parameters Section

6.3.44.1 Default DCB Parameters Type (0x0000)

6.3.44.2 Length (0x0001)

6.3.44.3 Ports 0-3 Mode (0x0002)

6.3.44.4 Ports 4-7 Mode (0x0003)

Table 6-50. Default DCB Parameters Section Summary Table

Word Offset Description Section
Reference

0x0000 Default DCB Parameters Type 6.3.44.1

0x0001 Length 6.3.44.2

0x0002 Ports 0-3 Mode 6.3.44.3

0x0003 Ports 4-7 Mode 6.3.44.4

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x137 Valid values are:
0x137 = Default DCB Parameters Type

Bits Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Default DCB Parameters -> Default DCB Parameters Type
Last Section -> Word: Default DCB Parameters -> Ports 4-7 Mode

Bits Field Name Default
NVM Value Description

15:12 Port 3 Mode 0x1 Default DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 3

11:8 Port 2 Mode 0x1 Default DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 2

7:4 Port 1 Mode 0x1 Default DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 1

3:0 Port 0 Mode 0x1 Default DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 0

Bits Field Name Default
NVM Value Description

15:12 Port 7 Mode 0x1 Default DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 7

11:8 Port 6 Mode 0x1 Default DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 6

7:4 Port 5 Mode 0x1 Default DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 5

3:0 Port 4 Mode 0x1 Default DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 4

613875-009 633

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.45 Current DCB Parameters Section

6.3.45.1 Current DCB Parameters Type (0x0000)

6.3.45.2 Length (0x0001)

6.3.45.3 Ports 0-3 Mode (0x0002)

6.3.45.4 Ports 4-7 Mode (0x0003)

Table 6-51. Current DCB Parameters Section Summary Table

Word Offset Description Section
Reference

0x0000 Current DCB Parameters Type 6.3.45.1

0x0001 Length 6.3.45.2

0x0002 Ports 0-3 Mode 6.3.45.3

0x0003 Ports 4-7 Mode 6.3.45.4

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x138 Valid values are:
0x138 = Current DCB Parameters Type

Bits Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Current DCB Parameters -> Current DCB Parameters Type
Last Section -> Word: Current DCB Parameters -> Ports 4-7 Mode

Bits Field Name Default
NVM Value Description

15:12 Port 3 Mode 0xF Current DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 3

11:8 Port 2 Mode 0xF Current DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 2

7:4 Port 1 Mode 0xF Current DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 1

3:0 Port 0 Mode 0xF Current DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 0

Bits Field Name Default
NVM Value Description

15:12 Port 7 Mode 0xF Current DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 7

11:8 Port 6 Mode 0xF Current DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 6

7:4 Port 5 Mode 0xF Current DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 5

3:0 Port 4 Mode 0xF Current DCB Mode to apply default DCB settings after link up or not. Applies to LAN Port 4

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

634 613875-009

6.3.46 HII Port Disable by Function Section

6.3.46.1 Type (0x0000)

6.3.46.2 Length (0x0001)

6.3.46.3 HII Port Disable by Function (0x0002)

Table 6-52. HII Port Disable by Function Section Summary Table

Word Offset Description Section
Reference

0x0000 Type 6.3.46.1

0x0001 Length 6.3.46.2

0x0002 HII Port Disable by Function 6.3.46.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x139 Valid values are:
0x139 = HII Port Disable by Function

Bits Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: HII Port Disable by Function -> Type
Last Section -> Word: HII Port Disable by Function -> HII Port Disable by Function

Bits Field Name Default
NVM Value Description

15:8 Reserved 0x0 Reserved.

7 HII port disable by function 7 0b When the bit is set, the firmware should disable the port that is associated
with the PF according to PFGEN_PORTNUM.

0b = Port Enabled
1b = Port Disabled

6 HII port disable by function 6 0b When the bit is set, the firmware should disable the port that is associated
with the PF according to PFGEN_PORTNUM.

0b = Port Enabled
1b = Port Disabled

5 HII port disable by function 5 0b When the bit is set, the firmware should disable the port that is associated
with the PF according to PFGEN_PORTNUM.

0b = Port Enabled
1b = Port Disabled

4 HII port disable by function 4 0b When the bit is set, the firmware should disable the port that is associated
with the PF according to PFGEN_PORTNUM.

0b = Port Enabled
1b = Port Disabled

3 HII port disable by function 3 0b When the bit is set, the firmware should disable the port that is associated
with the PF according to PFGEN_PORTNUM.

0b = Port Enabled
1b = Port Disabled

613875-009 635

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

2 HII port disable by function 2 0b When the bit is set, the firmware should disable the port that is associated
with the PF according to PFGEN_PORTNUM.

0b = Port Enabled
1b = Port Disabled

1 HII port disable by function 1 0b When the bit is set, the firmware should disable the port that is associated
with the PF according to PFGEN_PORTNUM.

0b = Port Enabled
1b = Port Disabled

0 HII port disable by function 0 0b When the bit is set, the firmware should disable the port that is associated
with the PF according to PFGEN_PORTNUM.

0b = Port Enabled
1b = Port Disabled

Bits Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

636 613875-009

6.3.47 NetlistMinSrev Section

6.3.47.1 NetlistMinSrev Module Type (0x0000)

6.3.47.2 Length (0x0001)

Length of section.

6.3.47.3 Validity (0x0002)

Validity of MinSrev words.

6.3.47.4 Netlist MinSrev LSB (0x0003)

Table 6-53. NetlistMinSrev Section Summary Table

Word Offset Description Section
Reference

0x0000 NetlistMinSrev Module Type 6.3.47.1

0x0001 Length 6.3.47.2

0x0002 Validity 6.3.47.3

0x0003 Netlist MinSrev LSB 6.3.47.4

0x0004 Netlist MinSrev MSB 6.3.47.5

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x146 Valid values are:
0x146 = NetlistMinSrev Module Type

Bits Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: NetlistMinSrev -> NetlistMinSrev Module Type
Last Section -> Word: NetlistMinSrev -> Netlist MinSrev MSB Section length in words

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 Netlist 0b Netlist MinSrev valid.

Bits Field Name Default
NVM Value Description

15:0 MinSrev LSB 0x0 Netlist MinSrev.

613875-009 637

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.47.5 Netlist MinSrev MSB (0x0004)

6.3.48 Tx-Scheduler Topology User Selection Section

6.3.48.1 Tx Scheduler Topology User Selection Module Type
(0x0000)

6.3.48.2 Length (0x0001)

6.3.48.3 Data (0x0002)

Bits Field Name Default
NVM Value Description

15:0 MinSrev MSB 0x0 Netlist MinSrev.

Table 6-54. Tx-Scheduler Topology User Selection Section Summary Table

Word Offset Description Section
Reference

0x0000 Tx Scheduler Topology User Selection Module Type 6.3.48.1

0x0001 Length 6.3.48.2

0x0002 Data 6.3.48.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x14B Valid values are:
0x14B = Tx Scheduler Topology User Selection Module Type

Bits Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: Tx Scheduler Topology User Selection -> Tx Scheduler Topology
User Selection Module Type
Last Section -> Word: Tx Scheduler Topology User Selection -> Data

Bits Field Name Default
NVM Value Description

15:5 Reserved 0x0

4 Topology Source 0x0

3:0 Reserved 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

638 613875-009

6.3.49 LLDP Preserved 2 Section

Table 6-55. LLDP Preserved 2 Section Summary Table

Word Offset Description Section
Reference

0x0000 LLDP Preserved 2 Module Type 6.3.49.1

0x0001 Length 6.3.49.3

0x0002 LLDP Control 0 6.3.49.3

0x0003 LLDP Control 1 6.3.49.4

0x0004 Port 0 - Chassis ID Subtype & Chassis ID Length 6.3.49.5

0x0005 + 1*n, n=0...15 Port 0 - Chassis ID 6.3.49.6

0x0015 Port 0 - Port ID Subtype & Port ID Length 6.3.49.7

0x0016 + 1*n, n=0...15 Port 0 - Port ID 6.3.49.8

0x0026 + 1*n, n=0...1 Port 0 - Management Address IPv4 6.3.49.9

0x0028 + 1*n, n=0...7 Port 0 - Management Address IPv6 6.3.49.10

0x0030 + 1*n, n=0...2 Port 0 - Management Address MAC 6.3.49.11

0x0033 Port 0 - Management VLAN ID 6.3.49.12

0x0034 Port 1 - Chassis ID Subtype & Chassis ID Length 6.3.49.13

0x0035 + 1*n, n=0...15 Port 1 - Chassis ID 6.3.49.14

0x0045 Port 1 - Port ID Subtype & Port ID Length 6.3.49.15

0x0046 + 1*n, n=0...15 Port 1 - Port ID 6.3.49.16

0x0056 + 1*n, n=0...1 Port 1 - Management Address IPv4 6.3.49.17

0x0058 + 1*n, n=0...7 Port 1 - Management Address IPv6 6.3.49.18

0x0060 + 1*n, n=0...2 Port 1 - Management Address MAC 6.3.49.19

0x0063 Port 1 - Management VLAN ID 6.3.49.20

0x0064 Port 2 - Chassis ID Subtype & Chassis ID Length 6.3.49.21

0x0065 + 1*n, n=0...15 Port 2 - Chassis ID 6.3.49.22

0x0075 Port 2 - Port ID Subtype & Port ID Length 6.3.49.23

0x0076 + 1*n, n=0...15 Port 2 - Port ID 6.3.49.24

0x0086 + 1*n, n=0...1 Port 2 - Management Address IPv4 6.3.49.25

0x0088 + 1*n, n=0...7 Port 2 - Management Address IPv6 6.3.49.26

0x0090 + 1*n, n=0...2 Port 2 - Management Address MAC 6.3.49.27

0x0093 Port 2 - Management VLAN ID 6.3.49.28

0x0094 Port 3 - Chassis ID Subtype & Chassis ID Length 6.3.49.29

0x0095 + 1*n, n=0...15 Port 3 - Chassis ID 6.3.49.30

0x00A5 Port 3 - Port ID Subtype & Port ID Length 6.3.49.31

0x00A6 + 1*n, n=0...15 Port 3 - Port ID 6.3.49.32

0x00B6 + 1*n, n=0...1 Port 3 - Management Address IPv4 6.3.49.33

0x00B8 + 1*n, n=0...7 Port 3 - Management Address IPv6 6.3.49.34

0x00C0 + 1*n, n=0...2 Port 3 - Management Address MAC 6.3.49.35

613875-009 639

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x00C3 Port 3 - Management VLAN ID 6.3.49.36

0x00C4 Port 4 - Chassis ID Subtype & Chassis ID Length 6.3.49.37

0x00C5 + 1*n, n=0...15 Port 4 - Chassis ID 6.3.49.38

0x00D5 Port 4 - Port ID Subtype & Port ID Length 6.3.49.39

0x00D6 + 1*n, n=0...15 Port 4 - Port ID 6.3.49.40

0x00E6 + 1*n, n=0...1 Port 4 - Management Address IPv4 6.3.49.41

0x00E8 + 1*n, n=0...7 Port 4 - Management Address IPv6 6.3.49.42

0x00F0 + 1*n, n=0...2 Port 4 - Management Address MAC 6.3.49.43

0x00F3 Port 4 - Management VLAN ID 6.3.49.44

0x00F4 Port 5 - Chassis ID Subtype & Chassis ID Length 6.3.49.45

0x00F5 + 1*n, n=0...15 Port 5 - Chassis ID 6.3.49.46

0x0105 Port 5 - Port ID Subtype & Port ID Length 6.3.49.47

0x0106 + 1*n, n=0...15 Port 5 - Port ID 6.3.49.48

0x0116 + 1*n, n=0...1 Port 5 - Management Address IPv4 6.3.49.49

0x0118 + 1*n, n=0...7 Port 5 - Management Address IPv6 6.3.49.50

0x0120 + 1*n, n=0...2 Port 5 - Management Address MAC 6.3.49.51

0x0123 Port 5 - Management VLAN ID 6.3.49.52

0x0124 Port 6 - Chassis ID Subtype & Chassis ID Length 6.3.49.53

0x0125 + 1*n, n=0...15 Port 6 - Chassis ID 6.3.49.54

0x0135 Port 6 - Port ID Subtype & Port ID Length 6.3.49.55

0x0136 + 1*n, n=0...15 Port 6 - Port ID 6.3.49.56

0x0146 + 1*n, n=0...1 Port 6 - Management Address IPv4 6.3.49.57

0x0148 + 1*n, n=0...7 Port 6 - Management Address IPv6 6.3.49.58

0x0150 + 1*n, n=0...2 Port 6 - Management Address MAC 6.3.49.59

0x0153 Port 6 - Management VLAN ID 6.3.49.60

0x0154 Port 7 - Chassis ID Subtype & Chassis ID Length 6.3.49.61

0x0155 + 1*n, n=0...15 Port 7 - Chassis ID 6.3.49.62

0x0165 Port 7 - Port ID Subtype & Port ID Length 6.3.49.63

0x0166 + 1*n, n=0...15 Port 7 - Port ID 6.3.49.64

0x0176 + 1*n, n=0...1 Port 7 - Management Address IPv4 6.3.49.65

0x0178 + 1*n, n=0...7 Port 7 - Management Address IPv6 6.3.49.66

0x0180 + 1*n, n=0...2 Port 7 - Management Address MAC 6.3.49.67

0x0183 Port 7 - Management VLAN ID 6.3.49.68

0x0184 + 1*n, n=0...123 Reserved 6.3.49.69

Table 6-55. LLDP Preserved 2 Section Summary Table

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

640 613875-009

6.3.49.1 LLDP Preserved 2 Module Type (0x0000)

6.3.49.2 Length (0x0001)

6.3.49.3 LLDP Control 0 (0x0002)

6.3.49.4 LLDP Control 1 (0x0003)

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x14D Valid values are:
0x14D = LLDP Preserved 2

Bits Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: LLDP Preserved 2 -> LLDP Preserved 2 Module Type
Last Section -> Word: LLDP Preserved 2 -> Reserved 123

Section length in words

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.
Note: This field is preserved by Intel NVM Update tool.

0 Adapter LLDP Disable 0b Disables FW LLDP Agent for all ports.
0b = Adapter allows FW LLDP Agent to be enabled.
1b = Adapter does not allow LLDP FW LLDP Agent to be enabled.

Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15 Port 7 LLDP Disable Valid 0b Is Port 7 LLDP Disabled bit valid.
0b = Bit is invalid.
1b = Bit is valid.

Note: This field is preserved by Intel NVM Update tool.

14 Port 6 LLDP Disable Valid 0b Is Port 6 LLDP Disabled bit valid.
0b = Bit is invalid.
1b = Bit is valid.

Note: This field is preserved by Intel NVM Update tool.

13 Port 5 LLDP Disable Valid 0b Is Port 5 LLDP Disabled bit valid.
0b = Bit is invalid.
1b = Bit is valid.

Note: This field is preserved by Intel NVM Update tool.

12 Port 4 LLDP Disable Valid 0b Is Port 4 LLDP Disabled bit valid.
0b = Bit is invalid.
1b = Bit is valid.

Note: This field is preserved by Intel NVM Update tool.

613875-009 641

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

11 Port 3 LLDP Disable Valid 0b Is Port 3 LLDP Disabled bit valid.
0b = Bit is invalid.
1b = Bit is valid.

Note: This field is preserved by Intel NVM Update tool.

10 Port 2 LLDP Disable Valid 0b Is Port 2 LLDP Disabled bit valid.
0b = Bit is invalid.
1b = Bit is valid.

Note: This field is preserved by Intel NVM Update tool.

9 Port 1 LLDP Disable Valid 0b Is Port 1 LLDP Disabled bit valid.
0b = Bit is invalid.
1b = Bit is valid.

Note: This field is preserved by Intel NVM Update tool.

8 Port 0 LLDP Disable Valid 0b Is Port 0 LLDP Disabled bit valid.
0b = Bit is invalid.
1b = Bit is valid.

Note: This field is preserved by Intel NVM Update tool.

7 Port 7 LLDP Disable 0b The pending FW LLDP Status for Port 7.
0b = FW LLDP Agent enabled.
1b = FW LLDP Agent disabled.

Note: This field is preserved by Intel NVM Update tool.

6 Port 6 LLDP Disable 0b The pending FW LLDP Status for Port 6.
0b = FW LLDP Agent enabled.
1b = FW LLDP Agent disabled.

Note: This field is preserved by Intel NVM Update tool.

5 Port 5 LLDP Disable 0b The pending FW LLDP Status for Port 5.
0b = FW LLDP Agent enabled.
1b = FW LLDP Agent disabled.

Note: This field is preserved by Intel NVM Update tool.

4 Port 4 LLDP Disable 0b The pending FW LLDP Status for Port 4.
0b = FW LLDP Agent enabled.
1b = FW LLDP Agent disabled.

Note: This field is preserved by Intel NVM Update tool.

3 Port 3 LLDP Disable 0b The pending FW LLDP Status for Port 3.
0b = FW LLDP Agent enabled.
1b = FW LLDP Agent disabled.

Note: This field is preserved by Intel NVM Update tool.

2 Port 2 LLDP Disable 0b The pending FW LLDP Status for Port 2.
0b = FW LLDP Agent enabled.
1b = FW LLDP Agent disabled.

Note: This field is preserved by Intel NVM Update tool.

1 Port 1 LLDP Disable 0b The pending FW LLDP Status for Port 1.
0b = FW LLDP Agent enabled.
1b = FW LLDP Agent disabled.

Note: This field is preserved by Intel NVM Update tool.

0 Port 0 LLDP Disable 0b The pending FW LLDP Status for Port 0.
0b = FW LLDP Agent enabled.
1b = FW LLDP Agent disabled.

Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

642 613875-009

6.3.49.5 Port 0 - Chassis ID Subtype & Chassis ID length
(0x0004)

6.3.49.6 Port 0 - Chassis ID[n] (0x0005 + 1*n, n=0...15)

6.3.49.7 Port 0 - Port ID Subtype & Port ID Length (0x0015)

6.3.49.8 Port 0 - Port ID[n] (0x0016 + 1*n, n=0...15)

6.3.49.9 Port 0 - Management Address IPv4[n] (0x0026 + 1*n,
n=0...1)

Bits Field Name Default
NVM Value Description

15:8 Chassis ID Subtype 0x0 The IEEE 802.1AB-2009 Chassis ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Chassis ID Length 0x0 The number of bytes from the Chassis ID fields that should be used in transmitted
LLDP.
Value is limited by number of the Chassis ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Chassis ID 0x0 The Chassis ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Port ID Subtype 0x0 The IEEE 802.1AB-2009 Port ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Port ID Length 0x0 The number of bytes from the Port ID fields that should be used in transmitted LLDP.
Value is limited by number of the Port ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Port ID 0x0 The Port identification to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv4 0x0 The IPv4 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

613875-009 643

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.49.10 Port 0 - Management Address IPv6[n] (0x0028 + 1*n,
n=0...7)

6.3.49.11 Port 0 - Management Address MAC[n] (0x0030 + 1*n,
n=0...2)

6.3.49.12 Port 0 - Management VLAN ID (0x0033)

6.3.49.13 Port 1 - Chassis ID Subtype & Chassis ID length
(0x0034)

6.3.49.14 Port 1 - Chassis ID[n] (0x0035 + 1*n, n=0...15)

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv6 0x0 The IPv6 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address MAC 0x0 The management MAC Address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management VLAN ID 0x0 The management VLAN ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Chassis ID Subtype 0x0 The IEEE 802.1AB-2009 Chassis ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Chassis ID Length 0x0 The number of bytes from the Chassis ID fields that should be used in transmitted
LLDP.
Value is limited by number of the Chassis ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Chassis ID 0x0 The Chassis ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

644 613875-009

6.3.49.15 Port 1 - Port ID Subtype & Port ID Length (0x0045)

6.3.49.16 Port 1 - Port ID[n] (0x0046 + 1*n, n=0...15)

6.3.49.17 Port 1 - Management Address IPv4[n] (0x0056 + 1*n,
n=0...1)

6.3.49.18 Port 1 - Management Address IPv6[n] (0x0058 + 1*n,
n=0...7)

6.3.49.19 Port 1 - Management Address MAC[n] (0x0060 + 1*n,
n=0...2)

Bits Field Name Default
NVM Value Description

15:8 Port ID Subtype 0x0 The IEEE 802.1AB-2009 Port ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Port ID Length 0x0 The number of bytes from the Port ID fields that should be used in transmitted LLDP.
Value is limited by number of the Port ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Port ID 0x0 The Port identification to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv4 0x0 The IPv4 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv6 0x0 The IPv6 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address MAC 0x0 The management MAC Address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

613875-009 645

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.49.20 Port 1 - Management VLAN ID (0x0063)

6.3.49.21 Port 2 - Chassis ID Subtype & Chassis ID length
(0x0064)

6.3.49.22 Port 2 - Chassis ID[n] (0x0065 + 1*n, n=0...15)

6.3.49.23 Port 2 - Port ID Subtype & Port ID Length (0x0075)

6.3.49.24 Port 2 - Port ID[n] (0x0076 + 1*n, n=0...15)

Bits Field Name Default
NVM Value Description

15:0 Management VLAN ID 0x0 The management VLAN ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Chassis ID Subtype 0x0 The IEEE 802.1AB-2009 Chassis ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Chassis ID Length 0x0 The number of bytes from the Chassis ID fields that should be used in transmitted
LLDP.
Value is limited by number of the Chassis ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Chassis ID 0x0 The Chassis ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Port ID Subtype 0x0 The IEEE 802.1AB-2009 Port ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Port ID Length 0x0 The number of bytes from the Port ID fields that should be used in transmitted LLDP.
Value is limited by number of the Port ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Port ID 0x0 The Port identification to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

646 613875-009

6.3.49.25 Port 2 - Management Address IPv4[n] (0x0086 + 1*n,
n=0...1)

6.3.49.26 Port 2 - Management Address IPv6[n] (0x0088 + 1*n,
n=0...7)

6.3.49.27 Port 2 - Management Address MAC[n] (0x0090 + 1*n,
n=0...2)

6.3.49.28 Port 2 - Management VLAN ID (0x0093)

6.3.49.29 Port 3 - Chassis ID Subtype & Chassis ID length
(0x0094)

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv4 0x0 The IPv4 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv6 0x0 The IPv6 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address MAC 0x0 The management MAC Address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management VLAN ID 0x0 The management VLAN ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Chassis ID Subtype 0x0 The IEEE 802.1AB-2009 Chassis ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Chassis ID Length 0x0 The number of bytes from the Chassis ID fields that should be used in transmitted
LLDP.
Value is limited by number of the Chassis ID words in section.
Note: This field is preserved by Intel NVM Update tool.

613875-009 647

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.49.30 Port 3 - Chassis ID[n] (0x0095 + 1*n, n=0...15)

6.3.49.31 Port 3 - Port ID Subtype & Port ID Length (0x00A5)

6.3.49.32 Port 3 - Port ID[n] (0x00A6 + 1*n, n=0...15)

6.3.49.33 Port 3 - Management Address IPv4[n] (0x00B6 + 1*n,
n=0...1)

6.3.49.34 Port 3 - Management Address IPv6[n] (0x00B8 + 1*n,
n=0...7)

Bits Field Name Default
NVM Value Description

15:0 Chassis ID 0x0 The Chassis ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Port ID Subtype 0x0 The IEEE 802.1AB-2009 Port ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Port ID Length 0x0 The number of bytes from the Port ID fields that should be used in transmitted LLDP.
Value is limited by number of the Port ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Port ID 0x0 The Port identification to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv4 0x0 The IPv4 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv6 0x0 The IPv6 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

648 613875-009

6.3.49.35 Port 3 - Management Address MAC[n] (0x00C0 + 1*n,
n=0...2)

6.3.49.36 Port 3 - Management VLAN ID (0x00C3)

6.3.49.37 Port 4 - Chassis ID Subtype & Chassis ID length
(0x00C4)

6.3.49.38 Port 4 - Chassis ID[n] (0x00C5 + 1*n, n=0...15)

6.3.49.39 Port 4 - Port ID Subtype & Port ID Length (0x00D5)

Bits Field Name Default
NVM Value Description

15:0 Management Address MAC 0x0 The management MAC Address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management VLAN ID 0x0 The management VLAN ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Chassis ID Subtype 0x0 The IEEE 802.1AB-2009 Chassis ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Chassis ID Length 0x0 The number of bytes from the Chassis ID fields that should be used in transmitted
LLDP.
Value is limited by number of the Chassis ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Chassis ID 0x0 The Chassis ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Port ID Subtype 0x0 The IEEE 802.1AB-2009 Port ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Port ID Length 0x0 The number of bytes from the Port ID fields that should be used in transmitted LLDP.
Value is limited by number of the Port ID words in section.
Note: This field is preserved by Intel NVM Update tool.

613875-009 649

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.49.40 Port 4 - Port ID[n] (0x00D6 + 1*n, n=0...15)

6.3.49.41 Port 4 - Management Address IPv4[n] (0x00E6 + 1*n,
n=0...1)

6.3.49.42 Port 4 - Management Address IPv6[n] (0x00E8 + 1*n,
n=0...7)

6.3.49.43 Port 4 - Management Address MAC[n] (0x00F0 + 1*n,
n=0...2)

6.3.49.44 Port 4 - Management VLAN ID (0x00F3)

Bits Field Name Default
NVM Value Description

15:0 Port ID 0x0 The Port identification to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv4 0x0 The IPv4 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv6 0x0 The IPv6 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address MAC 0x0 The management MAC Address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management VLAN ID 0x0 The management VLAN ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

650 613875-009

6.3.49.45 Port 5 - Chassis ID Subtype & Chassis ID length
(0x00F4)

6.3.49.46 Port 5 - Chassis ID[n] (0x00F5 + 1*n, n=0...15)

6.3.49.47 Port 5 - Port ID Subtype & Port ID Length (0x0105)

6.3.49.48 Port 5 - Port ID[n] (0x0106 + 1*n, n=0...15)

6.3.49.49 Port 5 - Management Address IPv4[n] (0x0116 + 1*n,
n=0...1)

Bits Field Name Default
NVM Value Description

15:8 Chassis ID Subtype 0x0 The IEEE 802.1AB-2009 Chassis ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Chassis ID Length 0x0 The number of bytes from the Chassis ID fields that should be used in transmitted
LLDP.
Value is limited by number of the Chassis ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Chassis ID 0x0 The Chassis ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Port ID Subtype 0x0 The IEEE 802.1AB-2009 Port ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Port ID Length 0x0 The number of bytes from the Port ID fields that should be used in transmitted LLDP.
Value is limited by number of the Port ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Port ID 0x0 The Port identification to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv4 0x0 The IPv4 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

613875-009 651

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.49.50 Port 5 - Management Address IPv6[n] (0x0118 + 1*n,
n=0...7)

6.3.49.51 Port 5 - Management Address MAC[n] (0x0120 + 1*n,
n=0...2)

6.3.49.52 Port 5 - Management VLAN ID (0x0123)

6.3.49.53 Port 6 - Chassis ID Subtype & Chassis ID length
(0x00124)

6.3.49.54 Port 6 - Chassis ID[n] (0x0125 + 1*n, n=0...15)

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv6 0x0 The IPv6 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address MAC 0x0 The management MAC Address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management VLAN ID 0x0 The management VLAN ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Chassis ID Subtype 0x0 The IEEE 802.1AB-2009 Chassis ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Chassis ID Length 0x0 The number of bytes from the Chassis ID fields that should be used in transmitted
LLDP.
Value is limited by number of the Chassis ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Chassis ID 0x0 The Chassis ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

652 613875-009

6.3.49.55 Port 6 - Port ID Subtype & Port ID Length (0x0135)

6.3.49.56 Port 6 - Port ID[n] (0x0136 + 1*n, n=0...15)

6.3.49.57 Port 6 - Management Address IPv4[n] (0x0146 + 1*n,
n=0...1)

6.3.49.58 Port 6 - Management Address IPv6[n] (0x0148 + 1*n,
n=0...7)

6.3.49.59 Port 6 - Management Address MAC[n] (0x0150 + 1*n,
n=0...2)

Bits Field Name Default
NVM Value Description

15:8 Port ID Subtype 0x0 The IEEE 802.1AB-2009 Port ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Port ID Length 0x0 The number of bytes from the Port ID fields that should be used in transmitted LLDP.
Value is limited by number of the Port ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Port ID 0x0 The Port identification to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv4 0x0 The IPv4 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv6 0x0 The IPv6 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address MAC 0x0 The management MAC Address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

613875-009 653

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.49.60 Port 6 - Management VLAN ID (0x0153)

6.3.49.61 Port 7 - Chassis ID Subtype & Chassis ID length
(0x00154)

6.3.49.62 Port 7 - Chassis ID[n] (0x0155 + 1*n, n=0...15)

6.3.49.63 Port 7 - Port ID Subtype & Port ID Length (0x0165)

6.3.49.64 Port 7 - Port ID[n] (0x0166 + 1*n, n=0...15)

Bits Field Name Default
NVM Value Description

15:0 Management VLAN ID 0x0 The management VLAN ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Chassis ID Subtype 0x0 The IEEE 802.1AB-2009 Chassis ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Chassis ID Length 0x0 The number of bytes from the Chassis ID fields that should be used in transmitted
LLDP.
Value is limited by number of the Chassis ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Chassis ID 0x0 The Chassis ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:8 Port ID Subtype 0x0 The IEEE 802.1AB-2009 Port ID subtype to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

7:0 Port ID Length 0x0 The number of bytes from the Port ID fields that should be used in transmitted LLDP.
Value is limited by number of the Port ID words in section.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Port ID 0x0 The Port identification to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

654 613875-009

6.3.49.65 Port 7 - Management Address IPv4[n] (0x0176 + 1*n,
n=0...1)

6.3.49.66 Port 7 - Management Address IPv6[n] (0x0178 + 1*n,
n=0...7)

6.3.49.67 Port 7 - Management Address MAC[n] (0x0180 + 1*n,
n=0...2)

6.3.49.68 Port 7 - Management VLAN ID (0x0183)

6.3.49.69 Reserved[n] (0x0184 + 1*n, n=0...123)

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv4 0x0 The IPv4 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address IPv6 0x0 The IPv6 management address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management Address MAC 0x0 The management MAC Address to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Management VLAN ID 0x0 The management VLAN ID to be transmitted from this endpoint.
Note: This field is preserved by Intel NVM Update tool.

Bits Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

613875-009 655

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.50 WA Enable TLV Section

6.3.50.1 Type (0x0000)

6.3.50.2 Length (0x0001)

6.3.50.3 WA Enable Flags (0x0002)

Table 6-56. WA Enable TLV Section Summary Table

Word Offset Description Section
Reference

0x0000 Type 6.3.50.1

0x0001 Length 6.3.50.2

0x0002 WA Enable Flags 6.3.50.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x14E Valid values are:
0x14E = WA Enable

Bits Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 2
First Section -> Word: WA Enable TLV -> Type
Last Section -> Word: WA Enable TLV -> WA Enable Flags

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved

0 WAKE_N is OD 0b WAKE_N is Open Drain
0b = Disabled - WAKE_N pin is not implemented as Open Drain. Firmware will disable

pin output when wake event isn't triggered.
1b = Enabled - WAKE_N pin is implemented Open Drain. Pin remains with output

enable.
Note: When 0 the NVM should contain an auto-load setting OE_OVER for the

WAKE_N pin.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

656 613875-009

6.3.51 FRU Data Section

6.3.51.1 Type (0x0000)

6.3.51.2 Length (0x0001)

6.3.51.3 Actual Section Length (0x0002)

Table 6-57. FRU Data Section Summary Table

Word Offset Description Section
Reference

0x0000 Type 6.3.51.1

0x0001 Length 6.3.51.2

0x0002 Actual Section Length 6.3.51.3

0x0003 Board Serial Number Size 6.3.51.4

0x0004 + 1*n, n=0...6 Board Serial Number 6.3.51.5

0x000B Board Part Number Size 6.3.51.6

0x000C + 1*n, n=0...4 Board Part Number 6.3.51.7

0x0011 Board Product Name Size 6.3.51.8

0x0012 + 1*n, n=0...15 Board Product Name 6.3.51.9

0x0022 Board Manufacturing Date Size 6.3.51.10

0x0023 + 1*n, n=0...1 Board Manufacturing Date 6.3.51.11

0x0025 + 1*n, n=0...474 Reserved 6.3.51.12

Bits Field Name Default
NVM Value Description

15:0 Type 0x14F

Bits Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: FRU Data -> Type
Last Section -> Word: FRU Data -> Reserved 474

Bits Field Name Default
NVM Value Description

15:0 Actual Section Length 0x22

613875-009 657

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.51.4 Board Serial Number Size (0x0003)

6.3.51.5 Board Serial Number[n] (0x0004 + 1*n, n=0...6)

6.3.51.6 Board Part Number Size (0x000B)

6.3.51.7 Board Part Number[n] (0x000C + 1*n, n=0...4)

6.3.51.8 Board Product Name Size (0x0011)

6.3.51.9 Board Product Name[n] (0x0012 + 1*n, n=0...15)

Bits Field Name Default
NVM Value Description

15:8 Type 0x1

7:0 Size in Bytes 0xE

Bits Field Name Default
NVM Value Description

15:8 Byte 1 0x20

7:0 Byte 0 0x20

Bits Field Name Default
NVM Value Description

15:8 Type 0x2

7:0 Size in Bytes 0x9

Bits Field Name Default
NVM Value Description

15:8 Byte 1 0x20

7:0 Byte 0 0x20

Bits Field Name Default
NVM Value Description

15:8 Type 0x3

7:0 Size in Bytes 0x20

Bits Field Name Default
NVM Value Description

15:8 Byte 1 0x20

7:0 Byte 0 0x20

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

658 613875-009

6.3.51.10 Board Manufacturing Date Size (0x0022)

6.3.51.11 Board Manufacturing Date[n] (0x0023 + 1*n, n=0...1)

6.3.51.12 Reserved[n] (0x0025 + 1*n, n=0...474)

Bits Field Name Default
NVM Value Description

15:8 Type 0x4

7:0 Size in Bytes 0x3

Bits Field Name Default
NVM Value Description

15:0 Board Manufacturing Date 0x0

Bits Field Name Default
NVM Value Description

15:0 Reserved 0xFF Reserved.

613875-009 659

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52 SyncE DPLL Input Settings Section

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type SyncE DPLL Input 6.3.52.1

0x0001 Section Length 6.3.52.2

0x0002 Entry Count and Version 6.3.52.3

0x0003 Control Flags 6.3.52.4

0x0004 Frequency LSB 0 6.3.52.5

0x0005 Frequency MSB 0 6.3.52.6

0x0006 Input and DPLL Index 0 6.3.52.7

0x0007 Node Part Number and Parameter Type 0 6.3.52.8

0x0008 Parameter Value 0 6.3.52.9

0x0009 Frequency LSB 1 6.3.52.10

0x000A Frequency MSB 1 6.3.52.11

0x000B Input and DPLL Index 1 6.3.52.12

0x000C Node Part Number and Parameter Type 1 6.3.52.13

0x000D Parameter Value 1 6.3.52.14

0x000E Frequency LSB 2 6.3.52.15

0x000F Frequency MSB 2 6.3.52.16

0x0010 Input and DPLL Index 2 6.3.52.17

0x0011 Node Part Number and Parameter Type 2 6.3.52.18

0x0012 Parameter Value 2 6.3.52.19

0x0013 Frequency LSB 3 6.3.52.20

0x0014 Frequency MSB 3 6.3.52.21

0x0015 Input and DPLL Index 3 6.3.52.22

0x0016 Node Part Number and Parameter Type 3 6.3.52.23

0x0017 Parameter Value 3 6.3.52.24

0x0018 Frequency LSB 4 6.3.52.25

0x0019 Frequency MSB 4 6.3.52.26

0x001A Input and DPLL Index 4 6.3.52.27

0x001B Node Part Number and Parameter Type 4 6.3.52.28

0x001C Parameter Value 4 6.3.52.29

0x001D Frequency LSB 5 6.3.52.30

0x001E Frequency MSB 5 6.3.52.31

0x001F Input and DPLL Index 5 6.3.52.32

0x0020 Node Part Number and Parameter Type 5 6.3.52.33

0x0021 Parameter Value 5 6.3.52.34

0x0022 Frequency LSB 6 6.3.52.35

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

660 613875-009

0x0023 Frequency MSB 6 6.3.52.36

0x0024 Input and DPLL Index 6 6.3.52.37

0x0025 Node Part Number and Parameter Type 6 6.3.52.38

0x0026 Parameter Value 6 6.3.52.39

0x0027 Frequency LSB 7 6.3.52.40

0x0028 Frequency MSB 7 6.3.52.41

0x0029 Input and DPLL Index 7 6.3.52.42

0x002A Node Part Number and Parameter Type 7 6.3.52.43

0x002V Parameter Value 7 6.3.52.44

0x002C Frequency LSB 8 6.3.52.45

0x002D Frequency MSB 8 6.3.52.46

0x002E Input and DPLL Index 8 6.3.52.47

0x002F Node Part Number and Parameter Type 8 6.3.52.48

0x0030 Parameter Value 8 6.3.52.49

0x0031 Frequency LSB 9 6.3.52.50

0x0032 Frequency MSB 9 6.3.52.51

0x0033 Input and DPLL Index 9 6.3.52.52

0x0034 Node Part Number and Parameter Type 9 6.3.52.53

0x0035 Parameter Value 9 6.3.52.54

0x0036 Frequency LSB 10 6.3.52.55

0x0037 Frequency MSB 10 6.3.52.56

0x0038 Input and DPLL Index 10 6.3.52.57

0x0039 Node Part Number and Parameter Type 10 6.3.52.58

0x003A Parameter Value 10 6.3.52.59

0x003B Frequency LSB 11 6.3.52.60

0x003C Frequency MSB 11 6.3.52.61

0x003D Input and DPLL Index 11 6.3.52.62

0x003E Node Part Number and Parameter Type 11 6.3.52.63

0x003F Parameter Value 11 6.3.52.64

0x0040 Frequency LSB 12 6.3.52.65

0x0041 Frequency MSB 12 6.3.52.66

0x0042 Input and DPLL Index 12 6.3.52.67

0x0043 Node Part Number and Parameter Type 12 6.3.52.68

0x0044 Parameter Value 12 6.3.52.69

0x0045 Frequency LSB 13 6.3.52.70

0x0046 Frequency MSB 13 6.3.52.71

0x0047 Input and DPLL Index 13 6.3.52.72

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

613875-009 661

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x0048 Node Part Number and Parameter Type 13 6.3.52.73

0x0049 Parameter Value 13 6.3.52.74

0x004A Frequency LSB 14 6.3.52.75

0x004B Frequency MSB 14 6.3.52.76

0x004C Input and DPLL Index 14 6.3.52.77

0x004D Node Part Number and Parameter Type 14 6.3.52.78

0x004E Parameter Value 14 6.3.52.79

0x004F Frequency LSB 15 6.3.52.80

0x0050 Frequency MSB 15 6.3.52.81

0x0051 Input and DPLL Index 15 6.3.52.82

0x0052 Node Part Number and Parameter Type 15 6.3.52.83

0x0053 Parameter Value 15 6.3.52.84

0x0054 Frequency LSB 16 6.3.52.85

0x0055 Frequency MSB 16 6.3.52.86

0x0056 Input and DPLL Index 16 6.3.52.87

0x0057 Node Part Number and Parameter Type 16 6.3.52.88

0x0058 Parameter Value 16 6.3.52.89

0x0059 Frequency LSB 17 6.3.52.90

0x005A Frequency MSB 17 6.3.52.91

0x005B Input and DPLL Index 17 6.3.52.92

0x005C Node Part Number and Parameter Type 17 6.3.52.93

0x005D Parameter Value 17 6.3.52.94

0x005E Frequency LSB 18 6.3.52.95

0x005F Frequency MSB 18 6.3.52.96

0x0060 Input and DPLL Index 18 6.3.52.97

0x0061 Node Part Number and Parameter Type 18 6.3.52.98

0x0062 Parameter Value 18 6.3.52.99

0x0063 Frequency LSB 19 6.3.52.100

0x0064 Frequency MSB 19 6.3.52.101

0x0065 Input and DPLL Index 19 6.3.52.102

0x0066 Node Part Number and Parameter Type 19 6.3.52.103

0x0067 Parameter Value 19 6.3.52.104

0x0068 Frequency LSB 20 6.3.52.105

0x0069 Frequency MSB 20 6.3.52.106

0x006A Input and DPLL Index 20 6.3.52.107

0x006B Node Part Number and Parameter Type 20 6.3.52.108

0x006C Parameter Value 20 6.3.52.109

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

662 613875-009

0x006D Frequency LSB 21 6.3.52.110

0x006E Frequency MSB 21 6.3.52.111

0x006F Input and DPLL Index 21 6.3.52.112

0x0070 Node Part Number and Parameter Type 21 6.3.52.113

0x0071 Parameter Value 21 6.3.52.114

0x0072 Frequency LSB 22 6.3.52.115

0x0073 Frequency MSB 22 6.3.52.116

0x0074 Input and DPLL Index 22 6.3.52.117

0x0075 Node Part Number and Parameter Type 22 6.3.52.118

0x0076 Parameter Value 22 6.3.52.119

0x0077 Frequency LSB 23 6.3.52.120

0x0078 Frequency MSB 23 6.3.52.121

0x0079 Input and DPLL Index 23 6.3.52.122

0x007A Node Part Number and Parameter Type 23 6.3.52.123

0x007B Parameter Value 23 6.3.52.124

0x007C Frequency LSB 24 6.3.52.125

0x007D Frequency MSB 24 6.3.52.126

0x007E Input and DPLL Index 204 6.3.52.127

0x007F Node Part Number and Parameter Type 24 6.3.52.128

0x0080 Parameter Value 24 6.3.52.129

0x0081 Frequency LSB 25 6.3.52.130

0x0082 Frequency MSB 25 6.3.52.131

0x0083 Input and DPLL Index 25 6.3.52.132

0x0084 Node Part Number and Parameter Type 25 6.3.52.133

0x0085 Parameter Value 25 6.3.52.134

0x0086 Frequency LSB 26 6.3.52.135

0x0087 Frequency MSB 26 6.3.52.136

0x0088 Input and DPLL Index 26 6.3.52.137

0x0089 Node Part Number and Parameter Type 26 6.3.52.138

0x008A Parameter Value 26 6.3.52.139

0x008B Frequency LSB 27 6.3.52.140

0x008C Frequency MSB 27 6.3.52.141

0x008D Input and DPLL Index 27 6.3.52.142

0x008E Node Part Number and Parameter Type 27 6.3.52.143

0x008F Parameter Value 27 6.3.52.144

0x0090 Frequency LSB 28 6.3.52.145

0x0091 Frequency MSB 28 6.3.52.146

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

613875-009 663

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x0092 Input and DPLL Index 28 6.3.52.147

0x0093 Node Part Number and Parameter Type 28 6.3.52.148

0x0094 Parameter Value 29 6.3.52.149

0x0095 Frequency LSB 29 6.3.52.150

0x0096 Frequency MSB 29 6.3.52.151

0x0097 Input and DPLL Index 29 6.3.52.152

0x0098 Node Part Number and Parameter Type 29 6.3.52.153

0x0099 Parameter Value 29 6.3.52.154

0x009A Frequency LSB 30 6.3.52.155

0x009B Frequency MSB 30 6.3.52.156

0x009C Input and DPLL Index 30 6.3.52.157

0x009D Node Part Number and Parameter Type 30 6.3.52.158

0x009E Parameter Value 30 6.3.52.159

0x009F Frequency LSB 31 6.3.52.160

0x00A0 Frequency MSB 31 6.3.52.161

0x00A1 Input and DPLL Index 31 6.3.52.162

0x00A2 Node Part Number and Parameter Type 31 6.3.52.163

0x00A3 Parameter Value 31 6.3.52.164

0x00A4 Frequency LSB 32 6.3.52.165

0x00A5 Frequency MSB 32 6.3.52.166

0x00A6 Input and DPLL Index 32 6.3.52.167

0x00A7 Node Part Number and Parameter Type 32 6.3.52.168

0x00A8 Parameter Value 32 6.3.52.169

0x00A9 Frequency LSB 33 6.3.52.170

0x00AA Frequency MSB 33 6.3.52.171

0x00AB Input and DPLL Index 33 6.3.52.172

0x00AC Node Part Number and Parameter Type 33 6.3.52.173

0x00AD Parameter Value 33 6.3.52.174

0x00AE Frequency LSB 34 6.3.52.175

0x00AF Frequency MSB 34 6.3.52.176

0x00B0 Input and DPLL Index 34 6.3.52.177

0x00B1 Node Part Number and Parameter Type 34 6.3.52.178

0x00B2 Parameter Value 34 6.3.52.179

0x00B3 Frequency LSB 35 6.3.52.180

0x00B4 Frequency MSB 35 6.3.52.181

0x00B5 Input and DPLL Index 35 6.3.52.182

0x00B6 Node Part Number and Parameter Type 35 6.3.52.183

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

664 613875-009

0x00B7 Parameter Value 35 6.3.52.184

0x00B8 Frequency LSB 36 6.3.52.185

0x00B9 Frequency MSB 36 6.3.52.186

0x00BA Input and DPLL Index 36 6.3.52.187

0x00BB Node Part Number and Parameter Type 36 6.3.52.188

0x00BC Parameter Value 36 6.3.52.189

0x00BD Frequency LSB 37 6.3.52.190

0x00BE Frequency MSB 37 6.3.52.191

0x00BF Input and DPLL Index 37 6.3.52.192

0x00C0 Node Part Number and Parameter Type 37 6.3.52.193

0x00C1 Parameter Value 37 6.3.52.194

0x00C2 Frequency LSB 38 6.3.52.195

0x00C3 Frequency MSB 38 6.3.52.196

0x00C4 Input and DPLL Index 38 6.3.52.197

0x00C5 Node Part Number and Parameter Type 38 6.3.52.198

0x00C6 Parameter Value 38 6.3.52.199

0x00C7 Frequency LSB 39 6.3.52.200

0x00C8 Frequency MSB 39 6.3.52.201

0x00C9 Input and DPLL Index 39 6.3.52.202

0x00CA Node Part Number and Parameter Type 39 6.3.52.203

0x00CB Parameter Value 39 6.3.52.204

0x00CC Frequency LSB 40 6.3.52.205

0x00CD Frequency MSB 40 6.3.52.206

0x00CE Input and DPLL Index 40 6.3.52.207

0x00CF Node Part Number and Parameter Type 40 6.3.52.208

0x00D0 Parameter Value 40 6.3.52.209

0x00D1 Frequency LSB 41 6.3.52.210

0x00D2 Frequency MSB 41 6.3.52.211

0x00D3 Input and DPLL Index 41 6.3.52.212

0x00D4 Node Part Number and Parameter Type 41 6.3.52.213

0x00D5 Parameter Value 41 6.3.52.214

0x00D6 Frequency LSB 42 6.3.52.215

0x00D7 Frequency MSB 42 6.3.52.216

0x00D8 Input and DPLL Index 42 6.3.52.217

0x00D9 Node Part Number and Parameter Type 42 6.3.52.218

0x00DA Parameter Value 42 6.3.52.219

0x00DB Frequency LSB 43 6.3.52.220

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

613875-009 665

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x00DC Frequency MSB 43 6.3.52.221

0x00DD Input and DPLL Index 43 6.3.52.222

0x00DE Node Part Number and Parameter Type 43 6.3.52.223

0x00DF Parameter Value 43 6.3.52.224

0x00E0 Frequency LSB 44 6.3.52.225

0x00E1 Frequency MSB 44 6.3.52.226

0x00E2 Input and DPLL Index 44 6.3.52.227

0x00E3 Node Part Number and Parameter Type 44 6.3.52.228

0x00E4 Parameter Value 44 6.3.52.229

0x00E5 Frequency LSB 45 6.3.52.230

0x00E6 Frequency MSB 45 6.3.52.231

0x00E7 Input and DPLL Index 45 6.3.52.232

0x00E8 Node Part Number and Parameter Type 45 6.3.52.233

0x00E9 Parameter Value 45 6.3.52.234

0x00EA Frequency LSB 46 6.3.52.235

0x00EB Frequency MSB 46 6.3.52.236

0x00EC Input and DPLL Index 46 6.3.52.237

0x00ED Node Part Number and Parameter Type 46 6.3.52.238

0x00EE Parameter Value 46 6.3.52.239

0x00EF Frequency LSB 47 6.3.52.240

0x00F0 Frequency MSB 47 6.3.52.241

0x00F1 Input and DPLL Index 47 6.3.52.242

0x00F2 Node Part Number and Parameter Type 47 6.3.52.243

0x00F3 Parameter Value 47 6.3.52.244

0x00F4 Frequency LSB 48 6.3.52.245

0x00F5 Frequency MSB 48 6.3.52.246

0x00F6 Input and DPLL Index 48 6.3.52.247

0x00F7 Node Part Number and Parameter Type 48 6.3.52.248

0x00F8 Parameter Value 48 6.3.52.249

0x00F9 Frequency LSB 49 6.3.52.250

0x00FA Frequency MSB 49 6.3.52.251

0x00FB Input and DPLL Index 49 6.3.52.252

0x00FC Node Part Number and Parameter Type 49 6.3.52.253

0x00FD Parameter Value 49 6.3.52.254

0x00FE Frequency LSB 50 6.3.52.255

0x00FF Frequency MSB 50 6.3.52.256

0x0100 Input and DPLL Index 50 6.3.52.257

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

666 613875-009

0x0101 Node Part Number and Parameter Type 50 6.3.52.258

0x0102 Parameter Value 50 6.3.52.259

0x0103 Frequency LSB 51 6.3.52.260

0x0104 Frequency MSB 51 6.3.52.261

0x0105 Input and DPLL Index 51 6.3.52.262

0x0106 Node Part Number and Parameter Type 51 6.3.52.263

0x0107 Parameter Value 51 6.3.52.264

0x0108 Frequency LSB 52 6.3.52.265

0x0109 Frequency MSB 52 6.3.52.266

0x010A Input and DPLL Index 52 6.3.52.267

0x010B Node Part Number and Parameter Type 52 6.3.52.268

0x010C Parameter Value 52 6.3.52.269

0x010D Frequency LSB 53 6.3.52.270

0x010E Frequency MSB 53 6.3.52.271

0x010F Input and DPLL Index 53 6.3.52.272

0x0110 Node Part Number and Parameter Type 53 6.3.52.273

0x0111 Parameter Value 53 6.3.52.274

0x0112 Frequency LSB 54 6.3.52.275

0x0113 Frequency MSB 54 6.3.52.276

0x0114 Input and DPLL Index 54 6.3.52.277

0x0115 Node Part Number and Parameter Type 54 6.3.52.278

0x0116 Parameter Value 54 6.3.52.279

0x0117 Frequency LSB 55 6.3.52.280

0x0118 Frequency MSB 55 6.3.52.281

0x0119 Input and DPLL Index 55 6.3.52.282

0x011A Node Part Number and Parameter Type 55 6.3.52.283

0x011B Parameter Value 55 6.3.52.284

0x011C Frequency LSB 56 6.3.52.285

0x011D Frequency MSB 56 6.3.52.286

0x011E Input and DPLL Index 56 6.3.52.287

0x011F Node Part Number and Parameter Type 56 6.3.52.288

0x0120 Parameter Value 56 6.3.52.289

0x0121 Frequency LSB 57 6.3.52.290

0x0122 Frequency MSB 57 6.3.52.291

0x0123 Input and DPLL Index 57 6.3.52.292

0x0124 Node Part Number and Parameter Type 57 6.3.52.293

0x0125 Parameter Value 57 6.3.52.294

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

613875-009 667

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x0126 Frequency LSB 58 6.3.52.295

0x0127 Frequency MSB 58 6.3.52.296

0x0128 Input and DPLL Index 58 6.3.52.297

0x0129 Node Part Number and Parameter Type 58 6.3.52.298

0x012A Parameter Value 58 6.3.52.299

0x012B Frequency LSB 59 6.3.52.300

0x012C Frequency MSB 59 6.3.52.301

0x012D Input and DPLL Index 59 6.3.52.302

0x012E Node Part Number and Parameter Type 59 6.3.52.303

0x012F Parameter Value 59 6.3.52.304

0x0130 Frequency LSB 60 6.3.52.305

0x0131 Frequency MSB 60 6.3.52.306

0x0132 Input and DPLL Index 60 6.3.52.307

0x0133 Node Part Number and Parameter Type 60 6.3.52.308

0x0134 Parameter Value 60 6.3.52.309

0x0135 Frequency LSB 61 6.3.52.310

0x0136 Frequency MSB 61 6.3.52.311

0x0137 Input and DPLL Index 61 6.3.52.312

0x0138 Node Part Number and Parameter Type 61 6.3.52.313

0x0139 Parameter Value 61 6.3.52.314

0x013A Frequency LSB 62 6.3.52.315

0x013B Frequency MSB 62 6.3.52.316

0x013C Input and DPLL Index 62 6.3.52.317

0x013D Node Part Number and Parameter Type 62 6.3.52.318

0x013E Parameter Value 62 6.3.52.319

0x013F Frequency LSB 63 6.3.52.320

0x0140 Frequency MSB 63 6.3.52.321

0x0141 Input and DPLL Index 63 6.3.52.322

0x0142 Node Part Number and Parameter Type 63 6.3.52.323

0x0143 Parameter Value 63 6.3.52.324

Table 6-58. SyncE DPLL Input Settings Section Summary Table

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

668 613875-009

6.3.52.1 Sub Module Type SyncE DPLL Input (0x0000)

6.3.52.2 Section Length (0x0001)

6.3.52.3 Entry Count and Version (0x0002)

6.3.52.4 Control Flags (0x0003)

6.3.52.5 Frequency LSB 0 (0x0004)

6.3.52.6 Frequency MSB 0 (0x0005)

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0x150 Valid values are:
0x150 = SyncE DPLL Input

Bits Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 2
First Section -> Word: SyncE DPLL Input Settings -> Sub Module Type SyncE DPLL Input
Last Section -> Word: SyncE DPLL Input Settings -> Parameter Value 63

Bits Field Name Default
NVM Value Description

15:8 Version 0x0

7:0 Entry Count 0xD The number of entries (n).

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x7FFF Reserved.

0 Enable Flag 1b Valid values are:
0b = BW and PSL setting is disabled.
1b = BW and PSL setting is enabled.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0x1

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x0

613875-009 669

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.7 Input and DPLL Index 0 (0x0006)

6.3.52.8 Node Part Number and Parameter Type 0 (0x0007)

6.3.52.9 Parameter Value 0 (0x0008)

6.3.52.10 Frequency LSB 1 (0x0009)

6.3.52.11 Frequency MSB 1 (0x000A)

6.3.52.12 Input and DPLL Index 1 (0x000B)

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x1 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0x4F The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0x1

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x0

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

670 613875-009

6.3.52.13 Node Part Number and Parameter Type 1 (0x000C)

6.3.52.14 Parameter Value 1 (0x000D)

6.3.52.15 Frequency LSB 2 (0x000E)

6.3.52.16 Frequency MSB 2 (0x000F)

6.3.52.17 Input and DPLL Index 2 (0x0010)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x2 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0x375 The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0x9680

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x98

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

613875-009 671

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.18 Node Part Number and Parameter Type 2 (0x0011)

6.3.52.19 Parameter Value 2 (0x0012)

6.3.52.20 Frequency LSB 3 (0x0013)

6.3.52.21 Frequency MSB 3 (0x0014)

6.3.52.22 Input and DPLL Index 3 (0x0015)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x1 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0x81 The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0x9680

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x98

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

672 613875-009

6.3.52.23 Node Part Number and Parameter Type 3 (0x0016)

6.3.52.24 Parameter Value 3 (0x0017)

6.3.52.25 Frequency LSB 4 (0x0018)

6.3.52.26 Frequency MSB 4 (0x0019)

6.3.52.27 Input and DPLL Index 4 (0x001A)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x2 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0x1D4C The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0xCD65

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x1D

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

613875-009 673

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.28 Node Part Number and Parameter Type 4 (0x001B)

6.3.52.29 Parameter Value 4 (0x001C)

6.3.52.30 Frequency LSB 5 (0x001D)

6.3.52.31 Frequency MSB 5 (0x001E)

6.3.52.32 Input and DPLL Index 5 (0x001F)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x1 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0x81 The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0xCD65

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x1D

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

674 613875-009

6.3.52.33 Node Part Number and Parameter Type 5 (0x0020)

6.3.52.34 Parameter Value 5 (0x0021)

6.3.52.35 Frequency LSB 6 (0x0022)

6.3.52.36 Frequency MSB 6 (0x0023)

6.3.52.37 Input and DPLL Index 6 (0x0024)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x2 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0x1D4C The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0x1

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x0

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

613875-009 675

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.38 Node Part Number and Parameter Type 6 (0x0025)

6.3.52.39 Parameter Value 6 (0x0026)

6.3.52.40 Frequency LSB 7 (0x0027)

6.3.52.41 Frequency MSB 7 (0x0028)

6.3.52.42 Input and DPLL Index 7 (0x0029)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x4 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0xE The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0xCD65

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x1D

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

676 613875-009

6.3.52.43 Node Part Number and Parameter Type 7 (0x002A)

6.3.52.44 Parameter Value 7 (0x002B)

6.3.52.45 Frequency LSB 8 (0x002C)

6.3.52.46 Frequency MSB 8 (0x002D)

6.3.52.47 Input and DPLL Index 8 (0x002E)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x4 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0x8 The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0x9680

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x98

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0x0 The DPLL index, 0xFF - for all DPLLs.

613875-009 677

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.48 Node Part Number and Parameter Type 8 (0x002F)

6.3.52.49 Parameter Value 8 (0x0030)

6.3.52.50 Frequency LSB 9 (0x0031)

6.3.52.51 Frequency MSB 9 (0x0032)

6.3.52.52 Input and DPLL Index 9 (0x0033)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x4 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0x8 The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0x9680

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x98

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0x1 The DPLL index, 0xFF - for all DPLLs.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

678 613875-009

6.3.52.53 Node Part Number and Parameter Type 9 (0x0034)

6.3.52.54 Parameter Value 9 (0x0035)

6.3.52.55 Frequency LSB 10 (0x0036)

6.3.52.56 Frequency MSB 10 (0x0037)

6.3.52.57 Input and DPLL Index 10 (0x0038)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x4 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0xE The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0x3E8

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0x0

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

613875-009 679

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.58 Node Part Number and Parameter Type 10 (0x0039)

6.3.52.59 Parameter Value 10 (0x003A)

6.3.52.60 Frequency LSB 11 (0x003B)

6.3.52.61 Frequency MSB 11 (0x003C)

6.3.52.62 Input and DPLL Index 11 (0x003D)

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0x24 0x24 = ZL80032

7:0 Parameter Type 0x4 This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0xE The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

Bits Field Name Default
NVM Value Description

15:0 Frequency LSB 0xFFFF

Bits Field Name Default
NVM Value Description

15:0 Frequency MSB 0xFFFF

Bits Field Name Default
NVM Value Description

15:8 Input Index 0xFF The input index, 0xFF - for all inputs.

7:0 DPLL Index 0xFF The DPLL index, 0xFF - for all DPLLs.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

680 613875-009

6.3.52.63 Node Part Number and Parameter Type 11 (0x003E)

6.3.52.64 Parameter Value 11 (0x003F)

6.3.52.65 Frequency LSB 12 (0x0040)

For inner structure, see Section 6.3.52.60.

6.3.52.66 Frequency MSB 12 (0x0041)

For inner structure, see Section 6.3.52.61.

6.3.52.67 Input and DPLL Index 12 (0x0042)

For inner structure, see Section 6.3.52.62.

6.3.52.68 Node Part Number and Parameter Type 12 (0x0043)

For inner structure, see Section 6.3.52.63.

6.3.52.69 Parameter Value 12 (0x0044)

For inner structure, see Section 6.3.52.64.

6.3.52.70 Frequency LSB 13 (0x0045)

For inner structure, see Section 6.3.52.60.

6.3.52.71 Frequency MSB 13 (0x0046)

For inner structure, see Section 6.3.52.61.

Bits Field Name Default
NVM Value Description

15:8 Node Part Number 0xFF 0x24 = ZL80032

7:0 Parameter Type 0xFF This field indicates of which parameter the Parameter Value field holds:
0x1 = Bandwidth (the value of dpll_bw_var register).
0x2 = Phase Slope Limit (the value of dpll_psl register).
0x3 = TIE Clear (the value of dpll_ctrl_x::tie_clear bit field).
0x4 = Holdover Bandwidth (the value of dpll_ho_filter::bw bit field).

Bits Field Name Default
NVM Value Description

15:0 Parameter Value 0xFFFF The value of the parameter specified in the Parameter Type field of Node Part Number
and Parameter Type register.

613875-009 681

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.72 Input and DPLL Index 13 (0x0047)

For inner structure, see Section 6.3.52.62.

6.3.52.73 Node Part Number and Parameter Type 13 (0x0048)

For inner structure, see Section 6.3.52.63.

6.3.52.74 Parameter Value 13 (0x0049)

For inner structure, see Section 6.3.52.64.

6.3.52.75 Frequency LSB 14 (0x004A)

For inner structure, see Section 6.3.52.60.

6.3.52.76 Frequency MSB 14 (0x004B)

For inner structure, see Section 6.3.52.61.

6.3.52.77 Input and DPLL Index 14 (0x004C)

For inner structure, see Section 6.3.52.62.

6.3.52.78 Node Part Number and Parameter Type 14 (0x004D)

For inner structure, see Section 6.3.52.63.

6.3.52.79 Parameter Value 14 (0x004E)

For inner structure, see Section 6.3.52.64.

6.3.52.80 Frequency LSB 15 (0x004F)

For inner structure, see Section 6.3.52.60.

6.3.52.81 Frequency MSB 15 (0x0050)

For inner structure, see Section 6.3.52.61.

6.3.52.82 Input and DPLL Index 15 (0x0051)

For inner structure, see Section 6.3.52.62.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

682 613875-009

6.3.52.83 Node Part Number and Parameter Type 15 (0x0052)

For inner structure, see Section 6.3.52.63.

6.3.52.84 Parameter Value 15 (0x0053)

For inner structure, see Section 6.3.52.64.

6.3.52.85 Frequency LSB 16 (0x0054)

For inner structure, see Section 6.3.52.60.

6.3.52.86 Frequency MSB 16 (0x0055)

For inner structure, see Section 6.3.52.61.

6.3.52.87 Input and DPLL Index 16 (0x0056)

For inner structure, see Section 6.3.52.62.

6.3.52.88 Node Part Number and Parameter Type 16 (0x0057)

For inner structure, see Section 6.3.52.63.

6.3.52.89 Parameter Value 16 (0x0058)

For inner structure, see Section 6.3.52.64.

6.3.52.90 Frequency LSB 17 (0x0059)

For inner structure, see Section 6.3.52.60.

6.3.52.91 Frequency MSB 17 (0x005A)

For inner structure, see Section 6.3.52.61.

6.3.52.92 Input and DPLL Index 17 (0x005B)

For inner structure, see Section 6.3.52.62.

6.3.52.93 Node Part Number and Parameter Type 17 (0x005C)

For inner structure, see Section 6.3.52.63.

613875-009 683

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.94 Parameter Value 17 (0x005D)

For inner structure, see Section 6.3.52.64.

6.3.52.95 Frequency LSB 18 (0x005E)

For inner structure, see Section 6.3.52.60.

6.3.52.96 Frequency MSB 18 (0x005F)

For inner structure, see Section 6.3.52.61.

6.3.52.97 Input and DPLL Index 18 (0x0060)

For inner structure, see Section 6.3.52.62.

6.3.52.98 Node Part Number and Parameter Type 18 (0x0061)

For inner structure, see Section 6.3.52.63.

6.3.52.99 Parameter Value 18 (0x0062)

For inner structure, see Section 6.3.52.64.

6.3.52.100 Frequency LSB 19 (0x0063)

For inner structure, see Section 6.3.52.60.

6.3.52.101 Frequency MSB 19 (0x0064)

For inner structure, see Section 6.3.52.61.

6.3.52.102 Input and DPLL Index 19 (0x0065)

For inner structure, see Section 6.3.52.62.

6.3.52.103 Node Part Number and Parameter Type 19 (0x0066)

For inner structure, see Section 6.3.52.63.

6.3.52.104 Parameter Value 19 (0x0067)

For inner structure, see Section 6.3.52.64.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

684 613875-009

6.3.52.105 Frequency LSB 20 (0x0068)

For inner structure, see Section 6.3.52.60.

6.3.52.106 Frequency MSB 20 (0x0069)

For inner structure, see Section 6.3.52.61.

6.3.52.107 Input and DPLL Index 20 (0x006A)

For inner structure, see Section 6.3.52.62.

6.3.52.108 Node Part Number and Parameter Type 20 (0x006B)

For inner structure, see Section 6.3.52.63.

6.3.52.109 Parameter Value 20 (0x006C)

For inner structure, see Section 6.3.52.64.

6.3.52.110 Frequency LSB 21 (0x006D)

For inner structure, see Section 6.3.52.60.

6.3.52.111 Frequency MSB 21 (0x006E)

For inner structure, see Section 6.3.52.61.

6.3.52.112 Input and DPLL Index 21 (0x006F)

For inner structure, see Section 6.3.52.62.

6.3.52.113 Node Part Number and Parameter Type 21 (0x0070)

For inner structure, see Section 6.3.52.63.

6.3.52.114 Parameter Value 21 (0x0071)

For inner structure, see Section 6.3.52.64.

6.3.52.115 Frequency LSB 22 (0x0072)

For inner structure, see Section 6.3.52.60.

613875-009 685

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.116 Frequency MSB 22 (0x0073)

For inner structure, see Section 6.3.52.61.

6.3.52.117 Input and DPLL Index 22 (0x0074)

For inner structure, see Section 6.3.52.62.

6.3.52.118 Node Part Number and Parameter Type 22 (0x0075)

For inner structure, see Section 6.3.52.63.

6.3.52.119 Parameter Value 22 (0x0076)

For inner structure, see Section 6.3.52.64.

6.3.52.120 Frequency LSB 23 (0x0077)

For inner structure, see Section 6.3.52.60.

6.3.52.121 Frequency MSB 23 (0x0078)

For inner structure, see Section 6.3.52.61.

6.3.52.122 Input and DPLL Index 23 (0x0079)

For inner structure, see Section 6.3.52.62.

6.3.52.123 Node Part Number and Parameter Type 23 (0x007A)

For inner structure, see Section 6.3.52.63.

6.3.52.124 Parameter Value 23 (0x007B)

For inner structure, see Section 6.3.52.64.

6.3.52.125 Frequency LSB 24 (0x007C)

For inner structure, see Section 6.3.52.60.

6.3.52.126 Frequency MSB 24 (0x007D)

For inner structure, see Section 6.3.52.61.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

686 613875-009

6.3.52.127 Input and DPLL Index 24 (0x007E)

For inner structure, see Section 6.3.52.62.

6.3.52.128 Node Part Number and Parameter Type 24 (0x007F)

For inner structure, see Section 6.3.52.63.

6.3.52.129 Parameter Value 24 (0x0080)

For inner structure, see Section 6.3.52.64.

6.3.52.130 Frequency LSB 25 (0x0081)

For inner structure, see Section 6.3.52.60.

6.3.52.131 Frequency MSB 25 (0x0082)

For inner structure, see Section 6.3.52.61.

6.3.52.132 Input and DPLL Index 25 (0x0083)

For inner structure, see Section 6.3.52.62.

6.3.52.133 Node Part Number and Parameter Type 25 (0x0084)

For inner structure, see Section 6.3.52.63.

6.3.52.134 Parameter Value 25 (0x0085)

For inner structure, see Section 6.3.52.64.

6.3.52.135 Frequency LSB 26 (0x0086)

For inner structure, see Section 6.3.52.60.

6.3.52.136 Frequency MSB 26 (0x0087)

For inner structure, see Section 6.3.52.61.

6.3.52.137 Input and DPLL Index 26 (0x0088)

For inner structure, see Section 6.3.52.62.

613875-009 687

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.138 Node Part Number and Parameter Type 26 (0x0089)

For inner structure, see Section 6.3.52.63.

6.3.52.139 Parameter Value 26 (0x008A)

For inner structure, see Section 6.3.52.64.

6.3.52.140 Frequency LSB 27 (0x008B)

For inner structure, see Section 6.3.52.60.

6.3.52.141 Frequency MSB 27 (0x008C)

For inner structure, see Section 6.3.52.61.

6.3.52.142 Input and DPLL Index 27 (0x008D)

For inner structure, see Section 6.3.52.62.

6.3.52.143 Node Part Number and Parameter Type 27 (0x008E)

For inner structure, see Section 6.3.52.63.

6.3.52.144 Parameter Value 27 (0x008F)

For inner structure, see Section 6.3.52.64.

6.3.52.145 Frequency LSB 28 (0x0090)

For inner structure, see Section 6.3.52.60.

6.3.52.146 Frequency MSB 28 (0x0091)

For inner structure, see Section 6.3.52.61.

6.3.52.147 Input and DPLL Index 28 (0x0092)

For inner structure, see Section 6.3.52.62.

6.3.52.148 Node Part Number and Parameter Type 28 (0x0093)

For inner structure, see Section 6.3.52.63.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

688 613875-009

6.3.52.149 Parameter Value 28 (0x0094)

For inner structure, see Section 6.3.52.64.

6.3.52.150 Frequency LSB 29 (0x0095)

For inner structure, see Section 6.3.52.60.

6.3.52.151 Frequency MSB 29 (0x0096)

For inner structure, see Section 6.3.52.61.

6.3.52.152 Input and DPLL Index 29 (0x0097)

For inner structure, see Section 6.3.52.62.

6.3.52.153 Node Part Number and Parameter Type 29 (0x0098)

For inner structure, see Section 6.3.52.63.

6.3.52.154 Parameter Value 29 (0x0099)

For inner structure, see Section 6.3.52.64.

6.3.52.155 Frequency LSB 30 (0x009A)

For inner structure, see Section 6.3.52.60.

6.3.52.156 Frequency MSB 30 (0x009B)

For inner structure, see Section 6.3.52.61.

6.3.52.157 Input and DPLL Index 30 (0x009C)

For inner structure, see Section 6.3.52.62.

6.3.52.158 Node Part Number and Parameter Type 30 (0x009D)

For inner structure, see Section 6.3.52.63.

6.3.52.159 Parameter Value 30 (0x009E)

For inner structure, see Section 6.3.52.64.

613875-009 689

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.160 Frequency LSB 31 (0x009F)

For inner structure, see Section 6.3.52.60.

6.3.52.161 Frequency MSB 31 (0x00A0)

For inner structure, see Section 6.3.52.61.

6.3.52.162 Input and DPLL Index 31 (0x00A1)

For inner structure, see Section 6.3.52.62.

6.3.52.163 Node Part Number and Parameter Type 31 (0x00A2)

For inner structure, see Section 6.3.52.63.

6.3.52.164 Parameter Value 31 (0x00A3)

For inner structure, see Section 6.3.52.64.

6.3.52.165 Frequency LSB 32 (0x00A4)

For inner structure, see Section 6.3.52.60.

6.3.52.166 Frequency MSB 32 (0x00A5)

For inner structure, see Section 6.3.52.61.

6.3.52.167 Input and DPLL Index 32 (0x00A6)

For inner structure, see Section 6.3.52.62.

6.3.52.168 Node Part Number and Parameter Type 32 (0x00A7)

For inner structure, see Section 6.3.52.63.

6.3.52.169 Parameter Value 32 (0x00A8)

For inner structure, see Section 6.3.52.64.

6.3.52.170 Frequency LSB 33 (0x00A9)

For inner structure, see Section 6.3.52.60.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

690 613875-009

6.3.52.171 Frequency MSB 33 (0x00AA)

For inner structure, see Section 6.3.52.61.

6.3.52.172 Input and DPLL Index 33 (0x00AB)

For inner structure, see Section 6.3.52.62.

6.3.52.173 Node Part Number and Parameter Type 33 (0x00AC)

For inner structure, see Section 6.3.52.63.

6.3.52.174 Parameter Value 33 (0x00AD)

For inner structure, see Section 6.3.52.64.

6.3.52.175 Frequency LSB 34 (0x00AE)

For inner structure, see Section 6.3.52.60.

6.3.52.176 Frequency MSB 34 (0x00AF)

For inner structure, see Section 6.3.52.61.

6.3.52.177 Input and DPLL Index 34 (0x00B0)

For inner structure, see Section 6.3.52.62.

6.3.52.178 Node Part Number and Parameter Type 34 (0x00B1)

For inner structure, see Section 6.3.52.63.

6.3.52.179 Parameter Value 34 (0x00B2)

For inner structure, see Section 6.3.52.64.

6.3.52.180 Frequency LSB 35 (0x00B3)

For inner structure, see Section 6.3.52.60.

6.3.52.181 Frequency MSB 35 (0x00B4)

For inner structure, see Section 6.3.52.61.

613875-009 691

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.182 Input and DPLL Index 35 (0x00B5)

For inner structure, see Section 6.3.52.62.

6.3.52.183 Node Part Number and Parameter Type 35 (0x00B6)

For inner structure, see Section 6.3.52.63.

6.3.52.184 Parameter Value 35 (0x00B7)

For inner structure, see Section 6.3.52.64.

6.3.52.185 Frequency LSB 36 (0x00B8)

For inner structure, see Section 6.3.52.60.

6.3.52.186 Frequency MSB 36 (0x00B9)

For inner structure, see Section 6.3.52.61.

6.3.52.187 Input and DPLL Index 36 (0x00BA)

For inner structure, see Section 6.3.52.62.

6.3.52.188 Node Part Number and Parameter Type 36 (0x00BB)

For inner structure, see Section 6.3.52.63.

6.3.52.189 Parameter Value 36 (0x00BC)

For inner structure, see Section 6.3.52.64.

6.3.52.190 Frequency LSB 37 (0x00BD)

For inner structure, see Section 6.3.52.60.

6.3.52.191 Frequency MSB 37 (0x00BE)

For inner structure, see Section 6.3.52.61.

6.3.52.192 Input and DPLL Index 37 (0x00BF)

For inner structure, see Section 6.3.52.62.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

692 613875-009

6.3.52.193 Node Part Number and Parameter Type 37 (0x00C0)

For inner structure, see Section 6.3.52.63.

6.3.52.194 Parameter Value 37 (0x00C1)

For inner structure, see Section 6.3.52.64.

6.3.52.195 Frequency LSB 38 (0x00C2)

For inner structure, see Section 6.3.52.60.

6.3.52.196 Frequency MSB 38 (0x00C3)

For inner structure, see Section 6.3.52.61.

6.3.52.197 Input and DPLL Index 38 (0x00C4)

For inner structure, see Section 6.3.52.62.

6.3.52.198 Node Part Number and Parameter Type 38 (0x00C5)

For inner structure, see Section 6.3.52.63.

6.3.52.199 Parameter Value 38 (0x00C6)

For inner structure, see Section 6.3.52.64.

6.3.52.200 Frequency LSB 39 (0x00C7)

For inner structure, see Section 6.3.52.60.

6.3.52.201 Frequency MSB 39 (0x00C8)

For inner structure, see Section 6.3.52.61.

6.3.52.202 Input and DPLL Index 39 (0x00C9)

For inner structure, see Section 6.3.52.62.

6.3.52.203 Node Part Number and Parameter Type 39 (0x00CA)

For inner structure, see Section 6.3.52.63.

613875-009 693

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.204 Parameter Value 39 (0x00CB)

For inner structure, see Section 6.3.52.64.

6.3.52.205 Frequency LSB 40 (0x00CC)

For inner structure, see Section 6.3.52.60.

6.3.52.206 Frequency MSB 40 (0x00CD)

For inner structure, see Section 6.3.52.61.

6.3.52.207 Input and DPLL Index 40 (0x00CE)

For inner structure, see Section 6.3.52.62.

6.3.52.208 Node Part Number and Parameter Type 40 (0x00CF)

For inner structure, see Section 6.3.52.63.

6.3.52.209 Parameter Value 40 (0x00D0)

For inner structure, see Section 6.3.52.64.

6.3.52.210 Frequency LSB 41 (0x00D1)

For inner structure, see Section 6.3.52.60.

6.3.52.211 Frequency MSB 41 (0x00D2)

For inner structure, see Section 6.3.52.61.

6.3.52.212 Input and DPLL Index 41 (0x00D3)

For inner structure, see Section 6.3.52.62.

6.3.52.213 Node Part Number and Parameter Type 41 (0x00D4)

For inner structure, see Section 6.3.52.63.

6.3.52.214 Parameter Value 41 (0x00D5)

For inner structure, see Section 6.3.52.64.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

694 613875-009

6.3.52.215 Frequency LSB 42 (0x00D6)

For inner structure, see Section 6.3.52.60.

6.3.52.216 Frequency MSB 42 (0x00D7)

For inner structure, see Section 6.3.52.61.

6.3.52.217 Input and DPLL Index 42 (0x00D8)

For inner structure, see Section 6.3.52.62.

6.3.52.218 Node Part Number and Parameter Type 42 (0x00D9)

For inner structure, see Section 6.3.52.63.

6.3.52.219 Parameter Value 42 (0x00DA)

For inner structure, see Section 6.3.52.64.

6.3.52.220 Frequency LSB 43 (0x00DB)

For inner structure, see Section 6.3.52.60.

6.3.52.221 Frequency MSB 43 (0x00DC)

For inner structure, see Section 6.3.52.61.

6.3.52.222 Input and DPLL Index 43 (0x00DD)

For inner structure, see Section 6.3.52.62.

6.3.52.223 Node Part Number and Parameter Type 43 (0x00DE)

For inner structure, see Section 6.3.52.63.

6.3.52.224 Parameter Value 43 (0x00DF)

For inner structure, see Section 6.3.52.64.

6.3.52.225 Frequency LSB 44 (0x00E0)

For inner structure, see Section 6.3.52.60.

613875-009 695

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.226 Frequency MSB 44 (0x00E1)

For inner structure, see Section 6.3.52.61.

6.3.52.227 Input and DPLL Index 44 (0x00E2)

For inner structure, see Section 6.3.52.62.

6.3.52.228 Node Part Number and Parameter Type 44 (0x00E3)

For inner structure, see Section 6.3.52.63.

6.3.52.229 Parameter Value 44 (0x00E4)

For inner structure, see Section 6.3.52.64.

6.3.52.230 Frequency LSB 45 (0x00E5)

For inner structure, see Section 6.3.52.60.

6.3.52.231 Frequency MSB 45 (0x00E6)

For inner structure, see Section 6.3.52.61.

6.3.52.232 Input and DPLL Index 45 (0x00E7)

For inner structure, see Section 6.3.52.62.

6.3.52.233 Node Part Number and Parameter Type 45 (0x00E8)

For inner structure, see Section 6.3.52.63.

6.3.52.234 Parameter Value 45 (0x00E9)

For inner structure, see Section 6.3.52.64.

6.3.52.235 Frequency LSB 46 (0x00EA)

For inner structure, see Section 6.3.52.60.

6.3.52.236 Frequency MSB 46 (0x00EB)

For inner structure, see Section 6.3.52.61.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

696 613875-009

6.3.52.237 Input and DPLL Index 46 (0x00EC)

For inner structure, see Section 6.3.52.62.

6.3.52.238 Node Part Number and Parameter Type 46 (0x00ED)

For inner structure, see Section 6.3.52.63.

6.3.52.239 Parameter Value 46 (0x00EE)

For inner structure, see Section 6.3.52.64.

6.3.52.240 Frequency LSB 47 (0x00EF)

For inner structure, see Section 6.3.52.60.

6.3.52.241 Frequency MSB 47 (0x00F0)

For inner structure, see Section 6.3.52.61.

6.3.52.242 Input and DPLL Index 47 (0x00F1)

For inner structure, see Section 6.3.52.62.

6.3.52.243 Node Part Number and Parameter Type 47 (0x00F2)

For inner structure, see Section 6.3.52.63.

6.3.52.244 Parameter Value 47 (0x00F3)

For inner structure, see Section 6.3.52.64.

6.3.52.245 Frequency LSB 48 (0x00F4)

For inner structure, see Section 6.3.52.60.

6.3.52.246 Frequency MSB 48 (0x00F5)

For inner structure, see Section 6.3.52.61.

6.3.52.247 Input and DPLL Index 48 (0x00F6)

For inner structure, see Section 6.3.52.62.

613875-009 697

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.248 Node Part Number and Parameter Type 48 (0x00F7)

For inner structure, see Section 6.3.52.63.

6.3.52.249 Parameter Value 48 (0x00F8)

For inner structure, see Section 6.3.52.64.

6.3.52.250 Frequency LSB 49 (0x00F9)

For inner structure, see Section 6.3.52.60.

6.3.52.251 Frequency MSB 49 (0x00FA)

For inner structure, see Section 6.3.52.61.

6.3.52.252 Input and DPLL Index 49 (0x00FB)

For inner structure, see Section 6.3.52.62.

6.3.52.253 Node Part Number and Parameter Type 49 (0x00FC)

For inner structure, see Section 6.3.52.63.

6.3.52.254 Parameter Value 49 (0x00FD)

For inner structure, see Section 6.3.52.64.

6.3.52.255 Frequency LSB 50 (0x00FE)

For inner structure, see Section 6.3.52.60.

6.3.52.256 Frequency MSB 50 (0x00FF)

For inner structure, see Section 6.3.52.61.

6.3.52.257 Input and DPLL Index 50 (0x0100)

For inner structure, see Section 6.3.52.62.

6.3.52.258 Node Part Number and Parameter Type 50 (0x0101)

For inner structure, see Section 6.3.52.63.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

698 613875-009

6.3.52.259 Parameter Value 50 (0x0102)

For inner structure, see Section 6.3.52.64.

6.3.52.260 Frequency LSB 51 (0x0103)

For inner structure, see Section 6.3.52.60.

6.3.52.261 Frequency MSB 51 (0x0104)

For inner structure, see Section 6.3.52.61.

6.3.52.262 Input and DPLL Index 51 (0x0105)

For inner structure, see Section 6.3.52.62.

6.3.52.263 Node Part Number and Parameter Type 51 (0x0106)

For inner structure, see Section 6.3.52.63.

6.3.52.264 Parameter Value 51 (0x0107)

For inner structure, see Section 6.3.52.64.

6.3.52.265 Frequency LSB 52 (0x0108)

For inner structure, see Section 6.3.52.60.

6.3.52.266 Frequency MSB 52 (0x0109)

For inner structure, see Section 6.3.52.61.

6.3.52.267 Input and DPLL Index 52 (0x010A)

For inner structure, see Section 6.3.52.62.

6.3.52.268 Node Part Number and Parameter Type 52 (0x010B)

For inner structure, see Section 6.3.52.63.

6.3.52.269 Parameter Value 52 (0x010C)

For inner structure, see Section 6.3.52.64.

613875-009 699

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.270 Frequency LSB 53 (0x010D)

For inner structure, see Section 6.3.52.60.

6.3.52.271 Frequency MSB 53 (0x010E)

For inner structure, see Section 6.3.52.61.

6.3.52.272 Input and DPLL Index 53 (0x010F)

For inner structure, see Section 6.3.52.62.

6.3.52.273 Node Part Number and Parameter Type 53 (0x0110)

For inner structure, see Section 6.3.52.63.

6.3.52.274 Parameter Value 53 (0x0111)

For inner structure, see Section 6.3.52.64.

6.3.52.275 Frequency LSB 54 (0x0112)

For inner structure, see Section 6.3.52.60.

6.3.52.276 Frequency MSB 54 (0x0113)

For inner structure, see Section 6.3.52.61.

6.3.52.277 Input and DPLL Index 54 (0x0114)

For inner structure, see Section 6.3.52.62.

6.3.52.278 Node Part Number and Parameter Type 54 (0x0115)

For inner structure, see Section 6.3.52.63.

6.3.52.279 Parameter Value 54 (0x0116)

For inner structure, see Section 6.3.52.64.

6.3.52.280 Frequency LSB 55 (0x0117)

For inner structure, see Section 6.3.52.60.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

700 613875-009

6.3.52.281 Frequency MSB 55 (0x0118)

For inner structure, see Section 6.3.52.61.

6.3.52.282 Input and DPLL Index 55 (0x0119)

For inner structure, see Section 6.3.52.62.

6.3.52.283 Node Part Number and Parameter Type 55 (0x011A)

For inner structure, see Section 6.3.52.63.

6.3.52.284 Parameter Value 55 (0x011B)

For inner structure, see Section 6.3.52.64.

6.3.52.285 Frequency LSB 56 (0x011C)

For inner structure, see Section 6.3.52.60.

6.3.52.286 Frequency MSB 56 (0x011D)

For inner structure, see Section 6.3.52.61.

6.3.52.287 Input and DPLL Index 56 (0x011E)

For inner structure, see Section 6.3.52.62.

6.3.52.288 Node Part Number and Parameter Type 56 (0x011F)

For inner structure, see Section 6.3.52.63.

6.3.52.289 Parameter Value 56 (0x0120)

For inner structure, see Section 6.3.52.64.

6.3.52.290 Frequency LSB 57 (0x0121)

For inner structure, see Section 6.3.52.60.

6.3.52.291 Frequency MSB 57 (0x0122)

For inner structure, see Section 6.3.52.61.

613875-009 701

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.292 Input and DPLL Index 57 (0x0123)

For inner structure, see Section 6.3.52.62.

6.3.52.293 Node Part Number and Parameter Type 57 (0x0124)

For inner structure, see Section 6.3.52.63.

6.3.52.294 Parameter Value 57 (0x0125)

For inner structure, see Section 6.3.52.64.

6.3.52.295 Frequency LSB 58 (0x0126)

For inner structure, see Section 6.3.52.60.

6.3.52.296 Frequency MSB 58 (0x0127)

For inner structure, see Section 6.3.52.61.

6.3.52.297 Input and DPLL Index 58 (0x0128)

For inner structure, see Section 6.3.52.62.

6.3.52.298 Node Part Number and Parameter Type 58 (0x0129)

For inner structure, see Section 6.3.52.63.

6.3.52.299 Parameter Value 58 (0x012A)

For inner structure, see Section 6.3.52.64.

6.3.52.300 Frequency LSB 59 (0x012B)

For inner structure, see Section 6.3.52.60.

6.3.52.301 Frequency MSB 59 (0x012C)

For inner structure, see Section 6.3.52.61.

6.3.52.302 Input and DPLL Index 59 (0x012D)

For inner structure, see Section 6.3.52.62.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

702 613875-009

6.3.52.303 Node Part Number and Parameter Type 59 (0x012E)

For inner structure, see Section 6.3.52.63.

6.3.52.304 Parameter Value 59 (0x012F)

For inner structure, see Section 6.3.52.64.

6.3.52.305 Frequency LSB 60 (0x0130)

For inner structure, see Section 6.3.52.60.

6.3.52.306 Frequency MSB 60 (0x0131)

For inner structure, see Section 6.3.52.61.

6.3.52.307 Input and DPLL Index 60 (0x0132)

For inner structure, see Section 6.3.52.62.

6.3.52.308 Node Part Number and Parameter Type 60 (0x0133)

For inner structure, see Section 6.3.52.63.

6.3.52.309 Parameter Value 60 (0x0134)

For inner structure, see Section 6.3.52.64.

6.3.52.310 Frequency LSB 61 (0x0135)

For inner structure, see Section 6.3.52.60.

6.3.52.311 Frequency MSB 61 (0x0136)

For inner structure, see Section 6.3.52.61.

6.3.52.312 Input and DPLL Index 61 (0x0137)

For inner structure, see Section 6.3.52.62.

6.3.52.313 Node Part Number and Parameter Type 61 (0x0138)

For inner structure, see Section 6.3.52.63.

613875-009 703

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.52.314 Parameter Value 61 (0x0139)

For inner structure, see Section 6.3.52.64.

6.3.52.315 Frequency LSB 62 (0x013A)

For inner structure, see Section 6.3.52.60.

6.3.52.316 Frequency MSB 62 (0x013B)

For inner structure, see Section 6.3.52.61.

6.3.52.317 Input and DPLL Index 62 (0x013C)

For inner structure, see Section 6.3.52.62.

6.3.52.318 Node Part Number and Parameter Type 62 (0x013D)

For inner structure, see Section 6.3.52.63.

6.3.52.319 Parameter Value 62 (0x013E)

For inner structure, see Section 6.3.52.64.

6.3.52.320 Frequency LSB 63 (0x013F)

For inner structure, see Section 6.3.52.60.

6.3.52.321 Frequency MSB 63 (0x0140)

For inner structure, see Section 6.3.52.61.

6.3.52.322 Input and DPLL Index 63 (0x0141)

For inner structure, see Section 6.3.52.62.

6.3.52.323 Node Part Number and Parameter Type 63 (0x0142)

For inner structure, see Section 6.3.52.63.

6.3.52.324 Parameter Value 63 (0x0143)

For inner structure, see Section 6.3.52.64.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

704 613875-009

6.3.53 Padding Module Section

6.3.53.1 Sub Module Type - Padding (0x0000)

6.3.53.2 Length (0x0001)

6.3.53.3 Padding (0x0002)

Table 6-59. Padding Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - Padding 6.3.53.1

0x0001 Length 6.3.53.2

0x0002 Padding 6.3.53.3

Bits Field Name Default
NVM Value Description

15:0 Sub Module Type 0xFFFF Valid values are:
0xFFFF - Padding Module

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Padding module -> Sub Module Type - Padding
Last Section -> Word: Padding module -> Padding

Bit(s) Field Name Default
NVM Value Description

15:0 [New Field] 0xFFFF

613875-009 705

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.54 PCIR Type 1/2 Section

6.3.54.1 GLPCI_PWRDATA (0x0000 - 0x00003)

6.3.54.1.1 Address Low at GLPCI_PWRDATA (0x0000)

6.3.54.1.2 Address High at GLPCI_PWRDATA (0x000‘)

6.3.54.1.3 Data Low of GLPCI_PWRDATA (0x0002)

6.3.54.1.4 Data High of GLPCI_PWRDATA (0x0003)

6.3.54.2 GLPCI_PMSUP (0x0004 - 0x0008)

6.3.54.2.1 Starting Address Low at GLPCI_PMSUP (0x0004)

Table 6-60. PCIR Type 1/2 Section Summary Table

Word Offset Description Section
Reference

0x0000 - 0x0003 NVM contents for GLPCI_PWRDATA 6.3.54.1

0x0004 - 0x0008 NVM contents for GLPCI_PMSUP 6.3.54.2

0x0009 - 0x000A NVM contents for GLPCI_REVID 6.3.54.3

0x000B - 0x000E Reserved 6.3.54.4

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLPCI_PWRDATA

0x9DE7C

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLPCI_PWRDATA

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLPCI_PMSUP

0x9DE94

3:0 Type 0x2

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

706 613875-009

6.3.54.2.2 Starting Address High at GLPCI_PMSUP (0x0005)

6.3.54.2.3 Attributes at GLPCI_PMSUP (0x0006)

6.3.54.2.4 Data Low of GLPCI_PMSUP (0x0007)

6.3.54.2.5 Data High of GLPCI_PMSUP (0x0008)

6.3.54.3 GLPCI_REVID (0x0009 - 0x000A)

6.3.54.3.1 Data Low of GLPCI_REVID (0x0009)

6.3.54.3.2 Data High of GLPCI_REVID (0x000A)

6.3.54.4 Reserved (0x000B - 0x000E)

6.3.55 POR Type 1/2 Section

6.3.55.1 Reserved (0x0000 - 0x0021)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLPCI_PMSUP

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x2

4:3 Skip 00b

2:0 Width 000b

Table 6-61. POR Type 1/2 Section Summary Table

Word Offset Description Section
Reference

0x0000 - 0x0021 Reserved 6.3.55.1

613875-009 707

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56 CORER Registers Auto-Load Module Section

Default setup to registers and internal memories that load on CORER events.

Table 6-62. CORER Registers Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.56.1

0x0001 - 0x0013 NVM contents for PRT_TDPUL2TAGSEN 6.3.56.2

0x0014 - 0x0026 NVM contents for GL_SWT_L2TAGTXIB 6.3.56.3

0x0027 - 0x0039 NVM contents for GL_SWT_L2TAGRXEB 6.3.56.4

0x003A - 0x003D NVM contents for GL_RDPU_CNTRL 6.3.56.5

0x003E - 0x0050 NVM contents for PFLAN_DB_QALLOC 6.3.56.6

0x0051 - 0x0063 NVM contents for PFLAN_CP_QALLOC 6.3.56.7

0x0064 - 0x0067 NVM contents for GLDCB_GENC 6.3.56.8

0x0068 - 0x018F Reserved 6.3.56.9

0x0190 - 0x0194 NVM contents for GLTSYN_SYNC_DLAY 6.3.56.10

0x0195 - 0x0196 NVM contents for GLTSYN_HH_DLAY 6.3.56.11

0x0197 - 0x019B NVM contents for GLTPB_PACING_25G 6.3.56.12

0x019C - 0x019D NVM contents for GLTPB_PACING_10G 6.3.56.13

0x019E - 0x019F NVM contents for GLTPB_PORT_PACING_SPEED 6.3.56.14

0x01A0 - 0x01A7 Reserved 6.3.56.15

0x01A8 - 0x01CA NVM contents for GLRPB_DHW 6.3.56.16

0x01CB - 0x01ED NVM contents for GLRPB_DLW 6.3.56.17

0x01EE - 0x020D NVM contents for GLRPB_DPS 6.3.56.18

0x020E - 0x021D NVM contents for GLRPB_SPS 6.3.56.19

0x021E - 0x0230 NVM contents for GLRPB_SHW 6.3.56.20

0x0231 - 0x0240 NVM contents for GLRPB_SLW 6.3.56.21

0x0241 - 0x0244 Reserved 6.3.56.22

0x0245 - 0x0287 NVM contents for GLRPB_TCHW 6.3.56.23

0x0288 - 0x02C7 NVM contents for GLRPB_TCLW 6.3.56.24

0x02C8 - 0x02DA NVM contents for PRTDCB_TCUPM_REG_PE_HB_DTHR 6.3.56.25

0x02DB - 0x02ED NVM contents for PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR 6.3.56.26

0x02EE - 0x0330 NVM contents for TCDCB_TCUPM_WAIT_PE_HB_DTHR 6.3.56.27

0x0331 - 0x0335 NVM contents for GLDCB_TCUPM_NO_EXCEED_DIS 6.3.56.28

0x0336 - 0x0337 NVM contents for GLDCB_TCUPM_WB_DIS 6.3.56.29

0x0338 - 0x034A NVM contents for GLHMC_PFPESDPART_FPMAT 6.3.56.30

0x034B - 0x038D NVM contents for GLHMC_VFSDPART_FPMAT 6.3.56.31

0x038E - 0x03D0 NVM contents for GLDCB_RETSTCC 6.3.56.32

0x03D1 - 0x03E3 NVM contents for PRTDCB_RPPMC 6.3.56.33

0x03E4 - 0x03E8 NVM contents for GLDCB_RSPMC 6.3.56.34

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

708 613875-009

0x03E9 - 0x03EA NVM contents for GLDCB_RMPMC 6.3.56.35

0x03EB - 0x03F1 Reserved 6.3.56.36

0x03F2 - 0x0404 NVM contents for PFINT_TSYN_MSK 6.3.56.37

0x0405 - 0x0408 NVM contents for GLINT_CTL 6.3.56.38

0x0409 - 0x041B NVM contents for PFGEN_PORTNUM 6.3.56.39

0x041C - 0x042E NVM contents for PF_VT_PFALLOC 6.3.56.40

0x042F - 0x0441 NVM contents for PFLAN_RX_QALLOC 6.3.56.41

0x0442 - 0x0454 NVM contents for PFLAN_TX_QALLOC 6.3.56.42

0x0455 - 0x0467 NVM contents for PFINT_ALLOC 6.3.56.43

0x0468 - 0x047A NVM contents for GL_SWT_L2TAGCTRL 6.3.56.44

0x047B - 0x04BD NVM contents for GLDCB_PRS_RETSTCC 6.3.56.45

0x04BE - 0x04C1 NVM contents for GLDCB_PRS_RSPMC 6.3.56.46

0x04C2 - 0x04E4 NVM contents for GLRPRS_PMCFG_DPS 6.3.56.47

0x04E5 - 0x0507 NVM contents for GLRPRS_PMCFG_DHW 6.3.56.48

0x0508 - 0x0527 NVM contents for GLRPRS_PMCFG_DLW 6.3.56.49

0x0528 - 0x0537 NVM contents for GLRPRS_PMCFG_SPS 6.3.56.50

0x0538 - 0x054A NVM contents for GLRPRS_PMCFG_SHW 6.3.56.51

0x054B - 0x055A NVM contents for GLRPRS_PMCFG_SLW 6.3.56.52

0x055B - 0x059D NVM contents for GLRPRS_PMCFG_TCHW 6.3.56.53

0x059E - 0x05DD NVM contents for GLRPRS_PMCFG_TCLW 6.3.56.54

0x05DE - 0x05E2 NVM contents for GL_SWT_LAT_SINGLE 6.3.56.55

0x05E3 - 0x05E4 NVM contents for GL_SWT_LAT_DOUBLE 6.3.56.56

0x05E5 - 0x05E6 NVM contents for GL_SWT_LAT_QUAD 6.3.56.57

0x05E7 - 0x06FF Reserved 6.3.56.58

0x0700 - 0x0742 NVM contents for GLDCB_SWT_RETSTCC 6.3.56.59

0x0743 - 0x074B NVM contents for GL_PSTEXT_FORCE_PID 6.3.56.60

0x074C - 0x0754 NVM contents for GL_PREEXT_FORCE_PID 6.3.56.61

0x0755 - 0x075D NVM contents for GL_ACLEXT_FORCE_PID 6.3.56.62

0x075E - 0x0761 NVM contents for GL_SWT_SWIDFVIDX 6.3.56.63

0x0762 - 0x0765 NVM contents for GLLAN_RCTL_1 6.3.56.64

0x0766 - 0x0778 NVM contents for GLLAN_PF_RECIPE 6.3.56.65

0x0779 - 0x09A8 NVM contents for VPDSI_TX_QTABLE_PQM 6.3.56.66

0x097C - 0x099B NVM contents for VPLAN_DSI_VF_MODE 6.3.56.67

0x099C - 0x09BE NVM contents for GLCOMM_QUANTA_PROF 6.3.56.68

0x09BF - 0x09CE NVM contents for GLCOMM_PKT_SHAPER_PROF 6.3.56.69

0x09CF - 0x09DD Reserved 6.3.56.70

0x09DE - 0x09E2 NVM contents for GL_MDCK_CFG1_TX_PQM 6.3.56.71

Table 6-62. CORER Registers Auto-Load Module Section Summary Table [continued]

Word Offset Description Section
Reference

613875-009 709

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x09E3 - 0x09E4 Reserved 6.3.56.72

0x09E5 - 0x09E6 NVM contents for GL_MDCK_EN_TX_PQM 6.3.56.73

0x09E7 - 0x2A2B Reserved 6.3.56.74

0x2A2C - 0x2A2F NVM contents for GLQF_FD_SIZE 6.3.56.75

0x2A30 - 0x2A42 NVM contents for GLHMC_PFPESDPART 6.3.56.76

0x2A43 - 0x2A46 Reserved 6.3.56.77

0x2A47 - 0x2A89 NVM contents for GLHMC_VFSDPART 6.3.56.78

0x2A8A - 0x2A8D NVM contents for GLCOMM_MIN_MAX_PKT 6.3.56.79

0x2A8E - 0x2A8F Reserved 6.3.56.80

0x2A90 DPU_IMEM Attributes 6.3.56.81

0x2A91 - 0x2A92 Reserved 6.3.56.82

0x2A93 DPU_IMEM Data 6.3.56.83

0x4A93 - 0x4A94 Reserved 6.3.56.84

0x4A95 DPU_RECIPE_ADDRESS Attributes 6.3.56.85

0x4A96 - 0x4A97 Reserved 6.3.56.86

0x4A98 DPU_RECIPE_ADDRESS Data 6.3.56.87

0x4C98 - 0x4C99 Reserved 6.3.56.88

0x4C9A DPU_RECIPE_CAM Attributes 6.3.56.89

0x4C9B - 0x4C9C Reserved 6.3.56.90

0x4C9D DPU_RECIPE_CAM Data 6.3.56.91

0x509D - 0x509E Reserved 6.3.56.92

0x509F DPU_RECIPE_MASK Attributes 6.3.56.93

0x50A0 - 0x50A1 Reserved 6.3.56.94

0x50A2 DPU_RECIPE_MASK Data 6.3.56.95

0x50C2 - 0x50C3 Reserved 6.3.56.96

0x50C4 ANA_IMEM Attributes 6.3.56.97

0x50C5 - 0x50C6 Reserved 6.3.56.98

0x50C7 ANA_IMEM Data 6.3.56.99

0x5167 - 0x5168 Reserved 6.3.56.100

0x5169 ANA_NH Attributes 6.3.56.101

0x516A - 0x516B Reserved 6.3.56.102

0x516C ANA_NH Data 6.3.56.103

0x51BC - 0x51BD Reserved 6.3.56.104

0x51BE ANA_SKIP Attributes 6.3.56.105

0x51BF - 0x51C0 Reserved 6.3.56.106

0x51C1 ANA_SKIP Data 6.3.56.107

0x5211 - 0x5212 Reserved 6.3.56.108

Table 6-62. CORER Registers Auto-Load Module Section Summary Table [continued]

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

710 613875-009

6.3.56.1 Module Length (0x0000)

6.3.56.2 PRT_TDPUL2TAGSEN (0x0001 - 0x0013)

6.3.56.2.1 Starting Address Low at PRT_TDPUL2TAGSEN (0x0001)

6.3.56.2.2 Starting Address High at PRT_TDPUL2TAGSEN (0x0002)

6.3.56.2.3 Attributes at PRT_TDPUL2TAGSEN (0x0003)

0x5213 ANA_REPLACE Attributes 6.3.56.109

0x5214 - 0x5215 Reserved 6.3.56.110

0x5216 ANA_REPLACE Data 6.3.56.111

0x5266 - 0x5267 Reserved 6.3.56.112

0x5268 ANA_MERGE Attributes 6.3.56.113

0x5269 - 0x526A Reserved 6.3.56.114

0x526B ANA_MERGE Data 6.3.56.115

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: CORER Registers Auto-Load Module -> Module Length
Last Section -> Word: CORER Registers Auto-Load Module -> ANA_MERGE Data

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRT_TDPUL2TAGSEN, for PRT[0]

0x40BA0

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRT_TDPUL2TAGSEN, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Table 6-62. CORER Registers Auto-Load Module Section Summary Table [continued]

Word Offset Description Section
Reference

613875-009 711

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.2.4 Data Low of PRT_TDPUL2TAGSEN[PRT] (0x0004 + 2*PRT,
PRT=0...7)

6.3.56.2.5 Data High of PRT_TDPUL2TAGSEN[PRT] (0x0005 + 2*PRT,
PRT=0...7)

6.3.56.3 GL_SWT_L2TAGTXIB (0x0014 - 0x0026)

6.3.56.3.1 Starting Address Low at GL_SWT_L2TAGTXIB (0x0014)

6.3.56.3.2 Starting Address High at GL_SWT_L2TAGTXIB (0x0015)

6.3.56.3.3 Attributes at GL_SWT_L2TAGTXIB (0x0016)

6.3.56.3.4 Data Low of GL_SWT_L2TAGTXIB[n] (0x0017 + 2*n,
n=0...7)

6.3.56.3.5 Data High of GL_SWT_L2TAGTXIB[n] (0x0018 + 2*n,
n=0...7)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_SWT_L2TAGTXIB

0x492E8

3:0 Type

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_SWT_L2TAGTXIB

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

712 613875-009

6.3.56.4 GL_SWT_L2TAGRXEB (0x0027 - 0x0039)

6.3.56.4.1 Starting Address Low at GL_SWT_L2TAGRXEB (0x0027)

6.3.56.4.2 Starting Address High at GL_SWT_L2TAGRXEB (0x0028)

6.3.56.4.3 Attributes at GL_SWT_L2TAGRXEB (0x0029)

6.3.56.4.4 Data Low of GL_SWT_L2TAGRXEB[n] (0x002A + 2*n,
n=0...7)

6.3.56.4.5 Data High of GL_SWT_L2TAGRXEB[n] (0x002B + 2*n,
n=0...7)

6.3.56.5 GL_RDPU_CNTRL (0x003A - 0x003D)

6.3.56.5.1 Address Low at GL_RDPU_CNTRL (0x003A)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_SWT_L2TAGRXEB

0x52000

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_SWT_L2TAGRXEB

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_RDPU_CNTRL

0x52054

3:0 Type 0x1

613875-009 713

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.5.2 Address High at GL_RDPU_CNTRL (0x003B)

6.3.56.5.3 Reserved (0x003C - 0x003D)

6.3.56.6 PFLAN_DB_QALLOC (0x003E - 0x0050)

6.3.56.6.1 Starting Address Low at PFLAN_DB_QALLOC (0x003E)

6.3.56.6.2 Starting Address High at PFLAN_DB_QALLOC (0x003F)

6.3.56.6.3 Attributes at PFLAN_DB_QALLOC (0x0040)

6.3.56.6.4 Data Low of PFLAN_DB_QALLOC[PF] (0x0041 + 2*PF,
PF=0...7)

6.3.56.6.5 Data High of PFLAN_DB_QALLOC[PF] (0x0042 + 2*PF,
PF=0...7)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_RDPU_CNTRL

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFLAN_DB_QALLOC, for PF[0]

0x75680

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFLAN_DB_QALLOC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

714 613875-009

6.3.56.7 PFLAN_CP_QALLOC (0x0051 - 0x0063)

6.3.56.7.1 Starting Address Low at PFLAN_CP_QALLOC (0x0051)

6.3.56.7.2 Starting Address High at PFLAN_CP_QALLOC (0x0052)

6.3.56.7.3 Attributes at PFLAN_CP_QALLOC (0x0053)

6.3.56.7.4 Data Low of PFLAN_CP_QALLOC[PF] (0x0054 + 2*PF,
PF=0...7)

6.3.56.7.5 Data High of PFLAN_CP_QALLOC[PF] (0x0055 + 2*PF,
PF=0...7)

6.3.56.8 GLDCB_GENC (0x0064 - 0x0067)

6.3.56.8.1 Address Low at GLDCB_GENC (0x0064)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFLAN_CP_QALLOC, for PF[0]

0x75700

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFLAN_CP_QALLOC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLDCB_GENC

0x83044

3:0 Type 0x1

613875-009 715

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.8.2 Address High at GLDCB_GENC (0x0065)

6.3.56.8.3 Data Low of GLDCB_GENC (0x0066)

6.3.56.8.4 Data High of GLDCB_GENC (0x0067)

6.3.56.9 Reserved (0x0068 - 0x018F)

6.3.56.10 GLTSYN_SYNC_DLAY (0x0190 - 0x0194)

6.3.56.10.1 Starting Address Low at GLTSYN_SYNC_DLAY (0x0190)

6.3.56.10.2 Starting Address High at GLTSYN_SYNC_DLAY (0x0191)

6.3.56.10.3 Attributes at GLTSYN_SYNC_DLAY (0x0192)

6.3.56.10.4 Data Low of GLTSYN_SYNC_DLAY (0x0193)

6.3.56.10.5 Data High of GLTSYN_SYNC_DLAY (0x0194)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLDCB_GENC

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLTSYN_SYNC_DLAY

0x88818

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLTSYN_SYNC_DLAY

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x2

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

716 613875-009

6.3.56.11 GLTSYN_HH_DLAY (0x0195 - 0x0196)

6.3.56.11.1 Data Low of GLTSYN_HH_DLAY (0x0195)

6.3.56.11.2 Data High of GLTSYN_HH_DLAY (0x0196)

6.3.56.12 GLTPB_PACING_25G (0x0197 - 0x019B)

6.3.56.12.1 Starting Address Low at GLTPB_PACING_25G (0x0197)

6.3.56.12.2 Starting Address High at GLTPB_PACING_25G (0x0198)

6.3.56.12.3 Attributes at GLTPB_PACING_25G (0x0199)

6.3.56.12.4 Data Low of GLTPB_PACING_25G (0x019A)

6.3.56.12.5 Data High of GLTPB_PACING_25G (0x019B)

6.3.56.13 GLTPB_PACING_10G (0x019C - 0x019D)

6.3.56.13.1 Data Low of GLTPB_PACING_10G (0x019C)

6.3.56.13.2 Data High of GLTPB_PACING_10G (0x019D)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLTPB_PACING_25G

0x994E0

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLTPB_PACING_25G

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x3

4:3 Skip 00b

2:0 Width 000b

613875-009 717

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.14 GLTPB_PORT_PACING_SPEED (0x019E - 0x019F)

6.3.56.14.1 Data Low of GLTPB_PORT_PACING_SPEED (0x019E)

6.3.56.14.2 Data High of GLTPB_PORT_PACING_SPEED (0x019F)

6.3.56.15 Reserved (0x01A0 - 0x01A7)

6.3.56.16 GLRPB_DHW (0x01A8 - 0x01CA)

6.3.56.16.1 Starting Address Low at GLRPB_DHW (0x01A8)

6.3.56.16.2 Starting Address High at GLRPB_DHW (0x01A9)

6.3.56.16.3 Attributes at GLRPB_DHW (0x01AA)

6.3.56.16.4 Data Low of GLRPB_DHW[n] (0x01AB + 2*n, n=0...15)

6.3.56.16.5 Data High of GLRPB_DHW[n] (0x01AC + 2*n, n=0...15)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLRPB_DHW

0xAC000

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLRPB_DHW

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x10

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

718 613875-009

6.3.56.17 GLRPB_DLW (0x01CB - 0x01ED)

6.3.56.17.1 Starting Address Low at GLRPB_DLW (0x01CB)

6.3.56.17.2 Starting Address High at GLRPB_DLW (0x01CC)

6.3.56.17.3 Attributes at GLRPB_DLW (0x01CD)

6.3.56.17.4 Data Low of GLRPB_DLW[n] (0x01CE + 2*n, n=0...15)

6.3.56.17.5 Data High of GLRPB_DLW[n] (0x01CF + 2*n, n=0...15)

6.3.56.18 GLRPB_DPS (0x01EE - 0x020D)

6.3.56.18.1 Data Low of GLRPB_DPS[n] (0x01EE + 2*n, n=0...15)

6.3.56.18.2 Data High of GLRPB_DPS[n] (0x01EF + 2*n, n=0...15)

6.3.56.19 GLRPB_SPS (0x020E - 0x021D)

6.3.56.19.1 Data Low of GLRPB_SPS[n] (0x020E + 2*n, n=0...7)

6.3.56.19.2 Data High of GLRPB_SPS[n] (0x020F + 2*n, n=0...7)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLRPB_DLW

0xAC044

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLRPB_DLW

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x28

4:3 Skip 00b

2:0 Width 000b

613875-009 719

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.20 GLRPB_SHW (0x021E - 0x0230)

6.3.56.20.1 Starting Address Low at GLRPB_SHW (0x021E)

6.3.56.20.2 Starting Address High at GLRPB_SHW (0x021F)

6.3.56.20.3 Attributes at GLRPB_SHW (0x0220)

6.3.56.20.4 Data Low of GLRPB_SHW[n] (0x0221 + 2*n, n=0...7)

6.3.56.20.5 Data High of GLRPB_SHW[n] (0x0222 + 2*n, n=0...7)

6.3.56.21 GLRPB_SLW (0x0231 - 0x0240)

6.3.56.21.1 Data Low of GLRPB_SLW[n] (0x0231 + 2*n, n=0...7)

6.3.56.21.2 Data High of GLRPB_SLW[n] (0x0232 + 2*n, n=0...7)

6.3.56.22 Reserved (0x0241 - 0x0244)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLRPB_SHW

0xAC120

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLRPB_SHW

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x10

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

720 613875-009

6.3.56.23 GLRPB_TCHW (0x0245 - 0x0287)

6.3.56.23.1 Starting Address Low at GLRPB_TCHW (0x0245)

6.3.56.23.2 Starting Address High at GLRPB_TCHW (0x0246)

6.3.56.23.3 Attributes at GLRPB_TCHW (0x0247)

6.3.56.23.4 Data Low of GLRPB_TCHW[n] (0x0248 + 2*n, n=0...31)

6.3.56.23.5 Data High of GLRPB_TCHW[n] (0x0249 + 2*n, n=0...31)

6.3.56.24 GLRPB_TCLW (0x0288 - 0x02C7)

6.3.56.24.1 Data Low of GLRPB_TCLW[n] (0x0288 + 2*n, n=0...31)

6.3.56.24.2 Data High of GLRPB_TCLW[n] (0x0289 + 2*n, n=0...31)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLRPB_TCHW

0xAC330

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLRPB_TCHW

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x40

4:3 Skip 00b

2:0 Width 000b

613875-009 721

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.25 PRTDCB_TCUPM_REG_PE_HB_DTHR (0x02C8 -
0x02DA)

6.3.56.25.1 Starting Address Low at
PRTDCB_TCUPM_REG_PE_HB_DTHR (0x02C8)

6.3.56.25.2 Starting Address High at
PRTDCB_TCUPM_REG_PE_HB_DTHR (0x02C9)

6.3.56.25.3 Attributes at PRTDCB_TCUPM_REG_PE_HB_DTHR (0x02CA)

6.3.56.25.4 Data Low of PRTDCB_TCUPM_REG_PE_HB_DTHR[PRT]
(0x02CB + 2*PRT, PRT=0...7)

6.3.56.25.5 Data High of PRTDCB_TCUPM_REG_PE_HB_DTHR[PRT]
(0x02CC + 2*PRT, PRT=0...7)

6.3.56.26 PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x02DB -
0x02ED)

6.3.56.26.1 Starting Address Low at
PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x02DB)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTDCB_TCUPM_REG_PE_HB_DTHR, for PRT[0]

0xBC420

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTDCB_TCUPM_REG_PE_HB_DTHR, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR, for PRT[0]

0xBC4E0

3:0 Type 0x2

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

722 613875-009

6.3.56.26.2 Starting Address High at
PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x02DC)

6.3.56.26.3 Attributes at PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR
(0x02DD)

6.3.56.26.4 Data Low of
PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR[PRT] (0x02DE +
2*PRT, PRT=0...7)

6.3.56.26.5 Data High of
PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR[PRT] (0x02DF +
2*PRT, PRT=0...7)

6.3.56.27 TCDCB_TCUPM_WAIT_PE_HB_DTHR (0x02EE - 0x0330)

6.3.56.27.1 Starting Address Low at
TCDCB_TCUPM_WAIT_PE_HB_DTHR (0x02EE)

6.3.56.27.2 Starting Address High at
TCDCB_TCUPM_WAIT_PE_HB_DTHR (0x02EF)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
TCDCB_TCUPM_WAIT_PE_HB_DTHR

0xBC7A0

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
TCDCB_TCUPM_WAIT_PE_HB_DTHR

613875-009 723

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.27.3 Attributes at TCDCB_TCUPM_WAIT_PE_HB_DTHR (0x02F0)

6.3.56.27.4 Data Low of TCDCB_TCUPM_WAIT_PE_HB_DTHR[n]
(0x02F1 + 2*n, n=0...31)

6.3.56.27.5 Data High of TCDCB_TCUPM_WAIT_PE_HB_DTHR[n]
(0x02F2 + 2*n, n=0...31)

6.3.56.28 GLDCB_TCUPM_NO_EXCEED_DIS (0x0331 - 0x0335)

6.3.56.28.1 Starting Address Low at GLDCB_TCUPM_NO_EXCEED_DIS
(0x0331)

6.3.56.28.2 Starting Address High at GLDCB_TCUPM_NO_EXCEED_DIS
(0x0332)

6.3.56.28.3 Attributes at GLDCB_TCUPM_NO_EXCEED_DIS (0x0333)

6.3.56.28.4 Data Low of GLDCB_TCUPM_NO_EXCEED_DIS (0x0334)

6.3.56.28.5 Data High of GLDCB_TCUPM_NO_EXCEED_DIS (0x0335)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x20

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLDCB_TCUPM_NO_EXCEED_DIS

0xBC830

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLDCB_TCUPM_NO_EXCEED_DIS

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x2

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

724 613875-009

6.3.56.29 GLDCB_TCUPM_WB_DIS (0x0336 - 0x0337)

6.3.56.29.1 Data Low of GLDCB_TCUPM_WB_DIS (0x0336)

6.3.56.29.2 Data High of GLDCB_TCUPM_WB_DIS (0x0337)

6.3.56.30 GLHMC_PFPESDPART_FPMAT (0x0338 - 0x034A)

6.3.56.30.1 Starting Address Low at GLHMC_PFPESDPART_FPMAT
(0x0338)

6.3.56.30.2 Starting Address High at GLHMC_PFPESDPART_FPMAT
(0x0339)

6.3.56.30.3 Attributes at GLHMC_PFPESDPART_FPMAT (0x033A)

6.3.56.30.4 Data Low of GLHMC_PFPESDPART_FPMAT[n] (0x033B +
2*n, n=0...7)

6.3.56.30.5 Data High of GLHMC_PFPESDPART_FPMAT[n] (0x033C +
2*n, n=0...7)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLHMC_PFPESDPART_FPMAT

0x100880

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLHMC_PFPESDPART_FPMAT

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

613875-009 725

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.31 GLHMC_VFSDPART_FPMAT (0x034B - 0x038D)

6.3.56.31.1 Starting Address Low at GLHMC_VFSDPART_FPMAT
(0x034B)

6.3.56.31.2 Starting Address High at GLHMC_VFSDPART_FPMAT
(0x034C)

6.3.56.31.3 Attributes at GLHMC_VFSDPART_FPMAT (0x034D)

6.3.56.31.4 Data Low of GLHMC_VFSDPART_FPMAT[n] (0x034E + 2*n,
n=0...31)

6.3.56.31.5 Data High of GLHMC_VFSDPART_FPMAT[n] (0x034F + 2*n,
n=0...31)

6.3.56.32 GLDCB_RETSTCC (0x038E - 0x03D0)

6.3.56.32.1 Starting Address Low at GLDCB_RETSTCC (0x038E)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLHMC_VFSDPART_FPMAT

0x108800

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLHMC_VFSDPART_FPMAT

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x20

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLDCB_RETSTCC

0x122140

3:0 Type 0x2

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

726 613875-009

6.3.56.32.2 Starting Address High at GLDCB_RETSTCC (0x038F)

6.3.56.32.3 Attributes at GLDCB_RETSTCC (0x0390)

6.3.56.32.4 Data Low of GLDCB_RETSTCC[n] (0x0391 + 2*n, n=0...31)

6.3.56.32.5 Data High of GLDCB_RETSTCC[n] (0x0392 + 2*n, n=0...31)

6.3.56.33 PRTDCB_RPPMC (0x03D1 - 0x03E3)

6.3.56.33.1 Starting Address Low at PRTDCB_RPPMC (0x03D1)

6.3.56.33.2 Starting Address High at PRTDCB_RPPMC (0x03D2)

6.3.56.33.3 Attributes at PRTDCB_RPPMC (0x03D3)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLDCB_RETSTCC

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x20

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTDCB_RPPMC, for PRT[0]

0x122240

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTDCB_RPPMC, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

613875-009 727

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.33.4 Data Low of PRTDCB_RPPMC[PRT] (0x03D4 + 2*PRT,
PRT=0)

6.3.56.33.5 Data High of PRTDCB_RPPMC[PRT] (0x03D5 + 2*PRT,
PRT=0)

6.3.56.34 GLDCB_RSPMC (0x03E4 - 0x03E8)

6.3.56.34.1 Starting Address Low at GLDCB_RSPMC (0x03E4)

6.3.56.34.2 Starting Address High at GLDCB_RSPMC (0x03E5)

6.3.56.34.3 Attributes at GLDCB_RSPMC (0x03E6)

6.3.56.34.4 Data Low of GLDCB_RSPMC (0x03E7)

6.3.56.34.5 Data High of GLDCB_RSPMC (0x03E8)

6.3.56.35 GLDCB_RMPMC (0x03E9 - 0x03EA)

6.3.56.35.1 Data Low of GLDCB_RMPMC (0x03E9)

6.3.56.35.2 Data High of GLDCB_RMPMC (0x03EA)

6.3.56.36 Reserved (0x03EB - 0x03F1)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLDCB_RSPMC

0x1223C4

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLDCB_RSPMC

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x2

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

728 613875-009

6.3.56.37 PFINT_TSYN_MSK (0x03F2 - 0x0404)

6.3.56.37.1 Starting Address Low at PFINT_TSYN_MSK (0x03F2)

6.3.56.37.2 Starting Address High at PFINT_TSYN_MSK (0x03F3)

6.3.56.37.3 Attributes at PFINT_TSYN_MSK (0x03F4)

6.3.56.37.4 Data Low of PFINT_TSYN_MSK[PF] (0x03F5 + 2*PF,
PF=0...7)

6.3.56.37.5 Data High of PFINT_TSYN_MSK[PF] (0x03F6 + 2*PF,
PF=0...7)

6.3.56.38 GLINT_CTL (0x0405 - 0x0408)

6.3.56.38.1 Address Low at GLINT_CTL (0x0405)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFINT_TSYN_MSK, for PF[0]

0x16C980

3:0 Type

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFINT_TSYN_MSK, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLINT_CTL

0x16CC54

3:0 Type 0x1

613875-009 729

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.38.2 Address High at GLINT_CTL (0x0406)

6.3.56.38.3 Data Low of GLINT_CTL (0x0407)

6.3.56.38.4 Data High of GLINT_CTL (0x0408)

6.3.56.39 PFGEN_PORTNUM (0x0409 - 0x041B)

6.3.56.39.1 Starting Address Low at PFGEN_PORTNUM (0x0409)

6.3.56.39.2 Starting Address High at PFGEN_PORTNUM (0x040A)

6.3.56.39.3 Attributes at PFGEN_PORTNUM (0x040B)

6.3.56.39.4 Data Low of PFGEN_PORTNUM[PF] (0x040C + 2*PF,
PF=0...7)

6.3.56.39.5 Data High of PFGEN_PORTNUM[PF] (0x040D + 2*PF,
PF=0...7)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLINT_CTL

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFGEN_PORTNUM, for PF[0]

0x1D2400

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFGEN_PORTNUM, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

730 613875-009

6.3.56.40 PF_VT_PFALLOC (0x041C - 0x042E)

6.3.56.40.1 Starting Address Low at PF_VT_PFALLOC (0x041C)

6.3.56.40.2 Starting Address High at PF_VT_PFALLOC (0x041D)

6.3.56.40.3 Attributes at PF_VT_PFALLOC (0x041E)

6.3.56.40.4 Data Low of PF_VT_PFALLOC[PF] (0x041F + 2*PF, PF=0...7)

6.3.56.40.5 Data High of PF_VT_PFALLOC[PF] (0x0420 + 2*PF,
PF=0...7)

6.3.56.41 PFLAN_RX_QALLOC (0x042F - 0x0441)

6.3.56.41.1 Starting Address Low at PFLAN_RX_QALLOC (0x042F)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PF_VT_PFALLOC, for PF[0]

0x1D2480

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PF_VT_PFALLOC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFLAN_RX_QALLOC, for PF[0]

0x1D2500

3:0 Type 0x2

613875-009 731

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.41.2 Starting Address High at PFLAN_RX_QALLOC (0x0430)

6.3.56.41.3 Attributes at PFLAN_RX_QALLOC (0x0431)

6.3.56.41.4 Data Low of PFLAN_RX_QALLOC[PF] (0x0432 + 2*PF,
PF=0...7)

6.3.56.41.5 Data High of PFLAN_RX_QALLOC[PF] (0x0433 + 2*PF,
PF=0...7)

6.3.56.42 PFLAN_TX_QALLOC (0x0442 - 0x0454)

6.3.56.42.1 Starting Address Low at PFLAN_TX_QALLOC (0x0442)

6.3.56.42.2 Starting Address High at PFLAN_TX_QALLOC (0x0443)

6.3.56.42.3 Attributes at PFLAN_TX_QALLOC (0x0444)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFLAN_RX_QALLOC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFLAN_TX_QALLOC, for PF[0]

0x1D2580

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFLAN_TX_QALLOC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

732 613875-009

6.3.56.42.4 Data Low of PFLAN_TX_QALLOC[PF] (0x0445 + 2*PF,
PF=0...7)

6.3.56.42.5 Data High of PFLAN_TX_QALLOC[PF] (0x0446 + 2*PF,
PF=0...7)

6.3.56.43 PFINT_ALLOC (0x0455 - 0x0467)

6.3.56.43.1 Starting Address Low at PFINT_ALLOC (0x0455)

6.3.56.43.2 Starting Address High at PFINT_ALLOC (0x0456)

6.3.56.43.3 Attributes at PFINT_ALLOC (0x0457)

6.3.56.43.4 Data Low of PFINT_ALLOC[PF] (0x0458 + 2*PF, PF=0...7)

6.3.56.43.5 Data High of PFINT_ALLOC[PF] (0x0459 + 2*PF, PF=0...7)

6.3.56.44 GL_SWT_L2TAGCTRL (0x0468 - 0x047A)

6.3.56.44.1 Starting Address Low at GL_SWT_L2TAGCTRL (0x0468)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFINT_ALLOC, for PF[0]

0x1D2600

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFINT_ALLOC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_SWT_L2TAGCTRL

0x1D2660

3:0 Type 0x2

613875-009 733

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.44.2 Starting Address High at GL_SWT_L2TAGCTRL (0x0469)

6.3.56.44.3 Attributes at GL_SWT_L2TAGCTRL (0x046A)

6.3.56.44.4 Data Low of GL_SWT_L2TAGCTRL[n] (0x046B + 2*n,
n=0...7)

6.3.56.44.5 Data High of GL_SWT_L2TAGCTRL[n] (0x046C + 2*n,
n=0...7)

6.3.56.45 GLDCB_PRS_RETSTCC (0x047B - 0x04BD)

6.3.56.45.1 Starting Address Low at GLDCB_PRS_RETSTCC (0x047B)

6.3.56.45.2 Starting Address High at GLDCB_PRS_RETSTCC (0x047C)

6.3.56.45.3 Attributes at GLDCB_PRS_RETSTCC (0x047D)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_SWT_L2TAGCTRL

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLDCB_PRS_RETSTCC

0x2000B0

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLDCB_PRS_RETSTCC

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x20

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

734 613875-009

6.3.56.45.4 Data Low of GLDCB_PRS_RETSTCC[n] (0x047E + 2*n,
n=0...31)

6.3.56.45.5 Data High of GLDCB_PRS_RETSTCC[n] (0x047F + 2*n,
n=0...31)

6.3.56.46 GLDCB_PRS_RSPMC (0x04BE - 0x04C1)

6.3.56.46.1 Address Low at GLDCB_PRS_RSPMC (0x04BE)

6.3.56.46.2 Address High at GLDCB_PRS_RSPMC (0x04BF)

6.3.56.46.3 Data Low of GLDCB_PRS_RSPMC (0x04C0)

6.3.56.46.4 Data High of GLDCB_PRS_RSPMC (0x04C1)

6.3.56.47 GLRPRS_PMCFG_DPS (0x04C2 - 0x04E4)

6.3.56.47.1 Starting Address Low at GLRPRS_PMCFG_DPS (0x04C2)

6.3.56.47.2 Starting Address High at GLRPRS_PMCFG_DPS (0x04C3)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLDCB_PRS_RSPMC

0x200160

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLDCB_PRS_RSPMC

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLRPRS_PMCFG_DPS

0x200308

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLRPRS_PMCFG_DPS

613875-009 735

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.47.3 Attributes at GLRPRS_PMCFG_DPS (0x04C4)

6.3.56.47.4 Data Low of GLRPRS_PMCFG_DPS[n] (0x04C5 + 2*n,
n=0...15)

6.3.56.47.5 Data High of GLRPRS_PMCFG_DPS[n] (0x04C6 + 2*n,
n=0...15)

6.3.56.48 GLRPRS_PMCFG_DHW (0x04E5 - 0x0507)

6.3.56.48.1 Starting Address Low at GLRPRS_PMCFG_DHW (0x04E5)

6.3.56.48.2 Starting Address High at GLRPRS_PMCFG_DHW (0x04E6)

6.3.56.48.3 Attributes at GLRPRS_PMCFG_DHW (0x04E7)

6.3.56.48.4 Data Low of GLRPRS_PMCFG_DHW[n] (0x04E8 + 2*n,
n=0...15)

6.3.56.48.5 Data High of GLRPRS_PMCFG_DHW[n] (0x04E9 + 2*n,
n=0...15)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x10

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLRPRS_PMCFG_DHW

0x200388

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLRPRS_PMCFG_DHW

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x28

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

736 613875-009

6.3.56.49 GLRPRS_PMCFG_DLW (0x0508 - 0x0527)

6.3.56.49.1 Data Low of GLRPRS_PMCFG_DLW[n] (0x0508 + 2*n,
n=0...15)

6.3.56.49.2 Data High of GLRPRS_PMCFG_DLW[n] (0x0509 + 2*n,
n=0...15)

6.3.56.50 GLRPRS_PMCFG_SPS (0x0528 - 0x0537)

6.3.56.50.1 Data Low of GLRPRS_PMCFG_SPS[n] (0x0528 + 2*n,
n=0...7)

6.3.56.50.2 Data High of GLRPRS_PMCFG_SPS[n] (0x0529 + 2*n,
n=0...7)

6.3.56.51 GLRPRS_PMCFG_SHW (0x0538 - 0x054A)

6.3.56.51.1 Starting Address Low at GLRPRS_PMCFG_SHW (0x0538)

6.3.56.51.2 Starting Address High at GLRPRS_PMCFG_SHW (0x0539)

6.3.56.51.3 Attributes at GLRPRS_PMCFG_SHW (0x053A)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLRPRS_PMCFG_SHW

0x200448

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLRPRS_PMCFG_SHW

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x10

4:3 Skip 00b

2:0 Width 000b

613875-009 737

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.51.4 Data Low of GLRPRS_PMCFG_SHW[n] (0x053B + 2*n,
n=0...7)

6.3.56.51.5 Data High of GLRPRS_PMCFG_SHW[n] (0x053C + 2*n,
n=0...7)

6.3.56.52 GLRPRS_PMCFG_SLW (0x054B - 0x055A)

6.3.56.52.1 Data Low of GLRPRS_PMCFG_SLW[n] (0x054B + 2*n,
n=0...7)

6.3.56.52.2 Data High of GLRPRS_PMCFG_SLW[n] (0x054C + 2*n,
n=0...7)

6.3.56.53 GLRPRS_PMCFG_TCHW (0x055B - 0x059D)

6.3.56.53.1 Starting Address Low at GLRPRS_PMCFG_TCHW (0x055B)

6.3.56.53.2 Starting Address High at GLRPRS_PMCFG_TCHW (0x055C)

6.3.56.53.3 Attributes at GLRPRS_PMCFG_TCHW (0x055D)

6.3.56.53.4 Data Low of GLRPRS_PMCFG_TCHW[n] (0x055E + 2*n,
n=0...31)

6.3.56.53.5 Data High of GLRPRS_PMCFG_TCHW[n] (0x055F + 2*n,
n=0...31)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLRPRS_PMCFG_TCHW

0x200588

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLRPRS_PMCFG_TCHW

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x40

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

738 613875-009

6.3.56.54 GLRPRS_PMCFG_TCLW (0x059E - 0x05DD)

6.3.56.54.1 Data Low of GLRPRS_PMCFG_TCLW[n] (0x059E + 2*n,
n=0...31)

6.3.56.54.2 Data High of GLRPRS_PMCFG_TCLW[n] (0x059F + 2*n,
n=0...31)

6.3.56.55 GL_SWT_LAT_SINGLE (0x05DE - 0x05E2)

6.3.56.55.1 Starting Address Low at GL_SWT_LAT_SINGLE (0x05DE)

6.3.56.55.2 Starting Address High at GL_SWT_LAT_SINGLE (0x05DF)

6.3.56.55.3 Attributes at GL_SWT_LAT_SINGLE (0x05E0)

6.3.56.55.4 Data Low of GL_SWT_LAT_SINGLE (0x05E1)

6.3.56.55.5 Data High of GL_SWT_LAT_SINGLE (0x05E2)

6.3.56.56 GL_SWT_LAT_DOUBLE (0x05E3 - 0x05E4)

6.3.56.56.1 Data Low of GL_SWT_LAT_DOUBLE (0x05E3)

6.3.56.56.2 Data High of GL_SWT_LAT_DOUBLE (0x05E4)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_SWT_LAT_SINGLE

0x204000

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_SWT_LAT_SINGLE

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x3

4:3 Skip 00b

2:0 Width 000b

613875-009 739

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.57 GL_SWT_LAT_QUAD (0x05E5 - 0x05E6)

6.3.56.57.1 Data Low of GL_SWT_LAT_QUAD (0x05E5)

6.3.56.57.2 Data High of GL_SWT_LAT_QUAD (0x05E6)

6.3.56.58 Reserved (0x05E7 - 0x06FF)

6.3.56.59 GLDCB_SWT_RETSTCC (0x0700 - 0x0742)

6.3.56.59.1 Starting Address Low at GLDCB_SWT_RETSTCC (0x0700)

6.3.56.59.2 Starting Address High at GLDCB_SWT_RETSTCC (0x0701)

6.3.56.59.3 Attributes at GLDCB_SWT_RETSTCC (0x0702)

6.3.56.59.4 Data Low of GLDCB_SWT_RETSTCC[n] (0x0703 + 2*n,
n=0...31)

6.3.56.59.5 Data High of GLDCB_SWT_RETSTCC[n] (0x0704 + 2*n,
n=0...31)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLDCB_SWT_RETSTCC

0x20A040

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLDCB_SWT_RETSTCC

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x20

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

740 613875-009

6.3.56.60 GL_PSTEXT_FORCE_PID (0x0743 - 0x074B)

6.3.56.60.1 Starting Address Low at GL_PSTEXT_FORCE_PID (0x0743)

6.3.56.60.2 Starting Address High at GL_PSTEXT_FORCE_PID (0x0744)

6.3.56.60.3 Attributes at GL_PSTEXT_FORCE_PID (0x0745)

6.3.56.60.4 Data Low of GL_PSTEXT_FORCE_PID[n] (0x0746 + 2*n,
n=0...2)

6.3.56.60.5 Data High of GL_PSTEXT_FORCE_PID[n] (0x0747 + 2*n,
n=0...2)

6.3.56.61 GL_PREEXT_FORCE_PID (0x074C - 0x0754)

6.3.56.61.1 Starting Address Low at GL_PREEXT_FORCE_PID (0x074C)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_PSTEXT_FORCE_PID

0x20E000

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_PSTEXT_FORCE_PID

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x3

4:3 Skip 00b

2:0 Width 000b

Bits Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_PREEXT_FORCE_PID

0x20F000

3:0 Type 0x2

613875-009 741

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.61.2 Starting Address High at GL_PREEXT_FORCE_PID (0x074D)

6.3.56.61.3 Attributes at GL_PREEXT_FORCE_PID (0x074E)

6.3.56.61.4 Data Low of GL_PREEXT_FORCE_PID[n] (0x074F + 2*n,
n=0...2)

6.3.56.61.5 Data High of GL_PREEXT_FORCE_PID[n] (0x0750 +2*n,
n=0...2)

6.3.56.62 GL_ACLEXT_FORCE_PID (0x0755 - 0x075D)

6.3.56.62.1 Starting Address Low at GL_ACLEXT_FORCE_PID (0x0755)

6.3.56.62.2 Starting Address High at GL_ACLEXT_FORCE_PID (0x0756)

6.3.56.62.3 Attributes at GL_ACLEXT_FORCE_PID (0x0757)

Bits Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_PREEXT_FORCE_PID

Bits Field Name Default
NVM Value Description

15:5 Length 0x3

4:3 Skip 00b

2:0 Width 000b

Bits Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_ACLEXT_FORCE_PID

0x210000

3:0 Type 0x2

Bits Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_ACLEXT_FORCE_PID

Bits Field Name Default
NVM Value Description

15:5 Length 0x3

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

742 613875-009

6.3.56.62.4 Data Low of GL_ACLEXT_FORCE_PID[n] (0x0758 + 2*n,
n=0...2)

6.3.56.62.5 Data High of GL_ACLEXT_FORCE_PID[n] (0x0759 + 2*n,
n=0...2)

6.3.56.63 GL_SWT_SWIDFVIDX (0x075E - 0x0761)

6.3.56.63.1 Address Low at GL_SWT_SWIDFVIDX (0x075E)

6.3.56.63.2 Address High at GL_SWT_SWIDFVIDX (0x075F)

6.3.56.63.3 Data Low of GL_SWT_SWIDFVIDX (0x0760)

6.3.56.63.4 Data High of GL_SWT_SWIDFVIDX (0x0761)

6.3.56.64 GLLAN_RCTL_1 (0x0762 - 0x0765)

6.3.56.64.1 Address Low at GLLAN_RCTL_1 (0x0762)

6.3.56.64.2 Address High at GLLAN_RCTL_1 (0x0763)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_SWT_SWIDFVIDX

0x214114

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_SWT_SWIDFVIDX

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLLAN_RCTL_1

0x2941FC

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLLAN_RCTL_1

613875-009 743

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.64.3 Data Low of GLLAN_RCTL_1 (0x0764)

6.3.56.64.4 Data High of GLLAN_RCTL_1 (0x0765)

6.3.56.65 GLLAN_PF_RECIPE (0x0766 - 0x0778)

6.3.56.65.1 Starting Address Low at GLLAN_PF_RECIPE (0x0766)

6.3.56.65.2 Starting Address High at GLLAN_PF_RECIPE (0x0767)

6.3.56.65.3 Attributes at GLLAN_PF_RECIPE (0x0768)

6.3.56.65.4 Data Low of GLLAN_PF_RECIPE[n] (0x0769 + 2*n, n=0...7)

6.3.56.65.5 Data High of GLLAN_PF_RECIPE[n] (0x076A + 2*n, n=0...7)

6.3.56.66 VPDSI_TX_QTABLE_PQM (0x0779 - 0x09A8)

6.3.56.66.1 Starting Address Low at VPDSI_TX_QTABLE_PQM (0x0779)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLLAN_PF_RECIPE

0x29420C

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLLAN_PF_RECIPE

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
VPDSI_TX_QTABLE_PQM, for VP16[0]

0x2D2800

3:0 Type 0x2

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

744 613875-009

6.3.56.66.2 Starting Address High at VPDSI_TX_QTABLE_PQM (0x077A)

6.3.56.66.3 Attributes at VPDSI_TX_QTABLE_PQM (0x077B)

6.3.56.67 VPLAN_DSI_VF_MODE (0x097C - 0x099B)

6.3.56.67.1 Data Low of VPLAN_DSI_VF_MODE[VP16] (0x097C +
2*VP16, VP16=0...15)

6.3.56.67.2 Data High of VPLAN_DSI_VF_MODE[VP16] (0x097D +
2*VP16, VP16=0...15)

6.3.56.68 GLCOMM_QUANTA_PROF (0x099C - 0x09BE)

6.3.56.68.1 Starting Address Low at GLCOMM_QUANTA_PROF (0x099C)

6.3.56.68.2 Starting Address High at GLCOMM_QUANTA_PROF (0x099D)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
VPDSI_TX_QTABLE_PQM, for VP16[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x110

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLCOMM_QUANTA_PROF

0x2D2D68

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLCOMM_QUANTA_PROF

613875-009 745

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.68.3 Attributes at GLCOMM_QUANTA_PROF (0x099E)

6.3.56.68.4 Data Low of GLCOMM_QUANTA_PROF[n] (0x099F + 2*n,
n=0...15)

6.3.56.68.5 Data High of GLCOMM_QUANTA_PROF[n] (0x09A0+ 2*n,
n=0...15)

6.3.56.69 GLCOMM_PKT_SHAPER_PROF (0x09BF - 0x09CE)

6.3.56.69.1 Data Low of GLCOMM_PKT_SHAPER_PROF[n] (0x09BF +
2*n, n=0...7)

6.3.56.69.2 Data High of GLCOMM_PKT_SHAPER_PROF[n] (0x09C0 +
2*n, n=0...7)

6.3.56.70 Reserved (0x09CF - 0x09DD)

6.3.56.71 GL_MDCK_CFG1_TX_PQM (0x09DE - 0x09E2)

6.3.56.71.1 Starting Address Low at GL_MDCK_CFG1_TX_PQM (0x09DE)

6.3.56.71.2 Starting Address High at GL_MDCK_CFG1_TX_PQM
(0x09DF)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x18

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_MDCK_CFG1_TX_PQM

0x2D2DF4

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_MDCK_CFG1_TX_PQM

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

746 613875-009

6.3.56.71.3 Attributes at GL_MDCK_CFG1_TX_PQM (0x09E0)

6.3.56.71.4 Data Low of GL_MDCK_CFG1_TX_PQM (0x09E1)

6.3.56.71.5 Data High of GL_MDCK_CFG1_TX_PQM (0x09E2)

6.3.56.72 Reserved (0x09E3 - 0x09E4)

6.3.56.73 GL_MDCK_EN_TX_PQM (0x09E5 - 0x09E6)

6.3.56.73.1 Data Low of GL_MDCK_EN_TX_PQM (0x09E5)

6.3.56.73.2 Data High of GL_MDCK_EN_TX_PQM (0x09E6)

6.3.56.74 Reserved (0x0E7 - 0x2A2B)

6.3.56.75 GLQF_FD_SIZE (0x2A2C - 0x2A2F)

6.3.56.75.1 Address Low at GLQF_FD_SIZE (0x2A2C)

6.3.56.75.2 Address High at GLQF_FD_SIZE (0x2A2D)

6.3.56.75.3 Data Low of GLQF_FD_SIZE (0x2A2E)

6.3.56.75.4 Data High of GLQF_FD_SIZE (0x2A2F)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x3

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLQF_FD_SIZE

0x460010

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLQF_FD_SIZE

613875-009 747

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.76 GLHMC_PFPESDPART (0x2A30 - 0x2A42)

6.3.56.76.1 Starting Address Low at GLHMC_PFPESDPART (0x2A30)

6.3.56.76.2 Starting Address High at GLHMC_PFPESDPART (0x2A41)

6.3.56.76.3 Attributes at GLHMC_PFPESDPART (0x2A32)

6.3.56.76.4 Data Low of GLHMC_PFPESDPART[n] (0x2A33 + 2*n,
n=0...7)

6.3.56.76.5 Data High of GLHMC_PFPESDPART[n] (0x2A34 + 2*n,
n=0...7)

6.3.56.77 Reserved (0x2A43 - 0x2A46)

6.3.56.78 GLHMC_VFSDPART (0x2A47 - 0x2A89)

6.3.56.78.1 Starting Address Low at GLHMC_VFSDPART (0x2A47)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLHMC_PFPESDPART

0x520880

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLHMC_PFPESDPART

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLHMC_VFSDPART

0x528800

3:0 Type 0x2

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

748 613875-009

6.3.56.78.2 Starting Address High at GLHMC_VFSDPART (0x2A48)

6.3.56.78.3 Attributes at GLHMC_VFSDPART (0x2A49)

6.3.56.78.4 Data Low of GLHMC_VFSDPART[n] (0x2A4A + 2*n,
n=0...31)

6.3.56.78.5 Data High of GLHMC_VFSDPART[n] (0x2A4B + 2*n,
n=0...31)

6.3.56.79 GLCOMM_MIN_MAX_PKT (0x2A8A - 0x2A8D)

6.3.56.79.1 Address Low at GLCOMM_MIN_MAX_PKT (0x2A8A)

6.3.56.79.2 Address High at GLCOMM_MIN_MAX_PKT (0x2A8B)

6.3.56.79.3 Data Low of GLCOMM_MIN_MAX_PKT (0x2A8C)

6.3.56.79.4 Data High of GLCOMM_MIN_MAX_PKT (0x2A8D)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLHMC_VFSDPART

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x20

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLCOMM_MIN_MAX_PKT

0xFC064

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLCOMM_MIN_MAX_PKT

613875-009 749

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.80 Reserved (0x2A8E - 0x2A8F)

6.3.56.81 DPU_IMEM Attributes (0x2A90)

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.82 Reserved (0x2A91 - 0x2A92)

6.3.56.83 DPU_IMEM Data (0x2A93)

Raw data module length: 8192 words.

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.84 Reserved (0x4A93 - 0x4A94)

6.3.56.85 DPU_RECIPE_ADDRESS Attributes (0x4A95)

Part of a Type 3 structure to load the DPU_RECIPE_ADDRESS.

6.3.56.86 Reserved (0x4A96 - 0x4C97)

6.3.56.87 DPU_RECIPE_ADDRESS Data (0x4A98)

Raw data module length: 512 words.

Part of a Type 3 structure to load the DPU_RECIPE_ADDRESS.

6.3.56.88 Reserved (0x4C98 - 0x4C99)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x400

4:3 Skip 00b

2:0 Width 010b

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x100

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

750 613875-009

6.3.56.89 DPU_RECIPE_CAM Attributes (0x4C9A)

Part of a Type 3 structure to load the DPU_RECIPE_CAM.

6.3.56.90 Reserved (0x4C9B - 0x4C9C)

6.3.56.91 DPU_RECIPE_CAM Data (0x4C9D)

Raw data module length: 1024 words.

Part of a Type 3 structure to load the DPU_RECIPE_CAM.

6.3.56.92 Reserved (0x509D - 0x509E)

6.3.56.93 DPU_RECIPE_MASK Attributes (0x509F)

Part of a Type 3 structure to load the DPU_RECIPE_MASK.

6.3.56.94 Reserved (0x50A0 - 0x50A1)

6.3.56.95 DPU_RECIPE_MASK Data (0x50A2)

Raw data module length: 32 words.

Part of a Type 3 structure to load the DPU_RECIPE_MASK.

6.3.56.96 Reserved (0x50C2 - 0x50C3)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x100

4:3 Skip 00b

2:0 Width 001b

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x008

4:3 Skip 00b

2:0 Width 001b

613875-009 751

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.97 ANA_IMEM Attributes (0x50C4)

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.98 Reserved (0x50C5 - 0x50C6)

6.3.56.99 ANA_IMEM Data (0x50C7)

Raw data module length: 160 words.

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.100 Reserved (0x5167 - 0x5168)

6.3.56.101 ANA_NH Attributes (0x5169)

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.102 Reserved (0x516A - 0x516B)

6.3.56.103 ANA_NH Data (0x516C)

Raw data module length: 80 words.

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.104 Reserved (0x51BC - 0x51BD)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x28

4:3 Skip 00b

2:0 Width 001b

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x28

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

752 613875-009

6.3.56.105 ANA_SKIP Attributes (0x51BE)

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.106 Reserved (0x51BF - 0x51C0)

6.3.56.107 ANA_SKIP Data (0x51C1)

Raw data module length: 80 words.

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.108 Reserved (0x5211 - 0x5212)

6.3.56.109 ANA_REPLACE Attributes (0x5213)

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.110 Reserved (0x5214 - 0x5215)

6.3.56.111 ANA_REPLACE Data (0x5216)

Raw data module length: 80 words.

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.112 Reserved (0x5266 - 0x5267)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x28

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x28

4:3 Skip 00b

2:0 Width 000b

613875-009 753

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.56.113 ANA_MERGE Attributes (0x5268)

Part of a Type 3 structure to load the DPU_IMEM.

6.3.56.114 Reserved (0x5269 - 0x526A)

6.3.56.115 ANA_MERGE Data (0x526B)

Raw data module length: 80 words.

Part of a Type 3 structure to load the DPU_IMEM.

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x28

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

754 613875-009

6.3.57 Mailbox Register Auto-Load Module Section

Table 6-63. Mailbox Register Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.57.1

0x0001 Address Low at PF0_SB_HLP_REM_DEV_CTL 6.3.57.2

0x0002 Address High at PF0_SB_HLP_REM_DEV_CTL 6.3.57.3

0x0003 Data Low of PF0_SB_HLP_REM_DEV_CTL 6.3.57.4

0x0004 Data High of PF0_SB_HLP_REM_DEV_CTL 6.3.57.5

0x0005 Address Low at PF_SB_REM_DEV_CTL 6.3.57.6

0x0006 Address High at PF_SB_REM_DEV_CTL 6.3.57.7

0x0007 Data Low of PF_SB_REM_DEV_CTL 6.3.57.8

0x0008 Data High PF_SB_REM_DEV_CTL 6.3.57.9

0x0009 Address Low at PF0_SB_CPM_REM_DEV_CTL 6.3.57.10

0x000A Address High at PF0_SB_CPM_REM_DEV_CTL 6.3.57.11

0x000B Data Low of PF0_SB_CPM_REM_DEV_CTL 6.3.57.12

0x000C Data High of PF0_SB_CPM_REM_DEV_CTL 6.3.57.13

0x000D Address Low at VF_SB_CPM_REM_DEV_CTL 6.3.57.14

0x000E Address High at VF_SB_CPM_REM_DEV_CTL 6.3.57.15

0x000F Data Low of VF_SB_CPM_REM_DEV_CTL 6.3.57.16

0x0010 Data High of VF_SB_CPM_REM_DEV_CTL 6.3.57.17

0x0011 Starting Address Low at MBX_PF_VT_PFALLOC, for PF[0] 6.3.57.18

0x0012 Starting Address High at MBX_PF_VT_PFALLOC, for PF[0] 6.3.57.19

0x0013 Attributes at MBX_PF_VT_PFALLOC, for PF[0] 6.3.57.20

0x0014 Data Low of MBX_PF_VT_PFALLOC, for PF[0] 6.3.57.21

0x0015 Data High of MBX_PF_VT_PFALLOC, for PF[0] 6.3.57.22

0x0016 Data Low of MBX_PF_VT_PFALLOC, for PF[1] 6.3.57.23

0x0017 Data High of MBX_PF_VT_PFALLOC, for PF[1] 6.3.57.24

0x0018 Data Low of MBX_PF_VT_PFALLOC, for PF[2] 6.3.57.25

0x0019 Data High of MBX_PF_VT_PFALLOC, for PF[2] 6.3.57.26

0x001A Data Low of MBX_PF_VT_PFALLOC, for PF[3] 6.3.57.27

0x001B Data High of MBX_PF_VT_PFALLOC, for PF[3] 6.3.57.28

0x001C Data Low of MBX_PF_VT_PFALLOC, for PF[4] 6.3.57.29

0x001D Data High of MBX_PF_VT_PFALLOC, for PF[4] 6.3.57.30

0x001E Data Low of MBX_PF_VT_PFALLOC, for PF[5] 6.3.57.31

0x001F Data High of MBX_PF_VT_PFALLOC, for PF[5] 6.3.57.32

0x0020 Data Low of MBX_PF_VT_PFALLOC, for PF[6] 6.3.57.33

0x0021 Data High of MBX_PF_VT_PFALLOC, for PF[6] 6.3.57.34

613875-009 755

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.57.1 Module Length (0x0000)

6.3.57.2 Address Low at PF0_SB_HLP_REM_DEV_CTL (0x0001)

6.3.57.3 Address High at PF0_SB_HLP_REM_DEV_CTL (0x0002)

6.3.57.4 Data Low of PF0_SB_HLP_REM_DEV_CTL (0x0003)

6.3.57.5 Data High of PF0_SB_HLP_REM_DEV_CTL (0x0004)

0x0022 Data Low of MBX_PF_VT_PFALLOC, for PF[7] 6.3.57.35

0x0023 Data High of MBX_PF_VT_PFALLOC, for PF[7] 6.3.57.36

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: Mailbox Register Auto-Load Module -> Module Length
Last Section -> Word: Mailbox Register Auto-Load Module -> Data High of
MBX_PF_VT_PFALLOC, for PF[7]

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of PF0_SB_HLP_REM_DEV_CTL 0x2300E8

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of PF0_SB_HLP_REM_DEV_CTL

Bit(s) Field Name Default
NVM Value Description

15:0 DEST_EN 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Table 6-63. Mailbox Register Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

756 613875-009

6.3.57.6 Address Low at PF_SB_REM_DEV_CTL (0x0005)

6.3.57.7 Address High at PF_SB_REM_DEV_CTL (0x0006)

6.3.57.8 Data Low of PF_SB_REM_DEV_CTL (0x0007)

6.3.57.9 Data High PF_SB_REM_DEV_CTL (0x0008)

6.3.57.10 Address Low at PF0_SB_CPM_REM_DEV_CTL (0x0009)

6.3.57.11 Address High at PF0_SB_CPM_REM_DEV_CTL (0x000A)

6.3.57.12 Data Low of PF0_SB_CPM_REM_DEV_CTL (0x000B)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of PF_SB_REM_DEV_CTL 0x2300F0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of PF_SB_REM_DEV_CTL 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 DEST_EN 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of PF0_SB_CPM_REM_DEV_CTL 0x2300F4

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of PF0_SB_CPM_REM_DEV_CTL

Bit(s) Field Name Default
NVM Value Description

15:0 DEST_EN 0x0

613875-009 757

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.57.13 Data High of PF0_SB_CPM_REM_DEV_CTL (0x000C)

6.3.57.14 Address Low at VF_SB_CPM_REM_DEV_CTL (0x000D)

6.3.57.15 Address High at VF_SB_CPM_REM_DEV_CTL (0x000E)

6.3.57.16 Data Low of VF_SB_CPM_REM_DEV_CTL (0x000F)

6.3.57.17 Data High of VF_SB_CPM_REM_DEV_CTL (0x0010)

6.3.57.18 Starting Address Low at MBX_PF_VT_PFALLOC, for
PF[0] (0x0011)

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of VF_SB_CPM_REM_DEV_CTL 0x2300EC

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of VF_SB_CPM_REM_DEV_CTL

Bit(s) Field Name Default
NVM Value Description

15:0 DEST_EN 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of MBX_PF_VT_PFALLOC, for PRT[0] 0x231E80

3:0 Type 0x2

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

758 613875-009

6.3.57.19 Starting Address High at MBX_PF_VT_PFALLOC, for
PF[0] (0x0012)

6.3.57.20 Attributes at MBX_PF_VT_PFALLOC, for PF[0] (0x0013)

6.3.57.21 Data Low of MBX_PF_VT_PFALLOC, for PF[0] (0x0014)

6.3.57.22 Data High of MBX_PF_VT_PFALLOC, for PF[0] (0x0015)

6.3.57.23 Data Low of MBX_PF_VT_PFALLOC, for PF[1] (0x0016)

6.3.57.24 Data High of MBX_PF_VT_PFALLOC, for PF[1] (0x0017)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of MBX_PF_VT_PFALLOC, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 0x0

2:0 Width 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 LASTVF 0x0

7:0 FIRSTVF 0x0

Bit(s) Field Name Default
NVM Value Description

15 VALID 0x0

14:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:8 LASTVF 0x0

7:0 FIRSTVF 0x0

Bit(s) Field Name Default
NVM Value Description

15 VALID 0x0

14:0 Reserved 0x0 Reserved.

613875-009 759

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.57.25 Data Low of MBX_PF_VT_PFALLOC, for PF[2] (0x0018)

6.3.57.26 Data High of MBX_PF_VT_PFALLOC, for PF[2] (0x0019)

6.3.57.27 Data Low of MBX_PF_VT_PFALLOC, for PF[3] (0x001A)

6.3.57.28 Data High of MBX_PF_VT_PFALLOC, for PF[3] (0x001B)

6.3.57.29 Data Low of MBX_PF_VT_PFALLOC, for PF[4] (0x001C)

6.3.57.30 Data High of MBX_PF_VT_PFALLOC, for PF[4] (0x001D)

Bit(s) Field Name Default
NVM Value Description

15:8 LASTVF 0x0

7:0 FIRSTVF 0x0

Bit(s) Field Name Default
NVM Value Description

15 VALID 0x0

14:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:8 LASTVF 0x0

7:0 FIRSTVF 0x0

Bit(s) Field Name Default
NVM Value Description

15 VALID 0x0

14:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:8 LASTVF 0x0

7:0 FIRSTVF 0x0

Bit(s) Field Name Default
NVM Value Description

15 VALID 0x0

14:0 Reserved 0x0 Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

760 613875-009

6.3.57.31 Data Low of MBX_PF_VT_PFALLOC, for PF[5] (0x001E)

6.3.57.32 Data High of MBX_PF_VT_PFALLOC, for PF[5] (0x001F)

6.3.57.33 Data Low of MBX_PF_VT_PFALLOC, for PF[6] (0x0020)

6.3.57.34 Data High of MBX_PF_VT_PFALLOC, for PF[6] (0x0021)

6.3.57.35 Data Low of MBX_PF_VT_PFALLOC, for PF[7] (0x0022)

6.3.57.36 Data High of MBX_PF_VT_PFALLOC, for PF[7] (0x0023)

Bit(s) Field Name Default
NVM Value Description

15:8 LASTVF 0x0

7:0 FIRSTVF 0x0

Bit(s) Field Name Default
NVM Value Description

15 VALID 0x0

14:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:8 LASTVF 0x0

7:0 FIRSTVF 0x0

Bit(s) Field Name Default
NVM Value Description

15 VALID 0x0

14:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:8 LASTVF 0x0

7:0 FIRSTVF 0x0

Bit(s) Field Name Default
NVM Value Description

15 VALID 0x0

14:0 Reserved 0x0 Reserved.

613875-009 761

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.58 GLOBR Registers Auto-Load Module Section

Default setup to registers that load on GLOBR events.

Table 6-64. GLOBR Registers Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.58.1

0x0001 - 0x0004 NVM contents for GLGEN_MAC_LINK_TOPO 6.3.58.2

0x0005 - 0x0017 Reserved 6.3.58.3

0x0018 - 0x002A NVM contents for PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE 6.3.58.4

0x002B - 0x003A NVM contents for PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE 6.3.58.5

0x003B - 0x004A NVM contents for PRTMAC_HSEC_CTL_RX_ENABLE_GCP 6.3.58.6

0x004B - 0x005D NVM contents for PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP 6.3.58.7

0x005E - 0x006D NVM contents for PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART1 6.3.58.8

0x006E - 0x007D NVM contents for PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART2 6.3.58.9

0x007E - 0x00E6 Reserved 6.3.58.10

0x00E7 - 0x00F9 NVM contents for PRTMAC_HSEC_CTL_RX_ENABLE_GPP 6.3.58.11

0x00FA - 0x010C Reserved 6.3.58.12

0x010D - 0x011F NVM contents for PRTMAC_HSEC_CTL_RX_ENABLE_PPP 6.3.58.13

0x0120 - 0x0132 Reserved 6.3.58.14

0x0133 - 0x0145 NVM contents for PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL 6.3.58.15

0x0146 - 0x01D5 NVM contents for PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA 6.3.58.16

0x01D6 - 0x0265 NVM contents for PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER 6.3.58.17

0x0266 - 0x0278 NVM contents for PRTMAC_HSEC_CTL_TX_SA_PART1 6.3.58.18

0x0279 - 0x0288 NVM contents for PRTMAC_HSEC_CTL_TX_SA_PART2 6.3.58.19

0x0289 - 0x02E6 Reserved 6.3.58.20

0x02E7 - 0x02F9 NVM contents for PRTPM_EEER 6.3.58.21

0x02FA - 0x0309 NVM contents for PRTPM_EEEC 6.3.58.22

0x030A - 0x0355 NVM contents for PRTDCB_FCTTVN 6.3.58.23

0x034D - 0x035C NVM contents for PRTDCB_FCRTV 6.3.58.24

0x035D - 0x036F NVM contents for PRTDCB_FCCFG 6.3.58.25

0x0370 - 0x039F Reserved 6.3.58.26

0x03A0 Attributes at PRTGEN_CNF2, for PRT[0] 6.3.58.27

0x03A1 Data Low of PRTGEN_CNF2, for PRT[0] 6.3.58.28

0x03A2 Data High of PRTGEN_CNF2, for PRT[0] 6.3.58.29

0x03A3 Data Low of PRTGEN_CNF2, for PRT[1] 6.3.58.30

0x03A4 Data High of PRTGEN_CNF2, for PRT[1] 6.3.58.31

0x03A5 Data Low of PRTGEN_CNF2, for PRT[2] 6.3.58.32

0x03A6 Data High of PRTGEN_CNF2, for PRT[2] 6.3.58.33

0x03A7 Data Low of PRTGEN_CNF2, for PRT[3] 6.3.58.34

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

762 613875-009

6.3.58.1 Module Length (0x0000)

6.3.58.2 GLGEN_MAC_LINK_TOPO (0x0001 - 0x0004)

6.3.58.2.1 Address Low at GLGEN_MAC_LINK_TOPO (0x0001)

6.3.58.2.2 Address High at GLGEN_MAC_LINK_TOPO (0x0002)

6.3.58.2.3 Data Low of GLGEN_MAC_LINK_TOPO (0x0003)

6.3.58.2.4 Data High of GLGEN_MAC_LINK_TOPO (0x0004)

6.3.58.3 Reserved (0x0005 - 0x0017)

0x03A8 Data High of PRTGEN_CNF2, for PRT[3] 6.3.58.35

0x03A9 Data Low of PRTGEN_CNF2, for PRT[4] 6.3.58.36

0x03AA Data High of PRTGEN_CNF2, for PRT[4] 6.3.58.37

0x03AB Data Low of PRTGEN_CNF2, for PRT[5] 6.3.58.38

0x03AC Data High of PRTGEN_CNF2, for PRT[5] 6.3.58.39

0x03AD Data Low of PRTGEN_CNF2, for PRT[6] 6.3.58.40

0x03AE Data High of PRTGEN_CNF2, for PRT[6] 6.3.58.41

0x03AF Data Low of PRTGEN_CNF2, for PRT[7] 6.3.58.42

0x03B0 Data High of PRTGEN_CNF2, for PRT[7] 6.3.58.43

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: GLOBR Registers Auto-load Module -> Module Length
Last Section -> Word: GLOBR Registers Auto-load Module -> Data High of
PRTGEN_CNF2, for PRT[7]

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLGEN_MAC_LINK_TOPO

0xB81DC

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLGEN_MAC_LINK_TOPO

Table 6-64. GLOBR Registers Auto-Load Module Section Summary Table [continued]

Word Offset Description Section
Reference

613875-009 763

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.58.4 PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x0018 -
0x002A)

6.3.58.4.1 Starting Address Low at
PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x0018)

6.3.58.4.2 Starting Address High at
PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x0019)

6.3.58.4.3 Attributes at PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE
(0x001A)

6.3.58.4.4 Data Low of PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE[PRT]
(0x001B + 2*PRT, PRT=0...7)

6.3.58.4.5 Data High of PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE[PRT]
(0x001C + 2*PRT, PRT=0...7)

6.3.58.5 PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE (0x002B -
0x003A)

6.3.58.5.1 Data Low of PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE[PRT]
(0x002B + 2*PRT, PRT=0...7)

6.3.58.5.2 Data High of PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE[PRT]
(0x002C + 2*PRT, PRT=0...7)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE, for PRT[0]

0x1E3180

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x18

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

764 613875-009

6.3.58.6 PRTMAC_HSEC_CTL_RX_ENABLE_GCP (0x003B -
0x004A)

6.3.58.6.1 Data Low of PRTMAC_HSEC_CTL_RX_ENABLE_GCP[PRT]
(0x003B + 2*PRT, PRT=0...7)

6.3.58.6.2 Data High of PRTMAC_HSEC_CTL_RX_ENABLE_GCP[PRT]
(0x003C + 2*PRT, PRT=0...7)

6.3.58.7 PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP (0x004B -
0x005D)

6.3.58.7.1 Starting Address Low at
PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP (0x004B)

6.3.58.7.2 Starting Address High at
PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP (0x004C)

6.3.58.7.3 Attributes at PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP
(0x004D)

6.3.58.7.4 Reserved (0x004E - 0x005D)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP, for PRT[0]

0x1E3200

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x20

4:3 Skip 00b

2:0 Width 000b

613875-009 765

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.58.8 PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART 1
(0x005E - 0x006D)

6.3.58.8.1 Data Low of
PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART1[PRT]
(0x005E + 2*PRT, PRT=0...7)

6.3.58.8.2 Data High of
PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART1[PRT]
(0x005F + 2*PRT, PRT=0...7)

6.3.58.9 PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART 2
(0x006E - 0x007D)

6.3.58.9.1 Data Low of
PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART2[PRT]
(0x006E + 2*PRT, PRT=0...7)

6.3.58.9.2 Data High of
PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART2[PRT]
(0x006F + 2*PRT, PRT=0...7)

6.3.58.10 Reserved (0x007E - 0x00E6)

6.3.58.11 PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x00E7 -
0x00F9)

6.3.58.11.1 Starting Address Low at
PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x00E7)

6.3.58.11.2 Starting Address High at
PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x00E8)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTMAC_HSEC_CTL_RX_ENABLE_GPP, for PRT[0]

0x1E34C0

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTMAC_HSEC_CTL_RX_ENABLE_GPP, for PRT[0]

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

766 613875-009

6.3.58.11.3 Attributes at PRTMAC_HSEC_CTL_RX_ENABLE_GPP
(0x00E9)

6.3.58.11.4 Data Low of PRTMAC_HSEC_CTL_RX_ENABLE_GPP[PRT]
(0x00EA + 2*PRT, PRT=0...7)

6.3.58.11.5 Data High of PRTMAC_HSEC_CTL_RX_ENABLE_GPP[PRT]
(0x00EB + 2*PRT, PRT=0...7)

6.3.58.12 Reserved (0x00FA - 0x010C)

6.3.58.13 PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x010D -
0x011F)

6.3.58.13.1 Starting Address Low at
PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x010D)

6.3.58.13.2 Starting Address High at
PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x010E)

6.3.58.13.3 Attributes at PRTMAC_HSEC_CTL_RX_ENABLE_PPP
(0x010F)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTMAC_HSEC_CTL_RX_ENABLE_PPP, for PRT[0]

0x1E35C0

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTMAC_HSEC_CTL_RX_ENABLE_PPP, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

613875-009 767

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.58.13.4 Data Low of PRTMAC_HSEC_CTL_RX_ENABLE_PPP[PRT]
(0x0110 + 2*PRT, PRT=0...7)

6.3.58.13.5 Data High of PRTMAC_HSEC_CTL_RX_ENABLE_PPP[PRT]
(0x0111 + 2*PRT, PRT=0...7)

6.3.58.14 Reserved (0x0120 - 0x0132)

6.3.58.15 PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL (0x0133
- 0x0145)

6.3.58.15.1 Starting Address Low at
PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL (0x0133)

6.3.58.15.2 Starting Address High at
PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL (0x0134)

6.3.58.15.3 Attributes at PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL
0x0135)

6.3.58.15.4 Data Low of
PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL[PRT]
(0x0136 + 2*PRT, PRT=0...7)

6.3.58.15.5 Data High of
PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL[PRT]
(0x0137 + 2*PRT, PRT=0...7)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL, for PRT[0]

0x1E36C0

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x98

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

768 613875-009

6.3.58.16 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA (0x0146 -
0x01D5)

6.3.58.16.1 Data Low of
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA[n,PRT] (0x0146 +
16*n + 2*PRT, n=0...8, PRT=0...7)

6.3.58.16.2 Data High of
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA[n,PRT] (0x0147 +
16*n + 2*PRT, n=0...8, PRT=0...7)

6.3.58.17 PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER
(0x01D6 - 0x0265)

6.3.58.17.1 Data Low of
PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER[n,PRT]
(0x01D6 + 16*n + 2*PRT, n=0...8, PRT=0...7)

6.3.58.17.2 Data High of
PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER[n,PRT]
(0x01D7 + 16*n + 2*PRT, n=0...8, PRT=0...7)

6.3.58.18 PRTMAC_HSEC_CTL_TX_SA_PART1 (0x0266 - 0x0278)

6.3.58.18.1 Starting Address Low at PRTMAC_HSEC_CTL_TX_SA_PART1
(0x0266)

6.3.58.18.2 Starting Address High at PRTMAC_HSEC_CTL_TX_SA_PART1
(0x0267)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTMAC_HSEC_CTL_TX_SA_PART1, for PRT[0]

0x1E3960

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTMAC_HSEC_CTL_TX_SA_PART1, for PRT[0]

613875-009 769

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.58.18.3 Attributes at PRTMAC_HSEC_CTL_TX_SA_PART1 (0x0268)

6.3.58.18.4 Data Low of PRTMAC_HSEC_CTL_TX_SA_PART1[PRT]
(0x0269 + 2*PRT, PRT=0...7)

6.3.58.18.5 Data High of PRTMAC_HSEC_CTL_TX_SA_PART1[PRT]
(0x026A + 2*PRT, PRT=0...7)

6.3.58.19 PRTMAC_HSEC_CTL_TX_SA_PART2 (0x0279 - 0x0288)

6.3.58.19.1 Data Low of PRTMAC_HSEC_CTL_TX_SA_PART2[PRT]
(0x0279 + 2*PRT, PRT=0...7)

6.3.58.19.2 Data High of PRTMAC_HSEC_CTL_TX_SA_PART2[PRT]
(0x027A + 2*PRT, PRT=0...7)

6.3.58.20 Reserved (0x0289 - 0x02E6)

6.3.58.21 PRTPM_EEER (0x02E7 - 0x02F9)

6.3.58.21.1 Starting Address Low at PRTPM_EEER (0x02E7)

6.3.58.21.2 Starting Address High at PRTPM_EEER (0x02E8)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x10

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTPM_EEER, for PRT[0]

0x1E4360

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTPM_EEER, for PRT[0]

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

770 613875-009

6.3.58.21.3 Attributes at PRTPM_EEER (0x02E9)

6.3.58.21.4 Data Low of PRTPM_EEER[PRT] (0x02EA + 2*PRT,
PRT=0...7)

6.3.58.21.5 Data High of PRTPM_EEER[PRT] (0x02EB + 2*PRT,
PRT=0...7)

6.3.58.22 PRTPM_EEEC (0x02FA - 0x0309)

6.3.58.22.1 Data Low of PRTPM_EEEC[PRT] (0x02FA + 2*PRT,
PRT=0...7)

6.3.58.22.2 Data High of PRTPM_EEEC[PRT] (0x02FB + 2*PRT,
PRT=0...7)

6.3.58.23 PRTDCB_FCTTVN (0x030A - 0x0355)

6.3.58.23.1 Starting Address Low at PRTDCB_FCTTVN (0x030A)

6.3.58.23.2 Starting Address High at PRTDCB_FCTTVN (0x030B)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x10

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTDCB_FCTTVN, for PRT[0]

0x1E4580

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTDCB_FCTTVN, for PRT[0]

613875-009 771

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.58.23.3 Attributes at PRTDCB_FCTTVN (0x030C)

6.3.58.23.4 Data Low of PRTDCB_FCTTVN[n,PRT] (0x030D + 19*n +
2*PRT, n=0...3, PRT=0...7)

6.3.58.23.5 Data High of PRTDCB_FCTTVN[n,PRT] (0x030E + 19*n +
2*PRT, n=0...3, PRT=0...7)

6.3.58.24 PRTDCB_FCRTV (0x034D - 0x035C)

6.3.58.24.1 Data Low of PRTDCB_FCRTV[PRT] (0x034D + 2*PRT,
PRT=0...7)

6.3.58.24.2 Data High of PRTDCB_FCRTV[PRT] (0x034E + 2*PRT,
PRT=0...7)

6.3.58.25 PRTDCB_FCCFG (0x035D - 0x036F)

6.3.58.25.1 Starting Address Low at PRTDCB_FCCFG (0x035D)

6.3.58.25.2 Starting Address High at PRTDCB_FCCFG (0x035E)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x28

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTDCB_FCCFG, for PRT[0]

0x1E4640

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTDCB_FCCFG, for PRT[0]

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

772 613875-009

6.3.58.25.3 Attributes at PRTDCB_FCCFG (0x035F)

6.3.58.25.4 Data Low of PRTDCB_FCCFG[PRT] (0x0360 + 2*PRT,
PRT=0...7)

6.3.58.25.5 Data High of PRTDCB_FCCFG[PRT] (0x0361 + 2*PRT,
PRT=0...7)

6.3.58.26 Reserved (0x0370 - 0x039F)

6.3.58.27 Attributes at PRTGEN_CNF2, for PRT[0] (0x03A0)

6.3.58.28 Data Low of PRTGEN_CNF2, for PRT[0] (0x03A1)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.29 Data High of PRTGEN_CNF2, for PRT[0] (0x03A2)

This register contains configuration per Ethernet port loaded from NVM.

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 ACTIVATE_PORT_LINK 1b When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link until the software
device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not affected by the link loss.
2. Deactivating the link using this configuration is ignored when the interface is

used for manageability.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

613875-009 773

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.58.30 Data Low of PRTGEN_CNF2, for PRT[1] (0x03A3)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.31 Data High of PRTGEN_CNF2, for PRT[1] (0x03A4)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.32 Data Low of PRTGEN_CNF2, for PRT[2] (0x03A5)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.33 Data High of PRTGEN_CNF2, for PRT[2] (0x03A6)

This register contains configuration per Ethernet port loaded from NVM.

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 ACTIVATE_PORT_LINK 1b When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link until the software
device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not affected by the link loss.
2. Deactivating the link using this configuration is ignored when the interface is

used for manageability.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 ACTIVATE_PORT_LINK 1b When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link until the software
device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not affected by the link loss.
2. Deactivating the link using this configuration is ignored when the interface is

used for manageability.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

774 613875-009

6.3.58.34 Data Low of PRTGEN_CNF2, for PRT[3] (0x03A7)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.35 Data High of PRTGEN_CNF2, for PRT[3] (0x03A8)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.36 Data Low of PRTGEN_CNF2, for PRT[4] (0x03A9)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.37 Data High of PRTGEN_CNF2, for PRT[4] (0x03AA)

This register contains configuration per Ethernet port loaded from NVM.

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 ACTIVATE_PORT_LINK 1b When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link until the software
device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not affected by the link loss.
2. Deactivating the link using this configuration is ignored when the interface is

used for manageability.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 ACTIVATE_PORT_LINK 1b When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link until the software
device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not affected by the link loss.
2. Deactivating the link using this configuration is ignored when the interface is

used for manageability.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

613875-009 775

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.58.38 Data Low of PRTGEN_CNF2, for PRT[5] (0x03AB)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.39 Data High of PRTGEN_CNF2, for PRT[5] (0x03AC)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.40 Data Low of PRTGEN_CNF2, for PRT[6] (0x03AD)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.41 Data High of PRTGEN_CNF2, for PRT[6] (0x03AE)

This register contains configuration per Ethernet port loaded from NVM.

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 ACTIVATE_PORT_LINK 1b When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link until the software
device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not affected by the link loss.
2. Deactivating the link using this configuration is ignored when the interface is

used for manageability.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 ACTIVATE_PORT_LINK 1b When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link until the software
device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not affected by the link loss.
2. Deactivating the link using this configuration is ignored when the interface is

used for manageability.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

776 613875-009

6.3.58.42 Data Low of PRTGEN_CNF2, for PRT[7] (0x03AF)

This register contains configuration per Ethernet port loaded from NVM.

6.3.58.43 Data High of PRTGEN_CNF2, for PRT[7] (0x03B0)

This register contains configuration per Ethernet port loaded from NVM.

6.3.59 PE CORER Registers Section

Default setup to registers and internal memories that load on CORER events for PE.

6.3.59.1 Module Length (0x0000)

6.3.59.2 Reserved (0x0001 - 0x0017)

Bits Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 ACTIVATE_PORT_LINK 1b When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link until the software
device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not affected by the link loss.
2. Deactivating the link using this configuration is ignored when the interface is

used for manageability.

Bits Field Name Default
NVM Value Description

15:0 Reserved Reserved.

Table 6-65. PE CORER Registers Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.59.1

0x0001 - 0x0017 Reserved 6.3.59.2

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: PE CORER Registers -> Module Length
Last Section -> Word: PE CORER Registers -> Reserved

613875-009 777

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60 Sideband Bus Auto-Load Section

Table 6-66. Sideband Bus Auto-Load Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.60.1

0x0001 CDF CFIO West - Type F Word 0 6.3.60.2

0x0002 CDF CFIO West - Type F Word 1 6.3.60.3

0x0003 CDF CFIO West - Type F Word 2 6.3.60.4

0x0004 GBE_SDP_TIMESYNC0 Address Low 6.3.60.5

0x0005 GBE_SDP_TIMESYNC0 Address High 6.3.60.6

0x0006 GBE_SDP_TIMESYNC0 Data Low 6.3.60.7

0x0007 GBE_SDP_TIMESYNC0 Data High 6.3.60.8

0x0008 GBE_SDP_TIMESYNC1 Address Low 6.3.60.9

0x0009 GBE_SDP_TIMESYNC1 Address High 6.3.60.10

0x000A GBE_SDP_TIMESYNC1 Data Low 6.3.60.11

0x000B GBE_SDP_TIMESYNC1 Data High 6.3.60.12

0x000C GBE_SDP_TIMESYNC2 Address Low 6.3.60.13

0x000D GBE_SDP_TIMESYNC2 Address High 6.3.60.14

0x000E GBE_SDP_TIMESYNC2 Data Low 6.3.60.15

0x000F GBE_SDP_TIMESYNC2 Data High 6.3.60.16

0x0010 GBE_SDP_TIMESYNC3 Address Low 6.3.60.17

0x0011 GBE_SDP_TIMESYNC3 Address High 6.3.60.18

0x0012 GBE_SDP_TIMESYNC3 Data Low 6.3.60.19

0x0013 GBE_SDP_TIMESYNC3 Data High 6.3.60.20

0x0014 GBE0_I2C_CLK Address Low 6.3.60.21

0x0015 GBE0_I2C_CLK Address High 6.3.60.22

0x0016 GBE0_I2C_CLK Data Low 6.3.60.23

0x0017 GBE0_I2C_CLK Data High 6.3.60.24

0x0018 GBE0_I2C_DATA Address Low 6.3.60.25

0x0019 GBE0_I2C_DATA Address High 6.3.60.26

0x001A GBE0_I2C_DATA Data Low 6.3.60.27

0x001B GBE0_I2C_DATA Data High 6.3.60.28

0x001C GBE1_I2C_CLK Address Low 6.3.60.29

0x001D GBE1_I2C_CLK Address High 6.3.60.30

0x001E GBE1_I2C_CLK Data Low 6.3.60.31

0x001F GBE1_I2C_CLK Data High 6.3.60.32

0x0020 GBE1_I2C_DATA Address Low 6.3.60.33

0x0021 GBE1_I2C_DATA Address High 6.3.60.34

0x0022 GBE1_I2C_DATA Data Low 6.3.60.35

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

778 613875-009

0x0023 GBE1_I2C_DATA Data High 6.3.60.36

0x0024 GBE2_I2C_CLK Address Low 6.3.60.37

0x0025 GBE2_I2C_CLK Address High 6.3.60.38

0x0026 GBE2_I2C_CLK Data Low 6.3.60.39

0x0027 GBE2_I2C_CLK Data High 6.3.60.40

0x0028 GBE2_I2C_DATA Address Low 6.3.60.41

0x0029 GBE2_I2C_DATA Address High 6.3.60.42

0x002A GBE2_I2C_DATA Data Low 6.3.60.43

0x002B GBE2_I2C_DATA Data High 6.3.60.44

0x002C GBE3_I2C_CLK Address Low 6.3.60.45

0x002D GBE3_I2C_CLK Address High 6.3.60.46

0x002E GBE3_I2C_CLK Data Low 6.3.60.47

0x002F GBE3_I2C_CLK Data High 6.3.60.48

0x0030 GBE3_I2C_DATA Address Low 6.3.60.49

0x0031 GBE3_I2C_DATA Address High 6.3.60.50

0x0032 GBE3_I2C_DATA Data Low 6.3.60.51

0x0033 GBE3_I2C_DATA Data High 6.3.60.52

0x0034 GBE0_LED0 Address Low 6.3.60.53

0x0035 GBE0_LED0 Address High 6.3.60.54

0x0036 GBE0_LED0 Data Low 6.3.60.55

0x0037 GBE0_LED0 Data High 6.3.60.56

0x0038 GBE0_LED1 Address Low 6.3.60.57

0x0039 GBE0_LED1 Address High 6.3.60.58

0x003A GBE0_LED1 Data Low 6.3.60.59

0x003B GBE0_LED1 Data High 6.3.60.60

0x003C GBE0_LED2 Address Low 6.3.60.61

0x003D GBE0_LED2 Address High 6.3.60.62

0x003E GBE0_LED2 Data Low 6.3.60.63

0x003F GBE0_LED2 Data High 6.3.60.64

0x0040 GBE1_LED0 Address Low 6.3.60.65

0x0041 GBE1_LED0 Address High 6.3.60.66

0x0042 GBE1_LED0 Data Low 6.3.60.67

0x0043 GBE1_LED0 Data High 6.3.60.68

0x0044 GBE1_LED1 Address Low 6.3.60.69

0x0045 GBE1_LED1 Address High 6.3.60.70

0x0046 GBE1_LED1 Data Low 6.3.60.71

0x0047 GBE1_LED1 Data High 6.3.60.72

Table 6-66. Sideband Bus Auto-Load Section Summary Table [continued]

Word Offset Description Section
Reference

613875-009 779

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x0048 GBE1_LED2 Address Low 6.3.60.73

0x0049 GBE1_LED2 Address High 6.3.60.74

0x004A GBE1_LED2 Data Low 6.3.60.75

0x004B GBE1_LED2 Data High 6.3.60.76

0x004C GBE2_LED0 Address Low 6.3.60.77

0x004D GBE2_LED0 Address High 6.3.60.78

0x004E GBE2_LED0 Data Low 6.3.60.79

0x004F GBE2_LED0 Data High 6.3.60.80

0x0050 GBE2_LED1 Address Low 6.3.60.81

0x0051 GBE2_LED1 Address High 6.3.60.82

0x0052 GBE2_LED1 Data Low 6.3.60.83

0x0053 GBE2_LED1 Data High 6.3.60.84

0x0054 GBE2_LED2 Address Low 6.3.60.85

0x0055 GBE2_LED2 Address High 6.3.60.86

0x0056 GBE2_LED2 Data Low 6.3.60.87

0x0057 GBE2_LED2 Data High 6.3.60.88

0x0058 GBE3_LED0 Address Low 6.3.60.89

0x0059 GBE3_LED0 Address High 6.3.60.90

0x005A GBE3_LED0 Data Low 6.3.60.91

0x005B GBE3_LED0 Data High 6.3.60.92

0x005C GBE3_LED1 Address Low 6.3.60.93

0x005D GBE3_LED1 Address High 6.3.60.94

0x005E GBE3_LED1 Data Low 6.3.60.95

0x005F GBE3_LED1 Data High 6.3.60.96

0x0060 GBE3_LED2 Address Low 6.3.60.97

0x0061 GBE3_LED2 Address High 6.3.60.98

0x0062 GBE3_LED2 Data Low 6.3.60.99

0x0063 GBE3_LED2 Data High 6.3.60.100

0x0064 GBE_SMB_CLK Address Low 6.3.60.101

0x0065 GBE_SMB_CLK Address High 6.3.60.102

0x0066 GBE_SMB_CLK Data Low 6.3.60.103

0x0067 GBE_SMB_CLK Data High 6.3.60.104

0x0068 GBE_SMB_DATA Address Low 6.3.60.105

0x0069 GBE_SMB_DATA Address High 6.3.60.106

0x006A GBE_SMB_DATA Data Low 6.3.60.107

0x006B GBE_SMB_DATA Data High 6.3.60.108

0x006C GBE_SMB_ALRT_N Address Low 6.3.60.109

Table 6-66. Sideband Bus Auto-Load Section Summary Table [continued]

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

780 613875-009

0x006D GBE_SMB_ALRT_N Address High 6.3.60.110

0x006E GBE_SMB_ALRT_N Data Low 6.3.60.111

0x006F GBE_SMB_ALRT_N Data High 6.3.60.112

0x0070 UART1_RXD Address Low 6.3.60.113

0x0071 UART1_RXD Address High 6.3.60.114

0x0072 UART1_RXD Data Low 6.3.60.115

0x0073 UART1_RXD Data High 6.3.60.116

0x0074 UART1_TXD Address Low 6.3.60.117

0x0075 UART1_TXD Address High 6.3.60.118

0x0076 UART1_TXD Data Low 6.3.60.119

0x0077 UART1_TXD Data High 6.3.60.120

0x0078 CPU_GP_0 Address Low 6.3.60.121

0x0079 CPU_GP_0 Address High 6.3.60.122

0x007A CPU_GP_0 Data Low 6.3.60.123

0x007B CPU_GP_0 Data High 6.3.60.124

0x007C GBE_MNG_I2C_CLK Address Low 6.3.60.125

0x007D GBE_MNG_I2C_CLK Address High 6.3.60.126

0x007E GBE_MNG_I2C_CLK Data Low 6.3.60.127

0x007F GBE_MNG_I2C_CLK Data High 6.3.60.128

0x0080 GBE_MNG_I2C_DATA Address Low 6.3.60.129

0x0081 GBE_MNG_I2C_DATA Address High 6.3.60.130

0x0082 GBE_MNG_I2C_DATA Data Low 6.3.60.131

0x0083 GBE_MNG_I2C_DATA Data High 6.3.60.132

0x0084 NCSI_RXD0 Address Low 6.3.60.133

0x0085 NCSI_RXD0 Address High 6.3.60.134

0x0086 NCSI_RXD0 Data Low 6.3.60.135

0x0087 NCSI_RXD0 Data High 6.3.60.136

0x0088 NCSI_RXD1 Address Low 6.3.60.137

0x0089 NCSI_RXD1 Address High 6.3.60.138

0x008A NCSI_RXD1 Data Low 6.3.60.139

0x008B NCSI_RXD1 Data High 6.3.60.140

0x008C NCSI_CRS_DV Address Low 6.3.60.141

0x008D NCSI_CRS_DV Address High 6.3.60.142

0x008E NCSI_CRS_DV Data Low 6.3.60.143

0x008F NCSI_CRS_DV Data High 6.3.60.144

0x0090 NCSI_ARB_IN Address Low 6.3.60.145

0x0091 NCSI_ARB_IN Address High 6.3.60.146

Table 6-66. Sideband Bus Auto-Load Section Summary Table [continued]

Word Offset Description Section
Reference

613875-009 781

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

0x0092 NCSI_ARB_IN Data Low 6.3.60.147

0x0093 NCSI_ARB_IN Data High 6.3.60.148

0x0094 NCSI_TX_EN Address Low 6.3.60.149

0x0095 NCSI_TX_EN Address High 6.3.60.150

0x0096 NCSI_TX_EN Data Low 6.3.60.151

0x0097 NCSI_TX_EN Data High 6.3.60.152

0x0098 NCSI_TXD0 Address Low 6.3.60.153

0x0099 NCSI_TXD0 Address High 6.3.60.154

0x009A NCSI_TXD0 Data Low 6.3.60.155

0x009B NCSI_TXD0 Data High 6.3.60.156

0x009C NCSI_TXD1 Address Low 6.3.60.157

0x009D NCSI_TXD1 Address High 6.3.60.158

0x009E NCSI_TXD1 Data Low 6.3.60.159

0x009F NCSI_TXD1 Data High 6.3.60.160

0x00A0 NCSI_ARB_OUT Address Low 6.3.60.161

0x00A1 NCSI_ARB_OUT Address High 6.3.60.162

0x00A2 NCSI_ARB_OUT Data Low 6.3.60.163

0x00A3 NCSI_ARB_OUT Data High 6.3.60.164

0x00A4 CPU_GP_1 Address Low 6.3.60.165

0x00A5 CPU_GP_1 Address High 6.3.60.166

0x00A6 CPU_GP_1 Data Low 6.3.60.167

0x00A7 CPU_GP_1 Data High 6.3.60.168

0x00A8 NAC_GBE_GPIO0 Address Low 6.3.60.169

0x00A9 NAC_GBE_GPIO0 Address High 6.3.60.170

0x00AA NAC_GBE_GPIO0 Data Low 6.3.60.171

0x00AB NAC_GBE_GPIO0 Data High 6.3.60.172

0x00AC NAC_GBE_GPIO1 Address Low 6.3.60.173

0x00AD NAC_GBE_GPIO1 Address High 6.3.60.174

0x00AE NAC_GBE_GPIO1 Data Low 6.3.60.175

0x00AF NAC_GBE_GPIO1 Data High 6.3.60.176

0x00B0 NAC_GBE_GPIO2 Address Low 6.3.60.177

0x00B1 NAC_GBE_GPIO2 Address High 6.3.60.178

0x00B2 NAC_GBE_GPIO2 Data Low 6.3.60.179

0x00B3 NAC_GBE_GPIO2 Data High 6.3.60.180

0x00B4 NAC_GBE_GPIO3 Address Low 6.3.60.181

0x00B5 NAC_GBE_GPIO3 Address High 6.3.60.182

0x00B6 NAC_GBE_GPIO3 Data Low 6.3.60.183

Table 6-66. Sideband Bus Auto-Load Section Summary Table [continued]

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

782 613875-009

0x00B7 NAC_GBE_GPIO3 Data High 6.3.60.184

0x00B8 CDF CFIO East - Type F Word 0 6.3.60.185

0x00B9 CDF CFIO East - Type F Word 1 6.3.60.186

0x00BA CDF CFIO East - Type F Word 2 6.3.60.187

0x00BB GPIO0 Address Low 6.3.60.188

0x00BC GPIO0 Address High 6.3.60.189

0x00BD GPIO0 Data Low 6.3.60.190

0x00BE GPIO0 Data High 6.3.60.191

0x00BF GPIO1 Address Low 6.3.60.192

0x00C0 GPIO1 Address High 6.3.60.193

0x00C1 GPIO1 Data Low 6.3.60.194

0x00C2 GPIO1 Data High 6.3.60.195

0x00C3 GPIO2 Address Low 6.3.60.196

0x00C4 GPIO2 Address High 6.3.60.197

0x00C5 GPIO2 Data Low 6.3.60.198

0x00C6 GPIO2 Data High 6.3.60.199

0x00C7 GPIO3 Address Low 6.3.60.200

0x00C8 GPIO3 Address High 6.3.60.201

0x00C9 GPIO3 Data Low 6.3.60.202

0x00CA GPIO3 Data High 6.3.60.203

0x00CB GPIO4 Address Low 6.3.60.204

0x00CC GPIO4 Address High 6.3.60.205

0x00CD GPIO4 Data Low 6.3.60.206

0x00CE GPIO4 Data High 6.3.60.207

0x00CF GPIO5 Address Low 6.3.60.208

0x00D0 GPIO5 Address High 6.3.60.209

0x00D1 GPIO5 Data Low 6.3.60.210

0x00D2 GPIO5 Data High 6.3.60.211

0x00D3 GPIO6 Address Low 6.3.60.212

0x00D4 GPIO6 Address High 6.3.60.213

0x00D5 GPIO6 Data Low 6.3.60.214

0x00D6 GPIO6 Data High 6.3.60.215

0x00D7 GPIO7 Address Low 6.3.60.216

0x00D8 GPIO7 Address High 6.3.60.217

0x00D9 GPIO7 Data Low 6.3.60.218

0x00DA GPIO7 Data High 6.3.60.219

0x00DB GPIO8 Address Low 6.3.60.220

Table 6-66. Sideband Bus Auto-Load Section Summary Table [continued]

Word Offset Description Section
Reference

613875-009 783

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.1 Module Length (0x0000)

6.3.60.2 CDF CFIO West - Type F Word 0 (0x0001)

0x00DC GPIO8 Address High 6.3.60.221

0x00DD GPIO8 Data Low 6.3.60.222

0x00DE GPIO8 Data High 6.3.60.223

0x00DF GPIO9 Address Low 6.3.60.224

0x00E0 GPIO9 Address High 6.3.60.225

0x00E1 GPIO9 Data Low 6.3.60.226

0x00E2 GPIO9 Data High 6.3.60.227

0x00E3 GPIO10 Address Low 6.3.60.228

0x00E4 GPIO10 Address High 6.3.60.229

0x00E5 GPIO10 Data Low 6.3.60.230

0x00E6 GPIO10 Data High 6.3.60.231

0x00E7 GPIO11 Address Low 6.3.60.232

0x00E8 GPIO11 Address High 6.3.60.233

0x00E9 GPIO11 Data Low 6.3.60.234

0x00EA GPIO11 Data High 6.3.60.235

0x00EB GPIO12 Address Low 6.3.60.236

0x00EC GPIO12 Address High 6.3.60.237

0x00ED GPIO12 Data Low 6.3.60.238

0x00EE GPIO12 Data High 6.3.60.239

0x00EF Manual Additions 6.3.60.240

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: Sideband Bus Auto-Load -> Module Length
Last Section -> Word: Sideband Bus Auto-Load -> Manual Additions

Bit(s) Field Name Default
NVM Value Description

15:4 Subtype 0x0

3:0 Type 0xF

Table 6-66. Sideband Bus Auto-Load Section Summary Table [continued]

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

784 613875-009

6.3.60.3 CDF CFIO West - Type F Word 1 (0x0002)

6.3.60.4 CDF CFIO West - Type F Word 2 (0x0003)

6.3.60.5 GBE_SDP_TIMESYNC0 Address Low (0x0004)

6.3.60.6 GBE_SDP_TIMESYNC0 Address High (0x0005)

6.3.60.7 GBE_SDP_TIMESYNC0 Data Low (0x0006)

Bit(s) Field Name Default
NVM Value Description

15 R 0b

14:12 TAG 000b

11 AL 0b

10:8 BAR 000b

7:4 Select ID 0x7

3:0 Opcode 0x7

Bit(s) Field Name Default
NVM Value Description

15:12 Second Byte En 0x0

11:8 First Byte En 0x2

7:0 Function ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x800

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 785

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.8 GBE_SDP_TIMESYNC0 Data High (0x0007)

6.3.60.9 GBE_SDP_TIMESYNC1 Address Low (0x0008)

6.3.60.10 GBE_SDP_TIMESYNC1 Address High (0x0009)

6.3.60.11 GBE_SDP_TIMESYNC1 Data Low (0x000A)

6.3.60.12 GBE_SDP_TIMESYNC1 Data High (0x000B)

6.3.60.13 GBE_SDP_TIMESYNC2 Address Low (0x000C)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x810

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x820

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

786 613875-009

6.3.60.14 GBE_SDP_TIMESYNC2 Address High (0x000D)

6.3.60.15 GBE_SDP_TIMESYNC2 Data Low (0x000E)

6.3.60.16 GBE_SDP_TIMESYNC2 Data High (0x000F)

6.3.60.17 GBE_SDP_TIMESYNC3 Address Low (0x0010)

6.3.60.18 GBE_SDP_TIMESYNC3 Address High (0x0011)

6.3.60.19 GBE_SDP_TIMESYNC3 Data Low (0x0012)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x830

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 787

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.20 GBE_SDP_TIMESYNC3 Data High (0x0013)

6.3.60.21 GBE0_I2C_CLK Address Low (0x0014)

6.3.60.22 GBE0_I2C_CLK Address High (0x0015)

6.3.60.23 GBE0_I2C_CLK Data Low (0x0016)

6.3.60.24 GBE0_I2C_CLK Data High (0x0017)

6.3.60.25 GBE0_I2C_DATA Address Low (0x0018)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x840

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x850

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

788 613875-009

6.3.60.26 GBE0_I2C_DATA Address High (0x0019)

6.3.60.27 GBE0_I2C_DATA Data Low (0x001A)

6.3.60.28 GBE0_I2C_DATA Data High (0x001B)

6.3.60.29 GBE1_I2C_CLK Address Low (0x001C)

6.3.60.30 GBE1_I2C_CLK Address High (0x001D)

6.3.60.31 GBE1_I2C_CLK Data Low (0x001E)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x860

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 789

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.32 GBE1_I2C_CLK Data High (0x001F)

6.3.60.33 GBE1_I2C_DATA Address Low (0x0020)

6.3.60.34 GBE1_I2C_DATA Address High (0x0021)

6.3.60.35 GBE1_I2C_DATA Data Low (0x0022)

6.3.60.36 GBE1_I2C_DATA Data High (0x0023)

6.3.60.37 GBE2_I2C_CLK Address Low (0x0024)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x870

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x880

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

790 613875-009

6.3.60.38 GBE2_I2C_CLK Address High (0x0025)

6.3.60.39 GBE2_I2C_CLK Data Low (0x0026)

6.3.60.40 GBE2_I2C_CLK Data High (0x0027)

6.3.60.41 GBE2_I2C_DATA Address Low (0x0028)

6.3.60.42 GBE2_I2C_DATA Address High (0x0029)

6.3.60.43 GBE2_I2C_DATA Data Low (0x002A)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x890

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 791

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.44 GBE2_I2C_DATA Data High (0x002B)

6.3.60.45 GBE3_I2C_CLK Address Low (0x002C)

6.3.60.46 GBE3_I2C_CLK Address High (0x002D)

6.3.60.47 GBE3_I2C_CLK Data Low (0x002E)

6.3.60.48 GBE3_I2C_CLK Data High (0x002F)

6.3.60.49 GBE3_I2C_DATA Address Low (0x0030)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8A0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8B0

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

792 613875-009

6.3.60.50 GBE3_I2C_DATA Address High (0x0031)

6.3.60.51 GBE3_I2C_DATA Data Low (0x0032)

6.3.60.52 GBE3_I2C_DATA Data High (0x0033)

6.3.60.53 GBE0_LED0 Address Low (0x0034)

6.3.60.54 GBE0_LED0 Address High (0x0035)

6.3.60.55 GBE0_LED0 Data Low (0x0036)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x0C8

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 793

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.56 GBE0_LED0 Data High (0x0037)

6.3.60.57 GBE0_LED1 Address Low (0x0038)

6.3.60.58 GBE0_LED1 Address High (0x0039)

6.3.60.59 GBE0_LED1 Data Low (0x003A)

6.3.60.60 GBE0_LED1 Data High (0x003B)

6.3.60.61 GBE0_LED2 Address Low (0x003C)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8D0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8E0

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

794 613875-009

6.3.60.62 GBE0_LED2 Address High (0x003D)

6.3.60.63 GBE0_LED2 Data Low (0x003E)

6.3.60.64 GBE0_LED2 Data High (0x003F)

6.3.60.65 GBE1_LED0 Address Low (0x0040)

6.3.60.66 GBE1_LED0 Address High (0x0041)

6.3.60.67 GBE1_LED0 Data Low (0x0042)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8F0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 795

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.68 GBE1_LED0 Data High (0x0043)

6.3.60.69 GBE1_LED1 Address Low (0x0044)

6.3.60.70 GBE1_LED1 Address High (0x0045)

6.3.60.71 GBE1_LED1 Data Low (0x0046)

6.3.60.72 GBE1_LED1 Data High (0x0047)

6.3.60.73 GBE1_LED2 Address Low (0x0048)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x900

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x910

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

796 613875-009

6.3.60.74 GBE1_LED2 Address High (0x0049)

6.3.60.75 GBE1_LED2 Data Low (0x004A)

6.3.60.76 GBE1_LED2 Data High (0x004B)

6.3.60.77 GBE2_LED0 Address Low (0x004C)

6.3.60.78 GBE2_LED0 Address High (0x004D)

6.3.60.79 GBE2_LED0 Data Low (0x004E)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x920

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 797

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.80 GBE2_LED0 Data High (0x004F)

6.3.60.81 GBE2_LED1 Address Low (0x0050)

6.3.60.82 GBE2_LED1 Address High (0x0051)

6.3.60.83 GBE2_LED1 Data Low (0x0052)

6.3.60.84 GBE2_LED1 Data High (0x0053)

6.3.60.85 GBE2_LED2 Address Low (0x0054)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x930

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x940

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

798 613875-009

6.3.60.86 GBE2_LED2 Address High (0x0055)

6.3.60.87 GBE2_LED2 Data Low (0x0056)

6.3.60.88 GBE2_LED2 Data High (0x0057)

6.3.60.89 GBE3_LED0 Address Low (0x0058)

6.3.60.90 GBE3_LED0 Address High (0x0059)

6.3.60.91 GBE3_LED0 Data Low (0x005A)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x950

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 799

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.92 GBE3_LED0 Data High (0x005B)

6.3.60.93 GBE3_LED1 Address Low (0x005C)

6.3.60.94 GBE3_LED1 Address High (0x005D)

6.3.60.95 GBE3_LED1 Data Low (0x005E)

6.3.60.96 GBE3_LED1 Data High (0x005F)

6.3.60.97 GBE3_LED2 Address Low (0x0060)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x960

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x970

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

800 613875-009

6.3.60.98 GBE3_LED2 Address High (0x0061)

6.3.60.99 GBE3_LED2 Data Low (0x0062)

6.3.60.100 GBE3_LED2 Data High (0x0063)

6.3.60.101 GBE_SMB_CLK Address Low (0x0064)

6.3.60.102 GBE_SMB_CLK Address High (0x0065)

6.3.60.103 GBE_SMB_CLK Data Low (0x0066)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xA10

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 801

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.104 GBE_SMB_CLK Data High (0x0067)

6.3.60.105 GBE_SMB_DATA Address Low (0x0068)

6.3.60.106 GBE_SMB_DATA Address High (0x0069)

6.3.60.107 GBE_SMB_DATA Data Low (0x006A)

6.3.60.108 GBE_SMB_DATA Data High (0x006B)

6.3.60.109 GBE_SMB_ALRT_N Address Low (0x006C)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xA20

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xA30

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

802 613875-009

6.3.60.110 GBE_SMB_ALRT_N Address High (0x006D)

6.3.60.111 GBE_SMB_ALRT_N Data Low (0x006E)

6.3.60.112 GBE_SMB_ALRT_N Data High (0x006F)

6.3.60.113 UART1_RXD Address Low (0x0070)

6.3.60.114 UART1_RXD Address High (0x0071)

6.3.60.115 UART1_RXD Data Low (0x0072)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xAE0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 803

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.116 UART1_RXD Data High (0x0073)

6.3.60.117 UART1_TXD Address Low (0x0074)

6.3.60.118 UART1_TXD Address High (0x0075)

6.3.60.119 UART1_TXD Data Low (0x0076)

6.3.60.120 UART1_TXD Data High (0x0077)

6.3.60.121 CPU_GP_0 Address Low (0x0078)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xAF0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xB00

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

804 613875-009

6.3.60.122 CPU_GP_0 Address High (0x0079)

6.3.60.123 CPU_GP_0 Data Low (0x007A)

6.3.60.124 CPU_GP_0 Data High (0x007B)

6.3.60.125 GBE_MNG_I2C_CLK Address Low (0x007C)

6.3.60.126 GBE_MNG_I2C_CLK Address High (0x007D)

6.3.60.127 GBE_MNG_I2C_CLK Data Low (0x007E)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xC50

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 805

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.128 GBE_MNG_I2C_CLK Data High (0x007F)

6.3.60.129 GBE_MNG_I2C_DATA Address Low (0x0080)

6.3.60.130 GBE_MNG_I2C_DATA Address High (0x0081)

6.3.60.131 GBE_MNG_I2C_DATA Data Low (0x0082)

6.3.60.132 GBE_MNG_I2C_DATA Data High (0x0083)

6.3.60.133 NCSI_RXD0 Address Low (0x0084)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xC60

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x980

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

806 613875-009

6.3.60.134 NCSI_RXD0 Address High (0x0085)

6.3.60.135 NCSI_RXD0 Data Low (0x0086)

6.3.60.136 NCSI_RXD0 Data High (0x0087)

6.3.60.137 NCSI_RXD1 Address Low (0x0088)

6.3.60.138 NCSI_RXD1 Address High (0x0089)

6.3.60.139 NCSI_RXD1 Data Low (0x008A)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x9A0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 807

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.140 NCSI_RXD1 Data High (0x008B)

6.3.60.141 NCSI_CRS_DV Address Low (0x008C)

6.3.60.142 NCSI_CRS_DV Address High (0x008D)

6.3.60.143 NCSI_CRS_DV Data Low (0x008E)

6.3.60.144 NCSI_CRS_DV Data High (0x008F)

6.3.60.145 NCSI_ARB_IN Address Low (0x0090)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x9B0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x9C0

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

808 613875-009

6.3.60.146 NCSI_ARB_IN Address High (0x0091)

6.3.60.147 NCSI_ARB_IN Data Low (0x0092)

6.3.60.148 NCSI_ARB_IN Data High (0x0093)

6.3.60.149 NCSI_TX_EN Address Low (0x0094)

6.3.60.150 NCSI_TX_EN Address High (0x0095)

6.3.60.151 NCSI_TX_EN Data Low (0x0096)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x9D0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 809

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.152 NCSI_TX_EN Data High (0x0097)

6.3.60.153 NCSI_TXD0 Address Low (0x0098)

6.3.60.154 NCSI_TXD0 Address High (0x0099)

6.3.60.155 NCSI_TXD0 Data Low (0x009A)

6.3.60.156 NCSI_TXD0 Data High (0x009B)

6.3.60.157 NCSI_TXD1 Address Low (0x009C)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x9E0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x9F0

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

810 613875-009

6.3.60.158 NCSI_TXD1 Address High (0x009D)

6.3.60.159 NCSI_TXD1 Data Low (0x009E)

6.3.60.160 NCSI_TXD1 Data High (0x009F)

6.3.60.161 NCSI_ARB_OUT Address Low (0x00A0)

6.3.60.162 NCSI_ARB_OUT Address High (0x00A1)

6.3.60.163 NCSI_ARB_OUT Data Low (0x00A2)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xA00

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 811

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.164 NCSI_ARB_OUT Data High (0x00A3)

6.3.60.165 CPU_GP_1 Address Low (0x00A4)

6.3.60.166 CPU_GP_1 Address High (0x00A5)

6.3.60.167 CPU_GP_1 Data Low (0x00A6)

6.3.60.168 CPU_GP_1 Data High (0x00A7)

6.3.60.169 NAC_GBE_GPIO0 Address Low (0x00A8)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0xB10

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x170

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

812 613875-009

6.3.60.170 NAC_GBE_GPIO0 Address High (0x00A9)

6.3.60.171 NAC_GBE_GPIO0 Data Low (0x00AA)

6.3.60.172 NAC_GBE_GPIO0 Data High (0x00AB)

6.3.60.173 NAC_GBE_GPIO1 Address Low (0x00AC)

6.3.60.174 NAC_GBE_GPIO1 Address High (0x00AD)

6.3.60.175 NAC_GBE_GPIO1 Data Low (0x00AE)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0001

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x180

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0001

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 813

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.176 NAC_GBE_GPIO1 Data High (0x00AF)

6.3.60.177 NAC_GBE_GPIO2 Address Low (0x00B0)

6.3.60.178 NAC_GBE_GPIO2 Address High (0x00B1)

6.3.60.179 NAC_GBE_GPIO2 Data Low (0x00B2)

6.3.60.180 NAC_GBE_GPIO2 Data High (0x00B3)

6.3.60.181 NAC_GBE_GPIO3 Address Low (0x00B4)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x190

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0001

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x1A0

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

814 613875-009

6.3.60.182 NAC_GBE_GPIO3 Address High (0x00B5)

6.3.60.183 NAC_GBE_GPIO3 Data Low (0x00B6)

6.3.60.184 NAC_GBE_GPIO3 Data High (0x00B7)

6.3.60.185 CDF CFIO East - Type F Word 0 - 0x00B8

6.3.60.186 CDF CFIO East - Type F Word 1 - 0x00B9

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0001

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Subtype 0x0

3:0 Type 0xF

Bit(s) Field Name Default
NVM Value Description

15 R 0b

14:12 TAG 000b

11 AL 0b

10:8 BAR 000b

7:4 Select ID 0x8

3:0 Opcode 0x7

613875-009 815

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.187 CDF CFIO East - Type F Word 2 - 0x00BA

6.3.60.188 GPIO0 Address Low (0x00BB)

6.3.60.189 GPIO0 Address High (0x00BC)

6.3.60.190 GPIO0 Data Low (0x00BD)

6.3.60.191 GPIO0 Data High (0x00BE)

6.3.60.192 GPIO1 Address Low (0x00BF)

Bit(s) Field Name Default
NVM Value Description

15:12 Second Byte En 0x0

11:8 First Byte En 0x2

7:0 Function ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x810

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x820

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

816 613875-009

6.3.60.193 GPIO1 Address High (0x00C0)

6.3.60.194 GPIO1 Data Low (0x00C1)

6.3.60.195 GPIO1 Data High (0x00C2)

6.3.60.196 GPIO2 Address Low (0x00C3)

6.3.60.197 GPIO2 Address High (0x00C4)

6.3.60.198 GPIO2 Data Low (0x00C5)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x830

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 817

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.199 GPIO2 Data High (0x00C6)

6.3.60.200 GPIO3 Address Low (0x00C7)

6.3.60.201 GPIO3 Address High (0x00C8)

6.3.60.202 GPIO3 Data Low (0x00C9)

6.3.60.203 GPIO3 Data High (0x00CA)

6.3.60.204 GPIO4 Address Low (0x00CB)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x840

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x850

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

818 613875-009

6.3.60.205 GPIO4 Address High (0x00CC)

6.3.60.206 GPIO4 Data Low (0x00CD)

6.3.60.207 GPIO4 Data High (0x00CE)

6.3.60.208 GPIO5 Address Low (0x00CF)

6.3.60.209 GPIO5 Address High (0x00D0)

6.3.60.210 GPIO5 Data Low (0x00D1)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x860

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 819

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.211 GPIO5 Data High (0x00D2)

6.3.60.212 GPIO6 Address Low (0x00D3)

6.3.60.213 GPIO6 Address High (0x00D4)

6.3.60.214 GPIO6 Data Low (0x00D5)

6.3.60.215 GPIO6 Data High (0x00D6)

6.3.60.216 GPIO7 Address Low (0x00D7)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x870

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x880

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

820 613875-009

6.3.60.217 GPIO7 Address High (0x00D8)

6.3.60.218 GPIO7 Data Low (0x00D9)

6.3.60.219 GPIO7 Data High (0x00DA)

6.3.60.220 GPIO8 Address Low (0x00DB)

6.3.60.221 GPIO8 Address High (0x00DC)

6.3.60.222 GPIO8 Data Low (0x00DD)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x890

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 821

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.223 GPIO8 Data High (0x00DE)

6.3.60.224 GPIO9 Address Low (0x00DF)

6.3.60.225 GPIO9 Address High (0x00E0)

6.3.60.226 GPIO9 Data Low (0x00E1)

6.3.60.227 GPIO9 Data High (0x00E2)

6.3.60.228 GPIO10 Address Low (0x00E3)

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8A0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8B0

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

822 613875-009

6.3.60.229 GPIO10 Address High (0x00E4)

6.3.60.230 GPIO10 Data Low (0x00E5)

6.3.60.231 GPIO10 Data High (0x00E6)

6.3.60.232 GPIO11 Address Low (0x00E7)

6.3.60.233 GPIO11 Address High (0x00E8)

6.3.60.234 GPIO11 Data Low (0x00E9)

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8C0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

613875-009 823

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.60.235 GPIO11 Data High (0x00EA)

6.3.60.236 GPIO12 Address Low (0x00EB)

6.3.60.237 GPIO12 Address High (0x00EC)

6.3.60.238 GPIO12 Data Low (0x00ED)

6.3.60.239 GPIO12 Data High (0x00EE)

6.3.60.240 Manual Additions (0x00EF)

Raw data module length: variable

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Bit(s) Field Name Default
NVM Value Description

15:4 Address Low 0x8D0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 Address High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Data Low 0x0700 Valid values are:
0x0700 = Function 1
0x0B00 = Function 2
0x0F00 = Function 3
0x1300 = Function 4

Bit(s) Field Name Default
NVM Value Description

15:0 Data High 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

824 613875-009

6.3.61 EMP SR Settings Module Header Section

This section contains the modes of operation of the EMP which are be stored in the Shadow RAM.

Table 6-67. EMP SR Settings Module Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Header 6.3.61.1

0x0001 SMBus Secondary Addresses 6.3.61.2

0x0002 SMBus Secondary Addresses 2 6.3.61.3

0x0003 SMBus Secondary Addresses 3 6.3.61.4

0x0004 SMBus Secondary Addresses 4 6.3.61.5

0x0005 OEM Capabilities 6.3.61.6

0x0006 OEM Technologies Enabled 6.3.61.7

0x0007 SR PF Allocations Pointer 6.3.61.8

0x0008 Max PF and VF per Port 6.3.61.9

0x0009 PF LAN Device ID 6.3.61.10

0x000A PF SAN Device ID 6.3.61.11

0x000B PF iSCSI Device ID 6.3.61.12

0x000C PF RDMA Device ID 6.3.61.13

0x000D VF LAN Device ID 6.3.61.14

0x000E VF SAN Device ID 6.3.61.15

0x000F VF iSCSI Device ID 6.3.61.16

0x0010 VF RDMA Device ID 6.3.61.17

0x0011 PF LAN Subsystem ID 6.3.61.18

0x0012 PF SAN Subsystem ID 6.3.61.19

0x0013 PF iSCSI Subsystem ID 6.3.61.20

0x0014 PF RDMA Subsystem ID 6.3.61.21

0x0015 VF LAN Subsystem ID 6.3.61.22

0x0016 VF SAN Subsystem ID 6.3.61.23

0x0017 VF iSCSI Subsystem ID 6.3.61.24

0x0018 VF RDMA Subsystem ID 6.3.61.25

0x0019 + 1*n, n=0...7 PFGEN_STATE 6.3.61.26

0x0021 Reserved - OEM Current Settings Pointer 6.3.61.27

0x0022 Features Enable 6.3.61.28

0x0023 LLDP Configuration Pointer 6.3.61.29

0x0024 Allowed SB Targets 6.3.61.30

0x0025 Allow 64 Bits Transactions 6.3.61.31

0x0026 Allowed Opcodes 6.3.61.32

0x0027 RX Hang Workaround Control 0 6.3.61.33

0x0028 RX Hang Workaround Control 1 6.3.61.34

613875-009 825

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.61.1 Section Header (0x0000)

6.3.61.2 SMBus Secondary Addresses (0x0001)

6.3.61.3 SMBus Secondary Addresses 2 (0x0002)

6.3.61.4 SMBus Secondary Addresses 3 (0x0003)

6.3.61.5 SMBus Secondary Addresses 4 (0x0004)

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 1
First Section -> Word: EMP SR Settings Module Header -> Section Header
Last Section -> Word: EMP SR Settings Module Header -> RX Hang Workaround Control 1

Section length in words.

Bit(s) Field Name Default
NVM Value Description

15:9 SMBus 1 Secondary Address 0x4A Dual address mode only.

8 Reserved 0b Reserved.

7:1 SMBus 0 Secondary Address 0x49

0 Reserved 0b Reserved.

Bit(s) Field Name Default
NVM Value Description

15:9 SMBus 3 Secondary Address 0x4C

8 Reserved 0b Reserved.

7:1 SMBus 2 Secondary Address 0x4B

0 Reserved 0b Reserved.

Bit(s) Field Name Default
NVM Value Description

15:9 SMBus 5 Secondary Address 0x4E Dual address mode only.

8 Reserved 0b Reserved.

7:1 SMBus 4 Secondary Address 0x4D

0 Reserved 0b Reserved.

Bit(s) Field Name Default
NVM Value Description

15:9 SMBus 7 Secondary Address 0x50

8 Reserved 0b Reserved.

7:1 SMBus 6 Secondary Address 0x4F

0 Reserved 0b Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

826 613875-009

6.3.61.6 OEM Capabilities (0x0005)

Defines the OEM technologies supported in this device.

6.3.61.7 OEM Technologies Enabled (0x0006)

Defines the OEM technologies enabled in this device.

6.3.61.8 SR PF Allocations Pointer (0x0007)

Bit(s) Field Name Default
NVM Value Description

15 Skip Jack Island Support 0b Skip Jack Island Support enable
0b = Disabled
1b = Enabled

14:8 Reserved 0x0 Reserved.

7 Allow HII Port Disable 0b Determines whether the present HII configuration feature is present in the
configuration menu. If this bit is set (1), the HII configuration feature is
available. If the bit is clear (0), the HII configuration is not available.

0b = Disabled
1b = Enabled

6 OCBB over MCTP Capable 0b HP OCBB over MCTP Capable enable.
0b = Disabled
1b = Capable

5 HP PLDM support Capable 0b HP PLDM support Capable.
0b = Disabled
1b = Capable

4:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:14 Reserved 00b Reserved.

13 Anti Rollback Feature Enable 0b Anti Rollback feature enable.
0b = Disabled
1b = Enabled

12 OCBB over MCTP 0b HP OCBB enable.
0b = Disabled
1b = Enabled

11 HP PLDM Support 0b Enable PLDM support.
0b = Disabled
1b = Enabled

10:0 Reserved 0x0 Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 PF Allocations Pointer 0xFFFF Points to SR PF Allocations Section. For SR PF Allocations inner structure, see
Section 6.3.62.

613875-009 827

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.61.9 Max PF and VF per Port (0x0008)

6.3.61.10 PF LAN Device ID (0x0009)

6.3.61.11 PF SAN Device ID (0x000A)

6.3.61.12 PF iSCSI Device ID (0x000B)

6.3.61.13 PF RDMA Device ID (0x000C)

6.3.61.14 VF LAN Device ID (0x000D)

Bit(s) Field Name Default
NVM Value Description

15:8 Max VF per PF 0x80 Max number of VFs allocated to a PF.

7:3 Reserved 0x0 Reserved.

2:0 Max PF per Port 010b Valid values are:
000b = 1 PF per Port
001b = 2 PFs per Port
010b = 4 PFs per Port
011b = 8 PFs per Port
100b = 16 PFs per Port

Bit(s) Field Name Default
NVM Value Description

15:0 PF LAN Device ID 0x1888

Bit(s) Field Name Default
NVM Value Description

15:0 PF SAN Device ID 0x1888

Bit(s) Field Name Default
NVM Value Description

15:0 PF iSCSI Device ID 0x1888

Bit(s) Field Name Default
NVM Value Description

15:0 PF RDMA Device ID 0x1888

Bit(s) Field Name Default
NVM Value Description

15:0 VF LAN Device ID 0x1889

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

828 613875-009

6.3.61.15 VF SAN Device ID (0x000E)

6.3.61.16 VF iSCSI Device ID (0x000F)

6.3.61.17 VF RDMA Device ID (0x0010)

6.3.61.18 PF LAN Subsystem ID (0x0011)

6.3.61.19 PF SAN Subsystem ID (0x0012)

6.3.61.20 PF iSCSI Subsystem ID (0x0013)

6.3.61.21 PF RDMA Subsystem ID (0x0014)

Bit(s) Field Name Default
NVM Value Description

15:0 VF SAN Device ID 0x1889

Bit(s) Field Name Default
NVM Value Description

15:0 VF iSCSI Device ID 0x1889

Bit(s) Field Name Default
NVM Value Description

15:0 VF RDMA Device ID 0x1889

Bit(s) Field Name Default
NVM Value Description

15:0 PF LAN Subsystem ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 PF SAN Subsystem ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 PF iSCSI Subsystem ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 PF RDMA Subsystem ID 0x0

613875-009 829

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.61.22 VF LAN Subsystem ID (0x0015)

6.3.61.23 VF SAN Subsystem ID (0x0016)

6.3.61.24 VF iSCSI Subsystem ID (0x0017)

6.3.61.25 VF RDMA Subsystem ID (0x0018)

6.3.61.26 PFGEN_STATE[n] (0x0019 + 1*n, n=0...7)

6.3.61.27 Reserved - OEM Current Settings Pointer (0x0021)

Bit(s) Field Name Default
NVM Value Description

15:0 VF LAN Subsystem ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 VF SAN Subsystem ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 VF iSCSI Subsystem ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 VF RDMA Subsystem ID 0x0

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11 PFGEN_STATE[1 + 2*n].PFSCEN 0b

10 PFGEN_STATE[1 + 2*n].PFLINKEN 1b

9 PFGEN_STATE[1 + 2*n].PFFCEN 1b

8 PFGEN_STATE[1 + 2*n].PFPEEN 0b

7:4 Reserved 0x0 Reserved.

3 PFGEN_STATE[0 + 2*n].PFSCEN 0b

2 PFGEN_STATE[0 + 2*n].PFLINKEN 1b

1 PFGEN_STATE[0 + 2*n].PFFCEN 1b

0 PFGEN_STATE[0 + 2*n].PFPEEN 0b

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

830 613875-009

6.3.61.28 Features Enable (0x0022)

Describes support for various features.

6.3.61.29 LLDP Configuration Pointer (0x0023)

6.3.61.30 Allowed SB Targets (0x0024)

The list of allowed sideband targets.

Bit(s) Field Name Default
NVM Value Description

15 PHY 2 Autoload Enable 1b PHY Auto-load Enable.

14 PHY 1 Autoload Enable 1b PHY Auto-load Enable.

13 PHY 0 Autoload Enable 1b PHY Auto-load Enable.

12 PXE Mode No-Drop Policy
Supported

0b The value indicates if the PXE Mode No-Drop policy is supported.
0b = No support.
1b = PXE Mode No-Drop is supported. This mode can be enabled by the

Configure No-Drop Policy AQ command.
Note: This field is preserved by Intel NVM Update Tool.

11:9 Switching mode 0x0 Reserved.

8 HII Version Check For
Seamless Update Enable

0b New bit to enable the feature. It is unset for all OEMGEN images.
0b = Disabled
1b = Enabled

Note: This field is preserved by Intel NVM Update Tool.

7:5 Reserved 000b Reserved
Note: This field is preserved by Intel NVM Update Tool.

4 LCB Autoload Workaround 2 1b If set, enables a firmware workaround that aborts an LCB auto-load if a
PCIe reset assertion is detected.

3 LCB Autoload Workaround 1 0b If set, enables a firmware workaround that delays the start of an LCB
auto-load after a PCIe Hot Reset.

2:1 Reserved 00b Reserved
Note: This field is preserved by Intel NVM Update Tool.

0 Non-BTS Switch mode 0b non-BTS mode.
Note: This field is preserved by Intel NVM Update Tool.

Bit(s) Field Name Default
NVM Value Description

15:0 LLDP Configuration Pointer 0xFFFF Points to LLDP Configuration Section. For LLDP Configuration inner structure,
see Section 6.3.63.

Bits Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11 SPI 0b

10 FC 0b

9 DSA 0b

8 LCB 1b

7 PCIW 1b

6 CAR 1b

613875-009 831

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.61.31 Allow 64 Bits Transactions (0x0025)

Block/Allow 64 bits transactions.

6.3.61.32 Allowed Opcodes (0x0026)

The list of allowed sideband opcodes.

5 IO Widget 1b

4:3 Reserved 00b Reserved.

2 ETHW 1b

1:0 Reserved 0b Reserved.

Bits Field Name Default
NVM Value Description

15:1 Reserved Reserved.

0 Allow 64 Bits Transactions 0b

Bits Field Name Default
NVM Value Description

15 Reserved 0b Reserved.

14 IOWr - IO Register Write (Non Posted) 0b

13 IOWr - IO Register Write (Posted) 0b

12 IORd - IO Register Read (Non Posted) 0b

11 CfgWr - Config Register Write (Non Posted) 1b

10 CfgWr - Config Register Write (Posted) 0b

9 CfgRd - Config Register Read (Non Posted) 1b

8 CRRd - Read Private Control Register (Non Posted) 0b

7 CRWr - Write Private Control Register (Non Posted) 0b

6 CRWr - Write Private Control Register (Posted) 0b

5 MBWr - Multiple Block Write (Non Posted) 0b

4 MBWr - Multiple Block Write (Posted) 0b

3 MBRd - Multiple Block Read (Non Posted) 0b

2 MWr - Register Write (Non Posted) 0b

1 MWr - Register Write (Posted) 1b

0 Mrd - Register Read (Non Posted) 1b

Bits Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

832 613875-009

6.3.61.33 RX Hang Workaround Control 0 (0x0027)

6.3.61.34 RX Hang Workaround Control 1 (0x0028)

6.3.62 SR PF Allocations Section

This section contains the modes of operation of the EMP which are be stored in the Shadow RAM.

6.3.62.1 Header (0x0000)

Bits Field Name Default
NVM Value Description

15:14 Reserved 00b Reserved.

13:8 PE_ACK_REQ_PM_TH 0x3

7:5 Reserved 000b Reserved.

4:0 REQ_WB_PM_TH 0x2

Bits Field Name Default
NVM Value Description

15 RX Hang W/A Disable 0x0

14:6 Reserved 0x0 Reserved.

5:0 RLAN_ACK_REQ_PM_TH 0x3

Table 6-68. SR PF Allocations Section Summary Table

Word Offset Description Section
Reference

0x0000 Header 6.3.62.1

0x0001 + 2*n, n=0...7 PF Flags 6.3.62.2

0x0002 + 2*n, n=0...7 PF BW 6.3.62.3

0x0011 + 2*n, n=0...23 PF Allocations - Type 6.3.62.4

0x0012 + 2*n, n=0...23 PF Allocations - Value 6.3.62.5

Bit(s) Field Name Default
NVM Value Description

15:0 Block Length Length in: 2 Bytes unit - 1
First Section -> Word: SR PF Allocations -> Header
Last Section -> Word: SR PF Allocations -> PF Allocations - Value

Size of section.

613875-009 833

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.62.2 PF Flags[n] (0x0001 + 2*n, n=0...7)

6.3.62.3 PF BW[n] (0x0002 + 2*n, n=0...7)

6.3.62.4 PF Allocations - Type[n] (0x0011 + 2*n, n=0...23)

6.3.62.5 PF Allocations - Value[n] (0x0012 + 2*n, n=0...23)

Bit(s) Field Name Default
NVM Value Description

15:1 Reserved 0x0 Reserved.

0 Load PF MAC Address 1b Defines if the LAN MAC Address of the PF should be added to the filtering table. If
this bit is set, only packets that passes the MAC and if needed, the STag are
forwarded to the PF.

Bit(s) Field Name Default
NVM Value Description

15:8 PF Max BW 0x64 This field contains the Maximum Tx bandwidth allocation of the specified partition
expressed in % of the Maximum physical port link speed. The % value ranges from 0 to
100.

7:0 PF Min BW 0x0 This field contains the Minimum Tx bandwidth allocation of the specified partition
expressed in % of the Maximum physical port link speed. The % value ranges from 0 to
100.

Bit(s) Field Name Default
NVM Value Description

15:0 Type 0xFFFF Type array.

Bit(s) Field Name Default
NVM Value Description

15:0 Value 0x0 Value array.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

834 613875-009

6.3.63 LLDP Configuration Section

Default settings to the embedded LLDP agent.

6.3.63.1 Section Length (0x0000)

The length of the section in words. Note that section length does not include a count for the section
length word.

6.3.63.2 LLDP Admin Status 0 (0x0001)

Defines status of LLDP agent. Each LAN port has independent status.

0: LLDP agent is disabled.
1: LLDP is configured for receives only.
2: LLDP is configured for transmits only.
3: Both receive and transmit enabled (default).

Table 6-69. LLDP Configuration Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length 6.3.63.1

0x0001 LLDP Admin Status 0 6.3.63.2

0x0002 LLDP Admin Status 1 6.3.63.3

0x0003 msgFastTx 6.3.63.4

0x0004 msgTxInterval 6.3.63.5

0x0005 LLDP Tx Parameters 6.3.63.6

0x0006 LLDP Initialization Timers 6.3.63.7

0x0007 ENDLESS_XOFF_THRESH 6.3.63.8

0x0008 DCBx Mode 0 6.3.63.9

0x0009 DCBx Mode 1 6.3.63.10

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: LLDP Configuration -> Section Length
Last Section -> Word: LLDP Configuration -> DCBx Mode 1

Bit(s) Field Name Default
NVM Value Description

15:12 Port 3 0x0 Defines status of LLDP agent. Applies to LAN Port 3.

11:8 Port 2 0x0 Defines status of LLDP agent. Applies to LAN Port 2.

7:4 Port 1 0x0 Defines status of LLDP agent. Applies to LAN Port 1.

3:0 Port 0 0x0 Defines status of LLDP agent. Applies to LAN Port 0.

613875-009 835

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.63.3 LLDP Admin Status 1 (0x0002)

Defines status of LLDP agent. Each LAN port has independent status.

0: LLDP agent is disabled.
1: LLDP is configured for receives only.
2: LLDP is configured for transmits only.
3: Both receive and transmit enabled (default).

6.3.63.4 msgFastTx (0x0003)

6.3.63.5 msgTxInterval (0x0004)

6.3.63.6 LLDP Tx Parameters (0x0005)

6.3.63.7 LLDP Initialization Timers (0x0006)

Timers used by LLDP agent during initialization and when to reinitialize. All times are in seconds.

Bit(s) Field Name Default
NVM Value Description

15:12 Port 7 0x0 Defines status of LLDP agent. Applies to LAN Port 7.

11:8 Port 6 0x0 Defines status of LLDP agent. Applies to LAN Port 6.

7:4 Port 5 0x0 Defines status of LLDP agent. Applies to LAN Port 5.

3:0 Port 4 0x0 Defines status of LLDP agent. Applies to LAN Port 4.

Bit(s) Field Name Default
NVM Value Description

15:0 msgFastTx 0x1 Time interval in timer ticks (Seconds) between PDU transmits during fast transmits
period.

Bit(s) Field Name Default
NVM Value Description

15:0 msgTxInterval 0x1E Is the time in timer ticks (Seconds) between transmissions during normal transmission.

Bit(s) Field Name Default
NVM Value Description

15:8 txCreditMax 0x5 Determines maximum number of LLDPDUs that can be sent per second.

7:0 msgTxHold 0x4 Is used as a multiplier of msgTxInterval to determine the txTTL that is carried in the LLDP
frames.

Bit(s) Field Name Default
NVM Value Description

15:8 reinitDelay 0x2 This parameter indicates the amount of delay, in seconds, from when adminStatus
becomes disabled until re-initialization is attempted.

7:0 txFastInit 0x4 This variable is used as the initial value for the txFast variable. This value determines the
number of LLDPDUs that are transmitted during a fast transmission period.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

836 613875-009

6.3.63.8 ENDLESS_XOFF_THRESH (0x0007)

Define a time limit the firmware waits for XOFF condition during PFR flow. The time is defined in 1msec

units. A possible default setting is 10msec (DCR175 - PFR XOFF deadlock prevention).

6.3.63.9 DCBx Mode 0 (0x0008)

Defines per-PORT DCBx mode. Please note that each port could be configured independently regardless
of the other ports configurations.

0: No DCBx is supported.
1: IEEE DCBx only.
2: CEE DCBx only.
3: Auto-Select, starting in IEEE (default).

6.3.63.10 DCBx Mode 1 (0x0009)

Defines per-PORT DCBx mode. Please note that each port could be configured independently regardless
of the other ports configurations.

0: No DCBx is supported.
1: IEEE DCBx only.
2: CEE DCBx only.
3: Auto-Select, starting in IEEE (default).

Bit(s) Field Name Default
NVM Value Description

15:0 ENDLESS_XOFF_THRESH 0xA Define a time limit the firmware waits for XOFF condition during PFR flow.
The time is defined in 1 ms units. A possible default setting is 10 ms.

Bit(s) Field Name Default
NVM Value Description

15:12 DCBx Port[3] 0x3 Port[3] DCBx mode.

11:8 DCBx Port[2] 0x3 Port[2] DCBx mode.

7:4 DCBx Port[1] 0x3 Port[1] DCBx mode.

3:0 DCBx Port[0] 0x3 Port[0] DCBx mode.

Bit(s) Field Name Default
NVM Value Description

15:12 DCBx Port[7] 0x3 Port[7] DCBx mode.

11:8 DCBx Port[6] 0x3 Port[6] DCBx mode.

7:4 DCBx Port[5] 0x3 Port[5] DCBx mode.

3:0 DCBx Port[4] 0x3 Port[4] DCBx mode.

613875-009 837

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.64 GFID Module Section

Table 6-70. GFID Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Length 6.3.64.1

0x0001 GFID 6.3.64.2

0x0002 GFID0 6.3.64.3

0x0003 GFID1 6.3.64.4

0x0004 GFID.SOFTFUSE 6.3.64.5

0x0005 GFID3 6.3.64.6

0x0006 GFID4 6.3.64.7

0x0007 GFID5 6.3.64.8

0x0008 GFID6 6.3.64.9

0x0009 GFID7 6.3.64.10

0x000A GFID8 6.3.64.11

0x000B GFID9 6.3.64.12

0x000C GFID10 6.3.64.13

0x000D GFID11 6.3.64.14

0x000E GFID12 6.3.64.15

0x000F GFID13 6.3.64.16

0x0010 GFID14 6.3.64.17

0x0011 GFID15 6.3.64.18

0x0012 GFID16 6.3.64.19

0x0013 Original GFID 6.3.64.20

0x0014 Original GFID0 6.3.64.21

0x0015 Original GFID1 6.3.64.22

0x0016 Original GFID.SOFTFUSE 6.3.64.23

0x0017 Original GFID3 6.3.64.24

0x0018 Original GFID4 6.3.64.25

0x0019 Original GFID5 6.3.64.26

0x001A Original GFID6 6.3.64.27

0x001B Original GFID7 6.3.64.28

0x001C Original GFID8 6.3.64.29

0x001D Original GFID9 6.3.64.30

0x001E Original GFID10 6.3.64.31

0x001F Original GFID11 6.3.64.32

0x0020 Original GFID12 6.3.64.33

0x0021 Original GFID13 6.3.64.34

0x0022 Original GFID14 6.3.64.35

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

838 613875-009

6.3.64.1 Length (0x0000)

6.3.64.2 GFID (0x0001)

6.3.64.3 GFID0 (0x0002)

6.3.64.4 GFID1 (0x0003)

6.3.64.5 GFID.SOFTFUSE (0x0004)

0x0023 Original GFID15 6.3.64.36

0x0024 Original GFID16 6.3.64.37

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: GFID Module -> Length
Last Section -> Word: GFID Module -> Original GFID16

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:5 Reserved 0x0 Reserved for future use.

4:3 MaxBW 00b Restrict to 50G. Relevant only if soft fuse is applied.
Valid values are:

00b = 200 Gb/s
01b = 100 Gb/s
10b = 50 Gb/s
11b = 25 Gb/s

Table 6-70. GFID Module Section Summary Table

Word Offset Description Section
Reference

613875-009 839

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.64.6 GFID3 (0x0005)

6.3.64.7 GFID4 (0x0006)

6.3.64.8 GFID5 (0x0007)

6.3.64.9 GFID6 (0x0008)

6.3.64.10 GFID7 (0x0009)

2:1 NumOfPorts 00b For future use and compatibility. Relevant only if soft fuse is applied.
Valid values are:

00b = 8 ports
01b = 4 ports
10b = 2 ports
11b = 1 ports

0 ApplyFuses 0b Enable “Soft” FW Fuse.
Valid values are:

0b = Fuses not applied.
1b = Fuses applied.

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

840 613875-009

6.3.64.11 GFID8 (0x000A)

6.3.64.12 GFID9 (0x000B)

6.3.64.13 GFID10 (0x000C)

6.3.64.14 GFID11 (0x000D)

6.3.64.15 GFID12 (0x000E)

6.3.64.16 GFID13 (0x000F)

6.3.64.17 GFID14 (0x0010)

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

613875-009 841

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.64.18 GFID15 (0x0011)

6.3.64.19 GFID16 (0x0012)

6.3.64.20 Original GFID (0x0013)

6.3.64.21 Original GFID0 (0x0014)

6.3.64.22 Original GFID1 (0x0015)

6.3.64.23 Original GFID.SOFTFUSE (0x0016)

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bit(s) Field Name Default
NVM Value Description

15:5 Reserved 0x0 Reserved for future use.

4:3 MaxBW 00b Restrict to 50G. Relevant only if soft fuse is applied.
Valid values are:

00b = 200 Gb/s
01b = 100 Gb/s
10b = 50 Gb/s
11b = 25 Gb/s

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

842 613875-009

6.3.64.24 Original GFID3 (0x0017)

6.3.64.25 Original GFID4 (0x0018)

6.3.64.26 Original GFID5 (0x0019)

6.3.64.27 Original GFID6 (0x001A)

6.3.64.28 Original GFID7 (0x001B)

2:1 NumOfPorts 00b For future use and compatibility. Relevant only if soft fuse is applied.
Valid values are:

00b = 8 ports
01b = 4 ports
10b = 2 ports
11b = 1 ports

0 ApplyFuses 0b Enable “Soft” FW Fuse.
Valid values are:

0b = Fuses not applied.
1b = Fuses applied.

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bit(s) Field Name Default
NVM Value Description

613875-009 843

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.64.29 Original GFID8 (0x001C)

6.3.64.30 Original GFID9 (0x001D)

6.3.64.31 Original GFID10 (0x001E)

6.3.64.32 Original GFID11 (0x001F)

6.3.64.33 Original GFID12 (0x0020)

6.3.64.34 Original GFID13 (0x0021)

6.3.64.35 Original GFID14 (0x0022)

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

844 613875-009

6.3.64.36 Original GFID15 (0x0023)

6.3.64.37 Original GFID16 (0x0024)

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

Bits Field Name Default
NVM Value Description

15:0 Original GFID 0x0

613875-009 845

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.65 Manageability Module Header Section

This section contains parameters related to the manageability functionality, such as connection type
and others, It also points to subsections configuring the filters and the sideband interfaces.

6.3.65.1 Section Length (0x0000)

The length of the section in words. Note that section length does not include a count for the section
length word.

6.3.65.2 Common Manageability Parameters (0x0001)

Table 6-71. Manageability Module Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length 6.3.65.1

0x0001 Common Manageability Parameters 6.3.65.2

0x0002 Common Manageability Parameters 2 6.3.65.3

0x0003 PLDM Control Word 6.3.65.4

0x0004 RDE Control Word 6.3.65.5

0x0005 OCP NIC Parameters Obsolete 6.3.65.6

0x0006 OCP NIC Parameters 2 6.3.65.7

0x0007 Sideband Configuration Pointer 6.3.65.8

0x0008 Reserved 6.3.65.9

0x0009 Traffic Types Parameters 6.3.65.10

0x000A OEM Section Pointer 6.3.65.11

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: Manageability Module Header -> Section Length
Last Section -> Word: Manageability Module Header -> OEM Section Pointer

Bit(s) Field Name Default
NVM Value Description

15:11 Reserved 0x0 Reserved.

10:8 Manageability Pass-Through
Mode

010b Valid values are:
000b = None
010b = Pass-through (PT) mode

7:5 Reserved 000b Reserved.

4 Force TCO Reset Disable 1b If cleared, allows the BMC to do a Global reset of the device using the Force
TCO SMBus or NC-SI commands.

0b = Enable Force TCO reset.
1b = Disable Force TCO reset.

3 Reserved 0b Reserved.

2 OS2BMC Capable 1b 0b = Disable
1b = Enable.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

846 613875-009

6.3.65.3 Common Manageability Parameters 2 (0x0002)

1:0 Reserved 0b Reserved.

Bit(s) Field Name Default
NVM Value Description

15 LAN7_FTCO_ISOL_DIS 1b Allow isolation of port 7 per BMC request.
0b = Enabled
1b = Disabled

14 LAN6_FTCO_ISOL_DIS 1b Allow isolation of port 6 per BMC request.
0b = Enabled
1b = Disabled

13 LAN5_FTCO_ISOL_DIS 1b Allow isolation of port 5 per BMC request.
0b = Enabled
1b = Disabled

12 LAN4_FTCO_ISOL_DIS 1b Allow isolation of port 4 per BMC request.
0b = Enabled
1b = Disabled

11 Multi-Drop NC-SI 1b 0b = Point-to-point
1b = Multi-drop

10 Reserved 0b Reserved.

9 EMP_LINK_ON 0b Copy of the PRTPM_GC.EMP_LINK_ON bit for EMP use.
0b = Disabled
1b = Enabled

8 Redfish Support for PLDM
(Type 6)

1b 0b = Disabled
1b = Enabled

7 FW Update over PLDM
Support

0b Support for PLDM base is defined as bit 7 | bit 6 (FW update or monitoring and
control support).

0b = Disabled
1b = Enabled

6 PLDM Monitoring and
Control

0b Support for PLDM base is defined as bit 7 | bit 6 (FW update or monitoring and
control support).

0b = Disabled
1b = Enabled

5 OEM over MCTP Support 0b 0b = Disabled
1b = Enabled

4 NC-SI over MCTP Support 0b 0b = Disabled
1b = Enabled

3 LAN3_FTCO_ISOL_DIS 1b Allow isolation of port 3 per BMC request.
0b = Enabled
1b = Disabled

2 LAN2_FTCO_ISOL_DIS 1b Allow isolation of port 2 per BMC request.
0b = Enabled
1b = Disabled

1 LAN1_FTCO_ISOL_DIS 1b Allow isolation of port 1 per BMC request.
0b = Enabled
1b = Disabled

0 LAN0_FTCO_ISOL_DIS 1b Allow isolation of port 0 per BMC request.
0b = Enabled
1b = Disabled

Bit(s) Field Name Default
NVM Value Description

613875-009 847

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.65.4 PLDM Control Word (0x0003)

6.3.65.5 RDE Control Word (0x0004)

6.3.65.6 OCP NIC Parameters Obsolete (0x0005)

6.3.65.7 OCP NIC Parameters 2 (0x0006)

Bit(s) Field Name Default
NVM Value Description

15:9 Reserved 0x0 Reserved.

8 Expose NIC Composite State sensors 1b

7 Expose Power Sensors 1b

6 Expose Thermal Trip State Sensors 1b

5 Expose Configuration and Configuration Change 1b

4 Expose Presence State 1b

3 Expose Health State 1b

2 Expose Thermal Sensors 1b

1 Expose Link Speed 1b

0 Expose Link Status 1b

Bit(s) Field Name Default
NVM Value Description

15:4 Reserved 0x0 Reserved for other schemas including OEM schema extensions.

3 EthernetInterface v1.4.0 1b Ethernet Interface schema.

2:1 Reserved 00b Reserved.

0 ACD 1b ACD collection.

Bit(s) Field Name Default
NVM Value Description

15:7 Reserved 0x0 Reserved.

6 FAN_ON_AUX Valid Obsolete 0b

5 FAN_ON_AUX Value Obsolete 0b

4:0 FAN_ON_AUX SDP Obsolete 0x0 Valid only if FAN_ON_AUX valid = 1.

Bit(s) Field Name Default
NVM Value Description

15:10 Reserved 0x0 Reserved.

9 OCP Compliance Indicator 0b OCP Compliance Indicator
0b = Stand-up card
1b = OCP compliant card

8:4 Instance ID SDP 0x0 This field determines the SDP that is used for the Instance ID on a
dual-device NIC. This field is only valid if the Instance ID from SDP field is
1b.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

848 613875-009

6.3.65.8 Sideband Configuration Pointer (0x0007)

This module is l28 bytes and must be mapped in the first valid 4 KB sector of the Flash.

6.3.65.9 Reserved (0x0008)

6.3.65.10 Traffic Types Parameters (0x0009)

3 Instance ID from SDP 0b This bit determines whether the instance ID should be taken from an SDP.
0b = There is only one device on the NIC.
1b = There are two devices on the NIC. The instance ID of this device is

taken from the SDP defined by the Instance ID SDP field.

2 FAN_ON_AUX Present 0b

1 TEMP_CRIT_N Present 0b

0 TEMP_WARN_N Present 0b

Bit(s) Field Name Default
NVM Value Description

15:0 Sideband Configuration
Pointer

0xFFFF Points to Sideband Configuration Structure Section. For Sideband Configuration
Structure inner structure, see Section 6.3.66.

Bit(s) Field Name Default
NVM Value Description

15:14 Port 7 Traffic Types 01b Defines which type of traffic can flow to and from primary BMC connection on port 3.
The traffic types defined by this field are enabled by the Manageability Mode field
and the OS2BMC Capable bit in the Common Manageability Parameters 1 NVM word.

00b = Reserved
01b = Network to BMC traffic only
10b = OS2BMC traffic only
11b = Both Network to BMC traffic and OS2BMC traffic

13:12 Port 6 Traffic Types 01b Defines which type of traffic can flow to and from primary BMC connection on port 3.
The traffic types defined by this field are enabled by the Manageability Mode field
and the OS2BMC Capable bit in the Common Manageability Parameters 1 NVM word.

00b = Reserved
01b = Network to BMC traffic only
10b = OS2BMC traffic only
11b = Both Network to BMC traffic and OS2BMC traffic

11:10 Port 5 Traffic Types 01b Defines which type of traffic can flow to and from primary BMC connection on port 2.
The traffic types defined by this field are enabled by the Manageability Mode field
and the OS2BMC Capable bit in the Common Manageability Parameters 1 NVM word.

00b = Reserved
01b = Network to BMC traffic only
10b = OS2BMC traffic only
11b = Both Network to BMC traffic and OS2BMC traffic

9:8 Port 4 Traffic Types 01b Defines which type of traffic can flow to and from primary BMC connection on port 2.
The traffic types defined by this field are enabled by the Manageability Mode field
and the OS2BMC Capable bit in the Common Manageability Parameters 1 NVM word.

00b = Reserved
01b = Network to BMC traffic only
10b = OS2BMC traffic only
11b = Both Network to BMC traffic and OS2BMC traffic

Bit(s) Field Name Default
NVM Value Description

613875-009 849

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.65.11 OEM Section Pointer (0x000A)

7:6 Port 3 Traffic Types 01b Defines which type of traffic can flow to and from primary BMC connection on port 1.
The traffic types defined by this field are enabled by the Manageability Mode field
and the OS2BMC Capable bit in the Common Manageability Parameters 1 NVM word.

00b = Reserved
01b = Network to BMC traffic only
10b = OS2BMC traffic only
11b = Both Network to BMC traffic and OS2BMC traffic

5:4 Port 2 Traffic Types 01b Defines which type of traffic can flow to and from primary BMC connection on port 1.
The traffic types defined by this field are enabled by the Manageability Mode field
and the OS2BMC Capable bit in the Common Manageability Parameters 1 NVM word.

00b = Reserved
01b = Network to BMC traffic only
10b = OS2BMC traffic only
11b = Both Network to BMC traffic and OS2BMC traffic

3:2 Port 1 Traffic Types 01b Defines which type of traffic can flow to and from primary BMC connection on port 0.
The traffic types defined by this field are enabled by the Manageability Mode field
and the OS2BMC Capable bit in the Common Manageability Parameters 1 NVM word.

00b = Reserved
01b = Network to BMC traffic only
10b = OS2BMC traffic only
11b = Both Network to BMC traffic and OS2BMC traffic

1:0 Port 0 Traffic Types 01b Defines which type of traffic can flow to and from primary BMC connection on port 0.
The traffic types defined by this field are enabled by the Manageability Mode field
and the OS2BMC Capable bit in the Common Manageability Parameters 1 NVM word.

00b = Reserved
01b = Network to BMC traffic only
10b = OS2BMC traffic only
11b = Both Network to BMC traffic and OS2BMC traffic

Bit(s) Field Name Default
NVM Value Description

15:0 OEM Section Pointer 0xFFFF Points to OEM Section. For OEM Section inner structure, see Section 6.3.67.

Bit(s) Field Name Default
NVM Value Description

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

850 613875-009

6.3.66 Sideband Configuration Structure Section

This section describes the setting of the different pass-through interfaces (SMBus, NC-SI, and MCTP).

6.3.66.1 Section Length (0x0000)

The length of the section in words. Note that section length does not include a count for the section
length word.

6.3.66.2 SMBus Maximum Fragment Size (0x0001)

Table 6-72. Sideband Configuration Structure Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length 6.3.66.1

0x0001 SMBus Maximum Fragment Size 6.3.66.2

0x0002 SMBus Notification Timeout and Flags 6.3.66.3

0x0003 NC-SI Configuration 1 6.3.66.4

0x0004 NC-SI Configuration 2 6.3.66.5

0x0005 NC-SI Flow Control XOFF 6.3.66.6

0x0006 NC-SI Flow Control XON 6.3.66.7

0x0007 NC-SI HW Arbitration Configuration 6.3.66.8

0x0008 - 0x000C Reserved 6.3.66.9

0x000D OEM IANA 6.3.66.10

0x000E NC-SI over MCTP Message Types 6.3.66.11

0x000F NC-SI over MCTP Configuration 6.3.66.12

0x0010 MCTP Rate Limiter Config 1 6.3.66.13

0x0011 MCTP Rate Limiter Config 2 6.3.66.14

0x0012 Port to MDEF Mapping 0 6.3.66.15

0x0013 Port to MDEF Mapping 1 6.3.66.16

0x0014 Port to MDEF Mapping 2 6.3.66.17

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: Sideband Configuration Structure -> Section Length
Last Section -> Word: Sideband Configuration Structure -> Port to MDEF Mapping 2

Bit(s) Field Name Default
NVM Value Description

15:0 Fragment Size 0x0020 SMBus Maximum Fragment Size (bytes).
Supported range is between 32 and 240 bytes.
Note: In MCTP mode, this value should be set to 0x45 (64 bytes payload + 5 bytes of

MCTP header).

613875-009 851

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.66.3 SMBus Notification Timeout and Flags (0x0002)

6.3.66.4 NC-SI Configuration 1 (0x0003)

Bit(s) Field Name Default
NVM Value Description

15:8 SMBus Notification
Timeout (ms)

0xFF

7:6 SMBus Connection Speed 00b SMBus Connection Speed
00b = Standard SMBus connection.
01b = 400 Kb/s fast I2C.
10b = 1 Mb/s fast+ I2C.
11b = Reserved.

5 SMBus Block Read
Command

0b SMBus Block Read Command
0b = Block read command is 0xC0.
1b = Block read command is 0xD0.

4 Reserved 0b Reserved.

3 Enable Fairness Arbitration 1b MCTP over SMBus feature
0b = Disable fairness arbitration.
1b = Enable fairness arbitration.

2 Disable SMBus ARP
Functionality

0b Disable SMBus ARP Functionality
0b = SMBus ARP Enabled.
1b = SMBus ARP Disabled.

1 SMBus ARP PEC 1b SMBus ARP PEC
0b = Disable PEC Disable SMBus ARP PEC.
1b = Enable PEC Enable SMBus ARP PEC.

Should be set in MCTP modes.

0 SMBus Transaction PEC 0b SMBus Transactions PEC
0b = Disable PEC.

If this bit is cleared, PEC is not added to primary write or secondary
read transactions, a secondary write transaction with PEC is dropped.

1b = Enable PEC.
If this bit is set, PEC is added for primary SMBus write transactions. a
PEC is added to secondary read transactions and can be received in
secondary write transaction.

Should be set in MCTP modes.

Bit(s) Field Name Default
NVM Value Description

15 NC-SI Channel to Port
Mapping Table Valid

0b 0b = Table Invalid Use default algorithm described in Channel ID mapping
section.

1b = Table Valid Use the mapping defined in this word.

14 Flow Control 0b 0b = NC-SI flow control disable.
1b = NC-SI flow control enable.

13:10 NC-SI Version 0x1 Supported NC-SI version.
Valid values are:

0x0 = NC-SI 1.0.1
0x1 = NC-SI 1.1

9 NC-SI HW Arbitration
Enable

0b 0b = Not supported
1b = Supported

8 Reserved Reserved.

7:5 Package ID 000b Default Package ID.
The calculation of the Package ID is done according to the configuration of the
“Read NC-SI Package ID from SDP” bits in the “NC-SI Configuration 2” field.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

852 613875-009

6.3.66.5 NC-SI Configuration 2 (0x0004)

6.3.66.6 NC-SI Flow Control XOFF (0x0005)

4:0 Reserved 0x0 Reserved. Must be zero.

Bit(s) Field Name Default
NVM Value Description

15:14 Read NC-SI Package ID
from SDP

0x00 Read NC-SI Package ID.
Valid values are:

0x0 = PackageID from NVM. Package ID is read from NVM “Package ID” field in
the NC-SI Configuration 1.

0x1 = PackageID from NVM “Package ID” field in the NC-SI Configuration 1 and
SDPs #0 and #1. The package ID is (NVM Package ID[2], SDP#1 value,
SDP#0 value).

0x2 = PackageID from NVM “Package ID” field in the NC-SI Configuration 1 and
SDP#1. The package ID is (NVM Package ID[2], SDP#1 value, NVM
Package ID[0]).

0x3 = Reserved

13:9 PackageID SDP 11

1. PackageID SPD 0 and PackageID SPD 1 must each be connected directly to an SDP on the E810.

0x0 Defines the SDP#1 from which the NC-SI package ID[1] is taken.

8:4 PackageID SDP 01 0x0 Defines the SDP#0 from which the NC-SI package ID[0] is taken

3:0 Max XOFF Renewal 0x3 NC-SI Flow Control MAX XOFF Renewal (# of XOFF renewals allowed):
0x0 = Disabled. Unlimited number of XOFF frames can be sent.
0x1 = Up to 2 consecutive XOFFs frames can be sent by the device.
0x2 = Up to 3 consecutive XOFFs frames can be sent by the device.
. . .
0xF = Up to 16 consecutive XOFFs frames can be sent by the device.

Bit(s) Field Name Default
NVM Value Description

15:0 XOFF Threshold 0x12C0 Tx buffer watermark for sending a XOFF NC-SI flow control packet in bytes. The XOFF
Threshold value refers to the occupied space in the buffer.
The value should be 16 bytes aligned.
Notes:
• Field relevant for NC-SI operation mode only.
• To support a maximum packet size of 1.5 KB, the value programmed assuming a Tx

buffer size of 8 KB value of field should be 0x12C0 (4,800 bytes).

Bit(s) Field Name Default
NVM Value Description

613875-009 853

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.66.7 NC-SI Flow Control XON (0x0006)

6.3.66.8 NC-SI HW Arbitration Configuration (0x0007)

6.3.66.9 Reserved (0x0008 - 0x000C)

6.3.66.10 OEM IANA (0x000D)

6.3.66.11 NC-SI over MCTP Message Types (0x000E)

6.3.66.12 NC-SI over MCTP Configuration (0x000F)

Bit(s) Field Name Default
NVM Value Description

15:0 XON Threshold 0x1340 Tx buffer watermark for sending a XON NC-SI flow control packet in bytes. The XON
Threshold value refers to the available space in the Tx buffer.
The value should be 16 bytes aligned.
Notes:
• Field relevant for NC-SI operation mode only.
• To support maximum packet size of 1.5 KB, the value programmed should be a

positive value that equals: Buffer size - XOFF Threshold + 1536 bytes. Assuming a
Tx Buffer size is 8 KB and the XOFF Threshold is 4800 bytes value of field should be
0x1340 (4,928 bytes).

Bit(s) Field Name Default
NVM Value Description

15:0 TOKEN Timeout 0xA000 NC-SI Hardware Arbitration TOKEN Timeout (in NC-SI REF_CLK cycles - 20 ns).
Setting value to 0 disables the timeout mechanism.

Bit(s) Field Name Default
NVM Value Description

15:0 OEM IANA 0x0 Identifies the OEM targeted by this image.
The set of commands accepted depends on the IANA value in this field.
The regular Intel OEM commands are accepted only with IANA 0x157.

Bit(s) Field Name Default
NVM Value Description

15:8 NC-SI Control Message Type 0x2 Defines the MCTP message type used to identify NC-SI Control packets.

7:0 NC-SI Pass-Through Message
Type

0x3 Defines the MCTP message type used to identify NC-SI pass-through
packets.

Bit(s) Field Name Default
NVM Value Description

15:7 Reserved 0x0 Reserved.

6 Simplified MCTP 0b If set, only SOM and EOM bits are used for the reassembly process. Relevant only
in SMBus mode.

5 Disable ACLs 0b If set, the ACLs on the PCIe VDMs are disabled.

4:3 Reserved 00b Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

854 613875-009

6.3.66.13 MCTP Rate Limiter Config 1 (0x0010)

MCTP rate limiter configuration for first channel.

6.3.66.14 MCTP Rate Limiter Config 2 (0x0011)

MCTP rate limiter configuration for first channel.

6.3.66.15 Port to MDEF Mapping 0 (0x0012)

Defines the ports mapping to MDEF sets for sets 0-2.

2 MCTP Over PCIe
Segmentation Enable

1b This bit enables a modification to the MCTP over PCIe VDM discovery/
enumeration flow to support PCIe bus segmentation with a single MCTP Bus
Owner.

0b = 0x0 = MCTP discovery/enumeration follows DSP0238 v1.2.0.
1b = Enable modification for PCIe bus segmentation.

1 Reserved 0b Reserved.

Bit(s) Field Name Default
NVM Value Description

15:0 MCTP Rate 0x9C40 Defines the number of cycles between accesses of the MCTP send client to the memory
arbiter.
Current value assumes a clock of 312.5 MHz and a bus width of 128 bits. This value
provides a bit rate of 1 Mb/s.

Bit(s) Field Name Default
NVM Value Description

15 Decision Point 0b Defines if, when credits are available, a full MCTP message is sent or a single VDM is
sent.

0b = Per VDM
1b = Per Packet

14:0 MCTP Max Credits 0x5 Defines the maximum number of 16 bytes credit that can be accumulated. These
credits include the VDM header line (one line for each 64 byte VDM).

Bit(s) Field Name Default
NVM Value Description

15 Reserved 0b Reserved.

14:10 MDEF Set 2 Port 0x1F If 0x1F the MDEF is not assigned to any port.

9:5 MDEF Set 1 Port 0x1F If 0x1F the MDEF is not assigned to any port.

4:0 MDEF Set 0 Port 0x1F If 0x1F the MDEF is not assigned to any port.

Bit(s) Field Name Default
NVM Value Description

613875-009 855

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.66.16 Port to MDEF Mapping 1 (0x0013)

Defines the ports mapping to MDEF sets for sets 3-5.

6.3.66.17 Port to MDEF Mapping 2 (0x0014)

Defines the ports mapping to MDEF sets for sets 6-7.

6.3.67 OEM Section

This section is the header of the OEM-specific data identifying the OEM for which this data is defined.

6.3.67.1 Section Length (0x0000)

The length of the section in words. Note that section length does not include a count for the section
length word.

Bit(s) Field Name Default
NVM Value Description

15 Reserved 0b Reserved.

14:10 MDEF Set 5 Port 0x1F If 0x1F the MDEF is not assigned to any port.

9:5 MDEF Set 4 Port 0x1F If 0x1F the MDEF is not assigned to any port.

4:0 MDEF Set 3 Port 0x1F If 0x1F the MDEF is not assigned to any port.

Bit(s) Field Name Default
NVM Value Description

15:10 Reserved 0x0 Reserved.

9:5 MDEF Set 7 Port 0x1F If 0x1F the MDEF is not assigned to any port.

4:0 MDEF Set 6 Port 0x1F If 0x1F the MDEF is not assigned to any port.

Table 6-73. OEM Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length 6.3.67.1

0x0001 OEM Header 6.3.67.2

0x0002 Reserved 6.3.67.3

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: OEM Section -> Section Length
Last Section -> Word: OEM Section -> Reserved

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

856 613875-009

6.3.67.2 OEM Header (0x0001)

6.3.67.3 Reserved (0x0002)

Bit(s) Field Name Default
NVM Value Description

15:0 OEM Identifier 0x02A2 Identify the OEM for which this section is defined. Should be equal to the OEM IANA value.

613875-009 857

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.68 Auto-Generated Pointers Module Section

Pointers to Type 1/2 words used by EMP and Software.

Table 6-74. Auto-Generated Pointers Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.68.1

0x0001 Pointer to PFPM_APM Section 6.3.68.2

0x0002 Pointer to PFPM_APM Offset 6.3.68.3

0x0003 Pointer to PRTPM_GC Section 6.3.68.4

0x0004 Pointer to PRTPM_GC Offset 6.3.68.5

0x0005 Pointer to GLPCI_CAPSUP Section 6.3.68.6

0x0006 Pointer to GLPCI_CAPSUP Offset 6.3.68.7

0x0007 Pointer to PRTDCB_FCCFG Section 6.3.68.8

0x0008 Pointer to PRTDCB_FCCFG Offset 6.3.68.9

0x0009 Pointer to PFGEN_PORTNUM Section 6.3.68.10

0x000A Pointer to PFGEN_PORTNUM Offset 6.3.68.11

0x000B Pointer to PFPCI_FUNC2 Section 6.3.68.12

0x000C Pointer to PFPCI_FUNC2 Offset 6.3.68.13

0x000D Pointer to PF_VT_PFALLOC_PCIE Section 6.3.68.14

0x000E Pointer to PF_VT_PFALLOC_PCIE Offset 6.3.68.15

0x000F Pointer to PF_VT_PFALLOC Section 6.3.68.16

0x0010 Pointer to PF_VT_PFALLOC Offset 6.3.68.17

0x0011 Pointer to GLPCI_REVID Section 6.3.68.18

0x0012 Pointer to GLPCI_REVID Offset 6.3.68.19

0x0013 Pointer to PFPCI_DEVID Section 6.3.68.20

0x0014 Pointer to PFPCI_DEVID Offset 6.3.68.21

0x0015 Pointer to GLPCI_SUBVENID Section 6.3.68.22

0x0016 Pointer to GLPCI_SUBVENID Offset 6.3.68.23

0x0017 Pointer to PFPCI_SUBSYSID Section 6.3.68.24

0x0018 Pointer to PFPCI_SUBSYSID Offset 6.3.68.25

0x0019 Pointer to GLPCI_VENDORID Section 6.3.68.26

0x001A Pointer to GLPCI_VENDORID Offset 6.3.68.27

0x001B Pointer to PFPCI_FUNC Section 6.3.68.28

0x001C Pointer to PFPCI_FUNC Offset 6.3.68.29

0x001D Pointer to PFPCI_CNF Section 6.3.68.30

0x001E Pointer to PFPCI_CNF Offset 6.3.68.31

0x001F Pointer to GLPCI_CAPCTRL Section 6.3.68.32

0x0020 Pointer to GLPCI_CAPCTRL Offset 6.3.68.33

0x0021 Pointer to PFGEN_PORTNUM_CAR Section 6.3.68.34

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

858 613875-009

6.3.68.1 Module Length (0x0000)

6.3.68.2 Pointer to PFPM_APM Section (0x0001)

6.3.68.3 Pointer to Pfpm_apm Offset (0x0002)

0x0022 Pointer to PFGEN_PORTNUM_CAR Offset 6.3.68.35

0x0023 Pointer to GLFOC_CACHE_CTL Section 6.3.68.36

0x0024 Pointer to GLFOC_CACHE_CTL Offset 6.3.68.37

0x0025 Pointer to PRTGEN_CNF Section 6.3.68.38

0x0026 Pointer to PRTGEN_CNF Offset 6.3.68.39

0x0027 Pointer to PF_VT_PFALLOC_HIF Section 6.3.68.40

0x0028 Pointer to PF_VT_PFALLOC_HIF Offset 6.3.68.41

0x0029 Pointer to PRTMAC_HSECTL1 Section 6.3.68.42

0x002A Pointer to PRTMAC_HSECTL1 Offset 6.3.68.43

0x002B Pointer to PRT_TDPUL2TAGSEN Section 6.3.68.44

0x002C Pointer to PRT_TDPUL2TAGSEN Offset 6.3.68.45

0x002D Pointer to GLGEN_MAC_LINK_TOPO Section 6.3.68.46

0x002E Pointer to GLGEN_MAC_LINK_TOPO Offset 6.3.68.47

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: Auto Generated Pointers Module -> Module Length
Last Section -> Word: Auto Generated Pointers Module -> Pointer to
GLGEN_MAC_LINK_TOPO Offset

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to PFPM_APM Section 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to PFPM_APM Offset 0x59

Table 6-74. Auto-Generated Pointers Module Section Summary Table [continued]

Word Offset Description Section
Reference

613875-009 859

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.68.4 Pointer to PRTPM_GC Section (0x0003)

6.3.68.5 Pointer to PRTPM_GC Offset (0x0004)

6.3.68.6 Pointer to GLPCI_CAPSUP Section (0x0005)

6.3.68.7 Pointer to GLPCI_CAPSUP Offset (0x0006)

6.3.68.8 Pointer to PRTDCB_FCCFG Section (0x0007)

6.3.68.9 Pointer to PRTDCB_FCCFG Offset (0x0008)

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PRTPM_GC Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to PRTPM_GC Offset 0x7C

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to GLPCI_CAPSUP
Section

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to GLPCI_CAPSUP
Offset

0x51

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to PRTDCB_FCCFG
Section

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to PRTDCB_FCCFG
Offset

0x35F

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

860 613875-009

6.3.68.10 Pointer to PFGEN_PORTNUM Section (0x0009)

6.3.68.11 Pointer to PFGEN_PORTNUM Offset (0x000A)

6.3.68.12 Pointer to PFPCI_FUNC2 Section (0x000B)

6.3.68.13 Pointer to PFPCI_FUNC2 Offset (0x000C)

6.3.68.14 Pointer to PF_VT_PFALLOC_PCIE Section (0x000D)

6.3.68.15 Pointer to PF_VT_PFALLOC_PCIE Offset (0x000E)

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to PFGEN_PORTNUM
Section

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to PFGEN_PORTNUM
Offset

0x40B

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PFINT_ALLOC_PCI Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PFINT_ALLOC_PCI Offset

0x3

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PF_VT_PFALLOC_PCIE Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PF_VT_PFALLOC_PCIE Offset

0x77

613875-009 861

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.68.16 Pointer to PF_VT_PFALLOC Section (0x000F)

6.3.68.17 Pointer to PF_VT_PFALLOC Offset (0x0010)

6.3.68.18 Pointer to GLPCI_REVID Section (0x0011)

6.3.68.19 Pointer to GLPCI_REVID Offset (0x0012)

6.3.68.20 Pointer to PFPCI_DEVID Section (0x0013)

6.3.68.21 Pointer to PFPCI_DEVID Offset (0x0014)

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PF_VT_PFALLOC Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to PF_VT_PFALLOC
Offset

0x41E

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to GLPCI_REVID
Section

0x0 Points to PCIR Type 1/2 Section. For PCIR Type 1/2 inner structure, see
Section 6.3.54.

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to GLPCI_REVID
Offset

0x9

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PFPCI_DEVID Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PFPCI_DEVID Offset

0x3C

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

862 613875-009

6.3.68.22 Pointer to GLPCI_SUBVENID Section (0x0015)

6.3.68.23 Pointer to GLPCI_SUBVENID Offset (0x0016)

6.3.68.24 Pointer to PFPCI_SUBSYSID Section (0x017)

6.3.68.25 Pointer to PFPCI_SUBSYSID Offset (0x0018)

6.3.68.26 Pointer to GLPCI_VENDORID Section (0x0019)

6.3.68.27 Pointer to GLPCI_VENDORID Offset (0x001A)

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
GLPCI_SUBVENID Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
GLPCI_SUBVENID Offset

0x5B

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PFPCI_SUBSYSID Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PFPCI_SUBSYSID Offset

0x16

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
GLPCI_VENDORID Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
GLPCI_VENDORID Offset

0x57

613875-009 863

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.68.28 Pointer to PFPCI_FUNC Section (0x001B)

6.3.68.29 Pointer to PFPCI_FUNC Offset (0x001C)

6.3.68.30 Pointer to PFPCI_CNF Section (0x001D)

6.3.68.31 Pointer to PFPCI_CNF Offset (0x001E)

6.3.68.32 Pointer to GLPCI_CAPCTRL Section (0x001F)

6.3.68.33 Pointer to GLPCI_CAPCTRL Offset (0x0020)

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PFPCI_FUNC Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PFPCI_FUNC Offset

0x14

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PFPCI_CNF Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PFPCI_CNF Offset

0x60

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
GLPCI_CAPCTRL Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
GLPCI_CAPCTRL Offset

0x4F

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

864 613875-009

6.3.68.34 Pointer to PFGEN_PORTNUM_CAR Section (0x0021)

6.3.68.35 Pointer to PFGEN_PORTNUM_CAR Offset (0x0022)

6.3.68.36 Pointer to GLFOC_CACHE_CTL Section (0x0023)

6.3.68.37 Pointer to GLFOC_CACHE_CTL Offset (0x0024)

6.3.68.38 Pointer to PRTGEN_CNF Section (0x0025)

6.3.68.39 Pointer to PRTGEN_CNF Offset (0x0026)

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PFGEN_PORTNUM_CAR Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PFGEN_PORTNUM_CAR Offset

0x46

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
GLFOC_CACHE_CTL Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
GLFOC_CACHE_CTL Offset

0x1A5

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PRTGEN_CNF Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PRTGEN_CNF Offset

0x6C

613875-009 865

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.68.40 Pointer to PF_VT_PFALLOC_HIF Section (0x0027)

6.3.68.41 Pointer to PF_VT_PFALLOC_HIF Offset (0x0028)

6.3.68.42 Pointer to PRTMAC_HSECTL1 Section (0x0029)

6.3.68.43 Pointer to PRTMAC_HSECTL1 Offset (0x002A)

6.3.68.44 Pointer to PRT_TDPUL2TAGSEN Section (0x002B)

6.3.68.45 Pointer to PRT_TDPUL2TAGSEN Offset (0x002C)

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PF_VT_PFALLOC_HIF Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PF_VT_PFALLOC_HIF Offset

0x29

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PRTMAC_HSECTL1 Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PRTMAC_HSECTL1 Offset

0x2B2

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
PRT_TDPUL2TAGSEN Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
PRT_TDPUL2TAGSEN Offset

0x3

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

866 613875-009

6.3.68.46 Pointer to GLGEN_MAC_LINK_TOPO Section (0x002D)

6.3.68.47 Pointer to GLGEN_MAC_LINK_TOPO Offset (0x002E)

Bit(s) Field Name Default
NVM Value Description

15:0 Cloned Pointer to
GLGEN_MAC_LINK_TOPO Section

Bit(s) Field Name Default
NVM Value Description

15:0 Pointer to
GLGEN_MAC_LINK_TOPO Offset

0x2

613875-009 867

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.69 NVM Image CSS Header Section

Table 6-75. NVM Image CSS Header Section Summary Table

Word Offset Description Section
Reference

0x0000 moduleTypeL 6.3.69.1

0x0001 moduleTypeH 6.3.69.2

0x0002 headerLenL 6.3.69.3

0x0003 headerLenH 6.3.69.4

0x0004 headerVersionL 6.3.69.5

0x0005 headerVersionH 6.3.69.6

0x0006 moduleIDL 6.3.69.7

0x0007 moduleIDH 6.3.69.8

0x0008 moduleVendorL 6.3.69.9

0x0009 moduleVendorH 6.3.69.10

0x000A dateL 6.3.69.11

0x000B dateH 6.3.69.12

0x000C sizeL 6.3.69.13

0x000D sizeH 6.3.69.14

0x000E keySizeL 6.3.69.15

0x000F keySizeH 6.3.69.16

0x0010 modulusSizeL 6.3.69.17

0x0011 modulusSizeH 6.3.69.18

0x0012 exponentSizeL 6.3.69.19

0x0013 exponentSizeH 6.3.69.20

0x0014 lad_srevL 6.3.69.21

0x0015 lad_srevH 6.3.69.22

0x0016 - 0x0017 Reserved 6.3.69.23

0x0018 lad_fw_entry_offsetL 6.3.69.24

0x0019 lad_fw_entry_offsetH 6.3.69.25

0x001A - 0x001B Reserved 6.3.69.26

0x001C lad_image_unique_idL 6.3.69.27

0x001D lad_image_unique_idH 6.3.69.28

0x001E lad_module_idL 6.3.69.29

0x001F lad_module_idH 6.3.69.30

0x0020 Reserved 6.3.69.31

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

868 613875-009

6.3.69.1 moduleTypeL (0x0000)

6.3.69.2 moduleTypeH (0x0001)

6.3.69.3 headerLenL (0x0002)

6.3.69.4 headerLenH (0x0003)

6.3.69.5 headerVersionL (0x0004)

6.3.69.6 headerVersionH (0x0005)

6.3.69.7 moduleIDL (0x0006)

Bits Field Name Default
NVM Value Description

15:0 moduleTypeL 0x6

Bits Field Name Default
NVM Value Description

15:0 moduleTypeH

Bits Field Name Default
NVM Value Description

15:0 headerLenL 0xA1

Bits Field Name Default
NVM Value Description

15:0 headerLenH

Bits Field Name Default NVM
Value Description

15:0 headerVersionL 0x00010000

Bits Field Name Default
NVM Value Description

15:0 headerVersionH

Bits Field Name Default
NVM Value Description

15:0 moduleIDL 0x0

613875-009 869

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.69.8 moduleIDH (0x0007)

6.3.69.9 moduleVendorL (0x0008)

6.3.69.10 moduleVendorH (0x0009)

6.3.69.11 dateL (0x000A)

6.3.69.12 dateH (0x000B)

6.3.69.13 sizeL (0x000C)

6.3.69.14 sizeH (0x000D)

Bits Field Name Default
NVM Value Description

15 signMode 1b

14:0 moduleIDH

Bits Field Name Default NVM
Value Description

15:0 moduleVendorL 0x00008086

Bits Field Name Default
NVM Value Description

15:0 moduleVendorH

Bits Field Name Default NVM
Value Description

15:0 DateL 0x20130530 0xMMDD

Bits Field Name Default
NVM Value Description

15:0 DateH 0xYYYY

Bits Field Name Default NVM
Value Description

15:0 sizeL 0x000A0000

Bits Field Name Default
NVM Value Description

15:0 sizeH

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

870 613875-009

6.3.69.15 keySizeL (0x000E)

6.3.69.16 keySizeH (0x000F)

6.3.69.17 modulusSizeL (0x0010)

6.3.69.18 modulusSizeH (0x0011)

6.3.69.19 exponentSizeL (0x0012)

6.3.69.20 exponentSizeH (0x0013)

6.3.69.21 lad_srevL (0x0014)

Bits Field Name Default
NVM Value Description

15:0 keySizeL 0x40

Bits Field Name Default
NVM Value Description

15:0 keySizeH

Bits Field Name Default
NVM Value Description

15:0 modulusSizeL 0x40

Bits Field Name Default
NVM Value Description

15:0 modulusSizeH

Bits Field Name Default
NVM Value Description

15:0 exponentSizeL 0x1

Bits Field Name Default
NVM Value Description

15:0 exponentSizeH

Bits Field Name Default
NVM Value Description

15:0 lad_srevL 0x0

613875-009 871

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.69.22 lad_srevH (0x0015)

6.3.69.23 Reserved (0x0016 - 0x0017)

6.3.69.24 lad_fw_entry_offsetL (0x0018)

6.3.69.25 lad_fw_entry_offsetH (0x0019)

6.3.69.26 Reserved (0x001A - 0x001B)

6.3.69.27 lad_image_unique_idL (0x001C)

6.3.69.28 lad_image_unique_idH (0x001D)

Bits Field Name Default
NVM Value Description

15:0 lad_srevH

Bits Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetL 0x102C0

Bits Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetH

Bits Field Name Default
NVM Value Description

15:0 lad_image_unique_idL

Bits Field Name Default
NVM Value Description

15:0 lad_image_unique_idH

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

872 613875-009

6.3.69.29 lad_module_idL (0x001E)

6.3.69.30 lad_module_idH (0x001F)

6.3.69.31 Reserved (0x0020)

Bits Field Name Default
NVM Value Description

15:0 lad_module_idL 0x6 Valid values are:
0x1= EMP Image
0x2= PE Image
0x3= PCIe Analog
0x4= PHY Analog
0x5= Option ROM
0x6= NVM Bank
0x7= Extended Mini-loader

Bits Field Name Default
NVM Value Description

15 Reserved 0b Reserved.

14:1 lad_module_idH

613875-009 873

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.70 NVM Key and Signature Section

6.3.70.1 RSA Public Key[n] (0x0000 + 1*n, n=0...127)

6.3.70.2 RSA ExponentL (0x0080)

6.3.70.3 RSA ExponentH (0x0081)

6.3.70.4 Encrypted SHA256 Hash[n] (0x0082 + 1*n, n=0...127)

Table 6-76. NVM Key and Signature Section Summary Table

Word Offset Description Section
Reference

0x0000 + 1*n, n=0...127 RSA Public Key 6.3.70.1

0x0080 RSA ExponentL 6.3.70.2

0x0081 RSA ExponentH 6.3.70.3

0x0082 + 1*n, n=0...127 Encrypted SHA256 Hash 6.3.70.4

Bit(s) Field Name Default
NVM Value Description

15:0 RSA Public Key 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentL 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentH 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Encrypted SHA256 Hash 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

874 613875-009

6.3.71 NVM Image Auth Header Section

6.3.71.1 Device Blank NVM Device ID (0x0000)

6.3.71.2 Max Module AreaL (0x0001)

6.3.71.3 Max Module AreaH (0x0002)

6.3.71.4 Current Module AreaL (0x0003)

Table 6-77. NVM Image Auth Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Device Blank NVM Device ID 6.3.71.1

0x0001 Max Module AreaL 6.3.71.2

0x0002 Max Module AreaH 6.3.71.3

0x0003 Current Module AreaL 6.3.71.4

0x0004 Current Module AreaH 6.3.71.5

0x0005 Reserved 6.3.71.6

0x0006 Code Revision 6.3.71.7

0x0007 Reserved Spare Word 6.3.71.8

Bits Field Name Default
NVM Value Description

15:0 Device Blank NVM Device ID 0x374C

Bits Field Name Default
NVM Value Description

15:0 Max Module AreaL 0x1000

Bits Field Name Default
NVM Value Description

15:0 Max Module AreaH 0x0009

Bits Field Name Default
NVM Value Description

15:0 Current Module AreaL 0xE000

613875-009 875

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.71.5 Current Module AreaH (0x0004)

6.3.71.6 Reserved (0x0005)

6.3.71.7 Code Revision (0x0006)

6.3.71.8 Reserved Spare Word (0x0007)

6.3.72 SR1 - Should Be Copy of Shadow RAM: Section
Clone

SR1 - should be copy of Shadow RAM is a clone of data starting at section Init Module word NVM
Control Word 1 and ending at section Last Word of Shadow RAM word Last Word of Shadow RAM.

Bits Field Name Default
NVM Value Description

15:0 Current Module AreaH 0x0006

Bits Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bits Field Name Default
NVM Value Description

15:8 Major Revision 0x0

7:0 Minor Revision 0x0

Bits Field Name Default
NVM Value Description

15:0 Reserved Spare Word 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

876 613875-009

6.3.73 ML CSS Header Section
E

Table 6-78. ML CSS Header Section Summary Table

Word Offset Description Section
Reference

0x0000 moduleTypeL 6.3.73.1

0x0001 moduleTypeH 6.3.73.2

0x0002 headerLenL 6.3.73.3

0x0003 headerLenH 6.3.73.4

0x0004 headerVersionL 6.3.73.5

0x0005 headerVersionH 6.3.73.6

0x0006 moduleIDL 6.3.73.7

0x0007 moduleIDH 6.3.73.8

0x0008 moduleVendorL 6.3.73.9

0x0009 moduleVendorH 6.3.73.10

0x000A dateL 6.3.73.11

0x000B dateH 6.3.73.12

0x000C sizeL 6.3.73.13

0x000D sizeH 6.3.73.14

0x000E keySizeL 6.3.73.15

0x000F keySizeH 6.3.73.16

0x0010 modulusSizeL 6.3.73.17

0x0011 modulusSizeH 6.3.73.18

0x0012 exponentSizeL 6.3.73.19

0x0013 exponentSizeH 6.3.73.20

0x0014 lad_srevL 6.3.73.21

0x0015 lad_srevH 6.3.73.22

0x0016 - 0x0017 Reserved 6.3.73.23

0x0018 lad_fw_entry_offsetL 6.3.73.24

0x0019 lad_fw_entry_offsetH 6.3.73.25

0x001A - 0x001B Reserved 6.3.73.26

0x001C lad_image_unique_idL 6.3.73.27

0x001D lad_image_unique_idH 6.3.73.28

0x001E lad_module_idL 6.3.73.29

0x001F lad_module_idH 6.3.73.30

0x0020 + 1*n, n=0...31 Reserved 6.3.73.31

613875-009 877

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.73.1 moduleTypeL (0x0000)

6.3.73.2 moduleTypeH (0x0001)

6.3.73.3 headerLenL (0x0002)

6.3.73.4 headerLenH (0x0003)

6.3.73.5 headerVersionL (0x0004)

6.3.73.6 headerVersionH (0x0005)

6.3.73.7 moduleIDL (0x0006)

Bits Field Name Default
NVM Value Description

15:0 moduleTypeL 0x6

Bits Field Name Default
NVM Value Description

15:0 moduleTypeH

Bits Field Name Default
NVM Value Description

15:0 headerLenL 0xA1

Bits Field Name Default
NVM Value Description

15:0 headerLenH

Bits Field Name Default NVM
Value Description

15:0 headerVersionL 0x00010000

Bits Field Name Default
NVM Value Description

15:0 headerVersionH

Bits Field Name Default
NVM Value Description

15:0 moduleIDL 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

878 613875-009

6.3.73.8 moduleIDH (0x0007)

6.3.73.9 moduleVendorL (0x0008)

6.3.73.10 moduleVendorH (0x0009)

6.3.73.11 dateL (0x000A)

6.3.73.12 dateH (0x000B)

6.3.73.13 sizeL (0x000C)

6.3.73.14 sizeH (0x000D)

Bits Field Name Default
NVM Value Description

15 signMode 0b

14:0 moduleIDH

Bits Field Name Default NVM
Value Description

15:0 moduleVendorL 0x00008086

Bits Field Name Default
NVM Value Description

15:0 moduleVendorH

Bits Field Name Default NVM
Value Description

15:0 DateL 0x20130530 0xMMDD

Bits Field Name Default
NVM Value Description

15:0 DateH 0xYYYY

Bits Field Name Default NVM
Value Description

15:0 sizeL 0x4800

Bits Field Name Default
NVM Value Description

15:0 sizeH

613875-009 879

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.73.15 keySizeL (0x000E)

6.3.73.16 keySizeH (0x000F)

6.3.73.17 modulusSizeL (0x0010)

6.3.73.18 modulusSizeH (0x0011)

6.3.73.19 exponentSizeL (0x0012)

6.3.73.20 exponentSizeH (0x0013)

6.3.73.21 lad_srevL (0x0014)

Bits Field Name Default
NVM Value Description

15:0 keySizeL 0x40

Bits Field Name Default
NVM Value Description

15:0 keySizeH

Bits Field Name Default
NVM Value Description

15:0 modulusSizeL 0x40

Bits Field Name Default
NVM Value Description

15:0 modulusSizeH

Bits Field Name Default
NVM Value Description

15:0 exponentSizeL 0x1

Bits Field Name Default
NVM Value Description

15:0 exponentSizeH

Bits Field Name Default
NVM Value Description

15:0 lad_srevL 0x3

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

880 613875-009

6.3.73.22 lad_srevH (0x0015)

6.3.73.23 Reserved (0x0016 - 0x0017)

6.3.73.24 lad_fw_entry_offsetL (0x0018)

6.3.73.25 lad_fw_entry_offsetH (0x0019)

6.3.73.26 Reserved (0x001A - 0x001B)

6.3.73.27 lad_image_unique_idL (0x001C)

6.3.73.28 lad_image_unique_idH (0x001D)

Bits Field Name Default
NVM Value Description

15:0 lad_srevH

Bits Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetL 0x2C4

Bits Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetH

Bits Field Name Default
NVM Value Description

15:0 lad_image_unique_idL 0x0

Bits Field Name Default
NVM Value Description

15:0 lad_image_unique_idH 0x0

613875-009 881

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.73.29 lad_module_idL (0x001E)

6.3.73.30 lad_module_idH (0x001F)

6.3.73.31 Reserved[n] (0x0020 + 1*n, n=0...31)

Bits Field Name Default
NVM Value Description

15:0 lad_module_idL 0x7 Valid values are:
0x1= EMP Image
0x2= PE Image
0x3= PCIe Analog
0x4= PHY Analog
0x5= Option ROM
0x6= NVM Bank
0x7= Extended Mini-loader

Bits Field Name Default
NVM Value Description

15 Reserved 0b Reserved.

14:1 lad_module_idH

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

882 613875-009

6.3.74 ML Key and Signature Section

6.3.74.1 RSA Public Key[n] (0x0000 + 1*n, n=0...127)

6.3.74.2 RSA ExponentL (0x0080)

6.3.74.3 RSA ExponentH (0x0081)

6.3.74.4 Encrypted SHA256 Hash[n] (0x0082 + 1*n, n=0...127)

Table 6-79. ML Key and Signature Section Summary Table

Word Offset Description Section
Reference

0x0000 + 1*n, n=0...127 RSA Public Key 6.3.74.1

0x0080 RSA ExponentL 6.3.74.2

0x0081 RSA ExponentH 6.3.74.3

0x0082 + 1*n, n=0...127 Encrypted SHA256 Hash 6.3.74.4

Bit(s) Field Name Default
NVM Value Description

15:0 RSA Public Key 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentL 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentH 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA Public Key 0x0

613875-009 883

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.75 ML Auth Header Section

6.3.75.1 Device Blank NVM Device ID (0x0000)

6.3.75.2 Max Module AreaL (0x0001)

6.3.75.3 Max Module AreaH (0x0002)

6.3.75.4 Current Module AreaL (0x0003)

Table 6-80. ML Auth Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Device Blank NVM Device ID 6.3.75.1

0x0001 Max Module AreaL 6.3.75.2

0x0002 Max Module AreaH 6.3.75.3

0x0003 Current Module AreaL 6.3.75.4

0x0004 Current Module AreaH 6.3.75.5

0x0005 Reserved 6.3.75.6

0x0006 Code Revision 6.3.75.7

0x0007 Reserved Spare Word 6.3.75.8

Bits Field Name Default
NVM Value Description

15:0 Device Blank NVM Device ID 0x1590

Bits Field Name Default
NVM Value Description

15:0 Max Module AreaL 0x1000

Bits Field Name Default
NVM Value Description

15:0 Max Module AreaH 0x0009

Bits Field Name Default
NVM Value Description

15:0 Current Module AreaL 0xE000

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

884 613875-009

6.3.75.5 Current Module AreaH (0x0004)

6.3.75.6 Reserved (0x0005)

6.3.75.7 Code Revision (0x0006)

6.3.75.8 Reserved Spare Word (0x0007)

Bits Field Name Default
NVM Value Description

15:0 Current Module AreaH 0x0006

Bits Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bits Field Name Default
NVM Value Description

15:8 Major Revision 0x0

7:0 Minor Revision 0x0

Bits Field Name Default
NVM Value Description

15:0 Reserved Spare Word 0x0

613875-009 885

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.76 Extended ML Header Section

6.3.76.1 Reserved (0x0000)

6.3.76.2 Analog PHY pre PLL Configuration Pointer (0x0001)

Table 6-81. Extended ML Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Reserved 6.3.76.1

0x0001 Analog PHY pre PLL Configuration Pointer 6.3.76.2

0x0002 CSR Protected List Pointer 6.3.76.3

0x0003 PCIe Analog Pointer 6.3.76.4

0x0004 PCIR Fixed Auto-Load Pointer 6.3.76.5

0x0005 POR Fixed Auto-Load Pointer 6.3.76.6

0x0006 PCIR PFA Auto-Load Allowlist Pointer 6.3.76.7

0x0007 POR PFA Auto-Load Allowlist Pointer 6.3.76.8

0x0008 Reserved 6.3.76.9

0x0009 1st NVM Bank Pointer 6.3.76.10

0x000A NVM Bank Area Size 6.3.76.11

0x000B 1st OROM Bank Pointer 6.3.76.12

0x000C OROM Bank Area Size 6.3.76.13

0x000D 1st TLV Extension Bank Pointer 6.3.76.14

0x000E TLV Extension Bank Area Size 6.3.76.15

0x000F Preserved Field Area Pointer 6.3.76.16

0x0010 Recovery Firmware Pointer 6.3.76.17

0x0011 Reserved 6.3.76.18

0x0012 Factory Settings Size 6.3.76.19

0x0013 Last PFA Word Pointer 6.3.76.20

0x0014 LVK Hashes Pointer 6.3.76.21

0x0015 Reserved 6.3.76.22

0x0016 PCIe Config Group 1 Hash Low 6.3.76.23

0x0017 PCIe Config Group 1 Hash High 6.3.76.24

0x0018 CPK PCIe Config Group 1 Hash Low 6.3.76.25

0x0019 CPK PCIe Config Group 1 Hash High 6.3.76.26

Bit(s) Field Name Default
NVM Value Description

15:0 Analog PLL Configuration
Pointer

0x0 Points to Analog PHY pre PLL Configuration Section. For Analog PHY pre PLL
Configuration inner structure, see Section 6.3.78.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

886 613875-009

6.3.76.3 CSR Protected List Pointer (0x0002)

6.3.76.4 PCIe Analog Pointer (0x0003)

6.3.76.5 PCIR Fixed Auto-Load Pointer (0x0004)

6.3.76.6 POR Fixed Auto-Load Pointer (0x0005)

6.3.76.7 PCIR PFA Auto-Load Allowlist Pointer (0x0006)

6.3.76.8 POR PFA Auto-Load Allowlist Pointer (0x0007)

6.3.76.9 Reserved (0x0008)

Bit(s) Field Name Default
NVM Value Description

15:0 CSR Protected List Pointer 0x0 Points to CSR Protected List Section. For CSR Protected List inner structure,
see Section 6.3.79.

Bit(s) Field Name Default
NVM Value Description

15:0 PCIe Analog Pointer 0xFFF Points to PCIe Analog Module Section. For PCIe Analog Module inner structure, see
Section 6.3.80.

Bit(s) Field Name Default
NVM Value Description

15:0 PCIR Fixed Autoload Pointer 0x0 Points to PCIR Registers Auto-Load Module Section. For PCIR Registers
Auto-Load Module inner structure, see Section 6.3.81.

Bit(s) Field Name Default
NVM Value Description

15:0 POR Fixed Autoload Pointer 0x0 Points to POR Registers Auto-Load Module Section. For POR Registers Auto-
Load Module inner structure, see Section 6.3.82.

Bit(s) Field Name Default
NVM Value Description

15:0 PCIR PFA Autoload Allowlist
Pointer

0x0 Points to POR PCIR_PFA Auto-Load Allowlist Module Section. For PCIR_PFA
Auto-Load Allowlist Module inner structure, see Section 6.3.83.

Bit(s) Field Name Default
NVM Value Description

15:0 POR PFA Autoload Allowlist
Pointer

0x0 Points to POR POR_PFA Auto-Load Allowlist Module Section. For POR_PFA
Auto-Load Allowlist Module inner structure, see Section 6.3.84.

613875-009 887

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.76.10 1st NVM Bank Pointer (0x0009)

6.3.76.11 NVM Bank Area Size (0x000A)

6.3.76.12 1st OROM Bank Pointer (0x000B)

6.3.76.13 OROM Bank Area Size (0x000C)

6.3.76.14 1st TLV Extension Bank Pointer (0x000D)

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 1st NVM Bank Pointer 0x020 Pointer to first NVM section (not swapped when section changes).

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 NVM Bank Area Size 0x41A Size expressed in 4 KB sector units.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 1st OROM Bank Pointer 0x0854 Pointer to first OROM section (not swapped when section changes).
Note: This value is fixed to 4224 KB - needs to be manually changed if location

of section changes.

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 OROM Bank Area Size 0x7D Size expressed in 4 KB sector units.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 1st TLV Extension Bank
Pointer

0x094E Pointer to first OROM section (not swapped when section changes).
Note: This value is fixed to 4224 KB - needs to be manually changed if location

of section changes.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

888 613875-009

6.3.76.15 TLV Extension Bank Area Size (0x000E)

6.3.76.16 Preserved Field Area Pointer (0x000F)

6.3.76.17 Recovery Firmware Pointer (0x0010)

6.3.76.18 Reserved (0x0011)

6.3.76.19 Factory Settings Size (0x0012)

6.3.76.20 Last PFA Word Pointer (0x0013)

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 TLV Extension Bank
Area Size

0x07 Size expressed in 4 KB sector units.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 PFA Pointer 0x100 Pointer to PFA in first NVM section (not swapped when section changes).

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 1b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

14:0 Recovery Firmware
Pointer

0x043 Absolute pointer to Recovery Firmware section.

Bit(s) Field Name Default
NVM Value Description

15:12 Reserved 0x0 Reserved.

11:0 Factory Settings Size 0xD Size expressed in 4 KB sector units.

Bit(s) Field Name Default
NVM Value Description

15 Pointer Type 0b Pointer Type:
0b = Word units.
1b = 4 KB sector units.

Only the 4 KB sector unit is supported for this pointer.

14:0 Last PFA Word Pointer 0x2FFF Pointer to the last word of the PFA in first NVM section (not swapped when section
changes).

613875-009 889

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.76.21 LVK Hashes Pointer (0x0014)

6.3.76.22 Reserved (0x0015)

6.3.76.23 PCIe Config Group 1 Hash Low (0x0016)

6.3.76.24 PCIe Config Group 1 Hash High (0x0017)

6.3.76.25 CPK PCIe Config Group 1 Hash Low (0x0018)

6.3.76.26 CPK PCIe Config Group 1 Hash High (0x0019)

6.3.77 ML Image Section

This module is the whole module that has been signed by CSS.

It is in the NVM map for EM tool needs only.

Bit(s) Field Name Default
NVM Value Description

15:0 LVK Hashes Pointer 0x0 Relative pointer to Low Value Keys Hashes.
Points to LVK Hashes Section. For LVK Hashes inner structure See Section 6.3.85.

Bit(s) Field Name Default
NVM Value Description

15:0 PCIe Config Group 1 Hash Low CRC-32:
Start Section -> Word: PCIe Analog Module -> Module Length
End Section -> Word: LCB Configuration -> Reg Write Indirect List

Bit(s) Field Name Default
NVM Value Description

15:0 PCIe Config Group 1 Hash High

Bit(s) Field Name Default
NVM Value Description

15:0 CPK PCIe Config Group 1 Hash Low

Bit(s) Field Name Default
NVM Value Description

15:0 CPK PCIe Config Group 1 Hash High 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

890 613875-009

6.3.78 Analog PHY pre PLL Configuration Section

Includes static configurations of PHY Core registers for PLL lock.

6.3.78.1 Section Length (0x0000)

6.3.78.2 Reg Write Indirect List (0x0001)

Raw data module length: variable

Table 6-82. Analog PHY pre PLL Configuration Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length 6.3.78.1

0x0001 Reg Write Indirect List 6.3.78.2

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: Analog PHY pre PLL Configuration -> Section Length
Last Section -> Word: Analog PHY pre PLL Configuration -> Reg Write Indirect List

613875-009 891

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.79 CSR Protected List Section

Defines the list of the protected CSRs and their default settings. These registers are made RO to the
host as they contain settings that are critical for the host to Flash access when in blank Flash
programming mode.

6.3.79.1 Module Length (0x0000)

6.3.79.2 Reserved (0x0001 - 0x000C)

6.3.79.3 GLGEN_STAT (0x000D - 0x0010)

6.3.79.3.1 Address Low at GLGEN_STAT (0x000D)

6.3.79.3.2 Address High at GLGEN_STAT (0x000E)

Table 6-83. CSR Protected List Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.79.1

0x0001 - 0x000C Reserved 6.3.79.2

0x000D - 0x0010 NVM contents for GLGEN_STAT 6.3.79.3

0x0011 - 0x0014 NVM contents for GLNVM_ALTIMERS 6.3.79.4

0x0015 - 0x0018 Reserved 6.3.79.5

0x0019 - 0x0093 NVM contents for GLNVM_PROTCSR 6.3.79.6

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: CSR Protected List -> Module Length
Last Section -> Word: CSR Protected List -> Starting Address Low at
GLNVM_PROTCSR[0]

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLGEN_STAT

0xB612C

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLGEN_STAT

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

892 613875-009

6.3.79.3.3 Data Low of GLGEN_STAT (0x000F)

6.3.79.3.4 Data High of GLGEN_STAT (0x0010)

6.3.79.4 GLNVM_ALTIMERS (0x0011 - 0x0014)

6.3.79.4.1 Address Low at GLNVM_ALTIMERS (0x0011)

6.3.79.4.2 Address High at GLNVM_ALTIMERS (0x0012)

6.3.79.4.3 Data Low of GLNVM_ALTIMERS (0x0013)

6.3.79.4.4 Data High of GLNVM_ALTIMERS (0x0014)

6.3.79.5 Reserved (0x0015 - 0x0018)

6.3.79.6 GLNVM_PROTCSR (0x0019 - 0x0093)

6.3.79.6.1 Starting Address Low at GLNVM_PROTCSR (0x0019)

6.3.79.6.2 Starting Address High at GLNVM_PROTCSR (0x001A)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLNVM_ALTIMERS

0xB6140

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLNVM_ALTIMERS

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GLNVM_PROTCSR

0xB6010

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GLNVM_PROTCSR

613875-009 893

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.79.6.3 Attributes at GLNVM_PROTCSR (0x001B)

6.3.79.6.4 Data Low of GLNVM_PROTCSR[n] (0x001C + 2*n, n=0...59)

6.3.79.6.5 Data High of GLNVM_PROTCSR[n] (0x001D + 2*n, n=0...59)

6.3.80 PCIe Analog Module Section

Contains read-only parameters that configure the PCIe Transaction layer.

6.3.80.1 Module Length (0x0000)

6.3.80.2 PCIe Analog Data (0x0001)

Raw data module length: variable

This word must be disabled at the image level.

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x3C

4:3 Skip 00b

2:0 Width 000b

Table 6-84. PCIe Analog Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.80.1

0x0001 PCIe Analog Data 6.3.80.2

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

894 613875-009

6.3.81 PCIR Registers Auto-Load Module Section

Default setup to registers and internal memories that load on PCIR events.

6.3.81.1 Module Length (0x0000)

6.3.81.2 GLPCI_PWRDATA (0x0001 - 0x0004)

6.3.81.2.1 Address Low at GLPCI_PWRDATA (0x0001)

6.3.81.2.2 Address High at GLPCI_PWRDATA (0x0002)

6.3.81.2.3 Data Low of GLPCI_PWRDATA (0x0003)

6.3.81.2.4 Data High of GLPCI_PWRDATA (0x0004)

Table 6-85. PCIR Registers Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.81.1

0x0001 - 0x0004 NVM contents for GLPCI_PWRDATA 6.3.81.2

0x0005 - 0x0009 NVM contents for GLPCI_PMSUP 6.3.81.3

0x000A - 0x000B NVM contents for GLPCI_REVID 6.3.81.4

0x000C - 0x0013 Reserved 6.3.81.5

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: PCIR Registers Auto-Load Module -> Module Length
Last Section -> Word: POR Registers Auto-Load Module -> PCI Link Block Data

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GLPCI_PWRDATA 0x9DE7C

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of GLPCI_PWRDATA

613875-009 895

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.81.3 GLPCI_PMSUP (0x0005 - 0x0009)

6.3.81.3.1 Starting Address Low at GLPCI_PMSUP (0x0005)

6.3.81.3.2 Starting Address High at GLPCI_PMSUP (0x0006)

6.3.81.3.3 Attributes at GLPCI_PMSUP (0x0007)

6.3.81.3.4 Data Low of GLPCI_PMSUP (0x0008)

6.3.81.3.5 Data High of GLPCI_PMSUP (0x0009)

6.3.81.4 GLPCI_REVID (0x000A - 0x000B)

6.3.81.4.1 Data Low of GLPCI_REVID (0x000A)

6.3.81.4.2 Data High of GLPCI_REVID (0x000B)

6.3.81.5 Reserved (0x000C - 0x0013)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GLPCI_PMSUP 0x9DE94

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of GLPCI_PMSUP

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x2

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

896 613875-009

6.3.82 POR Registers Auto-Load Module Section

Default setup to registers that load on POR events.

6.3.82.1 Module Length (0x0000)

Table 6-86. POR Registers Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.82.1

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: POR Registers Auto-Load Module -> Module Length
Last Section -> Word: POR Registers Auto-Load Module -> Address Low at
GLMNG_WD_ENA

613875-009 897

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.83 PCIR_PFA Auto-Load Allowlist Module Section

Default setup to registers and internal memories that load on PCIR events.

6.3.83.1 Module Length (0x0000)

6.3.83.2 PFINT_ALLOC_PCI (0x0001 - 0x0013)

6.3.83.2.1 Starting Address Low at PFINT_ALLOC_PCI (0x0001)

Table 6-87. PCIR_PFA Auto-Load Allowlist Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.83.1

0x0001 - 0x0013 NVM contents for PFINT_ALLOC_PCI 6.3.83.2

0x0014 - 0x0026 NVM contents for PFPCI_SUBSYSID 6.3.83.3

0x0027 - 0x0039 NVM contents for PF_VT_PFALLOC_HIF 6.3.83.4

0x003A - 0x004C NVM contents for PFPCI_DEVID 6.3.83.5

0x004D - 0x0051 NVM contents for GLPCI_CAPCTRL 6.3.83.6

0x0052 - 0x0053 NVM contents for GLPCI_CAPSUP 6.3.83.7

0x0054 - 0x0055 NVM contents for GLPCI_LINKCAP 6.3.83.8

0x0056 - 0x0059 NVM contents for GLPCI_VENDORID 6.3.83.9

0x005A - 0x005D NVM contents for GLPCI_SUBVENID 6.3.83.10

0x005E - 0x0070 NVM contents for PFPCI_CNF 6.3.83.11

0x0071 - 0x0074 Reserved 6.3.83.12

0x0075 - 0x0087 NVM contents for PF_VT_PFALLOC_PCIE 6.3.83.13

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: PCIR_PFA Auto-load Allowlist Module -> Module Length
Last Section -> Word: PCIR_PFA Auto-load Allowlist Module -> Starting Address Low at
PF_VT_PFALLOC_PCIE, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFINT_ALLOC_PCI, for PF[0]

0x9D800

3:0 Type 0x2

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

898 613875-009

6.3.83.2.2 Starting Address High at PFINT_ALLOC_PCI (0x0002)

6.3.83.2.3 Attributes at PFINT_ALLOC_PCI (0x0003)

6.3.83.2.4 Data Low of PFINT_ALLOC_PCI[PF] (0x0004 + 2*PF,
PF=0...7)

6.3.83.2.5 Data High of PFINT_ALLOC_PCI[PF] (0x0005 + 2*PF,
PF=0...7)

6.3.83.3 PFPCI_SUBSYSID (0x0014 - 0x0026)

6.3.83.3.1 Starting Address Low at PFPCI_SUBSYSID (0x0014)

6.3.83.3.2 Starting Address High at PFPCI_SUBSYSID (0x0015)

6.3.83.3.3 Attributes at PFPCI_SUBSYSID (0x0016)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFINT_ALLOC_PCI, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPCI_SUBSYSID, for PF[0]

0x9D880

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPCI_SUBSYSID, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

613875-009 899

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.83.3.4 Data Low of PFPCI_SUBSYSID[PF] (0x0017 + 2*PF,
PF=0...7)

6.3.83.3.5 Data High of PFPCI_SUBSYSID[PF] (0x0018 + 2*PF,
PF=0...7)

6.3.83.4 PF_VT_PFALLOC_HIF (0x0027 - 0x0039)

6.3.83.4.1 Starting Address Low at PF_VT_PFALLOC_HIF (0x0027)

6.3.83.4.2 Starting Address High at PF_VT_PFALLOC_HIF (0x0028)

6.3.83.4.3 Attributes at PF_VT_PFALLOC_HIF (0x0029)

6.3.83.4.4 Data Low of PF_VT_PFALLOC_HIF[PF] (0x002A + 2*PF,
PF=0...7)

6.3.83.4.5 Data High of PF_VT_PFALLOC_HIF[PF] (0x002B + 2*PF,
PF=0...7)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PF_VT_PFALLOC_HIF, for PF[0]

0x9DD80

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PF_VT_PFALLOC_HIF, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

900 613875-009

6.3.83.5 PFPCI_DEVID (0x003A - 0x004C)

6.3.83.5.1 Starting Address Low at PFPCI_DEVID (0x003A)

6.3.83.5.2 Starting Address High at PFPCI_DEVID (0x003B)

6.3.83.5.3 Attributes at PFPCI_DEVID (0x003C)

6.3.83.5.4 Data Low of PFPCI_DEVID[PF] (0x003D + 2*PF, PF=0...7)

6.3.83.5.5 Data High of PFPCI_DEVID[PF] (0x003E + 2*PF, PF=0...7)

6.3.83.6 GLPCI_CAPCTRL (0x004D - 0x0051)

6.3.83.6.1 Starting Address Low at GLPCI_CAPCTRL (0x004D)

6.3.83.6.2 Starting Address High at GLPCI_CAPCTRL (0x004E)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPCI_DEVID, for PF[0]

0x9DE00

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPCI_DEVID, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GLPCI_CAPCTRL 0x9DE88

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of GLPCI_CAPCTRL

613875-009 901

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.83.6.3 Attributes at GLPCI_CAPCTRL (0x004F)

6.3.83.6.4 Data Low of GLPCI_CAPCTRL (0x0050)

6.3.83.6.5 Data High of GLPCI_CAPCTRL (0x0051)

6.3.83.7 GLPCI_CAPSUP (0x0052 - 0x0053)

6.3.83.7.1 Data Low of GLPCI_CAPSUP (0x0052)

6.3.83.7.2 Data High of GLPCI_CAPSUP (0x0053)

6.3.83.8 GLPCI_LINKCAP (0x0054 - 0x0055)

6.3.83.8.1 Data Low of GLPCI_LINKCAP (0x0054)

6.3.83.8.2 Data High of GLPCI_LINKCAP (0x0055)

6.3.83.9 GLPCI_VENDORID (0x0056 - 0x0059)

6.3.83.9.1 Address Low at GLPCI_VENDORID (0x0056)

6.3.83.9.2 Address High at GLPCI_VENDORID (0x0057)

6.3.83.9.3 Data Low of GLPCI_VENDORID (0x0058)

6.3.83.9.4 Data High of GLPCI_VENDORID (0x0059)

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x3

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GLPCI_VENDORID 0x9DEC8

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of GLPCI_VENDORID

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

902 613875-009

6.3.83.10 GLPCI_SUBVENID (0x005A - 0x005D)

6.3.83.10.1 Address Low at GLPCI_SUBVENID (0x005A)

6.3.83.10.2 Address High at GLPCI_SUBVENID (0x005B)

6.3.83.10.3 Data Low of GLPCI_SUBVENID (0x005C)

6.3.83.10.4 Data High of GLPCI_SUBVENID (0x005D)

6.3.83.11 PFPCI_CNF (0x005E - 0x0070)

6.3.83.11.1 Starting Address Low at PFPCI_CNF (0x005E)

6.3.83.11.2 Starting Address High at PFPCI_CNF (0x005F)

6.3.83.11.3 Attributes at PFPCI_CNF (0x0060)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GLPCI_SUBVENID 0x9DEE8

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of GLPCI_SUBVENID

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPCI_CNF, for PF[0]

0x9DF00

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPCI_CNF, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

613875-009 903

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.83.11.4 Data Low of PFPCI_CNF[PF] (0x0061 + 2*PF, PF=0...7)

6.3.83.11.5 Data High of PFPCI_CNF[PF] (0x0062 + 2*PF, PF=0...7)

6.3.83.12 Reserved (0x0071 - 0x0074)

6.3.83.13 PF_VT_PFALLOC_PCIE (0x0075 - 0x0087)

6.3.83.13.1 Starting Address Low at PF_VT_PFALLOC_PCIE (0x0075)

6.3.83.13.2 Starting Address High at PF_VT_PFALLOC_PCIE (0x0076)

6.3.83.13.3 Attributes at PF_VT_PFALLOC_PCIE (0x0077)

6.3.83.13.4 Data Low of PF_VT_PFALLOC_PCIE[PF] (0x0078 + 2*PF,
PF=0...7)

6.3.83.13.5 Data High of PF_VT_PFALLOC_PCIE[PF] (0x0079 + 2*PF,
PF=0...7)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PF_VT_PFALLOC_PCIE, for PF[0]

0xBE080

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PF_VT_PFALLOC_PCIE, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

904 613875-009

6.3.84 POR_PFA Auto-Load Allowlist Module Section

Default setup to registers and internal memories that load on POR events.

6.3.84.1 Module Length (0x0000)

6.3.84.2 GLGEN_GPIO_CTL (0x0001 - 0x0011)

6.3.84.2.1 Starting Address Low at GLGEN_GPIO_CTL (0x0001)

Table 6-88. POR_PFA Auto-Load Allowlist Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Module Length 6.3.84.1

0x0001 - 0x0011 NVM contents for GLGEN_GPIO_CTL 6.3.84.2

0x0012 - 0x0024 NVM contents for PFPCI_FUNC 6.3.84.3

0x0025 - 0x0037 NVM contents for PFPM_WUC 6.3.84.4

0x0038 - 0x003B NVM contents for GLPCI_LBARCTRL 6.3.84.5

0x003C - 0x003F NVM contents for GLPCI_CNF 6.3.84.6

0x0040 - 0x0043 NVM contents for GL_MNG_HWARB_CTRL 6.3.84.7

0x0044 - 0x0056 Reserved 6.3.84.8

0x0057 - 0x0069 NVM contents for PFPM_APM 6.3.84.9

0x006A - 0x007C NVM contents for PRTGEN_CNF 6.3.84.10

0x007D - 0x008C Reserved 6.3.84.11

0x008D - 0x009C NVM contents for PRTGEN_CNF2 6.3.84.12

0x009D - 0x00A7 Reserved 6.3.84.13

0x00A8 - 0x00AB NVM contents for GL_PWR_MODE_CTL 6.3.84.14

Bit(s) Field Name Default
NVM Value Description

15:0 Module Length Length in: 2 Bytes unit - 1
First Section -> Word: POR_PFA Auto-load Allowlist Module -> Module Length
Last Section -> Word: POR_PFA Auto-load Allowlist Module -> Address Low at
GL_PWR_MODE_CTL

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GLGEN_GPIO_CTL 0x880C8

3:0 Type 0x2

613875-009 905

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.84.2.2 Starting Address High at GLGEN_GPIO_CTL (0x0002)

6.3.84.2.3 Attributes at GLGEN_GPIO_CTL (0x0003)

6.3.84.2.4 Data Low of GLGEN_GPIO_CTL[n] (0x0004 + 2*n, n=0...6)

6.3.84.2.5 Data High of GLGEN_GPIO_CTL[n] (0x0005 + 2*n, n=0...6)

6.3.84.3 PFPCI_FUNC (0x0012 - 0x0024)

6.3.84.3.1 Starting Address Low at PFPCI_FUNC (0x0012)

6.3.84.3.2 Starting Address High at PFPCI_FUNC (0x0013)

6.3.84.3.3 Attributes at PFPCI_FUNC (0x0014)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of GLGEN_GPIO_CTL

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x7

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPCI_FUNC, for PF[0]

0x9D980

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPCI_FUNC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

906 613875-009

6.3.84.3.4 Data Low of PFPCI_FUNC[PF] (0x0015 + 2*PF, PF=0...7)

6.3.84.3.5 Data High of PFPCI_FUNC[PF] (0x0016 + 2*PF, PF=0...7)

6.3.84.4 PFPM_WUC (0x0025 - 0x0037)

6.3.84.4.1 Starting Address Low at PFPM_WUC (0x0025)

6.3.84.4.2 Starting Address High at PFPM_WUC (0x0026)

6.3.84.4.3 Attributes at PFPM_WUC (0x0027)

6.3.84.4.4 Data Low of PFPM_WUC[PF] (0x0028 + 2*PF, PF=0...7)

6.3.84.4.5 Data High of PFPM_WUC[PF] (0x0029 + 2*PF, PF=0...7)

6.3.84.5 GLPCI_LBARCTRL (0x0038 - 0x003B)

6.3.84.5.1 Address Low at GLPCI_LBARCTRL (0x0038)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPM_WUC, for PF[0]

0x9DC80

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPM_WUC, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GLPCI_LBARCTRL 0x9DE74

3:0 Type 0x1

613875-009 907

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.84.5.2 Address High at GLPCI_LBARCTRL (0x0039)

6.3.84.5.3 Data Low of GLPCI_LBARCTRL (0x003A)

6.3.84.5.4 Data High of GLPCI_LBARCTRL (0x003B)

6.3.84.6 GLPCI_CNF (0x003C - 0x003F)

6.3.84.6.1 Address Low at GLPCI_CNF (0x003C)

6.3.84.6.2 Address High at GLPCI_CNF (0x003D)

6.3.84.6.3 Data Low of GLPCI_CNF (0x003E)

6.3.84.6.4 Data High of GLPCI_CNF (0x003F)

6.3.84.7 GL_MNG_HWARB_CTRL (0x0040 - 0x0043)

6.3.84.7.1 Address Low at GL_MNG_HWARB_CTRL (0x0040)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of GLPCI_LBARCTRL

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GLPCI_CNF 0x9DEA0

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
GL_MNG_HWARB_CTRL

0xB6130

3:0 Type 0x1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

908 613875-009

6.3.84.7.2 Address High at GL_MNG_HWARB_CTRL (0x0041)

6.3.84.7.3 Data Low of GL_MNG_HWARB_CTRL (0x0042)

6.3.84.7.4 Data High of GL_MNG_HWARB_CTRL (0x0043)

6.3.84.8 Reserved (0x0044 - 0x0056)

6.3.84.9 PFPM_APM (0x0057 - 0x0069)

6.3.84.9.1 Starting Address Low at PFPM_APM (0x0057)

6.3.84.9.2 Starting Address High at PFPM_APM (0x0058)

6.3.84.9.3 Attributes at PFPM_APM (0x0059)

6.3.84.9.4 Data Low of PFPM_APM[PF] (0x005A + 2*PF, PF=0...7)

6.3.84.9.5 Data High of PFPM_APM[PF] (0x005B + 2*PF, PF=0...7)

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
GL_MNG_HWARB_CTRL

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PFPM_APM, for PF[0]

0xB8080

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PFPM_APM, for PF[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x8

4:3 Skip 00b

2:0 Width 000b

613875-009 909

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.84.10 PRTGEN_CNF (0x006A - 0x007C)

6.3.84.10.1 Starting Address Low at PRTGEN_CNF (0x006A)

6.3.84.10.2 Starting Address High at PRTGEN_CNF (0x006B)

6.3.84.10.3 Attributes at PRTGEN_CNF (0x006C)

6.3.84.10.4 Data Low of PRTGEN_CNF[PRT] (0x006D + 2*PRT,
PRT=0...7)

6.3.84.10.5 Data High of PRTGEN_CNF[PRT] (0x006E + 2*PRT,
PRT=0...7)

6.3.84.11 Reserved (0x007D - 0x008C)

6.3.84.12 PRTGEN_CNF2 (0x008D - 0x009C)

6.3.84.12.1 Data Low of PRTGEN_CNF2[PRT] (0x008D + 2*PRT,
PRT=0...7)

6.3.84.12.2 Data High of PRTGEN_CNF2[PRT] (0x008E + 2*PRT,
PRT=0...7)

6.3.84.13 Reserved (0x009D - 0x00A7)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of
PRTGEN_CNF, for PRT[0]

0xB8120

3:0 Type 0x2

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of
PRTGEN_CNF, for PRT[0]

Bit(s) Field Name Default
NVM Value Description

15:5 Length 0x18

4:3 Skip 00b

2:0 Width 000b

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

910 613875-009

6.3.84.14 GL_PWR_MODE_CTL (0x00A8 - 0x00AB)

6.3.84.14.1 Address Low at GL_PWR_MODE_CTL (0x00A8)

6.3.84.14.2 Address High at GL_PWR_MODE_CTL (0x00A9)

6.3.84.14.3 Data Low of GL_PWR_MODE_CTL (0x00AA)

6.3.84.14.4 Data High of GL_PWR_MODE_CTL (0x00AB)

Bit(s) Field Name Default
NVM Value Description

15:4 Low Address Bits of GL_PWR_MODE_CTL 0xB820C

3:0 Type 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 High Address Bits of GL_PWR_MODE_CTL

613875-009 911

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.85 LVK Hashes Section

Hashes for Low Value Keys.

6.3.85.1 Length (0x0000)

6.3.85.2 NVM Bank Key Hash[n] (0x0001 + 1*n, n=0...15)

6.3.85.3 OS Package Key Hash[n] (0x0011 + 1*n, n=0...15)

6.3.85.4 OROM Key Hash[n] (0x0021 + 1*n, n=0...15)

6.3.85.5 Netlist Key Hash[n] (0x0031 + 1*n, n=0...15)

Table 6-89. LVK Hashes Section Summary Table

Word Offset Description Section
Reference

0x0000 Length 6.3.85.1

0x0001 + 1*n, n=0...15 NVM Bank Key Hash 6.3.85.2

0x0011 + 1*n, n=0...15 OS Package Key Hash 6.3.85.3

0x0021 + 1*n, n=0...15 OROM Key Hash 6.3.85.4

0x0031 + 1*n, n=0...15 Netlist Key Hash 6.3.85.5

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 1
First Section -> Word: LVK Hashes -> Length
Last Section -> Word: LVK Hashes -> Netlist Key Hash

Bit(s) Field Name Default
NVM Value Description

15:0 NVM Bank Key Hash 0x0 Hash for NVM Bank and Recovery section key.

Bit(s) Field Name Default
NVM Value Description

15:0 OS Package Key Hash 0x0 Hash for OS Package keys.

Bit(s) Field Name Default
NVM Value Description

15:0 OROM Key Hash 0x0 Hash for OROM key.

Bit(s) Field Name Default
NVM Value Description

15:0 Netlist Key Hash 0x0 Hash for Netlist key.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

912 613875-009

6.3.86 Recovery FW CSS Header Section

Table 6-90. Recovery FW CSS Header Section Summary Table

Word Offset Description Section
Reference

0x0000 moduleTypeL 6.3.86.1

0x0001 moduleTypeH 6.3.86.2

0x0002 headerLenL 6.3.86.3

0x0003 headerLenH 6.3.86.4

0x0004 headerVersionL 6.3.86.5

0x0005 headerVersionH 6.3.86.6

0x0006 moduleIDL 6.3.86.7

0x0007 moduleIDH 6.3.86.8

0x0008 moduleVendorL 6.3.86.9

0x0009 moduleVendorH 6.3.86.10

0x000A dateL 6.3.86.11

0x000B dateH 6.3.86.12

0x000C sizeL 6.3.86.13

0x000D sizeH 6.3.86.14

0x000E keySizeL 6.3.86.15

0x000F keySizeH 6.3.86.16

0x0010 modulusSizeL 6.3.86.17

0x0011 modulusSizeH 6.3.86.18

0x0012 exponentSizeL 6.3.86.19

0x0013 exponentSizeH 6.3.86.20

0x0014 lad_srevL 6.3.86.21

0x0015 lad_srevH 6.3.86.22

0x0016 - 0x0017 Reserved 6.3.86.23

0x0018 lad_fw_entry_offsetL 6.3.86.24

0x0019 lad_fw_entry_offsetH 6.3.86.25

0x001A - 0x001B Reserved 6.3.86.26

0x001C lad_image_unique_idL 6.3.86.27

0x001D lad_image_unique_idH 6.3.86.28

0x001E lad_module_idL 6.3.86.29

0x001F lad_module_idH 6.3.86.30

0x0020 + 1*n, n=0...31 Reserved 6.3.86.31

613875-009 913

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.86.1 moduleTypeL (0x0000)

6.3.86.2 moduleTypeH (0x0001)

6.3.86.3 headerLenL (0x0002)

6.3.86.4 headerLenH (0x0003)

6.3.86.5 headerVersionL (0x0004)

6.3.86.6 headerVersionH (0x0005)

6.3.86.7 moduleIDL (0x0006)

Bits Field Name Default
NVM Value Description

15:0 moduleTypeL 0x6

Bits Field Name Default
NVM Value Description

15:0 moduleTypeH

Bits Field Name Default
NVM Value Description

15:0 headerLenL 0xA1

Bits Field Name Default
NVM Value Description

15:0 headerLenH

Bits Field Name Default NVM
Value Description

15:0 headerVersionL 0x00010000

Bits Field Name Default
NVM Value Description

15:0 headerVersionH

Bits Field Name Default
NVM Value Description

15:0 moduleIDL 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

914 613875-009

6.3.86.8 moduleIDH (0x0007)

6.3.86.9 moduleVendorL (0x0008)

6.3.86.10 moduleVendorH (0x0009)

6.3.86.11 dateL (0x000A)

6.3.86.12 dateH (0x000B)

6.3.86.13 sizeL (0x000C)

6.3.86.14 sizeH (0x000D)

Bits Field Name Default
NVM Value Description

15 signMode 1b

14:0 moduleIDH

Bits Field Name Default NVM
Value Description

15:0 moduleVendorL 0x00008086

Bits Field Name Default
NVM Value Description

15:0 moduleVendorH

Bits Field Name Default NVM
Value Description

15:0 DateL 0x20130530 0xMMDD

Bits Field Name Default
NVM Value Description

15:0 DateH 0xYYYY

Bits Field Name Default NVM
Value Description

15:0 sizeL 0x0000FA00

Bits Field Name Default
NVM Value Description

15:0 sizeH

613875-009 915

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.86.15 keySizeL (0x000E)

6.3.86.16 keySizeH (0x000F)

6.3.86.17 modulusSizeL (0x0010)

6.3.86.18 modulusSizeH (0x0011)

6.3.86.19 exponentSizeL (0x0012)

6.3.86.20 exponentSizeH (0x0013)

6.3.86.21 lad_srevL (0x0014)

Bits Field Name Default
NVM Value Description

15:0 keySizeL 0x40

Bits Field Name Default
NVM Value Description

15:0 keySizeH

Bits Field Name Default
NVM Value Description

15:0 modulusSizeL 0x40

Bits Field Name Default
NVM Value Description

15:0 modulusSizeH

Bits Field Name Default
NVM Value Description

15:0 exponentSizeL 0x1

Bits Field Name Default
NVM Value Description

15:0 exponentSizeH

Bits Field Name Default
NVM Value Description

15:0 lad_srevL 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

916 613875-009

6.3.86.22 lad_srevH (0x0015)

6.3.86.23 Reserved (0x0016 - 0x0017)

6.3.86.24 lad_fw_entry_offsetL (0x0018)

6.3.86.25 lad_fw_entry_offsetH (0x0019)

6.3.86.26 Reserved (0x001A - 0x001B)

6.3.86.27 lad_image_unique_idL (0x001C)

6.3.86.28 lad_image_unique_idH (0x001D)

Bits Field Name Default
NVM Value Description

15:0 lad_srevH

Bits Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetL 0x2C0

Bits Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetH

Bits Field Name Default
NVM Value Description

15:0 lad_image_unique_idL

Bits Field Name Default
NVM Value Description

15:0 lad_image_unique_idH

613875-009 917

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.86.29 lad_module_idL (0x001E)

6.3.86.30 lad_module_idH (0x001F)

6.3.86.31 Reserved[n] (0x0020 + 1*n, n=0...31)

Bits Field Name Default
NVM Value Description

15:0 lad_module_idL 0xB Valid values are:
0x1 = EMP Image
0x2 = PE Image
0x3 = PCIe Analog
0x4 = PHY Analog
0x5 = Option ROM
0xB = Recovery

Bits Field Name Default
NVM Value Description

15 Reserved 0b Reserved.

14:1 lad_module_idH

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

918 613875-009

6.3.87 Recovery FW Key and Signature Section

6.3.87.1 RSA Public Key[n] (0x0000 + 1*n, n=0...127)

6.3.87.2 RSA ExponentL (0x0080)

6.3.87.3 RSA ExponentH (0x0081)

6.3.87.4 Encrypted SHA256 Hash[n] (0x0082 + 1*n, n=0...127)

Table 6-91. Recovery FW Key and Signature Section Summary Table

Word Offset Description Section
Reference

0x0000 + 1*n, n=0...127 RSA Public Key 6.3.87.1

0x0080 RSA ExponentL 6.3.87.2

0x0081 RSA ExponentH 6.3.87.3

0x0082 + 1*n, n=0...127 Encrypted SHA256 Hash 6.3.87.4

Bit(s) Field Name Default
NVM Value Description

15:0 RSA Public Key 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentL 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentH 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA Public Key 0x0

613875-009 919

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.88 Recovery FW Auth Header Section

6.3.88.1 Device Blank NVM Device ID (0x0000)

6.3.88.2 Max Module AreaL (0x0001)

6.3.88.3 Max Module AreaH (0x0002)

6.3.88.4 Current Module AreaL (0x0003)

Table 6-92. Recovery FW Auth Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Device Blank NVM Device ID 6.3.88.1

0x0001 Max Module AreaL 6.3.88.2

0x0002 Max Module AreaH 6.3.88.3

0x0003 Current Module AreaL 6.3.88.4

0x0004 Current Module AreaH 6.3.88.5

0x0005 Reserved 6.3.88.6

0x0006 Code Revision 6.3.88.7

0x0007 Reserved Spare Word 6.3.88.8

Bits Field Name Default
NVM Value Description

15:0 Device Blank NVM Device ID 0x1590

Bits Field Name Default
NVM Value Description

15:0 Max Module AreaL 0x1000

Bits Field Name Default
NVM Value Description

15:0 Max Module AreaH 0x0009

Bits Field Name Default
NVM Value Description

15:0 Current Module AreaL 0xE000

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

920 613875-009

6.3.88.5 Current Module AreaH (0x0004)

6.3.88.6 Reserved (0x0005)

6.3.88.7 Code Revision (0x0006)

6.3.88.8 Reserved Spare Word (0x0007)

6.3.89 DCB Rx Module Section

6.3.90 DCB Tx Module Section

6.3.91 QoS DCB Auto-Load Section

6.3.92 QoS no-DCB Auto-Load Section

Bits Field Name Default
NVM Value Description

15:0 Current Module AreaH 0x0006

Bits Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bits Field Name Default
NVM Value Description

15:8 Major Revision 0x0

7:0 Minor Revision 0x0

Bits Field Name Default
NVM Value Description

15:0 Reserved Spare Word 0x0

613875-009 921

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.93 Ext. CORER Registers Auto-Load Module Section

Default setup to registers and internal memories that load on CORER events.

6.3.93.1 ModuleLenL (0x0000)

6.3.93.2 ModuleLenH (0x0001)

Table 6-93. Ext. CORER Registers Auto-Load Module Section Summary Table

Word Offset Description Section
Reference

0x0000 ModuleLenL 6.3.93.1

0x0001 ModuleLenH 6.3.93.2

Bit(s) Field Name Default NVM
Value Description

15:0 ModuleLenL 0x00000000 Length in: 2 Bytes unit - 2
First Section -> Word: Ext. CORER Registers Auto-load Module -> ModuleLenL
Last Section -> Word: Ext. CORER Registers Auto-load Module -> ModuleLenH

Bit(s) Field Name Default
NVM Value Description

15:0 ModuleLenH

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

922 613875-009

6.3.94 EMP Global Module Section

This section contains two sub-sections:

1. Vendor-Specific Settings: Settings for external PHY or Modules. This part has a proprietary
format to enable advanced, vendor-specific, PHY setting. These settings are loaded into the
external devices via the MDIO/I2C interface.

2. List of Qualified Modules: Parameter list of up to 16 modules. Per module list holds OUI,
Revision, and Version numbers.

6.3.94.1 Section Length (0x0000)

The length of the section in words. Note that section length does not include a count for the section
length word.

Table 6-94. EMP Global Module Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length 6.3.94.1

0x0001 Number of Qualified Modules 6.3.94.2

0x0002 + 12*n, n=0...15 Module OUI Bytes 0-1 6.3.94.3

0x0003 + 12*n, n=0...15 Module OUI Byte 2 6.3.94.4

0x0004 + 12*n, n=0...15 Vendor Part Number Bytes 0-1 6.3.94.5

0x0005 + 12*n, n=0...15 Vendor Part Number Bytes 2-3 6.3.94.6

0x0006 + 12*n, n=0...15 Vendor Part Number Bytes 4-5 6.3.94.7

0x0007 + 12*n, n=0...15 Vendor Part Number Bytes 6-7 6.3.94.8

0x0008 + 12*n, n=0...15 Vendor Part Number Bytes 8-9 6.3.94.9

0x0009 + 12*n, n=0...15 Vendor Part Number Bytes 10-11 6.3.94.10

0x000A + 12*n, n=0...15 Vendor Part Number Bytes 12-13 6.3.94.11

0x000B + 12*n, n=0...15 Vendor Part Number Bytes 14-15 6.3.94.12

0x000C + 12*n, n=0...15 Module Revision Number Bytes 0-1 6.3.94.13

0x000D + 12*n, n=0...15 Module Revision Number Bytes 2-3 6.3.94.14

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: EMP Global Module -> Section Length
Last Section -> Word: EMP Global Module -> Module Revision Number Bytes 2-3

613875-009 923

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.94.2 Number of Qualified Modules (0x0001)

Number of valid entries, 0 through 15, in the qualified modules' list.

6.3.94.3 Module OUI Bytes 0-1[n] (0x0002 + 12*n, n=0...15)

OUI of qualified external modules.

• SFP Vendor OUI is located at offsets [39:37].

• QSFP Vendor OUI is located at offsets [167:165].

6.3.94.4 Module OUI Byte 2[n] (0x0003 + 12*n, n=0...15)

OUI of qualified external modules.

• SFP Vendor OUI is located at offsets [39:37].

• QSFP Vendor OUI is located at offsets [167:165].

6.3.94.5 Vendor Part Number Bytes 0-1[n] (0x0004 + 12*n,
n=0...15)

Vendor Part Number of qualified external modules.

• SFP+: Addr A0h Bytes 55:40

• QSFP+: Addr 183:168 page 0

Bit(s) Field Name Default
NVM Value Description

15:0 Number of Qualified
Modules

0x10

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Reserved 0x0 Reserved.

7:0 Byte 2 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

924 613875-009

6.3.94.6 Vendor Part Number Bytes 2-3[n] (0x0005 + 12*n,
n=0...15)

Vendor Part Number of qualified external modules.

• SFP+: Addr A0h Bytes 55:40

• QSFP+: Addr 183:168 page 0

6.3.94.7 Vendor Part Number Bytes 4-5[n] (0x0006 + 12*n,
n=0...15)

Vendor Part Number of qualified external modules.

• SFP+: Addr A0h Bytes 55:40

• QSFP+: Addr 183:168 page 0

6.3.94.8 Vendor Part Number Bytes 6-7[n] (0x0007 + 12*n,
n=0...15)

Vendor Part Number of qualified external modules.

• SFP+: Addr A0h Bytes 55:40

• QSFP+: Addr 183:168 page 0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

613875-009 925

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.94.9 Vendor Part Number Bytes 8-9[n] (0x0008 + 12*n,
n=0...15)

Vendor Part Number of qualified external modules.

• SFP+: Addr A0h Bytes 55:40

• QSFP+: Addr 183:168 page 0

6.3.94.10 Vendor Part Number Bytes 10-11[n] (0x0009 + 12*n,
n=0...15)

Vendor Part Number of qualified external modules.

• SFP+: Addr A0h Bytes 55:40

• QSFP+: Addr 183:168 page 0

6.3.94.11 Vendor Part Number Bytes 12-13[n] (0x000A + 12*n,
n=0...15)

Vendor Part Number of qualified external modules.

• SFP+: Addr A0h Bytes 55:40

• QSFP+: Addr 183:168 page 0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

926 613875-009

6.3.94.12 Vendor Part Number Bytes 14-15[n] (0x000B + 12*n,
n=0...15)

Vendor Part Number of qualified external modules.

• SFP+: Addr A0h Bytes 55:40

• QSFP+: Addr 183:168 page 0

6.3.94.13 Module Revision Number Bytes 0-1[n] (0x000C + 12*n,
n=0...15)

Revision Number of qualified external modules.

• SFP+: Addr A0h Bytes 59:56

• QSFP+: Addr 185:184 page 0

6.3.94.14 Module Revision Number Bytes 2-3[n] (0x000D + 12*n,
n=0...15)

Revision Number of qualified external modules.

• SFP+: Addr A0h Bytes 59:56

• QSFP+: Addr 185:184 page 0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Byte 1 0x0

7:0 Byte 0 0x0

613875-009 927

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.95 EMP Settings Module Header Section

This section contains the modes of operation of the EMP.

6.3.95.1 Section Length (0x0000)

The length of the section in words. Note that section length does not include a count for the section
length word.

6.3.95.2 Common Firmware Parameters (0x0001)

Table 6-95. EMP Settings Module Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length 6.3.95.1

0x0001 Common Firmware Parameters 6.3.95.2

0x0002 FW Misc 6.3.95.3

0x0003 EEE Variables 6.3.95.4

0x0004 Maximal Wear-Out Value 6.3.95.5

0x0005 Initial Wear-Out Value 6.3.95.6

0x0006 Staggering Delay 6.3.95.7

0x0007 PXE PFC Timer Value 6.3.95.8

0x0008 PXE GPC High Threshold Value 6.3.95.9

0x0009 PXE GPC Low Threshold Value 6.3.95.10

0x000A Internal Thermal Sensor Maximum Secured Value 6.3.95.11

0x000B Internal Thermal Sensor Minimum Secured Value 6.3.95.12

0x000C MAX_LL_AQ_CREDITS 6.3.95.13

0x000D MAX_PWR_LMT 6.3.95.14

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Length in: 2 Bytes unit - 1
First Section -> Word: EMP Settings Module Header -> Section Length
Last Section -> Word: EMP Settings Module Header -> MAX_PWR_LMT

Bit(s) Field Name Default
NVM Value Description

15:10 Reserved 0x5 Reserved.

9 PF Reset on Queue Overflow 0b 0b = Disabled (default)
1b = Enabled

8:0 Reserved 0x3 Reserved.

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

928 613875-009

6.3.95.3 FW Misc (0x0002)

6.3.95.4 EEE Variables (0x0003)

6.3.95.5 Maximal Wear-Out Value (0x0004)

6.3.95.6 Initial Wear-Out Value (0x0005)

6.3.95.7 Staggering Delay (0x0006)

6.3.95.8 PXE PFC Timer Value (0x0007)

Bit(s) Field Name Default
NVM Value Description

15:1 FW Reserved 0x0 Reserved.

0 VEB Statistics Disable 0x0 0b = VEB Statistics are enable (default).
1b = VEB Statistics are disabled.

Bit(s) Field Name Default
NVM Value Description

15:8 receiveTW 0xE Value determines the time (expressed in microseconds) that the receiving link partner is
requesting the transmitting link partner to wait before starting the transmission data
following the LPI.
This value is platform dependent and depends on the OEM platform.

7:0 transmitTW 0xE Value determines the time (expressed in microseconds) that the transmitting link partner
waits before it starts transmitting data after leaving the Low Power Idle (LPI) mode.
This value is platform dependent and depends on the OEM platform.

Bit(s) Field Name Default
NVM Value Description

15:0 MAX 0x1400 Maximal wear out credit value.

Bit(s) Field Name Default
NVM Value Description

15:0 INITIAL 0x800 Initial wear out credit value.

Bit(s) Field Name Default
NVM Value Description

15:0 Delay 0x0 Port staggering delay in μs.

Bit(s) Field Name Default
NVM Value Description

15:14 Reserved 0x0 Reserved.

13:0 PXE PFC Timer 0x4 The value [in ms] to be set as the PFC timer in PCE mode.

613875-009 929

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.95.9 PXE GPC High Threshold Value (0x0008)

6.3.95.10 PXE GPC Low Threshold Value (0x0009)

6.3.95.11 Internal Thermal Sensor Maximum Secured Value
(0x000A)

6.3.95.12 Internal Thermal Sensor Minimum Secured Value
(0x000B)

6.3.95.13 MAX_LL_AQ_CREDITS (0x000C)

6.3.95.14 MAX_PWR_LMT (0x000D)

Bit(s) Field Name Default
NVM Value Description

15:0 PXE GPC High Threshold 0x0080 High threshold [in quanta of 32B] of GPC to be used in the RPB monitoring
flow.

Bit(s) Field Name Default
NVM Value Description

15:0 PXE GPC Low Threshold
Value

0x0010 Low threshold [in quanta of 32B] of GPC to be used in the RPB monitoring flow.

Bit(s) Field Name Default
NVM Value Description

15:0 Internal Thermal Sensor
Maximum Secured Value

0x73 0-255
Recommended 0-115 degrees.

Bit(s) Field Name Default
NVM Value Description

15:0 Internal Thermal Sensor
Minimum Secured Value

0c60 0-255
Recommended 90-100 degrees.

Bits Field Name Default
NVM Value Description

15:0 MAX_LL_AQ_CREDITS 0x8

Bits Field Name Default
NVM Value Description

15:8 Board Max Power Limit 0xE Maximum allowed power for board.
0.5 W resolution

7:0 Cage Max Power Limit 0x7 Maximum allowed power for any cage.
0.5 W resolution

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

930 613875-009

6.3.96 DL Scripts Section

6.3.97 Allowlist Section

6.3.98 Analog PHY Configuration Section

Includes static configurations of SerDes PHY registers for link establishment.

6.3.98.1 Section Length Low (0x0000)

6.3.98.2 Section Length High (0x0001)

6.3.98.3 Reg Write Indirect List (0x0002)

Raw data module length: variable

6.3.98.4 Reg Write Indirect List 2 (0x0003)

Raw data module length: variable

Table 6-96. Analog PHY Configuration Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length Low 6.3.98.1

0x0001 Section Length High 6.3.98.2

0x0002 Reg Write Indirect List 6.3.98.3

0x0003 Reg Write Indirect List 2 6.3.98.4

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Low 0x0 Length in: 2 Bytes unit - 2
First Section -> Word: Analog PHY Configuration -> Section Length Low
Last Section -> Word: Analog PHY Configuration -> Reg Write Indirect List 2

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length High

613875-009 931

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.99 Configuration Metadata Section

NVM adaptive configuration metadata.

6.3.100 Control Pipe Package Section

This module contains the package used to configure the control pipe. This package is encoded as a set
of Download Package Command (Opcode: 0x0C40) buffers.

6.3.100.1 ModuleLenL (0x0000)

6.3.100.2 ModuleLenH (0x0001)

6.3.100.3 Package Raw (0x0002)

Raw data module length: variable

Table 6-97. Configuration Metadata Section Summary Table

Word Offset Description Section
Reference

Table 6-98. Control Pipe Package Section Summary Table

Word Offset Description Section
Reference

0x0000 ModuleLenL 6.3.100.1

0x0001 ModuleLenH 6.3.100.2

0x0002 Package Raw 6.3.100.3

Bit(s) Field Name Default
NVM Value Description

15:0 ModuleLenL Length in: 2 Bytes unit - 2
First Section -> Word: Control Pipe Package -> ModuleLenL
Last Section -> Word: Control Pipe Package -> Package Raw

Bit(s) Field Name Default
NVM Value Description

15:0 ModuleLenH 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

932 613875-009

6.3.101 EMP Image Section

This module contains the EMP processor code.

6.3.101.1 EMP Image Raw Data (0x0000)

Raw data module length: variable

6.3.102 RDE Dictionaries Section

6.3.102.1 Dictionaries (0x0000)

Raw data module length: variable

Table 6-99. EMP Image Section Summary Table

Word Offset Description Section
Reference

0x0000 EMP Image Raw Data 6.3.101.1

Table 6-100. RDE Dictionaries Section Summary Table

Word Offset Description Section
Reference

0x0002 Dictionaries 6.3.102.1

613875-009 933

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.103 External Topology Device Image 0 Section

6.3.103.1 Section Length Low (0x0000)

6.3.103.2 Section Length High (0x0001)

6.3.103.3 Topology Device Image Version Number High 0
(0x0002)

Table 6-101. External Topology Device Image 0 Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length Low 6.3.103.1

0x0001 Section Length High 6.3.103.2

0x0002 Topology Device Image Version Number High 0 6.3.103.3

0x0003 Topology Device Image Version Number High 1 6.3.103.4

0x0004 Topology Device Image Version Number Low 0 6.3.103.5

0x0005 Topology Device Image Version Number Low 1 6.3.103.6

0x0006 Flags and Device Part Number 6.3.103.7

0x0007 Number of Sub-Sections 6.3.103.8

0x0008 External Topology Device Image 6.3.103.9

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Low Length in: 2 Bytes unit - 2
First Section -> Word: External Topology Device Image 0 -> Section Length Low
Last Section -> Word: External Topology Device Image 0 -> External Topology
Device Image

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number High 0

0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

934 613875-009

6.3.103.4 Topology Device Image Version Number High 1
(0x0003)

6.3.103.5 Topology Device Image Version Number Low 0
(0x0004)

6.3.103.6 Topology Device Image Version Number Low 1
(0x0005)

6.3.103.7 Flags and Device Part Number (0x0006)

6.3.103.8 Number of Sub-Sections (0x0007)

6.3.103.9 External Topology Device Image (0x0008)

Raw data module length: variable

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number High 1

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number Low 0

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number Low 1

0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Device Part Number 0x0 0x31 = C827
0x32 = X557 - 4 ports (X557-AT4)
0x3B = X557 - 2 ports (X557-AT2)

7:2 Reserved 0x0 Reserved.

1 ProgEn 0b

0 LoadEn 0b

Bit(s) Field Name Default
NVM Value Description

15:0 Number of Sub-Sections 0x0

613875-009 935

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.104 External Topology Device Image 1 Section

6.3.104.1 Section Length Low (0x0000)

6.3.104.2 Section Length High (0x0001)

6.3.104.3 Topology Device Image Version Number High 0
(0x0002)

Table 6-102. External Topology Device Image 1 Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length Low 6.3.104.1

0x0001 Section Length High 6.3.104.2

0x0002 Topology Device Image Version Number High 0 6.3.104.3

0x0003 Topology Device Image Version Number High 1 6.3.104.4

0x0004 Topology Device Image Version Number Low 0 6.3.104.5

0x0005 Topology Device Image Version Number Low 1 6.3.104.6

0x0006 Flags and Device Part Number 6.3.104.7

0x0007 Number of Sub-Sections 6.3.104.8

0x0008 External Topology Device Image 6.3.104.9

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Low Length in: 2 Bytes unit - 2
First Section -> Word: External Topology Device Image 0 -> Section Length Low
Last Section -> Word: External Topology Device Image 0 -> External Topology
Device Image

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number High 0

0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

936 613875-009

6.3.104.4 Topology Device Image Version Number High 1
(0x0003)

6.3.104.5 Topology Device Image Version Number Low 0
(0x0004)

6.3.104.6 Topology Device Image Version Number Low 1
(0x0005)

6.3.104.7 Flags and Device Part Number (0x0006)

6.3.104.8 Number of Sub-Sections (0x0007)

6.3.104.9 External Topology Device Image (0x0008)

Raw data module length: variable

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number High 1

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number Low 0

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number Low 1

0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Device Part Number 0x0 0x31 = C827
0x32 = X557 - 4 ports (X557-AT4)
0x3B = X557 - 2 ports (X557-AT2)

7:2 Reserved 0x0 Reserved.

1 ProgEn 0b

0 LoadEn 0b

Bit(s) Field Name Default
NVM Value Description

15:0 Number of Sub-Sections 0x0

613875-009 937

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.105 External Topology Device Image 2 Section

6.3.105.1 Section Length Low (0x0000)

6.3.105.2 Section Length High (0x0001)

6.3.105.3 Topology Device Image Version Number High 0
(0x0002)

Table 6-103. External Topology Device Image 2 Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length Low 6.3.105.1

0x0001 Section Length High 6.3.105.2

0x0002 Topology Device Image Version Number High 0 6.3.105.3

0x0003 Topology Device Image Version Number High 1 6.3.105.4

0x0004 Topology Device Image Version Number Low 0 6.3.105.5

0x0005 Topology Device Image Version Number Low 1 6.3.105.6

0x0006 Flags and Device Part Number 6.3.105.7

0x0007 Number of Sub-Sections 6.3.105.8

0x0008 External Topology Device Image 6.3.105.9

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Low Length in: 2 Bytes unit - 2
First Section -> Word: External Topology Device Image 0 -> Section Length Low
Last Section -> Word: External Topology Device Image 0 -> External Topology
Device Image

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number High 0

0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

938 613875-009

6.3.105.4 Topology Device Image Version Number High 1
(0x0003)

6.3.105.5 Topology Device Image Version Number Low 0
(0x0004)

6.3.105.6 Topology Device Image Version Number Low 1
(0x0005)

6.3.105.7 Flags and Device Part Number (0x0006)

6.3.105.8 Number of Sub-Sections (0x0007)

6.3.105.9 External Topology Device Image (0x0008)

Raw data module length: variable

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number High 1

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number Low 0

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number Low 1

0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Device Part Number 0x0 0x31 = C827
0x32 = X557 - 4 ports (X557-AT4)
0x3B = X557 - 2 ports (X557-AT2)

7:2 Reserved 0x0 Reserved.

1 ProgEn 0b

0 LoadEn 0b

Bit(s) Field Name Default
NVM Value Description

15:0 Number of Sub-Sections 0x0

613875-009 939

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.106 External Topology Device Image 3 Section

6.3.106.1 Section Length Low (0x0000)

6.3.106.2 Section Length High (0x0001)

6.3.106.3 Topology Device Image Version Number High 0
(0x0002)

Table 6-104. External Topology Device Image 3 Section Summary Table

Word Offset Description Section
Reference

0x0000 Section Length Low 6.3.106.1

0x0001 Section Length High 6.3.106.2

0x0002 Topology Device Image Version Number High 0 6.3.106.1

0x0003 Topology Device Image Version Number High 1 6.3.106.4

0x0004 Topology Device Image Version Number Low 0 6.3.106.5

0x0005 Topology Device Image Version Number Low 1 6.3.106.6

0x0006 Flags and Device Part Number 6.3.106.7

0x0007 Number of Sub-Sections 6.3.106.8

0x0008 External Topology Device Image 6.3.106.9

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length Low Length in: 2 Bytes unit - 2
First Section -> Word: External Topology Device Image 0 -> Section Length Low
Last Section -> Word: External Topology Device Image 0 -> External Topology
Device Image

Bit(s) Field Name Default
NVM Value Description

15:0 Section Length High 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number High 0

0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

940 613875-009

6.3.106.4 Topology Device Image Version Number High 1
(0x0003)

6.3.106.5 Topology Device Image Version Number Low 0
(0x0004)

6.3.106.6 Topology Device Image Version Number Low 1
(0x0005)

6.3.106.7 Flags and Device Part Number (0x0006)

6.3.106.8 Number of Sub-Sections (0x0007)

6.3.106.9 External Topology Device Image (0x0008)

Raw data module length: variable

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number High 1

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number Low 0

0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Topology Device Image
Version Number Low 1

0x0

Bit(s) Field Name Default
NVM Value Description

15:8 Device Part Number 0x0 0x31 = C827
0x32 = X557 - 4 ports (X557-AT4)
0x3B = X557 - 2 ports (X557-AT2)

7:2 Reserved 0x0 Reserved.

1 ProgEn 0b

0 LoadEn 0b

Bit(s) Field Name Default
NVM Value Description

15:0 Number of Sub-Sections 0x0

613875-009 941

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.107 NVM Provisioning Area Section

Free area used as the new bank when updating 4 MB long modules.

6.3.107.1 Raw Data (0x21D000)

Raw data module length: variable

Table 6-105. NVM Provisioning Area Section Summary Table

Word Offset Description Section
Reference

0x21D000 Raw Data 6.3.107.1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

942 613875-009

6.3.108 OROM Section

Option ROM module. It contains pre-boot code and settings read by BIOS.

Table 6-106. OROM Section Summary Table

Word Offset Description Section
Reference

0x0000 OROM Data 6.3.108.1

0x0001 moduleTypeL 6.3.108.2

0x0002 moduleTypeH 6.3.108.3

0x0003 headerLenL 6.3.108.4

0x0004 headerLenH 6.3.108.5

0x0005 headerVersionL 6.3.108.6

0x0006 headerVersionH 6.3.108.7

0x0007 moduleIDL 6.3.108.8

0x0008 moduleIDH 6.3.108.9

0x0009 moduleVendorL 6.3.108.10

0x000A moduleVendorH 6.3.108.11

0x000B dateL 6.3.108.12

0x000C dateH 6.3.108.13

0x000D sizeL 6.3.108.14

0x000E sizeH 6.3.108.15

0x000F keySizeL 6.3.108.16

0x0010 keySizeH 6.3.108.17

0x0011 modulusSizeL 6.3.108.18

0x0012 modulusSizeH 6.3.108.19

0x0013 exponentSizeL 6.3.108.20

0x0014 exponentSizeH 6.3.108.21

0x0015 lad_srevL 6.3.108.22

0x0016 lad_srevH 6.3.108.23

0x0017 - 0x0018 Reserved 6.3.108.24

0x0019 lad_fw_entry_offsetL 6.3.108.25

0x001A lad_fw_entry_offsetH 6.3.108.26

0x001B - 0x001C Reserved 6.3.108.27

0x001D lad_image_unique_idL 6.3.108.28

0x001E lad_image_unique_idH 6.3.108.29

0x001F lad_module_idL 6.3.108.30

0x0020 lad_module_idH 6.3.108.31

0x0021 Reserved 6.3.108.32

0x0022 RSA Public Key 6.3.108.33

0x0023 RSA ExponentL 6.3.108.34

613875-009 943

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.108.1 OROM Data (0x0000)

Raw data module length: variable

6.3.108.2 moduleTypeL (0x0001)

6.3.108.3 moduleTypeH (0x0002)

6.3.108.4 headerLenL (0x0003)

6.3.108.5 headerLenH (0x0004)

0x0024 RSA ExponentH 6.3.108.35

0x0025 Encrypted SHA256 Hash 6.3.108.36

0x0026 Device Blank NVM Device ID 6.3.108.37

0x0027 Max Module AreaL 6.3.108.38

0x0028 Max Module AreaH 6.3.108.39

0x0029 Current Module AreaL 6.3.108.40

0x002A Current Module AreaH 6.3.108.41

0x002B Reserved 6.3.108.42

0x002C Code Revision 6.3.108.43

0x002D Reserved Spare Word 6.3.108.44

Bit(s) Field Name Default
NVM Value Description

15:0 moduleTypeL 0x6

Bit(s) Field Name Default
NVM Value Description

15:0 moduleTypeH

Bit(s) Field Name Default
NVM Value Description

15:0 headerLenL 0xA1

Bit(s) Field Name Default
NVM Value Description

15:0 headerLenH

Table 6-106. OROM Section Summary Table [continued]

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

944 613875-009

6.3.108.6 headerVersionL (0x0005)

6.3.108.7 headerVersionH (0x0006)

6.3.108.8 moduleIDL (0x0007)

6.3.108.9 moduleIDH (0x0008)

6.3.108.10 moduleVendorL (0x0009)

6.3.108.11 moduleVendorH (0x000A)

6.3.108.12 dateL (0x000B)

Bit(s) Field Name Default
NVM Value Description

15:0 headerVersionL 0x00010000

Bit(s) Field Name Default
NVM Value Description

15:0 headerVersionH

Bit(s) Field Name Default
NVM Value Description

15:0 moduleIDL 0x0

Bit(s) Field Name Default
NVM Value Description

15 signMode 0x1

14:0 moduleIDH

Bit(s) Field Name Default
NVM Value Description

15:0 moduleVendorL 0x00008086

Bit(s) Field Name Default
NVM Value Description

15:0 moduleVendorH

Bit(s) Field Name Default
NVM Value Description

15:0 DateL 0x20130530 0xMMDD

613875-009 945

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.108.13 dateH (0x000C)

6.3.108.14 sizeL (0x000D)

6.3.108.15 sizeH (0x000E)

6.3.108.16 keySizeL (0x000F)

6.3.108.17 keySizeH (0x0010)

6.3.108.18 modulusSizeL (0x0011)

6.3.108.19 modulusSizeH (0x0012)

Bit(s) Field Name Default
NVM Value Description

15:0 DateH 0xYYYY

Bit(s) Field Name Default
NVM Value Description

15:0 sizeL 0x00025800 Size is in DWords.

Bit(s) Field Name Default
NVM Value Description

15:0 sizeH Size is in DWords.

Bit(s) Field Name Default
NVM Value Description

15:0 keySizeL 0x40

Bit(s) Field Name Default
NVM Value Description

15:0 keySizeH

Bit(s) Field Name Default
NVM Value Description

15:0 modulusSizeL 0x40

Bit(s) Field Name Default
NVM Value Description

15:0 modulusSizeH

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

946 613875-009

6.3.108.20 exponentSizeL (0x0013)

6.3.108.21 exponentSizeH (0x0014)

6.3.108.22 lad_srevL (0x0015)

6.3.108.23 lad_srevH (0x0016)

6.3.108.24 Reserved (0x0017 - 0x0018)

6.3.108.25 lad_fw_entry_offsetL (0x0019)

6.3.108.26 lad_fw_entry_offsetH (0x001A)

6.3.108.27 Reserved (0x001B - 0x001C)

Bit(s) Field Name Default
NVM Value Description

15:0 exponentSizeL 0x1

Bit(s) Field Name Default
NVM Value Description

15:0 exponentSizeH

Bit(s) Field Name Default
NVM Value Description

15:0 lad_srevL 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 lad_srevH

Bit(s) Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetL 0x14C Offset of OROM image from the beginning of OROM CSS module.

Bit(s) Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetH

613875-009 947

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.108.28 lad_image_unique_idL (0x001D)

6.3.108.29 lad_image_unique_idH (0x001E)

6.3.108.30 lad_module_idL (0x001F)

6.3.108.31 lad_module_idH (0x0020)

6.3.108.32 Reserved (0x0021)

6.3.108.33 RSA Public Key (0x0022)

Raw data module length: variable

6.3.108.34 RSA ExponentL (0x0023)

Bit(s) Field Name Default
NVM Value Description

15:0 lad_image_unique_idL 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 lad_image_unique_idH

Bit(s) Field Name Default
NVM Value Description

15:0 lad_module_idL 0x5 Valid values are:
0x1 = EMP Image
0x2 = PE Image
0x3 = PCIe Analog
0x4 = PHY Analog
0x5 = Option ROM

Bit(s) Field Name Default
NVM Value Description

15 Reserved 0b Reserved.

14:0 lad_module_idH

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentL 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

948 613875-009

6.3.108.35 RSA ExponentH (0x0024)

6.3.108.36 Encrypted SHA256 Hash (0x0025)

Raw data module length: variable

6.3.108.37 Device Blank NVM Device ID (0x0026)

6.3.108.38 Max Module AreaL (0x0027)

6.3.108.39 Max Module AreaH (0x0028)

6.3.108.40 Current Module AreaL (0x0029)

6.3.108.41 Current Module AreaH (0x002A)

6.3.108.42 Reserved (0x002B)

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentH 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Device Blank NVM Device ID 0x1590

Bit(s) Field Name Default
NVM Value Description

15:0 Max Module AreaL 0x1000

Bit(s) Field Name Default
NVM Value Description

15:0 Max Module AreaH 0x0009

Bit(s) Field Name Default
NVM Value Description

15:0 Current Module AreaL 0x1000

Bit(s) Field Name Default
NVM Value Description

15:0 Current Module AreaH 0x0000

613875-009 949

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.108.43 Code Revision (0x002C)

6.3.108.44 Reserved Spare Word (0x002D)

6.3.109 OROM Provisioning Area Section

600 KB OROM free area used as the new bank.

6.3.109.1 Raw Data (0x0000)

Raw data module length: variable

Bit(s) Field Name Default
NVM Value Description

15:8 Major Revision 0x0

7:0 Minor Revision 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Reserved Spare Word 0x0

Table 6-107. OROM Provisioning Area Section Summary Table

Word Offset Description Section
Reference

0x0000 Raw Data 6.3.109.1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

950 613875-009

6.3.110 Link Topology Netlist Raw Data Section

MD link topology.

6.3.110.1 Link Topology Netlist Header (0x0000)

6.3.110.2 Length (0x0001)

6.3.110.3 Link Topology Netlist Data (0x0002)

Raw data module length: 10236 words

Link topology netlist deliverable content.

Table 6-108. Link Topology Netlist Raw Data Section Summary Table

Word Offset Description Section
Reference

0x0000 Link Topology Netlist Header 6.3.110.1

0x0001 Length 6.3.110.2

0x0002 Link Topology Netlist Data 6.3.110.3

Bit(s) Field Name Default
NVM Value Description

15:0 Sub Module Type 0x11B Valid values are:
0x11B = Netlist Module

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: Image Raw Data -> Link Topology Netlist Header
Last Section -> Word: Image Raw Data -> Link Topology Netlist Data

613875-009 951

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.111 Link Topology Netlist CSS Header Section

Table 6-109. Link Topology Netlist CSS Header Section Summary Table

Word Offset Description Section
Reference

0x0000 moduleTypeL 6.3.111.1

0x0001 moduleTypeH 6.3.111.2

0x0002 headerLenL 6.3.111.3

0x0003 headerLenH 6.3.111.4

0x0004 headerVersionL 6.3.111.5

0x0005 headerVersionH 6.3.111.6

0x0006 moduleIDL 6.3.111.7

0x0007 moduleIDH 6.3.111.8

0x0008 moduleVendorL 6.3.111.9

0x0009 moduleVendorH 6.3.111.10

0x000A dateL 6.3.111.11

0x000B dateH 6.3.111.12

0x000C sizeL 6.3.111.13

0x000D sizeH 6.3.111.14

0x000E keySizeL 6.3.111.15

0x000F keySizeH 6.3.111.16

0x0010 modulusSizeL 6.3.111.17

0x0011 modulusSizeH 6.3.111.18

0x0012 exponentSizeL 6.3.111.19

0x0013 exponentSizeH 6.3.111.20

0x0014 lad_srevL 6.3.111.21

0x0015 lad_srevH 6.3.111.22

0x0016 - 0x0017 Reserved 6.3.111.23

0x0018 lad_fw_entry_offsetL 6.3.111.24

0x0019 lad_fw_entry_offsetH 6.3.111.25

0x001A - 0x001B Reserved 6.3.111.26

0x001C lad_image_unique_idL 6.3.111.27

0x001D lad_image_unique_idH 6.3.111.28

0x001E lad_module_idL 6.3.111.29

0x001F lad_module_idH 6.3.111.30

0x0020 + 1*n, n=0...31 Reserved 6.3.111.31

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

952 613875-009

6.3.111.1 moduleTypeL (0x0000)

6.3.111.2 moduleTypeH (0x0001)

6.3.111.3 headerLenL (0x0002)

6.3.111.4 headerLenH (0x0003)

6.3.111.5 headerVersionL (0x0004)

6.3.111.6 headerVersionH (0x0005)

6.3.111.7 moduleIDL (0x0006)

Bits Field Name Default
NVM Value Description

15:0 moduleTypeL 0x6

Bits Field Name Default
NVM Value Description

15:0 moduleTypeH

Bits Field Name Default
NVM Value Description

15:0 headerLenL 0xA1

Bits Field Name Default
NVM Value Description

15:0 headerLenH

Bits Field Name Default NVM
Value Description

15:0 headerVersionL 0x00010000

Bits Field Name Default
NVM Value Description

15:0 headerVersionH

Bits Field Name Default
NVM Value Description

15:0 moduleIDL 0x0

613875-009 953

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.111.8 moduleIDH (0x0007)

6.3.111.9 moduleVendorL (0x0008)

6.3.111.10 moduleVendorH (0x0009)

6.3.111.11 dateL (0x000A)

6.3.111.12 dateH (0x000B)

6.3.111.13 sizeL (0x000C)

6.3.111.14 sizeH (0x000D)

Bits Field Name Default
NVM Value Description

15 signMode 1b

14:0 moduleIDH

Bits Field Name Default NVM
Value Description

15:0 moduleVendorL 0x00008086

Bits Field Name Default
NVM Value Description

15:0 moduleVendorH

Bits Field Name Default NVM
Value Description

15:0 DateL 0x20130530 0xMMDD

Bits Field Name Default
NVM Value Description

15:0 DateH 0xYYYY

Bits Field Name Default NVM
Value Description

15:0 sizeL 0x00001CA5

Bits Field Name Default
NVM Value Description

15:0 sizeH

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

954 613875-009

6.3.111.15 keySizeL (0x000E)

6.3.111.16 keySizeH (0x000F)

6.3.111.17 modulusSizeL (0x0010)

6.3.111.18 modulusSizeH (0x0011)

6.3.111.19 exponentSizeL (0x0012)

6.3.111.20 exponentSizeH (0x0013)

6.3.111.21 lad_srevL (0x0014)

Bits Field Name Default
NVM Value Description

15:0 keySizeL 0x40

Bits Field Name Default
NVM Value Description

15:0 keySizeH

Bits Field Name Default
NVM Value Description

15:0 modulusSizeL 0x40

Bits Field Name Default
NVM Value Description

15:0 modulusSizeH

Bits Field Name Default
NVM Value Description

15:0 exponentSizeL 0x1

Bits Field Name Default
NVM Value Description

15:0 exponentSizeH

Bits Field Name Default
NVM Value Description

15:0 lad_srevL 0x0

613875-009 955

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.111.22 lad_srevH (0x0015)

6.3.111.23 Reserved (0x0016 - 0x0017)

6.3.111.24 lad_fw_entry_offsetL (0x0018)

6.3.111.25 lad_fw_entry_offsetH (0x0019)

6.3.111.26 Reserved (0x001A - 0x001B)

6.3.111.27 lad_image_unique_idL (0x001C)

6.3.111.28 lad_image_unique_idH (0x001D)

Bits Field Name Default
NVM Value Description

15:0 lad_srevH

Bits Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetL 0x2C0

Bits Field Name Default
NVM Value Description

15:0 lad_fw_entry_offsetH

Bits Field Name Default
NVM Value Description

15:0 lad_image_unique_idL 0x0

Bits Field Name Default
NVM Value Description

15:0 lad_image_unique_idH

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

956 613875-009

6.3.111.29 lad_module_idL (0x001E)

6.3.111.30 lad_module_idH (0x001F)

6.3.111.31 Reserved[n] (0x0020 + 1*n, n=0...31)

Bits Field Name Default
NVM Value Description

15:0 lad_module_idL 0x8 Valid values are:
0x1 = EMP Image
0x2 = PE Image
0x3 = PCIe Analog
0x4 = PHY Analog
0x5 = Option ROM
0x8 = Netlist Module
0xB = Recovery

Bits Field Name Default
NVM Value Description

15 Reserved 0b Reserved.

14:1 lad_module_idH

613875-009 957

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.112 Link Topology Netlist Key and Signature Section

6.3.112.1 RSA Public Key[n] (0x0000 + 1*n, n=0...127)

6.3.112.2 RSA ExponentL (0x0080)

6.3.112.3 RSA ExponentH (0x0081)

6.3.112.4 Encrypted SHA256 Hash[n] (0x0082 + 1*n, n=0...127)

Table 6-110. Link Topology Netlist Key and Signature Section Summary Table

Word Offset Description Section
Reference

0x0000 + 1*n, n=0...127 RSA Public Key 6.3.112.1

0x0080 RSA ExponentL 6.3.112.2

0x0081 RSA ExponentH 6.3.112.3

0x0082 + 1*n, n=0...127 Encrypted SHA256 Hash 6.3.112.4

Bit(s) Field Name Default
NVM Value Description

15:0 RSA Public Key 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentL 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 RSA ExponentH 0x0

Bit(s) Field Name Default
NVM Value Description

15:0 Encrypted SHA256 Hash 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

958 613875-009

6.3.113 Link Topology Netlist Auth Header Section

6.3.113.1 Device Blank NVM Device ID (0x0000)

6.3.113.2 Max Module AreaL (0x0001)

6.3.113.3 Max Module AreaH (0x0002)

6.3.113.4 Current Module AreaL (0x0003)

Table 6-111. Link Topology Netlist Auth Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Device Blank NVM Device ID 6.3.113.1

0x0001 Max Module AreaL 6.3.113.2

0x0002 Max Module AreaH 6.3.113.3

0x0003 Current Module AreaL 6.3.113.4

0x0004 Current Module AreaH 6.3.113.5

0x0005 Reserved 6.3.113.6

0x0006 Code Revision 6.3.113.7

0x0007 Reserved Spare Word 6.3.113.8

Bits Field Name Default
NVM Value Description

15:0 Device Blank NVM Device ID 0x1590

Bits Field Name Default
NVM Value Description

15:0 Max Module AreaL 0x4000

Bits Field Name Default
NVM Value Description

15:0 Max Module AreaH 0x0000

Bits Field Name Default
NVM Value Description

15:0 Current Module AreaL 0x394A

613875-009 959

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.113.5 Current Module AreaH (0x0004)

6.3.113.6 Reserved (0x0005)

6.3.113.7 Code Revision (0x0006)

6.3.113.8 Reserved Spare Word (0x0007)

Bits Field Name Default
NVM Value Description

15:0 Current Module AreaH 0x0000

Bits Field Name Default
NVM Value Description

15:0 Reserved 0xFFFF Reserved.

Bits Field Name Default
NVM Value Description

15:8 Major Revision 0x0

7:0 Minor Revision 0x0

Bits Field Name Default
NVM Value Description

15:0 Reserved Spare Word 0x0

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

960 613875-009

6.3.114 TLV Extension Provisioning Area Section

6.3.114.1 Sub Module Type - Padding (0x0000)

6.3.114.2 Length (0x0001)

6.3.115 Link Topology Scratch Pad Area Section

Link topology scratch pad area used by firmware only.

6.3.115.1 [New Word] (0x0000)

Raw data module length: variable

Table 6-112. TLV Extension Provisioning Area Section Summary Table

Word Offset Description Section
Reference

0x0000 Sub Module Type - Padding 6.3.114.1

0x0001 Length 6.3.114.2

Bit(s) Field Name Default
NVM Value Description

15:0 Sub Module Type 0xFFFF Valid values are:
0xFFFF = Padding Module

Bit(s) Field Name Default
NVM Value Description

15:0 Length Length in: 2 Bytes unit - 2
First Section -> Word: TLV extension Provisioning Area -> Sub Module Type - Padding
Last Section -> Word: TLV extension Provisioning Area -> Length

Table 6-113. Link Topology Scratch Pad Area Section Summary Table

Word Offset Description Section
Reference

0x0000 [New Word] 6.3.115.1

613875-009 961

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.116 FW Scratch Pad Area Section

Firmware scratch pad area used by firmware only.

6.3.116.1 [New Word] (0x0000)

Raw data module length: variable

6.3.117 Factory Settings Header Section

6.3.117.1 Actual Size L (0x0000)

6.3.117.2 Actual Size H (0x0001)

Table 6-114. FW Scratch Pad Area Section Summary Table

Word Offset Description Section
Reference

0x0000 [New Word] 6.3.116.1

Table 6-115. Factory Settings Header Section Summary Table

Word Offset Description Section
Reference

0x0000 Actual Size L 6.3.117.1

0x0001 Actual Size H 6.3.117.2

0x0002 Password 6.3.117.3

0x0003 TLV Extension Offset 6.3.117.4

0x0004 TLV Extension Size 6.3.117.5

0x0005 PCIR AL Offset 6.3.117.6

0x0006 POR AL Offset 6.3.117.7

0x0007 PCI Serial Id MAC Address Offset 6.3.117.8

0x0008 Reserved 6.3.117.9

Bit(s) Field Name Default
NVM Value Description

15:0 Actual Size L 0xFFFF

Bit(s) Field Name Default
NVM Value Description

15:0 Actual Size H 0xFFFF

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

962 613875-009

6.3.117.3 Password (0x0002)

6.3.117.4 TLV Extension Offset (0x0003)

6.3.117.5 TLV Extension Size (0x0004)

6.3.117.6 PCIR AL Offset (0x0005)

6.3.117.7 POR AL Offset (0x0006)

6.3.117.8 PCI Serial ID MAC Address Offset (0x0007)

6.3.117.9 Reserved (0x0008)

Raw data module length: variable

Bit(s) Field Name Default
NVM Value Description

15:0 Password 0xFFFF

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Extension Offset 0xFFFF

Bit(s) Field Name Default
NVM Value Description

15:0 TLV Extension Size 0xFFFF

Bit(s) Field Name Default
NVM Value Description

15:0 PCIR AL Offset 0xFFFF

Bit(s) Field Name Default
NVM Value Description

15:0 POR AL Offset 0xFFFF

Bit(s) Field Name Default
NVM Value Description

15:0 PCI Serial ID MAC
Address Section

0xFFFF

613875-009 963

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

6.3.118 Factory Settings Area Section

6.3.118.1 Reserved[n] (0x0000)

Raw data module length: variable

6.3.119 Guarded Zone Section

Guarded zone for firmware use. The zone is protected such that only firmware can read and write to it.

6.3.119.1 [New Word] (0x0000)

Raw data module length: variable

Table 6-116. Factory Settings Area Section Summary Table

Word Offset Description Section
Reference

0x0000 Reserved. 6.3.118.1

Table 6-117. Guarded Zone Section Summary Table

Word Offset Description Section
Reference

0x0000 [New Word] 6.3.119.1

Intel® Ethernet Controller E810 Datasheet
Non-Volatile Memory Map

964 613875-009

NOTE: This page intentionally left blank.

613875-009 965

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Chapter 7 Packet Processing

7.1 Introduction

The E810 provides a programmable packet processing engine with extensive support for advanced
applications ranging from Enterprise LAN to SDN/NFV, Cloud, Comms, and Wireless.

Key features include:

• FlexiPipe virtualized pipeline with profile-based processing stages.

• OpenFlow-enabled Flow-Tables structure with metadata propagation between pipeline stages.

• P4-ready parsing and classification flows.

• Programmable packet modification (for example, tunnel encap/decap, NAT)

• Multiple binary and ternary (like ACL) classification stages.

• RDMA Flow Table expansions to host DRAM.

• SDN-enabled architecture.

— Generic L1 to L5+ protocol handling.

— Protocol-agnostic SDN parsing, classification, and packet forwarding and modification, including
standard L2 and/or L3+ packet switching.

— N-Tuple lookup key pre- and post-modification classification.

— M-Tuple action execution.

• Deep header processing up to 504 bytes.

— Supports tunneled overlay encapsulations and large IPv6 extension headers.

• Fully software-programmable FlexiParser.

— Supports user-defined proprietary packet formats.

— Programmable parse graph, enforcing user-defined parsing policy.

— Programmable PTYPEs (Packet Types).

• Cloud-enabled generic overlays including GRE, NVGRE, VXLAN, VXLAN-GPE, Geneve.

• MPLS-enabled processing.

— Outer MPLS and inner-MPLS (e.g., MPLSoGRE, MPLSoUDP).

• Service chaining forwarding including NSH (Network Service Header) processing.

The advanced packet processing engine enables high-performance acceleration by hardware-offloading
of software functions, especially in a VMM/Hypervisor environments with SR-IOV paths.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

966 613875-009

7.2 FlexiPipe Processing Pipeline

The E810 FlexiPipe pipeline serves as the backbone of the packet processing engine. The
OpenFlow-enabled pipeline is fully SDN/NFV-enabled, providing multiple programmable lookup stages
(Flow Tables) augmented with programmable FlexiParser and packet modifier.

The generic FlexiPipe pipeline architecture enables support for diverse processing requirements. The
pipeline provides multiple protocol-agnostic processing stages that can be re-purposed according to the
target application. For example, a generic classification stage in the pipe can set a Destination VSI/
Destination Q in one application, whereas in another application the same generic classification stage
can set an opaque metadata associated with the packet. Each of these classifications can be performed
using different lookup keys over different protocols.

7.2.1 Rx and Tx Pipeline Structure

The E810 pipeline shares sections of the pipe between Rx and Tx flows. Shared components are
designed to process packets at the combined rates of Rx and Tx.

The pipeline provides a loopback forwarding path between Tx and Rx for packets that are destined to
functions residing on the same host. Such packets are first processed in the Tx section of the pipeline,
stored in the Tx Packet Buffer, copied to Rx Packet Buffer, and then processed in the Rx section of the
pipeline.

The Rx processing pipeline contains the following stages for LAN traffic:

1. Rx Packet Buffer

2. Rx FlexiParser (Section 7.7)

3. Switch (Phase 1 Classifier - Binary) — Default function: Node level VEB switch, multi-cast and
mirror replicate (Section 7.8)

4. ACL (Phase 2 Classifier - Ternary) — Default function: ACL (Section 7.9)

5. POSTPRS - Post Modification Parser

6. Classifications filters (Section 7.10)

• FD (Binary Classifier) — Default function: Flow Director (Q steering)

• QH (Binary Classifier) — Default function: RDMA flow steering

• Hash — Default function: RSS

7. Flex Descriptor Builder (Section 7.6)

8. Packet Modifier

A detailed view of the FlexiPipe Rx processing pipeline is illustrated in Figure 7-1.

613875-009 967

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The FlexiPipe Tx processing pipeline contains the following stages:

1. Tx WFQ Scheduler (Section 8.3)

2. LSO/TSO Segmentation Offload (Section 10.5.8.4)

3. Packet Modifier

4. Tx FlexiParser (Section 7.7)

5. Switch (Phase 1 Classifier - Binary) - Default function: Node level packet steering to LAN (Line) / LB
(Loopback to host) (Section 7.8)

6. ACL (Phase 2 Classifier - Ternary) - Default function: ACL (Section 7.9)

7. Tx Packet Buffer

A detailed view of the FlexiPipe Tx processing pipeline is illustrated in Figure 7-2.

Further descriptions of the pipeline stages appear in subsequent sections of this document.

Figure 7-1. Rx Processing Pipeline (Showing Post-Receive Packet Buffer Section)

Figure 7-2. Tx Processing Pipeline

Action
Priority Resolver

FlexiParser

tionnnnn

Replicate

Regs

...
T/LUT

...
B/LUT

Cores

...
Flags

Counter

ProtocolID
IP

ProtocolID
TCP

Pr
of

ile
 S

el
ec

tio
n

Switch

Ke
y

Bu
ild

...
LUT

...
LUT

...
LUT

...
LUT
...

VSI
Q

Counter

Mirror

Multicast

Action
Priority Resolver

Pr
of

ile
 S

el
ec

tio
n

ACL

Ke
y

Bu
ild

...
TC AM

...
TC AM

...
TC AM

...
TC AM
...

Action
Priority Resolver

Pr
of

ile
 S

el
ec

tio
n

x3

Classification Filters

Ke
y

Bu
ild

 x
3

...
FD

...
QH

...
RSS

VSI
Q

Counter

P

Ha sh (RSS)Drop

Pr
e-

Pr
oc

es
si

ng
 M

et
ad

at
a

(e
.g

.,
In

gr
es

s
Po

rt
, M

D
fr

om
 S

w
itc

h)

...
Profiles

Drop

FD FlowID

Host
(SW)

Rx Desc
Pr

of
ile

 S
el

ec
tio

n
VSI
Q

Counter

Drop
Rule ID

P P P P P P P P P P P P P P P P

Packet
Modifier

Receive
Descriptor

Builder

Packet
Data

HostLine

Action
Priority Resolver

FlexiParser

tionononn

Replicate

R
egs

...
T/LUT

...
B/LUT

Cores

...
Flags

Counter

ProtocolI D
IP

ProtocolI D
TCP

Pr
of

ile
 Se

le
ct

io
n

Switch

Ke
y

Bu
ild

...
LUT

...
LUT

...
LUT

...
LUT
...

Counter

Mirror

Multicast

Action
Priority Resolver

Pr
of

ile
 Se

le
ct

io
n

ACL

Ke
y

Bu
ild

...
TCAM

...
TCAM

...
TCAM

...
TCAM
...

Drop

Drop

Pr
of

ile
 Se

le
ct

io
n

Counter

Drop

P P P P P P P PP P P P

LSO/TSO
Segmentation

Offload

Transmit
Scheduler

Packet
Modifier

...

Host Line

LAN/LBLAN/LB

Intel® Ethernet Controller E810 Datasheet
Packet Processing

968 613875-009

7.2.2 Pipeline Virtualization

The E810 FlexiPipe provides a unique feature of Pipeline Virtualization that logically partitions the single
physical pipeline instance into functionally-independent logical pipeline instances. Each behaves like a
standalone pipeline available for programming, as illustrated in Figure 7-3.

In Figure 7-3, the physical pipeline is virtualized and partitioned into two logical pipeline instances:
orange and green. Each of the logical pipeline instances can be programmed independently and provide
different functionality.

7.3 Priority Resolver

The E810 pipeline provides a generic action-agnostic metadata generation at each pipeline stage.
Consequently, multiple pipeline stages are allowed to generate the same MDID types, possibly creating
conflicts.

For example, multiple pipeline stages might attempt to set the <Destination Q> of the packet: the
switch, the ACL, and the FD (Flow Director). Similarly, multiple pipeline stages might attempt to set the
<DestinationVSI>.

To guarantee consistent behavior, the pipeline provides a metadata Priority Resolver at each pipeline
stage, resolving possible conflicts per each MDID type. The Priority Resolver selects the highest priority
metadata value per each MDID metadata type, based on the input metadata to the pipeline stage and
the metadata generated by the pipeline stage itself (the core). When priorities are equal, the later
pipeline stage wins (for example, if switch selects <DestinationVSI>=A Priority=3, and ACL selects
<DestinationVSI>=B Priority=3, the ACL wins because it is a later stage in the pipe).

The metadata Priority Resolver is illustrated in Figure 7-4.

Figure 7-3. Pipeline Virtualization

Parser Switch ACL FD RSS

613875-009 969

Intel® Ethernet Controller E810 Datasheet
Packet Processing

MDID metadata types that have priority association are carried in the pipeline alongside with their
priority association and provided to the next pipeline stage for further processing.

7.3.1 MDID Override

The Priority Resolver in each pipeline stage provides an MDID Override feature for setting the MDID
outputs of the pipe stage from CSRs. For each RW MDID metadata, the following CSRs are provided:

• <MDID[i] Force Enable> — When set, MDID override is enabled for MDID type i.

• <MDID[i] Static Value> — When MDID override is enabled for MDID type i, the metadata value is
taken from CSR.

• <MDID[i] Static Priority> — When MDID override is enabled for MDID type i, the metadata priority
is taken from CSR.

The metadata override feature enables functional bypassing of pipeline stages, complete or partial
bypass, depending on the target use case. It also facilitates the silicon bring-up process by placing the
pipeline into a simple static configuration where all traffic is directed to known destinations (VSI, Q, and
so on) determined by CSRs.

7.3.2 Programming the Priority Resolver

As detailed in earlier sections, the E810 FlexiPipe implements priority resolution mechanisms for several
of its actions.

These mechanisms are placed in each of the four stages of the Routing Control Unit (RCU): the parser,
the switch, the ACL, and the Rx filters.

Figure 7-4. Metadata Priority Resolver

pi.md[i].value[15:0]
pi.md[i].pri[2:0]

c.md[i].value[15:0]
c.md[i].pri[2:0]

pr.md[i].value[15:0]

pr.md[i].pri[2:0]

MDID[i] Static Value

CSR: Default ‘1’

0

MDID[i] Force En

CSR: Default ‘0’

Per-stage static CSR config

CSR: Default ‘0’
MDID[i] Static Pri

1

1

0

po.md[i].value[15:0]

po.md[i].pri[2:0]

Priority
Resolver

Per-stage static CSR config

Per-stage static CSR config

if ((c.md[i].Pri >= pi.md[i].pri) and (c.md[i].Pri>0)) {
 po.md[i].Pri = c.md[i].pri
 po.md[i].value = c.md[i].value
 }

PR
v1.4

Intel® Ethernet Controller E810 Datasheet
Packet Processing

970 613875-009

7.4 FlexActions

When a pipe stage generates FlexActions, they are mapped into the MDID metadata infrastructure of
the pipeline. A generic FlexAction structure is made of xM1 FlexAction Tuples that define the actions
generated and the mapping of these actions into the pipeline metadata.

Note: Some legacy blocks in the E810 pipeline provide a hybrid FlexAction implementation, where
some actions are statically mapped (for example, VSI selection in the legacy portion of the
E810 switch), while the block also provides a FlexAction structure for generating all the other
actions and metadata supported by the pipeline (like the flex portion of the E810 switch).
More details are provided in further sections of this document that refer to the corresponding
pipeline stages.

An example for the generic structure of a FlexAction is illustrated in Figure 7-5.

The FlexAction structure is made of xN FlexAction Tuples, each carrying the following fields:

• <MDID> — The MDID type to be assigned, such as <DestinationQ>.

• <Value> — The value to associate with the MDID, such as the <DestinationQ> number.

• <Priority> — The priority to associate with the Action Tuple, for resolving conflicts with other
sources in the pipe that can generate the same MDID type.

Note: <Priority>=0 indicates that the MDID is invalid and its <Value> should be disregarded.

1. xM is an implementation parameter selected independently per each pipeline function that generates actions. It denotes the
number of FlexActions generated simultaneously, e.g., as a result of a classification lookup hit. In the example in Figure 7-5,
M=4 and the FlexActions generated are <DestinationQ>, <FlowID>, <CounterID>, and a user-defined <PipeFlowProfile>.

Figure 7-5. FlexAction Structure

ValueMDID Priority FlexAction

MDID

Classification
(Lookup Table)

Classification
(Lookup Table)

<DestinationQ> <FlowID> <CounterID> <PipeFlowProfile>

FlexAction Structure (M-Tuples)

ValueMDIDMDIMDI Pri ValueMDID Pri ValueMDID Pri ValueMDID Pri

FlexAction
v1.1

613875-009 971

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.5 Extractor

The E810 pipeline provides a generic extraction logic instantiated at pipeline stages that require
extraction from the packet header, namely:

• Switch

• ACL

• Rx filters: FD (Flow Director), HASH, RDMA/QH (Quad Hash)

The Extractor’s logic uses the Profile ID, generated by the Profile Builder, and the metadata supplied by
previous stages in the pipeline to extract fields to be used in each stage.

Each extractor contains a configuration per Profile ID, which determines which fields from the packet
header or its metadata are used for packets that hit that Profile ID. The extractor output, which
contains the set of fields selected for the packet, is referred as the Fields Vector.

The extractor offsets are expressed in byte resolution while the extraction itself is done in word
resolution. For each word in the Fields Vector, the configuration must specify a source word that can be
from either the packet’s header (up to 504B first bytes) or the packet metadata. Furthermore, a source
offset in the packet’s header is expressed as a relative offset to a protocol offset, using the protocol IDs
offset (Section A.4), thus leveraging the capabilities of the programmable parser.

Note: Any configuration that causes the extractor to cross the header length boundaries (either by
crossing the maximal supported header size or by crossing the packet length) is illegal, but
an extraction can cross boundaries of internal protocols and can also refer to parts of the
payload that are within the extracted header.

7.5.1 Programming the Extraction Logic

In general, the extraction logic must be programmed after the relevant profile builder is configured and
the Profile ID is allocated. This section describes the configuration method used to program the
extraction sequence for a previously allocated Profile ID. When an incoming packet is associated with
that Profile ID, the extractor logic must use this configuration to extract fields from the packet’s header
and metadata to create a fields vector that are used in the given stage.

Important: The E810 pipeline supports extraction from packet headers of up to 504 byes (that is,
only from the 504 bytes trailing the start-of-frame delimiter) or the length of the packet
(the lowest of both). Any extractor configuration that relates to an offset beyond the
maximal packet size or beyond the maximal supported header size is invalid and can
cause unexpected hardware behavior.

The extractor CSRs are listed in Table 7-1. Each CSR mentioned in Table 7-1 is instantiated in three
pipeline stages (Switch, ACL, and Rx filters), though some might be valid only in specific stages.
Therefore, the three rightmost columns in the table specify which of the CSRs is valid in each stage and
its functionality in the relevant stage.

Furthermore, each extractor in each stage supports a different output width, based on the needs of that
stage. Table 7-2 specifies the output size of each extractor in each stage.

Important: Attempting to configure an extractor to output more words than it supports is forbidden
and can cause unexpected hardware behavior.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

972 613875-009

7.5.1.1 Programming Flow

When programming an extraction sequence for a Profile ID #n, the programming entity follows the flow
below:

1. For each of the words in the fields vector, define the location of the source word that will be placed
in the fields vector:

a. Set PRFLM_DATA_i.PROT to the protocol ID whose offset in the packet’s header will be used as
a base offset for the source word.

b. Set PRFLM_DATA_i.OFF to the byte offset relative to the protocol ID offset. This field’s value is
added to the protocol offset to generate the final offset of the source word.

Note: When the PRFLM_DATA_i.PROT field is set to 255, the source word is taken from the
packet’s metadata and not from the packet’s header. In this case, the value of the
PRFLM_DATA_i.OFF field determines the source in the packet’s metadata as described in
Table 7-1.

Table 7-1. Extractor CSRs

CSR Description Switch ACL Rx Filters

PRFLM_DATA_0 Each CSR is used to configure protID (see Section A.4)/offset of
extraction word N (See Table 7-2 for applicable FV sizes in each
stage) for FV of sub-extractor #i (i=[0..2]) of this extractor.
If the specified protocol ID is smaller than 255, the source is taken
from packet using the protocol ID’s offset plus the offset in the
protocol (in bytes).
If the specified offset is equal to 255, the source is taken from the
packet’s metadata according to the following rules:
• Offset 0-30: The word is extracted from the pipe status bus. The

source word byte offset is the value specified in this field.
• Offset 32-62: The word is extracted from the packet status bus.

The source word byte offset is the value specified in this field
minus 32 (for example, a value of 32 extracts a word from byte
offset 0 in the packet status bus).

Note: The byte offset values mentioned above should not be
confused with the MDID.

Note: Offset values 31 and 63 are invalid, as word boundary
crosses the relevant status bus width.

Main switch ACL Hash

PRFLM_DATA_1 MNG Invalid FD

PRFLM_DATA_2 Invalid Invalid Quad-Hash

PRFLM_CTRL[0] When the CSRs is written, it determines the profileID within
sub-extractor #i (i=0..2) for which the FV extractions determined in
PRFLM_data_i are configured.
This CSR is to be written only after all relevant PRFLM_data_i have
the correct value.
This CSR is also used to read the relevant content into the relevant
PRFLM_data_i array. RD/WR is controlled by a field in this CSR.

Main switch ACL Hash

PRFLM_CTRL[1] MNG Invalid FD

PRFLM_CTRL[2] Invalid Invalid Quad-Hash

Table 7-2. Extractor Output Width per Stage

Stage Extractor Instance Output Width (Words)

Switch Main switch 48

Manageability 32

ACL ACL 32

Rx Filters Hash 24

Quad-hash 32 (24 + 8 for fixed fields)

Flow-director 24

613875-009 973

Intel® Ethernet Controller E810 Datasheet
Packet Processing

2. Once the sources for all words in the fields vector were configured, complete the programming:

a. Set PRFLM_CTRL[i].PRFL_IDX to the Profile ID for which the extraction sequence is being
programmed.

b. Set PRFLM_CTRL[i].WR_REQ.

3. Pull for the value of PRFLM_CTRL[i].WR_REQ. Once it is cleared, the programming is completed.

7.5.1.2 Querying Flow

The extractor logic supports reading back an extraction sequence for a given Profile ID. This flow can be
useful for implementing a read-modify-write mechanism allowing a partial change in configuration.

1. Trigger the read of the configuration:

a. Set PRFLM_CTRL[i].PRFL_IDX to the Profile ID for which the extraction sequence is being read.

b. Set PRFLM_CTRL[i].RD_REQ.

2. Pull for the value of PRFLM_CTRL[i].RD_REQ. Once it is cleared, the read is completed.

3. The values are available in the PRFLM_DATA_i array.

7.6 Receive Descriptor Builder

7.6.1 Overview

The E810 provides new programmable receive descriptor formats on top of the legacy (backward
compatible) receive descriptor formats. The new Flex Descriptor feature virtualizes the hardware/
software interface on the receive path, allowing software entities to program customized receive
descriptors for specific use cases and applications. The feature allows each PF/VF/VM to customize its
own Flex Descriptor structure with different fields and flags, exposing to software pre-processing
results of interest such as <FlowID>, <ACLRuleID>, offsets to protocol headers or other opaque
metadata that generated by the E810.

The Receive Descriptor Builder stage in the E810 pipeline provides the programming infrastructure and
the composition logic of the Flex Descriptors.

The generic structure of the receive Flex Descriptor is illustrated in Figure 7-6.

Note: Figure 7-6 shows the structure of the 32-byte receive Flex Descriptor. The shorter 16-byte
receive Flex Descriptor uses the first 16 bytes of this structure, while the last 16-byte chunk
of the structure is omitted.

Figure 7-6. Receive Flex Descriptor

L2TAG1 (16b) Status/Error-0 (16b)

PTYPE (10b)Packet Length (14b)

L2TAG2 (1st) (16b)L2TAG2 (2n d) (16b)

RXDID (8b)MirrorID (6b)

FlexiMD.2 (16b)FlexiMD.3 (16b)FlexiMD.4 / TS.H0 (16b)FlexiMD.5 / TS.H1 (16b)

FlexiMD.0 (16b)FlexiMD.1 (16b)

FlexiFlags-2 (8b)

FlexiFlags-0 (6b)
FlexiFlags-1

/Ex tStat (4b)

TS.L (8b)

Rsrv
(2b)Header Length (11b)SP

H

567 4 123
0
0

1
890124 3567

2
890124 3567

3
8901567 4 23

4
890124 3567

5
890124 3567

6
890123

UMB
CAST

Status/Error-1 (16b)

Intel® Ethernet Controller E810 Datasheet
Packet Processing

974 613875-009

The E810 provides 63 x Descriptor Builder Profiles for programming different descriptor formats,
including the 16-byte and 32-byte legacy descriptor formats. The RXDID field in the Flex Descriptor
structure identifies the profile and hence the descriptor format delivered to software, in particular the
contents of fields and flags.

Note: RXDID=7 is reserved and should not be used (in legacy descriptors, MIRR=7 means “mirror
packet”, and that is the only way to distinguish it from Flex Descriptors).

The Descriptor Builder Profile selected for each packet is derived from two sources:

• Pipeline Actions — Based on rules programmed into the pipeline (for example, if the packet
matches a rule in the ACL, the action of that rule might request a descriptor profile that exposes the
<ACLRuleID> via the Receive Flex Descriptor).

• Queue Context — Based on the Destination Q of the packet (for example, packets sent to specific
destination queue can have the same descriptor format, like the 16-byte legacy format).

The profile request is an MDID metadata/action carried in the pipeline. Conflicting actions from multiple
sources that request different profiles for the same packet are resolved through the standard MDID
priority resolution scheme described in Section 7.3.

7.6.2 Legacy Descriptor Format

The E810 preserves the legacy (backward compatible) descriptor format (see Section 10.4.2).

The legacy formats are available for selection as Descriptor Builder Profiles #0 (16-byte) and
#1 (32-byte):

• Descriptor Builder Profiles #0 — Generates the legacy 16-byte descriptor format, identified by
RXDID=0 in the descriptor structure delivered to software.

• Descriptor Builder Profiles #1 — Generates the legacy 32-byte descriptor format, identified by
RXDID=1 in the descriptor structure delivered to software.

Note: RXDID=7 is reserved and should not be used (in legacy descriptors, MIRR=7 means “mirror
packet”, and that is the only way to distinguish it from flex descriptors).

The legacy descriptor can be used in applications where it is required to preserve backward
compatibility at the driver level. For example, using the legacy X710/XXV710/XL710 VF driver in VFs
running over the E810.

The structure of the 32-byte legacy (backward compatible) descriptor is illustrated in Figure 7-7.

The first two QW (Quad Words = 16B) are identical to the 16B legacy descriptor format.

Figure 7-7. Receive Descriptor (32-Byte) - Legacy Format

MIRR / FCoE Context (14b)

567 4 123
0
0

1
890124 35

Error (8b)

Filter Status (32b)

67
2

890124 3567
3

8901

Rsrv
(2b)L2TAG1 (16b)

567 4 23
4

890124 3567
5

890124 3567
6

890123

Status (19b)Rsrv
(3b)PTYPE (8b)Length (26b)

Ext_Status (12b)Reserved (20b)L2TAG2 (1st) (16b)L2TAG2 (2n d) (16b)

Flexible Bytes Low (32b)FD Filter ID / Flexible Bytes High (32b)

613875-009 975

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.6.2.1 PTYPE Translation

The legacy (backward compatible) descriptor uses an 8-bit PTYPE, whereas the E810 pipeline provides
an advanced 10-bit PTYPE. The E810 provides a PTYPE Translation Table for matching the 10-bit E810
PTYPEs to the legacy 8-bit PTYPEs.

Note: The PTYPE Translation Table also provides the legacy 8-bit PTYPE to the Receive Data
Processing Unit (RDPU) for the purpose of checksum generation.

The factory parsing program loaded from NVM provides the default 10-bit PTYPEs and their translations
to legacy 8-bit PTYPEs. Further information is found in Appendix A.

7.6.3 Flex Descriptor Format

The Flex Descriptor includes permanent infrastructure fields that appear in all Flex Descriptor formats
and user-defined fields that can be programmed differently by different Descriptor Builder Profiles:

• Permanent infrastructure fields:

— RXDID

— MirrorID

— UMBCAST

— PTYPE

— Packet Length

— Header Length

— SPH

— Status/Error field(s)

— L2TAG fields (optionally mapped into FlexiMD user-defined fields)

• User-defined fields:

— FlexiFlags (user-selectable indications)

— FlexiMD (user-selectable Metadata) and TS (Timestamp)

Detailed structure of the Flex Descriptor is illustrated in Figure 7-8.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

976 613875-009

Figure 7-8. Receive Flex Descriptor (with Flags)

Table 7-3. Receive Flex Descriptor Fields

Word Field Mnemonic Width
(bits) Description

16-byte/32-byte Receive Flex Descriptors

0 RXDID 8 Descriptor Builder ProfileID — Denoted the number of profile entry selected for this
descriptor.

Profiles #0 - Generates the legacy 16B descriptor format, identified by RXDID=0.
Profiles #1 - Generates the legacy 32B descriptor format, identified by RXDID=1.

MirrorID 6 Mirror ID — Identical to the field definition in the legacy descriptor format.

UMBCAST 3 UMBCAST — Identical to the field definition in the legacy descriptor format.

1 PTYPE 10 Packet Type — Enumerates the packet type according to the packet types
programmed into the device. The Flex Descriptor PTYPE is a 10-bit field. It can carry
different packet type encoding than the legacy 8-bit PTYPE field in legacy descriptors.

FlexiFlags.0 6 Flexible Flags Section 0 — Up to 6 x user-selectable flags per RXDID ProfileID.

2 Packet Length 14 Packet Length — Identical to the field definition in the legacy descriptor format.

Reserved 2 Reserved.

3 Header Length 11 Header Length — Identical to the field definition in the legacy descriptor format.

SPH 1 SPH — Identical to the field definition in the legacy descriptor format.

FlexiFlags.1/ExtStats 4 Flexible Flags Section 1/Extended Status — Up to 4 x user-selectable flags per
RXDID ProfileID. This field can also carry additional status information: Ext_UDP_0,
Int_UDP_0, RECIPE, OVERSIZE.

4 Status/Error.0 16 Status/Error Section 0 — Status and error indications.

5 L2TAG1 16 L2TAG1 — Identical to the field definition in the legacy descriptor format.

6 FlexiMD.0 16 Flexible Metadata Container #0 — Generic 16-bit container for conveying metadata/
actions from the E810 pipeline to the host.

7 FlexiMD.1 16 Flexible Metadata Container #1 — Generic 16-bit container for conveying metadata/
actions from the E810 pipeline to the host.

L2TAG1 (16b) Status/Error-0 (16b)

PTYPE (10b)Packet Length (14b)

L2TAG2 (1st) (16b)L2TAG2 (2n d) (16b)

RXDID (8b)MirrorID (6b)

FlexiMD.2 (16b)FlexiMD.3 (16b)FlexiMD.4 / TS.H0 (16b)FlexiMD.5 / TS.H1 (16b)

FlexiMD.0 (16b)FlexiMD.1 (16b)

FlexiFlags-2 (8b)

FlexiFlags-0 (6b)
FlexiFlags-1

/Ex tStat (4b)

TS.L (8b)

Rsrv
(2b)Header Length (11b)SP

H
567 4 123

0
0

1
890124 3567

2
890124 3567

3
8901567 4 23

4
890124 3567

5
890124 3567

6
890123

UMB
CAST

Status/Error-1 (16b)

D
D

EO
P

L2TA
G

1P

L3L4P

LP
B

K
IP

V6EX
A

D
D

R
X

E

H
B

O

R
SS

 V
alid

X
SU

M
R

ep
o

rts

Ex
t_U

D
P_0

In
r_U

D
P_0

R
EC

IP
E

O
VE

R
SIZ

E

C
R

CP

X
TR_M

D
.0_V

LD
X

TR_M
D

.1_V
LD

L2TA
G

2P

C
PM

 Stat

N
A

T-T_U
D

P
N

A
T

C
R

YP
TO

_C
A

N
D

X
TR_M

D
.4_V

LD
X

TR_M
D

.5_V
LD

X
TR_M

D
.2_V

LD
X

TR
_M

D
.3_V

LD

R
eserved

R
eserved

613875-009 977

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.6.3.1 Status/Error.0 Field

Table 7-4 details the contents of the Status/Error.0 field.

32-byte Receive Flex Descriptors Only

8 Status/Error.1 16 Status/Error Section 1 — Additional status and error indications.

9 FlexiFlags.2 8 Flexible Flags Section 2 — Up to 8 x user-selectable flags per RXDID ProfileID.

TS.L 8 TimeStamp Word Low — Lower word of the TimeStamp value.

10 L2TAG2 (1st) 16 L2TAG2 (1st) — Identical to the field definition in the legacy descriptor format.

11 L2TAG2 (2nd) 16 L2TAG2 (2nd) — Identical to the field definition in the legacy descriptor format.

12 FlexiMD.2 16 Flexible Metadata Container #2 — Generic 16-bit container for conveying metadata/
actions from the E810 pipeline to the host.

13 FlexiMD.3 16 Flexible Metadata Container #3 — Generic 16-bit container for conveying metadata/
actions from the E810 pipeline to the host.

14 FlexiMD.4/TS.H0 16 Flexible Metadata Container #4/TimeStamp Word High #0 — Generic 16-bit
container for conveying metadata/actions from the E810 pipeline to the host / Higher
word #0 of the timestamp value.

15 FlexiMD.5/TS.H1 16 Flexible Metadata Container #5/TimeStamp Word High #1 — Generic 16-bit
container for conveying metadata/actions from the E810 pipeline to the host / Higher
word #0 of the timestamp value.

Table 7-4. Status/Error.0 Field (16b)

Bit Field Mnemonic Width
(Bits) Description

0 DD 1 Descriptor Done — Identical to the filed definition in the legacy descriptor format.

1 EOP 1 End Of Packet — Identical to the filed definition in the legacy descriptor format.

2 HBO 1 Header Buffer Overflow — Identical to the filed definition in the legacy descriptor
format.

3 L3L4P 1 L3 and L4 Integrity Check — Identical to the field definition in the legacy descriptor
format.

7:4 XSUM Reports 4 Checksum Reports — Checksum error indications:
bit 4 = IPE — IP checksum error indication (for tunneled packets it is the most inner IP

header indication).
bit 5 = L4E — L4 integrity error indication (most inner L4 header in case of UDP

tunneling).
bit 6 = EIPE — External (most outer) IP header (only relevant for tunneled packets).
bit 7 = EUDPE — External (most outer) UDP checksum error (only relevant for tunneled

packets).

8 LPBK 1 Loopback — Identical to the field definition in the legacy descriptor format.

9 IPV6EXADD 1 IPv6 with Destination Options Header or Routing Header — Identical to the field
definition in the legacy descriptor format.

10 RXE 1 Receive MAC Errors — Identical to the field definition in the legacy descriptor format.

11 CRCP 1 Ethernet CRC Present — Identical to the field definition in the legacy descriptor
format.

12 RSS/HASH Valid 1 RSS/HASH Valid — Indicates that the RSS/HASH result is valid. Qualifies RSS/HASH
metadata in FlexiMD fields.

Table 7-3. Receive Flex Descriptor Fields [continued]

Word Field Mnemonic Width
(bits) Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

978 613875-009

7.6.3.2 Status/Error.1 Field

Table 7-5 details the contents of the Status/Error.1 field.

7.6.3.3 ExtStat Field (FlexiFlags.1 Status Overlay)

Table 7-6 details the contents of the ExtStat field.

13 L2TAG1P 1 L2 Tag 1 Presence — Identical to the field definition in the legacy descriptor format.

14 XTR_MD.0_VLD 1 Extract MD.0 Valid — Indicates that extracted data from the packet is valid in MD.0.
Extraction is performed according to the ProfileID entry in RXDID.

15 XTR_MD.1_VLD 1 Extract MD.1 Valid — Indicates that extracted data from the packet is valid in MD.1.
Extraction is performed according to the ProfileID entry in RXDID.

Table 7-5. Status/Error.1 Field (16b)

Bit Field Mnemonic Width
(Bits) Description

0-3 Reserved 4 Reserved.

4 NAT-T/UDP-NAT 1 NAT-T / UDP-NAT — The packet is a UDP tunneled packet (including UDP-NAT-ESP).

10:5 Reserved 6 Reserved.

11 L2TAG2P 1 L2 Tag 2 Presence — Identical to the field definition in the legacy descriptor format.

12 XTR_MD.2_VLD 1 Extract MD.2 Valid — Indicates that extracted data from the packet is valid in MD.2.
Extraction is performed according to the ProfileID entry in RXDID.

13 XTR_MD.3_VLD 1 Extract MD.3 Valid — Indicates that extracted data from the packet is valid in MD.3.
Extraction is performed according to the ProfileID entry in RXDID.

14 XTR_MD.4_VLD 1 Extract MD.4 Valid — Indicates that extracted data from the packet is valid in MD.4.
Extraction is performed according to the ProfileID entry in RXDID.

15 XTR_MD.5_VLD 1 Extract MD.5 Valid — Indicates that extracted data from the packet is valid in MD.5.
Extraction is performed according to the ProfileID entry in RXDID.

Table 7-6. ExtStat Field (4b) (When Enabled by ProfileID in FlexiFlags.1)

Bit Field Mnemonic Width
(Bits) Description

0 Ext_UDP_0 1 Outer UDP Checksum Equals 0 — Identical to the field definition in the legacy
descriptor format.

1 Int_UDP_0 1 Inner UDP Checksum Equals 0 — Identical to the field definition in the legacy
descriptor format.

2 RECIPE 1 RDPU Recipe Error — Identical to the field definition in the legacy descriptor format.

3 OVERSIZE 1 Oversize Packet Error — Identical to the field definition in the legacy descriptor
format.

Table 7-4. Status/Error.0 Field (16b) [continued]

Bit Field Mnemonic Width
(Bits) Description

613875-009 979

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.6.4 RXDID Descriptor Builder Profiles

For each packet, the format of the receive descriptor and particularly the contents that go into fields of
the descriptor, is determined by the RXDID Descriptor Builder profile selected for the packet.

The E810 provides 63 x Descriptor Builder Profiles for programming different descriptor formats,
including the 16-byte and 32-byte legacy descriptor formats that are preassigned:

• Descriptor Builder Profiles #0 — Generates the legacy 16-byte descriptor format, identified by
RXDID=0 in the descriptor structure delivered to software.

• Descriptor Builder Profiles #1 — Generates the legacy 32-byte descriptor format, identified by
RXDID=1 in the descriptor structure delivered to software.

Note: RXDID=7 is reserved and should not be used (in legacy descriptors, MIRR=7 means “mirror
packet”, and that's the only way to distinguish it from flex descriptors).

The Descriptor Builder Profile selected for each packet is derived either from a pipeline action that sets
the RXDID MDID and its priority, or from the Flex Queue Context that defines an RXDID and priority per
each queue. Conflicts are resolved through the standard MDID priority resolution scheme described in
Section 7.3.

The RXDID field in the Flex Descriptor structure identifies the profile. Hence, the descriptor format
delivered to software, in particular the contents of fields and flags.

The definition of a new Flex Descriptor format is as follows:

• Allocation of a new Descriptor Builder Profile entry.

• Programming the Descriptor Builder Profile entry:

— FlexiMD contents (up to 6 x FlexiMD in 32-byte Flex Descriptors). Each MDID can provide one of
the following:

• MDID metadata from the pipeline (for example, opaque metadata from classification
results).

• Extracted fields from the packet (either header or payload up to the parsing depth of 504
bytes. See Section 7.6.7).

• Pointers to locations of interest in the packet (for example, offset to the outer IPv4 header.
Section 7.6.8).

— FlexiFlags contents (up to 18 x FlexiFlags in 32-byte Flex Descriptors).

7.6.4.1 Programming RXDID Receive Descriptor Profiles

The Receive Descriptor Builder provides 64 x RXDID profile entries. The first two entries are
preassigned for the legacy descriptor formats.

The configuration of a profile entry is done as follows:

For FlexiMD (n=0..5):

• GLFLXP_RXDID_MD[n].ProtID_MDID:

— This field holds either a ProtocolID value or an MDID value. It's decoding is based on
RXDID_opcode field.

• ProtID (ProtocolID): For reporting its offset or for extracting packet bytes from this offset.

• MDID: For reporting the MDID metadata contents.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

980 613875-009

• GLFLXP_RXDID_MD[n].extraction_offset:

— Relevant only if ProtID_MDID field is a protID.

— Used as offset within ProtID to extract bytes from the packet.

— Its usage is based on RXDID_opcode field.

• GLFLXP_RXDID_MD[n].RXDID_opcode:

— The opcode selects the type of report that goes into FlexiMD[n] in the Flex Descriptor:

• 00b = “Fixed Value”: Report the value from protID_MDID field itself (for debug purposes).

• 01b = “Metadata Offset”: Report the selected MD word from the internal FlexiPipe buses.

• 10b = “Extraction Offset”: Extract 16 bits (2 bytes) from offset location (ProtocolID offset +
byte offset) in the packet.

• 11b = “Protocol Offset”: Report the offset to the selected ProtocolID.

For FlexiFlags.0 (6 bits) / FlexiFlags.1 (4 bits) / FlexiFlags.2 (8 bits) (n=0..17, total 18 bits):

• General:

— The Receive Flex Descriptor includes 3 x FlexiFlags fields providing a total of 18 flags:

• flexiflags0[5:0]

• flexiflags1[3:0]

• flexiflags2[7:0]

— Note that the fields flexiflag_4n+2/flexiflag_4n+3 are invalid in last index as there are only 18
flags, not 20.

• GLFLXP_RXDID_FLAG [n].flexiflag_4n/4n+1/4n+2/4n+3:

— Determines the flag index to be reported in flexiflag[4n/4n+1/4n+2/4n+3] from the FLG64 64
x flags available in the pipeline.

FlexiFlags.1 provides additional indications from RDPU that can override the regular flag selections:

• GLFLXP_RXDID_FLAGS1_OVERRIDE.flags1_override:

— If Bit 0 is set, EXT_UDP_0 indication from RDPU replaces the value of flexiflags1[0].

— If Bit 1 is set, INT_UDP_0 indication from RDPU replaces the value of flexiflags1[1].

— If Bit 2 is set, RECIPE_ERROR indication from RDPU replaces the value of flexiflags1[2].

— If Bit 3 is set, OVERSIZE indication from RDPU replaces the value of flexiflags1[3].

Note: Further description of these indications from RDPU can be found in the legacy descriptors
chapter section.

A special case is the support for legacy descriptors. For those, the configuration convention is:

• RXDID entry#0 is used for legacy 16-byte descriptors, and RXDID entry#1 is used for legacy
32-byte descriptors.

• Accordingly, the setting for the CSRs for entries 0 and 1 are:

— GLFLXP_RXDID_MD.protID_MDID[0]=56 (HASH Low)

— GLFLXP_RXDID_MD.protID_MDID[1]=57 (HASH High)

— GLFLXP_RXDID_MD.protID_MDID[4]=5 (FDID Low)

613875-009 981

Intel® Ethernet Controller E810 Datasheet
Packet Processing

— GLFLXP_RXDID_MD.protID_MDID[5]=6 (FDID High)

— GLFLXP_RXDID_MD[0].RXDID_opcode=01b (signaling MDID)

— GLFLXP_RXDID_MD[1].RXDID_opcode=01b (signaling MDID)

— GLFLXP_RXDID_MD[4].RXDID_opcode=01b (signaling MDID)

— GLFLXP_RXDID_MD[5].RXDID_opcode=01b (signaling MDID)

— All other fields are don’t care for entries 0 and 1.

7.6.5 Receive Flex Queue Context

The E810 Flex Descriptor enhances the queue context with additional fields on top of the legacy queue
context, as illustrated in Figure 7-9.

7.6.5.1 Programming the Receive Queue Context for Flex
Descriptors

Programming of the additional Flex Queue Context is done via the QRX_FLEX_CNTXT CSRs, as follows:

• QRXFLXP_CNTXT.RXDID_idx — Determines the default RXDID_idx for this Q.

• QRXFLXP_CNTXT.RXDID_prio — Determines the default priority for the default RXDID_idx for this
Q. This value is compared against RXDID priority from the RCU pipe. If this one is equal or higher, it
wins, and the RXDID_idx for this pkt is determined by QRX_FLXP_CNTXT.RXDID_idx. Otherwise, it
is determined by the value from the RCU pipe.

• QRXFLXP_CNTXT.TS — Determines whether timestamp reporting per Rx packet is enabled for this
Q. If enabled, the TS.H1/TS.H0/TS.L fields in the Rx-Descriptor contains the timestamp for this
packet. Bit 0 of the TS.L field is the “valid” bit for this timestamp.

Figure 7-9. Receive Flex Queue Context

RXDIDPri

RXDID

RXDID

…...

R

Per-Queue Default RXDID Index (6b) –
(0 – Reserved for legacy 16B Rx Descriptor format)
(1 – Reserved for legacy 32B Rx Descriptor format)

i

Per-Queue Default RXDID Priority (3b) –
Resolved with RXDID priority stemming from pipeline actions.
When priorities are equal, the Descriptor Builder has precedence over pipeline actions.

Per-Queue Timestamp Overlay Enable (1b) –
When enabled, sections of the timestamp value override FlexiMD.4 and FlexiMD.5
Note: Software should enable this feature only for 32B Flex Descriptors.

T

Pri

Pri

T

T

PT

Intel® Ethernet Controller E810 Datasheet
Packet Processing

982 613875-009

7.6.6 Timestamp Overlay

The E810 provides a Timestamp Overlay feature for conveying timestamp information from receive
ports to the host. The feature is enabled per destination Q via the Flex Queue Context structure, as
described in Section 7.6.5.

The 40-bit timestamp value generated by the receive port is populated into fields in the 32-byte
Receive Flex Descriptor as illustrated in Figure 7-10. Description of the Receive Flex Descriptor fields in
provided in Section 7.6.3.

Note: The Timestamp Overlay feature is available only in 32-byte Flex Descriptors. The user should
program the RXDID Profile for that queue accordingly, so that 32-byte Flex Descriptors are
generated for packets arriving at that queue. The user should also enable the Timestamp
Overlay feature in the Flex Queue Context as described in Section 7.6.5.

Note: The LSb (Bit 0) of the TS.L field is the timestamp valid bit, qualifying the timestamp value.

When the QRX_FLXP_CNTXT.TS bit in the Flex Queue Context is set, the E810 overlays the 40-bit
timestamp value into these fields of the 32-byte Flex Descriptor:

• • TS.H1 (16 bits) — Replacing FlexiMD.5

• • TS.H0 (16 bits) — Replacing FlexiMD.4

• • TS.L (8 bits) — LSb (Bit 0) is the timestamp valid bit

The corresponding FlexiMD.5 and FlexiMD.4 metadata selected by the RXDID Profile for that packet are
overwritten and replaced with sections of the timestamp value.

Note: When TimeStamp Overlay is enabled for particular queue in the Flex Queue Context, all
32-byte Flex Descriptors associated with packets arriving at that queue contain the
timestamp overlay fields, regardless of whether the timestamp value is valid. When a queue
is programmed to receive timestamps, software should evaluate the LSb (Bit 0) of TS.L of the
32-byte Flex Descriptor to infer whether a timestamp is valid for that packet.

Figure 7-10. Timestamp Overlay in 32-Byte Receive Flex Descriptor

L2TAG1 (16b) Status/Error.0 (16b)

PTYPE (10b)Packet Length (14b)

L2TAG2 (1st) (16b)L2TAG2 (2n d) (16b)

RXDID (8b)MirrorID (6b)

FlexiMD.2 (16b)FlexiMD.3 (16b)FlexiMD.4 / TS.H0 (16b)FlexiMD.5 / TS.H1 (16b)

FlexiMD.0 (16b)FlexiMD.1 (16b)

FlexiFlags.2 (8b)

FlexiFlags.0 (6b)
FlexiFlags.1

/Ex tStat (4b)

TS.L (8b)

Rsrv
(2b)Header Length (11b)SP

H

567 4 123
0
0

1
890124 3567

2
890124 3567

3
8901567 4 23

4
890124 3567

5
890124 3567

6
890123

UMB
CAST

Status/Error.1 (16b)

TS.H0 (16b)TS.H1 (16b) TS.L (8b)

567 4 123
0
0

1
890124 3567

2
890124 3567

3
8901567 4 2389

V

Timestamp Valid (1b) –
Qualifies the 40b timestamp value

613875-009 983

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.6.7 Field Extraction into the Flex Descriptor

The E810 provides programmable field extractions from the packet into the Receive Flex Descriptor.
Fields can be extracted either from the packet header or from the payload, up to the maximum parsing
depth (504 bytes). Packet fields are extracted into the FlexiMD containers of the Receive Flex
Descriptor. The number of field extractions provided depends on the size of the Receive Flex Descriptor:

• 16-byte Receive Flex Descriptors provide up to 2 x FlexiMD fields that can be used for field
extractions.

• 32-byte Receive Flex Descriptors provide up to 6 x FlexiMD fields that can be used for field
extractions.

Extraction width is always 16 bits. Software can opt to use smaller parts of the extraction (for example,
when a smaller 8-bit is required.

Note: Any extraction of fields to the receive descriptor is done before any modification potentially
done on the packet (for example, VLAN stripping) with the exception of CRC. Requesting the
extraction of the CRC field to the receive descriptor is not allowed.

Each field extraction is defined by the following parameters in the RXDID Profile structure as described
in Section 7.6.4:

• ProtocolID — Offset position generated by the parser.

• Offset — Relative byte offset from the ProtocolID position.

For example, to extract the destination port of a UDP packet, the user should program the extraction to
use the ProtocolID of UDP with Offset=2 (bytes), as illustrated in Figure 7-11.

Note: Figure 7-11 illustrates a particular example in which the packet length is larger than 504
bytes. The packet header in this example is shorter than 504, allowing extraction from the
payload.

Figure 7-11. Field Extraction into the Flex Descriptor - Example

ProtocolID = UDP
UDP Header

Offset = 2

Extraction Offset =
UDP+2 Extracted (16b)De stina tion

Port (16b)

Packet

Header

Payload

504 Bytes
…

…

…

…

…

Parsing
Depth
(504B)

Packet Length

Intel® Ethernet Controller E810 Datasheet
Packet Processing

984 613875-009

The E810 indicates successful extraction per FlexiMD container by setting the corresponding
XTR_MD.#_VLD bit in the Status/Error fields as described in Section 7.6.3.1 and Section 7.6.3.2. When
the particular FlexiMD is programmed to contain an extraction result, but the XTR_MD.#_VLD bit is
clear, software should disregard the value in the FlexiMD field.

The Receive Descriptor Builder validates for each extraction that the requested extraction offset is
within packet boundaries. In case the extraction offset exceeds the packet boundary (that is, since the
extraction works in word resolution, the byte offset is >{packet size - 2}), the Receive Descriptor
Builder:

• Places the value 0xFFFF into the corresponding FlexiMD container.

• Clears the corresponding XTR_MD.#_VLD bit in the Status/Error field.

• Sets the Malicious Event exception flag.

Note: When using 16-byte descriptors, setting an out-of-bound extraction offset in FlexMD[5:2]
(which is only relevant for 32-byte descriptors) also sets the malicious exception flag.
Therefore, even when using 16-byte descriptors, the extraction offsets programmed for
FlexMD[5:2] should contain valid offsets (though not used).

7.6.8 Pointers to Location of Interest

The FlexiMD metadata containers in the Flex Descriptor can be programmed to convey pointers to
locations of interest in the packet, such as offsets to packet headers. Programming of the feature is
done via the GLFLXP_RXDID_MD[n].RXDID_opcode CSR as described in Section 7.6.4.1.

For example, to provide the host with the IPv4 offset and the TCP offset of the packet, the RXDID
profile entry is programmed to assign 2 x FlexiMD containers, as illustrated in Figure 7-12.

Note: Any offset report generated by the Parser can be placed into the Flex Descriptor. Offset
reports normally point to protocol headers, however the Parser can be programmed to report
offsets of any other location of interest such as TLV headers, option fields, and so on.

Figure 7-12. Field Extraction into the Flex Descriptor - Example

MAC

Packet

…

VLAN

Last ETYPE

IPv4

TCP

Payload

IPv4 Offset

TCP Offset

To
Flex Descriptor

613875-009 985

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.7 Programmable Parser

7.7.1 Introduction

The E810 provides a software programmable Parser (Analyzer) capable of supporting a wide range of
well-known and proprietary protocols. The Parser examines the traffic that enters the pipeline, retrieves
search parameters from the packet and from associated packet context, and then generates additional
context based on certain packet attributes. This context is further used by other packet processing
modules in the pipeline to associate the packet with a flow, software hints, and so on.

The factory parsing program loaded into the Parser from NVM supports a large set of frame formats
that are common in various networking applications. These formats are provided by the E810 out of the
box, not requiring any additional installation or programming.

A detailed description of the Factory Parsing Program appears in Appendix A.

These native formats include various protocols such as:

• L2: VLAN

• L2.5: MPLS

• L3: IPv4, IPv6

• L4: TCP, UDP, ICMP

• Overlay Network Formats: VXLAN, NGE, GRE

• Service chaining: NSH

7.7.1.1 Parsing Policy - Parse Graph

A parse graph is a representation of permitted protocol sequences in the network. The parse graph is
composed of nodes and arcs. Each node represents a state, normally a protocol header. It is associated
with a {NodeID} identifier. An arc represents traversal between nodes, normally between protocol
headers. It originates from a source {NodeID} to a target {NodeID}.

Figure 7-13 illustrates a simple parse graph.

Figure 7-13. Simple Parse Graph

Ethernet

VLAN

VLAN

IPv6IPv4

ICMPUDPTCP UDP

VLA

Intel® Ethernet Controller E810 Datasheet
Packet Processing

986 613875-009

The simple parse is made from eight nodes and 14 arcs. The nodes in this parse graph correspond to
protocols (Ethernet MAC header, VLANs, IPv4, IPv6, TCP, UDP, ICMP). Traversal conditions between
nodes can be unconditional (that is, always take, or conditional (for example based on a protocol
identifier in the protocol header such as the protocol field in an IPv4 header).

An example of an advanced parse graph scenario is illustrated in Figure 7-14.

7.7.1.2 Parsing Depth

The E810 Parser processes packet headers included in the first 504 bytes of the packet. The extensive
depth covers complex encapsulation scenarios found in Cloud, Overlay-Networks, and Comms
applications.

Note: Though the parsing depth is 504 bytes, the parser has an additional “protocol parsing depth”
limitation allowing it to process up to 16 protocols (as specified in the parse graph) including
the payload as the last protocol ID (the “payload” protocol ID is always be reported as the
last protocol).

Figure 7-14. Advanced Parse Graph

Ethernet

MPLS
MPLS

MPLS
MPLS

MPLS

VLAN
(802.1Q)

IPv6 IPv4

VLAN
(802.1Q)

VLAN
(802.1Q)

EoMPLS IPv4

RARPARP RARA

VLAN
(802.1Q)

AA

MPLS

AA

MPLSMPLS
MPLSMPLS

ARPARP

VL
(

PBB
(802.1ah)

ICMPTCPUDPSCTPIPsec AHIPsec ESPGRE

ICMPv6

VXLAN

Ethernet

IPv4IPv6NVGRENVG

613875-009 987

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.7.1.3 Parsing Profiles

The FlexiParser provides 16 x Parsing Profiles that determine the parsing execution flow.

A Parsing Profile determines:

• Initial PC (Program Counter) — Where the parsing program begins execution.

• Initial HO (Header Offset) — The offset location in the packet from where parsing starts.

• Initial NodeID — The root node of the parse graph selected.

• Register load — CPU General Purpose Registers (GPRs) loaded with pipeline metadata.

The structure of the profile table is shown in Table 7-7.

Table 7-7. Parser Profile Table

Field Width Description

TSR 8 Initial value for the TSR register.

HO 9 Initial value for the HO register.

NPC 8 Initial value for the NPC register.

NID 11 Initial value for the NID register.

Control domain 3 Control domain identifier. Used for marker PTYPE TCAM look up operation.

GPR_A_ctrl 1 General purpose register A Control:
0b = Copies constant value to the GPR.
1b = Copies a certain field from interface to GPR_A_ID: GPR_A_ID = MDID_A[MDID_A_start +

MDID_A_len -1 : MDID_A_start]
MDID_A_target_GPR = GPR_A_DATA

GPR_A_DATA 16 General purpose register A Data:
Bits 0:4 = MDID_A
Bits 5:8 = MDID_A_start
Bits 9:12 = MDID_A_len
Bits 13:16 = Reserved

GPR_A_ID 4 General purpose register A ID.

GPR_B_ctrl 1 General purpose register B Control.

GPR_B_DATA 16 General purpose register B Data.

GPR_B_ID 4 General purpose register B ID.

GPR_C_ctrl 1 General purpose register C Control.

GPR_C_DATA 16 General purpose register C Data.

GPR_C_ID 4 General purpose register C ID.

GPR_D_ctrl 1 General purpose register D Control.

GPR_D_DATA 16 General purpose register D Data.

GPR_D_ID 4 General purpose register D ID.

Flags initial value 64 Initial values for flags register.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

988 613875-009

7.7.1.4 PTYPE Generation

The FlexiParser generates a 10-bit PTYPE (Packet Type) that can be derived from:

• Terminating NodeID — When parsing stops at a NodeID that has an attribute of a terminating
NodeID, the PTYPE is taken from the terminating NodeID PTYPE table.

• Marker Sets — When parsing stops at a NodeID that does not have an attribute of a terminating
NodeID, the PTYPE is derived from the Marker Set Rules Table.

7.7.1.5 Programming Flow

The following sections describe the programming flows of the Parser.

7.7.1.5.1 Initialization

Following a device core reset the factory parsing program is loaded from NVM. A detailed description of
the Factory Parsing Program appears in Appendix A. The parsing program includes complete
configuration of the Parser, ready to run, including:

• Program code (iMEM)

• Protocol templates (TCAM)

• ProtocolIDs

• Parse Graph (PG)

• PTYPEs

• Well-Known/Public CDs (CD0+) and Profiles

• Misc tables/regs (e.g., ALU translation tables)

The parsing program carries a version number that the driver can query via a firmware AQC.

The factory parsing program loaded from NVM is initially unlocked and managed by firmware as a
shared resource ownership using existing firmware infrastructure. A PF driver can obtain a lock on
pipeline programming to update it via an ACQ.

The sequence is as follows:

1. Parsing image loaded from NVM.

2. First PF driver obtains lock on pipeline programming via ACQ.

3. PF driver queries version of parsing program via ACQ.

4. PF driver can choose to update the parsing program.

5. Firmware keeps timeout to release lock if PF driver fails/crashes.

6. When update is completed, the parsing program is available with updated version number.

7. PF driver continues programming the rest of the pipeline until done.

8. PF driver releases lock (the firmware provides a timeout fall-back procedure).

9. Firmware prevents further updates until next core reset or after the last PF driver goes down.

10. All PF drivers use the same parsing program.

Note: Manageability traffic is disabled during the update of the parsing program.

613875-009 989

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.7.1.5.2 Configuration Access to Parser Resources

The Parser exposes indirect interface for reading and writing tables or execute table lookups using the
following set of registers:

• GLGEN_ANA_CFG_CTRL

• GLGEN_ANA_CFG_RDDATA[0..15]

• GLGEN_ANA_CFG_WRDATA

7.7.1.5.2.1 Write Sequence

1. Before writing a line, firmware writes the GLGEN_ANA_CFG_CTRL register to point to the target line
in the target table.

2. Firmware writes the GLGEN_ANA_CFG_WRDATA register multiple times until a complete line is
accumulated.

3. The Parser accumulates the 32-bit CSR writes into a wide data line. When it detects that a full line
is accumulated, it writes it to target line in memory.

4. In case firmware continues writing the WR_DATA (without writing the CTRL register first), the
Parser continues to write the next line in the same memory.

7.7.1.5.2.2 Read Sequence

1. Firmware writes the GLGEN_ANA_CFG_CTRL register to point to the target line in the target table.

2. Firmware reads the relevant data directly from GLGEN_ANA_CFG_RDDATA[0..16] registers.

3. Before reading the next line, firmware must set the GLGEN_ANA_CFG_CTRL register again.

7.7.1.5.3 In-Service Programmability

The Parser provides in-service programming of the following resources:

• Add/Remove of PG arc

• Add/Remove of TCAM entry

• Add/Remove/Change of Profile

Note: It is assumed that the associated PG nodes and iMEM instructions are already configured in
the Parser database.

7.7.1.5.3.1 Add/Remove of PG Arc

The flow of adding/removing of PG is as follows:

1. Firmware writes the PGkey to GLGEN_ANA_CFG_LU_KEY.

2. Firmware initiates PG lookup via GLGEN_ANA_CFG_CTRL.

3. The Parser hardware returns:

• The CAM hit result, the CAM bank number (when not in spill buffer), and the CAM line index in
GLGEN_ANA_CFG_SPLBUF_LU_RESULT and GLGEN_ANA_CFG_HTBL_LU_RESULT.

• TCAM unit 0 capacity - GLGEN_ANA_CFG_RDDATA 0.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

990 613875-009

• TCAM unit 1 capacity - GLGEN_ANA_CFG_RDDATA 1.

• TCAM unit 0 bin vector - GLGEN_ANA_CFG_RDDATA 2.

• TCAM unit 1 bin vector - GLGEN_ANA_CFG_RDDATA 3.

• TCAM unit 0 HASH value - GLGEN_ANA_CFG_RDDATA 4.

• TCAM unit 1 HASH value - GLGEN_ANA_CFG_RDDATA 5.

• Spill buffer capacity vector - GLGEN_ANA_CFG_RDDATA 7/8.

4. Firmware initiates or resets the PG action memory using memory write sequence.

5. Firmware initiates or resets the PG key using memory write sequence.

7.7.1.5.3.2 Add/Remove of TCAM Entry

The flow of adding/removing of TCAM entry is as follows:

1. Firmware writes an action to a well-known address in the TCAM action memory using the memory
write sequence.

2. Firmware writes a key to a well-known address in the TCAM key using the memory write sequence.

7.7.1.5.3.3 Entry Change in Profile Table

Table content change happens only for a Profile that its packets are drained from pipe.

Before changing content:

1. Firmware routes the modified profile N to a stable default profile by writing the default Profile ID to
index N in the P2P table.

2. Firmware waits 10 μs. During this time period it is guaranteed that:

• Packets processed in pipe before the change are drained towards the reorder logic.

• New packets enter the pipe with the default profile.

3. Firmware does table changes for the reset profile using memory write sequence.

4. Firmware enables the modified profile by writing “N” to the index N in the P2P table.

613875-009 991

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8 Switch (Binary Classifier)

7.8.1 Features

Table 7-8. Binary Classifier Features

Description

Logical Switching Tables
• Supports up to 64 different switching lookups/recipes (all actions included).
• Supports up to 10 concurrent switching lookups per specific packet type @ 90 Mpps.
• Each lookup can contain up to five 16-bit tuples. Lookups can be chained to create longer recipes.
• Support up to 32K lookup entries. The actual number depends on the length of the recipe and the utilization of the hash.

Built in recipes loaded from NVM to implement basic NIC functionality
• Supports simple L2 switching including VEB and VEPA modes.
• Supports default VSI per VEB (using default, direction recipe).
• Supports flooding action per VSI.
• Anti spoofing.

Sample use cases to be supported
• Multi Channel VEPA (STag based).
• Tenant Forwarding (NVGRE, Geneve, and so on).
• Q-in-Q forwarding.
• Private VLAN.
• Local VLAN.
• Floating VEB.

Support for multiple switch instances
• Allow classification of traffic to different switch instances based on source or tag in packet.
• Tag can be up to four words long from anywhere in header.
• Support up to 64 tag based switch IDs.

Allows Tx-Descriptor from trusted driver to define the destination of a packet.
Allows the following options:
• Send To LAN only.
• Do not send to LAN. Let switch define the destination within loopback.
• Send to a specific VSI

Actions - support multiple type of actions per recipe
• Forwarding - to VSI, VSI list, queue group within a VSI, or queue within a VSI.
• Pruning.
• Statistics.
• Support up to 8K basic actions that can be chained in up to four actions.
• Multiple forwarding actions can be prioritized or merged.

Support for different switching Profiles
• Applicable recipes can be selected according to source of packet, packet type, and other packet parameters.
• Support bypass of classifier for selected packet profiles.
• Allow trusted software to fix destination of packet.

Egress Rules - support additional actions on egress copy of a packet
• Egress mirroring.
• Source pruning.
• Limit decrypted traffic to function owning the SA.

Support up to 768 VSIs.
• Allow replication to multiple VSIs.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

992 613875-009

Statistics
• Per VSI statistics.
• Up to 32 per VEB statistics block.
• Up to 128 per VLAN/UP statistics block.

Mirroring
• Ingress mirroring (according to packet source).
• Egress Mirroring (according to packet destination).
• VLAN/VEB mirroring.
• Event based mirroring.
• Mirroring destination to local VSI only.

Storm Control
• Per port broadcast and multicast storm control.

Programming API
• Allow Software to add or remove switching recipes on the fly.
• Allow Software to classify traffic to profiles on the fly.

Manageability forwarding.
• Supports forwarding of packets to the BMC or the internal EMP based on the MDEF filters described in Section 12.4.

Table 7-8. Binary Classifier Features [continued]

Description

613875-009 993

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.2 Binary Classifier (Switch) Block Diagram

Figure 7-15 describes the switch blocks:

A packet entering the E810 switch goes through the following steps, depicted Figure 7-15:

1. Profile Selection — A Profile ID is selected based on metadata of the packet (typically, the packet
type and the source of the packet). The Profile ID later defines the set of recipes and the input set
that is relevant for each packet.

2. Switch ID Generation — The header and metadata of the packet are used to define a switch ID
for the packet. The switch ID associates a packet with a specific switch instance. The switch ID is
used in subsequent steps to identify lookup entries that are relevant to this packet.

3. Field Extraction — Based on the Profile ID, a set of fields from the header are extracted and
organized as a “field vector”. The extracted fields should be all the fields relevant for the different
recipes lookups.

4. Lookups:

a. Recipes selection — Based on the Profile ID, a set of lookups to apply to the packet’s field vector
are selected.

Figure 7-15. Switch Block Diagram

MNG
sub block

Transmit
Packet
lookup

Receive
Packet
lookup

Key
Generation
(KeyGen)

Recipe

LUT

Replica
tion

Egress
process

ingActions
Resolving

P
a
c
k
e
t

i
n
f
o

Profile ID

List of
Action

Unified
action +
VSI list

Command
(specific VSI)

Command
(specific VSI)

MNG
Logic

MNG field vector

Lookup
Commands

(multiple per
 packet)

Input
Set

(multiple per
 packet)

Mng Action

Ingress
Processing
(switch ID)

Profile ID

Profile
chooser

Meta Data

Fields
Extraction

Key Selection
(multiple per packet)

Fields
Extrac
tion

Priority
resolver
and MD
updater

Updated
 Meta
 Data
(VSI,

queue,
etc)

Meta Data

Updated
Meta Data

Intel® Ethernet Controller E810 Datasheet
Packet Processing

994 613875-009

b. For each recipe, the Key Generator (KeyGen) selects from the packet’s field vector the parts of
the header needed to create this lookup and presents the results to the Lookup Table (LUT).

c. The LUT is a binary CAM containing the various lookup values and actions. The output of this
stage is a set of actions to apply to the packet.

5. MNG Sub-Block (Manageability Lookup) — In parallel to the host forwarding lookup, filters
specific to traffic that need to be forwarded to the BMC via sideband are applied to implement NC-SI
and other pass-through forwarding rules. This stage can add an additional action to the set
previously defined. This block has its own profile selection unit.

6. Action Resolving — After all the actions are created, unified actions are created. The output is a
list of VSIs that should receive the packet and other actions such as statistic actions and others.

7. Replication — For each VSI in the resulting VSI list, a command to replicate the packet is created.

8. Egress Processing — For each copy of the packet, egress rules are applied. Applied actions can be
egress mirroring.

9. Priority Resolver and Metadata Updater — The resulting commands are forwarded to the next
stages of the pipe. As part of this the decision of the switching blocks are merged into the global
metadata bus.

7.8.3 Control Domain and Profile Selection

The profile selection block is described in Section 7.2.2. The usage of this block in the switch context is
to select a profile based on the packet type and based on the source of the packet. Selection based on
the packet type is used to reduce the lookups to the ones relevant to this packet type. Selection based
on the packet source is used to assign different recipes for different networks.

There are up to 256 profiles in the binary classifier, and 512 rules in the TCAM to select them.

A profile is be selected according to the following parameters. Some of them are used as part of the
current implementation and some are reserved for future expansions:

• Packet Source:

— Transmit - VSI Number

— Receive - Physical port# or logical port ID

• Packet Source Type:

— Receive - from LAN

— Loopback - from Host

— Loopback - from EMP/BMC

— Transmit - query

Note: The packet source type and packet source are used to create the first input of the control
domain selection, thus allowing selection of a control domain according to the VSI that
sent the packet or according to the port on which the packet was received.

• Packet Type — This field allows different profiles for different packet type groups, thus allowing
reduction of the number of recipes that can be applied to a single packet, and improving the
performance of the switch.

613875-009 995

Intel® Ethernet Controller E810 Datasheet
Packet Processing

• Flags:

— Bypass switch command, bad packets, SWPE — Fields that allow a bypass of the switch for
packets that do not require a switch decision via the lookup tables.

— Software command — This field is be used to prevent regular traffic from matching a profile,
while allowing software commands to still match the profile (for example, to delete recipes).

• Other optional fields not currently used, but that can impact the profile:

— TC

— Other fields can be defined later by software.

7.8.4 Ingress Pre-Processing

7.8.4.1 Field Extractor

The Fields Extractor is a standard block that extracts a local Field Vector (FV) from the packet info. The
list of fields that are extracted is based on the selected Profile ID.

The configuration of this block should be that all the fields used by any of the recipe selected by this
Profile ID are represented in the generated field vector.

See Section 7.5 for programming of the extraction vector and encoding of the Protocols.

The resulting vector can be up to 48 words for the main switch and 32 words for the manageability
decision. See Section 7.8.7 for details of the manageability filtering Fields Extractor.

The default vector is defined in Section 7.8.11.3.2.

7.8.4.2 Switch ID Creation

The ingress switch ID is an identifier of the virtual VEB to which the packet belongs, and it is used as an
input to the LUT.

The switch ID is based on the source of the packet (VSI, port or logical port).

The input to this block is the metadata bus and the field vector. The relevant information taken from
these buses is the packet source:

• For Transmit - VSI Number

• For Receive - Physical port#

The following data is defined in the block:

• A per-VSI switch ID — Used to identify the switch ID of a packet based on the VSI that sent the
packet. This is part of the VSI context and is stored in the VSI_SWITCHID array (SWTCHID[7:0]
field).

• A per-port switch ID — Used to identify the default switch ID of packets. Stored in the
GL_VP_SWITCHID array (SWITCHID[7:0] field).

The switch ID is created according to the following logic:

if (packet is Tx (loopback or query)) { switch ID = VSI Switch ID}
else if (packet is rx) { switch ID = physical port Switch ID}

Intel® Ethernet Controller E810 Datasheet
Packet Processing

996 613875-009

The output of the Block is switch ID[7:0] and it is added as part of the Field vector.

Per switch ID, a GLSWID_STAT_BLOCK register defines if one of 32 VEB statistic block is associated
with this switch ID. The GLSWID_STAT_BLOCK.VEBID field defines the stat block ID to which the switch
ID is associated. A switch ID cannot be associated with any switch block
(GLSWID_STAT_BLOCK.VEBID_VALID = 0).

The switch ID extracted as described above should be part of the Field Vector described in
Section 7.8.4.1 to enable differentiation between lookup entries of different VEBs.

7.8.5 Switching Engine

7.8.5.1 Switching Recipes and Key Generation (KeyGen)

The switch recipe block is a set of 64 lines that describes the lookups to do on the field vector. Each
recipe can be based on multiple lookups and multiple recipes can be applied to a single packet. The set
of recipes to apply on a given packet is defined according to the Profile ID using a per Profile ID bitmap
defining which lookups to apply.

In addition, another table maps the dependencies between recipes. For each recipe, there is a bitmap of
all the recipe entries that are part of the decision tree of this recipe.

Each lookup line can be defined as a root of a recipe or a line that creates an intermediate lookup used
for another calculation. A root line can also serve as an intermediate lookup of another root line. Only
root lines points to an action.

The intermediary results are stored back into the field vector and so can be used as part of the input set
of subsequent lookups.

Lines that are used as intermediate steps of a recipe should be stored before the root of this recipe. See
Figure 7-16 for the multiple lookup recipe diagram.

Per profile, up to 32 lookup lines can be selected, and 24 of them can be recipe roots.

Once a lookup line is chosen, the list of lookup words are used by the KeyGen block to build the part of
the lookup key extracted from the packet header or the metadata. The generated key, the mask bits,
and the RID are then looked up against the Lookup table.

The lookup lines are applied in the order they appear in the table. Hence, entries in the recipe table
should be in order so that lines used as an intermediate lookup creates intermediary results before a
line that uses the lookup result is run.

Figure 7-16. Multiple Lookup Recipe

Lookup Key1 Lookup Key2 Lookup Key3Lookup Key0 Lookup Key4 Result A

Lookup Key1' Lookup Key2' Lookup Key3'Lookup Key0' Lookup Key4' Result B

Root Result B Lookup Key2' Lookup Key3'Result A Lookup Key4' Action

613875-009 997

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Each lookup line contains the following information:

Table 7-9. Recipe Content

Field Byte Range Width LSB MSB Sub-Field Description

RID Byte 0 6 0 5 Recipe ID (RID)1.

1 6 6 Reserved (for recipe expansion).

1 7 7 isroot — Defines if this lookup line is a root of a recipe.

Lookup Index 0 Byte 1 6 8 13 First word to be compared to data from the Field Vector or the
metadata. The value is an offset within the extracted Field vector.
Unused fields should be masked in the Mask field.

1 14 14 Reserved.

1 15 15 Ignore Valid — If set, the field match even if the field is not valid.
Should be set for VLAN entries where a value of zero with valid bit
clear indicates an untagged packet that should be treated as VLAN
= 0.

Lookup Index 1 Byte 2 6 16 21 Second word index in Field Vector.

1 22 22 Reserved.

1 23 23 Ignore Valid — If set, the field match even if the field is not valid.

Lookup Index 2 Byte 3 6 24 29 Third word index in Field Vector.

1 30 30 Reserved.

1 31 31 Ignore Valid — If set, the field match even if the field is not valid.

Lookup Index 3 Byte 4 6 32 37 Fourth word index in Field Vector.

1 38 38 Reserved.

1 39 39 Ignore Valid — If set, the field match even if the field is not valid.

Lookup Index 4 Byte 5 6 40 45 Fifth word index in Field Vector.

1 46 46 Reserved.

1 47 47 Ignore Valid — If set, the field match even if the field is not valid.

Mask Bytes 6-15 16 48 63 Bit-mask of word 0 of the LU key. 1 means the bit is compared.

16 64 79 Bit-mask of word 1 of the LU key.

16 80 95 Bit-mask of word 2 of the LU key.

16 96 111 Bit-mask of word 3 of the LU key.

16 112 127 Bit-mask of word 4 of the LU key.

Result Index Byte 16 6 128 133 Word index in which LU result will be placed.

1 134 134 Reserved.

1 135 135 Result Enable — LU yields result that should be stored in Field
Vector.

Reserved Bytes 17-19 24 136 159 Reserved.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

998 613875-009

7.8.5.1.1 Inverse Action

The operation of anti-spoof of transmit packets is based on checking the SA or the {SA, VLAN} pair
used to send the packet. If this SA or {SA, VLAN} pair where used as DA or {DA, VLAN} it would have
to allow the VSI to receive the packet, then it can use them as SA or the SA, VLAN pair.

Similarly the operation of source pruning in receive can be based either on the source VSI as described
in Section 7.8.6.5 or on the identification the SA or {SA, VLAN} pair as belonging to a VSI by
identifying that if his SA or {SA, VLAN} pair where used as DA or {DA, VLAN} it would have allow the
VSI to receive the packet.

This means that in the same MAC Address or MAC/VLAN pair could be used both to forward to a VSI or
for anti-spoof or source pruning actions. To save the need for two entries for each of the MAC Address
or MAC/VLAN pair in the lookup table, the inverse action mechanism is provided.

If inverse action bit in recipe (Bit 178) is set, any forwarding action to a single VSI or to a queue in the
recipe is replaced with comparison of the source VSI of the packet with the VSI or the VSI matching the
queue in the action for Tx traffic, and is replaced with a prune (AND NOT) for receive traffic. There is no
support for inverse action when the forwarding action points to a list.

This is applied only if the action is a VSI forwarding action to a single VSI or a ToQueue action, either in
a regular or large action.

Action Control Bytes 20-23 8 160 167 A bitmap of the join priorities of forwarding actions associated to
this recipe. Relevant only for roots. The join priority defines which
priorities are joined by this recipe. See Section 7.8.6.1 for details.

4 168 171 The priority of forwarding actions associated to this recipe.
Relevant only for roots.

4 172 175 Reserved.

1 176 176 Need_pass_l2 — If set, for the action of this recipe to be relevant,
a recipe with allow_pass_L2 bit set should match2.

1 177 177 Allow_pass_l2 — If set, allows recipes with need_pass_L2 bit set
to pass3.

1 178 178 Inverse Action — This bit is used to allow forwarding lookups to be
used as anti-spoof (Tx) and source pruning (Rx) actions. See
Section 7.8.5.1.1 for details.

1 179 179 Reserved.

2 180 181 Prune Index — Defines the enable bits to use it the VSI context to
qualify a pruning action associated with this recipe. The
VSI_SRCSWCTRL.PRUNEENABLE[3:0] and
VSI_RXSWCTRL.PRUNEENABLE[3:0] are used to enable the
pruning in Tx and Rx respectively.

10 182 191 Reserved.

Default Action Bytes 24-27 19 192 210 Default action according to the format described in Table 7-12. The
default action can be a pointer to a large action or a single action.

12 211 222 Reserved.

1 223 223 Default Action valid.

1. For normal recipes, the RID should be equal to the index of the recipe. If Inverse Action flag is set, the RID might differ from the
recipe index. In this case, lookup entries should not be populated with this recipe index. For non-root recipes, the RID must be zero.

2. This bit requires another recipe lookup with Allow_pass_l2 set to match.
3. This bit identities this filter as an L2 filter, qualifying filters with Need_pass_l2 set.

Table 7-9. Recipe Content [continued]

Field Byte Range Width LSB MSB Sub-Field Description

613875-009 999

Intel® Ethernet Controller E810 Datasheet
Packet Processing

If set, the action is enabled for Tx traffic using the VSI_SRCSWCTRL.MACAS bit and for Rx traffic using
the VSI_RXSWCTRL.MACVSIPRUNEENABLE bit.

When setting this bit, the RID of the inverse action recipe should be equal to the RID of the matching
forwarding recipe.

7.8.5.1.2 Sample Recipes

Table 7-10 provide a few examples of recipes (a letter in one of the words indicates usage of
intermediary lookups, according to the result field in the intermediary line). Lines 0-10 are the basic
recipes loaded from NVM.

Note: The layout of the recipes can be different if needed to optimize lookups. For example, if a part
of a lookup is common to multiple lookups (for example, {switch ID, tenant ID, Key}), it
might be worthwhile to have it a single lookup entry shared by multiple recipes.

Table 7-10. Sample Recipes

Recipe
Index
(RID)

Recipe
Priority
(Joint

Priority)1
Is

Root Word0 Word1 Word2 Word3 Word4 Result2

0 EtherType, Direction 4 Y switch ID EtherType Direction - - E

1 DA 2 Y switch ID MAC0 MAC1 MAC2 - B

2 DA, VLAN 2 Y switch ID MAC0 MAC1 MAC2 VLAN -

3 Packet Type, Direction
(promiscuous) 1 (1,2,3)3 Y switch ID Packet

Type Direction4 - - -

4 VLAN5 N/A6 Y switch ID VLAN - - -

5 Default, Direction 0 Y switch ID Direction - - - -

1 SA (inverse action) N/A7 Y8 switch ID SMAC0 SMAC1 SMAC2 - -

2 SA, VLAN (inverse
action) N/A Y9 switch ID SMAC0 SMAC1 SMAC2 VLAN -

8 EtherType, MAC,
Direction 4 Y switch ID MAC0 MAC1 MAC2 E -

9 Promiscuous, VLAN,
Packet Type, Direction 1 (1,2,3)3 Y switch ID Packet

Type VLAN Direction - -

10 Logical Port 0 Y switch ID Logical
Port

11 Inner MAC, Tunnel Type 3 Y switch ID IMAC0 IMAC1 IMAC2 Tunnel
Type A

12 Inner MAC, Inner VLAN,
Tunnel Type 3 Y A iVLAN - - - -

13 Inner MAC, Inner VLAN,
Tenant ID, Tunnel Type 3 Y A iVLAN Key0 Key1 - -

14 Inner MAC, Tenant ID,
Tunnel Type 3 Y A - Key0 Key1 - -

15 Outer MAC, Tenant ID,
Inner MAC, Tunnel Type 3 Y B A Key0 Key1 - -

16 N/A N D-IP-0 D-IP-1 D-IP-2 D-IP-3 D-IP-4 C

17 Application Dest IPv6 3 Y switch ID D-IP-5 D-IP-6 D-IP-7 C -

18 N/A N S-IP-0 S-IP-1 S-IP-2 S-IP-3 S-IP-4 G

20 Application Dest IPv4 3 Y switch ID D-IP-0 D-IP-1 - - D

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1000 613875-009

7.8.5.2 Lookup Table

The lookup table is a Binary-CAM with 32K entries accessed using the Key generated in the KeyGen.
The masked lookup key is searched in the table. If a match is found, the result is provided to the action
resolving block that registers an action to do on the packet (if this is a root lookup) and to the KeyGen
that can update the Field Vector (if intermediate or root lookup). If a match is not found, a default
action per recipe can be used.

The format of each entry in the lookup table is as follows:

21 Application Source
IPv6, Inner MAC 3 Y S-IP-5 S-IP-6 S-IP-7 A G -

22 Application Source
IPv4, Inner MAC 3 Y S-IP-0 S-IP-1 A - - -

24 Application Dest IPv4,
Application Source IPv4 3 Y S-IP-0 S-IP-1 D - - -

25 TCP/UDP Port 3 Y switch ID DPort - - - -

26 STag 1 Y switch ID STag - - - -

27 iVLAN 3 Y switch ID iVLAN

1. If a joint priority is not provided, it is equal to the regular priority.
2. The letters in the Result column indicate indexes in the field vectors that are updated by a match of this recipe, and are used as

inputs in subsequent recipes.
3. Assuming promiscuous additive to other filters.
4. For rules where a direction is used, it is defined by the type of rule added (T_LOOKUP_TX (packet sent by the driver) or

T_LOOKUP_RX (packet received by the driver)).
5. Should allocate a Prune Index to this rule (assume Prune Index = 0 for the examples and for the NVM default package).
6. Assumption is that VLAN filter is used for pruning.
7. No priority for inverse actions.
8. Use same RID as DA table. Used for anti-spoof/source pruning.
9. Use same RID as DA, VLAN table. Used for anti-spoof/source pruning.

Table 7-11. Field Lookup Entry Format

Field Width LSB MSB

Action 19 0 18

Ref. Count 16 19 34

Pointer 16 35 50

Filter Key FV Word 0 16 51 66

FV Word 1 16 67 82

FV Word 2 16 83 98

FV Word 3 16 99 114

FV Word 4 16 115 130

RID 6 131 136

Reserved 9 137 145

IsRoot 1 146 146

Table 7-10. Sample Recipes [continued]

Recipe
Index
(RID)

Recipe
Priority
(Joint

Priority)1
Is

Root Word0 Word1 Word2 Word3 Word4 Result2

613875-009 1001

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.5.3 Actions

There are three types of actions supported:

• Single action per lookup (Section 7.8.5.3.1).

• List of actions per lookup divided to three sections of single, double, and quad lists
(Section 7.8.5.3.2).

• Default Action, if the lookup does not result in a match (Section 7.8.5.3.3).

Figure 7-17 shows the different types of actions:

7.8.5.3.1 Single Action

For each of the 32K lookups, a single action can be applied if the lookup matches.

The following actions can be requested by a lookup entry:

• Forwarding actions (see Section 7.8.5.3.5)

• Pruning action (see Section 7.8.5.3.7)

— Prune the existing forwarding list to include only VSIs matching a VSI or VSI list (AND
operation). This action can be applied to ingress traffic, egress traffic or both.

Figure 7-17. Single Actions and Large Actions

32K lookups 32k Single actions

8K
Large
 Actions

Single Actions

4 actions list

2 actions list

Single
Action

size CSR

Two
Actions
size CSR

Four
Actions
size CSR

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1002 613875-009

Note: The usage model is to allow a single VLAN entry to point to different lists for ingress
and egress traffic.

— Prune the forwarding list not to include a VSI list (AND NOT operation).

• Statistic actions (see Section 7.8.5.3.9)

If a large action is needed, the single action can be replaced with a pointer to a list of actions described
below.

Note: All actions are additive, apart from forwarding actions to a VSI or a queue, which are defined
by priorities.

The format of the single action is described in Table 7-12.

7.8.5.3.2 Large Actions

To allow multiple actions to be activated from a single lookup, on top of the 32K per lookup actions, a
table with 8K entries is provided. Each entry represents a single action, and up to four actions can be
chained into an action list. If the original action points to one of these action lists, all the combined
actions are applied.

These 8K are divided to three programmable sections:

• A section of single actions (to allow usage of new actions not available directly).

• A section of two actions lists.

Table 7-12. Single Actions Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

00b (VSI
Forwarding)

LB
EN1

1. Allows packet to be looped back.

LAN
EN2

2. Might prevent packet from being sent to the network.

VSI/VSI_list List Reserved Valid
3

3. The Valid bit should be set by the software device driver in all forwarding actions. Adding an entry with Valid = 0 is allowed if
allow_pass_L2 is set in the recipe, and only a hit in the table is needed with no real action.

Drop
4

4. If Drop is set, VSI/VSI_list is ignored.

01b
(To Queue)

LB
EN

LAN
EN Q Index5

5. The queue index is an absolute queue number in the 0-2K range and should be used as such in the lookup programming commands.

Q Region Size
Q_P
RI6

6. Defines queue priority.

10b
(Prune)

LB
EN7

7. LB EN should not be set for prune actions or for large actions not including a forwarding action.

LAN
EN VSI_list List

= 18

8. Must be set. Direct pruning is only available according to a VSI list.

Egr9

9. Apply pruning to egress traffic (traffic received by VSIs).

Ing
10

10.Apply pruning to ingress traffic (traffic sent by a VSI).

Prun
eT11

11.AND prune (0) or AND NOT prune (1).

0b

10b
(Pointer)

LB
EN7

LAN
EN12

12.LAN EN is relevant only if large action includes prune or forwarding actions.

Pointer to a large action. Points to the first action in the large action in the 8K range.
hasF
WD
13

13.Should be set if the large action includes a forwarding command.

1b

11b
(Other

Actions)

Reserved Mirror VSI Reserved 00b
(Mirror)

Reserved 10b/11b
(Reserved)

Reserved Statistics Counter Index Reserved 11b
(Stat Count)

613875-009 1003

Intel® Ethernet Controller E810 Datasheet
Packet Processing

• A section of four actions lists.

Each lookup can point to any section depending of the number of requested action. The size of each
section is programmable from NVM or from software device driver at init time (before any extended
action is programmed) via the following registers:

The allocation is common to all ports.

Note: As there is a single such table, usage of large actions might degrade performance, if
applicable for a large part of the traffic and used multiple times on the same packet.

Any of the actions included in the list can implement one of the actions defined above. In addition, the
following actions are available only as part of large actions:

• Generic Action to update metadata (see Section 7.8.5.3.8).

• Increase counter — Used to support event counters.

The format of each action in an action list is described in Table 7-14.

Table 7-13. Large Actions Table Allocation

Table Part Register Note

Single Action
GL_SWT_LAT_SINGLE.BASE[10:0] Encoded as base/4

GL_SWT_LAT_SINGLE.SIZE[10:0] Encoded as size/4

Double Actions
GL_SWT_LAT_DOUBLE.BASE[10:0] Encoded as base/4

GL_SWT_LAT_DOUBLE.SIZE[10:0] Encoded as size/4

Quad Actions
GL_SWT_LAT_QUAD.BASE[10:0] Encoded as base/4

GL_SWT_LAT_QUAD.SIZE[10:0] Encoded as size/4

Table 7-14. Large Actions Entries

0:2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19:21 22:24

000b (VSI
Forwarding) VSI/VSI_list List Reserved Vali

d1

1. The Valid bit should be set by the software device driver in any forwarding action.

Reserved

001b
(To Queue) Q Index2

2. Queue index is the absolute queue number (0-2047) and should be used as such in the lookup programming commands.

Q Region Size Q_P
RI3

3. Defines queue priority.

Reserved

010b
(Pruning) VSI_list

List
=
14

4. Must be set. Direct pruning is only available according to a VSI list.

Egr5

5. Apply pruning to egress traffic.

Ing6

6. Apply pruning to ingress traffic.

Prun
eT7

7. AND prune or AND NOT prune.

Reserved

011b
(Mirroring) Mirror VSI Reserved

101b
(Generic
Action)

Generic Value Generic
Offset

Generic
Priority

110b Spare

010b
(Statistics) Statistics Counter Index Reserved

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1004 613875-009

7.8.5.3.3 Default Actions

Each entry in the recipe table associated with an RID (isroot = 1) can define a default action to take if a
lookup was done but no match was found. For example a VLAN lookup default action might be to prune
all VSIs that are doing VLAN filtering (not in ignore VLAN mode). For a MAC lookup, the default action
might be null. The default action layout is described as part of the recipe in Table 7-9.

7.8.5.3.4 Valid = 0 Action

A recipe can use as sub-entries other root entries. In this case, the entry can match as part of the large
lookup, but not induce a match of an actual filter. For example, a MAC/VLAN filter can use a MAC filter
as a sub-recipe, but a match of the MAC should not be considered as an action. To indicate this, the
hardware sets, for root entries added only as part of another recipe with a Valid = 0 bit. This entry is
ignored as part of the rules resolution. The only exception is for recipes for which the allow_pass_L2 is
set. In this case, an action with Valid = 0 is considered as a match.

Caution: If it is important to differentiate between an entry added as a part of a larger lookup and an
entry added to allow L2 filtering. The recipe used with allow_pass_L2 set should not be
used as part of other recipes.

7.8.5.3.5 Forwarding Actions

The following forwarding actions are available:

• Forward to a VSI — Using VSI forwarding action with LIST bit cleared.

• Forward to a list of VSIs — Using VSI forwarding action with LIST bit set.

• Forward to a queue group within a VSI — Using ToQueue action with non zero Qregion. The
region base equals “Queue Index” and the region size equals 2^(Qregion). The priority used is
defined by the Q_PRI bit.

• Forward to a queue within a VSI — Using ToQueue action with zero Qregion.

Note: The forwarding actions to a queue do not include the VSI as part of the command and
uses the absolute queue. The forwarding action to a queue group uses the absolute
queue number of the first queue in the queue group. The VSI number is extracted from
the queue number using a queue to VSI table described in Section 7.8.8.3.

• Do not forward to the LAN — Using the LANEN field. If LANEN bit is cleared in any of the
matched lookup with a forwarding or pruning action, the packet is not sent to the LAN. This action
is relevant only for transmit packets.

Note: This action is forced if LANENABLE field in the source VSI context is cleared. This means
that if LANENABLE is cleared, the packet is not sent to the LAN independent of the
programmed actions.

• Allow loopback — Using the LBEN field. If LBEN bit is set in any of the matched lookup with a
forwarding action, the packet is loopback.

Note: This action is gated by the ALLOWLOOPBACK field in the source VSI context. This means
that if ALLOWLOOPBACK is cleared, the packet is not sent to the loopback path
independent of the programmed actions.

• Drop packet

See below for details on how multiple forwarding actions are applied.

613875-009 1005

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The following table summarizes the impact of the LANENABLE and LBEN bits in the actions on transmit
packets:

7.8.5.3.5.1 Forwarding Actions Priorities

Each recipe contains two priority values used by forwarding actions:

• Priority — A number between 0-7 (represented in the recipe as a one hot bitmap).

• Join Priority — An 8-bit bitmap.

The following algorithm is used to define which forwarding actions are retained to create the ultimate
forwarding action:

For all the matching recipes resulting in a “forwarding” and “to queue” actions {
 find maximum value of Priority --> max_priority
}
For all the matching recipes resulting in a “forwarding” and “to queue” actions {
 If (join_priority[max_priority] == 1) {
 // note that the bit of the max priority should be set in the join priority vector
 Add VSI/VSI list/Queue to resulting VSI list
 }
}

7.8.5.3.6 Event-Based Mirroring Action

This action allows event-based mirroring of the traffic for which the action is enabled to a mirror VSI.
Event based mirroring is independent of the forwarding priorities and the mirror VSI is always added
even if the packet is dropped.

Event mirroring action can cause a loopback, even if loopback is not enabled for the ingress VSI.

Port-based mirroring is also available and is described in Section 7.8.5.4.1.

Note: The mirror VSI should be used only to receive mirror traffic (either event-based or
port-based).

7.8.5.3.7 Prune Action

The prune action acts on the VSI list created by the forwarding action. It can either:

• Remove VSI listed in a VSI list from the forwarding list (AND NOT prune - PruneT = 1)

• Remove VSI not listed in a VSI list from the forwarding list (AND prune - PruneT = 0)

Each pruning action is enabled for Rx/loopback or Tx traffic using the Egress (Rx) pruning enables and
Ingress (Tx) pruning enables fields in the Add VSI command. The enable index to use is set in the
Prune Index field in the recipe pointing to this action.

OR (LBEN)1

1. OR of the LBEN bits in all matched actions that passes the priority process.

AND (LANENABLE)2

2. AND of the LANENABLE bits in all matched actions that passes the priority process.

Result

0 0 Drop packet.

0 1 Send to loopback only.

1 0 Send to network only.

1 1 Send to both network and loopback.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1006 613875-009

This action is additive and not dependent on the priority of the recipe. Multiple prune actions can be
applied.

In addition to these actions, there can be anti-spoofing rules and source pruning rules that also
generate an implicit pruning. These rules are implemented in the default configuration using recipes
with an inverse action bit set as described in Section 7.8.5.1.1.

7.8.5.3.8 Generic Value Action

This action allows setting of metadata forwarded to the next stages of the pipe. The Generic Offset,
Generic Value, and Generic Priority define the location, the content, and the priority of the data in the
metadata bus.

The encoding of the generic offset is as follows:

7.8.5.3.9 Statistics Actions

Statistics gathering can be done at four different levels:

• At the switch ID level:

— Per switch ID packets are counted that matched a switch ID, but were dropped.

— If the switch ID is part of a VEB. There are 32 VEB statistic blocks. In this case, statistics are
gathered at the VEB level and at the VEB/UP level.

• At the VSI level, if packet is forwarded to a VSI (egress) or sent by a VSI (ingress).

• At the port level if packet is forwarded to a port (egress) or received from a port (ingress).

• Gather event statistics (usually VEB/VLAN) in statistic block N out of 128 available blocks. These
counters are activated using the “statistics” action.

Note: See Section 7.8.6.1.1 for limitations on multiple event counting per packet.

Unless noted otherwise, dropped packets are not counted in the statistic counters.

Table 7-15. Generic Offset Encoding

Value Field Priority Field Notes

0x0 genericMD_word_0 genericMD_word_0_prio

0x1 genericMD_word_1 genericMD_word_1_prio

0x2 genericMD_word_2 genericMD_word_2_prio

0x3 genericMD_word_3 genericMD_word_3_prio

0x4 genericMD_word_4 genericMD_word_4_prio

0x5 flowID_word_0
flowID_prio

The priority is common to these two fields. If
both are set through actions, the priority is
taken from the flowID_word_0 action.0x6 flowID_word_1

0x7 RX_descr_structure_prof_idx RX_descr_structure_prof_idx_prio Only first six bits of the word are set.

613875-009 1007

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.5.3.9.1 Statistics Registers

The following registers are available for statistics gathered by the binary classifier:

• 256 per switch ID registers to count drops — GLSWID_RUPP[255:0].

• 32 instances of VEB, VEB/UP statistics described in Section 9.6.5.2.

• 128 instances of block statistics also described in Section 9.6.5.2.

All these counters are accessible to all the PF drivers and are read only registers that wrap around after
reaching their maximum value.

7.8.5.3.9.2 Association of VEB Statistic Block to a VEB

The following flow can be used to associate a VEB statistic block to a VEB.

1. When creating a VEB, decide if a counter is needed.

2. If yes, allocate a VEB counter by using the Allocate Resources (0x0208) command with a resource
type of VEB statistic counter (0x0) and get a counter ID.

3. For each VSI added/updated to this VEB, in the Add VSI command (0x0210) set VEB_CNT_VAL = 1
and VEB_CNT_ID to the associated counter ID.

7.8.5.3.10 VSI Bitmaps

Three types of actions can point to list of VSIs:

• Forward to a list of VSIs

• Prune (AND)

• Prune (AND NOT)

The E810 provides two set of 1024 per-VSI bitmaps that allows setting all the VSIs that are to be
included in the action. The first set can be pointed by forwarding actions. The second set can be pointed
by the two types of pruning actions.

The 1024 VSI bitmaps used for pruning actions are divided to four banks of 256 entries each. To
achieve the nominal performance, pruning actions applied to a single packet should be divided between
the four banks, so that in each bank there are up to two pruning lists.

7.8.5.4 Post Processing Actions

In addition to the actions generated by the lookup table, a few actions are generated by dedicated
logic:

• Transmit Packets received with a non-zero SWTCH field from a VSI where the
VSI_SRCSWCTRL.ALLOWDESTOVERRIDE bit is set in their descriptor are forwarded according to
this flag:

— If SWTCH = 01b, the packet is sent to the LAN.

— If SWTCH = 10b, the LAN is removed from the list of destinations.

— If SWTCH = 11b, the packet is sent to the VSI specified in the TARGET_VSI field in the
descriptor. In this case, the switch cannot set a specific queue destination within the VSI.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1008 613875-009

Note: If the VSI_SRCSWCTRL.ALLOWDESTOVERRIDE bit is not set, and a non-zero value is
set, the packet is dropped. In this case, the GL_OVERRIDEC.OVERRIDE_ATTEMPTC
field is increased, and the GL_OVERRIDEC.LAST_VSI field is set with the value of the
source VSI.

If SWTCH = 01b or 11b, the switch is bypassed and no action is applied to this packet
(for example, event counters, generic actions, prune, MAC source pruning).

If SWTCH not equal zero, the ingress prune rules do not apply.

Note: When SWTCH = 11b, the switch does not check that the packet is sent to a VSI within
the same PF. Use with care.

• SWPE — A packet received with this bit set, the packet is sent back to the source VSI.

• Store Bad Packets — If PRT_SBPVSI.SBP is set, packets received with MAC errors as defined in
Section 3.2.1.8 are forwarded to queue 0 of the VSI defined in the Bad Frames VSI
(PRT_SBPVSI.BAD_FRAMES_VSI).

• Default action for transmit packets — A transmit packet is sent by default to the LAN, unless a “do
not forward to LAN” action is set.

7.8.5.4.1 Port-Based Mirroring

The E810 supports 64 port-based mirror rules that can be a combination of the following four types.
These types are implemented using dedicated hardware and not through the regular actions:

• Mirror ingress traffic from host — Mirror packets sent from a specific VSI.

• Mirror egress traffic to host — Mirror packets sent to a specific VSI.

• Mirror ingress traffic from LAN — Mirror packets received from a specific LAN port. This includes
packets with L2 errors.

• Mirror egress traffic to LAN — Mirror packets sent to a specific LAN port.

Each ingress or egress VSI/Port can be mirrored by one rule only.

Per mirror rule, a mirror VSI is defined that specifies where packets are mirrored. There is no support
for mirroring to an external port.

To differentiate packets received according to the different rules, the matched rule is indicated in the
Mirror Rule ID (MIRR) field in the receive descriptor.

In addition to these rules, specific traffic can be mirrored by assigning a mirror action to a specific
lookup. In this case, the mirrored packet is not identified with a Mirror Rule ID (MIRR) in the receive
descriptor. Event based mirroring is described in Section 7.8.5.3.6.

Note: The mirror VSI should be used only to receive mirror traffic (either event-based or
port-based).

Packets that are dropped by the switch can still be mirrored due to ingress mirror rules. In
this case, the packet is counted as dropped in the GLSWID_RUPP counters and is not counted
in the regular switch counters.

613875-009 1009

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.6 Egress Post Processing Actions

7.8.6.1 Actions Merging and Priorities

As described above, each recipe can provide one or more actions. Each recipe is associated with a
priority and a join priority bitmap applied to forwarding actions only.

The following rules describe the resulting actions in decreasing order of priority:

• If drop action exists, drop packet.

• If any filter matched a non-default action (including a non-valid action) and has the Pass L2 filter in
its recipe, the packet is assumed to pass L2 filter. If pass L2 filter is false, the subsequent
forwarding actions merging step should take into account only actions not requiring L2 filtering.
Otherwise, all actions are considered.

• Forwarding actions merging:

— From all recipes with forwarding actions, devise the highest priority (H-P) available.

— Find forwarding actions with H-P bit set in join priority bitmap in recipe and merge VSI
destination list of all these actions. Following is an example of this algorithm:

— If two of the selected actions points to the same VSI, but one of them defines a queue, the
packet is sent to this queue.

— If no “allow loopback” action found and packet is Tx, remove from list all local VSIs.

— If “do not forward to LAN” action found and packet is Tx, remove “LAN” from list.

— If the manageability filters indicate the packet as exclusive to the BMC (MNGONLY), modify the
list to include only the BMC VSI (including removal of forwarding to LAN for OS2BMC traffic).

• Pruning actions:

— All pruning actions should be applied after the forwarding list is ready.

Note: Currently there are two pruning actions applied on the list: Egress/Ingress VLAN
(AND), and Source MAC Address (AND NOT). Additional actions (source VSI pruning)
are applied per egress replica. See Section 7.8.6.5 for details.

— Add ingress mirroring rules.

Note: Egress mirroring rules are applied at a later stage, when packets are replicated.

• Statistic actions are always applied if they exist.

Recipe Priority Join Priority Forwarding Action

1 4 00010000 VSI_1

2 3 00011000 VSI_2

3 2 00001100 VSI_3

4 2 00011100 VSI_4

Result H-P (4) VSI_1, VSI_2, VSI_4

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1010 613875-009

7.8.6.1.1 Actions Limitations

For a single packet lookup the following limitations applies:

• At most, 16 actions can be generated. The combined VSI forwarding actions counts as a single
action.

• Per egress VSI, a single destination Queue can be specified. If more than one is specified, the result
is unexpected.

• For a all replications, up to two destination queues for different VSIs can be specified. If there are
more than two actions defining a queue, then the first two “to queue” actions from the recipes with
the highest RIDs are retained, and all other are translated to simple VSI forwarding actions.

• Per profile, up to 32 lookup lines can be selected and 24 of them can be recipe roots.

• If more than one hit action points to the same counter for the same packet, it is counted only once.
The counter with the higher recipe index is counted. If the same wide action has several statistic
actions, the last action is chosen.

7.8.6.2 Bypassing Actions

The following flags in metadata result in a bypass of the actions described above:

• If the Switch_directives[1:0] field (from descriptor) is set to 01b (to LAN), Tx packet is sent to LAN
only (not relevant for receive packets).

• If the Switch_directives[1:0] field (from descriptor) is set to 11b (specific VSI), Tx packet is sent to
the VSI set in the target_vsi only (not relevant for packets received from LAN).

• If SWPE bit is set, the packet is sent back to the source VSI.

• If l2_mac_err bit is set and pass bad frame is allowed for the receive port (PRT_SBPVSI.SBP), the
packet is sent to Bad Frames VSI (PRT_SBPVSI.BAD_FRAMES_VSI).

• If pkt_is_marker bit is set, no action is taken.

• If hit_mirror bit is set, the packet is looped back only for mirroring, so other lookups should not be
applied.

• If target_vsi_is_mng bit is set, the packet is looped back only for forwarding to manageability
through MDEF filters, so other lookups should not be applied.

• If storm control is active, and packet should be dropped (broadcast/multicast), apply storm control
actions and drop the packet. See Section 7.8.6.3 for details.

7.8.6.3 Storm Control

As there is no separate path for multicast and broadcast packets, too many replicated packets might
cause congestions in the data path. To avoid such scenarios, broadcast and multicast storm control rate
limiters are added. The rate controllers define windows and the maximal allowed number of multicast or
broadcast bytes/packets per window. Once the threshold is crossed, different types of policies can be
applied.

613875-009 1011

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.6.3.1 Storm Control Functionality

Note: Most of the parameters in this section refer to the Set Storm Control Configuration admin
command described is Section 7.8.12.4.1.

The time interval over which Broadcast Storm Control is performed is controlled by three factors:

• PRT_SWT_SCBI register (loaded from NVM)

• Port speed

• INTERVAL value (see Section 7.8.12.4.1)

The first two factors determine the Unit time interval as described in Table 7-16. The interval is
automatically chosen internal to hardware based on port speed. The third factor (Interval field)
determines how many of such unit intervals are considered for one Storm Control Interval (SCI).

The number of 64-byte chunk of broadcast or multicast packets that are allowed in a given SCI is
determined by the Set Storm Control admin command.

In each SCI, the E810 counts the number of relevant 64-byte chunks received. The count is done
per-port and separately for broadcast and multicast packets. This includes packets received from the
network and loopback packets sent by local VSI. Once one of the counters crosses the threshold
defined in the admin command, a storm event is detected.

Note: Every time a threshold is updated, the relevant counter is zeroed.

The E810 supports two modes of reactions to storm events:

• Block all multicast or broadcast packets from the moment the threshold is crossed until the end of
the interval. The block is removed at the end of the interval until the threshold is crossed again.
This mode is set by setting the MDICW (for multicast) and BDICW (for broadcasts) bits in the
PRT_SWT_SCCRL register. This mode is used as a rate limiter.

• Block all multicast or broadcast packets from the moment the threshold is crossed until a full
interval without threshold crossing is registered. This mode is set by asserting MDICW and MDIPW
(for multicast) and BDICW and BDIPW (for broadcasts) bits in the PRT_SWT_SCCRL register. This
mode is used for storm blocking.

Any change in the storm control state (block or pass of multicast or broadcast packets) is indicated to
the PF associated with this port via the PFINT_OICR.STORM_DETECT interrupt cause. The current state
is reflected in the PRT_SCSTS register.

The number of dropped packets due to storm control events is reflected in the GLPRT_STDC[7..0]
registers.

Table 7-16. Storm Control Basic Interval by Speed

Port Speed MIN Time Arrival MAX Time Arrival Default Time Interval
(1 Mbit)

100 Gb/s 1 μs 1 ms 10 μs

50 Gb/s 2 μs 2 ms 20 μs

25 Gb/s 4 μs 4 ms 40 μs

10 Gb/s 10 μs 10 ms 100 μs

1 Gb/s 100 μs 100 ms 1 ms

100 Mb/s 1 ms 1 second 10 ms

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1012 613875-009

7.8.6.3.2 Storm Control Programming

The following admin commands described are used to program the storm control elements:

• Set Storm Control Configuration (see Section 7.8.12.4.1)

• Get Storm Control Configuration (see Section 7.8.12.4.2)

7.8.6.4 Packets Replication

If the combination of actions yields a list of destination VSIs, the packet is replicated to each VSI.

The replicated packets cannot be sent contiguously. If traffic from other traffic classes exists, each copy
of the packet is sent when the round-robin arbiter reaches the traffic class queue. See Section 8.2.1 for
a full description of the receive path QoS scheme.

7.8.6.5 Post-Replication Actions

• Egress Mirroring — If an egress mirror rule applies to the destination VSI, the mirroring port
should be added to the destination list of the packet. Egress mirroring is programmed through the
VSI_SWT_MIREG CSRs (see Section 7.8.5.4.1 for details).

Note: A packet can be replicated multiple times to the same VSI if additional replications are
added as part of port based mirroring actions, or if the VSI is modified in subsequent
blocks in the pipe.

• Source Pruning — If the destination VSI of this replica is the same as the source VSI, and
VSI_RXSWCTRL.MACVSIPRUNEENABLE is set for this VSI, this replica is dropped.

7.8.7 Manageability Filtering

The manageability filters are described in Section 12.4.

The manageability sub-block has its own field extractor.

The manageability traffic is directed to one of eight MDEF sets according to the port or virtual port
number.

The GL_SWT_PRT2MDEF registers define the mapping from port to MDEF set. The selection between
port and virtual port is done according to GL_SWT_SWIDFVIDX.PORT_TYPE field.

The field extractor for all the profiles is pre-programmed from NVM and should include extraction of the
following fields which are part of the input set needed for manageability filtering:

• Destination MAC Address

• Destination IP Address (including ARP target IP)

• Destination and Source TCP/UDP port

• EtherType

• ICMP (or IP protocol)

• ICMPv6 types

— 0x86 (134d) — Router Advertisement.

— 0x87 (135d) — Neighbor Solicitation.

613875-009 1013

Intel® Ethernet Controller E810 Datasheet
Packet Processing

— 0x88 (136d) — Neighbor Advertisement.

— 0x89 (137d) — Redirect.

• Flex filter match (in metadata)

The result of the manageability filters is a forwarding decision for the traffic of the BMC. The used VSI is
defined in the per decision filter, per MDEF set PRT_MNG_MDEFVSI registers. In case of multiple
matches, the VSI assigned to the MDEF with the highest index is used.

7.8.7.1 Manageability Configuration

The field vector used for manageability filtering is described in Table 7-17 and is configured using the
regular field extractor logic programming flow.

In addition, a set of masks is applied to the 64-bit flag bus to define if a packet is candidate to the MDEF
filters. These masks filters packets like GRE or MPLS, which are not relevant for manageability traffic.

7.8.8 Virtual Station Interfaces

Virtual Station Interfaces (VSIs) are the connections from the switch to entities interfacing with the
host. It can be either the entire queue set of a PCIe function, or part of the queues of a function.

There can be up to 768 VSIs in the E810. All the VSIs are equivalent.

At init time, each physical function is assigned a VSI.

Other VSIs can be assigned to the physical function or to Virtual functions and can be used for the
following purposes:

Table 7-17. Default Field Vector for Manageability Filtering

Filter Words Notes

Destination MAC Address 0-2 Single/outer

Outer VLAN 3 2nd in case of double VLAN

EtherType 4 Outer

ARP
5 Operation field

6-7 TPA

Neighbor Discovery and MLD 8 Type field of ICMPv6

RMCP/Flexible Port - Dest
9 TCP destination port

10 UDP destination port

ICMP 11 Protocol field of single/outer IPv4

IP Address
12-13 Single/outer IPv4

14-21 Single/outer IPv6

Flexible - SRC
22 TCP Source port

23 UDP Source Port

Non Valid Packets — If any of these word’s valid bit is
set, the packet is not a candidate for MDEF lookup.
Currently includes outer IPv4 and IPv6.

24 Inner IPv4 - LSB

25 Inner IPv6 - LSB

26-31 Reserved

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1014 613875-009

• VMDq2

• VMDq1

• Control ports

• iWARP traffic

• Mirroring

In addition, EMP VSIs can also be defined. The EMP VSIs are used for:

• Pass-through traffic

• Control ports

Each VSI has an Egress and Ingress context as described in Section 7.8.8.1 and Section 7.8.8.2,
respectively. In addition, a queue context mapping queues to VSIs is also available.

Note: Additional VSI contexts are part of the ACL and Filtering blocks.

7.8.8.1 Egress VSI Context

A per-VSI table containing the context of the VSI with the following parameters looked up with the
destination VSI (VSI_RXSWCTRL and VSI_VSI2F registers):

• VSI_VSI2F.VFVMNUMBER, VSI_VSI2F.PFNUMBER, VSI_VSI2F.FUNCTIONTYPE — PF/VF to which the
VSI belongs.

• VSI_VSI2F.BUFFERNUMBER — The buffer in the manageability block to which traffic is sent if
FUNCTIONTYPE = EMP.

• VSI_RXSWCTRL.MACVSIPRUNEENABLE — Defines if the VSI can receive packets with its own MAC
Address. If set, such packets are dropped. Enabling recipes where the inverse_action is set for Rx
packets.

• VSI_RXSWCTRL.SRCPRUNEENABLE — Defines if a VSI can receive packets it sent.

• VSI_RXSWCTRL.PRUNEENABLE[3:0] — Enables prune actions for Rx traffic. According to the
prune_index in recipe

• VSI_VSI2F.VSI_ENABLE - VSI Enable.

7.8.8.2 Ingress VSI Context

A per-VSI table containing the context of the VSI with the following parameters looked up with the
source VSI (VSI_SRCSWCTRL registers):

• ALLOWDESTOVERRIDE — Defines if a source VSI is allowed to bypass the switch using the SWTCH
flag in Tx-Descriptor.

• ALLOWLOOPBACK — Defines if packets sent from a VSI can be looped back.

• LANENABLE — Defines if packets sent from a VSI can be sent to the LAN.

• PRUNEENABLE[3:0] — Enables prune actions for Tx traffic. According to the prune_index in recipe.

• MACAS — Allows MAC anti-spoof for this VSI. Enabling recipes where the inverse_action is set for
Tx packets. If set, a packet is sent only if at least one recipe with inverse action provides an
indication of a matching VSI to the source VSI.

613875-009 1015

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.8.3 Queue Context

A 2K-entries table mapping absolute queue numbers to VSIs and relative queue numbers.

All tables are filled by the Add VSI command.

7.8.9 Classifier Performance

The classifier is able to classify up to 171 Mpps Rx/Tx packets assuming up to 10 lookups per packet.
The classification includes a forwarding decision and two ingress pruning decisions. Other actions, like
statistics or storm control, should not impact the performance of the classifier. Replication or mirroring
of a packet causes a reduction of the number of packets handled per second.

The classifier supports up to 500 VM configurations per second (includes VSI and filters configurations)
in run time, and up to 5000 filter configurations at init time, to allow bring-up of a complex topology in
a short time. This assumes bundling multiple filters configurations within a single Add Switch Rules
command (Section 7.8.12.6.1).

There is no requirement on the profile configuration performance.

7.8.10 Resource Allocation

The following resources, including Switch, Flow Director, RSS, and per-pipe stage profile configuration
resources, are managed by the firmware:

Table 7-18. Resource Types

Resource
ID Resource Type Allocation

Type Notes Pre-Allocatable
in NVM

0x0 VEB Statistic Counter Specific entries Up to 32 VEB counter blocks.

0x1 Event Statistic Counter Specific entries Up to 128 events (for example, VEB/VLAN) counter
blocks.

0x2 Mirror rule Specific entries Up to 64 mirror rules.

0x3 VSI List - Replication Specific entries Up to 1K lists.

0x4 VSI List - Prune Specific entries Up to 1K lists

0x5 Recipe Specific entries Up to 64 recipes.
At init time, all recipes are shared. The default
recipes are shared and available for all the
functions. If a global package is loaded, all the
recipes are replaced by the recipes of the package,
and are shared and available for all the functions.

0x6 Switch Profiles Specific entries Up to 256 profiles.

0x7 SWID Specific entries Up to 256 switch IDs.

0x8 VSI Specific entries Up to 768 VSIs. Yes

0x9 FLU Entry Quantity only Up to 32K FLU entries.
The allocation and de-allocation assumes each filter
uses new entries, so the actual usage can be lower
than what is reflected by this command.

Yes

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1016 613875-009

0xA Wide Table 1 Specific entries Total 8K wide actions. See Table 7-13 for the
distribution.

0xB Wide Table 2 Specific entries

0xC Wide Table 4 Specific entries

0xD-0x1F Reserved for future
switch resources

N/A

0x20 Global RSS Hash Specific entries Up to 16 RSS hash tables.

0x21 Flow Director Counter
Block

Specific 256
counters blocks

One of 32 blocks (total 8K counters).

0x22 Flow Director
Guaranteed Entries (for
software-based filters)

Quantity only The total number of available Flow Director
guaranteed entries is GLQF_FD_SIZE.FD_GSIZE.
To increase this resource, use the Allocate
Resources AQ command. To decrease this resource,
use the Free Resources AQ command.
Using the Get Allocated Resource Descriptors AQ
command for this resource is not relevant and
returns an empty buffer.

0x23 Flow Director Shared
Entries (for ATR filters)

Quantity only The total number of available Flow Director
guaranteed entries is GLQF_FD_SIZE.FD_BSIZE,
but there can be over-subscription between PFs.
To increase this resource, used the Allocate
Resources AQ command. To decrease this resource,
use the Free Resources AQ command.
Using the Get Allocated Resource Descriptors AQ
command for this resource is not relevant and
returns an empty buffer.

0x24-0x2F Reserved for future
filtering resources

N/A

0x30 Flexible Descriptors
Programming

Specific entries Up to 64. Shared by default. These resources are
not cleared by PFR.
Note: Resources #0, #1, and #7 are

pre-allocated, and never allocated to a
specific PF.

See Section 7.6.4.

0x31-0x3F Reserved for filter
resources

N/A

0x40-0x47 Reserved for Parser
Profile Builder

N/A

0x48 Switch Field Vector Table Specific entries

0x49 Switch Profile ID TCAM
Entries

Specific entries

0x4A-0x4F Reserved for Switch
Profile Builder

N/A

0x50 ACL Field Vector Table Specific entries

0x51 ACL Profile ID TCAM
Entries

Specific entries

0x52-0x57 Reserved for ACL Profile
Builder

N/A

0x58 Flow Director Field
Vector Table

Specific entries

0x59 Flow Director ID TCAM
Table Entries

Specific entries

Table 7-18. Resource Types [continued]

Resource
ID Resource Type Allocation

Type Notes Pre-Allocatable
in NVM

613875-009 1017

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The following principles are defined to support these resources management:

• Every resource could be Persistent (unmanaged) or Dedicated (exclusive). Profile builder resources
can be also Shared.

• Dedicated resource rules:

— One resource / one owner.

— Dedicated resource allocation/de-allocation (explicitly by the owning driver).

— If a device driver attempts to reference/modify a dedicated resource owned by another
function’s driver, it gets an error (shared resource could be referenced/modified by any device
driver).

— During PFR, firmware clears all the dedicated resources owned by the function.

Note: Profile Builder resources are defined as Dedicated using the Download Package AQ
command. Their ownership is kept across a PFR. However, for Profile ID TCAM, the
resource's hardware information is cleared during PFR.

• Persistent resources rules:

— Not owned by any function driver.

— Allocation/de-allocation (explicitly by any driver).

— Any modification possible.

— PFR has no impact. Cleared by CORER.

Note: Profile Builder resources can be deallocated only using the Download Package AQ
command sequence.

• Shared resources rules (relevant only to Profile Builder resources):

— Set ownership as “shared” is done using Download Package AQ command.

— Can be owned by any function driver using Allocate Resource AQ command (and freed using the
Free Resource AQ command).

— Modification is possible using the Update Package AQ command.

0x5A-0x5F Reserved for Flow
Director Profile Builder

N/A

0x60 Hash Field Vector Table Specific entries

0x61 Hash Profile ID TCAM
Entries

Specific entries

0x62-0x67 Reserved for Hash
Profile Builder

N/A

0x68 Quad Hash Field Vector
Table

Specific entries

0x69 Quad Hash Profile ID
TCAM Entries

Specific entries

0x6A-0x6F Reserved for Quad Hash
Profile Builder

0x70-0x7F Reserved

Table 7-18. Resource Types [continued]

Resource
ID Resource Type Allocation

Type Notes Pre-Allocatable
in NVM

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1018 613875-009

— PFR clears PF usage of resource. For Profile ID TCAM, the resource's hardware information is
cleared when no PF is using the resource.

• If the software device driver attempts to reference/modify unallocated resource, it gets an error.

The commands used to manage the resources are described in Section 7.8.12.2.

Profile builder ownership is defined in Table 7-205.

7.8.10.1 Shared Resources

The “shared resource” ownership type allows several PFs to own and manage the same resource. It is
strictly defined for the use of Link Aggregation (LAG), where several PFs form a bonding group serve
the same higher layer application.

Table 7-19 details the behavior of each ownership type.

Only the following resources are allowed to be allocated as Shared ownership:

Shared resources are managed by the same commands used for other resource types as described in
Section 7.8.12.2.

Table 7-19. Behavior of Ownership Types

Ownership Type

Dedicated (Exclusive) Shared Persistent (Unmanaged)

Description Single owner. Multiple owners. No ownership control.

Applicable to Resources All Lists, actions, and recipes. All

Allocate By single PF, which becomes
an owner.

By multiple PFs.
PF should explicitly allocate a
resource to become one of the
owners.

By any PF.

Release By owner. Release returns
resource to a free pool.

By any owner.
When the last owner releases
resource, it returns to a free
pool

By any PF.

Read/Write Access By owner. By any owner. By any PF.

Change Ownership Type
(Dedicated <-> Shared)

By owner. By any owner if it is currently
the single owner

No

Firmware Tracking Yes Yes (tracks all owners). No

Firmware Cleanup On release, PFR, CORER. On last release (no
references), PFR - PF related
settings only, CORER.

CORER

0x3 VSI list - Replication

0x4 VSI list - Prune

0xA Wide table 1

0xB Wide table 2

0xC Wide table 3

613875-009 1019

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.10.2 Initial Resource Allocations

Resources can be pre-allocated from NVM to a PF, or can be dynamically assigned using the commands
in Section 7.8.12.2. The allocation in NVM is done through the SR PF Allocations NVM section. This
section allows for the allocation of up to two resources per PF, by setting the “PF allocations -Type” and
“PF allocations -Value” words with {resource type, number of resources allocated} pairs.

Regardless, for each PF, a VSI and an FLU entry are allocated per function (PF or VF) associated with
this PF. If a different allocation of VSI or FLU entries is specified in NVM, the maximum value between
these two is taken to guarantee minimal allocation per PF/VF.

7.8.11 Binary Classifier Configuration

7.8.11.1 Overview

The configuration of the binary classifier can be done in three modes:

• Basic configuration loaded from NVM. This is a basic configuration that provides a basic L2 switching
configuration. This configuration can never be removed.

• Public configurations loaded by driver that can be used by other drivers on the device. For example,
a driver loading a set of filters to match the encapsulation used in the network (NVGRE, Geneve,
and so on), that can be used by other drivers connected to the same network. Such a configuration
can be removed only if no driver is registered to use it.

• A private configuration loaded by a driver and not exposed to other drivers. The driver is free to
remove this type of configuration independently.

7.8.11.2 Parameters Summary

Table 7-20 summarize the parameters configurable in the switch and the way to configure them.

Table 7-20. Configurable Parameters

Parameter Config Source Mechanism Rate Section
Reference

Profile Selection
Parameters

NVM CSRs Once 7.8.11.3.1
through

7.8.11.3.3

Initial Recipes and
Default Profile

NVM CSRs Once

Initial Population
(Basic L2 Filtering)

Firmware See lookup population. N/A

New Control Domain
- Add/Remove

Software via firmware CSRs 500/s

New Profile - Add/
Remove

Software via firmware CSRs 1000/s. Up
to 5000/s
combined
population
requests

New Set of Recipe -
Add/remove

Software via firmware CSRs 1000/s

(Dis)Association of
Traffic to Profile

Software via firmware CSRs N/A

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1020 613875-009

7.8.11.3 NVM Loaded POR

7.8.11.3.1 Default Profiles

Four profiles are defined from NVM:

• Bypass profile (0x0) — This profile is used for packets that are not impacted by the switch block.

• Default profile (0x1) — Includes all traffic not included in any other profiles.

• Control Packets profile (0x2) — Includes LLDP packets and flow control packets (PTYPEs = 6,
278).

• Hardware handled packets (0x3) — This profile is used for packets for which there is no lookup
and special hardware is used to implement the decision.

Note: All the flags that are part of the bypass and hardware handled profiles have dedicated
hardware to handle them. The inclusion in these profiles is to save the need for regular recipe
lookup.

7.8.11.3.2 Default Field Vector

The default field vector is generated for the Default Profile (1) and Control Packets Profile (2), and
contains the following data:

Add/remove VSI Software via firmware CSRs

Lookup Population Software via firmware (using
packet header)
Each population request in a
different AQ command.

Command FIFO (lookup and action).
CSRs (VSI bitmaps and large actions).

Lookup Removal Software via firmware (using
index)

Command FIFO (lookup and action)
CSRs (VSI bitmaps and large actions)

FLR/PFR, VFR Firmware Hardware iterators to get lookup.
Lookup removal as above.

Table 7-21. Default Field Vector

Offset (Words) Content Notes

0 Switch ID Mandatory in all extractions.

1 MAC DA 0

2 MAC DA 1

3 MAC DA 2

4 MAC SA 0

5 MAC SA 1

6 MAC SA 2

7 Outer VLAN Not used by basic filters. Equals zero if not present.

Table 7-20. Configurable Parameters [continued]

Parameter Config Source Mechanism Rate Section
Reference

613875-009 1021

Intel® Ethernet Controller E810 Datasheet
Packet Processing

For the Bypass Profile (0) and Hardware-Based Profile (3), the extracted vector is empty.

7.8.11.3.3 Default Recipes

The first 11 filters defined in Table 7-10 are loaded from NVM.

7.8.11.4 Resets

The entire switch configuration is cleared and reloaded from NVM upon a CORER or higher reset.

At a PFR or FLR reset, all the entries populated by the PF, all the recipes and profiles private to this PF,
and all the VSI context for VSIs allocated to this PF are cleared.

At a VFR or VMR, there is no modification of the switch configuration.

7.8.12 Software Programming Model

The programming of the different switching elements is done using admin commands. Commands to
configure a switching element can be received only from the control port of the element.

7.8.12.1 Switch Configuration Admin Commands Summary

The set of commands is based on X710/XXV710/XL710 switch commands with adaptations to the new
programming paradigm of the E810.

Table 7-22 summarize the different commands used to configure the binary classifier.

8 VLAN Equals zero if not present

9 EtherType

Table 7-22. Switch Configuration Admin Commands (0x02xx)

Command Opcode Description Section
Reference

Common Commands
The commands common to the entire receive control pipe are described in Section 7.11.

Generic Commands/Resource Management (0x020x)

Get Switch Configuration 0x0200 Describe the networking structure of the port. 7.8.12.2.1

Set Port Parameters 0x0203 Define the default parameters of a LAN port. 7.8.12.2.2

Get Resource Allocation 0x0204 Get total resources allocated to the function and shared resources. 7.8.12.2.3

Allocate Resources 0x0208 Allocate a set of resources to a PF/shared. 7.8.12.2.4

Free Resources 0x0209 Free a set of resources. 7.8.12.2.5

Get Allocated Resources
Descriptors

0x020A Return the IDs of a set of allocated resources. 7.8.12.2.6

Change Resource Ownership Type 0x020B Change resource ownership between “Dedicated” and “Shared”. 7.8.12.2.7

Table 7-21. Default Field Vector [continued]

Offset (Words) Content Notes

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1022 613875-009

Set VLAN Mode Parameters 0x020C Configure the device-wide settings that must be changed to be
compatible with the VLAN mode.

7.8.12.2.8

Get VLAN Mode Parameters 0x020D Get the values of the specified device-wide settings. 7.8.12.2.9

Other commands in this section supported in previous products are obsolete in the E810.

VSI Commands (0x021x)

Add VSI 0x0210 Add a VSI to a switching element. 7.8.12.3.1

Update VSI 0x0211 Update the parameters of a VSI. 7.8.12.3.2

Get VSI Parameters 0x0212 Get the parameters of a VSI. 7.8.12.3.3

Free VSI 0x0213 Remove a VSI. 7.8.12.3.4

Set DMA PASID IDX Map 0x0214
Globally allocate HIF DMA agents to PASID Indexes

7.8.12.3.5

Get DMA PASID IDX Map 0x0215 7.8.12.3.6

Port Virtualizer Control (0x022x)
All the commands in this section supported in previous products are obsolete in the E810.

VEB/Port Aggregator Control (0x023x)
While these commands are no longer supported in the E810, the functionality of the VEB configuration is replaced by the SWID
configuration, also knows as the Switch ID provided in the Get Switch Config and Add/Update VSI commands.

Switch Connectivity Configuration (0x024x)
All the commands in this section supported in previous products are obsolete in the E810.

Forwarding Table Configuration (0x025x)
All the commands in this section supported in previous products are obsolete in the E810.

Storm Control Commands (0x028x)

Set Storm Control Configuration 0x0280 Define the parameters for the Storm Control engine. 7.8.12.4.1

Get Storm Control Configuration 0x0281 Read the current Storm control configuration. 7.8.12.4.2

Binary Classifier Configuration (0x029x)
See Section 7.11 for profiles configuration

Add Recipe 0x0290 Add a new recipe. 7.8.12.5.1

Set Recipes-to-Profile Association 0x0291 Associate recipes to a profile. 7.8.12.5.2

Get Recipe 0x0292 Read a recipe’s content. 7.8.12.5.3

Get Recipes-to-Profile Association 0x0293 Read recipes-to-profile association. 7.8.12.5.4

Binary Classifier Population (0x02Ax)

Add Switch Rules 0x02A0 Add switch rules (RID, header of sample packet, metadata
(source VSI)) --> assigned entry index.

7.8.12.6.1

Update Switch Rules 0x02A1 Update switch rules (entry index). 7.8.12.6.2

Remove Switch Rules 0x02A2 Remove switch rules (entry index). 7.8.12.6.3

Get Switch Rules 0x02A3 Get switch rules (entry index). 7.8.12.6.4

Clear PF Configuration 0x02A4 Clear all the filters/switch resources allocated to a PF. 7.8.12.6.5

Mirroring Configuration (0x026x)

Add Mirror Rule 0x0260 Define a mirroring rule. 7.8.12.7.1

Delete Mirror Rule 0x0261 Remove a mirroring rule. 7.8.12.7.2

Table 7-22. Switch Configuration Admin Commands (0x02xx) [continued]

Command Opcode Description Section
Reference

613875-009 1023

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.2 Generic Commands (0x020x)

7.8.12.2.1 Get Switch Configuration (0x0200)

After receiving this command, firmware returns a list of currently allocated and used resources (VSIs
and SWIDs), so a topology tree could be built.

Table 7-23. Get Switch Configuration Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0200 Command opcode.

Datalen 4-5 (2-2048) Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command Flags 16-17 Reserved.

First Descriptor 18-19 0x0 If not zero, start the report from the requested descriptor.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-24. Get Switch Configuration Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0200 Command opcode.

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Flags 16-17 Copy of request flags.

New Element 18-19 If not zero, indicates that not all the configuration was returned and a new
command should be sent with this value in the First Descriptor field.

Number of Elements 20-21 Number of elements in response buffer.

Reserved 22-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1024 613875-009

7.8.12.2.2 Set Port Parameters (0x0203)

This command is used to define the default parameters of a physical port.

Table 7-25. Get Switch Configuration Response Buffer

Offset (Bytes) Description

0 -5 Port/VSI Element 1 (see Table 7-26).

…

6*(n-1):6*n-1 VSI Element #n.

Table 7-26. Get Switch Configuration – Port/VSI Element

Offset (Bytes) Description

0-1

Bits 9:0: VSI number/Port Number
Bits 13:10: Reserved
Bits 15:14:

00b = Physical Port
01b = Virtual Port
10b = VSI
11b = BMSM Service Port

2-3 SWID VSI/port belongs to

4-5
Bits 14:0: PF/VF number, VSI belongs to.
Bit 15: VF indication bit

Table 7-27. Set Port Parameters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0203 Command opcode.

Datalen 4-5 0x0 Length of buffer

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command Flags 16-17 Bitfield Bit 0: Save Bad Packets
If set, packets with errors are forwarded to the bad frames VSI.

Bit 2: Enable Double VLAN
If set, this port expects double VLAN packets.
Note: Calling this AQ with the Enable Double VLAN bit unset, puts the port into

Single VLAN Mode. The TSR value for Single VLAN Mode is 0x80.
All other bits are Reserved.

Bad Frames VSI 18-19 Defines the VSI to which bad frames are forwarded.
Bit 15: Valid VSI - ignored in this field
Bits 14:10: Reserved
Bits 9:0: Number of the VSI
Note: Relevant only if Command Flags.Save Bad Packets is set.

Port Switch ID 20-21 Bit 15: Valid Switch ID
Bits 14:8: Reserved
Bits 7:0: Switch ID
Note: If a switch ID is already allocated to the port, it is replaced by the new

one.

613875-009 1025

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Loopback Mode 22 Bits 7:3: Reserved
Bit 2: Valid Loopback Mode.

If this bit set, then “loopback mode” configuration is valid
Bits 1:0: Loopback Mode

00b = Normal Loopback — This port can have up to line rate (10/25) loopback
bandwidth. This is the default value. If former state was different,
firmware reconfigures pacer according to all port loopback mode.

01b = No Loopback — This port is not allowed to do loopback traffic. Firmware
resets VSI_SRCSWCTRL.ALLOWLOOPBACK for all VSIs related to this port.

10b = High Loopback — This port uses maximal possible loopback bandwidth.
Firmware calculates the maximal possible bandwidth, according to all port
loopback mode and configures GLTPB_PACING_25G and
GLTPB_PORT_PACING_SPEED.

11b = Reserved
This field is relevant only in 10G configuration or 4x25 configuration. If hybrid
mode (25G and 10G) is used, configuration change cannot be done and this
command should be ignored.
On PFR, loopback mode of the corresponding port resets to default value. Firmware
also restores GLTPB_PACING_25G and GLTPB_PORT_PACING_SPEED and
calculates again for all remaining ports, new maximal possible bandwidth, and
reconfigures GLTPB_PACING_25G and GLTPB_PORT_PACING_SPEED for all
remaining ports.

 23-31 0x0 Reserved.

Table 7-28. Set Port Parameters Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0203 Command opcode.

Datalen 4-5 0x0 Length of buffer

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following response might be returned by this command:

ENOENT = Index is invalid for one of the chosen resources.
EACCES = PF does not own one of the chosen resources.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command Flags 16-17 Bitfield

Bad Frames VSI 18-19

Default Switch ID 20-21 Returns the Switch ID assigned to the port.

Reserved 22-31 0x0 Reserved.

Table 7-27. Set Port Parameters Command [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1026 613875-009

7.8.12.2.3 Get Resource Allocation (0x0204)

This command returns the number of resources allocated to a function from each type of resource. For
all the subsequent resource management commands, the encoding of the resource type is described in
Table 7-18.

Table 7-29. Get Resource Allocation Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0204 Command opcode.

Datalen 4-5 Length of response buffer. Should be enough to store response.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-30. Get Resource Allocation Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0204 Command opcode.

Datalen 4-5 Length of response buffer. Should be number of resource returned x resource
entry size.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Entries 16-17 Number of entries in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-31. Get Resource Allocation Response Buffer Entry

Offset (Bytes) Description

0-1 Bits 6:0: Resource type - see above for encoding.
Bits 15:7: Reserved

2-3 Total Capacity — Total number of resources from this type available to all functions (fixed according to hardware
capabilities).

4-5 Allocated Function — Number of resources from this type allocated to this function (for most resources but hash
based, this means actual entries are owned by the function).

6-7 Allocated Persistent — Number of resources from this type allocated as persistent.

8-9 Total Free — Total number of resources from this type still unallocated and not reserved by any function.

10-11 Allocated Shared — Total number of resources from this type allocated as shared by any PF.

613875-009 1027

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.2.4 Allocate Resource (0x0208)

In response, firmware fills buffer (See Table 7-34) with corresponding resource descriptors.

Table 7-32. Allocate Resource Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0208 Command opcode.

Datalen 4-5 (6-4096) Length of command/response buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Entries 16-17 Number of resource entries in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-33. Allocate Resource Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0208 Command opcode.

Datalen 4-5 (6-4096) Length of command/response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
Codes returned by firmware:

OK = Success
EINVAL = One of the requested parameters is invalid.
ENOSPC = Allocation failed, all resources until the problematic resource

(including) contain the number of resources currently available for
allocation.

EBUSY = Attempted to join a shared resource which is already owned by the
PF.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Entries 16-17 Number of resource entries in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1028 613875-009

Note: Setting Bit 14 or Bit 15 with a resource type that is a non-shared type fails with status
EINVAL.

Figure 7-18 describes the relationship between the different resources reported.

Table 7-34. Resource Description Table Entry

Offset (Bytes) Description

0-1 Bits 6:0: Resource type (see Table 7-18 for encoding)
Bit 7: Persistent

0b = Allocate Dedicated
1b = Allocate Persistent
Note: This bit is relevant only when Bit 14 is cleared.

Bits 11:8: VSI prune list hint
A bitmap that provides a hint to the firmware from which of the four banks to allocate the VSI prune lists. VSI
prune list hint is a suggestion for allocation in one of the list banks, starting from the lowest bank. If the
suggestion is failed due to lack of resources than there will be a try to allocate in different bank.

Bit 12:
If this bit is set, firmware scans from the bottom (last) entry (relevant only if Bit 13 is enabled, otherwise
index is given in Bytes 2-3).

Bit 13:
If this bit is set, the index values (Bytes 2-3) are be ignored in command and firmware returns in response
new allocated indexes.
Note: Bits 12,13 are relevant only for Profile builder Resource Allocation and reserved otherwise.

Bit 14: Shared.
0b = Allocate according to Bit 7.
1b = Allocate Shared.

Bit 15: Resource descriptors valid.
If this bit set, descriptors below belong to shared resources and firmware is asked to allocate them for initiator
PF also.

2-3 Number of resource descriptors to allocate. Must not be zero or larger than max available number of this
resource.
Note: For Profile Builder Resource Allocation, if Bit 13 in Bytes 0-1 is enabled, these bytes contain an

indication of which index to begin the search if it is non-zero (it is assumed that index zero is the top of
the list). For example, if the PF driver owned Profile ID TCAM entry X, it might want to start scanning
for new elements at X, to ensure that the new entry was higher, that is, closer to the first entry in the
table.

4-... Placeholder for resource descriptors.
Two bytes/descriptor, except FLU entries (0x9) and FD filters (0x22 and 0x23): Number of resource
descriptors to allocate x 2. In case of ENOSPC, first descriptor contains number of resources currently
available for allocation, and no resources within this request are allocated.
Two bytes for FLU and FD filters: Ignored on success, number of resources currently available for allocation on
ENOSPC.

The resource descriptors returned are the indexes in the resource’s table.
Note: When adding Profile Builder resources, firmware checks that the resource is defined as shared (inside

downloaded package) and adds PF’s usage of the shared resource.

613875-009 1029

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Figure 7-18. Resources Reported

Total Capacity (2-3)

Guaranteed Function (4-5)

Guaranteed Function (4-5)

Guaranteed Function (4-5)

Guaranteed Shared (6-7)

Total Free (8-9)

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1030 613875-009

7.8.12.2.5 Free Resource (0x0209)

Note: While there is more than a single owner to a shared resource, when software requests to free
this resource, the firmware only decreases the reference count/clears PF ownership. Only
when the last owner of a shared resource is freed, the does the firmware free the resource
(as if it was a dedicated resource).

Table 7-35. Free Resource Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0209 Command opcode.

Datalen 4-5 (6-4096) Length of command buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Entries 16-17 Number of resource entries in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-36. Free Resource Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0209 Command opcode.

Datalen 4-5 (6-4096) Length of command buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
Codes, returned by firmware:

OK = Success
EINVAL = Some resources could not be freed, details inside buffer.
EBUSY = Trying to release a resource which is in use.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Entries 16-17 Number of resource entries in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

613875-009 1031

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.2.6 Get Allocated Resource Descriptors (0x020A)

This command is used to get the list of the actual resources allocated to the PF of a given resource type.
This command is N/A for FD filters (0x22 and 0x23) resource types. If used for these resources, an
empty buffer is returned. For FLU entries (0x9), only root lookup entries actually used are returned. For
shared resources (Ownership Type 10b), firmware returns all shared resource descriptors allocated by
any PF.

Table 7-37. Free Resource Command Buffer Entry

Offset (Bytes) Description

0-1 Bits 6:0: Resource Type (see Table 7-18 for encoding)
Bits 15:7: Reserved

2-3 Number of resource descriptors to free. Must not be zero or larger than number of this resource allocated to
this function.

4-... Resource descriptors.
Two bytes/descriptor, except FLU. In case of EINVAL, every descriptor firmware failed to released is
overwritten as follows: Bit 15 is set, the rest of the bits - extended firmware diagnostic codes (like access
denied, resource still referenced, and so on).
Two bytes for FLU. Ignored on success, number of resources, currently possible to free on EINVAL.

The resource descriptors are the indexes in the resource’s table.
Note: When releasing Profile Builder resources, firmware checks that the resource is defined as shared

(inside downloaded package) and removes PF’s usage of the shared resource. When releasing Profile
ID TCAM resources, firmware clears the resource data inside hardware tables in case no PF uses the
resource.

Table 7-38. Get Allocated Resource Descriptors Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x020A Command opcode.

Datalen 4-5 (2-2048) Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Resource 16-17 Bits 6:0: Resource Type
See Table 7-18 for encoding.

Bits 8:7: Ownership Type
00b = Get Dedicated.
01b = Get Persistent.
10b = Get Shared.

Bits 15:9: Reserved

First Descriptor 18-19 If not zero, start the report from the requested descriptor.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1032 613875-009

Note: If Resource Type is a non-shared type and Ownership Type is Shared, the firmware fails the
command with status EINVAL.

Table 7-39. Get Allocated Resource Descriptors Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x020A Command opcode.

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
EINVAL = One of the requested parameters is invalid.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Resource 16-17 Bits 6:0: Resource Type
See Table 7-18 for encoding.

Bits 8:7: Ownership Type
00b = Get Dedicated.
01b = Get Persistent.
10b = Get Shared.

Bits 15:9: Reserved

Next Descriptor 18-19 If not zero, indicates that not all the configuration was returned and a new
command should be sent with this value in the First Descriptor field.

Number of Descriptors 20-21 Number of descriptors in buffer.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-40. Get Allocated Resources Response Buffer

Offset (Bytes) Description

0-... Resource descriptors.
Two bytes/descriptor.

The resource descriptors returned are the indexes in the resource’s table.

613875-009 1033

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.2.7 Change Resource Ownership Type (0x020B)

This command is used to change resource Ownership Type. Applicable to resources of types “Shared”
and “Dedicated” only.

Changing the type from Dedicated to Shared must be done together with the reservation of extra
resource from the shared resource pool. If the shared resource pool is empty, the command is rejected
with the error code ENOSPC.

Transition from type Dedicated to Shared and vice-versa is possible only if the PF is currently the single
owner of the resource.

Note: If Resource Type is a non-shared type and Ownership Type is Shared, the firmware fails the
command with status EINVAL.

Note: Attempting to change an already dedicated resource to “Dedicated”, or changing an already
shared resource to “Shared” fails with error code EINVAL.

Table 7-41. Change Resource Ownership Type Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x020B Command opcode.

Datalen 4-5 (2-2048) Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.
EINVAL = One of the requested parameters is invalid.
ENOSPC = Shared resource pool is empty/

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Entries 16-17 Number of resource entries in the buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-42. Change Resource Ownership Type Command Buffer Entry

Offset (Bytes) Description

0-1 Bits 6:0: Resource Type (see Table 7-18 for encoding)
Bits 8:7: Ownership Type

00b = Dedicated
10b = Shared

Bits 15:9: Reserved

2-3 Number of resource descriptors to allocate. Must not be zero or larger than max available number of this
resource.

4-... Resource descriptors.
Two bytes/descriptor.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1034 613875-009

7.8.12.2.8 Set VLAN Mode Parameters (0x020C)

This command is used to configure the device-wide settings that must be changed to be compatible
with the VLAN mode.

Table 7-44 describes the structure of the command buffer for the Set VLAN Mode Parameters
command.

Table 7-43. Set VLAN Mode Parameters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x020C Command opcode.

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Resource 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-44. Set VLAN Mode Parameters Command Buffer Entry

Name Bytes.Bits Value Remarks

Reserved 0 Reserved.

L2TAG Priority only Tagging 1.0-1.2 000b = Priority-only tagging NOT
supported on any of the four
Layer 2 tags.

001b = Priority-only tagging supported on
STAG (0x88A8).

010b = Priority-only tagging supported on
outer CTAG (0x8100).

011b = Priority-only tagging supported on
outer VLAN (0x9100).

100b = Priority-only tagging supported on
inner CTAG (0x8100).

All other values are reserved.

Defines the Layer 2 tag for which
priority-only tagging is configured. Only
values between 000b and 100b are
accepted. If the input value is not within
the specified range, firmware returns
EINVAL (14) and does not configure the
device.
The original NVM default configuration
sets priority-only tagging on the inner
0x8100 VLAN. This is value 100b.

Reserved 1.3-1.7 Reserved.

Reserved 2-65 Reserved.

RDMA Packet Flag 1 66.0-66.5 Defines the packet flag RDMA uses to
identify if a VLAN is present in the packet.

Reserved 66.6-66.7 Reserved.

Reserved 67-68 Reserved.

MNG VLAN Protocol ID 69 Defines the VLAN Protocol ID to be
included in the extraction sequence of the
manageability field vector. The specified
VLAN Protocol ID is as follows:

0x10 - For the outer VLAN.
0x11 - For the inner VLAN.
All other input values shall be rejected.

Reserved 70-99 Reserved.

613875-009 1035

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.2.9 Get VLAN Mode Parameters (0x020D)

This command is used to get the values of the specified device-wide settings.

Table 7-45. Set VLAN Mode Parameters Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x020C Command opcode.

Datalen 4-5 0x0 No return buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Resource 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-46. Get VLAN Mode Parameters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x020D Command opcode.

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Resource 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-47. Get VLAN Mode Parameters Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x020D Command opcode.

Datalen 4-5 0x0 No return buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Resource 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1036 613875-009

Table 7-48. Get VLAN Mode Parameters Response Buffer

Name Bytes.Bits Value Remarks

VLAN Mode 0.0 This field indicates if any of the physical ports on the device are
configured in double VLAN mode.

0b = Indicates that none of the physical ports on the device are
configured in double VLAN mode.

1b = Indicates that at least one physical port on the device is
configured in double VLAN mode.

Reserved 0.1-0.7 Reserved.

L2TAG Priority only Tagging 1.0-1.2 This field specifies which Layer 2 tag priority-only tagging is configured
for, based on the following values:
000b = Priority-only tagging NOT supported on any of the four layer 2
tags.

001b = Priority-only tagging configured on STAG (0x88A8).
010b = Priority-only tagging configured on outer CTAG (0x8100).
011b = Priority-only tagging configured on outer VLAN (0x9100).
100b = Priority-only tagging configured on inner CTAG (0x8100).

Note: If priority=only tagging is configured for more than one Layer 2
tag, an error value of 111b is returned.

Reserved 1.3-1.7 Reserved.

Reserved 2-99 Reserved.

613875-009 1037

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.3 VSI Commands (0x021x)

7.8.12.3.1 Add VSI (0x0210)

This command is used to add a new VSI.

When an Add VSI command is received, the internal firmware checks if all the requested resources are
available and allocate them to the VSI.

Table 7-49 describes the structure of the command buffer for the Add VSI command.

Table 7-49. Add VSI Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0210 Command opcode.

Datalen 4-5 0x80 Length of buffer.

Return Value/VFID 6-7 0x0 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI 16-17 0x0 Bit 17.7: VSI is valid
Bits 17.6-17.2: Reserved
Bits 17.1-16.7: VSI Number
If VSI is valid, the VSI should be from resources allocated to this PF.
Otherwise, a free VSI is allocated from the shared pool.

Reserved
(Connection Type)

18 0x0 Reserved.

Reserved 19 0x0 Reserved.

VF Function Number 20 Defines the VF function to which this VSI connects.
Valid only if Function Type is VF.
Should be ignored if VSI type is not VF.
Note: The VF number here is the absolute VF number (0-255) and not the

number relative to the PF first VF.

Reserved 21 Reserved.

Command Flags 22-23 Bits 1:0: VSI type:
00b = VF
01b = VMDq2 (a.k.a. VM)
10b = PF
11b = EMP/MNG

Bits 15:2: Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1038 613875-009

Table 7-50. Add VSI Command Buffer

Category Byte.Bit Field Description

Valid Sections 0-1 Defines which sections are valid in the command.
Bit 0: Switching section is valid.
Bit 1: Security section is valid
Bit 2: VLAN handling section is valid.
Bit 3: Outer tag section is valid.
Bit 4: Ingress UP translation section is valid.
Bit 5: Egress UP translation section is valid.
Bit 6: Rx-Queue Mapping section is valid. If set, modified queues must be

disabled.
Bit 7: Queuing option section is valid.
Bit 8: Outer UP mapping section is valid.
Bit 9: Reserved.
Bit 10: ACL section valid.
Bit 11: Flow Director section valid.
Bit 12: PASID section valid.
Bits 13:15: Reserved.

Note: Relevant only for Update VSI command. In Add VSI command, all
the sections are assumed to be valid.

Switching 2 Switch ID Defines the switch ID to which this VSI belongs.

3.0-3.3 Reserved (Switch
ID MSB)

Reserved.

3.4 Reserved (Is not
STag

Reserved.

3.5 Allow Loopback If set, traffic from this VSI can be loopback, unless port is not allowed for
loopback on set port parameters setting.

3.6 Allow Local
Loopback

If cleared, inverse actions are applied to Rx traffic to this VSI (used in default
image for MAC source pruning).

3.7 Apply Source VSI
Pruning

If set, traffic sent from a VSI can be forwarded to the same VSI.
Note: It is recommended to always set this bit, unless there is an explicit

need to receive back traffic sent by the VSI.

4.0-4.3 Egress (Rx)
Pruning Enables

Defines which pruning modes are enabled for egress traffic
Setting Bit 0 enables VLAN pruning.

4.4 LAN Enable If set, traffic from this VSI can be sent to LAN.

4.5-4.7 Reserved Reserved.

5.0-5.4 VEB Statistic Block
ID

Defines which VEB statistic block this VSI is associated to.

5.5 VEB Statistic Block
ID Valid

If set, the VEB Statistic Block ID field is valid.
0b = When this bit is cleared, this association is removed.
1b = When this bit is set (in Add VSI or Update VSI command), the switch

ID associated with this VSI is assigned a VEB statistic block defined
by VEB Statistic Block ID field.

Must be set for any Add/Update VSI of VSIs associated with a VEB statistic
block.

5.6-5.7 Reserved Reserved for future switching parameters. Must be zero.

613875-009 1039

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Security 6.0 Allow Destination
Override

Allow the VSI to override the switching decision and fix the destination of a
transmit packet. This bit should be set only for trusted VSIs.
Note: If this bit is set, the Enable MAC Anti-Spoof bit and the VLAN

anti-spoofing (Ingress Pruning Enables[0]) should not be set.

6.1 Reserved (Enable
VLAN Anti-Spoof)

Reserved.

6.2 Enable MAC
Anti-Spoof

If set, inverse actions are applied to Tx traffic to this VSI (used in default
image for MAC anti-spoof).

6.3 Reserved Reserved.

6.4-6.7 Ingress (Tx)
Pruning Enables

Defines which pruning modes are enabled for ingress traffic
Setting Bit 0 enables VLAN anti-spoofing.

7 Reserved Reserved for future security parameters. Must be zero.

Inner VLAN
Handling

8-9 Port Based Inner
VLAN Insertion
(16 bits)

This field specifies the VLAN ID and UP for the inner VLAN that will be
inserted into all transmitted packets. The Insert PVID field must be set as
well.
Note: This field is 16 bits and can include the default PCP priority bits,

when applicable.

10-11 Reserved Reserved.

12.0-12.1 Inner VLAN TX
Mode

This field defines the type of inner VLAN tag present in the packet on TX.
This field controls the inner VLAN regardless of whether the VLAN is inserted
via the descriptor or is present in the packet buffer. If the Insert PVID field is
set, this field should be set to 01b.

00b = Reserved.
01b = Admit untagged/Priority tagged only - allow only packets without

VLAN or with VLAN tag = 0.
10b = Admit.1Q tagged only - Allow only packets with VLAN.
11b = Allow all packets.

12.2 Insert PVID Port-based VLAN insertion.
This bit controls the port based insertion of VLANs. Should be set for VFs/
VMDq2 VSIs according to the VMM request. If this field is set, the PVID +
Default UP field should be set to the port-based VLAN.

12.3-12.4 Inner VLAN and
UP Expose Mode
(Rx)

This field defines how received VLAN are handled.
For non-VF VSIs, 00b or 11b should be used.
For VF VSIs, the mode should be set according to the VLAN awareness of the
VM and the offload requested.

00b = Show VLAN, DEI and UP in descriptor (legacy behavior).
01b = Hide VLAN, show UP and DEI (VLAN ID = 0).
10b = Hide VLAN, DEI and UP.
11b = Do nothing (leave VLAN in packet).

12.5 Block Inner VLAN
from Tx Descriptor

This field specifies if the hardware will allow an inner VLAN to be inserted
into the packet on transmit through the L2TAG1 field of the Tx descriptor.
Note: This field must be set if the Insert PVID field is set. The inner port

VLAN overwrites an inner VLAN offloaded via the L2TAG1 field.

12.6-12.7 Reserved Reserved for future port VLAN parameters. Must be zero.

Table 7-50. Add VSI Command Buffer [continued]

Category Byte.Bit Field Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1040 613875-009

Ingress UP
Translation

16-19 Ingress UP
Translation Table

Defines the UP translation table for received packets according to the
following list:

Bits 16.0-16.2: UP set if received UP is 0.
Bits 16.3-16.5: UP set if received UP is 1.
Bits 16.6-17.0: UP set if received UP is 2.
Bits 17.1-17.3: UP set if received UP is 3.
Bits 17.4-17.6: UP set if received UP is 4.
Bits 17.7-18.1: UP set if received UP is 5.
Bits 18.2-18:4: UP set if received UP is 6.
Bits 18.5-18.7: UP set if received UP is 7.
Byte 19: Reserved.

This map is used to translate the 802.1P user priority bits received in the
packet to the user priority exposed to the host. Relevant only if the UP is
exposed to the host (VLAN and UP Expose Mode not equal 10b).

Egress UP
Translation

20-23 Egress UP
Translation Table

Defines the UP translation table for transmit packets according to the
following list:

Bits 20.0-20.2: UP set if sent UP is 0.
Bits 20.3-20.5: UP set if sent UP is 1.
Bits 20.6-21.0: UP set if sent UP is 2.
Bits 21.1-21.3: UP set if sent UP is 3.
Bits 21.4-21.6: UP set if sent UP is 4.
Bits 21.7-22.1: UP set if sent UP is 5.
Bits 22.2-22.4: UP set if sent UP is 6.
Bits 22.5-22.7: UP set if sent UP is 7.
Byte 23: Reserved.

This map is used to translate the 802.1P user priority bits sent by the host to
the user priority sent to the network.
Note: The resulting user priority is further translated using the per TC

translation table.

Outer VLAN
Handling

24-25 Port Based Outer
VLAN Insertion

This field specifies the VLAN ID and UP for the outer VLAN that will be
inserted into all transmitted packets. The Port Based Outer VLAN Insert
Enable field must be set as well.
Note: This field is 16 bits and can include the default PCP priority bits,

when applicable.

26.0-26.1 Outer VLAN and
UP expose mode
(Rx)

This field defines how received outer tags (S-tag/Outer VLAN) are handled.
Note: If the Port Based Outer VLAN Insert Enable field is set, this field

must be set to 10b.
00b = Extract tag - Show VLAN, DEI and UP in descriptor (legacy behavior)
01b = Extract tag - Hide VLAN, show UP and DEI (VLAN ID = 0)
10b = Extract tag - Hide VLAN, DEI and UP
11b = Do nothing (do not extract tag, leave VLAN in the packet)

26.2-26.3 Outer Tag Type Defines the type of outer tag expected.
00b = No outer tag.
01b = 0x88A8 STag.
10b = 0x8100 VLAN.
11b = 0x9100 VLAN.

26.4 Port Based Outer
VLAN Insert
Enable

This bit controls the port based insertion of outer tag (S-tag/Outer VLAN).
Note: If this bit is set, the Block Outer VLAN from Tx Descriptor field must

be set.

Table 7-50. Add VSI Command Buffer [continued]

Category Byte.Bit Field Description

613875-009 1041

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Outer VLAN
Handling
(continued)

26.5-26.6 Outer VLAN Tx
Mode

Only for the other type specified in the Outer Tag Type field, this field defines
the type of outer VLAN tag present in the packet. This field controls the outer
VLAN regardless of whether the VLAN is inserted via the descriptor or is
present in the packet buffer. For example, if this field is set to 10b and the
specified EtherType is 0x88A8, only tagged 0x88A8 VLANs are accepted. A
packet with a 0x88A8 VLAN, VID=0 is dropped. This field does not impact
the other ether types not specified by the Outer Tag Type field.

00b = Reserved.
01b = Admit untagged/Priority tagged only - allow only packets without

VLAN or with VLAN tag = 0.
10b = Admit 1Q tagged only - Allow only packets with VLAN.
11b = Allow all packets.

26.7 Block Outer VLAN
from Tx Descriptor

This field specifies if the hardware will allow an outer VLAN to be inserted
into the packet on transmit through the L2TAG2 field of the Tx descriptor.

27 Reserved Reserved for future port outer tag parameters. Must be zero.

Rx-Queue
Mapping

28.0 Mapping Method Selects between contiguous range of queues for this VSI vs. scattered
range:

0b = The VSI is assigned a contiguous range of PF Rx-Queues.
1b = The VSI is assigned a scattered range of PF Rx-Queues.

28.1-29.7 Reserved Reserved. Must be zero.

30-61 Rx-Queue
Mapping

If Mapping Method = 0 (contiguous):
Bits 30.0-31.2: The first queue allocated for this VSI in the PF space.
Bits 31.7-31.3: Reserved
Bytes 33-32: Number of queues allocated to this VSI. Used to define the

number of queues associated with this VSI
Bytes 61-34: Reserved

If Mapping Method = 1 (scattered):
For each of the queues in the VSI, defines the actual queue in the PF
according to the following encoding:

For queue ‘n’ of the VSI offsets 30+2n - 31+2n are used the define the
mapping to PF queues.
For example for queue 0:

 • Bits 30.0-31.2: The PF queue matching allocated to queue ‘n’ of
the VSI. For non allocated queue, a value of 0x7FF should be set.

 • Bits 31.3-31.7: Reserved.
The same mapping is used for the next queues. In this method, up to 16
queues can be assigned.

Note: For VSIs assigned to VFs for which
VPLAN_RX_QBASE.VFQTABLE_ENA is set, only the scattered
method can be used.

Note: The first queue (in both modes) is the default queue of the VSI to
which packets not queued by any filter are sent.

Table 7-50. Add VSI Command Buffer [continued]

Category Byte.Bit Field Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1042 613875-009

Rx-Queue
Mapping
(continued)

62-77 Number and
Offset of
Rx-Queue per TCs

Fixes the number of queue pairs assigned to the VSI for each traffic class
and the offset of these queues.

Bits 62.0-63.2: Queue offset for TC0.
Bits 63.3-63.6: Number of queues allocated to TC0. The actual number is

2^n. The allowed number of queues is: 1, 2, 4, 8, 16,
32, 64, 128.

Bit 63.7: Reserved.
Note: If no queues needs to be associated to a TC, the queue offset should

be set to 0 and the number of queues to 0 (1 queue). This way,
traffic associated with this TC is sent to the default queue.

The following addresses are used with the same format for the next TCs:
Bytes 64-65: TC1
Bytes 66-67: TC2
Bytes 68-69: TC3
Bytes 70-71: TC4
Bytes 72-73: TC5
Bytes 74-75: TC6
Bytes 76-77: TC7

Queuing
Options

78.1-78.0 RSS LUT Selection RSS LUT used.
00b = VSI LUT
01b = Reserved
10b = PF LUT
11b = Global LUT (one of 16 Global LUTs)

78.5-78.2 RSS Global LUT If RSS LUT Selection = 11b (Global LUT), selects the LUT assigned to this VF.

78.7-78.6 Hash Scheme Hash scheme.
00b = Toeplitz Hash
01b = Symmetric Toeplitz
10b = Simple XOR
11b = Reserved

79.4-79.0 TC Override
Option

TC override option.

79.6-79.5 Reserved Reserved.

79.7 Profile Override TC Profile override TC.

80.0 Enable PE Filtering Enable PE filtering.

80.1-83.7 Reserved Reserved for future queuing parameters. Must be zero.

Outer UP
Mapping

84-87 Egress Inner UP to
Outer Translation
Table

Defines the UP translation table for transmit packets from inner to outer UP
according to the following list:

Bits 84.0-84.2: Outer UP set if inner UP is 0.
Bits 84.3-84.5: Outer UP set if inner UP is 1.
Bits 84.6-85.0: Outer UP set if inner UP is 2.
Bits 85.1-85.3: Outer UP set if inner UP is 3.
Bits 85.4-85.6: Outer UP set if inner UP is 4.
Bits 85.7-86.1: Outer UP set if inner UP is 5.
Bits 86.2-86.4: Outer UP set if inner UP is 6.
Bits 86.5-86.7: Outer UP set if inner UP is 7.
Byte 87: Reserved.

This map is used to translate the 802.1P user priority bits on the inner UP to
outer UP.
To get a fixed outer UP, all the values should be set to the requested outer
UP.

Table 7-50. Add VSI Command Buffer [continued]

Category Byte.Bit Field Description

613875-009 1043

Intel® Ethernet Controller E810 Datasheet
Packet Processing

ACL 88.0-88.3 Rx Profile Miss
Default Action

Selects one of four predefined actions to be applied in case a receive packet
does not match any ACL profile.

88.4-88.7 Rx Table Miss
Default Action

Selects one of four predefined actions to be applied in case a receive packet
does not match any ACL table entry.

89.0-89.3 Tx Profile Miss
Default Action

Selects one of four predefined actions to be applied in case a transmit packet
does not match any ACL profile.

89.4-89.7 Tx Table Miss
Default Action

Selects one of four predefined actions to be applied in case a transmit packet
does not match any ACL table entry.

Flow Director 90.0 Flow Director
Enable

Enable Flow Director filtering.

90.1 Tx Auto-Evict
Enable

Enables eviction of ATR filters if a FIN/RST packet is sent.

90.2 Reserved Reserved.

90.3 Flow Director
Programming
Enable

Enable Flow Director programming.

90.4-91.7 Reserved Reserved.

92-93 Max Dedicated Max Number of allocated Flow Director filters to a VSI.

94-95 Max Shared Max number of shared Flow Director filters any VSI can program.
Note: If both dedicated and shared values are zero, the VSI cannot

program filters.

96.0-97.2 Default Queue This field defines the receive queue index within the VSI of the default FD.
Permitted values are in the range of the queues of the VSI.

97.3 Reserved Reserved.

97.6-97.4 Default Queue
Group

The ToQueue parameter associate a target queue or a queue group to the FD
filter:

0 = The default filter assign a target queue defined by the QINDX
1...7 = The default filter assign a region of queues. The region base equals

to QINDX and the region size equals to 2^(ToQueue).

97.7 Reserved Reserved.

98.0-99.2 Reporting Queue This field defines the receive queue index of the programming VSI on which
the FD filter completion status is reported when the COMP_Queue flag in the
programming descriptor is set.

99.3 Reserved Reserved.

99.6-99.4 Default Priority The priority of the default QINDX action.

99.7 Default Drop When set, a packet that miss the FD filters is dropped.

PASID Section 102.3-100.0 PASID ID PASID for this VSI.

103.6-102.4 Reserved Reserved.

103.7 PASID ID Valid PASID ID is valid.

Reserved 104-127 Reserved Reserved.

Table 7-50. Add VSI Command Buffer [continued]

Category Byte.Bit Field Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1044 613875-009

Table 7-51 describes the Add VSI response.

Table 7-51. Add VSI Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0210 Command opcode.

Datalen 4-5 0x80 Length of buffer.

Return Value/VFID 6-7 Return value.
The following error values can be returned:

ENOSPC = If there are not enough resources to assign a VSI (in case of
VSI number invalid) or part of the requested resources.

EINVAL = The VSI is already enabled
ENOENT = Index is invalid for one of the VSI resource parameters.
EACCES = PF does not own one of the VSI resource parameters.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI 16-17 Returns the assigned VSI number. If VSI is provided in command, the same
value is returned.
Bit 17.7: VSI is valid (always valid)
Bits 17.6-17.2: Reserved
Bits 17.1-16.7: VSI Number

Extended Status 18-19 If this value is not zero and there is no error code, the command succeeded
but with warnings.

VSIs Allocated from
Guaranteed

20-21 Number of VSIs that were either allocated using the Allocate Resource
command, or allocated and enabled using the Add VSI command, both
from the VSIs pre-allocated in NVM.

Total VSIs Un-Allocated 22-23 Total number of VSIs still unallocated and not reserved by any function.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

613875-009 1045

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.3.2 Update VSI (0x0211)

This command is used to update the parameters of an existing VSI. A function can update only a VSI it
controls. Only sections defined as valid in Bytes 0-1 of the buffer are updated.

The command buffer and the completion buffer used to update a VSI is the same as the command
buffer of the Add VSI command (Table 7-50). Specific limitations are listed in the table.

All the filters set before the VSI type updates are kept, and the software device driver should guarantee
they are compliant with the new VSI parameters.

Table 7-52. Update VSI Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0211 Command opcode.

Datalen 4-5 0x80 Length of buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI Number 16-17 Bit 17.7: VSI is valid (should always be set)
Bits 17.6-17.2: Reserved
Bits 17.1-16.7: VSI Number

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-53. Update VSI Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0210 Command opcode.

Datalen 4-5 0x80 Length of buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = If the VSI is not owned by this PF or PF does not own one of
the VSI resource parameters.

EINVAL = The VSI was not enabled.
ENOSPC = There are not enough resources to allocate new resources

requested.
ENOENT = Index is invalid for one of the VSI resource parameters.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI Number 16-17 0x0 Copied from command.

Reserved 18-19 Reserved.

VSIs Allocated from
Guaranteed

20-21 Number of VSIs that were either allocated using the Allocate Resource
command, or allocated and enabled using the Add VSI command, both
from the VSIs pre-allocated in NVM.

Total VSIs Un-Allocated 22-23 Total number of VSIs still unallocated and not reserved by any function.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1046 613875-009

7.8.12.3.3 Get VSI Parameters (0x0212)

This command is used to get the parameters of an existing VSI. A function can query only a VSI it
controls.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-54. Get VSI Parameters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0212 Command opcode.

Datalen 4-5 0x80 Length of buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI Number 16-17 Bit 17.7: VSI is valid (should always be set)
Bits 17.6-17.2: Reserved
Bits 17.1-16.7: VSI Number

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-55. Get VSI Parameters Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0212 Command opcode.

Datalen 4-5 0x80 Length of buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

ENOENT = If the SEID do not point to a valid VSI.
EACCES = If the VSI is not owned by this PF.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI Number 16-17 VSI Number (copied from command).

VF Function Number 18 Defines the VF function to which this VSI connects.
Valid only if Function Type is VF.
Should be ignored if VSI type is not VF.
Note: The VF number here is the absolute VF number (0-255) and not

the number relative to the PF first VF.

Table 7-53. Update VSI Response [continued]

Name Byte.Bit Value Remarks

613875-009 1047

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-56 describes the response buffer received when querying a VSI.

Status Flags 19 Bits 1:0: VSI type
00b = VF
01b = VMDq2 (a.k.a. VM)
10b = PF
11b = EMP/MNG

Bit 7:2: Reserved.

VSIs Allocated from
Guaranteed

20-21 Number of VSIs that were either allocated using the Allocate Resource
command, or allocated and enabled using the Add VSI command, both
from the VSIs pre-allocated in NVM.

Total VSIs Un-Allocated 22-23 Total number of VSIs still unallocated and not reserved by any function.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-56. Get VSI Parameters Response Buffer

Byte.Bit Description

0-95 Same parameters as described in Table 7-50.

96-127 Reserved.

Table 7-55. Get VSI Parameters Response [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1048 613875-009

7.8.12.3.4 Free VSI (0x0213)

This command is used to remove a VSI. A function can remove only a VSI it owns. The driver should
make sure that every queue in a VSI is disabled before a VSI is removed and that no rules pointing to
this VSI exists.

As part of this command, the firmware should clear all the Flow Director filters assigned to this VSI by
applying the flow of the Clear FD Table AQ command (0x0B06) described in Section 7.10.12.1 and clear
the RSS key of the VSI as if the Set RSS Key (0x0B02) command was received with an all-zero key.

Table 7-57. Free VSI Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0213 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI 16-17 VSI The VSI to remove
Bit 17.7: VSI is valid (should always be set)
Bits 17.6-17.2: Reserved
Bits 17.1-16.7: VSI Number

Command Flags 18-19 Bits 19.7-18.1: Reserved
Bit 18.0: Keep VSI Allocation

If set, the VSI stays part of the PF allocated resources. Otherwise, it is returned
to the shared pool.

Reserved 20-31 Reserved. Must be zero.

Table 7-58. Free VSI Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0213 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = If the element is not owned by this PF.
ENOENT = VSI number is invalid.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-19 Reserved.

VSIs Allocated from
Guaranteed

20-21 Number of VSIs that were either allocated using the Allocate Resource
command, or allocated and enabled using the Add VSI, both from the VSIs
pre-allocated in NVM.

Total VSIs Un-Allocated 22-23 Total number of VSIs still unallocated and not reserved by any function.

Reserved 24-31 Reserved.

613875-009 1049

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.3.5 Set DMA PASID IDX Map (0x0214)

This command is used to globally allocate HIF DMA agents to PASID Indexes. Unique per VSI values of
PASID to be used for HIF transactions, are taken from specific VSI Table (Add Link).

NVM initiates all HIF DMA agents to use default PASID Index 0.

If a specific VSI doesn't have the mapped PASID Index (indicated by this command) configured
(indicated by enabled bit), HIF transaction PASID will not be applied.

Table 7-59. Set DMA PASID IDX Map Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0214 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

DMA Agent 16 DMA Index DMA Agent to specify
DMA Agent ID:

1 = RLAN
2 = TCLAN
3 = PQM_DBL
4 = PQM_DESC
5 = PQM_TS_DESC (new client for CNV)
6 = RDPU type 0
7 = RDPU type 1
8 = TDPU type 0
9 = TDPU type 1
10 = MBX
11 = MNG
12 = LEMPAMT (new client for CNV - LEM+Modifier)
13 = RX PE
14 = TX PE
15 = PEPMAT
16 = FPMAT

PASID IDX 17 PASID Index Bits 17.1-17.0: PASID Index Value
Bits 17.7-17.2: Reserved

Reserved 18-31 0xs0 Reserved. Must be zero.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1050 613875-009

7.8.12.3.6 Get DMA PASID IDX Map (0x0215)

Table 7-60. Set DMA PASID IDX Map Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0214 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.
0 = Success
1 = Failure

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 0xs0 Reserved. Must be zero.

Table 7-61. Get DMA PASID IDX Map Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0215 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

DMA Agent 16 DMA Index DMA Agent to specify
DMA Agent ID:

1 = RLAN
2 = TCLAN
3 = PQM_DBL
4 = PQM_DESC
5 = PQM_TS_DESC (new client for CNV)
6 = RDPU type 0
7 = RDPU type 1
8 = TDPU type 0
9 = TDPU type 1
10 = MBX
11 = MNG
12 = LEMPAMT (new client for CNV - LEM+Modifier)
13 = RX PE
14 = TX PE
15 = PEPMAT
16 = FPMAT

Reserved 17-31 0xs0 Reserved. Must be zero.

613875-009 1051

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-62. Get DMA PASID IDX Map Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0215 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.
0 = Success
1 = Failure

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

DMA Agent 16 DMA Index DMA Agent to specify
DMA Agent ID:

1 = RLAN
2 = TCLAN
3 = PQM_DBL
4 = PQM_DESC
5 = PQM_TS_DESC (new client for CNV)
6 = RDPU type 0
7 = RDPU type 1
8 = TDPU type 0
9 = TDPU type 1
10 = MBX
11 = MNG
12 = LEMPAMT (new client for CNV - LEM+Modifier)
13 = RX PE
14 = TX PE
15 = PEPMAT
16 = FPMAT

PASID IDX 17 PASID Index Bits 17.1-17.0: PASID Index Value
Bits 17.7-17.2: Reserved

Reserved 18-31 0xs0 Reserved. Must be zero.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1052 613875-009

7.8.12.4 Storm Control Commands (0x028x)

7.8.12.4.1 Set Storm Control Configuration (0x0280)

This command is used to configure the Storm Control Mechanism of the port.

This command can be applied only by the function that controls the physical port.

Table 7-63. Set Storm Control Configuration Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0280 Command opcode.

Datalen 4-5 0x0 Length of buffer.

Return Value/VFID 6-7 Return value. Zeroed by device driver.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Broadcast Threshold 16-19 0x0 Bits 18:0: Traffic Upper Threshold Size
Represents the upper threshold for broadcast storm control.

Bits 31:19: Reserved

Multicast Threshold 20-23 0x0 Bits 18:0: Traffic Upper Threshold Size
Represents the upper threshold for multicast storm control.

Bits 31:19: Reserved

Storm Control Control 24-27 0x0 Bit 0: MDIPW
Drop multicast packets (excluding flow control and manageability packets) if
multicast threshold is exceeded in previous window.

Bit 1: MDICW
Drop multicast packets (excluding flow control and manageability packets) if
multicast threshold is exceeded in current window.

Bit 2: BDIPW
Drop broadcast packets (excluding flow control and manageability packets) if
broadcast threshold is exceeded in previous window.

Bit 3: BDICW
Drop broadcast packets (excluding flow control and manageability packets) if
broadcast threshold is exceeded in current window.

Bits 7:4: Reserved
Bits 27:8: INTERVAL - BSC/MSC Time-interval-specification

The interval size for applying Ingress Broadcast or Multicast Storm Control.
Interrupt decisions are made at the end of each interval (and most flags are
also set at interval end).

Bits 31:28: Reserved

Reserved 28-31 Reserved.

613875-009 1053

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.4.2 Get Storm Control Configuration (0x0281)

This command is used to query the configuration of the storm control mechanism. Note that the current
status of the storm control is received via the SCSTS register.

Table 7-64. Set Storm Control Configuration Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0280 Command opcode.

Datalen 4-5 0x0 Length of buffer.

Return Value/VFID 6-7 Return value. There is no specific error code for this command.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Table 7-65. Get Storm Control Configuration Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0281 Command opcode.

Datalen 4-5 0x0 Reserved

Return Value/VFID 6-7 0x0 Must be zero.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Table 7-66. Get Storm Control Configuration Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0281 Command opcode.

Datalen 4-5 0x0 Length of buffer.

Return Value/VFID 6-7 Return value. There is no specific error code for this command.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Broadcast Threshold 16-19 0x0 Bits 18:0: Traffic Upper Threshold Size
Represents the upper threshold for broadcast storm control.

Bits 31:19: Reserved

Multicast Threshold 20-23 0x0 Bits 18:0: Traffic Upper Threshold Size
Represents the upper threshold for multicast storm control.

Bits 31:19: Reserved

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1054 613875-009

Storm Control Control 24-27 0x0 Bit 0: MDIPW
Drop multicast packets

Bit 1: MDICW
Drop multicast packets

Bit 2: BDIPW
Drop broadcast packets

Bit 3: BDICW
Drop broadcast packets

Bit 4: BIDU
BSC Includes Destination Unresolved packets:

Bits 7:5: Reserved
Bits 27:8: Interval - BSC/MSC Time-interval-specification

The interval size for applying Ingress Broadcast or Multicast Storm Control.
Bits 31:28: Reserved

Reserved 28-31 Reserved.

Table 7-66. Get Storm Control Configuration Response [continued]

Name Byte.Bit Value Remarks

613875-009 1055

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.5 Switch Recipes Configuration (0x029x)

7.8.12.5.1 Add Recipe (x0x290)

This command adds a recipe to the 64-entry recipe table. The recipe can include multiple entries to
create a composite rule. After the recipe is added, it should be associated with packet profiles using the
Set Recipes to Profile Association command.

If the recipe exists, it is updated. It is the responsibility of software not to change recipes pointing to
populated rules, unless the change is to add a result to the recipe to be able to use it as a sub-recipe.

The buffer in the command is as follows:

Table 7-67. Add Recipe Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0290 Command opcode.

Datalen 4-5 Buffer Length (Number of recipe +1) * 32

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Sub-Recipes 16-17 Number of sub-recipe entries in buffer.

Reserved 18-23 0x0 Reserved. Must be zero.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-68. Add Recipe Buffer1

1. Repeated n times, based on the number of programmed recipe entries.

Byte Description

0 + n *64 Recipe index.

1 + n *64 -
3 + n *64

For command:
Reserved.

For response:
0: Recipe was updated.
23:1: Reserved.

4 + n *64 -
11+ n *64

Bitmap of the recipe indexes associated with this recipe
A recipe can make use of already programmed entries that might not be part of the recipes described in this
command.

12+ n *64 -
15+ n *64

Reserved.

16 + n *64 -
43 + n *64

Content of recipe as described in Table 7-9.

44 + n *64 -
63 + n *64

Reserved.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1056 613875-009

Table 7-69. Add Recipe Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0290 Command opcode.

Datalen 4-5 Buffer Size

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = If one of the resources is not owned by this PF.
ENOENT = Bad resource index.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Sub-Recipes 16-17 Number of sub-recipe entries in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

613875-009 1057

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.5.2 Set Recipes-to-Profile Association (0x0291)

This command is use to associate recipes with packet profiles.

Table 7-70. Set Recipes-to-Profile Association Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0291 Command opcode.

Datalen 4-5 Buffer Length Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16-17 The profile to associate recipes to.

Reserved 18-23 0x0 Reserved. Must be zero.

Recipe Association 24-31 Bitmap of the recipe indexes associated with this profile. The bitmap should
include both root and non-root recipe associated with the profile.

Table 7-71. Set Recipes-to-Profile Association Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0291 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = If one of the resources is not owned by this PF.
ENOENT = Bad resource index.
ERANGE = A root recipe is added to the association list without its dependent

recipes.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1058 613875-009

7.8.12.5.3 Get Recipe (0x0292)

This command returns a recipe and all the associated entries.

Table 7-72. Get Recipe Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0292 Command opcode.

Datalen 4-5 Buffer Length Should be 4 KB.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Rules 16-17 Reserved in command. Filled in response.

Recipe Root Number 18-19 Index of the root recipe to return (0-63). All the child recipes of this root
recipe are also returned.
A value of 0xFFFF means to start from the very first root and return all the
active recipes with their children.
Note: The recipes returned are either allocated to the PF or persistent.

Reserved 20-23 0x0 Reserved. Must be zero.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-73. Get Recipe Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0292 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

ENOENT = Bad resource index.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Rules 16-17 Reserved in command. Filled in response according to the number of rules
associated with the requested root ID.

Recipe Number 18-19 Index of root recipe requested.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

613875-009 1059

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The buffer in the response is as follows:

Table 7-74. Get Recipe Response Buffer1

1. The list is repeated Number of Rules times.

Byte.Bit Description

0 + n *64 Recipe Index (the recipes are ordered numerically). The Root recipe is the last one in the list

1 + n *64 -
3 + n *64

Reserved.

4 + n *64 -
11+ n *64

Bitmap of the recipe indexes associated with this recipe (all the recipe that participates in the creation of the
requested recipe). These recipes should appear earlier in the buffer.

12+ n *64 -
15+ n *64

Reserved.

16 + n *64 -
43 + n *64

Content of recipe as described in Table 7-9.

44 + n *64 -
63 + n *64

Reserved.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1060 613875-009

7.8.12.5.4 Get Recipes-to-Profile Association (0x0293)

This command is use to read the recipes associated with a packet profile.

Table 7-75. Get Recipes-to-Profile Association Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0293 Command opcode.

Datalen 4-5 Buffer Length Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16-17 The profile to read the association of.

Reserved 18-31 0x0 Reserved. Must be zero.

Table 7-76. Get Recipes-to-Profile Association Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0293 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = if one of the resources is not owned by this PF.
ENOENT = Bad resource index.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16-17 The profile to read the association of.

Reserved 18-23 0x0 Reserved.

Recipe Association 24-31 Bitmap of the recipe indexes associated with this profile.

613875-009 1061

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.6 Switch Rules Population Commands (0x02Ax)

7.8.12.6.1 Add Switch Rules (0x02A0)

This command is used to populate the switch. It can be used to program a combination of lookup rules
+ actions, large actions or VSI lists.

A single buffer can include multiple commands from different types. The commands are applied in
order, so if a rule points to a large action or a VSI list, the list and the large action should be
programmed before the lookup + action.

If a rule already exists and needs to be updated, the Update Switch Rules command should be used.

Table 7-77. Add Switch Rules Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x02A0 Command opcode.

Datalen 4-5 Buffer Length Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Rules 16-17 Number of rules in buffer.

Reserved 18-23 0x0 Reserved. Must be zero.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-78. Add Switch Rules Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x02A0 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = If one of the resources is not owned by this PF.
ENOSPC = If one of the filters cannot be allocated.
EINVAL = Invalid parameters or rule already exists.
ENOENT = Bad resource index.

Note: If an ENOSPC error is returned, check the return buffer for the exact
list of filters not allocated. Other errors indicates that the entire
command was not executed.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1062 613875-009

The content of the return buffer is the same as the input buffer. The Status field and the LUT index are
updated as part of the response. The first filter allocation that fails due to lack of resources stops the
command.

7.8.12.6.1.1 Add Switch Rules Buffer Format

The buffer contains a “Number of Rules” structures with the following format:

struct
{
#define T_LOOKUP_RX 0x0 // Used to add a rule for traffic from network.
#define T_LOOKUP_TX 0x1 // Used to add a rule for traffic from VSI.
#define T_LARGE_ACTION 0x2 // Used to define content of large action.
#define T_VSI_LIST_SET 0x3 // Used to set VSIs in a multicast VSI list.
#define T_VSI_LIST_CLEAR 0x4 // Used to clear VSIs from a multicast VSI list or to
 // clear the entire list.
#define T_PRUNE_LIST_SET 0x5 // Used to set VSIs in a prune VSI list.
#define T_PRUNE_LIST_CLEAR 0x6 // Used to clear VSIs from a prune VSI listor to clear
 // the entire list.
 __le16 Type; // One of #defines above.
 __le16 Status; // Return status. For Add/Update indicates the resource was
 // successufully allocated/updated. For Get, always succeed for
 // entries in range. A status of zero means a success. A non
 // zero status reflects one of the errors listed in Table 7-78
 // for return value.
 union
 {
 struct
 {
 __le16 RID; // Recipe ID.
 __le16 Source; // Source VSI for LOOKUP_TX and source port for
 // LOOKUP_RX. This field is used by the hardware to
 // derive the switch ID (based on source of packet).
 // Reserved for Get command.
 __le32 Action; // Action as defined in Table 7-12.
 __le16 Index; // LUT index. Return value for Add, parameter for
 // Get/Update.
 __le16 HeaderLen; // Header length (in bytes) for add command. Should be
 // zero for remove and update command. Should be 24 for
 // query. Should be aligned to four bytes.
 u8 HeaderData[0]; // Header data, array of HeaderLen for add and update
 // commands. For query, contains the content of the
 // FLU. Should be null for remove command.
 } LOOKUP; // LOOKUP_TX and LOOKUP_RX
 struct
 {
 __le16 Index; // Index in Large action table.
 __le16 Size; // 0/1/2/4 - 0 is used for free commands.
 __le32 Action[0]; // Array of Size of actions as defined in Table 7-14.
 } LARGE_ACTION;
 struct
 {
 __le16 Index; // Index of VSI/Prune list.
 __le16 NumberOfVSIs; // Should be zero to clear the entire list.

613875-009 1063

Intel® Ethernet Controller E810 Datasheet
Packet Processing

 __le16 VSI[0]; // Array of NumberOfVSIs VSI numbers.
 } VSI_LIST; // Used for VSI_LIST_SET, VSI_LIST_CLEAR, PRUNE_LIST_SET and
 // PRUNE_LIST_CLEAR.
 struct
 {
 __le16 Index; // Index of VSI/Prune list.
 __le8 VSI_lIST[96] // Bitmap of VSI list.
 } VSI_LIST_QUERY; //Used for queries of VSI_LIST_SET/CLEAR
 u8 Padding[0]; //Array of padding bytes
 } Data;
} PopulationEntry;

Note: The option to clear an entire VSI list by using an empty VSI_LIST and a PRUNE_LIST_CLEAR
action is available only as part of a Remove Switch Rules command.

The buffer header should be a valid packet header.

7.8.12.6.1.2 Population Example

The following is an example of a population request to implement a rule that upon reception of a
multicast packet with DA = DA1, it forwards it to VSI1 and VSI3 and mirrors it to VSI12. It is assumed
that all the resources are already allocated.

The buffer consists of 3 rules:

• Populate a VSI list with VSI1 and VSI3.

• Create a large action with two actions:

— Forward to VSI list.

— Mirror to VSI.

• Create a lookup rule with the packet header and with an action pointing to the larger action
mentioned in the previous step.

Assume that VSI List VLn and Large Action LAk are the resources the software device driver chooses to
use for this rule and assume RID = 0 is the MAC forwarding recipe used.

To create this, the following buffer is created:

struct
{
 __le16 Type = T_VSI_LIST_SET;
 __le16 Status; // filled in response
 struct
 {
 __le16 Index = n; //VLn
 __le16 NumberOfVSIs = 2;
 __le16 VSI[0] = {1,3}; // VSI1 and VSI3
 } VSI_LIST;
} Entry_1;
struct
{
 __le16 Type = T_LARGE_ACTION;
 __le16 Status; // filled in response
 struct

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1064 613875-009

 struct
 {
 __le16 Index = k; // LAk
 __le16 Size = 2; // 2 actions in large action
 __le32 Action[0] = {VSI List forward action(000), Mirror action(011),...}
 } LARGE_ACTION;
 } Data;
} Entry_2;
struct
{
 __le16 Type = T_LOOKUP_TX;
 __le16 Status; // filled in response
 struct
 struct
 {
 __le16 RID = 0 ; //MAC Forwarding
 __le16 Source = 1; // VSI1 is one of the VSIs in the VEB
 __le32 Action = {Pointer Action};
 __le16 Index; // filled in response
 __le16 HeaderLen = 14; //Header length of an L2 packet
 u8 HeaderData[0] = {DA1,Dummy SA, any EtherType }; // Do not use an EtherType
 // of IP if IP header not
 // provided.
 } LOOKUP;
 } Data;
} Entry_3;

613875-009 1065

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.6.2 Update Switch Rules (0x02A1)

Data buffer format is described in Section 7.8.12.6.1.1. For update commands, the lookup rules should
be accessed by index.

Note: For Large Action and VSI list updates, the Add Switch Rules command and this command can
be used interchangeably.

Table 7-79. Update Switch Rules Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x02A1 Command opcode.

Datalen 4-5 Length of command buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Filters 16-17 Number of filters in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-80. Update Switch Rules Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x02A1 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = If one of the resources is not owned by this PF.
ENOENT = If the lookup rule does not exists.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1066 613875-009

7.8.12.6.3 Remove Switch Rules (0x02A2)

Data buffer format is described in Section 7.8.12.6.1.1. For remove commands, the lookup rules should
be accessed by index.

Note: Removing a shared VSI list resource only removes from the list of VSIs owned by the PF
sending the AQC.

Note: Removing a shared resources type (Wide Table) clears the configuration from hardware only
when owned by a single owner.

Table 7-81. Remove Switch Rules Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x02A2 Command opcode.

Datalen 4-5 Length of command buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Filters 16-17 Number of filters in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-82. Remove Switch Rules Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x02A2 Command opcode.

Datalen 4-5 0x0 Reserved

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = If one of the resources is not owned by this PF.
ENOENT = If the lookup rule does not exists.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

613875-009 1067

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.6.4 Get Switch Rules (0x02A3)

Data buffer format is described in Section 7.8.12.6.1.1. For Get command, the lookup rules should be
accessed by index. In the case of Get command there is no difference between T_VSI_LIST_CLEAR and
T_VSI_LIST_SET types, and no difference between T_PRUNE_LIST_CLEAR and T_PRUNE_LIST_SET
types. For large actions, the buffer size should be set according to the expected size of the action.

Table 7-83. Get Switch Rules Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x02A3 Command opcode.

Datalen 4-5 Length of command buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Filters 16-17 Number of filters in buffer.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Table 7-84. Get Switch Rules Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x02A3 Command opcode.

Datalen 4-5 Length of command buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
The following error values can be returned:

EACCES = If one of the resources is not owned by this PF.
ENOENT = If the lookup rule does not exists.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1068 613875-009

7.8.12.6.5 Clear PF Configuration (0x02A4)

This command clears all the configuration of the PF, including all VSIs and all Flow Director filters
allocated to this PF.

The command does not release resources allocated to the function and the switch ID allocation of the
port.

The following resources are removed (but not deallocated) as part of the command:

• Port Configuration

• Switch Rules

• Mirror Rules

• VSI lists

• VSIs

• VEB Counters

• FD Filters

Resource management, Recipes (and Recipe to Profile associations), PE filters are not cleared by this
command.

The original topology (VSI + port MAC filter) is not initiated after this command and should be built by
the software device driver.

Table 7-85. Clear PF Configuration Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x02A4 Command opcode.

Datalen 4-5 0x0 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Table 7-86. Clear PF Configuration Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x02A4 Command opcode.

Datalen 4-5 Length of return buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

613875-009 1069

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.7 Mirroring Commands (Opcode 0x026x)

The mirroring behavior is described in Section 7.8.5.4.1.

7.8.12.7.1 Add/Update Mirror Rule (0x0260)

This command is used to add a port mirror rule. Rules can be added for any ingress or egress port,
virtual (VSI) or physical (Ethernet port). Lookup based mirroring (a.k.a. VLAN mirroring), is
programmed via the regular Add Switch Rules command (Section 7.8.12.6.1).

Table 7-87. Add/Update Mirror Rule Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0260 Command opcode.

Datalen 4-5 Length of buffer. Should be equal to 2 * Number of Mirrored Entries.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Rule ID 16-17 Byte 17: Reserved
Bit 16.7: Rule ID Valid
Bit 16.6: Reserved
Bits 16.5-16.0: Rule ID

If Rule ID Valid is set, the requested Rule ID is used. If the rule is already in
use, the new mirroring rules are added to this rule. The rule should be owned
by the PF requesting the it.
If Rule ID Valid is cleared, a new Rule ID is assigned from the shared pool of
rules.

Rule Type 18-19 Bits 2:0: Rule Type
000b = Reserved.
001b = Virtual port ingress mirroring. All traffic sent from the VSIs in the

buffer
010b = Virtual port egress mirroring. All traffic received by the VSIs in the

buffer
011b = Reserved (VLAN mirroring in previous products).
100b = Reserved (All ingress traffic in previous products).
101b = Reserved (All egress traffic n previous products).
110b = Physical Port ingress mirroring. All traffic received by this LAN port.
111b = Physical Port egress mirroring. All traffic sent by this LAN port.

Bits 15:3: Reserved.
Note: If the Rule Type is 110b or 111b (ingress/egress port mirroring),

there is no associated buffer. The flags in bytes 0-1 should be set
accordingly and Number of Mirrored Entries should be zero.

Number of Mirrored
Entries

20-21 Defines the number of VSIs that should be mirrored. The values are in the
command buffer.

Destination VSI 22-23 Defines the VSI to which the packets matching the mirror rule will be
mirrored.
Bits 15:10: Reserved
Bits 9:0: VSI Number

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1070 613875-009

The Command Buffer is built as Number of Mirrored Entries entries of two bytes each containing a
single VSI/VLAN, depending on the rule requested as described in Table 7-88.

Table 7-89 describes the Add/Update Mirror rule response (with no buffer).

Table 7-88. Add/Update Mirror Rule Command Buffer

Byte.Bit Description

1.7 Action
0b = Remove VSI from mirror rule.
1b = Add VSI to mirror rule.

1.6-1.2 Reserved.

1.1-1.0 Mirrored VSI.

Table 7-89. Add/Update Mirror Rule Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0260 Command opcode.

Datalen 4-5 0x0 No return buffer.

Return Value/VFID 6-7 Return value.
The following error values can be returned:

ENOENT = If the mirrored or mirroring VSI do not point to a valid VSI.
ENOSPC = If there are not enough resources to assign an mirror rule.
EACCES = If the Rule ID is not owned by this PF.
EEXIST = VSI is already mirrored by another rule.

Note: If an error is returned, the entire command was not executed.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Rule ID 16-17 Byte 17: Reserved
Bit 16.7: Rule ID valid (always set)
Bit 16.6: Reserved
Bits 16.5-16.0: Rule ID

Defines the Rule ID that is returned in the receive descriptor. This number is
assigned by the firmware and should be used as a handle when requesting
deletion of an existing rule.
If the Rule ID Valid flag was set in the command, the returned Rule ID is the
same as the requested one.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address
Address of Buffer

Data Address Low 28-31 Buffer Address

613875-009 1071

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.8.12.7.2 Delete Mirror Rule (0x0261)

This command is used to delete an existing mirror rule.

Table 7-91 describes the Delete Mirror rule response (with no buffer)

Note: When a mirror rule is shared (VSIs of multiple PFs are mirrored through the same rule), this
command should not be used. Instead, each PF should remove its VSIs using the Update
Mirror rule command and this command should be used only by the last PF to remove the rule
itself.

Table 7-90. Delete Mirror Rule Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0261 Command opcode.

Datalen 4-5 0x0

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Rule ID 16-17 Byte 17: Reserved
Bit 16.7: Rule ID valid (always set)
Bit 16.6: Reserved
Bits 16.5-16.0: Rule ID

Defines the Rule ID to delete.

Reserved 18-19 Reserved.

Command Flags 20-21 Bits 21.7-20.1: Reserved
Bit 20.0: Keep m Allocation

If set, the VSI stays part of the PF allocated resources. Otherwise, it is
returned to the shared pool.

Reserved 22-31 Buffer Address Reserved.

Table 7-91. Delete Mirror Rule Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0261 Command opcode.

Datalen 4-5 0x0

Return Value/VFID 6-7 Return value.
The following error values can be returned:

EINVAL = If the Rule ID does not exist.
ENOENT = If the Rule ID is not owned by this PF.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Buffer Address Reserved.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1072 613875-009

7.8.12.8 Default Configuration at Init Time

On each function, a single VSI is initiated with a distinct switch ID. This VSI is set in VLAN promiscuous
mode with loopback disabled and source pruning enable.

On each VSI, a single filter is added to allow reception of the default MAC Address of the port.

7.9 ACL (Ternary Classifier)

7.9.1 Overview

7.9.1.1 General

The Packet Processor pipeline in the E810 provides a programmable Ternary Classifier stage for
implementing functions such as ACL (Access Control List), IP LPM (Longest Prefix Match), and so on.
The Ternary Classifier is SDN/NFV-enabled, supporting a wide range of network protocols, both
standard-based and proprietary. The architecture is fully programmable, protocol-agnostic and
action-agnostic, capable of adapting to future protocol headers and use cases.

Since the architecture of the Ternary Classifier is protocol-agnostic and action-agnostic, it can be
programmed to serve as a switch extension and thus provide packet forwarding based on
programmable rules, augmenting the capabilities of the switch.

The ACL’s block logical location in the E810 data-path is illustrated in Figure 7-19.

On the receive side, the ACL is located on an internal egress port of the switch. This means that it can
base its decisions on the switch switching decision (destination information). The ACL block gets the
packet’s header as received by the switch. Any potential transposition (for example, VLAN stripping)
occurs in the data path following the packet processing by the ACL block.

On the transmit side, the ACL is location on an internal ingress port of the switch. This means that the
ACL block can base its decisions based on the source information. The ACL block gets packet header in
its final transmitted form. Any potential transposition (for example, VLAN insertion) occurs in the data
path prior to the packet processing by the ACL block.

Figure 7-19. ACL Logical Location in the Data Path

LAN
Tx

Tx
ACL

Switch

Tx
Mod

LAN
Rx

Rx
ACL

X
Mod

Ingress ports

Egress ports

613875-009 1073

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.1.2 Features

• Provides ACL lookup tables:

— Table contain association between ACL entries and actions.

— ACL match is done using up to 16 TCAM blocks.

— Each TCAM block has 512 entries of 40 bits.

— TCAM cascading.

• Hit result of consecutive range of TCAM block indexes can be used to create an ACL table with wider
rules (multiple of 40 bits).

— TCAM stacking.

• Multiple TCAM blocks, with consecutive index range, can be stacked to create a table with more
than 512 rules (cascaded table can be stacked as well).

• 128 lookup profiles:

— Standard FlexiPipe method of profile selection.

— One profile is used for by pass (profile number 1).

— Eight range checkers per profile:

• Range checker works on a word (16-bit value).

• Range checker apply a mask on the value and checks if it is between a start value and an
end value.

— Profile controls the extractions:

• Extraction of a field vector (FV) built from 32 words.

• Build of three arrays from the FV:

— 32-byte array with also contain the Profile ID and the eight range checks result
(pass/fail per each checker).

— 32-word array.

— 16 double word array.

Profiles selects a scenario.

• 64 Scenario

— Controls generation of key per TCAM block.

— Controls mask of entries per TCAM block in 64 entries granularity (bit per 64 entries).

— Controls TCAM block arrangement.

— Controls action memories to TCAM block association.

• Action memories:

— 20 action memories with 512 pair of actions each.

— Multiple action memories CAN be associated with single TCAM block.

— Key action types.

• Generic MDID 0-4

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1074 613875-009

• flowID_word_0/1

• RX_descr_structure_prof_idx

• pkt_drop

• Target/destination VSI

• Destination Q

• Count packet (MDID 56)

• Count bytes (MDID 57)

• Count packet and bytes (MDID 58)

• NOP (MDID 55)

— Counter banks:

— Four counter banks of 512 40 bit wide counters.

— Lookup results of a scenario can update one counter in each bank.

• Programming model

— CSRs

— Indirect programming access to allow multiple atomic updates.

• TCAM entry update.

• Action memory update.

• Scenario configuration per TCAM block update.

• Scenario configuration per action memory update.

• General profile concurrent configuration update.

• Range checkers profile concurrent configuration update.

— Dynamic updates.

• New profiles and scenarios can be added/removed/updated.

• Actions can be updated/added/removed.

7.9.1.3 Basic Operation and Terms

A ternary classifier is a unique filtering mechanism able to compare a given dataset (referred hereafter
as a “key”) to a set (referred hereafter as a “table”) of multiple entries (referred hereafter as “table
entries”) at the same time being able to ignore bits in the compare process. This means that a compare
operation for each bit in the table entry has three match conditions:

• Match if ‘0’

• Match if ‘1’

• Match always (Don’t care)

A match in a table entry is achieved only if there is a match on all of the bits of that table entry.

In case of a multiple hit to different table entries, a priority mechanism is used to determine the highest
priority-matched entry. The priority mechanism implemented in the E810’s ACL block, which selects the
lowest hit entry’s index in the table. For example, if entries 3, 7, and 11 are hit, the result is entry 3.

613875-009 1075

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Employing the priority mechanism essentially means that a specific key search in a specific entry can
yield multiple hits, but only a single result (referred hereafter as a “result entry”).

The ternary match and priority mechanisms are implemented using a TCAM block. Multiple TCAM blocks
in parallel are used to extend the functionality of a single TCAM block by:

• Extending the number of entries.

• Producing wider entries.

• Doing a match on multiple tables in parallel.

7.9.1.4 Table Configuration Options

7.9.1.4.1 General

The ACL block supports a flexible arrangement of its TCAM blocks to support tables with various key
widths and entry amounts. This section depicts the various tools implemented in the ACL block that can
be used to manifest tables in different sizes.

The TCAM blocks arrangement is a scenario based configuration (see Section 7.9.1.8), which means
that the ACL block can support up to 64 independent TCAM block configurations.

7.9.1.4.2 Table Sizing Support

Since the TCAM blocks used in the design are 40 bits wide, supporting a table with a wider key requires
cascading several TCAM blocks (see Section 7.9.1.4.2.1). Each TCAM block cascaded to the other
increases the supported key width of the table by 40 bits.

Similarly, since the TCAM blocks used in the design support a total of 512 entries, supporting a table
with a larger amount of entries requires stacking several TCAM blocks.

As the E810 implementation uses 16 TCAM blocks, and given the description above, the maximal
supported key width for an ACL table in the E810 is 640 bits (16 cascaded TCAM blocks yielding 512
entries), and the maximal supported entry amount for an ACL table in the E810 is 8,192 (16 stacked
TCAM blocks and using 40-bit entries).

7.9.1.4.2.1 TCAM Cascade

A TCAM cascade is used to support tables with a key width wider than 40 bits. The TCAM cascade
mechanism operates by running several TCAM blocks lookup in parallel and returning a hit in a given
entry only if the same entry was hit in all the cascaded TCAM blocks (that is, perform a logic AND
operation).

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1076 613875-009

The ACL block requires cascaded TCAM blocks to be adjacent (i.e., to have consecutive indexes). For
example, a table supporting an 80-bit wide key can be implemented using TCAM blocks index 1 and 2,
but not using TCAM block 1 and 3.

When cascaded, the hit vector, representing the hit indications for an entire TCAM, is propagated to the
next TCAM. The result of that next TCAM block is the logical AND of the previous TCAM block’s hit vector
and its own local hit vector. That result can also be used in the next TCAM block and so forth to support
wider keys.

The basic mechanism that controls TCAM cascading is that each TCAM block can either use its local hit
vector or the result of a logical AND between the previous TCAM hit vector and its local hit vector. This
setting is controlled by the StartCompare configuration, which is part of the scenario configuration per
TCAM (see Section 7.9.2.5.1). When setting StartCompare for a given TCAM block, it uses its local hit
vector. When clearing StartCompare for a given TCAM block, it uses the result of a logical AND between
the previous TCAM hit vector and its local hit vector.

Given this explanation, the StartCompare setting is set for independent TCAM blocks and for the first
TCAM block in a TCAM cascade.

The unified result entry is reflected in the output of the last TCAM block in the cascade. Therefore, when
using a cascade, the action memories (see Section 7.9.1.5.3) are associated with the last memory in
the cascade.

Figure 7-21 illustrates an example of cascading two TCAM blocks to manifest a table with an 80-bit key.
Using the configuration illustrated in the figure, a hit indication in the last TCAM (TCAM n+1 in the
figure) is only possible if the same entry is hit in both the last TCAM and the previous TCAM (TCAM n in
the figure) because the StartCompare input for TCAM n+1 is cleared. The first TCAM, however, ignores
the previous TCAM block (TCAM n-1 in the figure) hit indications, since it’s StartCompare input is set.

Note: As highlighted in the figure, the first TCAM block’s (TCAM n in the figure) priority logic is
unused. and instead, the last TCAM block’s (TCAM n+1 in the figure) priority logic output
reflects the cascade hit indication and hit index. Therefore, in the case described in this
example, the action memories associated with the table implemented using this cascade is
associated with TCAM n+1.

Figure 7-20. TCAM Cascading Example

TCAM
block

TCAM
block

TCAM
block

TCAM
block

512x160b

StartCompare 1 0 0 0

StartSet 1 0 0 0

Action
Memory

613875-009 1077

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.1.4.2.2 TCAM Stacking

TCAM stacking is used to support tables with a key amount higher than 512. The TCAM stacking
mechanism operates by running several TCAM blocks lookup in parallel and returning a unified result
entry that represents the highest indexed entry hit in the highest indexed TCAM block in the stack.
Figure 7-22 shows and example of two cascaded tables 1024x80b table and a 1024x40b table.

Figure 7-21. TCAM Cascade Example

Figure 7-22. Cascaded TCAM Example

TCAM n hit priority logic

TCAM block n entries
(512 entries x 40 bits)

Entry 0 – 40 bits

Entry 1 – 40 bits

Entry 511 – 40 bits

Entry 0 hit indication

Entry 1 hit indication

Entry 511 hit indication

Masked TCAM n-1 hit vector

Priority
EncoderTCAM n hit vectorTCAM n-1 hit vector

TCAM n StartCompare = ‘1’

TCAM block n+1 entries
(512 entries x 40 bits)

Entry 0 – 40 bits

Entry 1 – 40 bits

Entry 511 – 40 bits

Entry 0 hit indication

Entry 1 hit indication

Entry 511 hit indication

Masked TCAM n hit vector

Priority
EncoderCascade hit vector

Cacade hit indication

Casade hit index
TCAM n+1 StartCompare = ‘0’

TCAM n hit vector

Unused

TCAM n+1 hit vector (to TCAM n+2 block)

TCAM
block

TCAM
block

TCAM
block

TCAM
block

512x80b

StartCompare 1 0 1 0

StartSet 1 0 0 0

TCAM
block

TCAM
block

512x80b 512x40b512x40b

1 1
1 0

0 1 2 3 4 5

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1078 613875-009

The ACL block requires stacked TCAM blocks to be adjacent one to another (that is, to have consecutive
indexes). For example, a table supporting an 40-bit wide key and 1,024 entries can be implemented
using TCAM blocks index 1 and 2, but not using TCAM block 1 and 3.

When stacked, the hit vector, representing the hit indications for an entire TCAM, disables the hit of the
next TCAM. As such, only the first hit of the cascaded TCAM provides the result of the entire table.

Note: TCAM stacking and TCAM cascading can be used jointly to form. For example, a table with
1,024 entries and a key of 80 bits.

This setting is controlled by the StartSet configuration, which is part of the scenario configuration per
TCAM (see Section 7.9.2.5.1). The action memory are associated with every TCAM that completes a
table entry.

7.9.1.4.3 Concurrent Table Support

Concurrent tables are tables that are searched in parallel for the same input. An example of concurrent
tables is a MAC Address table and an IPv4 Address table which can be searched concurrently for the
same input. Figure 7-23 shows a concurrent TCAM example. The two tables can be searched
concurrently since they occupies different TCAMs

The ACL block in the E810 supports multiple concurrent tables. This is done by using several TCAM
blocks in parallel for implementing different tables that are searched in parallel for each input. Each
table supports its own key structure configuration.

The amount of concurrent tables supported by the design is equal to the amount of TCAM blocks in the
design (that is, support a case where each TCAM block is used to implement a single table).

Note: Concurrent tables usage is not related to TCAM cascading (see Section 7.9.1.4.2.1) or TCAM
stacking (see Section 7.9.1.4.2.2). This means that some of the concurrent tables can use a
stacked or cascaded TCAM configuration.

7.9.1.4.4 Non-Concurrent Table Support

The ACL block in the E810 supports multiple non-concurrent tables (or, tables that are not working
concurrently). An example of non-concurrent tables is an inner IPv6 Address table and an inner IPv4
Address table that are naturally never searched concurrently. Figure 7-24 shows an example of
non-concurrent tables. Because the two tables consume the same TCAM block they cannot be searched
concurrently. In fact they are going to be define in a different scenarios.

Figure 7-23. Concurrent Tables Example

TCAM
block

TCAM
block

TCAM
block

TCAM
block

512x80b

StartCompare 1 0 1 0

StartSet 1 0 1 0

512x80b

613875-009 1079

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Supporting multiple non-concurrent tables is used to optimize the use of TCAM blocks when tables are
not using the full amount of entries supported by a TCAM block used to implement it.

The ACL block in the E810 supports multiple non-concurrent tables by allowing the same TCAM block to
store multiple tables while masking the hits in the irrelevant tables on a per-input basis. Entry masking
is possible in 64-entries resolution.

Note: Though the example given above is implying using the packet type as a mean to select the
relevant (or masking the irrelevant tables) per input, this feature can use other information
(like the function ID) for selecting the active tables to allow different functionality (like
function isolation).

7.9.1.5 Actions

7.9.1.5.1 General

If a table yielded a hit, the result entry points to a specific set of actions associated with the entry. The
ACL block supports at least two actions per entry and up to 20,480 actions in total for all entries.
Example actions might be: count bytes, count packets, drop, and change VSI.

The action format supported by the ACL block is the format supported by the flexible pipeline
architecture and includes an action priority, action value and action metadata ID (MDID).

The ACL block supports up to 8 actions per a single output.

7.9.1.5.2 Aggregation and Prioritization

As mentioned in Section 7.9.1.3, the ACL block supports multiple concurrent tables working
simultaneously. Potential multiple tables hit results in multiple actions being aggregated to a single set
of actions.

A single set of ACL actions may include only a single action per action type (or, metadata ID). When two
or more table hits result in the same action type, a priority mechanism uses the action priority, which is
part of the action definition associated with each action, to determine which is used in the output. When
two or more table hits result in the same action type with the same priority, the action from the highest
index action memory is used in the output.

Note: Any combination of table hit that results in an action set of more that eight unique actions,
corresponding to the ACL block limit mentioned in Section 7.9.1.5.1, is considered as an
invalid programming and might result in unexpected behavior.

Figure 7-24. Non-Concurrent Tables Example

TCAM
block

TCAM
block

TCAM
block

256x80b

256x80b

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1080 613875-009

Similar to the aggregation and prioritization mechanism in the ACL block, the ACL block’s actions are
aggregated with and prioritized against the pipeline’s actions. When a result action in the ACL block has
the same type of a pipeline action, the highest priority action prevails. When two priorities of the same
action type are equal, the ACL action prevails unless the priority is set to 0.

7.9.1.5.3 Action Memories

The actions are stored in arrays referred to as action memories. The ACL block in the E810 includes 20
action memories, where each memory has 512 entries containing up to two actions per entry.

Any action memory can be associated with any of the TCAM blocks so that a hit in a specific entry of the
TCAM block points to the same entry in the associated action memory. This allows the action memories
to support flexible table sizing as mentioned in Section 7.9.1.4.2. Several action memories can also be
associated with the same TCAM block, allowing the support for more than two actions per table hit.

Figure 7-25 shows and example of action memory-to-TCAM block association. A single action memory
can be associated with only on TCAM block per scenario.

7.9.1.5.4 Default Action

There are three special cases that involve associating an action with an incoming command when there
is no valid action as a result of the ACL operation:

• Profile miss — An incoming command that did not select any profile (see Section 7.9.2.2) and was
thus associated with by pass profile.

• Tables miss — An incoming command that did not match any entry in the ACL (that is, missed all
tables it searched through).

3. Table hit without any valid action.

When any of these cases occurs, the output actions is defined by the default action mechanism. The
default action mechanism allows associating each VSI with four independent default action sets. An
independent action set can be selected for profile miss and table miss and for Rx and Tx traffic (see
Section 7.9.2.8).

Each default action set contains up to four predefined actions. An example for a default action set might
be: drop the packet, count packets, and set a special tag that is reflected in the Rx-Descriptor for
software.

Figure 7-25. Action Memory-to-TCAM Association Example

TCAM
block

TCAM
block

TCAM
block

TCAM
block

Action
mem

Action
mem

Action
mem

Action
mem

Action
mem

TCAM
block

TCAM
block

TCAM
block

TCAM
block

Action
mem

Action
mem

Action
mem

Action
mem

Action
mem

613875-009 1081

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Note: It is not expected that there are two actions in the default set with the same MDID and
different priority. However, if this happens, only one of them is selected, disregarding the
other.

Note: A hit where all the action associated with it has priority 0 results the invocation of the default
actions. To avoid that, the NOP action with non-0 priority value is used. Then, the hit causes
no action.

7.9.1.5.5 VSI Reassignment

One of the actions supported by the ACL block is to change the destination VSI (applicable only for Rx
packets). When this action is selected and based on its priority compared to previous set VSI actions, it
causes the destination VSI associated with the packet to change.

When a VSI change occurs, the ACL block also updates the function context based on the new VSI
value, according to the value in the applicable VSI_VSI2F CSR.

The following cases causes the ACL block to mark the packet to be dropped following a VSI
reassignment:

• The newly assigned VSI is disabled (i.e., VSI_VSI2F[VSI].ENABLE is clear).

• The packet was an encrypted packet that went through in-line decryption. The newly assigned VSI
is different than the original VSI, and GL_SWT_FUNCFILT.FUNCFILT is asserted.

7.9.1.6 Counters

7.9.1.6.1 General

The count action is a fundamental feature of the ACL block. One or more count actions can either be
associated with an entry hit by programming it to the relevant entry in the action memory (see
Section 7.9.1.5.3), or be associated with a default action for a table/profile miss (see
Section 7.9.1.5.4).

Note: Counters are an action associated with an entry(ies). Therefore, counters are agnostic to the
traffic type or properties, and can count, for example, Tx/Rx traffic in the same counter.

Note: In case VSI reassignment has occurred, the VSI used for checking the enablement for
counting is the “new VSI” as defined in Section 7.9.1.5.5.

7.9.1.6.2 Counting Drops

Count actions might be part of an action set that includes a drop command (that is, one or more tables
hit resulted in both count and drop actions).

Note: Counter always counts. This allows the ability to count the number of dropped packets.

7.9.1.6.3 Counter Banks

The ACL block in the E810 supports 2048, 40-bit wide, counters arranged in four banks/arrays, and is
able to support up to four counter updates for the same search.

Each counter bank/array contains 512 counters according to the following distribution:

• Bank 0 contains counter indexes 0-511.

• Bank 1 contains counter indexes 512-1023.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1082 613875-009

• Bank 2 contains counter indexes 1024-1535.

• Bank 3 contains counter indexes 1536-2047.

Note: The update of more than a single counter in the same bank is forbidden and can yield
unexpected behavior.

7.9.1.6.4 Counters Read and Reset

The ACL counters are accessible via the following CSRs, where “bank offset” is the offset of the counter
withing the bank:

• Bank 0 counters are accessible via GLSTAT_ACL_CNT_0_L/H[bank offset].

• Bank 1 counters are accessible via GLSTAT_ACL_CNT_1_L/H[bank offset].

• Bank 2 counters are accessible via GLSTAT_ACL_CNT_2_L/H[bank offset].

• Bank 3 counters are accessible via GLSTAT_ACL_CNT_3_L/H[bank offset].

Since the counters are wider than a single 32-bit CSR access, the ACL block counters supports a 64-bit
CSR access. A 64-bit access causes the hardware to latch the entire value of the counter and allows
reading it using 2two consecutive 32-bit transactions without needing to check for wrap-around terms.

The counters are also accessible for write transaction. Any write transaction to a counter causes its
value to be reset.

7.9.1.6.5 Supported Count Actions

The ACL block supports three different action commands/MDIDs (see Section 7.9.1.5.1) for
manipulating counters:

• Count packets (MDID 56) — When this action is used, the counter referenced by the action’s
value field is incremented by one. The counter ID used in this command can be in the full range of
counter indexes (0-2047) under the restriction on updates in the same bank (see
Section 7.9.1.6.3).

• Count bytes (MDID 57) — When this action is used, the counter referenced by the action’s value
field is incremented by the amount of bytes contained in the packet (the packet length). The
counter ID used in this command can be in the full range of counter indexes (0-2047) under the
restriction on updates in the same bank (see Section 7.9.1.6.3).

• Count packets and bytes (MDID 58) — When this action is used, the action’s value field
references a counter dual and updates two counters in two separate banks. The counter referenced
in the action’s value field is incremented by the one (that is, serves as a packet counter), while the
counter indexed (index in the command +1024) is incremented by the amount of bytes contained
in the packet (in other words, serves as a byte counter). The counter ID used in this command can
be in half the range of counter indexes (0-1023) under the restriction on updates in the same bank
(see Section 7.9.1.6.3).

Given that the ACL block only allows a single action of each type (see Section 7.9.1.5.2) and the
restriction on same bank counter updates (see Section 7.9.1.6.3), the amount of valid combinations of
counter manipulation actions for a single search is limited and is summarized in Table 7-92.

613875-009 1083

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Note: When an action set contains two actions of the same type (for example, two “count bytes”
actions), the hardware uses the priority mechanism to prioritize and yields a single action of
each type, thus such programming is allowed (see Section 7.9.1.5.2). However, the hardware
does not implement a mechanism to resolve multiple counter updates in the same counter
bank.

Table 7-92. Counter Actions Possible Combinations

Counter
Updates

Bank 0
(Index 0-511)

Bank 1
(Index 512-1023)

Bank 2
(Index 1023-1535)

Bank 3
(Index 1536-2047)

0 None None None None

1 Count bytes or packets None None None

1 None Count bytes or packets None None

1 None None Count bytes or packets None

1 None None None Count bytes or packets

2 Count bytes Count packets None None

2 Count packets Count bytes None None

2 Count bytes None Count packets None

2 Count packets None Count bytes None

2 Count bytes None None Count packets

2 Count packets None None Count bytes

2 None Count bytes Count packets None

2 None Count packets Count bytes None

2 None Count bytes None Count packets

2 None Count packets None Count bytes

2 None None Count bytes Count packets

2 None None Count packets Count bytes

2 Count bytes and packets None None None

2 None Count bytes and packets None None

3 Count bytes and packets Count bytes or packets None None

3 Count bytes or packets Count bytes and packets None None

3 Count bytes and packets None None Count bytes or packets

3 None Count bytes and packets Count bytes or packets None

4 Count bytes and packets Count bytes None Count packets

4 Count bytes and packets Count packets None Count bytes

4 Count bytes Count bytes and packets Count packets None

4 Count packets Count bytes and packets Count bytes None

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1084 613875-009

7.9.1.7 Key Selection

7.9.1.7.1 General

The key used for each input depends on multiple factors including the packet type, the function, and the
matched fields. It is therefore done in three separate levels:

1. Global level, selection base creation (see Section 7.9.1.7.2).

2. TCAM block level selection (see Section 7.9.1.7.3).

Each level is controlled by a different configuration. The three-level approach allows both flexible usage
and optimized utilization of the TCAM blocks which are a relatively limited resource.

7.9.1.7.2 Selection Base

Figure 7-26 shows the generation of the selection base.

Figure 7-26. Selection Base Generation

Byte 0

Byte 1

Byte 30

Byte 31

Word 0

Word 1

Word 30

Word 31

Dword 0

Dword 1

Dword 14

Dword 15

Byte Selection Base

Word Selection Base

Double word Selection Base

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Range Check 0

Range Check 1

Range Check 2

Range Check 3

Range Check 4

Range Check 5

Range Check 6

Range Check 7

Word 0

Word 1

Word 30

Word 31

Extracted Fields

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Profile ID

Byte 29

Packet’s
Fields

Packet’s
Status

Extracted w
ord valid [31:0]

613875-009 1085

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.1.7.2.1 Selection Base Vectors

The creation of the selection base involves the selection of the packet’s properties and header fields
that are available for all the TCAM blocks.

This stage is implemented using two sub-stages:

1. The extractor creates an extracted fields vector containing up to 32 words from the packet’s header
fields and status.

2. The key generation block selects fields from the extracted fields vector and generates the selection
base.

Both extractor and key generation block configuration source is associated with a profile (see
Section 7.9.2.2).

The selection base is comprised of the selection base vectors accumulating to 160 bytes (see
Figure 7-26):

1. Byte selection base — A 32-byte vector containing byte-sized fields (32 fields supported).
Selection of bytes from this vector for a match is done in byte resolution.

2. Word selection base — A 64-byte vector containing word-sized fields (32 fields supported).
Selection of bytes from this vector for a match is done in word resolution.

3. Double-word selection base — A 64-byte vector containing double-word-sized fields (16 fields
supported). Selection of bytes from this vector for a match is done in double-word resolution.

7.9.1.7.2.2 Range Checkers

A range checker is a mechanism that allows checking if a specific field, representing a natural number,
is within range of two given natural numbers (that is, defining the boundaries).

The range checker output is positive if the field associated with it is within range (is higher than or equal
to the low boundary and is lower than or equal to the high boundary), and is negative if it is out of the
given range (is lower than the low boundary or is higher than the high boundary).

The ACL block in the E810 supports eight word-sized range checkers working concurrently. Each of the
eight range checkers is associated with a specific word in the word selection base (see Figure 7-26).
Also, each of the words mapped to a range checker includes a bit-level masking mechanism, which
allows checking ranges for a sub-field in each word.

Note: Masking of words mapped to the range checkers is done between the word in the word
selection base and the associated range checker, and is employed only for range checking
purposes. This means that if a table selects one of these words as part of its key, it gets the
unmasked version of the word.

The range checkers output is mapped to the byte selection base (see Section 7.9.1.7.2) and can be
used for matching.

The range checkers boundaries are a profile dependent configuration (see Section 7.9.2.6), and thus
the ACL block can virtually support 1,024 range checkers (eight range checkers per profile).

Note: Logical combination of several checkers for forming a single match is possible. For example,
by requiring several range checkers positive/negative output in the relevant table entry a
logical AND can be created between range checkers.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1086 613875-009

7.9.1.7.2.3 Fixed Fields and Restrictions

The selection of fields to each selection base vector is part of the profile specific programming (see
Section 7.9.2.2) and is (in general) flexible, meaning that any field can be selected to any location in
the selection base. There are, however, several fixed fields located in the selection base, which impose
restrictions that apply for selection of fields to the selection base.

Byte selection base fixed fields:

• Byte index 31 contains the range checkers output (see Section 7.9.1.7.2.2). Each bit index n in this
byte corresponds to a range checker index n output.

• Byte index 30 contains the selected Profile ID.

Word selection base restrictions:

• Word indexes 0-7 are the only words that can be used for range check (see Section 7.9.1.7.2.2).
Each word index n is associated with range checker index n input.

Note: It is emphasized that the restriction mentioned above, only relates to the ability of selecting a
source for the range checkers. This does not impose any restriction on the ability of selecting
a word from the extracted fields to these words in the word selection base.

Double-word selection base fixed fields:

• Double-word index 15 contains the extracted fields vector valid indication per word (a total of 32
valid indication bits). Each word n of the extracted fields vector valid indication is associated with bit
n in double-word 15.

7.9.1.7.3 TCAM Key Byte Selection

The TCAM key byte selection occur in each TCAM level. As mentioned in Section 7.9.1.4.2, the ACL
block in the E810 includes 16 TCAM blocks, each supporting a 40-bit wide key. Each TCAM block
supports selecting each of the five bytes of the key used for a match out of the three fields vectors
constituting the selection base (see Section 7.9.1.7.2).

The configuration of the TCAM byte selection is associated with a scenario (see Section 7.9.1.8) and
depends on the structure of the selection base, the tables being used (that is, the fields being matched)
and the specific table configuration used to implement the tables (see Section 7.9.1.4). The same
factors are taken into account when programming the contents of each TCAM block.

The TCAM byte selection available options are defined in Table 7-93, where each byte is selected
independently.

Table 7-93. TCAM Byte Selection Options

Byte
Index

Bit
Indexes Byte Fields Word Fields Double Word Fields

4 [39:32] Any byte (32 options) Not available Not available

3 [31:24] Any byte (32 options) Bits 15:8 of any word (32 options) Bits 31:24 of any double word (16 options)

2 [23:16] Any byte (32 options) Bits 7:0 of any word (32 options) Bits 23:16 of any double word (16 options)

1 [15: 8] Any byte (32 options) Bits 15:8 of any word (32 options) Bits 15:8 of any double word (16 options)

0 [7: 0] Any byte (32 options) Bits 7:0 of any word (32 options) Bits 7:0 of any double word (16 options)

613875-009 1087

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.1.8 The Scenario Mechanism

A scenario is a set of configuration including:

• TCAM blocks configuration (cascading or stacking) for supporting flexible table sizing (see
Section 7.9.1.4.2).

• TCAM blocks enablement for supporting concurrent table support (see Section 7.9.1.4.3).

• TCAM blocks specific entries enablement for supporting non-concurrent table support (see
Section 7.9.1.4.4).

• Key selection configuration for each TCAM block (see Section 7.9.1.7.3).

• Association of action memories to TCAM blocks and enablement of each action memory (see
Section 7.9.1.5.3).

The ACL block in the E810 supports 64 independent scenario sets. The selection of which scenario set to
use for a given input is based on the profile selected (see Section 7.9.2.6) and the PF.

7.9.2 ACL Programming

7.9.2.1 General

This section depicts the relevant flows and methods for programming the ACL block.

7.9.2.2 Configuration Sources

There are three types of configuration origins in the ACL block (see Figure 7-27):

• Global Configuration — A block-wide configuration that is not dependent on the incoming
command.

• Profile-Based Configuration — Settings are loaded according to the selected Profile ID. Each of
these settings has a unique value for each Profile ID.

• Scenario-Based Configuration — Settings are loaded according to the selected scenario. Each of
these settings has a unique value for each scenario.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1088 613875-009

7.9.2.3 TCAM Entry Configuration

As described in Section 7.9.1.4, a TCAM block is 40 bits wide and can be used to implement a table or
part of a table. No matter which of part of the table the TCAM block is implementing, its entry is
configured using the same basic principals.

The programming of the TCAM blocks’ entries is done using the indirect access mechanism. Each TCAM
block entry programming is comprised of writing two values:

• The key — A 40-bit wide value that is matched against an incoming key/key part. This value is
programmed using the GL_ACL_TCAM_KEY_L/H CSRs.

• The key invert - A 40-bit wide 1’s compliment value of the key used to define a “don’t care” or a
mask operation (see Section 7.9.1.3). This value is programmed using the
GL_ACL_TCAM_KEY_INV_L/H CSRs.

The functionality per entry bit derived from the different combinations of key and key invert
programming is explained in Table 7-94.

Figure 7-27. Configuration Sources1

1. Number of profiles is 127 to signify that one profile is the bypass one.

Table 7-94. Key and Key Invert Programming Effect

Key Value Key Invert Value Functionality

1 1 Don’t care (bit always matches)

1 0 Entry bit holds a ‘0’ value.

0 1 Entry bit holds a ‘1’ value.

0 0 Bit never matches (invalidate entry)

Profile Generation
Packet Status

Function/VSI

Control Domain

Packet Fields

Profile ID
Profile Context
(127 profiles)

Byte
selection

base

Word
selection

base

DWord
selection

base

Range
Checkers

Values

Results

Selection config.

Boundaries

Selection config.

Fields Extractor

Packet’s Fields

Selection config.

Derived from input
Derived from profile

Extracted fields

Extracted fields

Extracted fields

Extracted fields

Scenario Context
(64 scenarios)

512x40b
TCAM blocks
(16 blocks)

Key selection

Table Configuration

Entry M
asking

Derived from scenario

512x2 act.
Action

memories
(20 blocks)

Action m
em

s association

Counters

Default
Action

VSI
context

Action
Resolving

Global
Configuration

Packet’s status

Sampling

613875-009 1089

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.2.4 Action Memory Entry Configuration

As described in Section 7.9.1.5.3, the ACL block includes 20 action memories, each containing 512
entries of two actions.

The programming of action memories entries is done using the indirect access mechanism. The two
actions associated with each entry is programmed using the GL_ACL_ACTMEM_CFG array.

• The GL_ACL_ACTMEM_CFG[action index].PRIORITY field is programmed with the action’s priority to
be used for the action prioritization mechanism (see Section 7.9.1.5.2).

• The GL_ACL_ACTMEM_CFG[action index].MDID field is programmed with the action’s metadata
identifier.

• The GL_ACL_ACTMEM_CFG[action index].VALUE field is programmed with the action’s value (the
meaning of the value depends on the action type).

7.9.2.5 Scenario-Dependent Configuration

As described in Section 7.9.1.8, the ACL block supports a total of 64 scenarios.

The programming of the scenario dependent configuration is done using the indirect access mechanism.

The configuration associated with each scenario is divided to two configuration sets (see Figure 7-28):

• Scenario Configuration per TCAM block (see Section 7.9.2.5.1).

• Action memories association to TCAM blocks (see Section 7.9.2.5.2).

Figure 7-28. Scenario-Dependent Configuration

Scenario Configuration

512x40b
TCAM blocks
(16 blocks)

512x2 act.
Action

memories
(20 blocks)

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Ke
y

Se
le

ct
io

n

Byte
selection

base
32 Bytes

Word
selection

base
32 Words

DWord
selection

base
16 DWords Dword Bits 7:0

Dword Bits 15:8

Dword Bits 23:16
Dword Bits 31:24

Word Bits 7:0

Word Bits 15:8

Byte bits 7:0

St
ar

t S
et

St
ar

t C
om

pa
re

Ch
un

k
M

as
k

Scenario Action RAM
Configuration

Hit per action mem

TCAM 0 hit index

TCAM 1 hit index

TCAM 15 hit index

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1090 613875-009

7.9.2.5.1 Scenario Configuration per TCAM

Scenario Configuration per TCAM block includes:

• Key selection for each of the 5-byte key for each TCAM (see Section 7.9.1.7.3):

— Byte 0 selection is programmed in GL_ACL_SCENARIO_CFG_L[TCAM index].SELECT0.

— Byte 1 selection is programmed in GL_ACL_SCENARIO_CFG_L[TCAM index].SELECT1.

— Byte 2 selection is programmed in GL_ACL_SCENARIO_CFG_L[TCAM index].SELECT2.

— Byte 3 selection is programmed in GL_ACL_SCENARIO_CFG_L[TCAM index].SELECT3.

— Byte 4 selection is programmed in GL_ACL_SCENARIO_CFG_H[TCAM index].SELECT4.

— See CSR fields description for more information about the selection value.

Note: Refer to Table 7-93 for the selection options.

• Entry masking in 64-entries resolution for each TCAM (see Section 7.9.1.4):

— The masking is programmed in GL_ACL_SCENARIO_CFG_H[TCAM index].CHUNKMASK.

— Each bit masks 64 entries (that is, bit 0 masks entries 0-63, bit 1 masks entries 64-127, and so
on).

Note: When an entire TCAM is masked (CHUNKMASK for a specific TCAM is set to 0x00), the
TCAM block is power gated.

• TCAM blocks configuration for implementing flexible table sizes (see Section 7.9.1.4.2):

— The StartCompare setting is programmed in
GL_ACL_SCENARIO_CFG_H[TCAM index].START_COMPARE.

— The StartSet setting is programmed in GL_ACL_SCENARIO_CFG_H[TCAM index].START_SET.

7.9.2.5.2 Action Memories-to-TCAM Association

The mapping of action memories to TCAMs is programmed using the indirect access mechanism.

Each memory can be associated to a single TCAM block, thus making it possible to support a topology in
which the same TCAM block is associated with several action memories (to support more than two
actions per hit) or be completely disabled (allowing it to be power-gated). When using TCAM cascade
(see Section 7.9.1.4.2.1), the action memory(ies) associated with the cascade is associated with the
last TCAM block in the cascade.

The TCAM block index associated with the action memory is programmed in
GL_ACL_SCENARIO_ACT_CFG[action memory index].ACTMEM_SEL.

Action memory enable/disable status is programmed in
GL_ACL_SCENARIO_ACT_CFG[action memory index].ACTMEM_EN.

7.9.2.6 General Profile-Dependent Configuration

Any incoming command passes through the profile selection stage as the initial stage in the ACL. The
selection of the profile is similar to all blocks in the packet processing pipeline and depends on the
packet’s properties and associated function.

613875-009 1091

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The profile selection result is the Profile ID which loads a specific profile dependent configuration which
is unique per profile. The profile dependent configuration in the ACL block includes (see Figure 7-27):

• Fields extractor selection (see Section 7.5).

• Byte selectionbase select — Selection for each of the bytes in the byte selection base
programmed in GL_ACL_PROFILE_BWSB_SEL[byte index].BSB_SRC_OFF.

• Word selectionbase select — Selection for each of the words in the words selection base
programmed in GL_ACL_PROFILE_BWSB_SEL[word index].WSB_SRC_OFF.

• Double-word selection base select — Selection for each of the double-words in the double-
words fields vector programmed in GL_ACL_PROFILE_DWSB_SEL[DWord index].DWORD_SEL_OFF.

Scenario selection per PF programmed in GL_ACL_PROFILE_PF_CFG[PF index].SCEN_SEL.
Profile-dependent configuration access is done using the indirect access mechanism.

Note: As mentioned in Section 7.9.1.5.4, profile index 0 is a special profile index reserved for input
commands that are not associated with any profile and are thus not performing any search in
the ACL. Attempting to program a profile dependent configuration for profile index 0 is
treated by the hardware as an error.

Note: As mentioned in Section 7.9.1.7.2.3, bytes indexes 30 and 31 in the byte selection base are
occupied by fixed fields and thus the value of
GL_ACL_PROFILE_BWSB_SEL[30].BSB_SRC_OFF and
GL_ACL_PROFILE_BWSB_SEL[31].BSB_SRC_OFF is ignored by hardware.

7.9.2.7 Range Checkers Profile-Dependent Configuration

As mentioned in Section 7.9.1.7.2.2, the range checkers configuration is a profile-dependent
configuration. The range checkers profile dependent configuration in the ACL block includes (see
Figure 7-27):

• Range checkers boundaries for each of the range checkers programmed in
GL_ACL_PROFILE_RC_CFG[range checker index].

• Range checkers fields mask for each of the range checkers programmed in
GL_ACL_PROFILE_RCF_MASK[range checker index].

The range checkers profile dependent configuration access is done using the indirect access
mechanism.

7.9.2.8 Default Action Programming

As described in Section 7.9.1.5.4, the ACL block allows each VSI to be associated with two sets of
actions (out of possible four) that are used as the action set in case of a profile miss or a table miss.

The action sets are configured in the GL_ACL_DEFAULT_ACT array in which every array member defines
a single action (out of possible four) in a single set (out of possible four).

• GL_ACL_DEFAULT_ACT[set index*4action index].PRIORITY is used to program the action’s priority.

• GL_ACL_DEFAULT_ACT[set index*4+action index].MDID is used to program the action’s Metadata
ID.

• GL_ACL_DEFAULT_ACT[set index*4+action index].VALUE is used to program the action’s value.

For an Rx input, the selection of default action set is programmed for a destination VSI (as determined
by a previous block such as the switch) in VSI_ACL_DEF_SEL[VSI index].RX_PROFILE_MISS_SEL for
profile miss, and in VSI_ACL_DEF_SEL[VSI index].RX_TABLES_MISS_SEL for tables miss.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1092 613875-009

For a Tx input, the selection of default action set is programmed for a source VSI in
VSI_ACL_DEF_SEL[VSI index].RX_PROFILE_MISS_SEL for profile miss, and in
VSI_ACL_DEF_SEL[VSI index].RX_TABLES_MISS_SEL for tables miss.

Note: If one or more of the default actions involves counter manipulation, all the rules and
restrictions related to counter manipulation is followed (see Section 7.9.1.6).

7.9.2.9 VSI Count Programming

Count enablement per VSI (see Section 7.9.1.6.1) is programmed in
VSI_ACL_CNT_EN[VSI].COUNT_EN.

Note: In case of a VSI reassignment, the VSI referred to with respect to VSI count enablement is be
the new VSI.

7.9.2.10 Reset and Initialization

7.9.2.10.1 Reset Sources

The ACL block’s main reset source is the device’s core reset (CORER) or any higher level reset source
that triggers a core reset. When CORER is asserted, the hardware clears:

• Profile association and profile dependent configuration (see Section 7.9.2.6).

• Scenario configuration per TCAM (see Section 7.9.2.5.1).

• Action memories to TCAM association (see Section 7.9.2.5.2).

• Counters (see Section 7.9.1.6).

• Default action configuration (see Section 7.9.2.8).

Hardware does not handle function resets. It is up to the firmware or software to handle these resets.

When a PF is being reset, firmware releases the resources allocated to it (see Section 7.9.3.2), which
makes the resources available and guarantees that no incoming command searches the reseted PF
tables. It is emphasized that the firmware is not required to invalidate the table entries contents.

Note: When a graceful PF reset occurs (that is, the software driver unloads), the software driver is
expected to release its resources in a graceful manner (see Section 7.9.3.2) by issuing a
command to the firmware to release all its resources (see Section 7.9.3.4.2.9).

When a VF is being reset, software (the relevant PF driver) clears (invalidate) the entries associated
with the VF being reset.

7.9.2.10.2 Initialization

7.9.2.10.2.1 Initial State and Reset Values

With the exception of the default action sets (see Section 7.9.1.5.4) that are expected to be loaded by
either NVM or firmware, the ACL block has no pre-configured content following a hardware reset event
(see Section 7.9.2.10.1). This means that there will not be any profiles allocated or associated with any
traffic type and hence no scenarios are allocated nor tables populated. All incoming traffic is expected to
hit the default “no profile hit” profile (programmed in GL_ACLEXT_DFLT_L2PRFL_ACL).

613875-009 1093

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The only applicable flow at this state is the default action flow related to profile miss (see
Section 7.9.1.5.4). This flow is only relevant once VSIs are added to the system and thus, when adding
a VSI to the system, the default action set selection for that VSI must be programmed (see
Section 7.9.2.8) as part of the process.

7.9.2.10.2.2 Allocated Resources Initialization

No assumption is made on the initial content of allocated resources (see Section 7.9.3.2). Whenever a
resource is allocated, the software driver that received the resource allocation completely initializes/
programs the resource.

Specifically, no assumption is made regarding the contents of the allocated table entries (see
Section 7.9.3.2.1) and software is expected to invalidate all allocated entries prior to enabling the table
entries in the scenario.

As mentioned in Section 7.9.2.10.2.1, when a PF reset occurs, the EMP firmware releases the relevant
function’s allocated resources but does not clear/invalidate the contents.

7.9.3 ACL Operation and Management

7.9.3.1 General

This section depicts the concepts and flows related to the operation and management of the ACL block.

7.9.3.2 Resource Allocation

The ACL block’s resources are shared by the system’s functions. To allow efficient use of the ACL block’s
resources, the EMP firmware is used for managing the ACL block resources allocation.

When a PF driver wishes to populate any of the resources in the list below, it requests an allocation
from EMP firmware using the relevant AQ command. Similarly, when a PF driver wishes to release an
allocated resource it requests the EMP firmware to deallocate the relevant resources and allow other
PFs to use it.

Note: When a PF is reset, the EMP firmware releases its resources without requiring the PF to issue
the relevant AQ command/s.

The ACL block resources allocated by the EMP firmware are:

• TCAM blocks and entries

• Action memories

• Profiles

• Scenarios

• Counters

7.9.3.2.1 Tables and Actions Allocation and Programming

The driver is able to request a table allocation and a set of corresponding action memory entries in the
ACL block using the allocate_acl_table AQ command (see Section 7.9.3.4.2.1). The EMP firmware
allocates TCAM blocks and entries according to the rules and restrictions described in Section 7.9.1.4.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1094 613875-009

When allocating a new table, the software indicates whether the table is an non-concurrent table (see
Section 7.9.1.4.4), which can be allocated in any TCAM block unrelated to other allocated tables, or a
concurrent table (see Section 7.9.1.4.3), and then the software can specify up to 12 previously
allocated tables which cannot share a TCAM block with the new table.

The allocated tables is rounded to 64x40-bit units. For example, when the driver requests to allocate a
table of 120 entries of 60 bits, it allocates a 128x80-bit table (that is, two blocks of 64 entries in two
adjacent TCAM blocks).

In addition, the EMP firmware allocates action memories according to the amount of actions requested
in the command. Action memories are allocated according to the guidelines described in
Section 7.9.1.5.3.

Note: Action pairs can allocated and added to the allocated table in a later stage using the
allocate_acl_actionpair command (see Section 7.9.3.4.2.3). The minimal allocated action
pairs (a set of two actions) per table is 1.

Similarly, the driver is able to request releasing a table allocated to it using the deallocate_acl_table AQ
command (see Section 7.9.3.4.2.2). Following this command, the EMP firmware is allowed to allocate
the TCAM blocks and entries in addition to the action memories associated with the released table to
other drivers usage.

Note: An action pair that was allocated and added to an allocated table using the
allocate_acl_actionpair command (see Section 7.9.3.4.2.3) can be deallocated using the
deallocate_acl_actionpair command (see Section 7.9.3.4.2.4) without deallocating the entire
table resources.

Table entry programming is done using the program_acl_entry command (see Section 7.9.3.4.3.5) and
querying an entry is done using the query_acl_entry command (see Section 7.9.3.4.4.4). When
programming or querying a table entry, the EMP firmware follows the guidelines described in
Section 7.9.2.3.

Action pairs can be programmed using the program_acl_actionpair command (see Section 7.9.3.4.3.2)
and querying an action pair is done using the query_acl_actionpair command (see Section 7.9.3.4.3.5).
When programming or querying an action pairs, the EMP firmware follows the guidelines described in
Section 7.9.2.4.

7.9.3.2.2 Profile Allocation and ACL-Related Configuration

Profile allocation and deallocation in the ACL block is similar to the methods defined in other blocks (for
example, the switch or post-switch) defined in Section 7.8.10, “Resource Allocation”, and are beyond
the scope of this discussion.

When a profile is requested by the driver, the EMP firmware allocates a free Profile ID and associates
the profile with the requesting PF. It then allows the PF to program the general and range checkers
profile-dependent configuration for the allocated Profile ID (see Section 7.9.2.6 and Section 7.9.2.7).

General profile-dependent configuration is done using the program_acl_profile_extraction command
(see Section 7.9.3.4.3.3) and querying a general profile dependent configuration is done using the
query_acl_profile command (see Section 7.9.3.4.4.1). When programming or querying a general
profile-dependent configuration, the EMP firmware follows the guidelines described in Section 7.9.2.6.

Range checkers profile-dependent configuration is done using the program_acl_profile_ranges
command (see Section 7.9.3.4.3.4) and querying a range checker profile dependent configuration is
done using query_acl_profile_ranges command (see Section 7.9.3.4.4.2). When programming or
querying a range checkers profile dependent configuration, the EMP firmware follows the guidelines
described in Section 7.9.2.7.

613875-009 1095

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.2.3 Scenario Allocation and Programming

The driver is able to request a scenario allocation in the ACL block using the allocate_acl_scenario AQ
command (see Section 7.9.3.4.2.5). When allocating a scenario, the software is able to program it with
an initial programming.

The EMP firmware allocates a free scenario for the software and programs it with the initial
programming requested in the command. Updating the configuration is possible using the
update_acl_scenario command (see Section 7.9.3.4.3.1) and querying an allocated scenario
configuration is done using the query_acl_scenario command (see Section 7.9.3.4.2.6).

When configuring/updating/querying a scenario, the EMP firmware follows the guidelines described in
Section 7.9.2.5.

Similarly, the driver can request to deallocate a scenario allocated for it using the
deallocate_acl_scenario command (see Section 7.9.3.4.2.6).

7.9.3.2.4 Counters Allocation

The driver is able to request an allocation of a block of counters using the allocate_acl_counters
command (see Section 7.9.3.4.2.7). The counters allocated are of the same type (see more information
about counter types in Section 7.9.1.6).

Similarly, the driver can request to deallocate a group of counters previously allocated for it using the
deallocate_acl_counters command (see Section 7.9.3.4.2.8).

Note: The driver is not required to deallocate an entire block of counters allocated for it using the
allocate_acl_command and can elect to deallocate only part of the counters allocated for it.

When allocating counters, the EMP firmware attempts to allocate a contiguous block of counters
according to the driver’s request. If the allocation fails, the driver might be able to allocate the same
amount of counter in a non-contiguous block by invoking several allocation requests for smaller
amounts of counters.

Note: The driver is responsible on maintaining the VSI related counters configuration
(Section 7.9.2.9).

7.9.3.3 Software Flows

7.9.3.3.1 Initialization

As mentioned in Section 7.9.2.10.2, the ACL block default state is uninitialized. This means that even if
software does not wish to use the ACL block, it has to define the default set of actions that is applied for
each added VSI (see Section 7.9.1.5.4 and Section 7.9.2.8).

The configuration of the default action set used by the VSI for a profile miss and table miss is done
using the Add VSI and Update VSI commands (see Table 7-50 for buffer format).

As there is no default configuration associated with the ACL block, all traffic that misses the profiles
lookup, should be associated with profile 0 and be applied with the default action set associated with
the VSI.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1096 613875-009

7.9.3.3.2 General Table Allocation Flow

As a prerequisite, before allocating and populating a table (and for each allocated table), software
needs to determine the following items:

• Which header fields is available for lookup and range checking.

• What is the fields location in the selection base (byte/words/double words).

• The desired key structure that is used for lookup.

When the software wishes to allocate and populate a table in the ACL block, it executes the following
flow:

1. Request a table allocation using the allocate_acl_table command (see Section 7.9.3.4.2.1). The
table can be either concurrent or non-concurrent (see Section 7.9.3.2.1). The table width
corresponds to the determined key width and the table depth corresponds to the expected amount
of entries that is populated.

Note: If the amount of action pairs associated with the table is known at this stage, software
specifies it in the command. Otherwise, software specifies 1 (the minimal value) as the
requested amount of action pairs to be associated with the table.

2. Initialize the resources allocated in Step 1:

a. Invalidate all allocated TCAM entries by setting all key and key invert bits to each entry using the
program_acl_entry command (see Section 7.9.3.4.3.5).

b. Invalidate all allocated action pairs by clearing the action entries using the
program_acl_actionpair command (see Section 7.9.3.4.3.2).

3. Allocate a scenario using the allocate_acl_scenario command (see Section 7.9.3.4.2.5) or
alternatively, use a previously-allocated scenario and configure it to use the resources allocated in
Step 1:

a. Configure which TCAM blocks and entries are masked for this scenario.

Note: Any TCAM block and entries that were not allocated for the driver must be masked.

b. Configure the configuration of TCAM blocks (for example. cascaded, stacked).

c. Configure the selection of key bytes into each of the TCAM blocks from the selection base
vectors.

d. Configure the association of action memories to TCAM blocks.

4. If no relevant profile was previously allocated, allocate a profile and configure the extracted fields
vector.

5. Configure the ACL profile dependent configuration for the profile allocated/used in Step 4:

a. Program the byte, word, and double-word selection bases composition by configuring the
relevant selections.

b. Program the scenario ID allocated in Step 3 to be associated with this profile.

6. Associate the ACL profile allocated/used in Step 4 with the relevant traffic/VSI.

Note: At this stage, the table is allocated and a lookup is being performed for each relevant
incoming packet. The software can start adding entries to the table (see
Section 7.9.3.3.4) or action pairs to it (see Section 7.9.3.3.3).

613875-009 1097

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.3.3 Action Pair Allocation Flow

A prerequisite for allocating an action pair is to allocate a table using the table allocation flow (see
Section 7.9.3.3.2).

When software wants to add another action pair to an existing table, it executes the following flow:

1. Request an action pair allocation using the allocate_acl_actionpair command (see
Section 7.9.3.4.2.3).

2. Initialize the resources allocated in Step 1:

a. Invalidate all allocated action pairs by clearing the action entries using the
program_acl_actionpair command (see Section 7.9.3.4.3.2).

3. Update the relevant scenario using the update_acl_scenario command (see Section 7.9.3.4.3.1):

a. Configure the association of allocated action memories to TCAM blocks.

Note: At this stage. the action pair is allocated and is associated with the relevant tables. The
software can start adding actions to it by invoking the program_acl_actionpair command
(see Section 7.9.3.4.3.2).

7.9.3.3.4 Table Entries Addition Flow

A prerequisite for adding an entry to a table is to allocate a table using the table allocation flow (see
Section 7.9.3.3.2).

When software wants to add an entry to a table, it executes the following flow:

1. Optionally, if used by the entry, configure the range checkers that is used in the profiles enabling
this table using the program_acl_profile_ranges command (see Section 7.9.3.4.3.4).

2. Optionally, if used by the entry, allocate counter(s) for the entry using the allocate_acl_counters
command (see Section 7.9.3.4.2.7).

3. Program the action pairs associated with the table (either by the action pair allocation flow or the
table allocation flow) using the program_acl_actionpair command (see Section 7.9.3.4.3.4).

4. Program the entry key and key invert to the relevant entry using the program_acl_entry command
(see Section 7.9.3.4.3.5) for all TCAM blocks forming the table.

Note: At this stage, the entry is programmed in the table and any packet hitting it invokes the
actions associated with it.

7.9.3.3.5 Table Entries Removal Flow

When software wants to remove an entry from a table, it executes the following flow:

1. Invalidate the relevant entry by setting all bits in the key and key invert using the
program_acl_entry command (see Section 7.9.3.4.3.5) for all TCAM blocks forming the table.

Note: At this stage, no packet hits the entry.

2. Optionally, if counter(s) were used by the entry and are no longer required, deallocate the
counter(s) used by the entry using the deallocate_acl_counters command (see
Section 7.9.3.4.2.8).

3. Optionally, if additional action pairs were added to the table using the allocate_acl_actionpair
command (see Section 7.9.3.4.2.3) and are no longer required, deallocate the additional action
pairs by using the deallocate_acl_actionpair command (see Section 7.9.3.4.2.4).

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1098 613875-009

Note: At this stage, the entry is removed and all its private resources free.

7.9.3.3.6 Table Removal Flow

When software wants to remove an entire table, it executes the following flow:

1. If there are active scenarios that are enabling the table, mask the relevant TCAM entries/slices in all
the scenarios that are enabling the table by using the update_acl_scenario command (see
Section 7.9.3.4.3.1).

Note: At this stage, no packet performs a lookup in the table.

2. Optionally, if counter(s) were used by the table and are no longer required, deallocate the
counter(s) used by the table using the deallocate_acl_counters command (see
Section 7.9.3.4.2.8).

3. Deallocate the table using the deallocate_acl_table command (see Section 7.9.3.4.2.2).

Note: At this stage, the table is removed and all its private resources freed.

7.9.3.3.7 Scenario Removal Flow

Important: An active profile (a profile associated with active traffic) must point to a valid scenario.
Therefore, the profile must be either disabled (for example, by preventing the relevant PF
from selecting it), removed, or routed to a different valid scenario prior to removing the
scenario.

When software wants to remove a scenario, it executes the following flow:

1. Prevent all profiles selecting the scenario from selecting the scenario by either:

a. Preventing the PFs selecting the scenario from selecting the relevant profiles (unsubscribe the
relevant VSIs from the profiles).

b. Remove the profiles.

c. Change the scenario pointed by the profiles to a different valid scenario by using the
program_acl_profile_extraction command (see Section 7.9.3.4.3.3).

2. Deallocate the scenario by using the deallocate_acl_scenario command (see Section 7.9.3.4.2.6).

Note: At this stage, the scenario is free.

7.9.3.4 ACL Block Admin Queue Commands

7.9.3.4.1 General

This section describes the Admin Queue commands related to the ACL operation and management. The
Admin Queue operation is described in Section 9.5, and the general Admin Queue command format is
described in Section 9.5.5.

The ACL block’s Admin Queue commands are divided into three main groups:

• Resource allocation commands — These commands are used for resource allocation/
deallocation and, in some cases, initial programming or configuration of the resources.

• Programming/update commands — These commands are used for allocated resources
programming or updating.

613875-009 1099

Intel® Ethernet Controller E810 Datasheet
Packet Processing

• Query commands — These commands are used for querying the allocated resources
programming/status for reprogramming or debug.

The ACL block Admin Queue commands are summarized in Table 7-95.

Table 7-95. Admin Queue Commands Summary

Resource Allocation/Deallocation Programming Querying

Tables • allocate_acl_table Command
(Section 7.9.3.4.2.1)

• deallocate_acl_table Command
(Section 7.9.3.4.2.2)

• program_acl_entry Command
(Section 7.9.3.4.3.5)

• query_acl_entry Command
(Section 7.9.3.4.4.4)

Actions • allocate_acl_actionpair
Command (Section 7.9.3.4.2.3)

• deallocate_acl_actionpair
Command (Section 7.9.3.4.2.4)

Note: Action pairs are also
allocated/deallocated as
part of the table allocation.

• program_acl_actionpair
Command (Section 7.9.3.4.3.2)

• query_acl_actionpair Command
(Section 7.9.3.4.4.5)

Scenarios • allocate_acl_scenario Command
(Section 7.9.3.4.2.5)

• deallocate_acl_scenario
Command (Section 7.9.3.4.2.6)

• update_acl_scenario Command
(Section 7.9.3.4.3.1)

Note: The initial scenario
configuration is done on
allocation.

• query_acl_scenario Command
(Section 7.9.3.4.4.3)

Profiles • Profile allocation, Section
7.9.3.4.2.10, “Generic Allocate
Resource Command”

• Profile deallocation, Section
7.9.3.4.2.11, “Generic Free
Resource Command”

• program_acl_profile_extraction
Command (Section 7.9.3.4.3.3)

• query_acl_profile Command
(Section 7.9.3.4.4.1)

Counters • allocate_acl_counters Command
(Section 7.9.3.4.2.7)

• deallocate_acl_counters
Command (Section 7.9.3.4.2.8)

Not applicable. • query_acl_counter Command
(Section 7.9.3.4.4.6)

Range
Checkers

Allocated with the profile. • program_acl_profile_ranges
Command (Section 7.9.3.4.3.4)

• query_acl_profile_ranges
Command (Section 7.9.3.4.4.2)

CDIDs and
TCAM entries

See Section 7.9.3.4.2.10 and
Section 7.9.3.4.2.11.

See Section 7.8.10. See Section 7.8.10 and
Section 7.9.3.4.4.7.

All except
profiles
CDIDs and
TCAM entries

• deallocate_acl_resources
Command (Section 7.9.3.4.2.9)

Not applicable. Not applicable.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1100 613875-009

7.9.3.4.2 Resource Allocation Commands

7.9.3.4.2.1 allocate_acl_table (0x0C10)

The allocate_acl_table command is used by software to allocate a virtual table and its associated action
entries in the ACL block.

Table 7-97 specifies the format of the indirect buffer:

The EMP firmware responds with a completion command (described in Table 7-98) containing an
allocation status and, if allocation succeeded, the allocated resources IDs.

Table 7-96. allocate_acl_table Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C10 Command opcode.

Datalen 4-5 32 Indirect data length in bytes, with space for completion.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

TableWidth 16-17 Requested table width in bits.
Minimum width is TCAP entry which is 40 bits.

TableDepth 18-19 Requested table depth.

Action Pairs for Entry 20 Amount of action pairs per table entry.
The minimal valid value for this field is 1 (a single pair of actions).

TableType 21 Table type.
This field is set to 0x0 for a non-concurrent table (see Section 7.9.1.4.4)
allocation.
For a concurrent table (see Section 7.9.1.4.3) allocation, this field specifies the
amount of concurrent tables whose Alloc IDs are specified in the Concurrent
AllocIDs field (up to 15 concurrent tables). Thus, the new allocated table is
concurrent with the table IDs specified in Alloc IDs.
Note: The EMP firmware blocks commands with an out-of-bound value in this

field.

Reserved 22-23 Reserved.

Data Address High 24-27 Indirect data pointer high.

Data Address Low 28-31 Indirect data pointer low.

Table 7-97. allocate_acl_table Buffer Format

Name Bytes.Bits Comments

Dependent AllocIDs 0-29 Dependent tables AllocIDs.
Each word in this 15-word array specifies a dependent table Alloc ID (up to 15 Alloc IDs can
be specified) according to the amount specified in the TableType field. All unused words are
set to 0xFFFF.

613875-009 1101

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-99 specify the format of the indirect buffer.

Table 7-98. Completion for allocate_acl_table Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C10 Command opcode.

Datalen 4-5 32 Indirect data length in bytes, with space for completion.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

TableWidth 16-17 Requested table width.

TableDepth 18-19 Requested table depth.

Action Pairs for Entry 20 Amount of action pairs per table entry.
The minimal valid value for this field is 1 (a single pair of actions).

TableType 21 Table type.
This field is set to 0x0 for a non-concurrent table (see Section 7.9.1.4.4)
allocation.
For a concurrent table (see Section 7.9.1.4.3) allocation, this field specifies the
amount of concurrent tables whose Alloc IDs are specified in the Concurrent
AllocIDs field (up to 15 concurrent tables). Thus, the new allocated table is
concurrent with the table IDs specified in Alloc IDs.
Note: The EMP firmware blocks commands with an out-of-bound value in this

field.

Reserved 22-23 Reserved.

Data Address High 24-27 Indirect data pointer high.

Data Address Low 28-31 Indirect data pointer low.

Table 7-99. Completion for allocate_acl_table Buffer Format

Name Bytes.Bits Comments

Alloc_ID 0-1 If Alloc_ID is below 0x1000, allocation failed due to unavailable resources.
Otherwise, successful allocation, this field is used by firmware to identify the table allocation.

First_TCAM 2 Index of the first allocated TCAM block. This field is set to 0xFF for a failed allocation.

Last_TCAM 3 Index of the last allocated TCAM block. This index is set to the value of First_TCAM for a single
TCAM block allocation. This field is set to 0xFF for a failed allocation.

First_Entry 4-5 Index of the first allocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed allocation.

Last_Entry 6-7 Index of the last allocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed allocation.

Action memory 0 8 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 1 9 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 2 10 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 3 11 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 4 12 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1102 613875-009

Action memory 5 13 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 6 14 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 7 15 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 8 16 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 9 17 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 10 18 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 11 19 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 12 20 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 13 21 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 14 22 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 15 23 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 16 24 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 17 25 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 18 26 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 19 27 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Table 7-99. Completion for allocate_acl_table Buffer Format [continued]

Name Bytes.Bits Comments

613875-009 1103

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.2.2 deallocate_acl_table (0x0C11)

The deallocate_acl_table command is used by software to release a table allocation.

The EMP firmware responds with a completion command (described in Table 7-101) containing a
release status and, if deallocation succeeded, the deallocated resources IDs.

Table 7-100. deallocate_acl_table Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C11 Command opcode.

Datalen 4-5 32 Indirect data length in bytes, with space for completion.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alloc_ID 16-17 Allocation ID of the table being released.
This is the Alloc_ID field supplied in the completion of the allocate_acl_table
command for this table.

Reserved 18-23 Reserved.

Data Address High 24-27 Indirect data pointer high.

Data Address Low 28-31 Indirect data pointer low.

Table 7-101. Completion for deallocate_acl_table Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C11 Command opcode.

Datalen 4-5 32 Indirect data length in bytes, with space for completion.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alloc_ID 16-17 Allocation ID of the table being released.
This is the Alloc_ID field supplied in the completion of the allocate_acl_table
command for this table.

Reserved 18-23 Reserved.

Data Address High 24-27 Indirect data pointer high.

Data Address Low 28-31 Indirect data pointer low.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1104 613875-009

Table 7-102. Completion for deallocate_acl_table Buffer Format

Name Bytes.Bits Comments

Alloc_ID (result) 0-1 If Alloc_ID is below 0x1000, deallocation failed due to unavailable resources.
Otherwise, successful deallocation.

First_TCAM 2 Index of the first released TCAM block. This field is set to 0xFF for a failed deallocation.

Last_TCAM 3 Index of the last released TCAM block. This index is set to the value of First_TCAM for a single
TCAM block allocation. This field is set to 0xFF for a failed deallocation.

First_Entry 4-5 Index of the first deallocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed deallocation.

Last_Entry 6-7 Index of the last deallocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed deallocation.

Action memory 0 8 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 1 9 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 2 10 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 3 11 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 4 12 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 5 13 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 6 14 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 7 15 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 8 16 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 9 17 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 10 18 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 11 19 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 12 20 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 13 21 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 14 22 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 15 23 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 16 24 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 17 25 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 18 26 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 19 27 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

613875-009 1105

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.2.3 allocate_acl_actionpair (0x0C12)

The allocate_acl_actionpair command is used by software to allocate an additional array of action pairs
to an existing table allocated using the allocate_acl_table command (see Section 7.9.3.4.2.1).

The EMP firmware responds with the allocate_acl_actionpair completion (described in Table 7-104).

Table 7-103. allocate_acl_actionpair Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C12 Command opcode.

Datalen 4-5 32 Indirect data length in bytes, with space for completion.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alloc_ID 16-17 Allocation ID of the table being associated with the allocated action pair.
This is the Alloc_ID field supplied in the completion of the allocate_acl_actionpair
command for that table.

Reserved 18-23 Reserved.

Data Address High 24-27 Indirect data pointer high.

Data Address Low 28-31 Indirect data pointer low.

Table 7-104. Completion for allocate_acl_actionpair Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C12 Command opcode.

Datalen 4-5 32 Indirect data length in bytes, with space for completion.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alloc_ID 16-17 Allocation ID of the table being associated with the allocated action pair.
This is the Alloc_ID field supplied in the completion of the allocate_acl_actionpair
command for that table.

Reserved 18-23 Reserved.

Data Address High 24-27 Indirect data pointer high.

Data Address Low 28-31 Indirect data pointer low.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1106 613875-009

Table 7-105. Completion for allocate_acl_actionpair Structure Format

Name Bytes.Bits Comments

Alloc_ID (result) 0-1 If Alloc_ID is below 0x1000, allocation failed due to unavailable resources.
Otherwise, successful allocation.

Reserved 2-3 Reserved.

First_Entry 4-5 Index of the first allocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed allocation.

Last_Entry 6-7 Index of the last allocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed allocation.

Action memory 0 8 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 1 9 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 2 10 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 3 11 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 4 12 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 5 13 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 6 14 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 7 15 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 8 16 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 9 17 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 10 18 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 11 19 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 12 20 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 13 21 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 14 22 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 15 23 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 16 24 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 17 25 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 18 26 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

Action memory 19 27 Specify the order of the memory in the allocation starting from 0. If the memory is not
allocated, its order is 0xFF.

613875-009 1107

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.2.4 deallocate_acl_actionpair (0x0C13)

The deallocate_acl_actionpair command is used by software to release an allocation of an action pair
array associated with an existing table using the allocate_acl_actionpair command (see
Section 7.9.3.4.2.3).

Note: The deallocate_acl_actionpair command cannot be used to release an action pair array
allocated using the allocate_acl_table.

Table 7-106. deallocate_acl_actionpair Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C13 Command opcode.

Datalen 4-5 32 Indirect data length in bytes, with space for completion.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alloc_ID 16-17 Allocation ID of the table being associated with the allocated action pair.
This is the Alloc_ID field supplied in the completion of the allocate_acl_actionpair
command for that table.

Reserved 18-23 Reserved.

Data Address High 24-27 Indirect data pointer high.

Data Address Low 28-31 Indirect data pointer low.

Table 7-107. deallocate_acl_actionpair Structure Format

Name Bytes.Bits Comments

Reserved 0-3 Reserved.

First_Entry 4-5 Index of the first allocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed allocation.

Last_Entry 6-7 Index of the last allocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed allocation.

Action memory 0 8 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 1 9 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 2 10 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 3 11 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 4 12 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 5 13 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 6 14 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 7 15 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1108 613875-009

The EMP firmware responds with the deallocate_acl_actionpair completion (described in Table 7-108).

Action memory 8 16 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 9 17 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 10 18 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 11 19 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 12 20 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 13 21 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 14 22 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 15 23 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 16 24 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 17 25 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 18 26 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 19 27 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Table 7-108. Completion for deallocate_acl_actionpair Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C13 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Alloc_ID 16-17 Allocation ID of the table being associated with the allocated action pair.
This is the Alloc_ID field supplied in the completion of the allocate_acl_actionpair
command for that table.

Reserved 18-31 Reserved.

Table 7-107. deallocate_acl_actionpair Structure Format [continued]

Name Bytes.Bits Comments

613875-009 1109

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-109. Completion for deallocate_acl_actionpair Structure Format

Name Bytes.Bits Comments

Alloc_ID (result) 0-1 If alloc ID is below 0x1000, deallocation failed due to unavailable resources.
Otherwise, successful deallocation, deallocated Alloc_ID.

Reserved 2-3 Reserved.

First_Entry 4-5 Index of the first allocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed allocation.

Last_Entry 6-7 Index of the last allocated entry (in both TCAMs and action memories). This field is set to
0xFFFF for a failed allocation.

Action memory 0 8 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 1 9 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 2 10 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 3 11 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 4 12 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 5 13 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 6 14 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 7 15 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 8 16 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 9 17 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 10 18 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 11 19 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 12 20 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 13 21 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 14 22 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 15 23 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 16 24 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 17 25 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 18 26 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Action memory 19 27 Specify the order of the memory in the deallocation starting from 0. If the memory is not
deallocated, its order is 0xFF.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1110 613875-009

7.9.3.4.2.5 allocate_acl_scenario (0x0C14)

The allocate_acl_scenario command is used by software to allocate a scenario in the ACL block and
configure it. If software only wants to change a configuration of an existing scenario, it uses the
update_acl_scenario command (see Section 7.9.3.4.3.1).

Due to the large data structure required for scenario configuration, the AQ command is an indirect
command.

The buffer associated with the command has the format described in Table 7-111.

Table 7-110. allocate_acl_scenario Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C14 Command opcode.

Datalen 4-5 84 Usable length of additional buffer (132 bytes).

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-111. allocate_acl_scenario Buffer Format

Name Bytes.Bits Comments

TCAM 0 Select0 0.0-0.6 Byte 0 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_L.SELECT0 description for more details on
applicable values.

Reserved 0.7 Reserved.

TCAM 0 Select1 1.0-1.6 Byte 1 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_L.SELECT1 description for more details on
applicable values.

Reserved 1.7 Reserved.

TCAM 0 Select2 2.0-2.6 Byte 2 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_L.SELECT2 description for more details on
applicable values.

Reserved 2.7 Reserved.

TCAM 0 Select3 3.0-3.6 Byte 3 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_L.SELECT3 description for more details on
applicable values.

Reserved 3.7 Reserved.

TCAM 0 Select4 4.0-4.4 Byte 4 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_H.SELECT4 description for more details on
applicable values.

Reserved 4.5-4.7 Reserved.

613875-009 1111

Intel® Ethernet Controller E810 Datasheet
Packet Processing

TCAM 0 Chunk Mask 5 TCAM block entry masking.
See GL_ACL_SCENARIO_CFG_H.CHUNKMASK description for more details on
applicable values.
This value is set to 0x0 for an unused TCAM.
Note: The EMP firmware blocks attempts of a PF to enable entries/TCAM

blocks which where not allocated to it using the allocate_acl_table
command (see Section 7.9.3.4.2.1).

TCAM 0 StartCompare 6.0 TCAM block StartCompare setting (see Section 7.9.2.5.1 for additional
details).
This value is set to 0x1 for an unused TCAM.

TCAM 0 StartSet 6.1 TCAM block StartSet setting (see Section 7.9.2.5.1 for additional details).
This value is set to 0x0 for an unused TCAM.

Reserved 6.2-6.7 Reserved.

TCAM 1 configuration 7-13 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 2 configuration 14-20 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 3 configuration 21-27 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 4 configuration 28-34 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 5 configuration 35-41 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 6 configuration 42-48 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 7 configuration 49-55 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 8 configuration 56-62 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 9 configuration 63-69 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 10 configuration 70-76 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 11 configuration 77-83 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 12 configuration 84-90 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 13 configuration 91-97 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 14 configuration 98-104 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 15 configuration 105-111 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

Action memory 0 TCAM association 112.0-112.6 Action memory association to a TCAM block (see Section 7.9.2.5.2 for more
details) for this scenario.
This field is set to 0x0 for a disabled action memory.
Note: The EMP firmware blocks attempts of a PF to program an

out-of-bound value in this field.

Table 7-111. allocate_acl_scenario Buffer Format [continued]

Name Bytes.Bits Comments

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1112 613875-009

Action memory 0 enable 112.7 Action memory enable for this scenario see Section 7.9.2.5.2 for more
details).
Note: The EMP firmware blocks attempts of a PF to use an action memory

no associated to it using the allocate_acl_table command (see
Section 7.9.3.4.2.1) or the allocate_acl_actionpair command (see
Section 7.9.3.4.2.3).

Action memory 1 configuration 113 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 2 configuration 114 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 3 configuration 115 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 4 configuration 116 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 5 configuration 117 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 6 configuration 118 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 7 configuration 119 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 8 configuration 120 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 9 configuration 121 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 10 configuration 122 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 11 configuration 123 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 12 configuration 124 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 13 configuration 125 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 14 configuration 126 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 15 configuration 127 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 16 configuration 128 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 17 configuration 129 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 18 configuration 130 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 19 configuration 131 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Table 7-111. allocate_acl_scenario Buffer Format [continued]

Name Bytes.Bits Comments

613875-009 1113

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The EMP firmware responds with a completion command (described in Table 7-112) containing an
allocation status and, if allocation succeeded, the allocated scenario ID.

7.9.3.4.2.6 deallocate_acl_scenario (0x0C15)

The deallocate_acl_scenario command is used by software to release a scenario allocation.

The EMP firmware responds with a completion command (described in Table 7-114) containing a
release status and, if deallocation succeeded, the deallocated scenario ID.

Table 7-112. Completion for allocate_acl_scenario Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C14 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Scenario_ID 16-17 If the value of this field is less than 0x1000, the allocation failed.
Otherwise, for a successful allocation, this field holds the allocated scenario ID
where the low eight bits of the ID specify the scenario index.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address copied from the command.

Data Address Low 28-31 Buffer Address Low bits of buffer address copied from the command.

Table 7-113. deallocate_acl_scenario Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C15 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Scenario_ID 16-17 Scenario ID of the scenario being released. This is the Scenario_ID field supplied in
the completion of the allocate_acl_scenario command for this scenario.

Reserved 18-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1114 613875-009

7.9.3.4.2.7 allocate_acl_counters (0x0C16)

The allocate_acl_counters command is used by software to allocate a contiguous block of counters to
be used in the actions related to its entries.

Note: After several occurrences of counter allocation and deallocation, the counters might get
fragmented, which affects the ability of EMP firmware ability to allocate a large contiguous
block of counters. In case software was unable to get it’s initial request, it might want to
repeat the allocation request with a smaller amount request.

Table 7-114. Completion for deallocate_acl_scenario Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C15 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Table 7-115. allocate_acl_counters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C16 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Counter Amount 16 Amount of contiguous counters requested.
Note: The minimal valid value for this field is 1. The maximal valid value is 255.

If the software requires more counters, it issues an additional
allocate_acl_counters command.

Counters Type 17 0x0 = Byte or Packet counters
0x1 = Byte/Packet counter duals
0x2-0xFF = Reserved

Counter Bank 18 Requested counter bank allocation.
The valid values for Byte or Packet counters are 0-3. The valid values for Byte/
Packet counter duals are 0-1.
Note: The EMP firmware blocks attempts of a PF to program an out-of-bound

value in this field.

Reserved 19-31 Reserved.

613875-009 1115

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The EMP firmware responds with a completion command (described in Table 7-116) containing an
allocation status and, if allocation succeeded, the allocated counter IDs.

7.9.3.4.2.8 deallocate_acl_counters (0x0C17)

The deallocate_acl_counters command is used by software to release a contiguous block of counters to
be used in the actions related to its entries.

When using the deallocate_acl_counters command, software is not obligated to release a full counter
block it allocated using the allocate_acl_counters command. It can choose to release all of it or a part of
it. Since counters are a limited resource, software is encouraged to release counters it does not use.

Table 7-116. Completion for allocate_acl_counters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C16 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Counter Amount 16 Amount of contiguous counters requested.
Note: The minimal valid value for this field is 1. The maximal valid value is 255.

If the software requires more counters, it issues an additional
allocate_acl_counters command.

Counters Type 17 0x0 = Byte or Packet counters
0x1 = Byte/Packet counter duals
0x2-0xFF = Reserved

Counter Bank 18 Requested counter bank allocation.
The valid values for Byte or Packet counters are 0-3. The valid values for Byte/
Packet counter duals are 0-1.
Note: The EMP firmware blocks attempts of a PF to program an out-of-bound

value in this field.

Reserved 19 Reserved.

First_Counter 20-21 First allocated counter index. For unsuccessful allocation, this value is set to
0xFFFF.

Last_Counter 22-23 Last allocated counter index. For unsuccessful allocation, this value is set to
0xFFFF.

Reserved 24-31 Reserved.

Table 7-117. deallocate_acl_counters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C17 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

First_Counter 16-17 First released counter index.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1116 613875-009

The EMP firmware responds with a completion command (described in Table 7-118).

Last_Counter 18-19 Last released counter index.

Counters Type 20 0x0 = Byte or Packet counters
0x1 = Byte/Packet counter duals
0x2-0xFF = Reserved

Counter Bank 21 Requested counter bank allocation.
The valid values for Byte or Packet counters are 0-3. The valid values for Byte/
Packet counter duals are 0-1.
Note: The EMP firmware blocks attempts of a PF to program an out-of-bound

value in this field.

Reserved 22-31 Reserved.

Table 7-118. Completion for deallocate_acl_counters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C17 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

First_Counter 16-17 First released counter index.

Last_Counter 18-19 Last released counter index.

Counters Type 20 0x0 = Byte or Packet counters
0x1 = Byte/Packet counter duals
0x2-0xFF = Reserved

Counter Bank 21 Requested counter bank allocation.
The valid values for Byte or Packet counters are 0-3. The valid values for Byte/
Packet counter duals are 0-1.
Note: The EMP firmware blocks attempts of a PF to program an out-of-bound

value in this field.

Reserved 22-31 Reserved.

Table 7-117. deallocate_acl_counters Command [continued]

Name Byte.Bit Value Remarks

613875-009 1117

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.2.9 deallocate_acl_resources (0x0C1A)

The deallocate_acl_resources command is used by software to release all the resources allocated for it
using a single command.

In response, the EMP firmware responds with a completion command (described in Table 7-107)
containing a release status.

7.9.3.4.2.10 Generic Allocate Resource Command

The command is fully described in Section 7.8.12.2.4, “Allocate Resource (0x0208)”. This command can
allocate the following resources:

• ACL profile builder CDID

• ACL profile builder TCAM table entries

• ACL profile builder Profile ID

A list of resource descriptors is supplied as a response to this admin command. For the ACL, each
descriptor of two bytes specifies the number of the resource.

Table 7-119. deallocate_acl_resources Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C1A Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Table 7-120. Completion for deallocate_acl_resources Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C1A Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1118 613875-009

7.9.3.4.2.11 Generic Free Resource Command

The command is fully described in Section 7.8.12.2.5, “Free Resource (0x0209)”. This command can
deallocate the following resources:

• ACL profile builder CDID

• ACL profile builder TCAM table entries

• ACL profile builder Profile ID

A list of resource descriptors is supplied as a to this admin command. For the ACL, each descriptor of
two bytes specifies the number of the resource.

7.9.3.4.3 Programming/Update Commands

7.9.3.4.3.1 update_acl_scenario (0x0C1B)

The update_acl_scenario command is used to update the context of a scenario previously allocated
using the allocate_acl_scenario command (see Section 7.9.3.4.2.3).

Due to the large data structure required for scenario configuration, the AQ command is an indirect
command.

The buffer associated with the command has the format described in Table 7-122.

Table 7-121. update_acl_scenario Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C1B Command opcode.

Datalen 4-5 0x84 Usable length of additional buffer (132 bytes).

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Scenario_ID 16-17 Updated scenario ID.
Note: The firmware blocks attempts by software to update configuration for

a scenario not allocated to it.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-122. update_acl_scenario Buffer Format

Name Bytes.Bits Comments

TCAM 0 Select0 0.0-0.6 Byte 0 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_L.SELECT0 description for more details on
applicable values.
This value is set to 0x0 for an unused TCAM.

Reserved 0.7 Reserved.

613875-009 1119

Intel® Ethernet Controller E810 Datasheet
Packet Processing

TCAM 0 Select1 1.0-1.6 Byte 1 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_L.SELECT1 description for more details on
applicable values.
This value is set to 0x0 for an unused TCAM.

Reserved 1.7 Reserved.

TCAM 0 Select2 2.0-2.6 Byte 2 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_L.SELECT2 description for more details on
applicable values.
This value is set to 0x0 for an unused TCAM.

Reserved 2.7 Reserved.

TCAM 0 Select3 3.0-3.6 Byte 3 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_L.SELECT3 description for more details on
applicable values.
This value is set to 0x0 for an unused TCAM.

Reserved 3.7 Reserved.

TCAM 0 Select4 4.0-4.4 Byte 4 selection for the TCAM key.
See GL_ACL_SCENARIO_CFG_H.SELECT4 description for more details on
applicable values.
This value is set to 0x0 for an unused TCAM.

Reserved 4.5-4.7 Reserved.

TCAM 0 Chunk Mask 5 TCAM block entry masking.
See GL_ACL_SCENARIO_CFG_H.CHUNKMASK description for more details on
applicable values.
This value is set to 0x0 for an unused TCAM.
Note: The EMP firmware blocks attempts of a PF to enable entries/TCAM

blocks which where not allocated to it using the allocate_acl_table
command (see Section 7.9.3.4.2.1).

TCAM 0 StartCompare 6.0 TCAM block StartCompare setting (see Section 7.9.2.5.1 for additional
details).
This value is set to 0x1 for an unused TCAM.

TCAM 0 StartSet 6.1 TCAM block StartSet setting (see Section 7.9.2.5.1 for additional details).
This value is set to 0x0 for an unused TCAM.

Reserved 6.2-6.7 Reserved.

TCAM 1 configuration 7-13 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 2 configuration 14-20 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 3 configuration 21-27 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 4 configuration 28-34 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 5 configuration 35-41 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 6 configuration 42-48 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 7 configuration 49-55 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 8 configuration 56-62 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

Table 7-122. update_acl_scenario Buffer Format [continued]

Name Bytes.Bits Comments

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1120 613875-009

TCAM 9 configuration 63-69 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 10 configuration 70-76 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 11 configuration 77-83 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 12 configuration 84-90 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 13 configuration 91-97 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 14 configuration 98-104 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

TCAM 15 configuration 105-111 TCAM configuration including the same structure defined in bytes 0-6 for
TCAM 0.

Action memory 0 TCAM association 112.0-112.6 Action memory association to a TCAM block (see Section 7.9.2.5.2 for more
details) for this scenario.
This field is set to 0x0 for a disabled action memory.
Note: The EMP firmware blocks attempts of a PF to program an

out-of-bound value in this field.

Action memory 0 enable 112.7 Action memory enable for this scenario (see Section 7.9.2.5.2 for more
details).
The EMP firmware blocks attempts of a PF to use an action memory no
associated to it using the allocate_acl_table command (see
Section 7.9.3.4.2.1) or the allocate_acl_actionpair command (see
Section 7.9.3.4.2.3).

Action memory 1 configuration 113 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 2 configuration 114 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 3 configuration 115 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 4 configuration 116 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 5 configuration 117 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 6 configuration 118 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 7 configuration 119 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 8 configuration 120 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 9 configuration 121 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 10 configuration 122 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 11 configuration 123 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 12 configuration 124 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 13 configuration 125 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Table 7-122. update_acl_scenario Buffer Format [continued]

Name Bytes.Bits Comments

613875-009 1121

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The EMP firmware responds with a completion command (described in Table 7-123).

Action memory 14 configuration 126 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 15 configuration 127 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 16 configuration 128 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 17 configuration 129 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 18 configuration 130 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Action memory 19 configuration 131 Action memory configuration including the same structure defined in byte 112
for action memory 0.

Table 7-123. Completion for update_acl_scenario Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C1B Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Scenario_ID 16-17 If failed value smaller than 0x1000, unsuccessful update.
Otherwise, successful update, this field holds the updated scenario ID.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address copied from the command.

Data Address Low 28-31 Buffer Address Low bits of buffer address copied from the command.

Table 7-122. update_acl_scenario Buffer Format [continued]

Name Bytes.Bits Comments

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1122 613875-009

7.9.3.4.3.2 program_acl_actionpair (0x0C1C)

The program_acl_actionpair command is used by software to program and/or update action entries.

The buffer associated with the command has the format described in Table 7-125.

The EMP firmware responds with a completion command described in Table 7-126.

Table 7-124. program_acl_actionpair Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C1C Command opcode.

Datalen 4-5 0x8 Reserved.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

action_mem_index 16 Action memory index to program/update.
Note: The firmware blocks attempts by software to update an action

memory not allocated to it.

Reserved 17 Reserved.

action_entry_index 18-19 The entry index in the action memory to be programmed/updated.
Note: The firmware blocks attempts by software to update an entry not

allocated to it.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-125. program_acl_actionpair Buffer Format

Name Bytes.Bits Comments

Action0_Priority 0 Action priority. Applicable values are between 0 to 7.

Action0_MDID 1 Action metadata identifier. This field is set to 0x0 for a NOP action.

Action0_value 2-3 Action value.

Action1_Priority 4 Action priority. Applicable values are between 0 to 7.

Action1_MDID 5 Action metadata identifier. This field is set to 0x0 for a NOP action.

Action1_value 6-7 Action value.

Table 7-126. Completion for program_acl_actionpair Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C1C Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

613875-009 1123

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.3.3 program_acl_profile_extraction (0x0C1D)

The program_acl_profile_extraction command is used by software to program or update the
profile-dependent configuration (see Section 7.9.2.6) for a profile allocated to it.

Due to the large data structure required for scenario configuration, the AQ command is an indirect
command.

The buffer associated with the command has the format described in Table 7-128.

action_mem_index 16 Action memory index to program/update.
Note: The firmware blocks attempts by software to update an action

memory not allocated to it.

Reserved 17 Reserved.

action_entry_index 18-19 The entry index in the action memory to be programmed/updated.
Note: The firmware blocks attempts by software to update an entry not

allocated to it.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address copied from the command.

Data Address Low 28-31 Buffer Address Low bits of buffer address copied from the command.

Table 7-127. program_acl_profile_extraction Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C1D Command opcode.

Datalen 4-5 0x4C Usable length of additional buffer (76 bytes).

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16 Programmed/updated Profile ID.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-128. program_acl_profile_extraction Buffer Format

Name Bytes.Bits Comments

Byte selection base-select for byte 0 0.0-0.5 Byte selection for the byte selection base from the extracted fields
(expressed as a byte offset in the extracted fields).
Applicable values are 0-63.

Reserved 0.6-0.7 Reserved.

Byte selection base-select for byte 1 1 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 2 2 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 3 3 Byte selection using the same structure defined in byte 0 for byte 0.

Table 7-126. Completion for program_acl_actionpair Command [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1124 613875-009

Byte selection base-select for byte 4 4 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 5 5 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 6 6 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 7 7 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 8 8 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 9 9 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 10 10 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 11 11 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 12 12 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 13 13 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 14 14 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 15 15 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 16 16 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 17 17 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 18 18 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 19 19 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 20 20 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 21 21 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 22 22 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 23 23 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 24 24 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 25 25 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 26 26 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 27 27 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 28 28 Byte selection using the same structure defined in byte 0 for byte 0.

Byte selection base-select for byte 29 29 Byte selection using the same structure defined in byte 0 for byte 0.

Word selection base-select for word 0 30.0-30.4 Word selection for the word selection base from the extracted fields
(expressed as a word offset in the extracted fields).
Applicable values are 0-31.

Reserved 30.5-30.7 Reserved.

Word selection base-select for word 1 31 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 2 32 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 3 33 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 4 34 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 5 35 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 6 36 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 7 37 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 8 38 Word selection using the same structure defined in byte 30 for word 0.

Table 7-128. program_acl_profile_extraction Buffer Format [continued]

Name Bytes.Bits Comments

613875-009 1125

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Word selection base-select for word 9 39 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 10 40 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 11 41 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 12 42 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 13 43 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 14 44 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 15 45 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 16 46 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 17 47 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 18 48 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 19 49 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 20 50 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 21 51 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 22 52 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 23 53 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 24 54 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 25 55 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 26 56 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 27 57 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 28 58 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 29 59 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 30 60 Word selection using the same structure defined in byte 30 for word 0.

Word selection base-select for word 31 61 Word selection using the same structure defined in byte 30 for word 0.

Double word selection base-select for
double-word 0

62.0-62.3 Double word selection for the double-word selection base from the
extracted fields (expressed as a double-word offset in the extracted fields).
Applicable values are 0-15.

Reserved 62.4-62.7 Reserved.

Double word selection base-select for
double-word 1

63 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 2

64 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 3

65 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 4

66 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 5

67 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 6

68 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 7

69 Double word selection using the same structure defined in byte 60 for
double-word 0.

Table 7-128. program_acl_profile_extraction Buffer Format [continued]

Name Bytes.Bits Comments

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1126 613875-009

The EMP firmware responds with the completion command described in Table 7-129.

Double word selection base-select for
double-word 8

70 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 9

71 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 10

72 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 11

73 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 12

74 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 13

75 Double word selection using the same structure defined in byte 60 for
double-word 0.

Double word selection base-select for
double-word 14

76 Double word selection using the same structure defined in byte 60 for
double-word 0.

PF0 scenario 77 PF0 scenario number

PF1 scenario 78 PF1 scenario number

PF2 scenario 79 PF2 scenario number

PF3 scenario 80 PF3 scenario number

PF4 scenario 81 PF4 scenario number

PF5 scenario 82 PF5 scenario number

PF6 scenario 83 PF6 scenario number

PF7 scenario 84 PF7 scenario number

Table 7-129. Completion for program_acl_profile_extraction Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C1D Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16 Programmed/updated Profile ID.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-128. program_acl_profile_extraction Buffer Format [continued]

Name Bytes.Bits Comments

613875-009 1127

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.3.4 program_acl_profile_ranges (0x0C1E)

The program_acl_profile_ranges command is used by software to program or update the range
checkers profile dependent configuration (see Section 7.9.2.7) for a profile allocated to it.

Due to the large data structure required for scenario configuration, the AQ command is an indirect
command.

The buffer associated with the command has the format described in Table 7-131.

Table 7-130. program_acl_profile_ranges Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C1E Command opcode.

Datalen 4-5 0x30 Usable length of additional buffer (48 bytes).

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16 Programmed/updated Profile ID.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-131. program_acl_profile_ranges Buffer Format

Name Bytes.Bits Comments

Range checker 0 low boundary 0-1 Range checker low boundary. The range checker output is negative when the value
related to this range checker is lower than the low boundary.

Range checker 0 high boundary 2-3 Range checker high boundary. The range checker output is negative when the
value related to this range checker is higher than the high boundary.

Range checker 0 mask 4-5 Range checker bit-mask. A value of ‘0’ in a bit clears the relevant bit input to the
range checker.

Range checker 1 configuration 6-11 Range checker configuration using the same format specified in bytes 0-5 for
range checker 0.

Range checker 2 configuration 12-17 Range checker configuration using the same format specified in bytes 0-5 for
range checker 0.

Range checker 3 configuration 18-23 Range checker configuration using the same format specified in bytes 0-5 for
range checker 0.

Range checker 4 configuration 24-29 Range checker configuration using the same format specified in bytes 0-5 for
range checker 0.

Range checker 5 configuration 30-35 Range checker configuration using the same format specified in bytes 0-5 for
range checker 0.

Range checker 6 configuration 36-41 Range checker configuration using the same format specified in bytes 0-5 for
range checker 0.

Range checker 7 configuration 42-47 Range checker configuration using the same format specified in bytes 0-5 for
range checker 0.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1128 613875-009

The EMP firmware responds with the completion command described in Table 7-132.

7.9.3.4.3.5 program_acl_entry (0x0C20)

The program_acl_entry command is used by software to program or update an entry in a TCAM block
allocated to it using the allocate_acl_table command (see Section 7.9.3.4.2.1).

Table 7-132. Completion for program_acl_profile_ranges Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C1E Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16 Programmed/updated Profile ID.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-133. program_acl_entry Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C20 Command opcode.

Datalen 4-5 0x8

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

TCAM Index 16 Updated TCAM block index.
Note: The firmware blocks attempts by software to update a TCAM block not

allocated to it.

Reserved 17 Reserved.

Entry Index 18-19 Updated entry index.
Note: The firmware blocks attempts by software to update an entry not

allocated to it.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

613875-009 1129

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The EMP firmware responds with the completion described in Table 7-135.

Table 7-134. program_acl_entry Buffer Format

Name Bytes.Bits Comments

Entry key 0-4 Entry key (40 bits). See Section 7.9.2.3 for more details.

Reserved 5-7 Reserved.

Entry key invert 8-12 Entry key invert (40 bits). See Section 7.9.2.3 for more details.

Reserved 13-15 Reserved.

Table 7-135. Completion for program_acl_entry Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C20 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

TCAM Index 16 Updated TCAM block index.

Reserved 17 Reserved.

Entry Index 18-19 Updated entry index.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1130 613875-009

7.9.3.4.4 Query Commands

7.9.3.4.4.1 query_acl_profile (0x0C21)

The query_acl_profile command is used by software to query a profile dependent configuration (see
Section 7.9.2.6) for a profile allocated for it.

Due to the large data structure required for scenario configuration, the AQ command is an indirect
command.

The EMP firmware responds with a completion described in Table 7-137.

The buffer associated with the completion has the format described in Table 7-128.

Table 7-136. query_acl_profile Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C21 Command opcode.

Datalen 4-5 0x4C Usable length of additional buffer (76 bytes)

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16 Queried Profile ID.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-137. Completion for query_acl_profile Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0C21 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16 Programmed/updated Profile ID.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

613875-009 1131

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.4.2 query_acl_profile_ranges (0x0C22)

The query_acl_profile_ranges command is used by software to query the range checkers profile
dependent configuration (see Section 7.9.2.7) for a profile allocated to it.

Due to the large data structure required for scenario configuration, the AQ command is an indirect
command.

The buffer associated with the command has the format described in Table 7-131.

The EMP firmware responds with the completion command described in Table 7-139.

The buffer associated with the completion has the format described in Table 7-131.

Table 7-138. query_acl_profile_ranges Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C22 Command opcode.

Datalen 4-5 0x30 Usable length of additional buffer (48 bytes)

Return Value/VFID 6-7 Return value/VF ID for command or event. Only sent by firmware or PF driver.
See Section 9.5.9.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16 Queried Profile ID.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-139. Completion for query_acl_profile_ranges Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0C22 Command opcode.

Datalen 4-5 Reserved.

Return Value/VFID 6-7 Return value/VF ID for command or event. Only sent by firmware or PF driver.
See Section 9.5.9.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Profile ID 16 Queried Profile ID.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1132 613875-009

7.9.3.4.4.3 query_acl_scenario (0x0C23)

The query_acl_scenario command is used by software to query the scenario dependent configuration
for a scenario associated with it.

Due to the large data structure required for scenario configuration, the AQ command is an indirect
command. The buffer associated with the command has the format described in Table 7-111.

The EMP firmware responds with a completion command (described in Table 7-141).

The buffer associated with the completion has the format described in Table 7-122.

Table 7-140. query_acl_scenario Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C23 Command opcode.

Datalen 4-5 0x0 Usable length of additional buffer (132 bytes)

Return Value/VFID 6-7 Return value/VF ID for command or event. Only sent by firmware or PF driver.
See Section 9.5.9.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Scenario ID 16-17 Updated scenario ID.
Note: The firmware blocks attempts by software to query configuration for a

scenario not allocated to it.

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-141. Completion for query_acl_scenario Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0C23 Command opcode.

Datalen 4-5 Reserved.

Return Value/VFID 6-7 Return value/VF ID for command or event. Only sent by firmware or PF driver.
See Section 9.5.9.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Scenario ID 16-17

Reserved 18-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address copied from the command.

Data Address Low 28-31 Buffer Address Low bits of buffer address copied from the command.

613875-009 1133

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.4.4 query_acl_entry (0x0C24)

The query_acl_entry command is used by software to query an ACL entry contents.

The EMP firmware responds with the completion described in Table 7-143.

The buffer associated with the completion has the format described in Table 7-134.

Table 7-142. query_acl_entry Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C24 Command opcode.

Datalen 4-5 0x0 Reserved. 8 bytes for result.

Return Value/VFID 6-7 Return value/VF ID for command or event. Only sent by firmware or PF driver.
See Section 9.5.9.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

TCAM Index 16 Updated TCAM block index.
Note: The firmware blocks attempts by software to query a TCAM block not

allocated to it.

Reserved 17 Reserved.

Entry Index 18-19 Updated entry index.
Note: The firmware blocks attempts by software to query an entry not

allocated to it.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-143. Completion for query_acl_entry Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C24 Command opcode.

Datalen 4-5 0x8

Return Value 6-7 Return Value

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

TCAM Index 16 Updated TCAM block index.

Reserved 17 Reserved.

Entry Index 18-19 Updated entry index.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1134 613875-009

7.9.3.4.4.5 query_acl_actionpair (0x0C25)

The query_acl_actionpair command is used by software to query an action pair allocated to it.

The EMP firmware responds with a completion described in Table 7-145.

The buffer associated with the completion has the format described in Table 7-125.

Table 7-144. query_acl_actionpair Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C25 Command opcode.

Datalen 4-5 0x0 Reserved. 8 bytes for result.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

action_mem_index 16 Action memory index to program/update.
Note: The firmware blocks attempts by software to query an action memory

not allocated to it.

Reserved 17 Reserved.

action_entry_index 18-19 The entry index in the action memory to be programmed/ updated.
Note: The firmware blocks attempts by software to query an entry not

allocated to it.

Reserved 20-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

Table 7-145. Completion for query_acl_actionpair Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C25 Command opcode.

Datalen 4-5 0x8

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

action_mem_index 16 Action memory index to program/update.

Reserved 17-23 Reserved.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

613875-009 1135

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.9.3.4.4.6 query_acl_counter (0x0C27)

The query_acl_counter command is used by software to query the value of a counter allocated to it.

The EMP firmware responds with a completion command (described in Table 7-147).

7.9.3.4.4.7 Generic Get Resource Allocation Command

The command is fully described in Section 7.8.12.2.3, “Get Resource Allocation (0x0204)”. This
command retrieve the allocation information for the following resources:

• ACL profile builder CDID

• ACL profile builder TCAM table entries

• ACL profile builder Profile ID

A list of resource descriptors is supplied as a response to this admin command. For the ACL, each
descriptor of two bytes specify the number of the resource.

Table 7-146. query_acl_counter Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C27 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Zeroed. Used for return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Counter Index 16-17 Queried counter index.
This field is the relative counter index within the queried counter bank.

Counter Back 18 Queried counter bank.

Reserved 19-31 Reserved.

Table 7-147. Completion for query_acl_counter Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0C27 Command opcode.

Reserved 4-5 Reserved.

Return Value 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Counter Index 16-17 Queried counter index.
This field is the relative counter index within the queried counter bank.

Counter Back 18 Queried counter bank.

Counter Value/Packet
Counter Value

19-23 This field holds the counter value.

Reserved 24-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1136 613875-009

7.9.4 ACL Configuration Example

7.9.4.1 Requested Scenario

• Create a table with 64 entries.

• Create scenario to partition the table.

• create a key to access the flow entry (IPv4 5 topple).

• Create a flow entry to allow all packets with source IP 10.0.10.10 with a port range from 1000 to
50000.

7.9.4.2 Configuration Flow

7.9.4.2.1 Assumptions

GL_ACL_DEFAULT_ACT array is pre-programmed in such a way that:

• The first set of four actions are filled with non-valid actions so it does not do anything (set 0).

• The second set of four actions are filled with valid pkt_drop actions (MDID 0x8).

Profile section mechanism is pre-configured (using packages) in such a way that:

• PTYPE is transformed to PTG (PTYPE group) using XTL1 table.

— The extractor is programmed to extract the relevant fields for every PTYPE.

— For this example it is assumed that whenever IPv4 exists in the packets, the first two words
extracted are the IPv4 source address, where its bytes are noted as SIP[0], SIP[1], SIP[2], and
SIP[3].

• VSI is transformed to VSIG (VSI group) using XTL2 table.

— Default VSIG of uninitialized VSI is 0, which causes the ACL to be by passed.

In this example, the profile that the VSI uses is noted as ACL_ProfileID.

Table 7-148 specify the configuration flow. For general table allocation see Section 7.9.3.3.2.

Table 7-148. ACL Example Command Table

Command Input Output Comment

In add VSI command Rx profile miss default action =1
Rx table miss default action =1
Tx profile miss default action =0
Tx table miss default action =0

This is set so that the default VSI
behavior is to allow the Tx packet
and to not allow Rx packet with
table miss or profile miss.

Table Allocation

allocate_acl_table command TableWidth=40 (5 bytes)
TableDepth=64 (entries)
Action Pairs Per Entry=1
TableType =0

Alloc_ID
First_TCAM
Action memory 0
First Entry
Last Entry

Allocate a single table of 64 entries
of width five bytes (four bytes for
the IP Address and one byte for
range check results).
The table spans over 1 TCAM.
Last_Entry is First_Entry + 63.
It is expected that First entry is 64
entries aligned.

613875-009 1137

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Resource initialization

For j=First_Entry to Last_Entry
do program_acl_entry

TCAM index=First TCAM
Entry index=j
Entry key=0x0000000000
Entry key=0x0000000000

Make all entries of the table as
never match.

for i=First_Entry to Last_Entry
do program_acl_actionpair

action_mem_index=Action memory 0
action_entry_index=i
Action0_Priority=0
Action1_Priority=0

Clear action memory making all
action invalid.

Allocate ACL scenario

allocate_acl_scenario for i=0 to 15
{TCAM i Chunk Mask =0
TCAM i StartCompare=1
TCAM i StartSet=0}
j=First_TCAM
TCAM j Chunk Mask= 1
<<(First+Entry/64)
TCAM j Startset=1
TCAM j Select0=0 (IPv4 SIP[0])
TCAM j Select1=1 (IPv4 SIP[1])
TCAM j Select2=2 (IPv4 SIP[2])
TCAM j Select3=3 (IPv4 SIP[3])
TCAM j Select4=31 (range check)
for k=0 to 19
Action memory k enable=0
m=Action memory 0
Action memory m enable=1
Action memory m TCAM
association=First_TCAM

Scenario_ID Program everything into the
scenario.
Byte 31 looks at the range result
byte.

Program/update selection base and scenario into profile

query_acl_profile_extraction Profile ID=ACL_ProfileID It is assumed that the profile is
already configured such that:
Byte selection base-select for byte
0 =IPv4 SIP[0]
Byte selection base-select for byte
1 =IPv4 SIP[1]
for byte 2 =IPv4 SIP[2]
for byte 3 =IPv4 SIP[3]
So the first four bytes extract the
source IP.

program_acl_profile_extraction Profile ID=ACL_ProfileID
i=PF number associated with the VSI
PFi_scenario=Scenario_ID

Associate the scenario to the Profile
for the PF of the VSI.

query_acl_profile_ranges Profile ID=ACL_ProfileID for i=0 to 7
{
Range checker i
low boundary
Range checker i
high boundary
Range checker i
mask}

According to the mask if the next
available range is found.
Available range is identified by
mask==0.
The next available range is noted by
N.

Table 7-148. ACL Example Command Table [continued]

Command Input Output Comment

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1138 613875-009

7.10 Receive Classification Filters

7.10.1 Introduction

This section describes the receive classification filters that direct inbound packets to a processing
engine or cluster out of the LAN engine and RDMA engine (also named as Protocol Engine or PE). The
filters also define a specific queue or a context within the selected engine. All the filters described in this
section relate to filtering within a specific VSI that is defined by the switch filters or ACL filters.

The classification filters and other header processing units in the device inspect the first 504 bytes of
the received packets.

7.10.1.1 Association with a Packet Engine

The general rule is that a frame is tested to be PE type or LAN. Filtering to the PE is subject to a set of
rules defined in the subsections of Section 7.10.9, “Protocol Engine (PE) Filters”: APBVT L4 port table
and PE Quad-hash filter (described in detail in Section 7.10.9.1).

7.10.1.2 Receive Classification Filters Priority and Usage

Received traffic goes through a set of filters that determine the destination of each received frame. The
receive classification filters operate on frames received from the network as well as frames forwarded
by the internal switch from a local port (VSI). If a frame is replicated by the internal switch, each replica
goes independently through the filters.

program_acl_profile_ranges Profile ID=ACL_ProfileID
Range checker N low boundary=1000
Range checker N high
boundary=50000
Range checker N mask=0xffff

Only for range checker N the
parameters change.

upload section Command Section Type Number=0x17 (XLT2
table for ACL)

Get current XLT2 table.

upload section Command Number=0x17 (XLT2 table for ACL)
Update the VSIG in XLT2 data buffer

Program VSIG for that VSI to use
the profile.

Add rule to table (can be done while packets are being received)

program_acl_actionpair action_mem_index =Action memory 0
action_entry_index=First Entry
Action0_Priority=0x7
Action0_MDID=55 (nop)
Action1_Priority=0

The NOP allows the packet by doing
no change. Because of the NOP, the
default action is not applied.

program_acl_entry TCAM index=First TCAM
Entry index=First Entry
m=1<<N;
Entry key=~0x0A000A0A00|~m
Entry key invert=0x0A000A0AFF

The four high bytes are
pre-configured to identify
10.0.10.10. The least significant
byte is programed to identify the bit
set of the bit indicated by 1<<N.

Table 7-148. ACL Example Command Table [continued]

Command Input Output Comment

613875-009 1139

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The classification filters operate in the following priority ordering (illustrated in the Figure 7-29):

• The PE filters (described in Section 7.10.9.1) direct packets to the PE at strict highest priority.

• The ACL filters (described in Section 7.10.6), the L2 switch filters (described in Section 7.10.5) and
the Flow Director filter (described in Section 7.10.8) compete on queue selection according to its
programmed priority (any priority setting equals to 1 or higher). These filters can optionally define
a region of queues (on the same priority of queue selection) that operate together with the hash
filter.

• At lowest priority, the hash filter define a region of queues and the specific queue within the region
(as described in Section 7.10.7).

• Packets that do not hit any of the above filters are posted to the default queue zero of the VSI.

Note: In nominal operation, the following filters are expected to be mutually exclusive. Meaning, the
same packet is not expected to match more than one of them: PE Quad hash filter, L2 Switch
filter that assigns a queue, and FD filter.

Table 7-149 below shows typical use cases of the classification filters and its programming option per
function.

Figure 7-29. Receive Classification Filters - Top Level

Table 7-149. Classification Filters per PF/VF

VSI L2 Switch Filters ACL Filters PE Quad Hash Flow Director Hash

Main Usage VMDq1 / Control
Ports / L2 Protocols RDMA Flex Filters1

1. There are two main usages for Flow Director filters: Software driver controlled filters for Automatic Target Routing (ATR), and user/
OS controlled filters. FD programming is exposed to VSIs of the PFs and the VFs as enabled by the parent PF.

Load Balance

Programming exposed to the PF Yes Yes Yes2

2. The hardware supports RDMA offload for all PFs and up to 32 VFs (enabled by its parent PFs). Software should enable the filter
only to VSIs of the PFs and the enabled VFs. Note that the software enables the VSIs, while the PE programs the specific filters.

Yes Yes3

3. Hash filters are allocated per VSI for the PFs and the VFs. Programming is enabled by the hardware for both PFs and VFs, but as
a product it is exposed by the driver only for the PFs.

Programming exposed to the VF No No Yes2 Yes1 No3

Internal Switch
Filtering to VSI MNG Filters ACL Filters

Host VSI s

EMP VSI s

PE Filters
QP ID defined
by the packet

or the QH filter

To PEPE
Queues . .

 .

Miss

ACL Filter
Switch Filter

FD Filter

L2 Switch /
ACL / FD

filters queues

To
QueueFilter s

Queues . .
 .

To Queue
Region

Miss
Hash Filter Hash Filter

Processing

hit
filter

Default receive
Queue 0شof the VSI

Hash
Filter

Queues

. . .

Override Hash filter
Region Base and Size

Hash Region
Base & Size

Miss

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1140 613875-009

Table 7-150 shows the filters actions enabled per-filter type:

7.10.1.3 Resource Allocation

Some of the filter’s resources can be allocated in a flexible manner between the functions, and the
VSIs. allocation to the PFs are configured during run time by the Allocate Resource admin command
(see Section 7.8.12.2.4).

Table 7-151 lists those parameters that are allocated using this admin command. The Flow Director
table can be further allocated to VSIs by the Add VSI or Update VSI admin commands
(Section 7.8.12.3.1 and Section 7.8.12.3.2, respectively).

7.10.1.4 Filter’s Candidacy Rules

The Table 7-152 below list the candidacy rules for matching a filter. Complete description of the filters in
the following sections.

Table 7-150. Filter Actions by Filter Type

Action L2 Switch Filters
and ACLs ACL Filters PE Quad Hash Flow Director

Target Engine: LAN, PE LAN PE LAN LAN

Receive Queue index /
Context ID

Queue index within the
VSI or setting a queue

region for the Hash
filter

QPN (QP ID)

Queue index within the
VSI or setting a queue

region for the Hash
filter

Queue index within the
region of queues within

the VSI

Accept / Reject Yes Yes

Increment Statistic Counter Yes Yes

Flow ID Flow ID Report QPN (QP Index)
to the PE

Report FDID in the
Rx-Descriptor

Report Hash Signature
in the Rx-Descriptor

Report selected bytes from
the receive packet Yes Yes

Flexible Actions Yes No Yes No

Table 7-151. Resource ID and Types Used by the “Get Resource Allocation” Command

Resource ID Resource Type Allocation Type

0x20 Global RSS hash A Global RSS LUT

0x21 Flow director Counters Any number of counters

0x22 Guaranteed Flow director entries Any number of filter entries

0x23 Best Effort Flow director entries Any number of filter entries

Table 7-152. Filter’s Candidacy Rules

Rule Relevancy Mechanism

The filter is enabled for the function PE filters Setting options (PFQF_PE_ENA, VPQF_PE_ENA)

The filter is enabled for the PF FD filter Setting options (PFQF_FD_ENA)

The filter is enabled per VSI FD and PE filters VSI Setting options

The filter is enabled per TC QH filter PF Setting options (PFQF_PE_TC_CTL)

The filter is enabled per VSI group All filters Packet profile selection logic

613875-009 1141

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.10.1.5 Filter’s Candidacy Exceptions

Received packets with exception status are handled according to the rules listed below in Table 7-153.

The packet’s profile is enabled for the filter All filters Packet profile selection logic

Matched packet’s VSI and packet profile FD and QH filters Hard -coded

Exact match of the packet’s fields FD and PE filters1 Matched fields are defined by the input set per packet profile.

Packet must match the APBVT PE filters Setting option per packet profile (GLQF_PE_CTL2)

Enable filter programming by Tx packets FD filter VSI Setting options

Enable filter removal by Tx FIN/RST packets FD filter VSI Setting option plus enabled per filter

Rx LPBK packets and Rx from the network All filters Both are enabled for the filters - hard-coded.

1. FD and QH filters must match complete pattern. PE filters that bypass the QH filter just match the packet profile. Hash filters that
match the packet profile always pass this criteria

Table 7-153. Packets Exceptions Handling1

1. See additional candidacy criteria per filters in the following sections of the PE, Hash and FD filters

Exception Handling Mechanism

L2 error. Not candidate for any classification filters. Handled by profile selection (l2_mac_error).

L3, L4 integrity error. The packet is processed by the Hash and FD
filters, but is not candidate for the PE filters.

Handled by profile selection (L3/L4 XSUM
done/pass).

MPA CRC or RoCE iCRC integrity
error.

Relevant only for the PE filters. Packet is
posted in all cases to the PE with a hint on
the CRC integrity check.

N/A

The packet includes IPv4 options or
IPv6 extension headers.

Not candidate for the PE filters. Handled by profile selection (L3/L4 XSUM
not done).

The packet includes ESP extension
header.

Not candidate for the PE filters. Handled by profile selection (L3/L4 XSUM
not done | pkt_is_esp).
Dedicated hardware (no setting option).

The packet includes MPLS
header(s).

Not candidate for the PE filters. Handled by profile selection
(outer_mpls_present_0x8847 and
outer_mpls_present_0x8848).

The packet is fragmented. Not candidate for the PE filters. Handled by profile selection (L3/L4 XSUM
not done).

Any tunneled packets. Not candidate for the PE filters. Handled by profile selection (L3/L4 XSUM
not done).

“Drop” indication by previous units
(like parser, switch, and ACL filters).

Not candidate for any classification filters. Handled by profile selection (pkt_is_drop).

Packets indicated as DSI. Not candidate for any classification filters. Handled by profile selection (pkt_is_DSI).

Pre-Parser no checksum offload. Not candidate for the PE filters. Handled by profile selection
(pprs_no_offload).

Parser Abort indication. Not candidate for any classification filters. Handled by profile selection (abort).

Malicious detect. Not candidate for any classification filters. Handled by profile selection (abort).

Table 7-152. Filter’s Candidacy Rules [continued]

Rule Relevancy Mechanism

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1142 613875-009

7.10.1.6 Configuration and Filter Programming Rates

7.10.1.7 Receive Queue Index

As indicated in the previous section, one of the filter’s actions is the packet classification to LAN queues.
The LAN queue indexes defined by the classification filters are within the VSI space (the VSI inherited
by the switch or ACL filters). Assuming a classification filters defines a queue index ‘n’, then:

• VSI that is defined by the VSILAN_QTABLE (VSILAN_QBASE.VSIQTABLE_ENA = 1b). The queue
index in the PF space equals:

— VSILAN_QTABLE[vsi_idx, n/2].QINDEX_0 for even ‘n’

— VSILAN_QTABLE[vsi_idx, (n-1)/2].QINDEX_1 for odd ‘n’

Where 'n' is the VSI Queue (values in [0..15]).

• VSI that is defined by the VSILAN_QBASE (VSILAN_QBASE.VSIQTABLE_ENA = 0b. The queue index
in the PF space equals to VSILAN_QBASE.VSIBASE + ‘n’.

• VF queues: The mapping of the above queue indexes to relative indexes in the VF space is not a
direct mapping. The mapping is defined by the queue indexes in the PF space that are programmed
in the VSILAN_QTABLE and the VPLAN_QTABLE registers. For example, assuming a VF with four
queues in a single VSI with the following settings:

— VPLAN_QTABLE[0:3] = A,B,C,D (where A...D are the queue indexes in the PF space)

— VSILAN_QTABLE[0].QINDEX_0 = C

— VSILAN_QTABLE[0].QINDEX_1 = D

— VSILAN_QTABLE[1].QINDEX_0 = A

— VSILAN_QTABLE[1].QINDEX_1 = B

Table 7-154. Performance Summary Table

Parameter Configuration Source Mechanism Rate

Initial Control Domain NVM CSRs Once

Profile selection parameters NVM CSRs Once

Control Domain and profiles for the PE filters NVM CSRs Once

Add / Remove Control Domain and profiles for the
FD or RSS filters Software via firmware CSRs 10/Sec

PE QH Filter population PE to hardware Internal PE to hardware config path Shared
0.5 M/s

restrictionPE QH Filter removal PE to hardware Internal PE to hardware config path

FD Filter Population
Software Application1

1. For performance considerations, FD filter population and removal by software application is expected to be made by dummy
packets. Meaning, an extra 1 Mpps for population and removal.

Tx packet descriptor + packet (sum
of the two)Software driver for ATR

FD Filter Removal
Software1 Tx packet descriptor + packet

Auto Filter Removal by
Tx or Rx traffic Tx or Rx packet with SYN/FIN

RSS table and Key Software CSR 10/sec

613875-009 1143

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Then receiving a packet to queue '0' of the VSI is mapped to queue C in the PF space, which is
queue index 2 in the VF space.

Note: VF queues accessed by software can be mapped as scattered queues (in the PF space) by
the VPLAN_QTABLE registers or as contiguous queues (in the PF space) by the
VPLAN_QBASE register.

The hash filter is a little bit more complex, as the queue index is a relative index within a specific range
of queues of a VSI. See Section 7.10.7, “Hash Filter”. This range of queues is also referred as “region”
of queues.

Following are some exception rules for the receive queue index:

• If a frame does not match any of the classification filters below (with a queue action), the frame is
directed to the default queue (queue zero of the VSI).

• The receive queue index that defines an “invalid” queue causes dropping of the packets. Such
packets are counted by the GLV_RDPC counter of the VSI. The following cases are considered as
“invalid” queue:

— A VSI that is defined by VSILAN_QTABLE is limited to 16 queues (which is the size of this table).
Therefore, a queue index that equals or is larger than 16 is considered “invalid”.

— The queues in a VSI that is defined by VSILAN_QTABLE are enabled by the QINDEX_0 and
QINDEX_1 parameters. A queue index that points to a VSILAN_QTABLE entry with a value of
0x3FFF is considered “invalid”.

— A VSI that is defined by VSILAN_QBASE.VSIBASE is limited only by the PF queue space. A
queue index that exceeds the PF space is considered “invalid”.

7.10.1.8 Initialization

This section lists all registers associated with the classification filters directly or indirectly and its
required initialization.

Note: This section does not provide a complete description of the registers.

This description is given in the following sections as well as in the Section 13, “Programming Interface”.
The initialization sequence should be executed according to the following order (described in the
subsections below):

1. Function Private Memory Allocation

2. Queue Allocation

3. Profiles Allocation

4. Static Classification Filters Registers

5. Dynamic Classification Filters Registers

Note: It is expected that all EMP VSIs are not enabled to any of the classification filters. Specifically
the PE_ENA and the FD_ENA flags in the Add VSI commands are expected to be cleared. In
addition, the EMP VSIs should be associated with VSI Groups that are not enabled for any of
the classification filters.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1144 613875-009

7.10.1.8.1 Function Private Memory Allocation

The PE Quad hash filters are stored in the Function Private Memory (FPM), while part of them are
fetched to the on-chip cache. The FPM allocation registers are described in Section 9.4.2, “Function
Private Memory Space Configuration”. These registers should be initialized per PF prior to any settings
of the LAN queues and before enabling these filters.

7.10.1.8.2 Queue Allocation

LAN queues should be allocated to the functions before packets are directed to these queues. If this
rule is not kept, packets directed to these queues are dropped.

PE quad hash filters, as well as TCP port filters, should be programmed before matched packets are
expected. Received packets with non-matched filters are directed to the LAN queues of the function.

7.10.1.8.3 Profile Allocation

The association between packets and filters type is made through profiles. The profiles are a standard
method of selecting and action based on source and type of the functions.

7.10.1.8.4 Static Classification Filters Registers

Table 7-155 describes static classification registers:

Table 7-155. Static Classification Filters Registers Initialization

CSR Installation Comment

QH (PE) Registers

GLQF_PEMASK_SEL Global Classification Filter - PE Mask Select is loaded from the NVM

GLQF_PEINSET Global Classification Filter - PE Input Set is loaded from the NVM

GLQF_PEMASK Global Classification Filter - PE Mask is loaded from the NVM

GLQF_PE_CTL2 Global Classification Filter - PE Control 2 is loaded from the NVM

GLQF_PE_CTL Global Classification Filter Control

GLQF_PE_OSR_STS Global PE Classification Filter outstanding request counter

GLQF_APBVT Global Classification Filter Accelerated Port Bit Vector

GLQF_PE_OSR_LIM QH FLU - PCIe/FOC Outstanding Request limits

VSIQF_PE_CTL1 VSI Classification Filter - PE Control 1 (programmed by add VSI)

PFQF_PE_CTL2 PF Classification Filter - PE Control

PFQF_PE_TC_CTL PF Classification Filter - QH TC Enable

PFQF_PE_CTL1 PF Classification Filter - PE Control

PFQF_PE_ST_CTL PF Control register for the Statistic counter

PFQF_PE_ENA PF Classification Filter - PE Enable

VPQF_PE_ENA VF Classification Filter - PE Enable

VPQF_PE_CTL2 PF Classification Filter - PE Control

VPQF_PE_FLHD VF Free List head array

VPQF_PE_CTL1 VF Classification Filter - PE Control

613875-009 1145

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.10.1.8.5 Dynamic Classification Filters Registers

Table 7-156 lists all of the dynamic classification table registers.

FD Registers

GLQF_FDEVICTENA Global Classification Filter - FD Profile Evict Enable is loaded from the NVM

GLQF_FDSWAP Global Classification Filter - FD SWAP is loaded from the NVM

GLQF_FDMASK_SEL Global Classification Filter - FD Mask Select is loaded from the NVM

GLQF_FDMASK Global Classification Filter - FD Mask is loaded from the NVM

GLQF_FDINSET Global Classification Filter - FD Input Set is loaded from the NVM

GLQF_FD_SIZE Global Classification Filter - FD space Size is loaded from the NVM

GLQF_FDEVICTFLAG Global Classification Filter - FD Flag Evict Enable is loaded from the NVM

PFQF_FD_SIZE PF Classification Filter - FD space Sizes is loaded from the NVM

PFQF_FD_ENA PF Classification Filter - FD Enable: programmed by Add VSI

VSIQF_FD_SIZE VSI Classification Filter - FD VSI space Sizes is loaded from the NVM

VSIQF_FD_DFLT VSI Classification Filter - FD Default Action: programmed by Add VSI command.

VSIQF_FD_CTL1 VSI Classification Filter - FD Control 1: programmed by Add VSI command.

Hash Registers

GLQF_HSYMM Global Classification Filter - Symmetric Hash is loaded from the NVM

GLQF_HMASK_SEL Global Classification Filter - Hash Mask Select is loaded from the NVM

GLQF_HMASK Global Classification Filter - Hash Mask is loaded from the NVM

GLQF_HINSET Global Classification Filter - Hash Input Set is loaded from the NVM

GLQF_HLUT_SIZE Global Classification Filter - Hash LUT Size

GLQF_PROF2TC Global Classification Filter - Packet Profile to Hash TC Region Mapping

PFQF_HLUT_SIZE PF Classification Filter - Hash LUT Size

VSIQF_HASH_CTL VSI Classification Filter - Hash Control (programmed by add VSI)

VSIQF_TC_REGION VSI Classification Filter - Receive TC Queue Regions: programmed by Add VSI command

Table 7-156. Dynamic Classification Filters Registers Initialization

CSR Installation Comment

QH (PE) Registers

GLQF_PEPIPE_CLR Global Classification Filter - PE Pipe Clear

GLQF_PETABLE_CLR Global Classification Filter - PE Table Clear

FD Registers

GLQF_FDPIPE_CLR Global Classification Filter - FD Pipe Clear

GLQF_FDTABLE_CLR Global Classification Filter - FD Table Clear

Hash Registers

GLQF_HLUT Global Classification Filter - Hash LUT

GLQF_HKEY Global Classification Filter - Hash Key

Table 7-155. Static Classification Filters Registers Initialization [continued]

CSR Installation Comment

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1146 613875-009

7.10.2 Block Diagram

A top-level block diagram of the classification filters is illustrated in Figure 7-30 and described below.

Each of the filters: FD filter, QH filter, and Hash filter has its own dedicated logic.

• Profile Chooser and Field Extractor — The building blocks of the Fields Extractor logic are similar
to those ones used by the switch filters and the ACL filters. The extractor logic extracts a local Field
Vector (FV) from the packet headers based on the packet profile (Profile ID) per filter. The Profile ID
is a function of the packet structure (packet type and flags) that is configured per filter per VSI
group and per control domain that are defined per VSI.

• Field Vector (FV) and Input Set — Input set is a set of fields from the packet that are used for
the packet classification. The input set is taken from the FV while some of the fields might be
partially masked and some of the fields might be swapped or XORed. See details in Section 7.10.4.

• Filter Lookup — In this stage the lookup is performed either by an exact match or hash
distribution (RSS). This associates the packet with a set of actions.

• Filter Action and Priority Resolver — Filter action can be classification to engine (LAN/PE),
selecting a target queue, pass/reject the packet and other actions listed in Table 7-150. The action
is defined by the filter with highest priority defined by the priority resolver. The default setting of
the priority resolver is illustrated in Figure 7-29.

PFQF_HLUT PF Classification Filter - Hash LUT: programmed by Set RSS LUT command

VSIQF_HLUT VSI Classification Filter - Hash LUT: programmed by Set RSS LUT command.

VSIQF_HKEY VSI Classification Filter - Hash Key: programmed by Set RSS LUT command

Figure 7-30. Classification Filters Block Diagram

Table 7-156. Dynamic Classification Filters Registers Initialization [continued]

CSR Installation Comment

Profile
Chooser

Field
Extractor

Input Set
Generator

Filters
Look Up

Match

Priority
Resolver

M
atch

Prior Filters

Packet
Flags

VSI

Packet
Type

Profile
ID

Field
Vector

Input
Set

M
asks

Sw
a p/Sym

m

Action

Action

Match

Action

613875-009 1147

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.10.3 Profile Chooser

• Control Domain (CDID) and VSI Group (VSIG) — The VSIs are mapped to control domains and
VSI groups that are used by the extractor logic. Then the CDIS and VSIG maps the Packet Type
Groups (PTGs) and the packet flags (FLGs) to packet profiles.

• Packet Types and Flags — Some combinations of the packet headers are defined by unique
identification called “packet types”. A portion of these packet types are defined by a smaller set of
PTGs. The PTG tables map the packet types per filter per, per control domain and per VSI to a small
set of 64 PTGs. On top of the PTG, there is some portion of the FLGs that are used for the
classification task. A set of 16 FLGs are selected from the global set of flags per filter and per
control domain.

Figure 7-31 shows the default profile chooser diagram.

7.10.3.1 Settings for the Classification Filters

See default setting of the packet Profile IDs and the field vectors for the FD, Hash, and PE in Section
7.10.13, “Default Extractor Configuration”.

Figure 7-31. Profile Chooser - Packet Types to Profile ID and Input Set Flow

Direction,
population,

PF
(5 bit)

Control Domain
(4 bit map)

Flags (64 bit)

FLG
(16 bit)

PTYPE
(10 bit)

XLT1
8K x 8 bit

SRAM

PTG
(8 bit)

Profile Select
TCAM

(512 lines)
Profile ID

Mask and
Swap Fields Input SetFV Table

(128 x 48 Byte)

Field
Vector

VSI Index
(9 bit)

XLT2
1K x 12 bit

SRAM

VSI Group
(12 bit)

8 x
Config

Xlt1_adsel
[2:0]

8 x
Config

Flg i sel
[5:0], i=0...15

1 hot

xlt2_adsel[0], md2[8,0]

XLT0
SRAM

16x
64:1

CDID (3 bit)

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1148 613875-009

7.10.4 Input Sets Generator

The input set is cleared to zero’s for every packet (before the fields are posted to it from the field
vector). The hardware supports any mapping between the field vector to the input set. Yet, in most
cases (default setting), the input set equals exactly to the field vector. Cases in which the input set
differs from the field vectors relates to swapped fields, masked fields, and asymmetric input sets. Bit
fields that are masked, are replaced by zeros in the input set.

7.10.4.1 Generating PE Input Set from the Field Vector

Unique parameters of the FV to input set extraction of the PE filter are:

• The FV is mapped to the Input Set vector by the GLQF_PEINSET registers. Default settings of these
registers (loaded from the NVM) map all valid words in the FV to the Input Set vector at the same
word offsets. The GLQF_PEINSET is a two-dimensional array: 32 profiles x 24 words offsets per
profile.

• Masking option. The mask registers are used to mask bit fields per words in the FV. There is a global
set of 16 x mask registers for the PE filter. A mask register can mask out any selected bits in a FV
word. Multiple mask registers can be selected for a packet profile. Multiple profiles can share the
same registers. The mask options are defined by the following registers:

— 16 x GLQF_PEMASK registers — Each register defines the byte index in the input set that should
be masked and the 16-bit masking.

— 32 x GLQF_PEMASK_SEL registers — Register ‘n’ in the array is associated with packet profile
‘n’. It defines the GLQF_PEMASK registers that should be used for profile ‘n’.

Note: By default setting (loaded from the NVM), none of the words in the input set are masked.

7.10.4.2 Generating FD Input Set from the Field Vector

Unique parameters of the FV to input set extraction of the FD filter are:

• The FV is mapped to the Input Set vector by the GLQF_FDINSET registers. Default settings of these
registers (loaded from the NVM) map all valid words in the FV to the Input Set vector at the same
word offsets. The GLQF_FDINSET is a two-dimensional array: 128 profiles x 24 words offsets per
profile.

• The swap option is defined by the GLQF_FDSWAP registers. The swap functionality is meaningful
only at FD programming time with the GLQF_FDINSET registers. If the SWAP flag in the
programming descriptor is set, the input set is defined by the GLQF_FDSWAP registers. Otherwise,
it is defined by the GLQF_FDINSET registers.

• Masking option. The mask registers are used to mask bit fields per words in the input set. There is
a global set of 32 x mask registers for the FD filter. A mask register can mask out any selected bits
in an input set word. Multiple mask registers can be selected for a packet profile. Multiple profiles
can share the same registers. The mask options are defined by the following registers:

— 32 x GLQF_FDMASK registers — Each register defines the byte index in the input set that
should be masked and the 16-bit masking.

— 128 x GLQF_FDMASK_SEL — Register ‘n’ in the array is associated with packet profile ‘n’. It
defines the GLQF_FDMASK registers that should be used for profile ‘n’.

Note: By default setting (loaded from the NVM), none of the words in the input set are masked.

613875-009 1149

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.10.4.3 Generating Hash Input Set from the Field Vector

Unique parameters of the FV to input set extraction of the Hash filter are:

• The FV is mapped to the Input Set vector by the GLQF_HINSET registers. Default settings of these
registers (loaded from the NVM) map all valid words in the FV to the Input Set vector at the same
word offsets. The GLQF_HINSET is a two-dimensional array: 128 profiles x 24 words offsets per
profile.

• Symmetric hash is defined by the GLQF_HSYMM registers. Symmetric hash is enabled for a VSI (by
the Hash Scheme field in the Add VSI AQC). The symmetric hash registers structure is identical to
the GLQF_HINSET registers with one difference: the Valid flag in the GLQF_HINSET registers is
replaced by a SYMM_ENA flag in the GLQF_HSYMM registers. For each word with active SYMM_ENA
flag, the input set is defined by a XOR function of the words defined by the matched GLQF_HSYMM
and GLQF_HINSET registers.

• Masking option. The mask registers are used to mask bit fields per words in the input set. There is
a global set of 32 x mask registers for the Hash filter. A mask register can mask out any selected
bits in an input set word. The masking operation is executed after any possible symmetric action
described above. Multiple mask registers can be selected for a packet profile. Multiple profiles can
share the same registers. The mask options are defined by the following registers:

• 32 x GLQF_HMASK registers — Each register defines the byte index in the input set that should be
masked and the 16-bit masking.

• 128 x GLQF_HMASK_SEL — Register ‘n’ in the array is associated with packet profile ‘n’. It defines
the GLQF_HMASK registers that should be used for profile ‘n’.

Note: By default setting (loaded from the NVM), none of the words in the input set are masked.

7.10.5 Switch Filters

The switch filters are enabled only for packets that are not rejected for filtering by exception rules that
are listed in Section 7.10.1.5. For queue-related programming in the switch, see Section 7.8.12.3.1.

7.10.6 ACL Filters

The ACL filters are enabled only for packets that are not rejected for filtering by exception rules that are
listed in Section 7.10.1.5.

Some of the ACL filters can be programmed to define a target queue or a target region of queues for
the hash filter. Section 7.9.3.4.3.2 for details.

7.10.7 Hash Filter

The hash filter is a mechanism to statistically distribute received packets into several receive queues.
Software allocates the queues among the different processors, therefore sharing the load of packet
processing among several processors. One of the most common use cases of hash filters is the RSS
hash defined by Microsoft and used widely by other operating systems as well. Other generic hash
functions are used by embedded systems as well. The hash filter directs the received packets to queue
index within a “region” of queues of the VSI, as illustrated in the Figure 7-32. Listed below are some
terms relating the hash filter.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1150 613875-009

Hash Filter Candidate Rules

The receive packet is not rejected for the filter by the exception rules listed in Section 7.10.1.5. The
Hash filter is enabled per VSI group as shown in Section 7.10.13.1 (the VSI is associated to a VSI
group (VSIG) that is enabled for the Hash filter by profile selection mechanism).

The hash filter priority selecting a queue is hard-coded as the lowest priority between ACL filter, PE
filter, L2 Switch filter, and FD filter.

Queue Index

The queue index within the VSI is defined by the sum of the Region base and the output of the hash
lookup table (modulo the region size).

Queue Region

A region of queues is defined by two parameters: Region base and Region Size. The region of
queues can be defined by one of the following options in priority order:

1. Switch filters with ToQueue parameters greater than zero. In this case the region base is the
“Queue Number” parameter and the region size is equal to 2^(ToQueue). Priority is defined by
the ToQueue_PRIO of the switch filter. If the packet does not match the RSS filter, the packet is
directed to queue zero of the VSI.

2. ACL filters with ToQueue parameters greater than zero - same functionality as the switch filter.
In this case, the region base is the “Queue Number” parameter and the region size is equal to
2^(ToQueue), (same as the switch filters). Priority is defined by the ToQueue_PRIO of the FD
filter.

3. FD filter with ToQueue parameter greater than zero - same functionality as the switch filter. In
this case, the region base is the “Queue Number” parameter and the region size is equal to
2^(ToQueue), (same as the switch filters). Priority is defined by the ToQueue_PRIO of the FD
filter.

4. The packet’s profile is indicated as “Override TC” by one of 32 global GLQF_PROF2TC tables.
These tables are enabled for VSIs by the TC override option and Profile Override TC fields in the
Add VSI admin command. In this case, the region base and size are defined by the TC region
described below. Priority is lower than the above filters switch and FD filters, and higher than the
TC of the packet.

5. The TC of the packet defines the queue region. The region base and size are defined by the
number and offset of Rx-Queues per TCs parameters in the Add VSI admin command. Priority is
lowest of all the above options.

Hash LUT

The queue index in the region is defined by a hash value on the input set of the packet. The LS bits
of the hash value selects an entry in the hash LUT. Then the LS bits of the programmed value in the
LUT is the queue index within the region. The number of bits used to select the entry in the LUT
match the LUT size. The number of LS bits taken from the LUT are defined by the region size. The
E810 supports three sizes of Hash LUTs. Any of these LUT options is selected per VSI according to
the RSS LUT selection field in the Add VSI command.

• 8 LUTs (one table per PF) that support 256 queues per region. These tables are 2K entries and
support a reduces size of 512 entries and a reduced size of 128 entries as well (controlled by
the HSIZE field in the PFQF_HLUT_SIZE registers).

• 16 global LUTs of 512 entries that support 64 queues per region. These tables support a
reduces size of 128 entries (controlled by the HSIZE field in the matched GLQF_HLUT_SIZE
registers). Selecting the Global LUTs, a specific table is selected by the RSS global LUT
parameter in the Add VSI command.

613875-009 1151

Intel® Ethernet Controller E810 Datasheet
Packet Processing

• Per VSI LUT with 64 entries that support 16 queues per region.

Hash Key

See Section 7.10.10.1, “Microsoft Toeplitz-Based Hash”.

Hash Function

The hash is calculated on the input set words. Masked bits within the input set are replaced by
zeros for the hash calculation (as indicated in Section 7.10.4). The Hash signature is used to select
a queue index as explained above. It can also be reported in the receive descriptor as detailed in
Section 7.6.3.

The E810 supports one of the following 32-bit hash schemes selected per-VSI by the Hash Scheme
field in the Add VSI command

• Toeplitz Hash — The hash key for the VSI is defined by the VSIQF_HKEY registers (detailed in
Section 7.10.10).

• Symmetric Toeplitz Hash — The hash key is defined as above by the VSIQF_HKEY registers.
Symmetric hash provides the same signature for packets in both Tx and Rx direction. It is done
by a XOR function between “source” and “destination” tuples (see description of the
GLQF_HSYMM registers in Section 7.10.4.3 and Section 7.10.10).

• XOR Hash — Simple XOR function between the DWords of the input set. Furthermore, 16-bit
XOR function is made if the required XOR output is 16 bits or less and further 8-bit XOR is made
if the required XOR output is 8 bits or less.

• Jenkin's Hash — This options is provided only for small input sets up to four bytes long
(detailed in Section 7.10.10).

Figure 7-32. Hash Filter Block Diagram

Rx Packet Hash Filter
Input Set

Hash
(32 bit)

32 bit Hash Signature

8 x TC Region
Base & Size

FD Region Base

Region Base

Hash LUT Enable
nشLS bits

Queue Index
within the region

TC Region Size

Packet TC

Packet
Profile

Packet Profile Override TC Region FD Region Size

Switch Region hit /
ACL Region hit /

FD Region hit

LS bits

Switch Region Base

Switch Region Size

ACL Region Base

ACL Region Size

Profile
to TC

Select

Select

Select

n

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1152 613875-009

7.10.8 Flow Director (FD) Filter

The Flow Director (FD) filter is aimed to match specific flow or flows with “some” action. The FD filter is
based on “exact” match of the selected tuples named as “input set” for filtering purposes. The FD filter
is composed of the following components.

FD Filter Candidacy Rules

The FD filtering is enabled by the following parameters:

• The receive packet is not rejected for the filter by the exception rules listed in Section 7.10.1.5.

• The FD filter is enabled for the parent PF by the FD_ENA flag in the PFQF_FD_ENA register.

• The FD filter is enabled for the VSI by the FD_ENA flag in the Add VSI admin command.

• The FD filter is enabled per VSI group as shown in Section 7.10.13.1 (the VSI is associated to a
VSI group that is enabled for the FD filter by the VSIG_FD parameter in the Add VSI admin
command).

• Filtering is also qualified per packet for matched profile before a search in FD table is triggered.

FD Filter Match Criteria

Packet matches a filter entry if the following packet’s parameters match the filter context:

• Input Set fields.

• Packet’s VSI and Packet profile.

Filter Action

The filter actions are defined by specific fields in the FD programing descriptor and are listed here
(see Section 10.5.3.3 for FD programming descriptor structure):

• Pass/Reject the packet is defined by the DROP flag.

• Destination queue or region of queues for the hash filter and its priority are defined by the
QINDEX, ToQueue and ToQueue_PRIO parameters in the FD programming descriptor. See
Figure 7-32 for details on region of queues action.

• Statistic counters (see Section 7.10.8.1 for more details). Packet and byte counters are enabled
by the STAT_CNT and STAT_ENA. The STAT_ENA field could be set to one of the following: No
stat counter:

— Packet counter

— Both packet and byte counters

• Report the FD filter ID (FDID) and its priority in the Rx-Descriptor are defined by the FDID_VAL,
FDID_MDID, and FDID_PRIO parameters in the FD programming descriptor.

• Post selected fields from the packet or metadata of the packet to the Rx-Descriptor. The
selected fields that should be posted are defined by the DESC_PROF and DESC_PROF_PRIO
parameters in the FD programming descriptor. For more details on the Rx-Descriptor profiles,
see Section 7.6.4.

613875-009 1153

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Default Filter Action

Packets that are subjected to look up in the FD table but do no match any entry are handled
according the default FD action.

Note: In case of any default action other than drop, the relevant Rx-Descriptor reflects no hit
occurred in the FD table.

The default is defined by the following parameters in the Add VSI admin command:

• Pass/Reject the packet is defined by the Default Drop flag.

• Destination queue or region of queues parameters with a priority option as defined for packets
that hit the FD table:

— Default Queue

— Default queue group

— Default Priority.

• If the Default Drop flag is cleared and the Default Priority equals to zero, packets that miss the
FD table are handled by the next classification filter(s) according to its priority order, as shown
in Figure 7-29.

FD Programming Enable

FD filters programming is enabled by the following parameters:

• Programming is enabled for the parent PF by the FD_ENA flag in the PFQF_FD_ENA register.

• Programming is further enabled for the programming VSI by the Flow Director programming
enable flag in the Add VSI command.

• Programming is further enabled for the VSI defined by the FD_VSI field in the programming
descriptor for the best effort space or guaranteed space in the table by the Max Dedicated and
Max Shared parameters in the Add VSI command. Best effort and guaranteed spaces are
described in this section.

• All conditions for the packet match the FD filter criteria including enable for the VSI group,
matched profile, and no errors.

• Programming request that failed the above conditions is ignored silently.

Programming

FD filter programming is done through packets that pass through the FD. The packet causes an FD
Filter programming when it is associated with a “Flow Director Programming Descriptor” described
in Section 10.5.3.3 followed by packet structure that contains the filter fields.

• The descriptors used for programming (in order) are:

— Optional Context Descriptor

— Optional IPsec context descriptor

— FD filter programming descriptor

— Tx Data descriptor

Note: Programming of the FD table cannot occur if the programming packet (described
above), is dropped by any of the pipeline mechanisms.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1154 613875-009

• Programming can be selected to be on the Guaranteed space or Best Effort space according to
the FD_SPACE field in the FD programming descriptor. It can be one of the following options:

— Guaranteed

— Best Effort

— Prefer-Guaranteed

— Prefer-Best Effort

• Programming completion status can be reported back (by the “Programming Status” Descriptor
described in Section 10.4.2.2.3). It is enabled by the COMP_REP field in the programming
descriptor that can be one of the following options:

— No completion status

— Completion status on failed programing

— Completion status at all cases.

• The receive queue for the completion status is selected by the COMP_QUEUE flag in the FD
programming descriptor. It selects between queue zero of the programming VSI or Reporting
Queue field in the Add VSI admin command.

• ToQueue field in the FD programming descriptor. If there are no descriptors in the target
receive queue the completion indication is dropped and counted as a dropped packet by the
GLV_RDPC counter of the VSI.

• The packet that is used to program the filter can be a single packet or a TSO and it can be
transmitted or not depending on the Dummy flag in the transmit data descriptor.

• Reprogramming an existing filter updates its parameters.

• The “source” and “destination” fields in the transmitted packets of the filter programming are
usually presented in a reversed order with respect to the expected received packets. It can be
adjusted by the device.

Filter Removal

Filters are removed in one of the following options:

• Remove a single filter by the software using the FD filter programming sequence (as above).

• Auto-evict a single filter by the hardware following a transmission or reception of TCP packet
with FIN or RST flags. Packets that are candidates for auto-eviction are enabled per-profile by
the GLQF_FDEVICTENA. The TCP flags that matters for auto-eviction are defined by the
GLQF_FDEVICTFLAG register. Filters are enabled for auto-evict by the EVICT_ENA flag in the
filter programming descriptor. The auto-eviction is also qualified per VSI by the appropriate
VSIQF_FD_CTL1.EVICT_ENA bit and per profile by the appropriate GLQF_FDEVICTENA.

• PF Reset — Auto-evict all filters of the PF following a PF reset.

• VF Reset — As part of the VF reset flow the parent PF software is expected to initiate a request
to remove all the filters of all the VSIs of the VF.

• VM Reset — As part of the VM reset flow the parent PF software is expected to initiate a
request to remove all the filters for the VM VSI.

• Software initiated request to remove all filters of the PF(VSI of the PF) or a VSI — It is
done by initiating the Clear FD Table admin command. Removing the filters of a PF removes the
filters of all VSIs of the PF. This action can be done during nominal operation without impacting
the functionality of other entities.

613875-009 1155

Intel® Ethernet Controller E810 Datasheet
Packet Processing

VSI Rules - Summary

Table 7-157 summarizes the VSI’s FD actions and validity rules:

FD Table Size and Space

The FD table is stored in the device and can hold up to 16K filters. There are two spaces in the FD
table: Guaranteed space and Best Effort space.

• Global Setting — These spaces are defined for the whole device by the
GLQF_FD_SIZE.FD_GSIZE and GLQF_FD_SIZE.FD_BSIZE registers. Each space can be defined
up to 16K filters as long as the sum of the two does not exceed the table size (of 16K filters).

• Per PF Setting — Each PF can be allocated a guaranteed space and best effort space by the
PFQF_FD_SIZE.FD_GSIZE and PFQF_FD_SIZE.FD_BSIZE registers. Each space can be defined
up to 16K filters as long as the sum of the Guaranteed spaces of all the PFs do not exceed the
global guaranteed space and as long as the best effort of each PF does not exceed the global
best effort space.

• Per VSI Setting — Each VSI can be allocated a guaranteed space and best effort space by the
VSIQF_FD_SIZE.FD_GSIZE and VSIQF_FD_SIZE.FD_BSIZE registers. Each space can be
defined up to 16K minus 1 filters as long as the sum of the Guaranteed spaces of all the VSIs of
a PF do not exceed guaranteed space of its parent PF, and as long as the best effort of each VSI
does not exceed its parent PF’s best effort space.

At programming, the software can chose the space on which the filter is counted. If there is no
space on the selected space, the programming request is rejected.

The software can track the number of programmed filters.

• Per PF — By PFQF_FD_CNT.FD_GCNT and PFQF_FD_CNT.FD_BCNT counters.

• Per VSI — By VSIQF_FD_CNT.FD_GCNT and VSIQF_FD_CNT.FD_BCNT counters.

• Globally — By the GLQF_FD_CNT.FD_GCNT and GLQF_FD_CNT.FD_BCNT counters.

FD Filter Context

Each filter entry is consisted of 64 bytes with the following parameters:

• Parameters extracted from the packet — Input Set (48 bytes) and the Matched packet
profile.

• Parameters from the programming descriptor — Target Queue and control, Filter ID and
control; Packet’s VSI, Statistic Counter, Receive Descriptor Profile and control, and Other
control flags.

Table 7-157. VSI Rules - Summary

Action/Validity Check The VSI by which the Action/Validity is Checked / Configuration Completion

Enable for programming CFG_ENA for the source VSI and FD_ENA for the parent PF.

Programming Budget Guaranteed and Best Effort spaces for the VSI defined by the FD_VSI field in the FD
programming descriptor.

Enable for Filtering FLT_ENA for the destination VSI + FD_ENA for the parent PF.

VSI in the FD filter
context

Equals to the FD_VSI field in the FD programming descriptor.

Tx ATR filter removal The source VSI from which the packet is sent is compared against the VSI in the filter context.

Rx ATR filter removal The destination VSI is compared against the VSI in the filter context.

Configuration Completion Completion is reported to the same VSI that initiated the configuration/removal command.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1156 613875-009

• Self table management parameters — Linked list pointers.

• Self storage managed parameters — PF/VF/VSI identification, Valid flag, and Dirty flag.

FD Filter Match Criteria

Packet matches a filter entry if the following packet’s parameters match the filter context:

• Input Set fields

• Packet’s VSI

• Packet profile

Hash and Buckets

The FD table is organized in buckets. Buckets are sets of filters addressed by a hash function on the
input set (Toeplitz hash using a global key defined by the GLQF_HKEY registers). Multiple filters
might share the same hash. In such case the hardware checks for perfect match between these
filters one entry at a time. The number of searches is compared against the FDLONG parameter in
the GLQF_FD_CTL register.

7.10.8.1 Statistic Counters

There are 8K statistic counters that can be used by the FD filters. These counters are organized in two
banks of 4K counters each. The statistic counters are allocated in blocks of 256 counters to the PFs by
the Allocate Resource admin command (resource type = Flow Director counter block). An FD filter can
assign no counters; a single counter (counting bytes of packets) or count both (bytes and packets).
Assigning a single counter, software can select any counter out of the two banks. Assigning two
counters, software defines a single counter index in the two banks for these counters. In this case, the
packets are counted in bank zero and the bytes are counted in bank one.

7.10.8.2 Performance

7.10.8.2.1 Programming and Removal Performance Targets

The FD filter is expected to be used by two main usage models. Filters programming initiated by
software application (above the driver). And filters programmed and owned by the driver (usually for
ATR functionality).

Expected filter programming rate initiated by software application is in the range of up to 0.5M filters
per second. Same rate of removing filters. Targeting Si performance for programming and removing
filters at double rate of the above.

Expected filter programming by the driver is in the order of once every 20 packets. Expected
auto-removal by FIN/RST is in the order of 1M filters per second.

Notes: The hardware does not provision the rate of programming nor the rate of transmit FIN/RST
packets that are candidates for auto-removal of filters from the table. It is the responsibility
of software to follow the above programming and auto-removal performance. Exceeding
these rates, might impact transmission and reception rates. Therefore, the PF driver should
enable direct programming and auto filter removal only for trusted VSIs. The PF driver could
add and remove FD filters for non-trusted VSIs that are not enabled for direct programming
(non-trusted VFs).

The interface by which these VFs request FD filter programming and remove FD filters is
outside the scope of this document.

613875-009 1157

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.10.9 Protocol Engine (PE) Filters

The PE filters direct received packets to the Protocol Engine. It is mainly (but not limited) to iWARP and
RoCEv2 traffic. The PE filter is composed of an APBVT filter and a Quad Hash (QH) filter described
below.

Accelerated Port Bit Vector Table - APBVT

The L4 destination port number is compared against an internal Accelerated Port Bit Vector Table
(GLQF_APBVT registers). The E810 includes a 64K x 1-bit vector for the whole device (all eight LAN
ports). An active bit in the table means that the port number is enabled by one (or more) functions.
Programming the table is done by the PE interface, as described in Section 11.5.3.18.

For the sake of the APBVT functionality, the destination L4 port number is posted by the extractor
logic to word zero in the Field Vector.

Quad Hash Filter - QH

The QH Filter checks for perfect match between selected fields in the packet (called input set) and
pre-programmed values in the filter table. The E810 stores some of the QH filters in an internal
cache (holding up to 1K filters) while the other filters are kept in host memory (FPM). The
maximum number of PE contexts for the device is 256K. These contexts can be allocated in a
flexible manner between the functions with a maximum limit per function of 256K minus 1.

Filter Candidate Rules

Packets are forwarded to the PE if they meet the following conditions:

• The receive packet is not rejected for the filter by the exception rules listed in Section 7.10.1.5.

• Receive to a PF — The PE is enabled for the PF by the PE_ENA flag in the PFQF_PE_ENA register.

• Receive to a VF — The PE is enabled for the VF and its parent PF by the PE_ENA flags in the
matched VP/PFQF_PECTL registers.

• Receive to a VSI — The PE is enabled for the VSI by the PE_ENA flags in the matched
VSIQF_PE_CTL1 register (should be set by add VSI).

• The packet profile is enabled for the VSI group as shown in Table 7-173 (the VSI is associated
to a VSI group for the PE by the VSIG_PE parameter in the Add VSI admin command). The add
VSI admin command PE enable sets PE_FLTENA bit in the corresponding VSIQF_PE_CTRL1
CSR.

• The packet’s TC is enabled by the PFQF_PE_TC_CTL registers (programmed by the PF driver).

• The packet hits the APBVT table (if required by the APBVT_ENA flag in the GLQF_PE_CTL2
register of the matched packet profile). By default, iWARP packets are candidate for the APBVT.
If the packet is candidate for the APBVT, hitting the filter is a prerequisite condition for lookup in
the QH filter.

• The packet hits the QH filter (if required by the TO_QH field in the GLQF_PE_CTL2 register of
the matched packet profile). By default setting:

— iWARP packets must match the QH filter as a criteria for PE hit.

— Non-unicast RoCEv2 packets are subjected to QH filter check but they are forwarded to the
PE regardless of hit or miss.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1158 613875-009

7.10.9.1 PE Quad Hash Filter (QH filter)

The Quad Hash Filter (QH filter) is aimed to match specific flows with the protocol engine. The E810
maintains some of the Quad Hash filter in internal cache, while the other filters are stored in host
memory (FPM). The number of quad hash filters per function is a function of the number of flows
supported by that function. The Quad Hash Filter is composed of the following components:

QH Filter Candidate Rules

See Section 7.10.9, “Protocol Engine (PE) Filters”.

QH Filter Match Criteria

A packet matches a filter entry if the following packet’s parameters match the filter context:

• Input Set fields

• Packet’s VSI

• Packet profile

Filter Action

The filter provides a hit/miss indication. In the case of hit, the matched quad hash filter index (QPN)
is reported to the PE together with the packet. In case of a miss, the destination queue pair from
the packet is reported to the PE with the packet.

Filter Programming

A QH filter is added or removed by the PE (using direct internal interface to the filter logic). As part
of the filter parameters, the PE provides the identification fields, the packet’s profile, and the QPN.

Note: A filter should be programmed by the PE only if the PF or VF are enabled for the PE and
the packet profile is enabled for the VSI group.

Filter Removal

Filters are removed in one of the following options:

• Remove a single filter by the PE using its programming interface.

• PF Reset — Auto-evict all filters of the PF and its VFs following a PF reset. After the reset is
completed, or before the PE QH filter is re-enabled, the software driver must clear all the filter
entries in the Hash space in the FPM (the Hash space is indicated by PEHSIZE in the
Figure 7-33). Only then it can set the PE_ENA flag in the PF/VPQF_PE_ENA register.

• VF Reset initiated by the software driver — Auto-evict all filters of the VFs following a VF reset.
After the reset is completed, or before the PE QH filter is re-enabled, the parent PF software
driver must clear all the filter entries in the Hash space in the FPM (the Hash space is indicated
by PEHSIZE in Figure 7-33). Only then it can set the PE_ENA flag in the VPQF_PE_ENA register.

• Explicit request by the PE to remove all filters of the function (PF or VF) from the cache. The PE
driver initiates a request to clear all filters of a function through the CSR fabric.

QH Table Size

The E810 supports up to 256K Quad Hash contexts for the whole device. These filters are fetched to
internal cache that can hold up to 1K filters. The number of supported QH filters is limited by the
PEDSIZE parameters in the PFQF_PE_CTL register for the PF and VPQF_PE_CTL registers for the
VFs. Programming request for a QH filter above these limits is rejected.

613875-009 1159

Intel® Ethernet Controller E810 Datasheet
Packet Processing

QH Filter Context

Each filter entry is consisted of 64 bytes.

Storage in Host Memory

The filters are backed up in the function’s private memory (FPM) in buckets as described in
Figure 7-33. Filters are stored in the “hash space” at address defined by the hash value that is
calculated on the input set (the hash function is Toeplitz using a global key defined by the
GLQF_HKEY registers). If this location is occupied (hash collision), the filter is stored in a free
location in the “collision space”.

The filter in the “hash space” points to all the other filters in the “collision space” that share the
same hash. It is organized in a linked list structure. The number of supported buckets (hash space)
and the number of supported filters (collision space) are defined per function by the PEHSIZE and
PEDSIZE parameters in the PFQF_PE_CTL and VPQF_PE_CTL registers. Software should clear the
hash space in the FPM before filters are programmed. The QH filters of the PF and its VFs are stored
in the FPM of the PF.

The actual number of Hash Table entries for the PF is programmed using the PFQF_PE_CTL1 and
PFQF_PE_CTL2. Per VF it is programmed through the VPQF_PE_CTL1 and VPQF_PE_CTL2 registers.

7.10.9.1.1 Performance

7.10.9.1.1.1 Programming and Removal Performance Targets

Expected filter programming and removal rate equals to 0.5M filters per second.

7.10.9.1.1.2 Buckets Length Impact on Filter Search Performance

The E810 is able to sustain its maximum packet rate when the matched QH filters are stored in the
cache. In the case of miss, the E810 fetches the filters from the FPM (host memory). Host memory
latency for fetching the filtering depends on the bucket length. The E810 reports the number of buckets
for the function in the PF/VPQF_PECNT_0.BUCKETCNT. It also reports the number of programmed filters
by the function in the PF/VPQF_PECNT_1 registers. The ratio between these two numbers provides an
indication for the QH table distribution and hence for possible long buckets.

On top of it the PE QH table counts each packet positioning in its bucket at reception time. Received
packets at a position shorter or equal than GLQF_PE_CTL.PELONG are counted by
PFQF_PE_CLSN0.HITSBCNT, while packets at position longer than PELONG are counted by the
PFQF_PE_CLSN1.HITLBCNT. When GLQF_PE_CTL.PELONG equals 0, the functionality is disabled and all
packets are counted by PFQF_PE_CLSN1. The counting is qualified by PFQF_PE_ST_CTL CSR.

Figure 7-33. Buckets and Collided Filter Entries Space

PEDSIZE

PEHSIZEHash Space: First filter (or the only
filter) in a bucket linked list

Collision Space: Multiple filters that
collide on the same hash

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1160 613875-009

The PELONG threshold applies to all PE packets, including iWARP and RoCEv2. However, for RoCEv2
packet, where there is no QH lookup, the “position in bucket” is always considered as shorter than or
equal to GLQF_PE_CTL.PELONG.

Received packets that match PE filters at position longer than GLQF_PE_CTL.PELONG are reported by
the PELONGB flag in the receive descriptor. Thus, software can use these parameters as a criteria for
the QH table performance. It then could decide to remove some filters that possibly hit performance or
flush the whole table.

7.10.10 Hash Functions

The E810 supports several hash functions to be used by the various filters:

• Bucket number of the FD filter and the PE quad hash filter use the Toeplitz scheme with a shared
global key defined by the GLQF_HKEY registers.

• The hash filter uses one of the following schemes selected per VSI by the Hash Scheme field in the
Add VSI command.

— Toeplitz Hash — The hash key for the VSI is defined by the VSIQF_HKEY registers (detailed in
Section 7.10.10.1).

— Symmetric Toeplitz Hash — The hash key is defined as above by the VSIQF_HKEY registers.
Symmetric hash is calculated by XOR function between “source” and “destination” tuples
providing the same hash signature for Tx and Rx packets of the same “flows” (detailed in
Section 7.10.10.2).

— XOR Hash — Simple XOR hash function between the DWords of the input set. The input set is
padded with zeros if not whole number of DWords. If the hash function is used as an address to
a lookup table smaller or equal then 64K entries, a 16-bit hash is used by XOR function of the
16 MS bits and 16 LS bits of the 32-bit hash. If the hash function is used as an address to a
lookup table smaller or equal than 256 entries, an 8-bit hash is used by a XOR function of the
four bytes of the 32-bit hash.

— Jenkin's Hash — This options is provided only for small input sets up to four bytes long
(detailed in Section 7.10.11).

The following notations are used to describe the hash functions:

• Ordering is big endian in both bytes and bits. For example, the IP Address 161.142.100.80
translates into 0xA18E6450.

• A “^” denotes bit-wise XOR operation of same-width vectors.

• @x-y denotes bytes x through y (inclusive) of the incoming packet, where Byte 0 is the first byte of
the IP header. In other words, all byte-offsets are considered as offsets into a packet where the
framing layer header has been stripped out. Therefore, the source IPv4 Address is referred to as
@12-15, while the destination IPv4 Address is referred to as @16-19.

• @x-y, @v-w denotes concatenation of bytes x-y, followed by bytes v-w, preserving the order in
which they occurred in the packet.

7.10.10.1 Microsoft Toeplitz-Based Hash

The hash uses a random secret key of 416 bits (52 bytes). The key is defined per VSI by the
VSIQF_HKEY registers. The algorithm works by examining each bit of the hash input from left to right.
Our nomenclature defines left and right for a byte-array as follows:

613875-009 1161

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Given an array K with k bytes, our nomenclature assumes that the array is laid out as follows:

K[0] K[1] K[2] … K[k-1]

Where:

• K[0] is the left-most byte, and the MSB of K[0] is the left-most bit.

• K[k-1] is the right-most byte, and the LSB of K[k-1] is the right-most bit.

ComputeHash(input[], N)
 For input[] of length N bytes (8N bits) and a random secret key K of 416 bits
 Result = 0;
 For each bit b in input[] {
 if (b == 1) then Result ^= (left-most 32 bits of K);
 shift K left 1 bit position; // Cyclic shift while the right-most bit of
 // K gets the leftmost bit of K
}
return Result;

7.10.10.1.1 Pseudo-Code Examples

The following four pseudo-code examples are intended to help clarify exactly how the hash is performed
in four cases: IPv4 with and without ability to parse the L4 header, and IPv6 with and without a L4
header.

7.10.10.1.2 RSS Verification Suite

This section provides a verification suite used to validate that the hash function is computed according
to MSFT nomenclature.

Assume that the random key byte-stream is:

0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00

Table 7-158. Examples of Input Fields for the Hash Function

Packet Type Hash Input Hash Result

IPv4 with TCP or UDP SourceAddress, DestinationAddress, SourcePort, DestinationPort:
Input[12] = @12-15, @16-19, @20-21, @22-23

Result = ComputeHash(Input, 12)

IPv4 without L4 SourceAddress, DestinationAddress:
Input[12] = @12-15, @16-19

Result = ComputeHash(Input, 8)

IPv6 with TCP or UDP SourceAddress, DestinationAddress, SourcePort, DestinationPort:
Input[12] = @8-23, @24-39, @40-41, @42-43

Result = ComputeHash(Input, 36)

IPv6 without L4 SourceAddress, DestinationAddress:
Input[12] = @8-23, @24-39

Result = ComputeHash(Input, 32)

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1162 613875-009

The IPv6 Address tuples are only for verification purposes, and might not make sense as a tuple.

7.10.10.2 Symmetric Hash

A symmetric hash provides the same value if its respective source and destination fields are swapped.
For example, suppose that the hash is done on the frame source and destination IP Addresses. A
symmetric hash guarantees that: hash(src IP, dst IP) = hash(dst IP, src IP).

The motivation behind symmetric hash is to route frames of a specific “flow” between two nodes to the
same receive queue independent of the transmission direction (Tx or Rx).

The symmetric hash is useful for matched pairs of tuples like:

• IP Addresses

• L4 port numbers

• MAC Addresses

Symmetric hash is defined per packet profile by its GLQF_HSYMM registers. For each word with active
SYMM flag in the GLQF_HSYMM registers, the input set is defined by a XOR function of the words
defined by the matched GLQF_HSYMM and GLQF_HINSET registers.

7.10.10.2.1 Symmetric Hash Example for IPv4 with TCP

Non Symmetric input vector is:

Input[12] = @12-15, @16-19, @20-21, @22-23
Symmetric input vector is:

Input[12] = @12-15 ^ @16-19, @12-15 ^ @16-19, @20-21 ^ @22-23, @20-21 ^ @22-23.

Table 7-159. IPv4

Destination Address/Port Source Address/Port IPv4 Only IPv4 with TCP

161.142.100.80 / 1766 66.9.149.187 / 2794 0x323E8FC2 0x51CCC178

65.69.140.83 / 4739 199.92.111.2 / 14230 0xD718262A 0xC626B0EA

12.22.207.184 / 38024 24.19.198.95 / 12898 0xD2D0A5DE 0x5C2B394A

209.142.163.6 / 2217 38.27.205.30 / 48228 0x82989176 0xAFC7327F

202.188.127.2 / 1303 153.39.163.191 / 44251 0x5D1809C5 0x10E828A2

Table 7-160. IPv6

Destination Address/Port Source Address/Port IPv4 Only IPv4 with TCP

3FFE:2501:200:3:1 / 1766 3FFE:2501:200:1FFF:7 / 2794 0x2CC18CD5 0x40207D3D

FF02:1 / 4739 3FFE:501:8:260:97FF:FE40:EFAB / 14230 0x0F0C461C 0xDDE51BBF

FE80:200:F8FF:FE21:67CF / 38024 3FFE:1900:4545:3:200:F8FF:FE21:67CF / 44251 0x4B61E985 0x02D1FEEF

613875-009 1163

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.10.11 Receive Filters Admin Commands

7.10.11.1 Set RSS Key (0x0B02)

This command is used to set the RSS Key of a VSI. It can be used by a PF or a VF for VSIs assigned to
it. A PF can set the RSS key on behalf of its VFs.

The command buffer of this command contains the RSS key to set:

Table 7-161. Set RSS Key Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0B02 Command opcode.

Datalen 4-5 0x34 Length of buffer. Should be equal to 0x34 (hash key size).

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI# 16-17 0x0 Bit 15: Valid VSI#
Must always be set. Ignored by firmware.

Bits 14:10: Reserved
Bits 9:0: VSI Number

Reserved 18-23 0x0 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Offset Content

0x0 - 0x27 Standard RSS Key

0x28 - 0x33 Extended hash key. Must be zero for regular RSS.

Table 7-162. Set RSS Key Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0B02 Command opcode.

Datalen 4-5 0x0 No return buffer.

Return Value/VFID 6-7 Return value.
The following error values can be returned:

ENOENT = If not a valid VSI.
EACCES = If the VSI is not owned by this PF/VF.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 0x0 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1164 613875-009

7.10.11.2 Set RSS LUT (0x0B03)

This command is used to set the RSS LUT of a VSI or RSS LUT of the PF or one of the global RSS LUT.
This command can be initiated only by the PF. A VF can request its parent PF to configure an RSS LUT
for its use via software interface or by the Mailbox AQ. It can be used by a PF or a VF for VSIs assigned
to it. A PF can set the RSS LUT on behalf of its VFs.

The command buffer of this command contains the LUT to set:

Table 7-163. Set RSS LUT Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0B03 Command opcode.

Datalen 4-5 64/128/512 Length of buffer. Should be equal to 0x

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI# 16-17 Bit 15: Valid VSI#
Is set if Table Type = VSI. Otherwise, ignored by firmware.

Bits 14:10: Reserved
Bits 9:0: VSI Number

Command Flags 18-19 Bits 0:1: Table Type
00b = VSI
01b = PF
10b = Global LUT
11b = Reserved

Bits 2:3: LUT Size
For VSI LUT this field is reserved and must be set to 00b.
For PF LUT:

00b = 128
01b = 512
10b = 2K
11b = Reserved

For Global LUT:
00b = 128
01b = 512
All other values are reserved.

Bits 4:7: Global LUT Index
Relevant only for Table Type equals to “Global LUT”. Otherwise it must be 0.

Bits 15:8: Reserved

Reserved 20-23 0x0 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Offset Content

0x0 - LUT Size LUT content. Must match the format of the VSIQF_HLUT or PFQF_HLUT registers or GLQF_HLUT registers.
For VSI LUT - 64 bytes
For PF LUT or Global LUT it is according to the LUT size.

613875-009 1165

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Upon reception of this command, the firmware:

1. Checks if the VSI or the Global LUT belongs to the function that sent the command.

2. Writes the VSIQF_HLUT or PFQF_HLUT registers or GLQF_HLUT registers from the command buffer
according to the Table Type flag. When a PF table is written, the software might choose to write
only the first 128 entries.

7.10.11.3 Get RSS Key (0x0B04)

This command is used to get the RSS Key of a VSI. It can be used by a PF or a VF for VSIs assigned to
it. A PF can query the RSS key of its VFs.

Table 7-164. Set RSS LUT Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0B03 Command opcode.

Datalen 4-5 No return buffer.

Return Value/VFID 6-7 Return value.
The following error values can be returned:

ENOENT = If not a valid VSI.
EACCES = If the VSI or the global LUT is not owned by this PF.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 7-165. Get RSS Key Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0B04 Command opcode.

Datalen 4-5 0x34 Length of buffer. Should be equal to 0x34 (has key size) or more.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

VSI# 16-17 Bit 15: Valid VSI#
Must always be set. Ignored by firmware.

Bits 14:10: Reserved
Bits 9:0: VSI Number

Reserved 18-23 0x0 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1166 613875-009

Upon reception of this command, the firmware:

1. Checks if the VSI belongs to the function that sent the command using the VSI_VSI2F[VSI]
register.

2. Reads the VSIQF_HKEY[VSI] registers and fill the response buffer.

The response buffer of this command contains the RSS key currently set:

7.10.11.4 Get RSS LUT (0x0B05)

This command is used to get the RSS LUT of a VSI or RSS LUT of the PF or one of the global RSS LUT.
This command can be initiated only by the PF. A VF can request its parent PF to configure an RSS LUT
for its use via software interface or by the Mailbox AQ. It can be used by a PF or a VF for VSIs assigned
to it. A PF can query the RSS LUT of its VFs.

Table 7-166. Get RSS Key Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0B04 Command opcode.

Datalen 4-5 0x0 0x34

Return Value/VFID 6-7 Return value.
The following error values can be returned:

ENOENT = If not a valid VSI.
EACCES = If the VSI is not owned by this PF/VF.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 0x0 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Offset Content

0x0 - 0x27 Standard RSS Key

0x28 - 0x33 Extended hash key. Must be zero for regular RSS.

Table 7-167. Get RSS LUT Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0B05 Command opcode.

Datalen 4-5 64/512 Length of buffer. Should be equal to 512 or more for a PF table, or 64 or more for a
VSI table.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

613875-009 1167

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Upon reception of this command, the firmware:

1. Checks if the VSI or the Global LUT belongs to the function that sent the command.

2. Reads the VSIQF_HLUT or PFQF_HLUT registers and fill the response buffer according to the Table
Type flag. When a PF table is read, the entire 512 entries are read.

The response buffer contains the LUT currently set:

VSI# 16-17 Bit 15: Valid VSI#
Is set if Table Type = VSI. Otherwise, ignored by firmware.

Bits 14:10: Reserved
Bits 9:0: VSI Number

Command Flags 18-19 Bits 0:1: Table Type
00b = VSI
01b = PF
10b = Global LUT
11b = Reserved

Bits 2:3: Reserved
Must be set to zero.

Bits 4:7: Global LUT Index
Relevant only for Table Type equals to “Global LUT”. Otherwise it must be 0.

Bits 15:8: Reserved

Reserved 20-23 0x0 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 7-168. Get RSS LUT Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0B05 Command opcode.

Datalen 4-5 0x0 0x2

Return Value/VFID 6-7 Return value.
The following error values can be returned:

ENOENT = If not a valid VSI.
EACCES = If the VSI is not owned by this PF.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 0x0 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Offset Content

0x0 - LUT Size LUT content as read from f the VSIQF_HLUT or PFQF_HLUT registers or GLQF_HLUT registers.
For VSI LUT - 64 bytes
For PF LUT or Global LUT it is according to the LUT size.

Table 7-167. Get RSS LUT Command [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1168 613875-009

7.10.12 Filter Clearing Commands and Flows

7.10.12.1 Clear FD Table (0x0B06)

This command is used to clear the FD filters associated with a given PF or a specific VSI. Upon reception
of this command, the firmware must execute the flow described in Section 7.10.12.1.1.

Note: As part of a PF reset processing, the same flow is executed by the firmware for the PF being
reset, without the need for software to send an AQC.

Table 7-169. Clear FD Table Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0B06 Command opcode.

Reserved 4-5 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Clear_type 16 Clear Type
0x0 = Reserved
0x1 = VSI
0x2 = PF
0x3-0xFF = Reserved

Reserved 17 Reserved.

VSI_index 18-19 VSI Index
This field is not applicable and should be set to 0x0 if function type is PF.
Note: Inapplicable MSBs should always be set to 0x0.

Reserved 20-31 0x0 Reserved.

Table 7-170. Clear FD Table Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0B06 Command opcode.

Reserved 4-5 Reserved.

Return Value/VFID 6-7 Return value.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Clear_type 16 Clear Type
0x0 = Reserved
0x1 = VSI
0x2 = PF
0x3-0xFF = Reserved

Reserved 17 Reserved.

613875-009 1169

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.10.12.1.1 FD Table Clearing Flow

This section describes the flow, executed by the EMP firmware, for clearing the FD filters associated
with a given function. The flow can be either initiated by the EMP firmware, for PF reset events, or by
software using the relevant AQC.

Clearing the FD table is composed of the following main steps:

1. Block new inputs (searches and configuration) associated with the entity being cleared.

2. Wait for any ongoing/”in-flight” operations associated with the entity being cleared complete.

3. Clear/remove the table entries associated with the cleared entity.

4. Fix the filter counters so they correspond to the new filter amounts.

7.10.12.1.1.1 Clearing the FD Filter Flow

1. Set the following CSR fields:

• GLQF_FDPIPE_CLR.DIS_CFG

• GLQF_FDPIPE_CLR.DIS_FLT

• GLQF_FDPIPE_CLR.FD_BUSY

• GLQF_FDPIPE_CLR.VM_VF_TYPE to the Clear_type operand value.

• GLQF_FDPIPE_CLR.PF_NUM to the PF index.

• GLQF_FDPIPE_CLR.VM_VF_NUM to the VSI_index operand value.

Note: As a response to the CSR write, the hardware blocks new search requests and new
configuration requests for the cleared entity (PF or VSI). It does so by clearing the
following flags:

For PF entity, it clears the PFQF_FD_ENA.FD_ENA flag.

For VSI entity, it clears the FLT_ENA, CFG_ENA, and EVICT_ENA flags in the
VSIQF_FD_CTL1 register.

Once there are no pending searches and configuration requests in the pipe, the FD_BUSY
flag is cleared. This flow is implemented by initiating a “mini marker” in the post (from
extractor input till end of FLU). Following a marker done indication, the FD_BUSY flag is
cleared.

2. The EMP firmware pulls the status of GLQF_FDPIPE_CLR.FD_BUSY flag until it is cleared by the
hardware.

Note: At this stage, no additional inputs associated with the cleared entity are allowed to enter
the pipe and there are no ongoing operations associated with the cleared entity.

VSI_index 18-19 VSI Index
This field is not applicable and should be set to 0x0 if function type is PF.
Note: Inapplicable MSBs should always be set to 0x0.

Reserved 20-31 0x0 Reserved.

Table 7-170. Clear FD Table Response [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1170 613875-009

3. The EMP firmware sets the following CSR fields:

• GLQF_FDTABLE_CLR.FD_CLEAR

• GLQF_FDTABLE_CLR.FD_BUSY

• GLQF_FDTABLE_CLR.VM_VF_TYPE to the Clear_type operand value.

• GLQF_FDTABLE_CLR.VM_VF_NUM to the VSI_index operand value.

Note: As a response to the CSR write, the hardware invalidates all the filters of the requested
entity and clears the GLQF_FDTABLE_CLR.FD_BUSY flag.

4. The EMP firmware pulls the status of GLQF_FDTABLE_CLR.FD_BUSY flag until it is cleared by the
hardware.

Note: At this stage, the filter entries associated with the cleared entity are cleared/invalidated.

5. In case of a VSI entity clear:

a. The EMP firmware records the value of the following fields:

• VSIQF_FD_CNT[VSI_index].FD_GCNT

• VSIQF_FD_CNT[VSI_index].FD_BCNT

b. The EMP firmware clears VSIQF_FD_CNT[VSI_index].FD_GCNT and
VSIQF_FD_CNT[VSI_index].FD_BCNT by writing zero to the relevant fields.

c. The EMP firmware writes the values, recorded instep a above, to
PFQF_FD_SUBTRACT[PF_index].FD_GCNT and PFQF_FD_SUBTRACT[PF_index].FD_BCNT.

6. This operation subtract the filter count of the removed VSI from the PFQF_FD_CNT and
GLQF_FD_CNT registers.

Note: For PF reset case, all the counters associated with the reseted PF’s VSIs are zeroed by
software as part of the driver initialization. Therefor they do not need to be addressed as
part of the clear flow.

In case the filters associated with a PF are being cleared not as part of a PF reset event
(that is, the clearing is initiated by the software), the software can follow the steps
specified above for fixing the counters’ values. If software does not decrement the
counters, the counters’ values will not correspond to the actual amount of filters stored in
the FD storage.

7. The EMP firmware clears the GLQF_FDPIPE_CLR.DIS_CFG and GLQF_FDPIPE_CLR.DIS_FLT bits,
and reports the completion of the clear flow to software.

Note: At this stage, the PF/VSI is still not enabled yet, as hardware cleared FD_ENA(PF) or
FLT_ENA/CFG_ENA/EVICT_ENA (VSI) as described at the note in Step 1.

8. The software can re-enable the FD for the VSI/PF by setting the applicable flags:

• For PF entity, it sets the PFQF_FD_ENA.FD_ENA flag.

• For VSI entity, it sets the FLT_ENA, CFG_ENA, and EVICT_ENA flags in the VSIQF_FD_CTL1
register.

613875-009 1171

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.10.12.2 QH Table Clearing

7.10.12.2.1 QH Table Clearing Flow

This section describes the flow for clearing the PE QH table for a specific PF/VF.

Note: This flow is not expected to be executed by software, and clearing of the QH filters is done
solely by the PE firmware in functional environment. The option for software to clear the QH
filters, mentioned in this section is therefore for debug purposes only.

Note: Removing the filters from the FPM is the responsibility of software.

The same flow can also be processed by the PE firmware as part of an internal table removal process.
In this case, the instance index #0 for CSRs that appear in this flow should be replaced by instance
index #1.

1. The software/firmware sets the following CSR fields:

• GLQF_PEPIPE_CLR[0].DIS_FLT

• GLQF_PEPIPE_CLR[0].PE_BUSY

• GLQF_PEPIPE_CLR[0].PF_VF_TYPE to the Clear_type operand value.

• GLQF_PEPIPE_CLR[0].PF_VF_NUM to the VF_index operand value.

Note: As a response to the CSR write, the hardware blocks new search requests and new
configuration requests for the entity being cleared by clearing the PE_ENA flag in the
relevant PF/VPQF_PE_ENA registers.

Once there are no pending searches and pending configuration requests, the hardware
clears the GLQF_PEPIPE_CLR[0].PE_BUSY flag. This flow is implemented by initiating a
“mini marker” in the post (from extractor input till end of FLU). Following a marker done
indication, the PE_BUSY flag is cleared.

2. The software/firmware polls the status of GLQF_PEPIPE_CLR[0].PE_BUSY flag until it is cleared.

Note: At this stage, no additional inputs associated with the cleared entity are allowed to enter
the pipe and there are no ongoing operations associated with the cleared entity.

3. The software/firmware sets the following CSR fields:

• GLQF_PETABLE_CLR[0].PE_CLEAR

• GLQF_PETABLE_CLR[0].PE_BUSY

• GLQF_PETABLE_CLR[0].PF_VF_TYPE to the Clear_type operand value.

• GLQF_PETABLE_CLR[0].PF_VF_NUM to the VF_index operand value.

Note: As a response to the CSR write, the hardware clears the table pointers associated with
the cleared function and then clear the GLQF_PETABLE_CLR[0].PE_BUSY flag.

4. The software/firmware polls the status of GLQF_PETABLE_CLR[0].PE_BUSY flag until it is cleared.

Note: At this stage, the logical tables holding the QH filters for the cleared function are cleared.

5. The software/firmware clears the filter counters associated to the function being cleared:

a. For a VF Clear, clear following fields:

• VPQF_PECNT1[VF_index].FLTCNT

• VPQF_PECNT0[VF_index].BUCKETCNT

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1172 613875-009

• VPQF_PE_FLHD[VF_index].FLHD

Note: Since VF counter values are not accumulated in the associated PF counter, there is no
need to touch the PF counter in that case.

b. For a PF Clear, clear the following associated fields:

• PFQF_PECNT1[PF_index].FLTCNT

• PFQF_PECNT0[PF_index].BUCKETCNT

• PFQF_PE_FLHD[PF_index].FLHD

6. The software/firmware clears the GLQF_PEPIPE_CLR[0].DIS_FLT bit.

7. Software steps to re-enable the filter:

a. Clear the filter entries in the Hash space in the FPM (the Hash space is indicated by PEHSIZE in
the Figure 7-33).

b. Set the PF/VPQF_PE_ENA.PE_ENA flags that were cleared in the clear process.

This step is similar to any PF/VF initialization flow.

7.10.13 Default Extractor Configuration

This section describe the default configuration of the packet profile tables as well as the field vector
extraction tables in the NVM.

Note: The device is programmed to the NVM default when the driver does not load any package.
Therefore, the configuration described in this section is provided as sample configuration,
while the driver might load different configuration package during initialization.

7.10.13.1 Profiles, Field Vector, and Input Sets

Table 7-171 through Table 7-173 show the default setting of the field vector and input set for the FD
filter and Hash filter selected by control domain zero. And also the default setting of the PE quad hash
filter.

Table 7-171. Default Hash filter Field Vector Configuration

Profile
ID Description Hash Filter Field Vector Possible Symmetric

Fields

Miss the Filter - Combination of packet types and flags that do no match any profile results with a default profile index.

0 No Match None None

1 Reserved for Bypass the filter None None

IPv4 Packets

2 NonF IPv4, TCP and VSIG[2]=0 IP-S, IP-D, TCP-S, TCP-D IP-S, IP-D, TCP-S, TCP-D

3 NonF IPv4, UDP-(incl. RoCEv2) and VSIG[2]=0 IP-S, IP-D, UDP-S, UDP-D IP-S, IP-D, UDP-S, UDP-D

4 NonF IPv4, Payload/Other or Fragmented IPv4 or VSIG[2]=1 IP-S, IP-D IP-S, IP-D

IPv4 Tunneled Packets (fields are inner header fields)

5 NonF IPv4, TCP and VSIG[2]=0 IP-S, IP-D, TCP-S, TCP-D IP-S, IP-D, TCP-S, TCP-D

6 NonF IPv4, UDP-(incl. RoCEv2) and VSIG[2]=0 IP-S, IP-D, UDP-S, UDP-D IP-S, IP-D, UDP-S, UDP-D

613875-009 1173

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7 NonF IPv4, Payload/Other or Fragmented IPv4 or VSIG[2]=1 IP-S, IP-D IP-S, IP-D

IPv6 Packets

8 NonF IPv6, TCP and VSIG[1]=0 IP-S, IP-D, TCP-S, TCP-D IP-S, IP-D, TCP-S, TCP-D

9 NonF IPv6, UDP-(incl. RoCEv2) and VSIG[1]=0 IP-S, IP-D, UDP-S, UDP-D IP-S, IP-D, UDP-S, UDP-D

10 NonF IPv6, Payload/Other or Fragmented IPv6 or VSIG[1]=1 IP-S, IP-D IP-S, IP-D

IPv6 Tunneled Packets (fields are inner header fields)

11 NonF IPv6, TCP and VSIG[1]=0 IP-S, IP-D, TCP-S, TCP-D IP-S, IP-D, TCP-S, TCP-D

12 NonF IPv6, UDP-(incl. RoCEv2) and VSIG[1]=0 IP-S, IP-D, UDP-S, UDP-D IP-S, IP-D, UDP-S, UDP-D

13 NonF IPv6, Payload/Other or Fragmented IPv6 or VSIG[1]=1 IP-S, IP-D IP-S, IP-D

Notes:
• All PTGs above are derivatives of tunneled and non-tunneled packet types. For tunneled packets, it is expected that the OAM

flag is inactive. Active OAM will yield “no Match” PTG.
• By default, settings the profiles for the packet types depends on the VSIG(XLT2), as follows:

 — VSIG 0x00 — The filter is not enabled (all packet types Miss).
 — VSIG bit 1 = 1 — IPv6 packets use IP tuples only for hash.
 — VSIG bit 2 = 1 — IPv4 packets use IP tuples only for hash.
Although the different VSIGs are supported in the NVM, the NVM generate only the VSIG=0x80 case.

• In the hash filters, all fields must be “left shift” in the Input set to comply with Toeplitz RSS hash.

Table 7-172. Default FD Filters Profiles and Key Structure (Loaded from NVM)

Profile
ID PTG(XLT1) and PFLAG_G FD Filter Key Possible Swapped Field

(FD Filter)

Miss the Filter - Combination of packet types and flags that do no match any profile results with a default profile index.

0 No Match None None

1 Reserved for Bypass the filter None None

IPv4 Packets

2 NonF IPv4, TCP, SYN No ACK and VSIG[2]=0
and VSIG[3]=0

IP-D, TCP-D IP-S, IP-D, TCP-S, TCP-D

3 NonF IPv4, TCP and VSIG[2] = 0 or (NonF
IPv4, TCP, SYN and VSIG[3]=1)

IP-S, IP-D, TCP-S, TCP-D IP-S, IP-D, TCP-S, TCP-D

4 NonF IPv4, UDP-(incl. RoCEv2) and
VSIG[2]=0

IP-S, IP-D, UDP-S, UDP-D IP-S, IP-D, UDP-S, UDP-D

5 NonF IPv4, ESP and VSIG[2]=0 and
VSIG[0]=0

IP-S, IP-D, SPI IP-S, IP-D

6 NonF IPv4, SCTP and VSIG[2]=0 IP-S, IP-D, SCTP-S, SCTP-D, SCTP-VTag IP-S, IP-D, SCTP-S, SCTP-D

7 NonF IPv4, Payload/Other or VSIG[2]=1 or
(NonF IPv4, ESP and VSIG[0]=1)

IP-S, IP-D IP-S, IP-D

8 Fragmented IPv4 IP-S, IP-D IP-S, IP-D

IPv4 Tunneled Packets (fields are inner fields)

9 NonF IPv4, TCP, SYN No ACK and VSIG[2]=0
and VSIG[3]=0

IP-D, TCP-D IP-S, IP-D, TCP-S, TCP-D

10 NonF IPv4, TCP and VSIG[2]=0 or (NonF
IPv4, TCP, SYN and VSIG[3]=1)

IP-S, IP-D, TCP-S, TCP-D IP-S, IP-D, TCP-S, TCP-D

Table 7-171. Default Hash filter Field Vector Configuration [continued]

Profile
ID Description Hash Filter Field Vector Possible Symmetric

Fields

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1174 613875-009

11 NonF IPv4, UDP-(incl. RoCEv2) and
VSIG[2]=0

IP-S, IP-D, UDP-S, UDP-D IP-S, IP-D, UDP-S, UDP-D

12 NonF IPv4, ESP and VSIG[2]=0 and
VSIG[0]=0

IP-S, IP-D, SPI IP-S, IP-D

13 NonF IPv4, SCTP and VSIG[2]=0 IP-S, IP-D, SCTP-S, SCTP-D, SCTP-VTag IP-S, IP-D, SCTP-S, SCTP-D

14 NonF IPv4, Payload/Other or VSIG[2]=1 or
(NonF IPv4, ESP and VSIG[0]=1)

IP-S, IP-D IP-S, IP-D

15 Fragmented IPv4 IP-S, IP-D IP-S, IP-D

IPv6 Packets

16 NonF IPv6, TCP, SYN No ACK and VSIG[1] 0
and VSIG[3]=0

IP-D, TCP-D IP-S, IP-D, TCP-S, TCP-D

17 NonF IPv6, TCP and VSIG[1]=0 or (NonF
IPv6, TCP, SYN and VSIG[3]=1)

IP-S, IP-D, TCP-S, TCP-D IP-S, IP-D, TCP-S, TCP-D

18 NonF IPv6, UDP-(incl. RoCEv2) and
VSIG[1]=0

IP-S, IP-D, UDP-S, UDP-D IP-S, IP-D, UDP-S, UDP-D

19 NonF IPv6, ESP and VSIG[1]=0 and
VSIG[0]=0

IP-S, IP-D, SPI IP-S, IP-D

20 NonF IPv6, SCTP and VSIG[1]=0 IP-S, IP-D, SCTP-S, SCTP-D, SCTP-VTag IP-S, IP-D, SCTP-S, SCTP-D

21 NonF IPv6, Payload/Others or VSIG[1]=1 or
(NonF IPv6, ESP and VSIG[0]=1)

IP-S, IP-D IP-S, IP-D

22 Fragmented IPv6 IP-S, IP-D IP-S, IP-D

IPv6 Tunneled Packets (fields are inner fields)

23 NonF IPv6, TCP, SYN No ACK and VSIG[1]=0
and VSIG[3]=0

IP-D, TCP-D IP-S, IP-D, TCP-S, TCP-D

24 NonF IPv6, TCP and VSIG[1]=0 or (NonF
IPv6, TCP, SYN and VSIG[3]=1)

IP-S, IP-D, TCP-S, TCP-D IP-S, IP-D, TCP-S, TCP-D

25 NonF IPv6, UDP-(incl. RoCEv2) and
VSIG[1]=0

IP-S, IP-D, UDP-S, UDP-D IP-S, IP-D, UDP-S, UDP-D

26 NonF IPv6, ESP and VSIG[1]=0 and
VSIG[0]=0

IP-S, IP-D, SPI IP-S, IP-D

27 NonF IPv6, SCTP and VSIG[1]=0 IP-S, IP-D, SCTP-S, SCTP-D, SCTP-VTag IP-S, IP-D, SCTP-S, SCTP-D

28 NonF IPv6, Payload/Others or VSIG[1]=1 or
(NonF IPv6, ESP and VSIG[0]=1)

IP-S, IP-D IP-S, IP-D

29 Fragmented IPv6 IP-S, IP-D IP-S, IP-D

GTP Tunneling

30 IPv4, GTP-C, TEID IP-S, IP-D, UDP-S,UDP-D, TEID IP-S, IP-D, UDP-S, UDP-D

31 IPv4, GTP-C, No TEID IP-S, IP-D, UDP-S,UDP-D IP-S, IP-D, UDP-S, UDP-D

32 IPv4, GTP-U, service = 0xFF IP-S, IP-D, UDP-S,UDP-D, TEID IP-S, IP-D, UDP-S, UDP-D

33 IPv4, GTP-U, service != 0xFF IP-S, IP-D, UDP-S,UDP-D, TEID IP-S, IP-D, UDP-S, UDP-D

34 IPv6, GTP-C, TEID IP-S, IP-D, UDP-S,UDP-D, TEID IP-S, IP-D, UDP-S, UDP-D

35 IPv6, GTP-C, No TEID IP-S, IP-D, UDP-S,UDP-D IP-S, IP-D, UDP-S, UDP-D

36 IPv6, GTP-U, service = 0xFF IP-S, IP-D, UDP-S,UDP-D, TEID IP-S, IP-D, UDP-S, UDP-D

37 IPv6, GTP-U, service != 0xFF IP-S, IP-D, UDP-S,UDP-D, TEID IP-S, IP-D, UDP-S, UDP-D

Table 7-172. Default FD Filters Profiles and Key Structure (Loaded from NVM) [continued]

Profile
ID PTG(XLT1) and PFLAG_G FD Filter Key Possible Swapped Field

(FD Filter)

613875-009 1175

Intel® Ethernet Controller E810 Datasheet
Packet Processing

L2 Packet Types

38 NSH Service path header and Index

39 ARP TPA SPA, TPA

40 Other L2 packets L2 EtherType

Notes:
• All PTGs above are derivatives of tunneled and non-tunneled packet types. For tunneled packets, it is expected that the OAM

flag is inactive. Active OAM will yield “no Match” PTG.
• By default, settings the profiles for the packet types depends on the VSIG(XLT2), as follows:

 — VSIG 0x00 — The filter is not enabled (all packet types Miss).
 — VSIG bit 0 = 1 — Mapping of the packet types other than ESP is according to this table. ESP packets are mapped to IP,

Other.
 — VSIG bit 1 = 1 — Use only IP tuples for all IPv6 packets.
 — VSIG bit 2 = 1 — Use only IP tuples for all IPv4 packets.
 — VSIG bit 3 = 1 — Treat TCP/SYN (with/without ACK) packets as TCP packets.
Although the different VSIGs are supported in the NVM. The NVM generate only the VSIG=0x80 case.

• In the FD filters this is a possible setting but not mandatory for all fields to be “left shifted” in the Input set. In those fields that
the mask option is used, it is recommended to locate them in the same location in the Input set for all packet profiles. This
way, the mask registers utilization is optimized.

Table 7-173. Default PE Filter Profiles and Input Sets (Loaded from NVM)

Profile
ID PTG and PFLAG_G PE Filter FV and Input Set Additional Match Criteria

Miss the Filter - Combination of packet types and flags that do no match any profile results with a default profile index.

0 No Match None None

1 Reserved for Bypass the filter None None

TCP iWARP Packets

2 NonF IPv4, TCP, SYN No ACK (Unicast) D-MAC+VLAN, IP-D, TCP-D Packet must match the APBVT to
be a candidate for the QH filter.
Then, it should match the QH
filter to be a candidate for the PE.

3 NonF IPv4, TCP (Unicast) D-MAC+VLAN, IP-S, IP-D, TCP-S, TCP-D

4 NonF IPv6, TCP, SYN No ACK (Unicast) D-MAC+VLAN, IP-D, TCP-D

5 NonF IPv6, TCP (Unicast) D-MAC+VLAN, IP-S, IP-D, TCP-S, TCP-D

UDP Packets

6 NonF IPv4, UDP, Unicast D-MAC+VLAN, Dest IP, Dest UDP port Packet must match the APBVT to
be a candidate for the QH filter.
Then, it should match the QH
filter to be a candidate for the PE.

7 NonF IPv6, UDP, Unicast D-MAC+VLAN, Dest IP, Dest UDP port

8 NonF IPv4, UDP, Multicast D-MAC+VLAN, Dest IP, Dest UDP port

9 NonF IPv6, UDP, Multicast D-MAC+VLAN, Dest IP, Dest UDP port

RoCEv2 Packets

10 NonF IPv4, UDP-RoCEv2, Unicast Dest Queue Pair(5) Packet bypass both APBVT and
QH filter.

11 NonF IPv6, UDP-RoCEv2, Unicast Dest Queue Pair(5)

Table 7-172. Default FD Filters Profiles and Key Structure (Loaded from NVM) [continued]

Profile
ID PTG(XLT1) and PFLAG_G FD Filter Key Possible Swapped Field

(FD Filter)

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1176 613875-009

Note: Whenever a partial field is needed (sub-word), a mask should be applied to mask out the
non-relevant bits of the word. There are 16 GLQF_PEMASK registers. Each register contains a
mask and the word it can be applied to. There is a GLQF_PEMASK_SEL register per profile.
GLQF_PEMASK_SEL selects the set of GLQF_PEMASK registers that are be applied when the
associated profile is selected.

7.11 Packages and Configuration

7.11.1 Introduction

A host system initializes many programmable aspects of the E810 packet processing pipeline through
the use of AQ commands and Packages. A package contains low-level configuration data representing
a broad category packet handling. For example, a package can be tailored to match the networking
capabilities of a specific operating system.

Packages primarily contain static configuration information applied during initialization, and only one
package can be active at a time. Firmware loads an initial package from NVM, which the host can
override with a Download Package command. The E810 supports limited runtime alteration of the
current package using the Update Package command. For example, a PF driver might use Update
Package to add or remove Packet Profiles dynamically.

Packages have names and version numbers according to the Version Numbers convention in
Section 7.11.4. The E810 devices are factory-configured with a default package named DEFAULT (case
sensitive). By using the version number, the host can check for driver vs. package compatibility.

A package is a composite of smaller, often interdependent data structures, each mapping to a specific
hardware block. A package provides the means to keep these interdependent structures and associated
metadata together as an intact unit. For example, a package might contain configuration data for both
the Parse Graph CAM and Parser Instruction Memory.

Off-line compiler tools typically produce packages. At runtime, the host can dynamically create package
updates to alter the configuration of the current package. In either case, the data structures follow the
format specified in this section.

12 NonF IPv4, UDP-RoCEv2, non-Unicast D-MAC+VLAN, Dest IP, Dest Queue Pair(5) Packet bypass the APBVT. It is
forwarded to the PE regardless if
it matches the QH filter or not.13 NonF IPv6, UDP-RoCEv2, non-Unicast D-MAC+VLAN, Dest IP, Dest Queue Pair(5)

Notes:
• All PTGs above are derivatives of non-tunneled packet types. Tunneled packets would miss all packet profiles.
• By default, settings the profiles for the packet types depends on the VSIG, as follows:

 — VSIG 0x00 — PE is not enabled (all packet types Miss).
 — VSIG bit 0 = 1— TCP packets are enabled.
 — VSIG bit 1 = 1 — UDP (unicast and multicast) are enabled.
 — VSIG bit 2 = 1— Unicast RoCEv2 are enabled.
 — VSIG bit 3 = 1 — Multicast RoCEv2 are enabled.

• The match criteria in this column are set by the GLQF_PE_CTL2 registers per packet profile.
• In case of RoCE the Queue Pair field width is 24 bits.
• All “Unicast”, “non-Unicast”, and “Multicast” notations used in this table relate to the MAC DA.

Table 7-173. Default PE Filter Profiles and Input Sets (Loaded from NVM) [continued]

Profile
ID PTG and PFLAG_G PE Filter FV and Input Set Additional Match Criteria

613875-009 1177

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.2 Overriding the Default Package

Using the Download Package command (Section 7.11.9.1), the host system can override the default
package loaded from NVM by firmware. The Download Package command changes the configuration of
the packet processing pipeline, but does not modify the NVM. A subsequent Core Reset, Global Reset,
or power cycle causes firmware to reload the default package and therefore discard the host’s custom
package. In this case, the host must re-issue another Download Package command.

In the pre-boot environment, the host operating system has not yet loaded and has no opportunity to
override the default package. Deployment of a custom package in the pre-boot environment requires
either a custom NVM image or host BIOS to issue the Download Package command.

7.11.3 Endianness

Unless otherwise specified, all values in a package use little-endian memory layout. When serialized to
a storage device, bytes are placed starting from lowest address to highest address. See Table 7-174.

7.11.4 Version Numbers

To convey version and compatibility information, packages use the Major.Minor.Update.Draft (M.m.u.d)
convention described in this section.

Consider a hypothetical version 3.0.1.4

Each part of the version number is stored in a byte, for a total of four bytes. When stored in memory,
the Major number resides in the lowest address byte up to Draft number in the highest address byte.
Version numbers are stored as unsigned integer bytes, not as UTF-8 characters. See Table 7-176 for an
example.

Table 7-174. Little-Endian Memory Layout for All Value Fields

31 24 23 16 15 8 7 0 Byte Offset

char 15 (Highest Address) char 14 char 13 char 12 12

int 0 8

short 1 short 0 4

char 3 char 2 char 1 char 0 (Lowest Address) 0

Table 7-175. Version Number Fields for Example Version 3.0.1.4

Digit Name Description

3 Major The most significant version number. Configurations with differing Major version numbers might not be
compatible with each other.

0 Minor Within a Major version, the Minor version number indicates compatibility with less-then-or-equal Minor
version numbers. A new Minor version number often indicates the addition of new features.

1 Update A bug fix or refactoring for an existing Major.Minor version.

4 Draft For internal use only and used to distinguish developmental versions. Shipping configurations should always
have a 0 Draft digit.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1178 613875-009

7.11.5 Package Format

A package contains a nested hierarchy of structures. In the outermost layer, the package contains an
8-byte fixed-length Package Header. The Package Header contains a version number for the format of
the package itself, and a field specifying the number of segments contained in the package. Following
those fields, a Segment Table provides the byte offset from the start of package file to each segment in
the file. See Figure 7-34.

Each Segment begins with a Segment Header, followed by segment specific data. Segments can contain
any amount of data as appropriate for the specified Segment Type.

Table 7-177 describes each field of the Package Header in detail. The Segment Table is sorted from
smallest to largest Segment Offset value. All segments start with the Segment Header as shown in
Figure 7-34.

Table 7-176. Version Number Encoding for Example Version 3.0.1.4

Address Value Description

0x1000 0x03 Major

0x1001 0x00 Minor

0x1002 0x01 Update

0x1003 0x04 Draft

Figure 7-34. Basic Structure of a Package

Package File

Segment

Format Version (4B)

Segment Count (4B)

Segment
Table

(Nx4B)

Segment 0 Offset (4B)
...

Segment N Offset (4B)

Package
Header
(8B)

Segment 0

...

Segment N

Segment Type (4B)

Segment Version (4B)

Segment Size (4B)

Segment Name (32B)

Segment
Header
(44B)

Segment Data

613875-009 1179

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-178 describes the fields of the Segment Header in detail.

Table 7-179 defines Segment Type numbers relevant to the E810.

Table 7-177. Package Header

Field Size
(Bytes) Offset Description

Package Format Version 4 0 M.m.u.d style format for the package itself. The version number follows the
convention described in Section 7.11.4. This document describes package
format 1.0.1.0.

Segment Count 4 4 Number of segments in the segment table. A value of 0 is reserved.

Segment
Table

Segment 0
Offset

4 8 Byte offset from the start of the package file to the first byte of the first
segment. Values less than 12 are reserved.

... Offsets of all subsequent segments. The Segment Table is sorted from smallest
to largest offset, so each Segment Offset value must be at least 44 bytes
(Segment Header size) greater than the previous offset.

Table 7-178. Segment Header

Field Size
(Bytes) Offset Description

Segment Type 4 0 Type value identifying this segment.

Segment Format Version 4 4 M.m.u.d style format for the package itself. The version number follows the
convention described in Section 7.11.4.

Segment Size 4 8 Size in bytes of this segment, including the Segment Header. Values less than 44
bytes are reserved.

Segment Identifier 32 12 Free form (UTF-8 by convention) null-terminated 31-byte name of the segment.
The 32nd byte of the name must be a binary 0.

Table 7-179. Segment Type Numbers

Segment Type
Number Description Section

Reference

0x0 Reserved

0x1 Global Metadata Segment 7.11.5.1

0x2 Package Notes Segment 7.11.5.2

0x3-0xF Reserved

0x10 Configuration Data Segment 7.11.5.3

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1180 613875-009

7.11.5.1 Global Metadata Segment

The Global Metadata Segment contains information about the entire package.

Table 7-180 describes the fields of the Global Metadata Segment in detail.

7.11.5.2 Package Notes Segment

The Package Notes Segment contains free form UTF-8 text about this package. The content of the notes
segment is informational only. The notes segment does not affect the configuration of any hardware
device.

Table 7-181 shows the content of the Package Notes Segment.

Table 7-180. Global Metadata Segment

Field Size
(Bytes) Offset Description

Segment
Header

0x00000001 4 0 This segment has a Type value of 1.

0x00000001 4 4 This document describes Version 1.0.0.0 of this segment.

0x00000054 4 8 This segment has a length of 84 bytes.

“Global Metadata” 32 12 This segment has case sensitive name “Global Metadata” without the quote
characters. Bytes after the string are padded with binary 0 to full 32-byte
length.

Segment
Data

Package Version 4 44 Version of the entire Package file as specified by a version statement at
global scope in an assembly source file. Software tools can use
255.255.255.255 as a reserved value meaning the version is unknown.

Reserved 4 48 This value is reserved for the E810 and newer devices.
Software tools must set this value to 0xFFFFFFFF.

Package Name 32 52 Free form (UTF-8 by convention) null-terminated 31-byte name of the
entire package as specified by a name statement at global scope in an
assembly source file. Software tools reserve a zero length string (first byte
is binary 0) to mean the name is unknown. Software tools always sets the
last five bytes of the name to a binary 0.

Table 7-181. Package Notes Segment

Field Size
(Bytes) Offset Description

Segment
Header

0x00000002 4 0 This segment has a Type value of 2.

0x00000001 4 4 This document describes Version 1.0.0.0 of this segment.

<variable> 4 8 This segment has variable length.

“Notes” 32 12 This segment has case sensitive name “Notes” without the quote
characters. Bytes after the string are padded with binary 0 to full 32-byte
length.

Segment
Data

UTF-8 content <variable> 44 UTF-8 text for informational purposes only. Line feed style is ‘\n’.
The final note in the notes segment always ends with ‘\0’.

613875-009 1181

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.5.3 Configuration Data Segment

Configuration data for the E810 resides in the ICE Configuration Segment with Segment Type value
from Table 7-179. Figure 7-35 shows an overview of these segments.

Table 7-182 shows the layout of these segments.

Figure 7-35. Overview of the E810 Data Segments

Table 7-182. E810 Data Segment

Field Size
(Bytes) Description

Segment
Header

<variable> 4 This segment has a Type value as specified in Table 7-179.

0x00000001 4 This document describes Version 1.0.1.0 of this segment.

<variable> 4 This segment has variable length.

<variable> 32 The Configuration Data Segment has case sensitive name “ICE Configuration
Data” without the quote characters.

"ICE Configuration Data"

Segment
Header Segment Length (4B)

0x00000101 (Version)

0x00000010 (Type)

Device ID
Table

Device ID Table Count (4B)

Device/Vendor IDs (8B)...

Buffer
Table

Buffer Count (4B)

Buffer 0 (4096B)

...

Data End
(2B: 31-16)

Table Size
(2B: 15-0)

Index
Table

Section Type (4B)
Section Size
(2B: 31-16)

Section Offset
(2B: 15-0)

Section Type (4B)
Section Size
(2B: 31-16)

Section Offset
(2B: 15-0)

Entry 0

...

Section Type (4B)
Section Size
(2B: 31-16)

Section Offset
(2B: 15-0)

Section Type (4B)
Section Size
(2B: 31-16)

Section Offset
(2B: 15-0)

Entry N

Section Data 0
4084B Max.

...

Section Data N

Section
Data

Pads Pad Bytes to 4096B

Buffer

NVM
Version
Table

NVM Version Count (4B)

NVM Version (4B)...

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1182 613875-009

7.11.5.4 Package Buffers

A package contains one or more fixed-length Package Buffers. A Package Buffer contains a header,
followed by a variable number of configuration data sections, followed by pad bytes for a total fixed size
of 4096 bytes. As shown in Figure 7-34, a Package Buffer begins with a Package Buffer Header. The
Package Buffer Header contains an Index Table Size field, a Data End field, and a variable length Index
Table. Following the Index Table, the data for each section contained in the Package Buffer.

Table 7-183 shows the format of the Package Buffer Header.

Device
ID Table

Device ID Table Count 4 Number of entries in the Device ID Table. May be zero.

Device ID Table Entry 0 8 Device ID Table Entry consisting of two 4-byte fields.
Bytes 1-0: Device ID

PCI Device ID number of a device for which this configuration data applies.
Bytes 3-2: Vendor ID

PCI Vendor ID number of a device for which this configuration data applies.
Bytes 5-4: Sub-Device ID

PCI Sub-Device ID number of a device for which this configuration data
applies.

Bytes 7-6: Sub-Vendor ID
PCI Sub-Vendor ID number of a device for which this configuration data
applies.

... Nx4 All subsequent Device ID Table entries

NVM
Version
Table

NVM Version Count 4 Number of entries in the NVM version table. Maybe 0 if the table contains no
entries.

NVM Version Entry 0 4 NVM Version information. Details TBD.

... All subsequent NVM Version Table entries.

Buffers Buffer Count 4 Number of 4KB buffers in this segment.

Buffer 0 4096 First buffer in the segment

... All subsequent 4 KB buffers.

Table 7-183. Package Buffer Header

Field Size
(Bytes) Offset Description

Index Table Size 2 0 Number of entries in the Index Table (1-511). A value of zero and values
greater than 511 are reserved.

Data End 2 2 Byte offset from the start of the Package Buffer to the first unused byte in the
buffer (12-4095). The minimum valid value of this field is 12, which
accommodates the 4-byte Buffer Header and one 8-byte Index Table entry. If
the entire buffer is used, this field must be set to 4096. Values less than 12 or
greater than 4096 are reserved.

Table 7-182. E810 Data Segment [continued]

Field Size
(Bytes) Description

613875-009 1183

Intel® Ethernet Controller E810 Datasheet
Packet Processing

A Package Buffer can contain one or more Data Sections and these sections can appear in any order in
the buffer. The format of a Data Section depends on the nature and purpose of the contained
configuration data. The maximum possible size of a Data Section is 4084 bytes, which can occur when
a Package Buffer contains only one section.

7.11.6 Section Type Enumeration

As described in Section 7.11.5, the Index Table field of the E810 Configuration Data Segment identifies
the content, location and size of individual configuration sections. To unambiguously identify section
content, the Section Type field provides a unique identifier for all possible content types.

Table 7-184 shows the Section Type values.

Entry 0 Section Type 4 4 Section Type for the first section in the Package Buffer. Valid Section Type
values are shown in Table 7-184.

Section Offset 2 8 Byte offset from the start of the Package Buffer to the start of the first section
in the Package Buffer (12-4095). Values less than 12 and greater than 4095 are
reserved.
The section offset for each entry in the index table must be aligned on a 32-bit
boundary. All sections whose size is not a multiple of four bytes must be
followed by pad bytes of 0xFF to the next 4-byte multiple.

Section Size 2 10 Size in bytes of this section (1-4084). Values of zero and greater than 4084 are
reserved.
The section size must exclude any pad bytes added to acquire 32-bit alignment.

... Subsequent Index Table entries, if any.

Table 7-184. E810 Configuration Segment Section Type Numbers

Section Type
Number

Ownership
Metadata

Section Type
Number

(Section Type
+ 0x200)

Description Section
Reference

Dec. Hex

1 0x1 N/A Segment Metadata 7.11.7

2 0x2 N/A Security Manifest Header 7.11.7

3 0x3 N/A Security Manifest 7.11.7

4-9 0x4-9 Reserved

10 0xA None XLT0 Table for Switch 7.11.12.2.2

11 0xB None XLT Key Builder Table for Switch 7.11.12.2.4

12 0xC 0x20C XLT1 Table for Switch 7.11.12.2.5

13 0xD 0x20D XLT2 Table for the Switch 7.11.12.2.6

14 0xE 0x20E Profile ID TCAM for the Switch 7.11.12.2.7

15 0xF 0x20F Profile ID Redirection Table for the Switch 7.11.12.2.8

16 0x10 0x210 Field Vector Table for the Switch 7.11.12.3.1

17 0x11 None CDID Key Builder Table for the Switch 7.11.12.2.1

18 0x12 None CDID Redirection Table for the Switch 7.11.12.2.3

Table 7-183. Package Buffer Header [continued]

Field Size
(Bytes) Offset Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1184 613875-009

19 0x13 Reserved

20 0x14 None XLT0 Table for ACL 7.11.12.2.2

21 0x15 None XLT Key Builder Table for ACL 7.11.12.2.4

22 0x16 0x216 XLT1 Table for ACL 7.11.12.2.5

23 0x17 0x217 XLT2 Table for ACL 7.11.12.2.6

24 0x18 0x218 Profile ID TCAM for ACL 7.11.12.2.7

25 0x19 0x219 Profile ID Redirection Table for ACL 7.11.12.2.8

26 0x1A 0x21A Field Vector Table for ACL 7.11.12.3.1

27 0x1B None CDID Key Builder Table for ACL 7.11.12.2.1

28 0x1C None CDID Redirection Table for ACL 7.11.12.2.3

29 0x1D Reserved

30 0x1E None XLT0 Table for Flow Director 7.11.12.2.2

31 0x1F None XLT Key Builder Table for Flow Director 7.11.12.2.4

32 0x20 0x220 XLT1 Table for Flow Director 7.11.12.2.5

33 0x21 0x221 XLT2 Table for Flow Director 7.11.12.2.6

34 0x22 0x222 Profile ID TCAM for Flow Director 7.11.12.2.7

35 0x23 0x223 Profile ID Redirection Table for Flow Director 7.11.12.2.8

36 0x24 0x224 Field Vector Table for Flow Director 7.11.12.3.1

37 0x25 None CDID Key Builder Table for Flow Director 7.11.12.2.1

38 0x26 None CDID Redirection Table for Flow Director 7.11.12.2.3

39 0x27 Reserved

40 0x28 None XLT0 Table for RSS 7.11.12.2.2

41 0x29 None XLT Key Builder Table for RSS 7.11.12.2.4

42 0x2A 0x22A XLT1 Table for RSS 7.11.12.2.5

43 0x2B 0x22B XLT2 Table for RSS 7.11.12.2.6

44 0x2C 0x22C Profile ID TCAM for RSS 7.11.12.2.7

45 0x2D 0x22D Profile ID Redirection Table for RSS 7.11.12.2.8

46 0x2E 0x22E Field Vector Table for RSS 7.11.12.3.1

47 0x2F None CDID Key Builder Table for RSS 7.11.12.2.1

48 0x30 None CDID Redirection Table for RSS 7.11.12.2.3

49 0x31 Reserved

50 0x32 None Parse Graph CAM for the Rx Parser 7.11.13.2.4

51 0x33 None Parse Graph No-Match CAM for the Rx Parser 7.11.13.2.5

52 0x34 None IMEM for the Rx Parser 7.11.13.7

53 0x35 None XLT0 Key Builder Table for the Rx Parser 7.11.13.11

Table 7-184. E810 Configuration Segment Section Type Numbers [continued]

Section Type
Number

Ownership
Metadata

Section Type
Number

(Section Type
+ 0x200)

Description Section
Reference

Dec. Hex

613875-009 1185

Intel® Ethernet Controller E810 Datasheet
Packet Processing

54 0x36 None Node PType table for the Rx Parser 7.11.13.5

55 0x37 None Marker PType TCAM for the Rx Parser 7.11.13.6

56 0x38 0x238 Boost TCAM for the Rx Parser 7.11.13.8

57 0x39 None Protocol Group table for the Rx Parser 7.11.13.9

58 0x3A None Metadata Initialization table for the Rx Parser 7.11.13.14

59 0x3B None XLT0 Table for the Rx Parser 7.11.13.12

60 0x3C None Parse Graph CAM for the Tx Parser 7.11.13.2.4

61 0x3D None Parse Graph No-Match CAM for the Tx Parser 7.11.13.2.5

62 0x3E None IMEM for the Tx Parser 7.11.13.7

63 0x3F None XLT0 Key Builder Table for the Tx Parser 7.11.13.11

64 0x40 None Node PType table for the Tx Parser. 7.11.13.5

65 0x41 None Marker PType TCAM for the Tx Parser. 7.11.13.6

66 0x42 0x242 Boost TCAM for the Tx Parser. 7.11.13.8

67 0x43 None Protocol Group table for the Tx Parser 7.11.13.9

68 0x44 None Metadata Initialization table for the Tx Parser 7.11.13.14

69 0x45 None XLT0 Table for the Tx Parser 7.11.13.12

70 0x46 None Initialization ID Redirection Table for the Rx Parser 7.11.13.13

71 0x47 None Initialization ID Redirection Table for the Tx Parser 7.11.13.13

72 0x48 None Marker Group ID Table for the Rx Parser 7.11.13.10

73 0x49 None Marker Group ID Table for the Tx Parser 7.11.13.10

74 0x4A None Last Protocol Table for the Rx Parser 7.11.13.15

75 0x4B None Last Protocol Table for the Tx Parser 7.11.13.15

76 0x4C None PG Spill CAM for the Rx Parser 7.11.13.3

77 0x4D None PG Spill CAM for the Tx Parser 7.11.13.3

78 0x4E None No-Match Spill CAM for the Rx Parser 7.11.13.4

79 0x4F None No-Match Spill CAM for the Tx Parser 7.11.13.4

80 0x50 None XLT0 Table for the Protocol Engine1 7.11.12.2.2

81 0x51 None XLT Key Builder Table for the Protocol Engine 7.11.12.2.4

82 0x52 0x252 XLT1 Table for the Protocol Engine 7.11.12.2.5

83 0x53 0x253 XLT2 Table for the Protocol Engine 7.11.12.2.6

84 0x54 0x254 Profile ID TCAM for the Protocol Engine 7.11.12.2.7

85 0x55 0x255 Profile ID Redirection Table for the Protocol Engine 7.11.12.2.8

86 0x56 0x256 Field Vector Table for the Protocol Engine 7.11.12.3.1

87 0x57 None CDID Key Builder Table for Protocol Engine 7.11.12.2.1

88 0x58 None CDID Redirection Table for Protocol Engine 7.11.12.2.3

Table 7-184. E810 Configuration Segment Section Type Numbers [continued]

Section Type
Number

Ownership
Metadata

Section Type
Number

(Section Type
+ 0x200)

Description Section
Reference

Dec. Hex

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1186 613875-009

89 0x59 Reserved

90 0x5A None Miscellaneous configuration for Rx Parser 7.11.13.16

91 0x5B None Miscellaneous configuration for Tx Parser 7.11.13.16

92 0x5C None Recipe configuration for the Switch 7.11.12.5

93 0x5D None Recipe-to-Profile associations for the Switch 7.11.12.6

94 0x5E None Rx Flex Descriptors for the HIF 7.11.14.2

95 0x5F None PTYPE Translation Table for the RDPU 7.11.15.2

96 0x60 None PROTOCOL Table for RDPU 7.11.15.3

97 0x61 None Flags Redirection Table for the Rx Parser 7.11.13.17

98 0x62 None Flags Redirection Table for the Tx Parser 7.11.13.17

99 0x63 None Field Vector Table for Manageability 7.11.12.3.1

100 0x64 None Miscellaneous Profile and Control Domain Configuration for the Switch 7.11.12.6.1

101 0x65 None Miscellaneous Profile and Control Domain Configuration for ACL 7.11.12.6.1

102 0x66 None Miscellaneous Profile and Control Domain Configuration for Flow Director 7.11.12.6.1

103 0x67 None Miscellaneous Profile and Control Domain Configuration for RSS 7.11.12.6.1

104 0x68 None Miscellaneous Profile and Control Domain Configuration for the Protocol
Engine

7.11.12.6.1

105 0x69 None Mask Select Filters for RSS 7.11.12.6.2

106 0x6A None Mask Select Filters for Flow Director 7.11.12.6.2

107 0x6B None Mask Select Filters for the Protocol Engine 7.11.12.6.2

108 0x6C None Quad Hash Control Table for the Protocol Engine 7.11.12.6.3

All other values Reserved

1. Documents might also refer to the PE as the Quad-Hash (QH) block.

Table 7-184. E810 Configuration Segment Section Type Numbers [continued]

Section Type
Number

Ownership
Metadata

Section Type
Number

(Section Type
+ 0x200)

Description Section
Reference

Dec. Hex

613875-009 1187

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-185. Section Details and Sizes

Section
Maximum
Number of
Instances

Fixed
Header

Size
(Bytes)

Entry
Size

(Bytes)

Number of
Entries

Section
Size

(Bytes)

Owner
Section

Size
(Bytes)1

Maximum
Total

(Bytes)

1 1 4 32 1 36 0 36

CDID Key Builder 5 0 17 1 17 0 85

XLT0 5 4 1 2048 2052 0 10260

CDID Redirection Table 5 0 1 7 7 0 35

XLT Key Builder 5 12 24 8 204 0 1020

XLT1 5 4 1 8192 8196 8200 81980

XLT2 5 4 2 1024 2052 1032 15420

Profile ID TCAM (SW) 1 2 13 512 6658 520 7178

Profile ID TCAM (ACL) 1 2 13 512 6658 520 7178

Profile ID TCAM (PE) 1 2 13 64 834 72 906

Profile ID TCAM (RSS) 1 2 13 512 6658 520 7178

Profile ID TCAM (FD) 1 2 13 512 6658 520 7178

Profile ID Redirection (SW) 1 4 1 256 260 264 524

Profile ID Redirection (ACL) 1 4 1 128 132 136 268

Profile ID Redirection (PE) 1 4 1 32 36 40 76

Profile ID Redirection (RSS) 1 4 1 128 132 136 268

Profile ID Redirection (FD) 1 4 1 128 132 136 268

FV Extraction (SW) 1 4 192 256 24580 264 49420

FV Extraction (ACL) 1 4 128 128 8196 136 16524

FV Extraction (PE) 1 4 96 32 1540 40 3116

FV Extraction (RSS) 1 4 96 128 6148 136 12428

FV Extraction (FD) 1 4 96 128 6148 136 12428

FV Extraction (MNG) 1 4 128 132 132 0 132

PG CAM 2 4 16 2048 32772 0 65544

No-Match CAM 2 4 12 1024 12292 0 24584

Marker PType TCAM 2 4 24 1024 24580 0 49160

IMEM 2 4 48 192 9220 0 18440

Boost TCAM 2 4 88 256 22532 264 45592

Protocol Group Table 2 4 24 192 4612 0 9224

Marker Group Table 2 4 8 128 1028 0 2056

Parser XLT0 Key Builder Table 2 0 4 1 4 0 8

Parser XLT0 Table 2 4 1 1024 1028 0 2056

Parser Initialization ID Redir 2 0 1 14 14 0 28

Parser Metadata Init Table 2 4 24 16 388 0 776

Last Protocol Table 2 0 4 6 24 0 48

PG Spill CAM 2 4 17 128 2180 0 4360

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1188 613875-009

7.11.7 Segment Metadata Section

The E810 Configuration Segment Metadata Section contains user defined metadata about the segment.
This section has a Section Type value of 1. The Get Package Info List command (see Section 7.11.9.4)
returns the information contained in this section.

The structure of this section is shown in Table 7-186.

PG No-Match Spill CAM 2 4 13 64 836 0 1672

Parser Misc. Configuration 2 0 24 1 24 0 48

Switch Recipes 1 4 40 64 2564 0 2564

Profile/Switch Association 1 4 8 256 2052 0 2052

Rx Flex Descriptor 1 4 44 61 2688 0 2688

PTYPE_REMAP 1 4 1 1024 1028 0 1028

PROTOCOL for RDPU 1 4 28 256 7172 0 7172

Flags Redirection 2 4 1 64 68 0 136

Total: 473142

1. Owner section size of 0 indicates that the section cannot be modified with an Update Package command.

Table 7-186. Segment Metadata Section

Field Size
(Bytes) Description

Segment Version 4 The version of the segment. The version number follows the convention defined in
Section 7.11.4 Software tools set this value from the version statement in an assembly language
source file. Software tools can reserve the value 255.255.255.255 to mean the version is
unknown.

Segment Name 32 Free form UTF-8 null-terminated 28-byte name of the segment. Software tools set this value
from the name statement in an assembly language source file. Software tools can reserve a zero
length string (first byte is binary 0) to mean the name is unknown. Software tools enforce that at
least the 28th byte of the name must be a binary 0.

Track ID 4 The Track ID is a numerical representation of the package type and uniquely identifies the type
of package as specified by a track statement at segment scope in an assembly source file. The
Track ID and package name are immutable for each package type; OS, Comms, etc.
Software tools can use 0xFFFFFFFF as a reserved value meaning the Track ID is unknown.

Table 7-185. Section Details and Sizes [continued]

Section
Maximum
Number of
Instances

Fixed
Header

Size
(Bytes)

Entry
Size

(Bytes)

Number of
Entries

Section
Size

(Bytes)

Owner
Section

Size
(Bytes)1

Maximum
Total

(Bytes)

613875-009 1189

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.8 Segment Security Manifest

This section defines the structure of the ICE Segment Security Manifest. This manifest enables firmware
or other software to verify selected segment buffers are genuine before transferring configuration to
control registers.

7.11.8.1 Security Manifest Overview

The segment security manifest consists of two parts.

• An ordered list of secure hashes, one for each 4 KB buffer in the remainder of the segment.

• The PKCS v2.2 structure returned from the signing server. This structure contains a signature, a
manifest hash of the buffer hashes and the security version number.

The chain of trust for downloaded package buffers is as follows:

• Firmware verifies the manifest hash using the Intel RSA signature.

• Firmware verifies the list of buffer hashes using the manifest hash.

• Firmware verifies each buffer using corresponding buffer hash.

The error messages that are issued when firmware detects an issue in the security manifest are as
follows:

• Missing security manifest — Return missing signature error on AQ command. Firmware should
not issue CORER.

• RSA signature mismatch on the manifest hash - Return bad signature error on AQ command.
Firmware should not issue CORER.

• Secure Version Number too low — Return bad SVN error on AQ command. Firmware should not
issue CORER.

• Manifest hash mismatch on the buffer hashes — Return bad manifest error on AQ command.
Firmware must issue CORER.

• Buffer hash mismatch on the buffer — Return bad buffer hash error on AQ command. Firmware
must issue CORER.

• Non-security error in buffer processing — Return appropriate error on AQ command. Firmware
must issue CORER.

7.11.8.2 Protection Provided by a Segment Security Manifest

A segment security manifest provides a limited scope of protection within a package file. Specifically,
the security manifest protects only parts of the ICE segment, not the entire segment nor package. The
parts of a package not covered by a security segment rely on host security for protection, for example,
file system root access. The rationale is that a corrupted host cannot be trusted to check itself,
therefore a security manifest can protect only the buffers visible to firmware. See Table 7-187 for an
overview.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1190 613875-009

7.11.8.3 Segment Security Requirements

Production packages downloaded by the host via the Download Package AQ command must have a
valid security manifest in the ICE configuration segment. Non-production packages might have a valid
or invalid security manifest.

7.11.8.3.1 Development Mode

To facilitate package development, firmware must support a permissive mode that bypasses security
manifest checking. In this mode, the downloaded package might omit the security manifest. If the
package contains a security manifest, firmware must ignore the manifest content.

Table 7-188 shows the security enforcement options. These options depend on the CSR protection fuse
and the NVM Security Enable bit.

7.11.8.3.2 NVM Packages

The ICE NVM signature already provides protection for the packages stored in NVM. To conserve NVM
storage, these packages should omit the security manifest. If an NVM package does contain a security
manifest, firmware must ignore the manifest content.

Table 7-187. Content Protected or Excluded by a Segment Security Manifest

Package Content Type Protected?

Package Header No

Package Notes Segment No

Package Global Metadata Segment No

Segment Header No

Other device configuration segments No

Segment buffers transferred to firmware with Download Package AQ command Yes

Segment buffers NOT transferred to firmware. (or example, segment metadata) No

Table 7-188. Package Manifest Enforcement Options

CSR Protection Enable
(GL_UFUSE_SOC[6])

NVM_SEC_EN
(NVM Offset 0x02)

Firmware Requires Valid
Package Security Manifest

0 0 No

0 1 Yes

1 0 Yes

1 1 Yes

613875-009 1191

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.8.4 Security Manifest Section Numbers

Table 7-189 provides section numbers associated with the security manifest:

7.11.8.5 Security Manifest Header Section

The manifest header section consists of the PKCS v2.2 structure.

Table 7-189. Security Manifest Section Numbers

Section Number

Security Manifest Header 2 (0x2)

Security Manifest 3 (0x3)

Table 7-190. Security Manifest Header Section Fields

Field Size
(Bits) CSR Description

Module Type 32 N/A The module type. Must be 0x6.

Header Length 32 N/A The header length. Must be 0xA1.

Header Version 32 N/A The header version. Must be 0x000100000.

Module ID 32 N/A The module ID. Must be 0x0.

Module Vendor 32 N/A The vendor ID. Must be 0x8086.

Date 32 N/A The date on which the signature was created.

Size 32 N/A The number of 32-bit (DWORD) units. Must be 0xC8.

Key Size 32 N/A The size of the key. Must be 0x40.

Modulus Size 32 N/A The modulus size. Must be 0x40.

Exponent Size 32 N/A The size of the exponent. Must be 0x1.

SVN 32

N/A

Secure version number. This monotonically increasing number represents the security
version of this package. If this number is less than the persistent SVN number stored
in the NVM, then firmware will reject this package. Otherwise, firmware accepts the
package.

Reserved 32 N/A Reserved (0).

Reserved 32 N/A Reserved (0).

Reserved 32 N/A Reserved (0).

Unique ID 32 N/A Unique ID of this configuration, taken from the support team ETrack ID.

Segment Type 16 N/A The segment type. 0x10 for the ICE configuration segment.

Reserved 16 N/A Reserved (0).

Reserved 512 N/A Reserved (0).

Public Key Modulus 2048 N/A The public key. The signing server generates the content of this field.

RSA Exponent 32 N/A RSA Exponent used for the signature calculation. The signing server generates this
field.

Signature 2048 N/A The signature created by the signing server. The signature served must be passed the
security manifest section header section only for signing.

Reserved 128 N/A Reserved area used by the signing server.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1192 613875-009

7.11.8.6 Security Manifest Section

A manifest section contains SHA256 hash values corresponding to each buffer downloaded to firmware
in the segment. Package build tools must place each hash value in the manifest section in the same
order as the corresponding configuration buffer. A buffer containing a manifest section must not contain
any other type of section.

Table 7-191 shows the format of a manifest section:

7.11.8.7 Security Manifest Section Location in the ICE Segment

Package build tools must place security manifest sections before any other section downloaded to
firmware. Specifically section 2 must be the first section, followed by exactly two section 3's. These
sections occupy the first 4 KB buffers downloaded to firmware. In the package, build tools can place
sections not downloaded to firmware before security manifest sections.

Manifest Hash 256 N/A The SHA-256 of the two buffers containing the security sections.

Reserved 864 N/A Reserved (0).

Table 7-191. Security Manifest Section Fields

Field Size
(Bits) CSR Description

Count 16 N/A Number of SHA256 hashes in this section. Valid values are 0-127.

Offset 16 N/A Offset to the first hash in this section.

Hash0 256 N/A SHA256 hash corresponding to a 4 KB download package buffer.

... Nx256 N/A All other SHA256 hashes in this section.

Table 7-190. Security Manifest Header Section Fields [continued]

Field Size
(Bits) CSR Description

613875-009 1193

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.9 Package Configuration Admin Commands

7.11.9.1 Download Package Command (0x0C40)

This section specifies the Download Package AQ command. This command configures the packet
processing pipeline, overwriting the previous configuration. During initialization, the host can issue
multiple Download Package commands, each containing one Package Buffer, until package download
completes. The host sets the Last Buffer Flag in the command descriptor for the last Download Package
command of the sequence. The host must hold the Global Configuration Lock resource using the
Request Resource Ownership Admin command (Section 9.5.13.5) to issue this command.

Table 7-192. Download Package Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C40 Command opcode.

Data Length 4-5 28-4096 Length of command/response buffer. Varies depending on package content.

Return Value/VFID 6-7 Return value. Cleared by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Flags 16 Bit 0: Last Buffer
When set, this Download Package command is the last in the sequence.

All other bits reserved.

Reserved 17-23 Reserved.

Data Address High 24-27
Host memory address of the command buffer.

Data Address Low 28-31

Table 7-193. Download Package Command Buffer Format

Field Size
(Bytes) Description

Package 12-4096 Package Buffer as defined in Section 7.11.5.4.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1194 613875-009

Table 7-194. Download Package Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0C40 Command opcode.

Data Length 4-5 28-4096 Length of command/response buffer. Varies depending on package content.

Return Value/VFID 6-7 Return code written by firmware.
In the case of a failure, the existing configuration is unmodified.

SUCCESS = Package download succeeded.
EFAULT = Data Address field was 0.
ENOMEM = Insufficient hardware resources exist to perform this configuration.
EINVAL = An element within the package data was invalid. Error Offset contains

the byte offset into the package data of the invalid element. Error Info
contains an additional error code describing the problem with the
element.

EACCES = Attempt to overwrite the default package.
ENOSEC = Missing security manifest.
EBADSIG = Bad RSA signature.
ESVN = SVN number prohibits usage of this package.
EBADMAN = Manifest hash mismatch.
EBADBUF = Buffer hash mismatches expected value in manifest.
EBUSY = Failed to perform command due to busy NVM.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Error Offset 16-19 Offset to an invalid element detected by firmware in the downloaded package.
Firmware sets this field to zero on success.

Error Info 20-23 Contains a code for additional error information that describes the nature of the
problem found, if any. Firmware sets this field to zero on success.

Data Address High 24-27
Host memory address of the command buffer.

Data Address Low 28-31

613875-009 1195

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.9.2 Upload Section Command (0x0C41)

This section specifies the Upload Section AQ command. This command retrieves hardware configuration
for requested sections from the Configuration Data Segment. The host can optionally acquire the
Change Lock before issuing this command. Holding the Change Lock is not required, but guarantees
that returned section data is not a partially modified state due to Update Package commands from
another PF. This command is read-only and does not modify the current hardware configuration.

Table 7-195. Upload Section Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C41 Command opcode.

Data Length 4-5 28-4096 Length of command/response buffer. Varies depending on package content.

Return Value/VFID 6-7 Return value. Cleared by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Reserved 16-23 Reserved.

Data Address High 24-27
Host memory address of the command buffer.

Data Address Low 28-31

Table 7-196. Upload Section Command Buffer Format

Field Size
(Bytes) Description

Package 12-4096 Package Buffer as defined in Section 7.11.5.4.

Table 7-197. Upload Section Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0C41 Command opcode.

Data Length 4-5 28-4096 Length of command/response buffer. Varies depending on package content.

Return Value/VFID 6-7 Return code written by firmware.
SUCCESS = Section upload succeeded.
EFAULT = Data Address field was 0.
EINVAL = Unrecognized Section Number.
ERANGE = Invalid Section Offset.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Reserved 16-23 Reserved.

Data Address High 24-27
Host memory address of the command buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1196 613875-009

7.11.9.3 Update Package Command (0x0C42)

This section specifies the Update Package AQ command. This command modifies the configuration of
the packet processing pipeline without erasing the existing configuration. The host can issue multiple
Update Package commands, containing one Package Buffer each, until pipeline configuration update is
complete. The host must hold the Global Configuration Lock or the Change Lock resources using the
Request Resource Ownership Admin command (Section 9.5.13.5) to issue this command.

The AQ command format for this command is almost identical to the Download Package command
(Section 7.11.9.1).

Table 7-198. Update Package Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C42 Command opcode.

Data Length 4-5 28-4096 Length of command/response buffer. Varies depending on package content.

Return Value/VFID 6-7 Return value. Cleared by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Flags 16 Bit 0: Last Buffer
When set, this Update Package command is the last in the sequence.

All other bits reserved.

Reserved 17-23 Reserved.

Data Address High 24-27
Host memory address of the command buffer.

Data Address Low 28-31

Table 7-199. Update Package Command Buffer Format

Field Size
(Bytes) Description

Package 12-4096 Package Buffer as defined in Section 7.11.5.4.

Table 7-200. Update Package Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0C42 Command opcode.

Data Length 4-5 28-4096 Length of command/response buffer. Varies depending on package content.

Return Value/VFID 6-7 Return code written by firmware.
In the case of a failure, the existing configuration is unmodified.

SUCCESS = Package download succeeded.
EFAULT = Data Address field was 0.
ENOMEM = Insufficient hardware resources exist to perform this configuration.
EINVAL = An element within the package data was invalid. Error Offset contains

the byte offset into the package data of the invalid element. Error Info
contains an additional error code describing the problem with the
element.

EACCES = Attempt to overwrite the default package.

613875-009 1197

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.9.4 Get Package Info List Command (0x0C43)

This command populates a host buffer with information about the currently installed packages. The
package information structure is defined in the Response Buffer table. This command blocks until no
other driver holds the Change Lock nor the Global Configuration Lock. This command does not block
when called by the driver currently holding the Change or Global Configuration lock. Firmware can
return zero or more Package Info structures in the response buffer. Firmware returns zero Package Info
structures when NVM does not contain any packages.

The information returned in by this command corresponds to the content of Section 1 within the E810
Configuration Segment (see Section 7.11.7).

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Error Offset 16-19 Offset to an invalid element detected by firmware in the downloaded package.
Firmware sets this field to zero on success.

Error Info 20-23 Contains a code for additional error information that describes the nature of the
problem found, if any. Firmware sets this field to zero on success.

Data Address High 24-27
Host memory address of the command buffer.

Data Address Low 28-31

Table 7-201. Get Package Info List Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C43 Command opcode.

Data Length 4-5 4096 Length of command/response buffer.

Return Value/VFID 6-7 Return value. Cleared by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion descriptor for this
command.

Reserved 16-23 Reserved.

Data Address High 24-27
Host memory address of the command buffer.

Data Address Low 28-31

Table 7-202. Get Package Info List Command Response Buffer Format

Field Size
(Bytes) Description

Count 4 Number of Package Info structures returned in this buffer.

Package Info Array Variable Packed array of Package Info structures. Table 7-203 shows the format of a Package Info
structure.

Table 7-200. Update Package Response [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1198 613875-009

7.11.10 Uniform TCAM Key Encoding

Some sections define the content of Ternary Content Addressable Memories (TCAMs). In addition to
matching an input of 0 or 1, TCAM keys also define don’t care and invalid input conditions. All TCAM
keys use a key/key-invert encoding to represent the four input conditions, as show in Table 7-94, “Key
and Key Invert Programming Effect”.

The key is arranged as a sequence of key and key invert, as follows:

(key_invert << key.size()) | (key)

Tools must enforce that only a single invalid input bit (~) can be used in a TCAM key.

The TCAM keys must be encoded as described in Table 7-94.

7.11.10.1 Example 1

A 3-bit input value of ‘b10? is represented in the TCAM with key=011 and key invert of 101. The key
matches two possible binary input values 100 and 101.

7.11.10.2 Example 2

A 3-bit input value of ‘b10~ is represented in the TCAM with key=010 and key invert=100. The key
matches no input values due to the never-match condition in bit 0.

Table 7-203. Package Info Structure

Field Size
(Bytes) Description

Version 4 M.m.u.d version of this package as specified in Section 7.11.4.

Name 32 Free form (null terminated UTF-8 by convention) 32-byte name of the package. The 32nd byte of
the name is always a binary 0. The Intel factory default package will have the name 'DEFAULT'
padded with zeros to 32-byte length.

Is In NVM 1 1 if this package is stored in NVM. 0 otherwise.

Is Active 1 1 if this package is currently active (that is, able to process packets). 0 otherwise.

Is Active At Boot 1 1 if firmware enables this package automatically at boot time. 0 otherwise.
This flag is always 0 if Is In NVM is 0.

Is Modified 1 1 if the host modified this package with an Update Package command. 0 otherwise.

613875-009 1199

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.11 Ownership Configuration

The package can explicitly designate ownership of specific hardware resources. Firmware can use this
ownership information to enforce correct runtime behavior. For example, firmware can prevent PF3
from issuing an Update Package command that alters a hardware resource belonging to PF1.

Ownership information for a package is contained in dedicated ownership sections. The host can
download ownership sections only in a Download Package command. Ownership sections are not
allowed in an Update Package command. Therefore, resource ownership is static and cannot be
modified at runtime. The Host can retrieve ownership information using the Upload Section command.

The Section Type Number for ownership metadata is the Section Type Number of the resource itself plus
0x200. Table 7-184.

All ownership sections use a common format. The section number defines the specific hardware
resource to which the ownership applies. Table 7-204 shows the format of an ownership section.

The package must specify ownership for any resource that cab be modified at runtime with an Update
Package command (for example, for UDP tunnel configurations).

A package can omit an ownership section. In this case, the default policy to deny write-access applies
to the corresponding hardware resource.

An ownership section can omit leading and trailing entries in the range of resources covered. For
example, a hardware resource with 1024 entries can have an ownership section that defines only
entries 100 to 200.

A package can contain multiple ownership sections for the same hardware resource. In the case of a
conflict in ownership, the last section downloaded takes precedence.

The specific behavior of each allocation type is shown in Table 7-205.

Table 7-204. Package Format for Ownership Configuration

Field Size
(Bytes) Description

Count 2 Number of entries in this section.

Reserved 2 Reserved (0).

Starting Resource Number 4 A resource number appropriate for the corresponding hardware.
The exact meaning of this number depends on the section number:

CAM, TCAMs, BICAMS, TABLES: Resource number is the address. For example,
ownership for a TCAM with 192 entries will have
Resource Numbers 0-191.

IMEM: Resource number is the IMEM address

Owner 0 1 Owner for this resource. Owners values are defined as follows:
0-7 = Write access allowed for a specific PF 0-7
8 = Global
9 = Unmanaged
10 = Shared (writable by any PF after allocation)
11-254 = Reserved
255 = Unspecified (access denied to any PF)

All other Entries Nx1 Subsequent consecutive owner values. The Resource Number for each consecutive owner
is the previous Resource Number plus one.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1200 613875-009

7.11.12 Common Packet Profile Commands

7.11.12.1 Introduction

Packets proceed down the pipeline accompanied by a variety of metadata, such as the packet type
produced by the parser. Pipeline blocks use this metadata to help determine how to process the packet.

As-is, the metadata can be inconvenient or insufficient to directly control block behavior. For proper
processing, each pipeline block contains a mechanism to map metadata to block specific Profile IDs.
Each block uses its own unique Profile ID enumeration to precisely control packet processing.

Each block defines its own unique Profile IDs, but all blocks share a common methodology for this
configuration. As described in this section, the E810 uses a common set of commands to define the
Profile ID mappings for each block.

Configuration of Profile IDs can occur in three ways:

• As part of the initialization package loaded by firmware from NVM.

• As part of an initialization package provided by the host via the Download Package AQ command.

• Runtime configuration by the host.

Table 7-205. Resource Ownership Types and Behavior

PF#
(0-7)

Global
(8)

Unmanaged
(9)

Shared1

(10)

1. A shared owner can be assigned only for Profile ID TCAM (sections 0x20E, 0x218, 0x222, 0x22C, 0x254) and the Field Vector Table
(sections 0x210, 0x21A, 0x224, 0x22E 0x256).

Unspecified

Description Dedicated to a
specific PF

Read-only resource
available globally

The resource
ownership is not
managed by the
firmware.

Any PF can allocate
as shared or
private

Package did not
specify an owner

PF Allocate No No No Yes, by each owner No

PF Release No No No
Yes, last release
returns resource to
a free pool

No

PF Read Access By owner Yes by any PF By any owner By any owner No

PF Write Access By owner No By any owner By any owner No

Firmware Tracking Static Static No tracking Dynamic
tracks all owners None

Firmware Cleanup PFR, CORER CORER CORER

On last release,
PFR - PF related
settings only,
CORER

None

613875-009 1201

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.12.2 Package Buffer Formats

This section specifies the format of package buffers related to Profile ID configuration.

7.11.12.2.1 Package Format for CDID Key Builder Tables

This section specifies the package format of the per-block CDID Key Builder Tables. These tables select
metadata fields used as input in to the Control Domain ID table (XLT0).

Table 7-206 shows the section type enumeration.

Table 7-207 shows the format of the CDID Key Builder Table for each block.

Table 7-206. Package Section Type Numbers for CDID Key Builder Tables

Section Type
Number

Allowed in
Update Package? Description

17 No CDID Key Builder Table for the Switch.

27 No CDID Key Builder Table for the ACL.

37 No CDID Key Builder Table for the Flow Director.

47 No CDID Key Builder Table for RSS.

87 No CDID Key Builder Table for PE.

Table 7-207. Package Buffer Format for the CDID Key Builder Table

Field Size
(Bytes) Description

Direction Select Flag 0 2 Index of the first flag used to define the direction.
Valid values are 0-511. Value of 0xFFFF is reserved for internal use by assembler tools before
conversion to a valid value. All other values are reserved.
The value in this field corresponds to an individual bit from any metadata field with metadata
ID in range 0-31. For example:

Direction Select 0-15 selects bit 0-15 of Metadata ID 0.
Direction Select 16-31 selects bit 0-15 of Metadata ID 1.
Direction Select 32-47 selects bit 0-15 of Metadata ID 2.
and so on up to Metadata ID 31.

Relevant CSR:
GL_<block>_FLGS_L1SEL0_1[8:0]

When no direction flags are used, software tools write a zero to this field.

Direction Select Flag 1 2 Index of the second flag used to define the direction.
Valid values are 0-511. Value of 0xFFFF is reserved for internal use by assembler tools before
conversion to a valid value. All other values are reserved.
Values are defined in same manor as Direction Select Flag 0.
Relevant CSR:

GL_<block>_FLGS_L1SEL0_1[24:16]
When no direction flags are used, software tools write a zero to this field.

Direction Select Flag 2 2 Index of the third flag used to define the direction.
Valid values are 0-511. Value of 0xFFFF is reserved for internal use by assembler tools before
conversion to a valid value. All other values are reserved.
Values are defined in same manor as Direction Select Flag 0.
Relevant CSR:

GL_<block>_FLGS_L1SEL2_3[8:0]
When no direction flags are used, software tools write a zero to this field.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1202 613875-009

Table 7-208 defines the XLT0 Partition Mode values.

Direction Select Flag 3 2 Index of the fourth flag used to define the direction.
Valid values are 0-511. Value of 0xFFFF is reserved for internal use by assembler tools before
conversion to a valid value. All other values are reserved.
Values are defined in same manor as Direction Select Flag 0.
Relevant CSR:

GL_<block>_FLGS_L1SEL2_3[24:16]
When no direction flags are used, software tools write a zero to this field.

Direction Select 4 This 32-bit value creates a bit mapping that produces the Dir[1:0] direction control.
This field is partitioned into two 16-bit values as follows:

[15:0] = These bits provide a 4-bit to 1 mapping to produce Dir[0]. The four flag bits
selected above create an index value (0-15) selecting one bit of this [15:0] range.

[31:16] = These bits provide a 4-bit to 1 mapping to produce Dir[1]. The four flag bits
selected above create an index value (0-15) selecting one bit of this [31:16]
range.

Relevant CSR:
GL_<block>EXT_FLGS_L1TBL[31:0]

When no direction flags are used, software tools write a zero to this field.

Metadata Rx Select
(DIR=0)

1 This field specifies the Metadata ID value used to select the MD0 input into XLT0 for Receive
(Rx) traffic or for all traffic when the XLT0 Partition Mode field is 0.
Valid values are 0-31. Value of 0xFF is reserved for internal use by assembler tools before
conversion to a valid value. All other values are reserved.
Relevant CSR:

GL_<block>_CDMD_L1Sel[4:0]

Metadata Tx Select
(DIR=1)

1 This field specifies the Metadata ID value used to select the MD0 input into XLT0 for Transmit
(Tx) traffic.
Valid values are 0-31. Value of 0xFF is reserved for internal use by assembler tools before
conversion to a valid value or when the XLT0 Partition Mode field is 0. All other values are
reserved.
Relevant CSR:

GL_<block>_CDMD_L1Sel[12:8]

Metadata Aux0 Select
(DIR=2)

1 This field specifies the Metadata ID value used to select the MD0 input into XLT0 for Aux0
traffic.
Valid values are 0-31. Value of 0xFF is reserved for internal use by assembler tools before
conversion to a valid value or when the XLT0 Partition Mode field is 0. All other values are
reserved.
Relevant CSR:

GL_<block>_CDMD_L1Sel[20:16]

Metadata Aux1 Select
(DIR=3)

1 This field specifies the Metadata ID value used to select the MD0 input into XLT0 for Aux1
traffic.
Valid values are 0-31. Value of 0xFF is reserved for internal use by assembler tools before
conversion to a valid value or when the XLT0 Partition Mode field is 0. All other values are
reserved.
Relevant CSR:

GL_<block>_CDMD_L1Sel[28:24]

XLT0 Partition Mode
(Bi-dir. Pipe Enable)

1 This field controls the XLT0 Table MUX selection.
Valid values are 0 to 2. All other values are reserved. See Table 7-208.
Relevant CSR:

GL_<block>_CDMD_L1Sel[31:30]

Table 7-207. Package Buffer Format for the CDID Key Builder Table [continued]

Field Size
(Bytes) Description

613875-009 1203

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.12.2.2 Package format of the XLT0 Table

This section specifies the package format for configuring the per-block XLT0 table. The XLT0 Table
provides an intermediate stage during calculation of a Control Domain ID.

Each pipeline block uses a distinct XLT0 Table configuration and distinct Package Section Type Numbers
to contain the configuration data. Table 7-209 shows the section type enumeration.

The package format for XLT0 Table configuration is common for all blocks as shown in Table 7-210.

Table 7-208. XLT0 Partition Mode Selection Values

Value Description

0 XLT0 Table lookup value is metadata[10:0].

1 XLT0 Table lookup value is composed as Dir[0] as the most significant bit, plus the selected metadata[9:0] as the least
significant bits.

2 XLT0 Table lookup value is composed as Dir[1:0] as the most significant bits, plus the selected metadata[8:0] as the
least significant bits.

3-254 Reserved.

255 Reserved for internal use by assembler tools before conversion to a valid value.

Table 7-209. Package Section Type Numbers for XLT0 Tables

Section Type
Number

Allowed in
Update Package? Description

10 No XLT0 Table for the Switch.

20 No XLT0 Table for the ACL.

30 No XLT0 Table for the Flow Director.

40 No XLT0 Table for RSS.

80 No XLT0 Table for PE.

Table 7-210. Package Format for XLT0 Table Configuration

Field Size
(Bytes) Description

Count 2 Number of entries in this section.
If the XLT0 table is split into multiple sections, this field describes only the number of entries contained in
this section.

Offset 2 Byte offset from the start of the table to the first value in this section.
The maximum effective offset for any value is 2047. Effective offsets greater than 2047 are reserved.
The offset field incorporate the direction, if used, in the key value.
No Direction Bits:

0-2047 = Control Domain value
1 Direction Bit:

0-1023 = Control domain for DIR=0
1024-2047 = Control domain for DIR=1

2 Direction Bits:
0-511 = Control domain value for DIR=0
512-1023 = Control domain value for DIR=1
1024-1535 = Control domain value for DIR=2
1536-2047 = Control domain value for DIR=3

Relevant CSR:
GL_<block>_XLT0_L1ADDR.LINE_IDX. Should be set together with AUTO_INC bit.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1204 613875-009

7.11.12.2.3 CDID Redirection Table

After the XLT0 table generates the CDID, the CDID Redirection Table can change the CDID to a different
value. The CDID Redirection Table always maps the input CDID to an output CDID. Therefore, to allow
CDID values to pass through unchanged, the host must initialize this table to the trivial identity mapped
case (for example, CDID 7 maps to CDID 7).

Each block in the pipeline contains its own CDID Redirection Table. Table 7-211 shows the relevant
Package Section Type for each block.

The package format for the CDID Redirection Table is common for all blocks as shown in Table 7-212.

Note: Initial value for GL_<block>_P2P_L1ADDR should be 0x1 << 31 (AUTO_INC field set).

Value 1 Control Domain value of this XLT0 entry.
Valid values are in range (0-7). Value of 255 is reserved for internal use by assembler tools before
conversion to a valid value. All other values are reserved.
Relevant CSR from “Non-TCAM Tables”:

GL_<block>_XLT0_L1DATA.DATA

... ... Subsequent values at consecutive offsets.

Table 7-211. Package Section Type Numbers for CDID Redirection Tables

Section Type
Number

Allowed in
Update Package? Description

18 No CDID Redirection Table for the Switch.

28 No CDID Redirection Table for the ACL.

38 No CDID Redirection Table for the Flow Director.

48 No CDID Redirection Table for RSS.

88 No CDID Redirection Table for PE.

Table 7-212. Package Format for CDID Redirection Table

Field Size
(Bits) Description

CDID 0 Redirect Value 4 Redirected value for CDID 0.
Relevant CSRs:

GL_<block>_P2P_L1ADDR.LINE_IDX = 0
GL_<block>_P2P_L1DATA.DATA

CDID 1 Redirect Value 4 Redirected value for CDID 1.
Relevant CSRs:

GL_<block>_P2P_L1ADDR.LINE_IDX = 0
GL_<block>_P2P_L1DATA.DATA

CDID 2-15 Redirect Values 14 x 4 Redirected value for CDID 2 to 15.
Relevant CSRs:

GL_<block>_P2P_L1ADDR.LINE_IDX
GL_<block>_P2P_L1DATA.DATA

Table 7-210. Package Format for XLT0 Table Configuration [continued]

Field Size
(Bytes) Description

613875-009 1205

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.12.2.4 Package Format of XLT Key Builder Tables

This section specifies the package format of per-block XLT Key Builder Tables. The XLT Key Builder Table
selects the metadata and flags fields used as input into the Profile ID Compression (XLT1) and
Expansion (XLT2) tables.

Each pipeline block uses a distinct XLT Key Builder Table configuration and distinct Package Section Type
Numbers to contain the configuration data. Table 7-213 shows the section type enumeration.

The format of the XLT Key Builder Table definition is common for all blocks as shown in Table 7-214.

Table 7-213. Package Section Type Numbers for XLT Key Builder Tables

Section Type
Number

Allowed in
Update Package? Description

11 No XLT Key Builder Table for the Switch.

21 No XLT Key Builder Table for the ACL.

31 No XLT Key Builder Table for the Flow Director.

41 No XLT Key Builder Table for RSS.

81 No XLT Key Builder Table for PE.

Table 7-214. Package Buffer Format for the XLT Key Builder Table

Field Size
(Bytes) Description

XLT1 Partition Mode 1 This field controls the XLT1 Table MUX selection.
Valid values are 0 to 3. All other values are reserved. See Table 7-215.
Relevant CSR from “Level-2 profile selection CSRs”:

GL_<block>_L2PRTMOD.XLT1

XLT2 Partition Mode 1 This field controls the XLT2 Table MUX selection.
Valid values are 0 to 3. All other values are reserved. See Table 7-216.
Relevant CSR from “Level-2 profile selection CSRs”:

GL_<block>_L2PRTMOD.XLT2

Profile ID Partition
Mode

1 This field controls the Profile ID TCAM MUX selection.
Valid values are 0 to 3. All other values are reserved. See Table 7-217.
Relevant CSR from “Level-2 profile selection CSRs”:

GL_<block>_PID_L2GKTYPE.PID_GKTYPE

Reserved (0) 1 The host must set this value to 0.

Flag15 Mask[31:0] 4 Reduction flag, low 32 bits.
Relevant CSR:

GL_<block>_FL15_BMPLSB.BMPLSB

Flag15 Mask[63:32] 4 Reduction flag, high 32 bits.
Relevant CSR:

GL_<block>_FL15_BMPMSB.BMPMSB

XLT Key Builder Table 192
(8x24)

This table specifies how to construct the Profile ID lookup key for each of 8 possible CDID
values, numbered 0 to 7. Each entry is structured as shown in Table 7-218.
Relevant CSR from “Non-TCAM Tables”:

CTLTBL_L2ADDR / CTLTBL_L2DATA

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1206 613875-009

Table 7-215 defines the XLT1 Partition Mode values.

Table 7-216 defines the XLT2 Partition Mode values.

Table 7-217 defines the Profile ID TCAM Partition Mode values. For modes 1,2 and 3, the CDID values is
encoded as a one-hot bitmap.

Table 7-215. XLT1 Partition Mode Selection Values

Value Description

0 XLT1 Table lookup value is metadata[12:0].

1 XLT1 Table lookup value is composed as XLT1_AdSel[0] as the most significant bit, plus the selected metadata[11:0] as
the least significant bits.

2 XLT1 Table lookup value is composed as XLT1_AdSel[1:0] as the most significant bits, plus the selected metadata[10:0]
as the least significant bits.

3 XLT1 Table lookup value is composed as XLT1_AdSel[2:0] as the most significant bits, plus the selected metadata[9:0]
as the least significant bits.

Other Reserved.

Table 7-216. XLT2 Partition Mode Selection Values

Value Description

0 XLT2 Table lookup value is metadata[9:0].

1 XLT2 Table lookup value is composed as XLT2_AdSel[0] as the most significant bit, plus the selected metadata[8:0] as
the least significant bits.

2 XLT2 Table lookup value is composed as XLT2_AdSel[1:0] as the most significant bits, plus the selected metadata[7:0]
as the least significant bits.

3 XLT2 Table lookup value is composed as XLT2_AdSel[2:0] as the most significant bits, plus the selected metadata[6:0]
as the least significant bits.

Other Reserved.

Table 7-217. Profile ID TCAM Partition Mode Selection Values

Value Description

0 Bits 39:32 of the Profile ID TCAM match value are bits 15:8 of XLT2 Table output.

1 Bits 39:38 of the Profile ID TCAM match value are a one-hot encoding of CDID[0]. Bits 37:32 of the Profile ID TCAM
match value are bits 13:8 of XLT2 Table output.

2 Bits 39:36 of the Profile ID TCAM match value are a one-hot encoding of CDID[1:0]. Bits 35:32 of the Profile ID TCAM
match value are bits 11:8 of XLT2 Table output.

3 Bits 39:32 of the Profile ID TCAM match value are a one-hot encoding of CDID[2:0].

Other Reserved.

613875-009 1207

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-218 defines the XLT Key Builder Table entries.

Table 7-218. Format for XLT Key Builder Table Entries

Field Size
(Bits)

Bit
Offset Description

Reserved 32 0 Reserved for programming tools use. Ignored by firmware.

XLT1 AdSel 3 32 If used, value driven on XTL1 AdSel lines.
Relevant CSR:

GL_<block>_CTLTBL_L2DATA[2:0]1 (LINE_OFF=0)

XLT2 AdSel 3 35 If used, value driven on XTL2 AdSel lines.
Relevant CSR:

GL_<block>_CTLTBL_L2DATA[5:3] (LINE_OFF=0)

Flag0 Select 9 38 Profile ID flags select (same for Flags 1-14 in following rows)
Relevant CSR:

GL_<block>_CTLTBL_L2DATA[14:6] (LINE_OFF=0)

Flag1 Select 9 47 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[23:15] (LINE_OFF=0)

Flag2 Select 9 56 Relevant CSRs:
GL_<block>_CTLTBL_L2DATA[31:24] (LINE_OFF=0)
GL_<block>_CTLTBL_L2DATA[0:0] (LINE_OFF=1)

Flag3 Select 9 65 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[9:1] (LINE_OFF=1)

Flag4 Select 9 74 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[18:10] (LINE_OFF=1)

Flag5 Select 9 83 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[27:19] (LINE_OFF=1)

Flag6 Select 9 92 Relevant CSRs:
GL_<block>_CTLTBL_L2DATA[31:28] (LINE_OFF=1)
GL_<block>_CTLTBL_L2DATA[4:0] (LINE_OFF=2)

Flag7 Select 9 101 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[13:5] (LINE_OFF=2)

Flag8 Select 9 110 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[22:14] (LINE_OFF=2)

Flag9 Select 9 119 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[31:23] (LINE_OFF=2)

Flag10 Select 9 128 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[8:0] (LINE_OFF=3)

Flag11 Select 9 137 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[17:9] (LINE_OFF=3)

Flag12 Select 9 146 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[26:18] (LINE_OFF=3)

Flag13 Select 9 155 Relevant CSRs:
GL_<block>_CTLTBL_L2DATA[31:27] (LINE_OFF=3)
GL_<block>_CTLTBL_L2DATA[3:0] (LINE_OFF=4)

Flag14 Select 9 164 Relevant CSR:
GL_<block>_CTLTBL_L2DATA[12:4] (LINE_OFF=4)

Reserved 9 173 Reserved (0).

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1208 613875-009

Note: Initial value for GL_<block>_CTLTBL_L2ADDR should be 0x1 << 31 (AUTO_INC field set).
Later, only LINE_OFF field of this register should be changed.

7.11.12.2.5 Package Format of XLT1 Tables

This section specifies the package format for configuring the per-block XLT1 table. The XLT1 Table
provides an intermediate stage during calculation of a Profile ID. The use of the XLT1 table is block
specific, but can, for example, be used to generate a Packet Group ID.

Each pipeline block uses a distinct XLT1 Table configuration and distinct Package Section Type Numbers
to contain the configuration data. Table 7-219 shows the section type enumeration. Because the size of
the XLT1 Table exceeds the 4 KB maximum size for an AQ command buffer, the host must issue more
than one AQ command to complete initialization of the entire table.

The package format for XLT1 Table configuration is common for all blocks as shown in Table 7-220.

XLT2 MdSel 5 182 XLT1 metadata selection
Relevant CSR:

GL_<block>_CTLTBL_L2DATA[26:22] (LINE_OFF=4)
Note: XLT2/1 MdSel are in reverse order from AdSel fields

XLT1 MdSel 5 187 XLT1 metadata selection
Relevant CSR:

GL_<block>_CTLTBL_L2DATA[31:27] (LINE_OFF=4)
Note: XLT2/1 MdSel are in reverse order from AdSel fields.

1. Set GL_<block>_CTLTBL_L2ADDR.AUTO_INC when writing data to GL_<block>_CTLTBL_L2DATA.

Table 7-219. Package Section Type Numbers for XLT1 Tables

Section Type
Number

Allowed in
Update Package? Description

12 Yes XLT1 Table for the Switch.

22 Yes XLT1 Table for the ACL.

32 Yes XLT1 Table for the Flow Director.

42 Yes XLT1 Table for RSS.

82 Yes XLT1 Table for PE.

Table 7-220. Package Format for XLT1 Table Configuration

Field Size
(Bytes) Description

Count 2 Number of entries in this section.
If the XLT1 table is split into multiple sections, this field describes only the number of entries contained in
this section.

Offset 2 Byte offset from the start of the table to the first value in this section.
The maximum effective offset for any value is 8191. Effective offsets greater than 8191 are reserved.
Relevant CSR:

GL_<block>_XLT1_L2ADDR.LINE_IDX
Should be set together with AUTO_INC bit.

Table 7-218. Format for XLT Key Builder Table Entries [continued]

Field Size
(Bits)

Bit
Offset Description

613875-009 1209

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.12.2.6 Package Format of XLT2 Tables

This section specifies the package format for configuring the per-block XLT2 table. The XLT2 Table
provides an intermediate stage during calculation of a Profile ID. The use of the XLT2 table is block
specific, but can, for example, be used to expand a set of metadata fields into additional information.

Each pipeline block uses a distinct XLT2 Table configuration and distinct Package Section Type Numbers
to contain the configuration data. Table 7-221 shows the section type enumeration. Because the size of
the XLT2 Table does not exceed the 4 KB maximum size for an AQ command buffer, the host can
initialize the table in parts or as a single AQ command.

The package format for XLT2 Table configuration is common for all blocks as shown in the Table 7-222.

Value 1 Value for the offset specified by the Offset field.
Relevant CSR from “Non-TCAM Tables”:

GL_<block>_XLT1_L2DATA.DATA

... ... Subsequent consecutive values.

Table 7-221. Package Section Type Numbers for XLT2 Tables

Section Type
Number

Allowed in
Update Package? Description

13 Yes XLT2 Table for the Switch.

23 Yes XLT2 Table for the ACL.

33 Yes XLT2 Table for the Flow Director.

43 Yes XLT2 Table for RSS.

83 Yes XLT2 Table for PE.

Table 7-222. Package Format for XLT2 Table Configuration

Field Size
(Bytes) Description

Count 2 Number of entries in this download.

Offset 2 Byte offset from the start of the table to the first value in this section.
The maximum effective offset for any value is 1023. Effective offsets greater than 1023 are reserved.
Relevant CSR:

GL_<block>_XLT2_L2ADDR.LINE_IDX. Should be set together with AUTO_INC bit.

Value 2 Value for the offset specified by the Offset field.
Relevant CSR from “Non-TCAM Tables”:

GL_<block>_XLT2_L2DATA.DATA

... ... Subsequent consecutive values.

Table 7-220. Package Format for XLT1 Table Configuration [continued]

Field Size
(Bytes) Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1210 613875-009

7.11.12.2.7 Package Format of Profile ID TCAMs

This section specifies the package format for configuring the per-block Profile ID TCAM. The Profile ID
TCAM provides the Profile ID based on the output of the XLT1 Table, the XLT2 Table, Flags, and the
CDID. The use of the Profile ID TCAM is block-specific and directs block-specific functionality.

Each pipeline block uses a distinct Profile ID TCAM configuration and distinct Package Section Type
Numbers to contain the configuration data. Table 7-223 shows the section type enumeration. Because
the size of the Profile ID TCAM can exceed the 4 KB maximum size for an AQ command buffer, the host
might have to issue multiple AQ command to initialize the entire table.

The package format for Profile ID TCAM configuration is common for all blocks as shown in Table 7-224.

Table 7-223. Package Section Details for Profile ID TCAMs

Section Type
Number

Allowed in
Update Package?

Number of
TCAM Entries

Number of
Profile IDs Description

14 Yes 512 256 Profile ID TCAM for the Switch.

24 Yes 512 128 Profile ID TCAM for the ACL.

34 Yes 512 128 Profile ID TCAM for the Flow Director.

44 Yes 512 128 Profile ID TCAM for RSS.

84 Yes 64 32 Profile ID TCAM for PE.

Table 7-224. Package Format for Profile ID TCAM Configuration

Field Size
(Bytes) Description

Count 2 Number of entries in this download.

Entry 0 Address 2 Address of this entry in the TCAM.
Relevant CSR from “TCAM Programming”:

GL_<block>EXT_TCAM_L2ADDR

Key/Key Invert 10 [79:40] = Encoded Key Invert for this entry.
The key is composed of 40 input bits encoded according to Table 7-94. The layout is
shown in Table 7-225.
Relevant CSR from “TCAM Programming”:

GL_<block>EXT_TCAM_L2DATALSB.DATALSB (bytes 0-3)
GL_<block>EXT_TCAM_L2DATAMSB.DATAMSB (byte 4)

[39:0] = Encoded Key for this entry.
The key is composed of 40 input bits encoded according to Table 7-94. The layout is
shown in Table 7-225.
Relevant CSR from “TCAM Programming”:

GL_<block>EXT_TCAM_L2DATALSB.DATALSB (bytes 0-3)
GL_<block>EXT_TCAM_L2DATAMSB.DATAMSB (byte 4)

Profile ID 1 Profile ID output value corresponding to this key.
Firmware reserves the Profile ID value of 1 as the default “no match” value.
GL_<BLOCK>EXT_K2N_L2ADDR.LINE_IDX should be set to (Address /4).
GL_<BLOCK>EXT_K2N_L2DATA.DATA[Address % 4] should be set to Profile ID.

... Nx13 All other entries.

613875-009 1211

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-225 shows the format of the 10-byte Profile Key. The Profile Key occupies Bits 79-0 of the
Profile ID TCAM Entry shown in Table 7-225.

7.11.12.2.8 Package Format of Profile ID Redirection Tables

After the Profile ID TCAM generates the Profile ID, the Profile ID Redirection Table can change the
Profile ID to a different value. The Profile ID Redirection Table controls this remapping. The Profile ID
Redirection Table always maps the input Profile ID to an output Profile ID. Therefore, to allow Profile ID
values to pass through unchanged, the host must initialize this table to the trivial identity mapped case
(for example, Profile ID 7 maps to Profile ID 7).

Each block in the pipeline contains its own Profile ID Redirection Table. Table 7-226 shows the relevant
Package Section Type for each block.

The package format for Profile ID Redirection Table is common for all blocks as shown in Table 7-227.
The size of the table varies depending on the number of Profile ID values supported by particular block.

Table 7-225. Format of 80-Bit Profile ID TCAM Key Field

Bits 39-32 Bits 31-24 Buts 23-16 Bits 15-0

Eight bits as specified in
Table 7-217.

Eight bits produced by the
XLT2 table

Eight bits produced by the
XLT1 table

16 Flags

Table 7-226. Package Section Type Numbers for Profile ID Redirection Table

Section Type
Number

Allowed in
Update Package?

Number of
Entries Description

15 Yes 256 Profile ID Redirection Table for the Switch.

25 Yes 128 Profile ID Redirection Table for the ACL.

35 Yes 128 Profile ID Redirection Table for the Flow Director.

45 Yes 128 Profile ID Redirection Table for RSS.

85 Yes 32 Profile ID Redirection Table for PE.

Table 7-227. Package Format for Profile ID Redirection Table

Field Size
(Bytes) Description

Count 2 Number of entries in this section.

Offset 2 Offset to the first entry (N) in this section.
Offset must be in range 0 to the maximum number of profiles supported by the block as
shown in Table 7-226.

Profile ID Redirect Value 1 Redirected value for the Profile ID specified by the Offset field.
Relevant CSR:

GL_<block>_N2N_L2DATA.DATA0

... Nx1 All subsequent entries in consecutive order.1

1. Note for firmware: Initial value for GL_<block>_N2N_L2ADDR should be 0x1 << 31 (AUTO_INC field set).

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1212 613875-009

7.11.12.3 Dynamic Configuration of Profile IDs

A host can program new Profile ID values at runtime. For this purpose, the host issues one or more
Update Package AQ commands. The Update Package commands download an incremental package
update to the Profile ID logic using the same package buffer formats described in the previous sections.

The host can change all aspects of Profile ID configuration dynamically via the Update Package AQ
command. Firmware can provide some error checking, but responsibility for correct operation lies with
the host software.

7.11.12.3.1 Field Vector Extraction Table

After the Profile ID Redirection Table generates the Profile ID, the field vector extraction logic takes the
Profile ID as input and produces a field vector. The Field Vector Table configures this extraction logic.

The number of 16-bit words available in a Field Vector varies by hardware block as specified by the
Section Type Number. Regardless, all blocks use a common format as shown in Table 7-229.

Table 7-228. Package Section Type Numbers for Field Vector Extraction Tables

Section Type
Number

Allowed in
Update Package?

Number of
Entries

FV Size
(32-bit Words) Description

16 Yes 256 48 Field Vector Table for the Switch.

26 Yes 128 32 Field Vector Table for the ACL.

36 Yes 128 24 Field Vector Table for the Flow Director.

46 Yes 128 24 Field Vector Table for RSS.

86 Yes 32 32 Field Vector Table for the PE.

99 No 1 32
Field Vector Table for Manageability.
Note: PFR has no effect on this

resource.

Table 7-229. Package Format for Profile ID Redirection Table

Field Extraction Word
Fields

Size
(Bits) Description

Count 16 Number of entries in this section.

Offset (Base Profile ID) 16 Offset to the first table entry in this section.
The offset value is the same as the logical Profile ID. Subsequent entries in
this section occupy consecutive Profile ID values in the FV extraction table.
Relevant CSR:

GL_<block>_PRFLM_CTRL[n].PRFL_IDX

613875-009 1213

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.12.4 VSI Lists

The firmware reserves VSI Prune lists 0 through 7 as empty VSI lists.

7.11.12.5 Recipe Configuration

This section specifies the recipes for packet processing in the Switch block. At a minimum, a complete
package must contain a recipe with a default action ‘forward to VSI list 0’.

Entry 0
(for first Profile ID)

Word 0 Protocol ID 8 Protocol ID for extraction word 0.
Relevant CSR:

GL_<block>_PRFLM_DATA_[n][Word Offset].PROT

Word 0 Offset 9 Byte offset for extraction word 0.
Relevant CSR:

GL_<block>_PRFLM_DATA_[n][Word Offset].OFF

Reserved 15 Reserved (0).

Word 1 Protocol ID 8 Protocol ID for extraction word 1.

Word 1 Offset 9 Byte offset for extraction word 1.

Reserved 15 Reserved (0).

... All intervening words.

Word N Protocol ID 8 Last Protocol ID and Byte Offset for this FV entry, where N is one less than
the number of 16 bit words in the FV.
See Table 7-228 for the size of the FV per block.Word N Offset 9

Reserved 15

All other entries Size
Varies

Each subsequent entry occupies placed at previous Profile ID plus one.

Table 7-230. Package Section Type Numbers for Recipe Configuration

Section Type
Number

Allowed in
Update Package? Description

92 No Recipe configuration for the Switch.

Table 7-231. Package Format of the Recipe Configuration Section

Field Size
(Bits)

Bit
Offset Description

Count 16 0 Number of entries in this section. Valid values 1-63.

Reserved 16 16 Reserved (0).

Entry 0 Recipe ID 8 32 The unique, incrementing Recipe ID automatically assigned by the tools.

Reserved 24 40 Reserved (0).

Dependent Recipes 64 64 A bitmap representation of the dependent Recipe IDs.

Recipe 224 128 The 28-byte recipe content, as described in Table 7-9.

... Nx320 352 All consecutive entries, 40 bytes each.

Table 7-229. Package Format for Profile ID Redirection Table [continued]

Field Extraction Word
Fields

Size
(Bits) Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1214 613875-009

7.11.12.6 Recipe-to-Profile Associations

This section specifies the associations between profiles and recipes for packet processing in the Switch
block.

7.11.12.6.1 Miscellaneous Profile and Control Domain Configuration

This section specifies the miscellaneous configuration section for profile and control domains.

Table 7-232. Package Section Type Numbers for Recipe-to-Profile Associations

Section Type
Number

Allowed in
Update Package? Description

93 No Recipe to Profile associations for the Switch.

Table 7-233. Package Format of the Recipe Configuration Section

Field Size
(Bits)

Bit
Offset Description

Count 16 0 Number of entries in this section. Valid values 1-63.

Offset (Base Profile ID) 16 16 Offset to the first table entry in this section.
The offset value is the same as the logical Profile ID. Subsequent entries in
this section occupy consecutive Profile ID values.

Entry 0 Recipe Associations 64 32 Bitmap of the recipe indexes associated with this profile.
The bitmap should include both root and non-root recipes.

... Nx8 96 All consecutive entries, eight bytes each.

Table 7-234. Package Section Type Numbers for Miscellaneous Profile and Control Domain
Configuration

Section Type
Number

Allowed in
Update Package? Description

100 Yes Miscellaneous Profile and Control Domain Configuration for Switch.

101 Yes Miscellaneous Profile and Control Domain Configuration for ACL.

102 Yes Miscellaneous Profile and Control Domain Configuration for Flow Director.

103 Yes Miscellaneous Profile and Control Domain Configuration for RSS.

104 Yes Miscellaneous Profile and Control Domain Configuration for PE.

Table 7-235. Package Format of the Miscellaneous Profile and Control Domain

Field Size
(Bits) Description

Static CDID Selection 32 Enable static CDID selection, and set the static CDID.
The value of all FFs is reserved for internal use by tools before conversion to a valid value.

[31] = Enable static CDID selection.
[30:4] = Reserved (0).
[3:0] = Static CDID value.

Relevant CSR:
GL_*EXT_FORCE_L1CDID

613875-009 1215

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.12.6.2 Mask Select Filters

This section specifies the mask select filters section.

MDID Digest Mask 64 The MDID digest mask.
The value of all 0 is reserved for internal use by tools before conversion to a valid value.

[63:48] = Reserved (0).
[47:32] = The 16 MSBs for the MDID digest mask.
[31:0] = The 32 LSBs for the MDID digest mask.

Relevant CSRs:
GL_*EXT_L2_PMASK0, GL_*EXT_L2_PMASK1

TCAM Input Mask 64 The TCAM input mask.
The value of all 0 is reserved for internal use by tools before conversion to a valid value.

[63:40] = Reserved (0).
[39:32] = The eight MSBs for the TCAM input mask.
[31:0] = The 32 LSBs for the TCAM input mask.

Relevant CSRs:
GL_*EXT_L2_TMASK0, GL_*EXT_L2_TMASK1

Reserved 96 Reserved (0)

Table 7-236. Package Section Type Numbers for Mask Select Filters Configuration

Section Type
Number

Allowed in
Update Package? Description

105 No Mask Select Filters for RSS.

106 No Mask Select Filters for FD.

107 No Mask Select Filters for PE.

Table 7-237. Package Format of Mask Select Filters

Field Size
(Bits) Description

Count 16 Number of entries in this section.

Offset 16 Offset to the first Profile ID in this section.
Valid values are 0..31 in the PE block and 0..127 in FD and RSS blocks.

Entry 0 Mask Select 32 The bitmap of registers to be enabled for the given Profile ID.
Relevant CSR:

GLQF_[FD|H|PE]MASK_SEL

--- Nx32 All consecutive entries, four bytes each.

Table 7-235. Package Format of the Miscellaneous Profile and Control Domain [continued]

Field Size
(Bits) Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1216 613875-009

7.11.12.6.3 Quad Hash Control Table

This section specifies the quad hash control table section.

Table 7-238. Package Section Type Numbers for Quad Hash Control Table

Section Type
Number

Allowed in
Update Package? Description

108 No Quad Hash Control Table for PE.

Table 7-239. Package Format of Mask Select Filters

Field Size
(Bits) Description

Count 16 Number of entries in this section.

Offset 16 Offset to the first Profile ID in this section. Valid values are 0..31.

Entry 0 TO_QH 2 The target of given profile:
00b = Reserved.
01b = Packet is candidate for QH filter.
10b = Packet is candidate for the PE bypassing the QH filter.
11b = Packet is candidate for the QH filter and forward to the PE even if it does not match

the filter.
Relevant CSR:

GLQF_PE_CTL2

APBVT 1 Packet profile 'n' should hit the APBVT in order to be a candidate for the QH or directly to the
PE.
Relevant CSR:

GLQF_PE_CTL2

Reserved 29 Reserved (0)

... Nx32 All consecutive entries, four bytes each.

613875-009 1217

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.13 Parser Configuration

7.11.13.1 Introduction

Parser logic performs initial packet analysis and generates metadata for use in subsequent pipeline
stages. The packet processing pipeline contains two Parsers, one for the receive path (Rx Parser) and
one for the transmit path (Tx Parser). Both Rx and Tx Parsers share the same design.

A parser is not a monolithic structure, but consists of many interdependent sub-components. A package
contains dedicated sections for each of these sub-component within the Parser.

7.11.13.2 Parse Graph

The Parse Graph logic is the principle driver of the packet analysis process within the Parser. The Parse
Graph system consists of a variety of tables, each with its package section. See Table 7-240.

7.11.13.2.1 CAM Entry Algorithm

During a CAM query, hardware uses a hash algorithm to select an entry index, then checks subsequent
entries for a match. The algorithm is as follows:

1. Calculate the entry index from 0-max index using the hash algorithm on the lookup key. The
maximum index for the Parse Graph CAM is 2047. The maximum index for the No-Match CAM is
1024.

2. Starting from the calculated entry index, check if the entry at index matches the key. If the entry
matches return the corresponding value. If the entry does not match, iterate to the next entry up to
the maximum count for the CAM. The Parse Graph CAM checks up to eight consecutive entries for a
match. The No-Match CAM checks up to four consecutive entries for a match.

3. If no entry matched the key, query the Spill CAM starting at entry 0. If the Spill CAM contains a
match, return the corresponding value. If the Spill CAM does not have a match, no match was
found.

7.11.13.2.2 Determining CAM Entry Index

This section provides a pseudo-code algorithm to determine the correct CAM entry index for a given PG
key. This algorithm produces the same result as the hardware algorithm.

The Parser Miscellaneous Configuration section (see Section 7.11.13.16) specifies the seed value used
to compute the CAM Entry Index.

// bitset<N> is a collection of N bits
// myset[i] references the i’th bit of the biset 'myset'
// & is a bitwise logical AND operation
// ^ is a bitwise logical XOR operation
// << is a bitwise shift left with zero fill operation

Table 7-240. Package Section Type Numbers for Parse Graph CAMs

Section Type
Number

Allowed in
Update Package? Description

50 No Parse Graph CAM for the Rx Parser.

60 No Parse Graph CAM for the Tx Parser.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1218 613875-009

bitset<11> GetPGCAMEntryIndex(bitset<72> Key, bitset<83> Seed)
 bitset<11> Hash; // Computed hash value
 bitset<83> PadKey = Key; // Key in bottom 72 bits
 PadKey = PadKey << 11; // Shift Key to top 72 bits
 for i = 0 to 11 do
 bitset<84> Temp = PadKey & (Seed << i)
 bitset<1> TempBit = Temp[0]
 for j = 1 to 84 do
 TempBit = TempBit ^ Temp[j]
 Hash[10-i] = TempBit
 return Hash
bitset<10> GetNoMatchCAMEntryIndex(bitset<40> Key, bitset<51> Seed)
 bitset<10> Hash; // Computed hash value
 bitset<51> PadKey = Key; // Key in bottom 40 bits
 PadKey = PadKey << 11; // Shift Key to top 40 bits
 for i = 0 to 10 do
 bitset<50> Temp = PadKey & (Seed << i)
 bitset<1> TempBit = Temp[0]
 for j = 1 to 50 d
 TempBit = TempBit ^ Temp[j]
 Hash[10-i] = TempBit
 return Hash

7.11.13.2.2.1 CAM Entry Index Examples

PG No-Match CAM slice entry index hash examples:

Input Seed = 0x1b0ce7ae9030f
Input Key = 0x0000008000
Output Hash = 0x2e9
Input Seed = 0x1b0ce7ae9030f
Input Key = 0x0000298808
Output Hash = 0x378

PG CAM slice entry index hash examples:

Input Seed = 0x05c5666c1b0ce7ae9030f
Input Key = 0x000000040000008000
Output Hash = 0x2df
Input Seed = 0x05c5666c1b0ce7ae9030f
Input Key = 0x0000002c00001a800d
Output Hash = 0x6d7

7.11.13.2.3 Determining CAM Slice

The entry is placed in the unoccupied entry at the calculated entry index. If an entry is already
occupied, subsequent entries are searched in order up to the maximum for the CAM (0 to 7 for the PG
CAM, and 0 to 3 for the No-Match CAM).

If the entry and all subsequent entries are occupied up to the maximum count for the CAM, the entry is
placed in the corresponding Spill CAM at the first available location. If the Spill CAM is already full, the
result is an error condition in which the entry cannot be placed.

613875-009 1219

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.13.2.4 Package Format of the Parse Graph CAM

The hub of the Parse Graph logic is the Parse Graph CAM. Table 7-241 shows the package buffer layout
of the Parse Graph CAM.

Table 7-242 shows the format of each 16-byte Parse Graph CAM entry.

Table 7-241. Package Format for Parse Graph CAM Configuration

Field Size
(Bytes) Description

Count 2 Number of entries in this section.

Offset 2 Offset to the first entry in this section.All entries are contiguous from this offset. All entries must be in
range 0 to 2047. Entries with an offset greater than 2047 are reserved.
Relevant CSRs:

GLGEN_ANA_CFG_CTRL.LINE_IDX = Offset >> 3
GLGEN_ANA_CFG_CTRL.TABLE_ID = 4 + (Offset % 8)

Entry 0 16 First CAM entry.
Each CAM entry contains a key and value. Each entry is formatted as shown in Table 7-242.
Relevant CSR uses Parser indirect interface with Table IDs 4 to 11 (PG mem0 to PG mem7).

GLGEN_ANA_CFG_WRDATA.WR_DATA, 32 bits/write

--- Nx16 + 4 All other entries.

Table 7-242. Package Format of the Parse Graph CAM Entry

Field Width
(Bits)

Bit
Offset Description

Key
(73 bits)

Valid 1 0 The parse graph entry is valid.
The tools set this bit to 0 for undefined nodes in the parse graph.

Node ID 11 11:1 Node ID of the protocol in the current analysis round.

Flag 0 1 12 Optional Flag 0.

Flag 1 1 13 Optional Flag 1.

Flag 2 1 14 Optional Flag 2.

Flag 3 1 15 Optional Flag 3.

Boost Hit 1 16 Flag set when the Boost TCAM Search resulted in a match. Clear
otherwise.

Boost Index 8 24:17 Boost TCAM match index if Boost Hit Flag == 1. This field is zero
otherwise.

ALU Reg 16 40:25 Optional ALU register value if enabled. Zero otherwise.

Next Proto Key 32 72:41 Next Protocol value extracted from the packet.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1220 613875-009

7.11.13.2.5 Package Format of the Parse Graph No-Match CAM

The Parse Graph No-Match logic defines the output values used when the Parse Graph CAM did not find
a match for the input key.

Table 7-244 shows the package buffer layout of the PG No Match CAM.

Action
(55 bits)

Next Node ID 11 83:73 Node ID used for the next analysis round.

Next PC 8 91:84 IMEM Program Counter used for the next analysis round.

Is Protocol Group 1 92 Set if the Protocol ID value is a protocol group ID.
Clear if the Protocol ID value is a Protocol ID.
See Section 7.11.13.9.

Reserved 3 95:93 Reserved (0).

Protocol ID 8 103:96 Protocol ID (Is Protocol Group == 0)
or

Protocol Group ID (Is Protocol Group = 1)

Is Marker Group 1 104 Set if the Marker ID value is a Marker Group ID.
Clear if the Marker ID value is a Marker ID.
See Section 7.11.13.10.

Marker ID 8 112:105 Marker ID (Is Marker Group == 0)
or

Marker Group ID (Is Marker Group == 1)

Is Last Round 1 113 Set if this is a last analysis round for this packet. Clear otherwise.

Header Offset Polarity 1 114 Set if the Header Offset Inc value is added to the current Header Offset
value.
Clear if the Header Offset Inc value is subtracted from the current
Header Offset.

Header Offset Inc 9 123:115 Number of bytes to add or subtract from the Header Offset.

Reserved 4 127:124 Reserved (0).

Table 7-243. Package Section Type Numbers for Parse Graph No-Match CAMs

Section Type
Number

Allowed in
Update Package? Description

51 No Parse Graph No-Match CAM for the Rx Parser.

61 No Parse Graph No-Match CAM for the Tx Parser.

Table 7-244. Package Format for Parse Graph No-Match CAM Configuration

Field Size
(Bytes) Description

Count 2 Number of entries in this section.

Offset 2 Offset to the first entry in this section.
All entries are contiguous from this offset. All entries must be in range 0 to 1023. Entries with an offset
greater than 1023 are reserved.

Table 7-242. Package Format of the Parse Graph CAM Entry [continued]

Field Width
(Bits)

Bit
Offset Description

613875-009 1221

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-245 shows the format of each 12-byte PG No-Match CAM entry. The format is identical to the
Parse Graph CAM format, with the exception that the Next Proto Key field is not specified.

Entry 0 12 First CAM entry.
Each CAM entry contains a key and value. Each entry is formatted as shown in Table 7-245.
Relevant CSR uses Parser indirect interface with Table IDs 21 to 24 (no match PG mem0 to no match PG
mem3).

--- Nx12 + 4 All other entries.

Table 7-245. Package Format of the Parse Graph CAM Entry

Field Width
(Bits)

Bit
Offset Description

Key
(41 bits)

Valid 1 0 The parse graph entry is valid.
The tools set this bit to 0 for undefined nodes in the parse graph.

Node ID 11 11:1 Node ID of the protocol in the current analysis round.

Flag 0 1 12 Optional Flag 0.

Flag 1 1 13 Optional Flag 1.

Flag 2 1 14 Optional Flag 2.

Flag 3 1 15 Optional Flag 3.

Boost Hit 1 16 Flag set when the Boost TCAM Search resulted in a match. Clear
otherwise.

Boost Index 8 24:17 Boost TCAM match index if Boost Hit Flag == 1. This field is zero
otherwise.

ALU Reg 16 40:25 Optional ALU register value if enabled. Zero otherwise.

Action
(55 bits)

Next Node ID 11 51:41 Node ID used for the next analysis round.

Next PC 8 59:52 IMEM Program Counter used for the next analysis round.

Is Protocol Group 1 60 Set if the Protocol ID value is a protocol group ID.
Clear if the Protocol ID value is a Protocol ID.

Reserved 3 63:61 Reserved(0)

Protocol ID 8 71:64 Protocol ID (Is Protocol Group == 0)
or

Protocol Group ID (Is Protocol Group = 1)

Is Marker Group 1 72 Set if the Marker ID value is a Marker Group ID.
Clear if the Marker ID value is a Marker ID.

Marker ID 8 80:73 Marker ID (Is Marker Group == 0)
or

Marker Group ID (Is Marker Group == 1)

Is Last Round 1 81 Set if this is a last analysis round for this packet. Clear otherwise.

Header Offset Polarity 1 82 Set if the Header Offset Inc value is added to the current Header Offset
value.
Clear if the Header Offset Inc value is subtracted from the current
Header Offset.

Header Offset Inc 9 91:83 Number of bytes to add or subtract from the Header Offset.

Reserved 4 95:92 Reserved (0)

Table 7-244. Package Format for Parse Graph No-Match CAM Configuration [continued]

Field Size
(Bytes) Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1222 613875-009

7.11.13.3 PG Spill CAM

The PG Spill CAM holds PG CAM entries that could not be placed in any CAM slice due to a hash collision.

Table 7-247 shows the format of the PG Spill CAM section.

7.11.13.4 Parse Graph No-Match Spill CAM

The No-Match Spill CAM holds No-Match CAM entries that could not be placed in any CAM slice due to a
hash collision.

Table 7-246. Package Section Type Numbers for PG Spill CAMs

Section Type
Number

Allowed in
Update Package? Description

76 No PG Spill CAM for the Rx Parser.

77 No PG Spill CAM for the Tx Parser.

Table 7-247. PG Spill CAM Section Format

Field Size (Bits) Description

Count 16 Number of Key-Value pairs in this section.

Offset 16 Offset to the first entry in this section.
All entries are contiguous from this offset. All entries must be in range 0 to 127. Entries
with an offset greater than 127 are reserved.
Relevant CSR uses Parser indirect interface, Table Address field.

Entry 0 Action 56 Parse Graph output value contains 55 bits as shown in Table 7-242 and one reserved bit
(0).
Relevant CSR uses Parser indirect interface with Table ID 2 (PG spill buffer action).

Key 80 Match key for this PG entry contains 74 inputs bits as shown in Table 7-242 and seven
reserved bits (0).
Relevant CSR uses Parser indirect interface with Table ID 3 (PG spill buffer key).

--- Nx136 + 32 All other entries.

Table 7-248. Package Section Type Numbers for Parse Graph No-Match Spill CAMs

Section Type
Number

Allowed in
Update Package? Description

78 No No-Match Spill CAM for the Rx Parser.

79 No No-Match Spill CAM for the Tx Parser.

613875-009 1223

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Table 7-249 shows the format of the No-Match Spill CAM section.

7.11.13.5 Node PTYPE Table

The Node PTYPE table defines the PTYPE value based on the NEXT_NODE_ID output from the Parse
Graph or PG No-Match CAM. The PType value of 0 is defined to be INVALID_PTYPE. Software must set
entries in this table to INVALID_PTYPE when the Marker PTYPE TCAM defines the PTYPE of the packet.

Table 7-251 shows the section format for the PTYPE table.

Table 7-249. No-Match Spill CAM Section Format

Field Size (Bits) Description

Count 16 Number of Key-Value pairs in this section.

Offset 16 Offset to the first entry in this section.
All entries are contiguous from this offset. All entries must be in range 0 to 63. Entries with
an offset greater than 63 are reserved.
Relevant CSR uses Parser indirect interface, Table Address field.

Entry 0 Action 56 No-Match output value contains 55 bits as shown in Table 7-245 and one reserved bit (0).
Relevant CSR uses Parser indirect interface with Table ID 19 (No-Match PG spill buffer
action).

Key 48 Match key for this PG entry contains 41 inputs bits as shown in Table 7-245 and seven bits
reserved (0).
Relevant CSR uses Parser indirect interface with Table ID 20 (No-Match PG spill buffer key).

--- Nx104 + 32 All other entries.

Table 7-250. Package Section Type Numbers for Node PTYPE Tables

Section Type
Number

Allowed in
Update Package? Description

54 No Node PTYPE Table for the Rx Parser.

64 No Node PTYPE Table for the Tx Parser.

Table 7-251. Node PTYPE Table Section Format

Field Size
(Bytes) Description

Count 2 Number of entries in this section.

Offset 2 PTYPE table address of the first entry in this section.

Entry 0 2 First PTYPE table entry containing the PTYPE value (0-1023) in bits 9:0.
Bit 10 is the error output. All other bits are reserved.
A PTYPE value of 0 represents an invalid PTYPE, which causes hardware to use the MARKER_PTYPE TCAM to
determine the packet PTYPE.
Relevant CSR uses Parser indirect interface with Table ID 15 (node cntx ID).

... Nx2 All other entries.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1224 613875-009

7.11.13.6 Marker PTYPE TCAM

The Marker PTYPE TCAM defines the PTYPE value based on the accumulated marker bit vector.

Table 7-253 shows the section format for the PTYPE table.

Table 7-252. Package Section Type Numbers for Marker PTYPE TCAMs

Section Type
Number

Allowed in
Update Package? Description

55 No Marker PType Table for the Rx Parser.

65 No Marker PType Table for the Tx Parser.

Table 7-253. Marker PTYPE TCAM Section Format

Field Size
(Bytes) Description

Count 2 Number of Key-Value pairs in this section.

Reserved 2 Reserved (0).

Entry 0
Address 2

Address of this TCAM entry.
Valid values are 0-1023. Values greater than 1023 are reserved.
Relevant CSR uses Parser indirect interface, Table Address field.

Value 2
PTYPE number (0-1023) associated with this key.
Values greater than 1023 are reserved.
Relevant CSR uses Parser indirect interface with Table ID 18 (PTYPE TCAM action RAM).

Key 10

Match key for this PType value.
The key contains 80 bits, encoded according to Table 7-94. The lower 72 bits represent 72
possible marker bits. The eight most significant input bits are a one-hot representation of the
Control Domain ID.
Relevant CSR uses Parser indirect interface with Table ID 17 (PTYPE TCAM key). Each key
takes up two lines in the table.

Key Invert 10

The key invert for this PTYPE value.
The key-invert contains 80 input bits, encoded according to Table 7-94. The lower 72 bits
represent the key-invert value for 72 possible marker bits. The eight most significant input
bits are the key-invert of a one-hot representation of the Control Domain ID.
Relevant CSR uses Parser indirect interface with Table ID 17 (PTYPE TCAM key). Each key
takes up two lines in the table.

... Nx24 All other entries.

613875-009 1225

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.13.7 IMEM

7.11.13.7.1 IMEM Section

The Instruction Memory (IMEM) section contains three VLIW instructions for the ALUs, a key extraction
instruction for the Parse Graph CAM, and several other fields.

Table 7-255 shows the format of an IMEM section.

Table 7-254. Package Section Type Numbers for IMEM

Section Type
Number

Allowed in
Update Package? Description

52 No IMEM for the Rx Parser.

62 No IMEM for the Tx Parser.

Table 7-255. IMEM Section Format

Field Size
(Bits)

Bit
Offset Description

Count 16 0 Number of IMEM instructions in this section.
Must be at least 1. Values greater than 191 are reserved.

Offset 16 16 IMEM address of the first entry in this section.
The effective offset of all IMEM entries in this section must be in range
0-191. Values greater than 191 are reserved.
Relevant CSR uses Parser indirect interface, Table Address field.
Instruction content is written using Parser indirect register interface
with Table ID value 14.

Entry 0 Boost Master 4 32 Boost Master flags (see Section 7.11.13.7.7).

Boost Key Build 10 36 Boost TCAM Key Build (see Section 7.11.13.7.6).

PG Priority 2 46 Parse Graph resolver priority control (see Section 7.11.13.7.5).

Next Proto Key Build 18 48 Next Protocol extraction directive (see Section 7.11.13.7.4).

PG Key Build 35 66 Format directive for the Parse Graph key (see Section 7.11.13.7.3).

ALU 0 Instruction 96 101 Instruction for ALU 0 (see Section 7.11.13.7.2).

ALU 1 Instruction 96 197 Instruction for ALU 1 (see Section 7.11.13.7.2).

ALU 2 Instruction 96 293 Instruction for ALU 2 (see Section 7.11.13.7.2).

Reserved 27 389 Reserved (0).

... Nx384 All subsequent entries, 48 bytes each.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1226 613875-009

7.11.13.7.2 ALU Instructions

The format of an individual ALU instruction is shown in Table 7-256.

Table 7-256. ALU Instruction Format, 3x per IMEM Entry

Field Width
(Bits)

Bit
Offset Description

Opcode 6 5:0 Instruction Opcode. See Table 7-257.

Source Start 8 13:6 Source register start bit, 0-255.

Source Length 5 18:14 Source register length, 0-31.

Shift/Xlate Select 1 19 0b = Shift Source Register by four bits.
1b = Fetch from the Xlate Table using 2-bit translate key.

Shift/Xlate Key 4 23:20 4-bit shift left operand, or 2-bit translate key.

Source Register ID 7 30:24 Source register ID.

Dest. Register ID 7 37:31 Destination register ID.

Inc 0 1 38 When set increment Counter 0.

Inc 1 1 39 When set increment Counter 1.

Protocol Offset Opcode 2 41:40 00b = Protocol Offset does not change.
01b = Protocol Offset = Header Offset + Protocol Offset.
10b = Protocol Offset = Header Offset - Protocol Offset.
11b = Reserved.

Protocol Offset 8 49:42 Number of bytes to add or remove from the protocol offset to calculate the next
protocol offset.

Branch Address 8 57:50 Absolute value of Branch Address in IMEM, 0-191.

Immediate 16 73:58 Immediate value.

Dedicated Flags Enable 1 74 When set activates dedicated flags logic. ALU must not be configured to set flags
when this bit is set.

Dest. Start 6 80:75 Destination start bit.
When Dedicated Flags Enable is set, this field specifies that starting bit within the
64-bit Flags metadata.
When Dedicated Flags Enable is clear, this field specifies a single bit of the
destination register written by the SETEQ/NEQ/LT/GT, ANDEQ/NEQ/LT/GT, OREQ/
NEQ/LT/GT instructions. Unused in all other cases.

Dest. Length 6 86:81 Destination length in the flags field.
Used only when Dedicated Flags Enable is set.

Flags Extract Imm. 1 87 0b = Copies Dest. Length flags from packet starting from the bit specified by Flags
Start.

1b = Copies Dest. Length flags from Flags Immediate field.

Flags Start/Immediate 8 95:88 Specifies the start bit in the packet header from which to extract flags, or an
immediate value to copy to flags as controlled by the Flags Extract Imm field.
Used only when Dedicated Flags Enable is set.

613875-009 1227

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The six opcode fields define the ALU instruction as shown in Table 7-257.

7.11.13.7.3 Parse Graph Key Build

Each IMEM entry contains a directive for building a portion of the Parse Graph Key. The format of a
Parse Graph Key Build directive is shown in Table 7-258.

Table 7-257. ALU Opcodes

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

PARK 0 BR 12 ORNEQ 24

MOV (with ADD expr.) 1 BREQ 13 SETGT 25

ADD 2 BRNEQ 14 ANDGT 26

Reserved 3 BRGT 15 ORGT 27

MOV (with AND expr.) 4 BRLT 16 SETLT 28

AND 5 BRGEQ 17 ANDLT 29

AND Immediate 6 BRLEQ 18 ORLT 30

MOV (with OR expr.) 7 SETEQ 19 MOV (with SUB expr.) 31

OR 8 ANDEQ 20 SUB 32

MOV (with XOR expr.) 9 OREQ 21 Reserved 33-62

XOR 10 SETNEQ 22 Invalid Opcode 63

NOP 11 ANDNEQ 23

Table 7-258. Parse Graph Key Build Directive per IMEM and Boost TCAM Entry

Field Width
(Bits)

Bit
Offset Description

Flag 0 Enable 1 0 When set, the flag at Flag 0 Index is copied to the Flag 0 field of the Parse Graph key.
When cleared, hardware set the Flag 0 field of the key to 0.

Flag 0 Index 6 6:1 Index of the Flag0 component of the Parse Graph key, 0-63.

Flag 1 Enable 1 7 When set, the flag at Flag 1 Index is copied to the Flag 1 field of the Parse Graph key.
When cleared, hardware set the Flag 1 field of the key to 0.

Flag 1 Index 6 13:8 Index of the Flag1 component of the Parse Graph key, 0-63.

Flag 2 Enable 1 14 When set, the flag at Flag 2 Index is copied to the Flag 2 field of the Parse Graph key.
When cleared, hardware set the Flag 2 field of the key to 0.

Flag 2 Index 6 20:15 Index of the Flag2 component of the Parse Graph key, 0-63.

Flag 3 Enable 1 21 When set, the flag at Flag 3 Index is copied to the Flag 3 field of the Parse Graph key.
When cleared, hardware set the Flag 3 field of the key to 0.

Flag 3 Index 6 27:22 Index of the Flag3 component of the Parse Graph key, 0-63.

ALU Register Index 7 34:28 Index of the ALU Register component of the Parse Graph key.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1228 613875-009

7.11.13.7.4 Next Protocol Key Build

Each IMEM and Boost TCAM entry contains a directive for extracting the next protocol from the packet
header. The format of a Next Protocol Key Build directive is shown in Table 7-259.

7.11.13.7.5 PG Priority Control

Each IMEM and Boost TCAM entry contains two bits to controlling how the hardware resolver
determines precedence from among multiple sources of register update. The format of a PG Priority
Control is shown in Table 7-260.

Table 7-259. Next Protocol Key Build Directive per IMEM Entry

Field Width
(Bits)

Bit
Offset Description

Opcode 2 0 00b = Extract the Next Protocol field from the Header Value starting from the bit position
specified in the Start field and for the number of bits specified in the Length field.

01b = Build Next Protocol field with the value of the register in the Reg 0 field in Next
Protocol field bits 15:0, and the value of the register in the Reg 1 field in Next
Protocol field bits 31:16.

10b = Bypass the Parse Graph, in which case the Parse Graph logic does not set the Next
Protocol Key value.

11b = Reserved.

Start/Reg 0 8 2 Start field (Opcode = 0) or Reg 0 field (Opcode = 1).

Length/Reg 1 8 10 Length field (Opcode = 0) or Reg 1 field (Opcode = 1).

Table 7-260. PG Priority Control per IMEM and Boost TCAM Entry

Field Width
(Bits) Description

Priority 2 00b = The resolver uses the following priority:
ALU2 is priority 3 (highest)
ALU 1 is priority 2
ALU 0 is priority 1
PG is priority 0 (lowest)

01b = The resolver uses the following priority:
ALU2 is priority 3 (highest)
ALU 1 is priority 2
PG is priority 1
ALU 0 is priority 0 (lowest)

10b = The resolver uses the following priority:
ALU2 is priority 3 (highest)
PG is priority 2
ALU 1 is priority 1
ALU 0 is priority 0 (lowest)

11b = The Resolver uses the following priority:
PG is priority 3 (highest)
ALU2 is priority 2
ALU 1 is priority 1
ALU 0 is priority 0 (lowest)

613875-009 1229

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.13.7.6 Boost Key Build

The Boost Key Build field controls the value used as the 8-bit Boost TCAM search key qualifier (TSR).
The TSR field contains either an arbitrary 8-bit value, or the content of the TSR register.

7.11.13.7.7 Boost Master

This field contains four flags controlling the user of Boost TCAM output. For each bit set, Boost TCAM
output overrides IMEM output for the corresponding hardware block. This override occurs only in the
case of a Boost lookup match. When a Boost lookup fails, IMEM output is used.

For each 0 bit, the corresponding hardware block ignores Boost TCAM output, even in the case of a
Boost lookup match.

7.11.13.8 Boost TCAM

The Boost TCAM provides a wide 160-bit match on a combination of packet header and TSR bits. The
least significant 152 bits match against the packet header, starting from the current header offset. The
most significant eight bits match the selected TSR (see Section 7.11.13.7.6).

Table 7-261. Boost Key Build per IMEM Entry

Field Width
(Bits)

Bit
Offset Description

Priority 8 7:0 Arbitrary 8-bit value used when the TSR Control bit is 0.

TSR Control 2 9:8 Control bit selecting the value used the Boost TCAM search key qualifier.
00b = The Boost TCAM search key qualifier is the value in bits 7:0.
01b = The Boost TCAM search key qualifier is the content of the TSR register.
10b = Reserved.
11b = Reserved.

Table 7-262. Boost Master Field

Bit Description

0 ALU 0

1 ALU 1

2 ALU 2

3 Parse Graph

Table 7-263. Package Section Type Numbers for the Boost TCAMs

Section Type
Number

Allowed in
Update Package? Description

56 Yes Boost TCAM for the Rx Parser.

66 Yes Boost TCAM for the Tx Parser.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1230 613875-009

The Boost TCAM contains 256 entries, with a format similar to IMEM content as shown in Table 7-264.

Table 7-264. Format of the Boost TCAM Section

Field Size
(Bits) Bit Offset Description

Count 16 0 Number of entries in this section. Must be at least 1.

Reserved 16 16 Reserved (0).

Entry 0 Address

16 32

Address of this entry in the TCAM, 0-255. Smaller numbers imply
higher priority. Values > 255 are reserved.
Relevant CSR is the Table Address field of the Parser indirect
interface.

Reserved 16 48 Reserved (0).

Key/Key Invert

320 32

[319:160] = The key-invert used to match this TCAM entry.
The key invert consists of 160 input bits, encoded according to
Table 7-94.
Relevant CSR uses the Parser indirect interface with Table ID 0
(TCAM key). Each key takes up two lines in the table.

[159:0] = The key used to match this TCAM entry.
The key consists of 160 input bits, encoded according to
Table 7-94. The TCAM matches the lower 152 bits of the key
against the next 152 bits of the packet header (%HDR register)
starting from the current header offset (%HO register). The
upper eight bits of the input value are matched against the
TCAM Search Key (%TSR register).
Relevant CSR uses the Parser indirect interface with Table ID 0
(TCAM key). Each key takes up two lines in the table.

Boost Hit Index Group
8 384

Provides the Boost TCAM Hit Index part of the Parse Graph Key.
Relevant CSR uses the Parser indirect interface with Table ID 13
(TCAM action RAM).

PG Priority
2 392

Parse Graph resolver priority control (see Section 7.11.13.7.5).
Relevant CSR uses the Parser indirect interface with Table ID 13
(TCAM action RAM).

Next Proto Key Build
18 394

Next Protocol extraction directive (see Section 7.11.13.7.4).
Relevant CSR uses the Parser indirect interface with Table ID 13
(TCAM action RAM).

PG Key Build

35 412

Format directive for the Parse Graph key (see
Section 7.11.13.7.3).
Relevant CSR uses the Parser indirect interface with Table ID 13
(TCAM action RAM).

ALU 0 Instruction
96 447

Instruction for ALU 0 (see Section 7.11.13.7.2).
Relevant CSR uses the Parser indirect interface with Table ID 13
(TCAM action RAM).

ALU 1 Instruction
96 543

Instruction for ALU 1 (see Section 7.11.13.7.2).
Relevant CSR uses the Parser indirect interface with Table ID 13
(TCAM action RAM).

ALU 2 Instruction
96 639

Instruction for ALU 2 (see Section 7.11.13.7.2).
Relevant CSR uses the Parser indirect interface with Table ID 13
(TCAM action RAM).

Reserved 1 735 Reserved (0).

... Nx704 + 32 Subsequent entries, 88 bytes each.

613875-009 1231

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.11.13.9 Protocol Group Table

The Protocol Group table controls hardware expansion of a protocol group into individual protocol and
offset pairs in packet metadata. The table contains 192 entries indexed by the Protocol ID output from
the Parse Graph. Hardware performs the expansion of the Protocol Group into individual protocols only
when the Parse Graph sets the Is Protocol Group flag output.

Each entry in the Protocol Group table defines eight Protocol ID and offset pairs.

The relevant CSR for this table is accessed with GLGEN_ANA_CFG_CTRL.TABLE_ID = 12.

The format of this table is shown in Table 7-266.

Table 7-265. Package Section Type Numbers for the Protocol Group Tables

Section Type
Number

Allowed in
Update Package? Description

57 No Protocol Group Table for the Rx Parser.

67 No Protocol Group Table for the Tx Parser.

Table 7-266. Protocol Group Table Section Format

Field Size
(Bits)

Bit
Offset Description

Count 16 0 Number of entries in this section.

Offset 16 16 Offset to the first table address in this section. All entries must be in range 0-191.

Entry 0 Protocol 0 1 32 Polarity of the Protocol Offset field.
0b = Positive offset
1b = Negative offset.

8 33 Protocol ID.

3 41 Reserved (0).

10 44 10-bit Protocol Offset.

Protocol 1 1 54 Polarity of the Protocol Offset field.
0b = Positive offset
1b = Negative offset.

8 55 Protocol ID.

3 63 Reserved (0).

10 73 10-bit Protocol Offset.

... Entries for Protocols 2-6.

Protocol 7 1 186 Polarity of the Protocol Offset field.
0b = Positive offset
1b = Negative offset.

8 187 Protocol ID.

3 195 Reserved (0).

10 198 10-bit Protocol Offset.

Reserved 16 208 Reserved(0).

... 192 224 All subsequent entries, 24 bytes each.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1232 613875-009

7.11.13.10 Marker Group Table

The Marker Group table controls hardware expansion of a marker group into individual marker bits in
packet metadata. The table contains 128 entries indexed by the Marker ID output from the Parse
Graph. Hardware performs the expansion of the Marker Group into individual marker bits only when the
Parse Graph sets the Is Marker Group flag output.

Each entry in the Marker Group table defines eight Marker ID values.

The relevant CSR for this table is accessed with GLGEN_ANA_CFG_CTRL.TABLE_ID = 16.

The format of this table is shown in Table 7-268.

7.11.13.11 Parser XLT0 Key Builder Table

The ParserXLT0 Key Builder table specifies the index into the Parser’s XLT0 table for each packet.

Hardware builds the key value by extracting bits from the specified metadata field.

Table 7-267. Package Section Type Numbers for the Marker Group Tables

Section Type
Number

Allowed in
Update Package? Description

72 No Marker Group Table for the Rx Parser.

73 No Marker Group Table for the Tx Parser.

Table 7-268. Marker Group Table Section Format

Field Size
(Bytes) Description

Count 2 Number of entries in this section.

Offset 2
Offset to the first table address in this section.
All entries must be in range 0-127. Values greater than 127 are reserved.

Entry 0
1

Marker ID 0.
All Marker ID values must be in range 0-71, where value 71 represents an invalid (unused) Marker ID.

1 Marker ID 1.

1 Marker ID 2.

1 Marker ID 3.

1 Marker ID 4.

1 Marker ID 5.

1 Marker ID 6.

1 Marker ID 7.

... Nx8 All other entries. Each entry occupies a consecutive offset. Maximum number of entries is 128.

Table 7-269. Package Section Type Numbers for the Parser XLT0 Builder Table

Section Type
Number

Allowed in
Update Package? Description

53 No XLT0 Key Builder Table for the Rx Parser.

63 No XLT0 Key Builder Table for the Tx Parser.

613875-009 1233

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The relevant CSR for this table is GLGEN_ANA_PROFIL_CTRL.

The format of the XLT0 Key Builder Table is shown in Table 7-270.

7.11.13.12 Package Format of the Parser XLT0 Table

This section specifies the package format for configuring the per-parser XLT0 table. The XLT0 Table
provides an intermediate stage during calculation of an Initialization ID. The Parser XLT0 Key Builder
Table (see Section 7.11.13.11) builds the key used for XLT0 lookup. The output of the XLT0 table drives
the input to the Initialization ID Redirection table (see Section 7.11.13.13).

Each parser uses a distinct XLT0 Table configuration and distinct Package Section Type Numbers to
contain the configuration data. Table 7-271 shows the section type enumeration.

The package format for XLT0 Table configuration is common for all parser as shown in Table 7-272.

Table 7-270. Parser XLT0 Key Builder Table Section Format

Field Size
(Bytes) Description

MDID 1 Specifies the MDID value from the Initialization ID is extracted.
Valid range is 0-31. All other values are reserved.

MD Start 1 Start bit for the Initialization ID extraction from the metadata field.
Valid range is 0-15. All other values are reserved.

MD Length 1 Length of the Initialization ID extraction from the metadata field.
Valid range is 0-31. All other values are reserved.

CD Count 1 The domain key width in the PTYPE marker vector.
The only supported value is 3, indicating 8 control domains (72 markers + 8b one-hot control domain
bitmap).

Table 7-271. Package Section Type Numbers for the Parser XLT0 Tables

Section Type
Number

Allowed in
Update Package? Description

59 No XLT0 Table for the Rx Parser.

69 No XLT0 Table for the Tx Parser.

Table 7-272. Package Format for XLT0 Table Configuration

Field Size
(Bytes) Description

Count 2 Number of entries in this section.
If the XLT0 table is split into multiple sections, this field describes only the number of entries contained in
this section.

Offset 2 Byte offset from the start of the table to the first value in this section.
The maximum effective offset for any value is 1023. Effective offsets greater than 1023 are reserved.
Relevant CSR:

GLGEN_ANA_CFG_CTRL.TABLE_ADDR.

Value 1 Value of this XLT0 entry.
Valid values are in range (0-15). The value 255 is reserved for internal use by assembler tools before
conversion to a valid value. All other values are reserved.
The relevant CSR for this table is accessed with GLGEN_ANA_CFG_CTRL.TABLE_ID = 26.

... ... Subsequent values at consecutive offsets.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1234 613875-009

7.11.13.13 Initialization ID Redirection Table

After the XLT0 table generates the Initialization ID, the Initialization ID Redirection Table can change
this ID to a different value. The Redirection Table always maps the input ID to an output ID. Therefore,
to allow ID values to pass through unchanged, the host must initialize this table to the trivial identity
mapped case (for example, ID 14 maps to ID 14).

Each parser contains its own Initialization ID Redirection Table. Table 7-273 shows the relevant Package
Section Type for each block.

The package format for the Initialization ID Redirection Table is common for all parsers as shown in
Table 7-274.

7.11.13.14 Metadata Initialization Table

The Metadata Initialization Table provides static values used to initialize packet metadata. The table is
indexed using Initialization ID output from the Initialization ID table.

The relevant CSR for this table is accessed with GLGEN_ANA_CFG_CTRL.TABLE_ID = 25.

The format of this table is shown in Table 7-275.

Table 7-273. Package Section Type Numbers for Initialization ID Redirection Tables

Section Type
Number

Allowed in
Update Package? Description

70 No Initialization ID Redirection Table for the Rx Parser.

71 No Initialization ID Redirection Table for the Tx Parser.

Table 7-274. Package Format for Initialization ID Redirection Table

Field Size
(Bytes) Description

Initialization ID 0 Redirect Value 1 Redirected value for Initialization ID 0.
Relevant CSR:

GLGEN_ANA_P2P0

Initialization ID 1-14 14 x 1 ...

Initialization ID 15 Redirect Value 1 Redirected value for Initialization ID 15.
Relevant CSR:

GLGEN_ANA_P2P15

Table 7-275. Metadata Initialization Table

Field Size
(Bits)

Bit
Offset Description

Count 16 0 Number of entries in this section.

Offset 16 16 Offset to the first Initialization ID in this section.

613875-009 1235

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Entry 0 TSR 8 32 TSR - Initial value of the TCAM Search Key register.

HO 9 40 HO - Initial value of the Header Offset register. Valid range is 0 to 503. All other
values are reserved.

PC 8 49 PC - Initial value of the Program Counter register. Valid range is 0 to 191. All
other values are reserved.

NID 11 57 NID - Initial Parse Graph root node to start package processing. Valid range is 0
to 2047. All other values are reserved.

CD 3 68 CD - Control Domain ID for this packet. Valid range is 0 to 7. All other values
are reserved.

GPR_A_CTL 1 71 Controls the GPR_A_DATA field. See the description for GPR_A_DATA.

GPR_A_DATA 16 72 When the GPR_A_CTL is clear, copies a constant value to the GPR specified by
GPR_A_ID:

GPRS[GPR_A_ID] = GPR_A_DATA
When the GPR_A_CTL is set, this field selects the MDID_A value as follows:

[4:0] = ID of MDID_A metadata.
[8:5] = START extraction start bit for MDID_A
[13:9] = LEN extraction length for MDID_A
[15:14] = Reserved (0)

The specified MDID is copied to GPR_A_ID:
GPRS[GPR_A_ID] = MDID_A[LEN+START -1 : START]

GPR_A_ID 4 88 GPR ID of general purpose register as described above.
This field cannot specify the same ID value used in any of the three other
GPR_n_ID fields.

GPR_B_CTL 1 92 Same behavior as GPR_A_CTL.

GPR_B_DATA 16 93 Same behavior as GPR_A_DATA.

GPR_B_ID 4 109 Same behavior as GPR_A_ID.

GPR_C_CTL 1 113 Same behavior as GPR_A_CTL.

GPR_C_DATA 16 114 Same behavior as GPR_A_DATA.

GPR_C_ID 4 130 Same behavior as GPR_A_ID.

GPR_D_CTL 1 134 Same behavior as GPR_A_CTL.

GPR_D_DATA 16 135 Same behavior as GPR_A_DATA.

GPR_D_ID 4 151 Same behavior as GPR_A_ID.

Flags 64 155 Initial value for all Flags.

Reserved 5 219 Reserved(0)

... Nx192 224 All consecutive entries, 24 bytes each.

Table 7-275. Metadata Initialization Table [continued]

Field Size
(Bits)

Bit
Offset Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1236 613875-009

7.11.13.15 Last Protocol Table

The Last Protocol Table specifies which Protocol ID values receive special treatment from the parser
hardware. The table specifies up to six protocol ID values treated as last protocols. Normally, when the
Parse Graph outputs a Protocol ID value, hardware pushes the ID and corresponding Header Offset
value onto the Protocol ID stack. However, when this Protocol ID value matches a last protocol,
hardware instead records the offset in a side memory. When processing completes, hardware updates
the stack with the Protocol ID and last Header Offset value recorded.

Each parser contains its own Last Protocol Table. Table 7-276 shows the relevant Package Section Type
for each block.

The package format for the Last Protocol Table is common for all parsers as shown in Table 7-277. The
order of entries in table has no effect on functionality.

7.11.13.16 Miscellaneous Parser Configuration

The Miscellaneous Parser Configuration section collects together various one-off parser configuration
items.

Each parser contains its own Miscellaneous Parser Configuration section. Table 7-278 shows the
relevant Package Section Type for each block.

Table 7-276. Package Section Type Numbers for Last Protocol Tables

Section Type
Number

Allowed in
Update Package? Description

74 No Last Protocol Table for the Rx Parser.

75 No Last Protocol Table for the Tx Parser.

Table 7-277. Package Format of a Last Protocol Table

Field Size
(Bits)

Bit
Offset Description

Reserved 32 0 Reserved for programming tools use. Ignored by firmware.

Entry 0 1 32 Enable.
1b if this entry is valid, 0b otherwise.
Relevant CSR for all fields of this entry:

GLGEN_ANA_RX/TX_LAST_PROT_ID[0].

8 33

23 41 Reserved (0).

... Nx32 All consecutive entries 1-5 formatted as above.
Relevant CSR for all fields of this entry:

GLGEN_ANA_RX/TX_LAST_PROT_ID[N].

Table 7-278. Package Section Type Numbers for Parser Miscellaneous Configuration

Section Type
Number

Allowed in
Update Package? Description

90 No Miscellaneous configuration for the Rx Parser.

91 No Miscellaneous configuration for the Tx Parser.

613875-009 1237

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The package format for the Parser Miscellaneous Configuration section is shown in Table 7-279.

7.11.13.17 Flags Redirection Table

The Flags Redirection Table specifies if an external flags value is overridden by an internal analyzer flag.

Each parser contains its own Flags Redirection Table. Table 7-280 shows the relevant Package Section
Type for each block.

The Package format for the Flags Redirection Table is common for all parsers as shown in Table 7-281.
The order of entries in table has no effect on functionality.

Table 7-279. Package Format of the Parser Miscellaneous Configuration Section

Field Size
(Bits)

Bit
Offset Description

PG CAM Hash Key 128 0 The hashing seed value used to calculate the PG CAM entry index as described in
Section 7.11.13.2.2.
The 45 most significant bits of this value must be 0.
A zero value signifies that the hash key is not valid. Firmware ignores this field when
the value is zero.
Relevant CSR:

GLGEN_ANA_PG0_HASHKEY.

No-Match Hash Key 64 128 The hashing seed value used to calculate the PG No-Match CAM entry index as
described in Section 7.11.13.2.2.
The 13 most significant bits of this value must be 0.
A zero value signifies that this hash key is not valid. Firmware ignores this field when
the value is zero.
Relevant CSR:

GLGEN_ANA_NMPG0_HASHKEY.

Table 7-280. Package Section Type Numbers for Flags Redirection Tables

Section Type
Number

Allowed in
Update Package? Description

97 No Flags Redirection Table for the Rx Parser.

98 No Flags Redirection Table for the Tx Parser.

Table 7-281. Package Format of a Flags Redirection Table

Field Size
(Bytes)

Offset
(Bytes) Description

Count 2 0 Number of entries in this section.

Offset 2 2 Offset to the first entry (N) in this section.
Offset must be in the range 0 to 63.

Entry 0 1 4 The downstream flag identifier, where
[0] = When set, the analyzer flag [N] should be exposed on the Flag ID.
[6:1] = The internal Flag ID, valid only if the enable bit is set.
[7] = Reserved (0)

Relevant CSRs:
GLGEN_ANA_TX_FLAG_MAP, GLGEN_ANA_FLAG_MAP

--- Nx1 + 4 All subsequent entries in consecutive order, 1 byte each

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1238 613875-009

7.11.14 HIF Block Programming

7.11.14.1 Introduction

The flex descriptor feature allows software entities to program customized receive descriptors.

7.11.14.2 Flex Descriptor Table

The Flex Descriptor table contains descriptor format for a packet for a given descriptor builder profile.
Each entry in the Flex Descriptor table defines six Flexible Metadata definitions and up to 18 flags.

The format of this table is shown in Table 7-283.

Table 7-282. Package Section Type Numbers for Flex Descriptor Table

Section Type
Number

Allowed in
Update Package? Description

94 Yes Rx Flex Descriptors for HIP.

Table 7-283. Flex Descriptor Table

Field Size (Bits) Description

Count 16 Number of entries in this section.

Offset
16 Offset to the first RXDID in this section.

The maximum effective offset for any value is 63. Effective offsets greater than 63 are
reserved. Values of 0, 1 and 7 are reserved.

613875-009 1239

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Entry 0 FlexibleMD0 32 [7:0] = Protocol ID, MDID
Fixed value depending on opcode

[17:8] = Offset (for opcode 2), otherwise reserved(0)
[29:18] = Reserved (0)
[31:30] = Opcode:

00b = Fixed value
01b = Metadata offset
10b = Extraction offset
11b = Protocol offset

Relevant CSR:
GLFLXP_RXDID_FLX_WRD_0

FlexibleMD1 32 Same format as FlexibleMD0.
Relevant CSR:

GLFLXP_RXDID_FLX_WRD_1

...

FlexibleMD5 32 Same format as FlexibleMD0.
Relevant CSR:

GLFLXP_RXDID_FLX_WRD_5

Flag0 32 [5:0] The flag index for Flag 0
[7:6] = Reserved (0)
[13:8] = The flag index for Flag 1
[15:14] = Reserved (0)
[21:16] = The flag index for Flag 2
[23:22] = Reserved (0)
[29:24] = The flag index for Flag 3
[31:30] = Reserved (0)
Relevant CSR:

GLFLXP_RXDID_FLAGS[n, m=0]

Flag1 32 Same format as Flag0.
Relevant CSR:

GLFLXP_RXDID_FLAGS[n, m=1]

...

Flag4 32 [5:0] = The flag index for Flag 16
[7:6] = Reserved (0)
[13:8] = The flag index for Flag 17
[31:14] = Reserved (0)
Relevant CSR:

GLFLXP_RXDID_FLAGS[n, m=4]

... Nx320 + 32 All consecutive entries, 44 bytes each.

Table 7-283. Flex Descriptor Table [continued]

Field Size (Bits) Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1240 613875-009

7.11.15 RDPU Block Configuration

7.11.15.1 Introduction

The RDPU Block Configuration defines the Receive Data Processing Unit.

7.11.15.2 PTYPE Translation Table

The PTYPE Translation table contains a mapping for E810 10-bit PTYPEs to legacy 8-bit PTYPEs.

7.11.15.3 PROTOCOL Table

The PROTOCOL table defines the presence of protocols for which the RDPU verify packet checksum
values. If any of the four protocol IDs match for a given protocol table entry, that entry matches.

The PROTOCOL table contains 256 entries corresponding to each possible PTYPE8 value produced by
the PTYPE_REMAP table.

Table 7-284. Package Section Type Numbers for PTYPE Redirection Table

Section Type
Number

Allowed in
Update Package? Description

95 Yes PTYPE Translation table for HIF.

Table 7-285. Package Format for PTYPE Redirection Table

Field Size
(Bytes) Description

Count 2 Number of entries in this section.

Offset 2 Offset to the first PTYPE in this section.
Offset must be in range 0 to 1023.

Legacy PTYPE ID 1 Redirected value for the PTYPE specified by the Offset field.
Relevant CSR:

GLFLXP_PTYPE_TRANSLATION

... Nx1 + 4 Subsequent values in consecutive order.

Table 7-286. Package Section Type Numbers for the PROTOCOL Table

Section Type
Number

Allowed in
Update Package? Description

96 No PROTOCOL Table for RDPU.

Table 7-287. Package Format for PROTOCOL Table

Field Size (Bits) Bit
Offset Description

Count 16 0 Number of entries in this section.

Offset 16 16 Offset to the first entry in this section.
Valid values are 0 to 255.

613875-009 1241

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Entry 0 Offset Index 3 32 The offset at which the INNER protocol is defined.
Valid values are 1-5. A value of 3’b000 indicates not in use.
Relevant CSR:

GLFLXP_RX_CMD_LX_PROT_IDX

Reserved 1 34 Reserved (0).

L4 Offset Index 3 35 The offset at which the L4 Protocol is defined.
Valid values are 1-5. A value of 3’000 indicates not in use.
Relevant CSR:

GLFLXP_RX_CMD_LX_PROT_IDX

Reserved 1 38 Reserved (0).

Payload Offset Index 3 39 The offset at which the packet payload is defined.
Valid values are 0-5.
Relevant CSR:

GLFLXP_RX_CMD_LX_PROT_IDX

Reserved 1 42 Reserved (0)

L3 Protocol 2 43 The first L3 protocol of the packet.
00b = IPv4
01b = IPv6
10b = Invalid
11b = Other

Relevant CSR:
GLFLXP_RX_CMD_LX_PROT_IDX

L4 Protocol 2 45 The last L4 protocol of the packet:
00b = TCP
01b = UDP
10b = SCTP
11b = Other

Relevant CSR:
GLFLXP_RX_CMD_LX_PROT_IDX

Reserved 16 48 Reserved (0)

Protocol Ids for Offset 0 32 64 The protocol IDs for creating offset 0 to RDPU.
[7:0] = Protocol ID #0
[15:8] = Protocol ID #1
[23:16] = Protocol ID #2
[31:24] = Protocol ID #3

Relevant CSR:
GLFLXP_RX_CMD_PROTIDS[n, m=0]

Protocol IDs for Offset 1 32 96 Same format as Protocol IDs for Offset 0.
Relevant CSR:

GLFLXP_RX_CMD_PROTIDS[n, m=1]

...

Protocol IDs for Offset 5 32 224 The protocol IDs for creating offset 5 to RDPU.
[7:0] = Protocol ID #0
[15:8] = Protocol ID #1
[23:16] = Protocol ID #2
[31:24] = Protocol ID #3

Relevant CSR:
GLFLXP_RX_CMD_PROTIDS[n, m=5]

... Nx224 + 32 256 All consecutive entries, 28 bytes each.

Table 7-287. Package Format for PROTOCOL Table [continued]

Field Size (Bits) Bit
Offset Description

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1242 613875-009

7.12 L2 Packet Processing

7.12.1 CRC Handling

7.12.1.1 Ethernet CRC Insertion

The E810 calculates and inserts the Ethernet CRC for all packets transmitted to the network.

7.12.1.2 Ethernet CRC Stripping

The E810 checks the integrity of the Ethernet CRC and possibly strips it. On packets that are posted to
LAN queues, The Ethernet CRC bytes are stripped according to setting of the CRCStrip flag in the target
LAN queue context

Packets that are routed to PE queue pairs are striped from the Ethernet CRC (with no setting option).

7.12.2 L2 Padding

Transmit packets to the network are padded with zeros to 60 bytes guaranteeing that their length
including the CRC is at least 64 bytes. See description of the MAC functionality in Section 3.2.1.3.

Receive packets to the host are padded as well. Packets are padded with zero guaranteeing that they
are never shorter than 60 bytes if the following conditions are met:

• Received packet to host memory from the network with no CRC bytes (stripped by the device) and
additional stripped fields (like VLAN) that their remaining length is shorter than 60 bytes.

• Loopback packets to host memory (VM to VM) with or without stripped fields (like VLAN) that their
remaining length is shorter than 60 bytes.

• Same rules for packets destined to the EMP.

7.12.3 L2 Tag Handling

7.12.3.1 Overview

This section describes the generic mechanism used to handle L2 tags in the E810.

The E810 supports up to eight tags. In general, the text herein applies to each tag independently.

The order these tags are expected in a packet is according to their index in the array described in
Table 7-291. Index 7 is the most inner L2 tag (closest to the L3 header) and index 0 is the most outer
L2 tag (closest to the MAC Address) as described in Figure 7-36.

613875-009 1243

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Note: The text below refers to offloads provided by the device. A packet received from the network
can have any number of tags, and a packet transmitted may have any number of tags added
by software provided no offload is required.

Note: When priority bits are mentioned it refers to the 4-MSB-bits of the tag (including the DEI bit).

Note: The L2 tag handling does not use the L2 tag parsing as described in Section A.2, but uses the
mechanism described below.

See Section 7.12.3.4 for the programming interface to describe the supported tags and the way to
handle them.

7.12.3.2 Transmit Tag Handling

The transmit tag handling has three logical parts as described in the following diagram:

The software-based tag insertion is described in Section 7.12.3.2.1. The port acceptance rules and
port-based tag insertion are described in Section 7.12.3.2.2.

Section 7.12.3.3 describes the receive tag handling and Section 7.12.3.4 describes the software
interface used to manipulate the tags.

Figure 7-36. L2 Tags Order

Figure 7-37. Transmit Tag Handling

DA/SA L3 Header and
payload

L2
 T

ag
 0

L2
 T

ag
 7

. .
 .

L2
 T

ag
 1

Et
h.

 C
R

C

Outer
DA/SA

Outer
IP

L2
 T

ag
 0

L2
 T

ag
 7

. .
 .

L2
 T

ag
 1

GRE /
UDP

Inner
DA/SA VL

AN L3 Header and
payload

Et
h.

 C
R

C

Packet with no
MAC tunneling

Packet with MAC
in UDP or MAC in

GRE tunneling

Software based Tag Insertion Port Acceptance Rules Port Based Tag Insertion

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1244 613875-009

7.12.3.2.1 Software-Based Tag Insertion Rules

The software can require to send packets with different L2 tag. It can do so either directly through the
data for all the tags or using the transmit descriptor as described in Section 10.5.3.1 for up to two tags.

The tags available for the descriptor based insertion are fixed by the device according to the mode of
operation.

The type of the tag taken from L2TAG1 field in this descriptor when IL2TAG1 field is set is defined by
the VSI_L2TAGSTXVALID.L2TAG1INSERTID field when VSI_L2TAGSTXVALID.L2TAG1INSERTID_VALID
is set. If the type of the L2 Tag requires more than two variable bytes, additional bytes are taken from
the L2TAG2 field while the L2TAG1 is first on the wire. In this case, the IL2TAG2 flag must be cleared.

The type of the tag taken from L2TAG2 field in this descriptor when IL2TAG2 field is set is defined by
the VSI_L2TAGSTXVALID.L2TAG2INSERTID field when VSI_L2TAGSTXVALID.L2TAG2INSERTID_VALID
is set.

After the tags are inserted according to the software request, the rules per VSI described in
Section 7.12.3.2.2 are applied to decide if the packet can be sent.

7.12.3.2.1.1 Single Tag Handling

Table 7-288 describes the tag insertion in different cases when each tag is identified by a different
EtherType:

Note: Table 7-288 relates to the configuration of a single tag. The configuration of different tags is
independent.

7.12.3.2.1.2 Double Tag Handling

If L2 tags configuration table contains two tags with the same EtherType (for example, two VLANs with
EtherType=0x8100) and both tags are enabled, there might be some cases where the hardware might
not be able to identify which of the two tags were inserted by the driver directly in the packet.

In this case, if only one tag with that EtherType is seen in the packet and no insertion was requested by
the driver or via port-based insertion, it is assumed to be the first of the two tags (in our example, the
outer VLAN). Any further action (anti-spoof, UP translation, tag accept policy, and port-based tagging)
interpret this tag according to this (so, if anti-spoof, for example, is applied only to inner VLAN, a
packet with a single VLAN is treated as a packet with no VLAN for anti-spoof).

If a single tag of these two is present in the buffer sent by the host, but the descriptor requests
insertion of one of the tags (for example, an outer VLAN), it is assumed that the tag present in the
buffer is the tag for which offload was not requested (in this case, inner VLAN).

After the decision on the identity of each tag, the handling of each tag is as described in
Section 7.12.3.2.1.1.

Table 7-288. Single Tag Handling

Tag in the Data Buffer Tag in the Tx-Descriptor Software Requested Action

No No Do nothing (send untagged packet).

No Yes Insert Tag from the descriptor.

Yes No Do Nothing (send packet with the tag from the buffer).

Yes Yes This is not a valid configuration and should not be used.

613875-009 1245

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Note: If a tag is inserted by the driver or using port-based insertion, the explanation above is not
relevant – the tag is offloaded as required.

7.12.3.2.2 Port (VSI) Based Tag Handling

7.12.3.2.2.1 Accept Rules

This section describes the rules applied per VSI to decide if the software request is acceptable.
Table 7-289 summarizes the applied rule according to tag accept, tag insert and the tag presence in the
packet for a specific tag.

Table 7-289. Port-Based Tag Handling - Transmit

Tag Accept Mode Tag Inserted
by Driver?

Port-Based
Tag

Allowed
Driver

Behavior1

1. “Unexpected VSI setting” means that the combination of Tag Accept Mode and Port Based Tag should not be requested when
creating a VSI.

Action

Allow untagged only:
VSI_TAR.ACCEPTTAGGED = 0
VSI_TAR.ACCEPTUNTAGGED = 1

No No Yes Send the packet as is.

No Yes Yes Tag inserted by the VSI.

Yes - from
descriptor and
VLAN ID != 0

Yes No VSIs VLAN Tag overrides software while
keeping the priority and DEI bits provided
by software.

Yes - in packet Yes No Drop packet.

Yes No No Drop packet.

VLAN ID = 02

2. If GL_SWT_L2TAGCTRL.ISVLAN is set (can be set only in one tag - inner VLAN).

No Yes Send the packet as is.

VLAN ID = 02 Yes Yes Port-based (VSIs) VLAN Tag overrides tag
provided by software while keeping the
priority and DEI bits provided by software.
This mode is supported only if tag is
inserted in the descriptor, and only if the
insertion is from the first descriptor tag
and first VSI tag or from the second
descriptor tag and second VSI tag.

Allow tagged and untagged:
VSI_TAR.ACCEPTTAGGED = 1
VSI_TAR.ACCEPTUNTAGGED = 1

X Yes Unexpected
VSI Setting

Undefined.

X No Yes Send the packet as is

Allow tagged only:
VSI_TAR.ACCEPTTAGGED = 1
VSI_TAR.ACCEPTUNTAGGED = 0

X Yes Unexpected
VSI Setting

Undefined.

No No No Drop packet.

Yes No Yes Send the packet as is.

Accept nothing
VSI_TAR.ACCEPTTAGGED = 0
VSI_TAR.ACCEPTUNTAGGED = 0

X X X Non-legal configuration.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1246 613875-009

7.12.3.2.2.2 Port-Based Tag Insertion Mechanism

After the packet sent by the software device driver was accepted, the E810 can add up to three tags
based on the VSI that sent the packets. Two of the added tags can have a variable part of up to 16 bits,
and one tag can have a variable part of up to 32 bits. The tags that are allowed to be port-based are
determined via the VSI_L2TAGSTXVALID.TIR[012]_INSERT and
VSI_L2TAGSTXVALID.TIR[012]INSERTID bits.

The tags for which port-based insertion is done are fixed by the device according to the mode of
operation.

For tags up to eight bytes (not including the EtherType), the entire tag can be inserted by the hardware.
Either as a request of the software via the descriptor as described in Section 7.12.3.2.1, or as part of a
port-based tag insertion.

Each tag can contain the following parts:

• The EtherType

• A fixed part

• A variable part (up to 16 or 32 bits).

The EtherType is taken from the GL_SWT_L2TAGCTRL.ETHERTYPE field. The fixed part is taken from the
GL_SWT_L2TAGDATA0 and GL_SWT_L2TAGDATA1 register. The GL_SWT_L2TAGCTRL.LENGTH field
indicates the length of the EtherType payload.

Note: Unused part of the fixed part and the word in which the variable part is inserted should be set
to zero.

The variable part is extracted from the descriptor or from the VSI_TIR register. The
GL_SWT_L2TAGTXIB.OFFSET and the GL_SWT_L2TAGTXIB.LENGTH define the location and length of
the variable part. Figure 7-38 describes the relationship between the different parameters.

The order of the tags inserted from the port-based tags is according to the order in the bit map. Thus
the first bit set uses the value from the VSI_TIR[0] register, the second bit set uses the value from the
VSI_TIR[1] register, and the third bit set uses the value from the VSI_TIR[2] register.

Figure 7-38. Tag Insertion

GL_SWT_L2TAGCTRL.

ETHERTYPE
GL_SWT_L2TAGDATA0 GL_SWT_L2TAGDATA1

GL_SWT_L2TAGCTRL.LENGTH

GL_SWT_L2TAGTXIB
.OFFSET

2 bytes/
4 bytes (for VSI_TIR[1])

VSI_TIR or descriptor
(variable part)

613875-009 1247

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.12.3.2.2.3 Queue-Based Tag Insertion

For one of the tags, the E810 can insert different port based tags based on the queue from which the
packet was sent. If the ALT_VLAN bit in the transmit queue context is set, the tag is taken from the
alternate tag register - VSI_TAIR instead of being taken from VSI_TIR.

This capability is available for each VSI in the tag inserted to the VSI_L2TAGSTXVALID.TIR0INSERTID
tag.

7.12.3.3 Received Tag Extraction Rules

The tag extraction from receive packets and insertion in the receive descriptor write-back is controlled
by the VSI_TSR.STRIPTAG, VSI_TSR.SHOWTAG, and VSI_TSR.SHOWPRIONLY bit fields. The options

supported for each tag are:

• Do nothing.

• Remove this tag from receive packets and do not insert into descriptor.

• Remove this tag from receive packets and insert into descriptor.

• Remove this tag from receive packets and insert only priority bits into descriptor.

Note: The DEI bit is considered part of the priority bits and is shown if the priority bits are shown.

Up to two L2 tags can be extracted into the Rx-Descriptor. One of the tags can supply up to 32 bits of
data, and the other tag can supply up to 16 bits of data (a total of three 16-bit words max). If more
than one word needs to be extracted, 32-byte descriptors need to be used (the DSize flag in the receive
queue context is set to 32B_Descriptor) otherwise 16-byte descriptors can be used (the DSize flag is
set to 16B_Descriptor).

The order of the tags extracted to the descriptor is according to the order in the VSI_TSR.SHOWTAG
bitmap, and according to the L2TSEL field in the queue context. If L2TSEL bit is set, the first bit set
extracts the value to the L2TAG1 field in the receive descriptor, and the second bit set extracts the
value to the L2TAG2 (2nd) and L2TAG2 (1st) fields in the receive descriptor. If L2TSEL bit is cleared, the
first bit set extracts the value to the L2TAG2 (2nd) and L2TAG2 (1st) fields in the receive descriptor,
and the second bit set extracts the value to the L2TAG1 field in the receive descriptor.

Note: The L2TAG2 (1st) field is used only if the GL_SWT_L2TAGRXEB.LENGTH is 10b or 11b (24 or
32 bits extracted part). Otherwise, the entire tag is stored in L2TAG2 (2nd).

When removal from the packet of a tag is requested, the total L2 tag (determined by the
GL_SWT_L2TAGCTRL[7:0].LENGTH field), including the EtherType is extracted from the packet.

Further details on the reporting in the descriptor can be found in Section 10.4.2.2.

If the SHOWIV bit is set in queue context, the inner VLAN value replaces the tag extracted to L2TAG2.

Table 7-290 describes the content of the tags in the receive descriptor write-back in different cases
assuming the first tag is an STag and the second tag is a VLAN.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1248 613875-009

Table 7-290. Tag Extraction Example

SHOWIV L2TSEL

Tag #1
(First Bit

Set in
SHOWTA
G (e.g.
STag))

TAG #2
(Second
Bit Set in
SHOWTA
G (e.g.
VLAN))

Packet

L2TAG1 L2TAG2
(2nd)

L2TAG2
(1st)Tag #1

Present
Tag #2
Present

Inner
VLAN

Present

0 0 16 bits 16 bits y y X VLAN STag 0

y n Not Valid STag 0

n y VLAN Not Valid Not Valid

n n Not Valid Not Valid Not Valid

32 bits 32 bits y y VLAN Tag#1 LSW Tag#1 MSW

y n Not Valid Tag#1 LSW Tag#1 MSW

n y VLAN Not Valid Not Valid

n n Not Valid Not Valid Not Valid

16/32 bits 32 bits X X Not a valid configuration

1 16 bits 16 bits y y STag VLAN 0

y n STag Not Valid Not Valid

n y Not Valid VLAN 0

n n Not Valid Not Valid Not Valid

32 bits 32 bits y y STag Tag #2 LSW Tag#2 MSW

y n STag Not Valid Not Valid

n y Not Valid Tag #2 LSW Tag#2 MSW

n n Not Valid Not Valid Not Valid

16/32 bits 32 bits X X Not a valid configuration

1 0 16 bits 16/32 bits y X n Not Valid STag 0

n X y Inner VLAN Not Valid Not Valid

y X y Inner VLAN STag 0

n X n Not Valid Not Valid Not Valid

32 bits 16/32 bits y X n Not Valid Tag#1 LSW Tag#1 MSW

n X y Inner VLAN Not Valid Not Valid

y X y Inner VLAN Tag#1 LSW Tag#1 MSW

n X n Not Valid Not Valid Not Valid

1 16 bits 16/32 bits y X y STag Inner VLAN 0

n X y not valid Inner VLAN 0

y X n STag Not Valid Not Valid

n X n not valid Not Valid Not Valid

32 bit 16/32 bit X X X Not a valid configuration

613875-009 1249

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.12.3.4 Tag Handling - Programming Interface

This section describes the CSR interface available to control the L2 tags handling of the E810. The
actual programming of these capabilities is either through NVM image loading of the device-wide
behavior, through port-wide commands such as Set Port Parameters command for the port-wide
behavior or through the Add VSI admin command (Section 7.8.12.3.1) for the per-VSI behavior.

The E810 support up to eight types of programmable L2 tags. The types of L2 tags are defined in the
NVM and in registers. For each tag the following parameters are defined:

Each port defines which tags to expect in packets sent and received through this port using the
GL_L2TAGSEN_<0/1/2/3>_<0/1> registers according to the following table per mode as defined by
the GLGEN_MAC_LINK_TOPO register:

Table 7-291. L2 Tag Control Registers - Global

Register Field Description Section
Reference

GL_SWT_L2TAGCT RL [7:0] ETHERTYPE The EtherType of the L2 tag. 13.2.2.8.5

ISVLAN Is this Tag a VLAN tag.
This information is used to define if priority tagging should be
supported for this tag.

INNERUP If this bit is set, the UP remapping is done on this field.
If this bit is set, ISVLAN should also be set.
If set in multiple tags, the Inner UP is taken from the first tag with
this bit set in the packet.

OUTERUP If this bit is set, this is the tag on which the inner to outer UP
remapping is applied. Should be set only in mutually exclusive
tags.

LENGTH The length of the L2 tag (not including the EtherType).
The length can be 2,4,6 or 8 bytes.

HAS_UP Defines if this tag includes UP bits that should be used for UP to TC
translation. The first such tag found in the packet is used for UP to
TC translation

ISNSH Identifies the tags that contains a NSH EtherType.

ISMPLS Identifies the tags that contains a MPLS EtherType.

PRT_L2TAGSEN NONLAST_TAG Indicates that there are more tags with the same EtherType
expected.

13.2.2.26.1

GL_SWT_L2TAGTXIB [7:0] OFFSET Describes the offset in the header to which the variable data
should be inserted (can be up to eight bytes)

13.2.2.8.3

GL_SWT_L2TAGDA TA0[7:0]
GL_SWT_L2TAGDA TA1[7:0]

L2TAGDATA The fixed part to insert in transmit packets 13.2.2.8.1
13.2.2.8.2

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1250 613875-009

The per-port PRT_TDPUL2TAGSEN defines which packets are expected in packets transmitted from this
port.

Each VSI defines which of the eight L2 tags are offloaded for its Tx and Rx traffic using the
VSI_L2TAGSTXVALID and VSI_TSR registers. These registers define which receive tags and transmit
tags to handle.

Each VSI can be configured with a different behavior for each of the tags. The possible behaviors relate
to the type of tags the driver is allowed to insert in transmit packets, the type of tags inserted by the
switch, the tags removed from received packets, and the tags posted to the receive descriptor
write-back.

Table 7-293 describes the registers fields used to set the expected behavior for each tag.

Table 7-292. Number of Ports to L2 Tags Enable Mapping

Port Number
Number of Ports

2 4 8

0 GL_L2TAGSEN_0_0 and
GL_L2TAGSEN_1_01

1. The two registers should have the same value.

GL_L2TAGSEN_0_0 GL_L2TAGSEN_0_0

1 GL_L2TAGSEN_2_0 and
GL_L2TAGSEN_3_01

GL_L2TAGSEN_2_0 GL_L2TAGSEN_2_0

2 GL_L2TAGSEN_1_0 GL_L2TAGSEN_1_0

3 GL_L2TAGSEN_3_0 GL_L2TAGSEN_3_0

4 GL_L2TAGSEN_0_1

5 GL_L2TAGSEN_2_1

6 GL_L2TAGSEN_1_1

7 GL_L2TAGSEN_3_1

Table 7-293. L2 Tag Control Registers - per VSI

Register Field Description Section
Reference

VSI_L2TAGSTXVALID L2TAG[12]INSERTID1

L2TAG[12]INSERTID_VALID
Defines the tags for which descriptor-based insertion is
supported. The ID is based on the L2 tags mapping
described in Table 7-294.

13.2.2.12.6

TIR[012]INSERTID
TIR[012]_INSERT

Defines the tags for which port-based insertion is
supported.

VSI_TAR2 ACCEPTTAGGED[n] A bitmap describing if a packet with tag N is accepted. 13.2.2.12.5

ACCEPTUNTAGGED[n] A bitmap describing if a packet without tag N is accepted.3,4

VSI_TIR_n (n = 0..2) PORT_TAG_ID The tag to insert.

VSI_TAIR PORT_TAG_ID The alternate tag that can be used instead of VSI_TIR[0]

613875-009 1251

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.12.3.5 L2 Tags Default Configuration

This section describes the value to set in the different registers to implement the E810 POR as loaded
from NVM.

The following L2 tags are currently defined in the default configuration:

VSI_TSR STRIPTAG[n] (n = 0..9) Defines if the tag should be extracted from the packet. 13.2.2.12.10

SHOWTAG[n] (n = 0..9) Defines which of the tags should be extracted to the
descriptor. Valid only if corresponding bit in STRIPTAG is
set.
The SHOWPRIONLY field defines which part of the tag to
extract to the descriptor.
At most, two of these bits should be set. If more than two
bits are set, only the first two are considered.

SHOWPRIONLY[n] (n = 0..9) A per-tag bitmap defining which par of the tags to extract
to the descriptor. If set, only the priority bits are extracted.
Otherwise, the entire tag is used.
Relevant only if the corresponding bit in SHOWTAG is set.

1. To allow insertion of priority bits from a descriptor and the VLAN tag value from the hardware as described in Table 7-288, the
same ID should be used for L2TAG1INSERTID and TIR0INSERTID or L2TAG2INSERTID and TIR1INSERTID.

2. The tag number in this register relates to the 10 tags defined in Section 7.12.3.5.
3. If GL_SWT_L2TAGCTRL.ISVLAN is set, admits also priority tagged packets (VLAN tag = 0).
4. This bit should be set for all the tags not expected in the packet.

Table 7-294. L2 Tags

Tag Tag ID (in Table) Tag ID in VSI_TAR and VSI_TSR
bitmaps

STag 0 2

ITag (MAC in MAC) 1 3

Outer VLAN (0x8100) 2 4

Outer VLAN (0x9100) 3 5

VLAN 4 6

NSHoE 5 7

MPLS 1 6 8

MPLS 2 7 9

Table 7-293. L2 Tag Control Registers - per VSI [continued]

Register Field Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1252 613875-009

Table 7-295 describes the configuration for each of the tags:

Table 7-295. L2 Headers Support

Register/Tag STag

ITag
(MAC

in
MAC)

Outer
VLAN 1

Outer
VLAN 2 VLAN NSHoE MPLS 1 MPLS 2

Index 0 1 2 3 4 5 6 7

Global Configuration

GL_SWT_L2TAGCTRL. ETHERTYPE 0x88A8 0x88E7 0x8100 0x9100 0x8100 0x894F 0x8847 0x8848

GL_SWT_L2TAGCTRL.ISVLAN1

1. The ISVLAN must be set on one Tag and only on one Tag (the inner VLAN).

0 0 0 0 1 0 0 0

PRT_L2TAGSEN.NON_LAST_TAG 0 0 1 0 0 0 0 0

GL_SWT_L2TAGCTRL.INNERUP 0 0 0 0 1 1 0 0

GL_SWT_L2TAGCTRL.OUTERUP 1 0 1 1 0 0 0 0

GL_SWT_L2TAGCTRL.LONG 0 0 0 0 0 0 0 0

GL_SWT_L2TAGCTRL.HAS_UP 1 0 1 1 1 1 0 0

GL_SWT_L2TAGCTRL.ISMPLS 0 0 0 0 0 0 0 1

GL_SWT_L2TAGCTRL.ISNSH 0 0 0 0 0 0 1 0

GL_SWT_L2TAGCTRL.LENGTH 2 16 2 2 2 2 36 0

GL_SWT_L2TAGTXIB.OFFSET 0 N/A 0 0 0 N/A2

2. Insertion and extraction of tag ID is not supported for this tag.

N/A N/A

GL_SWT_L2TAGTXIB.LENGTH3

3. 00b = 8 bits, 01b = 16 bits, 10b = 24 bits, 11b = 32 bits.

01b N/A 01b 01b 01b N/A N/A N/A

GL_SWT_L2TAGRXEB.OFFSET 0 N/A 0 0 0 N/A N/A N/A

GL_SWT_L2TAGRXEB.LENGTH3 01b N/A 01b 01b 01b N/A N/A N/A

GL_SWT_L2TAGDATA0, GL_SWT_L2TAGDATA1 All zeros

Per Port Configuration (Controlled by Set Port Parameters command)

PRT_L2TAGSEN.ENABLE and
GL_L2TAGSEN_m_n (m= 0..3, n= 0..1) 1 1 0/14

4. Should be set if port expects double VLAN packets.

1 1 1 1 1

Per VSI Configuration (Controlled by Add VSI command)

VSI_TSR.STRIPTAG 0/15,6

5. Set for the used outer tag if outer tag extract mode is set to Extract tag and do not insert in descriptor or Extract tag from packet
and expose in descriptor.

6. If STag is used as part of a B-VLAN-ITag combo, bit should be cleared.

0 0/15 0/15 0/17

7. Set if VLAN and UP Expose Mode (Rx) is not set, do nothing (leave VLAN in packet).

0 08

8. No L2 tag extraction support for MPLS tags.

08

VSI_TSR.SHOWTAG 0/16,9

9. Set for the used outer tag if outer tag extract mode is set to Extract tag from packet and expose in descriptor.

0 0/19 0/19 0/110

10.Set if VLAN and UP Expose Mode (Rx) is set to Show VLAN, DEI and UP in descriptor.

0 08 08

VSI_TSR.SHOWPRIONLY 0 0 0 0 0/111

11.Set if VLAN and UP Expose Mode (Rx) is set to Hide VLAN, show UP and DEI (VLAN ID = 0).

0 08 08

VSI_TAR.ACCEPTTAGGED 0/112

12.Set for the used outer tag if Accept Tag from Host is set. Set for all other tags.

1 0/112 0/112 0/113

13.Set if VLAN Driver Insertion Mode is set to Admit.1Q tagged only or Allow all packets.

1 114

14.No check of the insertion rules of MPLS headers.

114

VSI_TAR.ACCEPTUNTAGGED 1 1 1 1 115

15.Set if VLAN Driver Insertion Mode is set to Admit untagged/Priority tagged only or Allow all packets.

1 114 114

613875-009 1253

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.12.4 VLAN Handling

This section describes the handling of IEEE 802.1Q VLAN tags based on the features described above.

There can be up to two VLAN tags in the outer header of a packet identified as VLAN (tag index 5) and
outer VLAN (tag index 3 or 4). In addition, the tunneled header can also include a VLAN. The handling
of the tunneled VLAN is described in Section 7.12.4.3.

Each port can be set to expect packets with outer VLAN using the Set Port Parameters admin command
(Section 7.8.12.2.2). When enabled, a packet with a single VLAN is treated as a packet with outer VLAN
only. Otherwise, a single VLAN in a packet is treated as inner VLAN.

In any case, the outer VLAN is not part of the forwarding decision and should be handled by the
software device driver or by the BMC both in transmit and receive. There is no offload of outer VLAN
insertion or extraction.

The following sub-sections describe the handling of the inner VLAN.

In UDP tunnels, an internal VLAN can also be present, as described in Section A.5.5. The handling of
this VLAN is described in Section 7.12.4.3.

UP translation in inner VLAN is described in Section 7.12.6.2.

7.12.4.1 Transmit Flow

This section describes the handling of VLAN as part of the flow of packets sent by the host, the BMC, or
the EMP.

7.12.4.1.1 Tag Insertion

A VLAN tag can be inserted to the packets in three ways:

• As part of the packet buffer.

• As part of the transmit descriptor in the L2TAG1 field if the IL2TAG1 field is set.

• By the device from the VSI context.

The two first options are enabled if the VSI is allowed to add a VLAN tag by the VLAN Driver Insertion
Mode in the Add VSI command (Section 7.8.12.3.1). If a packet is sent with a VLAN tag from a VSI that
is not allowed to add a tag, it is dropped.

Note: If the IL2TAG_IL2H field in the transmit context descriptor is set, the L2TAG1 represents the
inner VLAN and regular VLAN insertion from the descriptor is not available. See
Section 7.12.4.3.1 for details on the inner tag insertion. Inner tag insertion is allowed
irrespective of the VLAN configuration in the Add VSI command.

The third option is enabled by setting the Insert PVID in the same command. The tag to insert is
defined in the PVID + Default UP field of the command.

Note: Setting both Insert PVID and VLAN Driver Insertion Mode to allow software to insert VLAN is
not allowed.

Note: It is expected that BMC traffic arrives with the right VLAN tagging.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1254 613875-009

7.12.4.1.2 VLAN Anti-Spoofing

After the packet is VLAN tagged by one of the methods above, if the Enable VLAN Anti-Spoof bit in the
Add VSI command is set, it is compared to the ingress VLAN list and dropped if the inserted VLAN is not
in the list.

7.12.4.1.3 VLAN Filtering

If the packet passed the previous stage, the VLAN tag is used as part of the forwarding process. It is
compared as part of the {MAC, VLAN} filters added by the Add Switch Rules admin command
(Section 7.8.12.6.1) to determine if the packet should be sent to a local address or should be sent to
the network. It is also compared to the PRT_MNG_MAVTV filters as part of the manageability filtering as
described in Section 12.4 to define if it should be sent to the BMC.

7.12.4.2 Receive Flow

This section describes the handling of VLAN as part of the flow of packets received by the host, the
BMC, or the EMP.

7.12.4.2.1 VLAN Filtering

When a packet is received from the network (or from the host) the VLAN tag is used as part of the
forwarding process. It is compared as part of the {MAC, VLAN} filters and to the VLAN egress filtering
both set using the Add Switch Rules admin command (Section 7.8.12.6.1) to determine if the packet
should be sent to a local VSI. It is also compared to the PRT_MNG_MAVTV filters as part of the
manageability filtering as described in Section 12.4 to define if it should be sent to the BMC.

7.12.4.2.2 VLAN Extraction

Before a packet is stored in the host memory, the VLAN tag can be stripped and optionally stored in the
receive descriptor. The action done is defined per VSI in the VLAN and UP Expose Mode (Rx) field in the
Add VSI command. The possible actions are:

• Show VLAN and UP in descriptor (legacy behavior).

• Hide VLAN show UP in descriptor (VLAN ID exposed as 0).

• Hide VLAN and UP.

• Do nothing (leave VLAN in packet).

If the VLAN or the UP are exposed in the descriptor, it shows in the L2TAG1 field and the L2TAG1P flag
is set. If the L2TSEL bit is set, VLAN tag is extracted to the L2TAG2 (1st) field in the receive descriptor
instead. In this case, 32-byte descriptors must be used (DSize field in the receive queue context must
be set).

Note: When a packet is sent to the BMC the VLAN is kept in the packet.

613875-009 1255

Intel® Ethernet Controller E810 Datasheet
Packet Processing

7.12.4.3 VLAN in Tunnel Packets

In MAC-in-UDP and MAC-in-GRE encapsulations, a VLAN within the tunneled MAC header can also be
present, as described in Section A.5.5.

7.12.4.3.1 Insertion of Tunneled VLAN from Descriptor

The insertion of this tag is controlled via the IL2TAG_IL2H field in the transmit descriptor. When set, the
L2TAG2 field in the context descriptor contains the tunneled VLAN. In this case, the values of
VSI_L2TAGSTXVALID.L2TAG2INSERTID and VSI_L2TAGSTXVALID.L2TAG2INSERTID_VALID fields are
ignored.

This mode is enabled irrespective of the VLAN configuration in the Add VSI command
(Section 7.8.12.3.1).

Note: Insertion of inner VLAN should not be requested when IPsec encryption is requested.

Inner VLAN insertion is based on the inner IP offset in tunneled packets, and is assumed to be
inserted before the inner IP header. For packets for which the insertion should be done
elsewhere (for example, if an MPLS header is present between the inner VLAN and the inner
IP), the VLAN cannot be inserted by the device.

7.12.4.3.2 Extraction of Tunneled VLAN to Descriptor

The SHOWIV field in the receive queue context controls the extraction of an internal VLAN to the
receive descriptor. If set, the tunneled VLAN is inserted in L2TAG2 (2nd) field of the receive descriptor
write-back. In this case, the second tag selected according to Section 7.12.3.3 is ignored. If the L2TSEL
bit is cleared, the inner VLAN tag is extracted to the L2TAG1 field in the receive descriptor instead.
When the SHOWIV field is set and the L2TSEL bit is set, 32-byte descriptors must be used (DSize field
in the receive queue context must be set).

7.12.4.3.3 Tunneled VLAN in Pass-Through Traffic

Tunneled VLAN is not offloaded (not inserted nor extracted) for BMC pass-through traffic.

7.12.4.4 Port-Based VLAN

The E810 supports port-based VLAN feature by allowing any VSI to specify the default VLAN that it
belongs to. The port-based VLAN association is done when a packet received on the VSI is untagged or
priority tagged and protocol VLAN association is not done. Port-based VLANs map packets received on a
given VSI with the corresponding Port based VLAN identifier called PVID. The PVID list should be
programmed with the Port VLAN IDs for each VSI.

The port VLAN list is provided which is part of the VSI context. Table 7-296 describes the port VLAN
parameters in the Port VLAN list and the matching parameters in the Add VSI command.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1256 613875-009

The switch should insert the PVID to the packet if the Insert PVID parameter is set for the VSI and
replace the UP bits according to the algorithm described in Section 7.12.6.1.

Once the VLAN ID association is made, the packet forwarding is performed using the {VLAN, MAC}
forwarding table and VLAN membership table.

7.12.5 Outer Tag Handling

This section describes the handling of outer VLAN tags (IEEE 802.1Qbg STags or 0x8100 /0x9100 VLAN
tags) based on the features described above.

There can be up to one outer tag in a packet (tag index 1/3/4/). The sections below describes the
handling of the STag.

Note: The outer tag EtherType can be either 0x88A8, 0x9100, or 0x8100 and can be different per
VSI according to the Outer Tag Type defined in the Add VSI command.

7.12.5.1 Transmit Flow

This section describes the handling of outer tag as part of the flow of packets sent by the host, the BMC,
or the EMP.

There is no anti-spoofing capability for outer tags.

7.12.5.1.1 Tag Insertion

An outer tag can be inserted to the packets in three ways:

• As part of the packet buffer.

• As part of the transmit descriptor in the L2TAG2 field if the IL2TAG2 field is set.

• By the device from the VSI context.

Table 7-296. Port VLAN List and VSI Parameters

Port-Based VLAN List Add VSI Parameter Notes

VSI number VSI Number Returned by firmware in response.

PVID PVID + Default UP

Default UP

Admit.1Q tagged only VLAN Driver Insertion Mode

Admit untagged/Priority tagged only

Admit all

Ingress VLAN check enable Enable VLAN Anti-Spoof

Insert PVID Insert PVID

Expose VID and UP of received packets VLAN and UP Expose Mode (Rx)

Expose UP only of received packets

Do not expose VID or UP of received packets

Ingress UP translation table Ingress UP Translation Table See Section 7.12.6.1

Egress UP translation table Egress UP Translation Table See Section 7.12.6.2

613875-009 1257

Intel® Ethernet Controller E810 Datasheet
Packet Processing

The two first option are enabled if the VSI is allowed to add an outer tag by the clearing the Outer Tag
Insert Enable field and setting the Accept Tag from Host field in the Add VSI command
(Section 7.8.12.3.1). If a packet is sent with an outer tag from a VSI not allowed to add a tag, it is
dropped.

The third option is enabled by setting the Outer Tag Insert Enable in the same command. The tag to
insert is defined in the Outer Tag field of the command.

Note: Setting both Outer Tag Insert Enable and Accept Tag from Host to allow software to insert
VLAN is not allowed.

Note: As an outer tag of 0x8100 can be confused with an inner tag of the same value, it should be
enabled in the Set Port Parameters command only if expected on all packets in this port. In
this case, other outer tags (0x9100 or 0x88A8) can not be inserted by the hardware.

7.12.5.2 Receive Flow

This section describes the handling of STag as part of the flow of packets received by the host, the BMC
or the EMP.

7.12.5.2.1 STag Extraction

Before a packet is stored in the host memory, the STag can be stripped and optionally stored in the
receive descriptor. The action done is defined per VSI in the STag Extract Mode field in the Add VSI
command. The possible actions are:

• Show STag and UP in descriptor (legacy behavior) — Used for cascaded Port Virtualizer with offload.

• Hide STag and UP.

• Do nothing (leave STag in packet) — Used for cascaded Port Virtualizer without offload.

If the STag is exposed in the descriptor, it shows in the L2TAG2 field and the L2TAG2P flag is be set. In
this case, 32-bytes descriptors must be used (DSize field in he receive queue context must be set).

Note: If the SHOWIV field is set in the queue context, the L2TAG2 field is allocated for the inner
VLAN of tunnel packet. In this case, the STag is never inserted in the descriptor.

7.12.6 User Priority Bits (802.1p) Handling

The UP bits are used to differentiate between multiple classes of traffic. The E810 supports multiple use
cases related to the handling of the UP bits:

• An OS that is not DCB/traffic type aware and uses a single TCID.

• An OS that is traffic type aware, but not DCB aware. It can distribute the traffic to different queues,
but cannot tag them with the right UP. This case refers to LAN and iWARP flows. The OS is not
aware, but the driver knows the difference and hence can assign the different types of traffic to
different flows. There is no DCBx agent and hence driver does not know the UP or TC for flows.

• An untrusted OS that can set UP bits of TCs it is not allowed to use.

• An OS that can use a single queue per TCID, but would like to use more UPs to gain from the
differentiated QoS in the network.

The following sub-sections describe the handling of UP bits in transmit and receive to support the above
use cases.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1258 613875-009

See Section 8.2.1.3.1 for details of UP handling in ports where the TC is DSCP-based.

7.12.6.1 Transmit Functionality

Each transmit packet is assigned a UP, either by the driver or as part of the port VLAN table as
described in Section 7.12.4.4.

This UP is translated using two different translation vectors:

• The first vector is specific to a VSI and is part of the port VLAN table (Transmit UP translation table
- VSI_TUPR). This vector reflects the mapping of the user priorities as seen by the operating system
to the user priorities as seen by the network.

• The second vector is specific to a TCID in a physical port. It translates the UP received from the
previous translation to a UP matching the TCID to which the packet is associated. These vectors can
be configured through the PRT_TCTUPR registers.

Note: There is no drop of packets due to a wrong 802.1p tagging. If a wrong tag is requested, the
tag is replaced. Thus, this functionality supports both UP anti-spoofing and port-based UP.

Untagged packets are kept as is. No translation is done on them.

Figure 7-39 shows the algorithm:

Figure 7-39. Example: Non-VLAN Aware, Non-DCB Aware OS

VSI UP (from packet or default)

Ingress UP
 translation vector
(VSI_TUPR[VSI#])

PF enforced UP

TC translation vector
(PRT_TCTUPR[#TC])

Network UP

0 71 2 3 4 5 6

UP0 UP1 UP6UP5UP4UP3UP2 UP7

1 2 3 4 5 6

UP0 UP1 UP6UP5UP4UP3UP2 UP7

0 7

613875-009 1259

Intel® Ethernet Controller E810 Datasheet
Packet Processing

Assume a VF that queues LAN traffic and iSCSI traffic to different queues, but is not VLAN-aware. In
this case, the packet is sent by the driver with no VLAN, and the default UP set in the port-based VLAN
(for example, 0) is the initial UP of the packet. In this case, the Ingress UP translation vector
(VSI_TUPR) is not relevant and might be, for example, {0,1,2,3,4,5,6,7} or {0,0,0,0,0,0,0,0}. The TC
translation vector (PRT_TCTUPR) for LAN might be {0,1,2,0,0,0,0,0} and the TC table for storage might
be {4,4,4,4,5,4,4,4}. So a LAN packet goes out with a UP of 0, and a storage packet goes out with a UP
of 4.

Example: Non DCBx Tagging OS

Assume a VF that tags LAN high-priority traffic with a UP of 4, LAN low-priority traffic with a UP of
3, and the storage traffic as UP 7. In this case, the VF translation table might be {0,1,2,0,2,4,4}
and the TC tables as above. The low-priority LAN goes out with a UP of 0, the high-priority LAN with
a UP of 2 and, storage with a UP of 4.

The tag on which the transmit UP translation is done is identified by setting the INNERUP bit in the
matching GL_SWT_L2TAGCTRL register.

The default mapping of both tables is identity mapping (that is, mapping a UP to itself). If UP
translation is not needed, these mapping should not be changed.

7.12.6.1.1 Transmit Outer Tag User Priority

The transmit outer tag user priority can be handled in three different ways:

1. If the outer tag is received in the packet or the descriptor (for example, cascaded S-comp), the UP
should be part of the packet sent by the driver or inserted from the descriptor.

2. If the outer tag is inserted by the hardware, the UP can be either:

a. The UP defined as part of the inserted tag in the VSI_TIR register.

b. A translation of the regular VLAN UP as defined in the VSI_TUPIOM register.

If the outer tag is defined as OUTERUP in the GL_SWT_L2TAGCTRL register, the UP is based on the first
tag for which the INNERUP field is set in the GL_SWT_L2TAGCTRL register (usually the VLAN tag)
(option 2.b). Otherwise, it is based on the default (option 2.a).

In case there is more than one tag in the packet with OUTERUP set, inner-to-outer UP translation
should be performed to the most outer tag with OUTERUP bit set.

The tag to which translation is applied can be either STag or external VLAN.

Figure 7-40 describes the translation process.

Intel® Ethernet Controller E810 Datasheet
Packet Processing

1260 613875-009

7.12.6.2 Receive Functionality

7.12.6.2.1 VLAN UP Translation

The priority bits of inner VLAN tag in received packets may be remapped using the Ingress UP
translation table in the Add VSI command. This means the OS might get packets with 802.1p priority
bits reflecting the local configuration and not the link configuration. By default (Ingress UP translation
section is not valid) the translation is one-to-one, meaning that the received UP is not translated.

7.12.6.2.2 VLAN UP Exposure to Device Driver

The exposure of the received UP to operating systems is defined by the awareness of the OS controlling
the VSI as follows:

• For a monolithic OS, VMM, or for a guest OS that is VLAN-aware, the UP is exposed as part of the
VLAN as requested by driver (either in the packet or in the descriptor).

• If the guest OS is DCB-aware but not VLAN-aware, it gets the priority bits as part of the receive
descriptor in the VLAN tag field. The VLAN ID is zero, but the priority bits are valid.

• A guest OS that is not VLAN-aware and not DC-aware does not get the user priority bits (UP) at all.

The configuration of the UP removal is part of the port VLAN configuration described in
Section 7.12.4.4, and in the Add VSI command VLAN handling section (Section 7.8.12.3.1).

Figure 7-40. Tx Inner-to-Outer UP Translation

Inner UP (as derived in previous section)

Inner to Outer UP
translation vector

(VSI_TUPIOM[VSI#])

Outer UP

0 71 2 3 4 5 6

UP0 UP1 UP6UP5UP4UP3UP2 UP7

613875-009 1261

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Chapter 8 Quality of Service (QoS)

This chapter assumes the reader is familiar with the following specifications:

• IEEE P802.1Qbb-2011 — a.k.a. Priority-based Flow Control (PFC) specification.

• IEEE P802.1Qaz-2011 — a.k.a. Enhanced Transmission Selection for Bandwidth Sharing Between
Traffic Classes (ETS) specification.

— DCB Center Bridging Exchange Protocol (DCBx) spec refers to Clause 38 in ETS specification.

— DCB Capability Exchange Protocol Base Specification.

• IEEE Std 802.1AB-2009 — a.k.a. Link Layer Discovery Protocol (LLDP) specification.

• RFC 2474—Definition of the differentiated services field (DS field) in the IPv4 and IPv6 headers.

8.1 E810 Usage Models: Number of Ports and
Number of Congestion Domains

The E810 supports various port configuration and usage models.

• The E810 is integrated to the Network Acceleration Complex (NAC) SoC. It is targeted for COMMS,
Cloud, and Enterprise markets. The E810 operates as a NIC configured with up to eight ports. The
E810 is directly connected to PHYs with eight ONPI interfaces, each directly connected to one PHY
for both Tx and Rx.

• Congestion Notification: Congestion notifications from the network (Link Flow Control or
Priority-based flow control) is immediately forwarded to the E810 like other traffic.

• the E810 supports three main ports settings. Each Port is associated with a separate ONPI
connectivity to the Network.

— Two ports setting:

• Each port can be independently run at 100/50/25/10/1 GbE, 100 Mb/s, or disabled.

• Eight TCs (Congestion Domains) are supported per port in both Tx and Rx sides.

— Four ports setting:

• Each port can be independently run at 25/10/1 GbE, 100 Mb/s, or disabled.

• Eight TCs (Congestion Domains) are supported per port in both Tx and Rx sides. Total 32
Congestion Domain (CGDs).

— Eight ports setting (Device mode is set to this mode whenever more than four ports are
available):

• Each port can be independently run at 10/1 GbE, 100 Mb/s, or disabled.

• Four TCs (Congestion Domains) are supported per port in both Tx and Rx sides. Total 32
Congestion Domain (CGDs).

• Tx-Scheduler configuration in this usage model is detailed in Section 8.3.3.

Note: This port setting supports two more ports sub settings:

 • Six ports setting: supports 2x25 GbE + 4x10 GbE ports setting.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1262 613875-009

 • Seven ports setting: supports 1x25 GbE + 6x10 GbE ports setting.

From QoS perspective, the above modes are sub setting of eight ports mode and four TCs
(Congestion Domains) are supported per port. Some CGD are not used in those modes.

— LLDP/DCBx: NVM settings determine whether the LLDP and DCBx agent runs in EMP firmware
by default. Software can acquire the LLDP ownership. Default NVM settings have the agent
disabled, but OEMs can change it using NVM tools.

8.2 E810 QoS and DCB Support

8.2.1 Receive Path QoS

This section discusses the QoS approach in the E810. QoS in receive includes DCB and DCBx support
plus Rx-Pipe balancing to avoid starvations between Rx-Pipe units and between different types of
service packets in the Rx processing pipeline. This section includes:

• Rx-Pipe overview of QoS aspect on the Rx-Pipe:

— Describes the potential congestion domains, Arbitration and drop points, and Priority support.

• Receive QoS, Algorithms, and Configuration:

— Rx QoS units Overview:

• Incoming packet classification to CGD

• Rx-Pipe - arbiters

• Rx-Pipe - “pipe monitors”

— Rx QoS blocks, Implementation details, and Programming:

• Incoming packet classification to CGD

• Rx-Pipe - arbiters

• Rx-Pipe - “pipe monitors”

• XOFF/XON methods differences in Device operation modes.

• Crosstalk prevention.

8.2.1.1 Rx-Pipe Congestions, Arbitration, and Priority Support -
Overview

The E810’s Rx-Pipe processes incoming packets from the network as well as loopback traffic. Under
normal configuration, the PCIe bandwidth provides high enough bandwidth for total incoming traffic and
its control data (like the descriptors write-back).

The Rx-Pipe might be congested as a result of one or more of the below conditions:

• A thinner PCIe connectivity limits the Host interface.

• A burst of high-rate small packets, congest the Rx packet processing pipeline.

• A burst of RDMA packets, overflows the processing power of the PE (PE packet processing rate is
lower than the LAN packet processing rate).

613875-009 1263

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

• Dual 100 GbE mode: The E810 can be configured to work in 2x100 GbE setting. In that topology,
the receive Packet Buffer can be congested by receiving from the ports more packets than can be
fed to the receive pipe (higher rate than Rx-Pipe processing power).

• A combination of Loopback and Mirroring Traffic in parallel to high-rate incoming packets from the
network.

• Rx locality rules: The E810 performance commitment counts on a level of locality. The background
behind the locality restriction for Rx performance is that some of the stages of Rx processing are
dependent on fetching data from the Host memory, part of this data can be a Rx-Descriptor per
each packet, other type of data is a context type like filters. To eliminate the need for the Host read
operations per packet, the E810 manages an internal cache for all those data types. The E810 can
benefit from those cache only under some locality assumptions. When the incoming traffic
conditions do not follow those locality conditions, the Rx processing rate of the E810 suffers from
some performance degradation, and part of the Rx-Pipe is congested.

• Unexpected collision numbers in Post Quad Hash (discussed later in this section) can also cause
congestion.

When the Rx-Pipe is congested as a result of any of the above, internal processing queues are starting
to build up. The Rx-Pipe is organized in per CGD queues/FIFOs. Packet reordering is only allowed
between CGDs.

As detailed above, in the Rx side, the E810 can be configured to work in one of three main port
topologies:

• Four ports with up to eight TCs

• Eight ports with up to four TCs

The Rx-Pipe is organized in up to 32 queues, one per congestion domain (CGD). The processing of
packets belonging to a CGD is done in order.

Association of incoming packets with a CGD is done based on the port’s QoS configuration and the
packet’s Class of Service (CoS) as detailed in Section 8.2.1.3.1.

Some stages of the pipe might need higher processing power and therefore two units are placed to
meet the required performance. Those pipe stages operate internal re-ordering mechanism to keep the
overall pipe ordering.

When internal queues are built up, the processing order in Rx-Pipe must implement an arbitration
between the per CGD queue/FIFOs.

8.2.1.1.1 Pipe Monitor (PM) and Arbiter Pairs

The three Rx arbiters mentioned above select a head-of-line item across the 32 CGDs only if there is
enough room for storing the selected item into the next buffering stage. If some CGDs are full, these
CGDs are temporarily removed from the arbiter list of candidate items until room is freed again. CGDs
that are temporarily removed from an arbitration point are handled as if there was no pending workload
for them (in other words, like an empty list). This mechanism of looking ahead for available room is
referred to as Pipe Monitoring.

For QoS support, each stage of the pipe consists of a set of an arbiter and a Pipe Monitor (PM), which
act together to provide the required QoS performance while preventing head-of-line blocking and
reducing to minimum the cross-effect between ports and between CGDs.

In each stage of the pipe, an arbiter is located at the beginning of the stage, selecting which packet is
propagated into the next pipe stage. The PM counts the load per CGD and per port of this stage from
the arbiter gate until the end of the stage, which can be the next pipe stage arbiter, or NIC’s PCIe
interface.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1264 613875-009

The pipe monitors are set of counters that track the load in this pipe stage, per-Port and per-CGDs.
When a CGD or a port load reaches its load threshold, The PM signals the units that feed this pipe
stage. Upon PM load signal, the related CGD(s) or port(s) are masked out in the arbitration flow of the
arbiters of the predecessor units.

Each stage of the pipe listed above is paired with a PM.

8.2.1.2 Rx QoS Units Overview

8.2.1.2.1 Packet’s Congestion Domain Mapping in Receive - Overview

The network ports are exposed to the E810 (up to eight ports). Ingress Rx packet processing is done in
the E810. The E810 supports two PFC modes: VLAN PFC and DSCP PFC. The PFC modes is a
configuration per port.

• VLAN PFC — Class of Service (CoS) is based on the 3-bit PCP field of the 802.1p header extracted
from incoming packet. This value is the packet’s UP (User Priority).

• DSCP PFC — CoS is based on the DSCP (IPv4)/Traffic Class (IPv6) field. This is a 6-bit value.

8.2.1.2.2 Remapping of the UP Field in Receive

Refer to Section 7.12.6 for the L2 equivalent.

This is a service for the software layer, it acts as a translation service between the software space UP
mapping and the Network space UP mapping. The remapping scheme applies also to the traffic destined
to EMP (or BMC), which is represented in the tables by its own VSI units.

VLAN UP might be included in the L2 header even when the port is configured for DSCP PFC mode.

8.2.1.2.3 Rx Ports and ETS Arbiters - Overview

The RPB egress arbiter and the RCB arbiter are in charge of Rx QoS support. They manage the Rx
processing order through most of the Rx-Pipe. In principal the arbiters implement a three-layer
arbitration scheme, one layer Ports arbiter and two layers ETS arbiter:

• Port arbitration — This is WRR arbitration between Rx ports. It ensures isolation between the Rx
LAN ports. The total available PCIe bandwidth allocated for traffic reception is firstly allocated
among the LAN ports. The weight, by default, is proportional to the ports’ speed ratio.

• ETS arbiter — A two-layer arbitration among CGDs inside each port. The E810 supports two types
of CGDs: “Regular” and “High-Priority”. In this document, the Regular and High-Priority CGDs are
also called “ETS” and “non-ETS”, respectively. The regular (or ETS) CGDs involve token-based WRR
arbitration. The high-priority (or non-ETS) CGDs get higher priority in each ETS arbiter with no
bandwidth limit. The two layers of the ETS arbiters are:

— CGD arbitration — Packet based RR arbitration among all non-ETS CGDs of the port in parallel
to bytes based WRR arbitration among all regular CGDs of the port.

• Each active CGD is associated with one and only one priority. If the CGD is declared as
high-priority CGD, it is associated with the high-priority arbiter. Otherwise, it is associated
with the regular arbiter.

— Strict Priority — Between the high-priority traffic arbitration winner and the regular traffic
arbitration winner. The winner of the arbitration among high-priority CGDs always wins. When
the high-priority queue is empty, the regular queues passes.

613875-009 1265

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Figure 8-1 shows the structure of CGD arbitration. Inside each port, the high-priority CGDs are
associated with the left arbiter, while the low priority CGDs are associated with the right one. The
middle arbiter is a simple strict priority arbiter between the winners of WRR arbiters. The upper arbiter
is the ports’ arbiter.

8.2.1.3 Rx QoS Blocks, Implementation Details and
Programming

8.2.1.3.1 Packet’s Congestion Domain Mapping in Receive -
Implementation Details and Programming

The network ports are exposed to the E810 (up to eight ports). Ingress Rx packet processing is done in
the E810.

The E810 supports two PFC modes: “VLAN PFC” and “DSCP PFC”.

In both PFC and DSCP modes, congestions are notified using L2 Priority Flow Control (PFC) messages
as detailed in Section 3.2.1.5.

Figure 8-1. Rx QoS Arbiters Unit Scheme

...

RR/SP

 SP

...

 SP

...

Rx/Loopback from
LAN Port #7

 SP

WRR

CGDs Arb.

Strict Priority

Ports Arb.

RR/SP RR/SP WRR/SPWRR/SPWRR/SP

Rx/Loopback from
LAN Port #1

Rx/Loopback from
LAN Port #0

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1266 613875-009

8.2.1.3.1.1 Packet CoS Classification Flow in “VLAN PFC” Mode

• Class of Service (CoS) is based on the 3-bit PCP field of 802.1p header extracted from the incoming
packet. This value is the packet’s UP (User Priority).

• When the port is configured to expect multi-TAG packets, the HAS_UP bit in GL_SWT_L2TAGCTRL
register indicates per-tag type if its UP is a candidate for DCB usage. The UP for DCB is taken from
the first tag encountered in the packet that has this bit set. This bit should be set for STags and
VLAN (internal and external) EtherTypes.

• The PRTDCB_RUP2TC register controls the mapping of incoming packets to TCs according to the UP
field they carry (UP to TC mapping table).

• UP-to-TC mapping (UP2TC) is a table per port, the UP2TC table is configured by the LLDP owner,
which can be firmware or software (software might decide to take LLDP ownership, as detailed in
Section 8.2.4.5.1). The LLDP owner owns the DCBx as well. UP2TC is configured based on the port’s
DCB capabilities and DCB setting. The DCBx setting is detailed in Section 8.2.4.5.

• The same mapping is used for packets received from the wires and for those looped back internally.
It defines on the account of which TC a packet is stored in the Rx packet buffer, and which UP’s bits
are set in the PFC XOFF/XON frames issued to the link partner when the filling state of a TC requires
it.

• Packets received with no 802.1p tag are also mapped to a TC according the setting made in
NOVLANUP field of PRTDCB_RUP register that is applied as an input to the UP to TC mapping table
of PRTDCB_RUP2TC register. To ensure that LLDP and other MAC Control packets are not dropped
internally by the device before they reach EMP or the host, it is recommended that the
PRTDCB_RUP.NOVLANUP field be set to the No-Drop UP with the lowest index.

• Packet’s CGD is calculated in a three-step flow:

a. The UP of the packet is extracted from the VLAN header of the received packet. Packets received
with no 802.1p tag are also mapped to a default UP configured in NOVLANUP field of
PRTDCB_RUP register.

b. Packet’s TC is extracted based on the UP and per-port UP to TC mapping programmed in the
PRTDCB_RUP2TC register.

As mentioned above, the E810 can be configured as 1-4 port device that can support up to
eight TCs per port, or as 5-8 port device that can support a maximum of four TCs per port.

When the device is configured 5-8 port mode, the PF, when programming the PRTDCB_RUP2TC
register, is responsible for configuring all TC values to be limited to 0-3.

c. Packet CGD == Port num (0-7) * Max TC per port (4 or 8) + TC.

8.2.1.3.1.2 Packet CoS Classification Flow in “DSCP PFC” Mode

• Class of Service (CoS) is based on the DSCP (IPv4)/Traffic Class (IPv6) field. This is a 6-bit value.

• DSCP is extracted from outer IP header only.

• DSCP configuration is owned by software. DSCP mode is a per-port configuration. Software
programs via EMP firmware DSCP translation tables and enables/disables the DSCP mode.

• Software calls EMP firmware using Set Local LLDP MIB AQC.

• DSCP-to-UP translation table is a 64-entries LUT that provides a translation from every one of the
64 DSCP values to a 3-bit UP value.

613875-009 1267

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.1.4 Rx-Pipe, Port, and CGD Configuration per Each Usage
Model and CGD Type

The NVM is programmed with Rx-Pipe configuration registers and values per each port and DCB
topology. The EMP firmware is responsible for reading the correct data set per topology and configuring
the pipe accordingly.

8.2.1.4.1 Issuing XOFF and XON

When receiving a packet attached to a No-Drop TC, either from the LAN wire or from the internal
loopback path, a PFC XOFF notification can be issued onto the wire and internally to the loopback path
for all the UPs mapped to the CGD.

Issuing XOFF behaves differently under different configurations. This section details the different XOFF/
XON models per configuration.

• LFC — The XOFF/ON mode is a per-port configuration, and the device can be configured to LFC.
When the port is configured for LFC mode by the PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE and
PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE CSRs, during the link negotiation flow, the device
proposes LFC mode for the link partner. If LFC is in agreement with the link partner, the RPB is
configured with one CGD for the port with all matching watermark settings. When XOFF/XON needs
to be issued, it is done as a LFC message.

• PFC — When the port is configured for DCB, a DCBx agent is activated for the port. The DCBx agent
runs by default in EMP firmware, Software can take the ownership on LLDP and DCBx. The DCBx is
detailed in Section 8.2.4.5. XOFF/XON in this mode are issued as PFC messages.

The format of PFC and LFC messages are detailed in Section 3.2.1.5.

8.2.2 Transmit Path QoS

8.2.2.1 Transmit Path Enhanced Transmission Selection (ETS)

This section discusses the Tx QoS approach in the E810. QoS in transmit includes Tx Scheduling, DCB,
and DCBx support, plus the Tx-Pipe balancing to avoid starvations between Tx-Pipe units and between
different types of service packets in during the Tx processing pipeline. Special attention is dedicated to
burst avoidance as an integral feature required for the COMMS market.

Transmit path ETS is basically managed in the Tx-Scheduler (refer to Section 8.3).

This section deals with the requirements on Tx data path to avoid distortions on the ETS scheme
performed by the Tx-Scheduler. The approach relies on two principles:

• Maintain the order of requests issued by the Tx-Scheduler, as much as possible.

• Avoid misleading the scheduler decisions by inexact reports.

Other ETS requirements on Tx data path:

• Serve high-priority traffic as fast as possible in any condition, as long as it is not overtaking its
allocated bandwidth.

• Limit packets burstiness beyond what is decided by the Tx-Scheduler.

• Guarantee that best effort TCs can be served at full-blown, regardless of the XOFF/XON events
history over lossless TCs.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1268 613875-009

• Avoid starvation of one ETS traffic class by another, even in the case that it is dropping packets
while the other CoSs offer sustained workload.

The section includes:

• Tx-Pipe overview of QoS aspect on the Tx-Pipe.

— This discussion describes the potential congestion domains, Arbitration and Priority support.

• Transmit QoS, Algorithms, and Configuration.

— Tx QoS units overview.

— Tx QoS blocks, implementation details, and programming.

• XOFF/XON methods differences in device operation modes.

Note: Tx-Scheduler is a major partner in the Tx QoS. A dedicated section (Section 8.3, “Transmit
Scheduling”) details the Tx-Scheduler approach, algorithms, usage models, and
configuration.

8.2.3 Tx-Pipe Overview

This section provides an overview for the Tx-Pipe from its QoS aspect. It is not intended to cover the
packet processing of the Tx and/or other aspects except the QoS.

Figure 8-2. E810 Block Diagram

Rx Pre-Parser

Rx MACTx MAC

Legend:
Loopback

P
E

L
A
N

ONPI (supports 2x100G,50G / 4x25G / 8x10G,1G,100M)

Tx Packet
Modifier

Tx Packet
Buffer

Tx MAC Rx MAC

Rx Pre-Parser

Rx Packet Buffer

Rx Packet
Modifier

PCIe

EMP

Switch
SB control path

control path

Tx

Tx-Scheduler

Tx

Caching &
Address

Translation

Rx LAN
Engine

Rx PE
Engine

I/O: RMII,
SMBus, GPIO

Parser

ACL

Filters

AQ I/F &
Mailbox

SB-IOSF

Tx/Rx path

Packet Processing

Host I/F

Rx datapath

Tx datapath

AQ path

613875-009 1269

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.3.1 Tx Flow - Starting from Scheduling

In the E810, the Tx-Scheduler is located at the top of the Tx-Pipe. The scheduling process is performed
prior to fetching the data and descriptors. This enables major memory and power savings as the Tx
data and its descriptors are fetched to the device internal memory on demand. Scheduling decisions are
made based on the packet sizes digest received by the Tx-Scheduler from the Doorbell messages, and
from “Quanta Descriptors”, which are explained in detail later in this document. The Advanced Doorbell
with packet sizes is described in Section 10.5.6.2.

For a queue that is configured to act in legacy mode, the quanta is pre-configured per queue and is
constant. The legacy Doorbell is described in Section 10.5.4.6, and an explanation of “Quanta” is
provided in Section 8.3.2.2.1 and in Section 8.3.2.2.2.

The Tx-Scheduler controls and arbitrates both the LAN queue and RDMA transmission. The LAN and
RDMA engines wrap the Tx-Scheduler IP. They feed it with transmission requests (Enqueue and Refill
flows). When a queue is selected by the Tx-Scheduler, the Tx-Scheduler provides this call to the target
unit (Dequeue flow).

8.2.4 Tx-Pipe QoS Next Level of Details

Each LAN Tx-Queue and RDMA QSet is associated with a single TC inside the port space and mapped
into a single CGD. To handle sudden PFC XOFF notifications received from the link, the transmit data
path is provided with buffers in its different stages. To reduce impact on-die size, provision is made for
only two types of traffic: High-Priority (also called Low-Latency (LL) in this Document) and Bulk (B).

Each CGD in Tx is configured with four main behavioral parameters:

• Advanced Mode Host Interface — The Advanced Transmit mode enables software to control
tightly the burstiness of the traffic from this queue, to interleave transmissions between multiple
data sources while limiting the burst size from any one given queue. When a CGS is recognized as
Burst Sensitive, all the Tx-Queues associated with this CGD must be configured to operate in
Advanced Transmit Mode.

• Bulk vs. Low Latency — Each CGD is configured as LL (Low Latency) or B (Bulk) CGD.
High-priority CGDs are selected first in the Tx arbiters, allowing them running faster through the
Tx-Pipe.

• Congested vs. Not Congested CGD — This defines if the specific CGD is declared as Droppable in
the network, and therefore no Priority Flow Control (PFC) is expected for the CGD or PFC support
for it is required.

• Congestion Location — In a regular NIC and in E810 NIC mode, each PFC needs a fast response.
To address this, any PFC event results with immediate pausing of the involved CGD traffic anywhere
in the Tx-Pipe (that is, stop selecting it in the Tx-Scheduler as well as stop servicing it in TCB and
TPB).

Table 8-1 summaries the recommended configuration of each type of traffic in each device mode.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1270 613875-009

Configuring the CGD for each usage is done by EMP firmware. Software uses the flow detailed in
Section 8.2.4.6 to configure each CGD.

8.2.4.1 CoS Translation and Enforcement

The E810 supports two PFC modes: VLAN PFC and DSCP PFC. The PFC modes is a configuration per
port.

• VLAN PFC — Class of Service (CoS) is based on the 3-bit PCP field of 802.1p header extracts from
the incoming packet. This value is the packet’s User Priority (UP).

• DSCP PFC — CoS is based on the DSCP (IPv4)/Traffic Class (IPv6) field. This is a 6-bit value.

The PFC mode is a per-port configuration. PFC mode can be changed on the fly per software call (port’s
Tx-Pipe is drained before changing the PFC mode).

Some translate services and enforcement rules are operated in the E810’s Tx-Pipe, as detailed in the
following paragraphs. For each one of the supported features, its relevancy for PFC mode is marked
within each of those paragraphs.

8.2.4.1.1 Remapping of the UP Field in Transmit

Refer to Section 7.12.6 for the L2 equivalent.

This is a service for the software layer. It acts as a translation service between the software space UP
mapping and the network space UP mapping. The remapping scheme also applies to the traffic destined
to EMP (or BMC), which is represented in the tables by its own four VSI units.

VLAN UP can be included in the L2 header even when the port is configured for DSCP PFC mode.

Note: UP remapping is disabled when the port is configured to DSCP mode. Disabling of UP
remapping is done by configuring it to one-to-one mapping, keeping the output to be equal to
the input.

Table 8-1. CGD Configuration for Each Usage

Traffic Type Service Host Interface Mode LL/Bulk Congested Congestion
Location

Droppable
High-Priority

Lower latency relative to
regular traffic.

No PFC enabled.
Advanced or Legacy Mode LL No Not any

Droppable
Regular No PFC. Advanced or Legacy Mode Bulk No Not any

No-Drop
High-Priority

Lower latency relative to
regular traffic.
PFC enabled.

Advanced or Legacy Mode LL Yes Tx-Scheduler and
Tx-Pipe

No-Drop
Regular PFC enabled. Advanced or Legacy Mode Bulk Yes Tx-Scheduler and

Tx-Pipe

613875-009 1271

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.4.1.2 Mapping of UP to TC in Transmit

Register PRTDCB_TUP2TC controls the mapping of UPs to TCs in the transmit path with respect to PFC
XOFF/XON notifications received from the link partner or internally from the loopback path. It defines
which transmit CGD is paused/released when a UP bit is set in a PFC XOFF/XON frame received (or in
internal notification).

Rx and Tx DCB settings are usually identical.

Tx manageability traffic issued by the BMC is bound to the lowest indexed Drop TC, or to TC0 if all TCs
are configured as No-Drop.

This mapping is relevant in both PFC and DSCP modes. In DSCP mode, packet classification is based on
L3 DSCP field, but the congestion notification is still done by the LLDP PFC messages.

8.2.4.1.3 UP Tag Enforcement in Transmit

In any PFC mode, the E810 enforces software behavior. The CoS of a packet marks the level of service
it gets while forwarded through the network. Untrusted software can feed its packets with higher CoS
value to get better network performance. This can affect the overall network performance.

In the E810, each Tx-Queue is associated with a single port/TC pair. In its Tx path, the E810 checks
every transmitted packet if the CoS value provided by software in the packet’s header is allowed for this
port/TC.

When the port PFC mode is configured for VLAN PFC, a UP-to-UP translation table is configured per each
port/TC pair. For the legal UP values, the output value equal to the input one. For the illegal values, the
output value is configured for a default value for the port/TC. The packet is then modified with the
correct UP value.

UP tag enforcement can be configured on the fly.

Note: Disabling of UP enforcement is done by configuring it to one-to-one mapping, keeping the
output to be equal to the input.

8.2.4.1.4 DSCP Tag Enforcement in Transmit

DSCP enforcement is similar to the UP value enforcement detailed in Section 8.2.4.1.3. One difference
is in the DSCP handling resultant from the fact that DSCP is part of L3 header. It is more complex to
hardware to modify L3 header of a packet, so the DSCP enforcement is done by either dropping the
packet that carries illegal DSCP tag, or raising a malicious event to the PF. The reaction option is
configured per-port and it is done using the CSR GL_DCB_TDSCP2TC_BLOCK_IPV[4/6] register.

DSCP tag enforcement is configured per port per CGD, and independently for IPv4 and IPv6 packets.

1. A DSCP table is selected based on:

a. Port, TC (Part of the Tx-Queue context, piggybacked with each packet through the Tx-Pipe).

b. Packet’s IP type (extracted from packet’s header in the query flow).

2. Packet’s outermost DSCP tag is extracted and is used as an index to the table selected above.

3. The value read from the table index is a flag that marks if this DSCP tag is legal for this port/TC.

4. If the flag == 0, then:

a. The packet is dropped if configured so, based on CSR GL_DCB_TDSCP2TC_BLOCK_DIS.

b. Malicious event is raised if configured so, based on global configuration in CSR
GL_MDCK_TX_TDPU.DSCP_CHECK_FAIL_ITR_DIS.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1272 613875-009

Note: CSRs GL_DCB_TDSCP2TC_BLOCK_DIS and
GL_MDCK_TX_TDPU.DSCP_CHECK_FAIL_ITR_DIS are device-wise configuration
registers. They are uploaded from NVM as a global configuration and are not changed by
PF.

Table 8-2 summarize the Translation and Enforcement rules per device mode and traffic type. L2 tag
insertion and acceptance topics are explained in Section 7.12.6 for the L2 equivalent.

8.2.4.2 Transmit Flow for ETS

The following flow documents the Tx data path only from an ETS perspective. The ETS Tx-Pipe is
described above in Section 8.2.3.

8.2.4.2.1 Pipe Monitor (PM) and Arbiter Pairs

For QoS support, each stage of the pipe consists of a set of an arbiter and Pipe Monitor (PM), which act
together to provide the required QoS performance while preventing head-of-line blocking and
minimizing the cross-effect between ports and between CGDs.

In Each stage of the pipe, an arbiter is located at the beginning of the stage, selecting which packet is
propagated into the next pipe stage. The PM counts the load per CGD and per port of this stage from
the arbiter gate until the end of the stage, which can be the next pipe stage arbiter or the NIC’s
interface.

Table 8-2. VM CoS Translation and Enforcement - Summary Table

Traffic Type UP
Remapping

UP
Enforcement

DSCP
Enforcement

L2 Tags
Acceptance

L2 Tags
Insertion

Legacy Yes Yes No Yes Yes

DSCP No No Yes Yes Yes

613875-009 1273

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.4.3 Tx Port and CGD Configuration per Each Usage Model
and CGD Type

8.2.4.3.1 CGD Mode of Operation Configuration Parameters

Table 8-3 summaries the recommended configuration of each type of traffic.

8.2.4.3.2 Tx-Pipe Arbiters and PM Configuration

8.2.4.3.2.1 Pipe Monitors and Arbiters Configuration per Use Case

Table 8-3. CGD Configuration for Each Usage

Traffic
Type Feature/Control Register Name

NIC Mode

Droppable
High-

Priority

Droppable
Regular

No-Drop
High-

Priority

No-Drop
Regular

LL/Bulk
GLDCB_TCB_TCLL_CFG.LLTC[0..31]
GLDCB_TPB_TCLL_CFG.LLTC[0..31]

LL Bulk LL Bulk

Congested
GLDCB_TLPM_TC2PFC.TC2PFC[0..31]1

GLDCB_TCUPM_TC2PFC.TC2PFC[0..31]1

PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE[Port, UP]2

1. These are multicast registers and affect the Tx-Pipe and Rx-Pipe.
2. The indexing of MAC PFC enable is done based on port/UP and not based on CGD.

No No Yes Yes

Congestion
Location

GLDCB_TLPM_IMM_TCB.IMM_EN[0..31]
GLDCB_TLPM_IMM_TPB.IMM_EN[0..31]

Not any Not any
Tx-Scheduler

and
Tx-Pipe

Tx-Scheduler
and

Tx-Pipe

Legacy
Host

Interface
Allowed

GLDCB_TCUPM_LEGACY_TC.LEGTC[30..31]
GLDCB_TLPM_LEGACY_TC.LEGTC[0..31]

Yes Yes Yes Yes

Table 8-4. Tx-Pipe Arbiters Configuration in All Ports Setups

Arbiter Functionality Control Register Name
Negotiated Speed (Gb/s)

100 50 25 10

U
P
P
E
R

P
I
P
E

Inter Ports Arbitration
@ Two Ports Setup1

PRTDCB_TCB_DWRR_QUANTA[0..7].QUANTA
PRTDCB_TCB_DWRR_SAT[0..7].SATURATION

0x14
0x1400

0x0A
0x1400

0x05
0x1400

0x02
0x2000

Inter Ports Arbitration @
Four or More Ports Setup2

PRTDCB_TCB_DWRR_QUANTA[0..7].QUANTA
PRTDCB_TCB_DWRR_SAT 0..7].SATURATION

0x14
0x400

0x0A
0x400

0x05
0x400

0x02
0x400

Arbitration Between Wait
Buffer Release and

Regular Traffic in BULK
CGDs

GLTCB_BULK_DWRR_REG_QUANTA.QUANTA
GLTCB_BULK_DWRR_REG_SAT.SATURATION

0x1
0x2000

GLTCB_BULK_DWRR_WB_QUANTA.QUANTA
GLTCB_BULK_DWRR_WB_SAT.SATURATION

0x2
0x2000

Arbitration Between Wait
Buffer Release and

Regular Traffic in LL CGDs

GLTCB_LL_DWRR_REG_QUANTA.QUANTA
GLTCB_LL_DWRR_REG_SAT.SATURATION

0x1
0x2000

GLTCB_LL_DWRR_WB_QUANTA.QUANTA
GLTCB_LL_DWRR_WB_SAT.SATURATION

0x2
0x2000

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1274 613875-009

L
O
W
E
R

P
I
P
E

Inter Ports Arbitration @
Two Ports Setup1

TPB_PRTDCB_TCB_DWRR_QUANTA[0..7].QUANTA
TPB_PRTDCB_TCB_DWRR_SAT[0..7].SATURATION

0x14
0x1400

0x0A
0x1400

0x05
0x1400

0x02
0x2000

Inter Ports Arbitration @
Four or More Ports Setup2

TPB_PRTDCB_TCB_DWRR_QUANTA[0..7].QUANTA
TPB_PRTDCB_TCB_DWRR_SAT[0..7].SATURATION

0x14
0x400

0x0A
0x400

0x05
0x400

0x02
0x400

Arbitration Between Wait
Buffer Release and

Regular Traffic in BULK
CGDs

TPB_BULK_DWRR_REG_QUANTA[0..7].QUANTA
TPB_BULK_DWRR_REG_SAT[0..7].SATURATION

0x1
0x2000

TPB_BULK_DWRR_WB_QUANTA[0..7].QUANTA
TPB_BULK_DWRR_WB_SAT[0..7].SATURATION

0x2
0x2000

Arbitration Between Wait
Buffer Release and

Regular Traffic in LL CGDs

TPB_LL_DWRR_REG_QUANTA[0..7].QUANTA
TPB_LL_DWRR_REG_SAT[0..7].SATURATION

0x1
0x2000

TPB_LL_DWRR_WB_QUANTA[0..7].QUANTA
TPB_LL_DWRR_WB_SAT[0..7].SATURATION

0x2
0x2000

1. 1x100G or 2x100G
2. 4x25G, 8x10G, 1x25G + 6x10G, or 2x25G+ 4x10G

Table 8-5. Configuration for Wait Buffer Release Shaping for all Ports Setups and for Upper
and Lower Pipe Wait Buffers

Shaper Control/
Configuration GLTCB_WB_RL 0x00010020

P
E
R

S
P
E
E
D

S
E
T
U
P

@446MHz
(High performance
SKU - 100G total)1

1. Performance level is represented in CSR GL_PWR_MODE_CTL.CAR_MAX_BW.

TCTCB_WB_RL_TC_CFG[0..31]
TPB_WB_RL_TC_CFG[0..31] 0x17381 0x17381 0x171C0 0x17167 0x170E0 0x1705A

@367MHz
(Medium SKU - 50G

total)1
TCTCB_WB_RL_TC_CFG[0..31]
TPB_WB_RL_TC_CFG[0..31] 0x17442 0x17442 0x17221 0x171B4 0x17110 0x1706D

@183MHz
(Low Power SKU -

25G total)1
TCTCB_WB_RL_TC_CFG[0..31]
TPB_WB_RL_TC_CFG[0..31] 0x1788A 0x1788A 0x17445 0x1736A 0x17222 0x170DB

Table 8-4. Tx-Pipe Arbiters Configuration in All Ports Setups [continued]

Arbiter Functionality Control Register Name
Negotiated Speed (Gb/s)

100 50 25 10

613875-009 1275

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Note: Some Dedicated RDMA Pipe Monitors must be configured in addition to the above. The RDMA
Pipe Monitors setting is detailed in field.

8.2.4.4 Transmit Path Priority Flow Control (PFC)

This section deals with guaranteeing no packet loss at the link partner and inside the E810 further to
receiving PFC pause frames from the link partner or further to PFC notifications received from the
internal switch.

In each port, TCs are classified in two types relative to PFC: No-Drop TCs (or lossless), and Drop TCs
(or best effort delivery).

8.2.4.4.1 PFC Dead-Lock Prevention

Tx traffic that belongs to PFC-enabled TCs can be halted in the Tx-Pipe due to endless XOFF received,
either from the line or from the internal loopback path. Flushing out this traffic is a gating condition for
the completion of the following operations: Tx-Queue disable, PFR, VFR, disabling the PFC of a TC, or
DCBx UP-to-TC remapping.

The device implements a mechanism that automatically flushes out Tx traffic that belongs to a port for
which the link goes down. However, there is no similar mechanism for flushing out traffic halted in the
Tx data pipe due to endless XOFF conditions. In the case of PFR, an endless XOFF/congestion condition
is detected autonomously by the device at the section end and handled as described below. For the
other cases (listed above), it is the PF(s) responsibility to detect that the Tx data-path is halted for a

Table 8-6. Tx-Pipe Monitors Configuration in All Ports Setups

Monitor Functionality Control Register Name
Negotiated Speed (Gb/s)

100 50 25 101

1. The 10 GbE pipe monitor setup values also apply to link speed 5 GbE, 2.5 GbE, 1 GbE and 100 Mb/s.

U
P
P
E
R

P
I
P
E

Per-Port Command
Upper Pipe Monitors

PRTDCB_TCUPM_REG_CTHR[0..7].PORTOFFTH_L 0xFFF 0xFFF 0xFFF 0xFFF

PRTDCB_TCUPM_REG_CTHR[0..7].PORTOFFTH_H 0x43C 0x221 0x155 0xBA

PRTDCB_TCUPM_WAIT_PFC_CTHR[0..7].PORTOFFTH 0x9F8 0x5C2 0x42B 0x2F5

Per-Port Data
Upper Pipe Monitors

PRTDCB_TCUPM_REG_DTHR[0..7].PORTOFFTH_L 0x98 0x4C 0x26 0x11

PRTDCB_TCUPM_REG_DTHR[0..7].PORTOFFTH_H 0x98 0x4C 0x26 0x11

PRTDCB_TCUPM_WAIT_PFC_DTHR[0..7].PORTOFFTH 0x0 0x0 0x0 0x0

Per-CGD Command
Upper Pipe Monitors TCDCB_TCUPM_WAIT_CTHR[0..31].TCOFFTH 0x4BC 0x2A1 0x1D6 0x13A

Per-CGD Data
Upper Pipe Monitors TCDCB_TCUPM_WAIT_DTHR[0..31].TCOFFTH 0x104 0xB8 0x92 0x7A

L
O
W
E
R

P
I
P
E

Per-Port Data
Lower Pipe Monitors

PRTDCB_TLPM_REG_DTHR[0..7].PORTOFFTH_L 0x1FB 0x109 0xB3 0x65

PRTDCB_TLPM_REG_DTHR[0..7].PORTOFFTH_H 0x1FB 0x109 0xB3 0x65

PRTDCB_TLPM_WAIT_PFC_DTHR[0..7].PORTOFFTH 0x445 0x259 0x1B5 0x110

Per-CGD Data
Lower Pipe Monitors TCDCB_TLPM_WAIT_DTHR[0..31].PORTOFFTH 0x1FB 0x109 0xB3 0x65

PCIe Tx Data GLDCB_TLPM_PCI_DTHR.PCI_TDATA 0x96

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1276 613875-009

long time by periodically monitoring the eight Tx PFC timers attached to a port, one per TC
(PRTDCB_TPFCTS.PFCTIMER). Each timer (per CGD) is restarted by the device every time the TC is
halted by an XOFF notification (received from the link). If any of these counters crosses a threshold
defined by the ENDLESS_XOFF_THRESH parameter (in EMP setting module in the NVM), the PF(s)
software should take the following actions:

• Post a PFC Ignore admin command (refer to Section 8.2.5.1) for the TC, requesting EMP to set
IGNORE_FC bit(s) (32 bits - one per CGD) in the GLDCB_TFPFCI register. It causes the entire Tx
data path to ignore PFC indications for the concerned TC/port, whether they were received from the
line or from the internal loopback path. When in this state, the device flushes out the concerned
frames without issuing them over the line or into the internal loopback path.

• When the endless XOFF condition disappeared, and/or when the Tx-Pipe is checked to have been
cleaned up (Read PMs for pipe status), the PF clears the IGNORE_FC bit by posting a PFC Ignore
admin command with Ignore flag cleared.

8.2.4.5 Data Center Bridging Exchange Protocol (DCBx)

The DCBx protocol relies on the exchange with the peer of untagged LLDP packets over the physical
link.

8.2.4.5.1 DCBx/LLDP Ownership

By default, DCBx is handled by EMP, though the host can decide to take the DCBx ownership once
system boot has been completed. Software initiates the transition on a per-port basis by posting the
“Stop LLDP Agent” command.

When software owns the DCBx, it can give DCBx ownership back to EMP using “Start LLDP Agent” AQ
command. Whenever the host that handles DCBx goes to sleep mode, DCBx is uncovered (EMP does
not cover for DCBx). It is the host’s responsibility to reset DCB configuration to its default settings (that
is, single traffic class, PFC disabled) prior to entering the sleep state. When software handles DCBx, it is
also responsible for configuring the DCB settings of the port by setting the DCB registers. In such a
case, the end-station can be made by software as the DCBx “primary” (the entity that propagates its
DCB settings to the peer.

When LLDP/DCB is handled by EMP, the E810 behaves always as a DCBx “secondary”, retrieving its DCB
settings from recommendations or configurations received from the peer.

If LLDP frames are sent by the PF, they are tagged with an outer VLAN tag by the device before issuing
them on the lines. In receive, LLDP frames with an outer VLAN tag are directed to the appropriate PF.

Refer to Section 9.8 for the general handling of LLDP packets. The LLDP Agent embedded in EMP
(including its DCBx agent) is reset by GLOBR. Further to such reset events, EMP restarts LLDP Agent
and DCBx resolution for the ports on which LLDP was handled by EMP.

When LLDP is handled by EMP, following to a CORER event, EMP reconfigures the Tx/Rx paths (and any
relevant hardware that was reset) with the DCB configuration that prevailed before the reset occurred.

613875-009 1277

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.4.5.2 DCBx Version

There are two known versions of DCBx standard: IEEE and CEE. The E810 supports both, and can adopt
at runtime its peer’s mode of operation or to determine the mode of operation based on NVM
configuration word: “DCBx Mode”.

The NVM configuration selects one of the three options: CEE, IEEE, or adopt peer’s mode of operation.

When it configured to adopt peer’s mode of operation, it is done based on DCBx TLVs received from the
link peer using the flow detailed below.

1. Upon initialization (Linkup, GLOBR, or LLDP ownership hand-off from software to EMP, TLV counters
expire) EMP runs IEEE/DCBx as default mode.

2. Upon receiving a DCBx TLVs from the partner:

— EMP determines the actual DCBx mode it runs. This is done based on the OUI field in the DCBx
TLV. In IEEE, the OUI TLV value is “00 80 C2”. In CEE, this value is “00 1B 21”.

— If the message contains IEEE/DCBx TLVs, then

• DCBx mode == IEEE

• Ignore and CEE/DCBx TLV in the message

— End If

— Else If the message contains only CEE/DCBx TLVs, then

• DCBx mode == CEE

— End if

3. Whenever the DCBx mode is changed between CEE and IEEE, the whole DCB configuration is
reinitialized to the default DCB setting.

Method used by software to find which version EMP runs:

Software sends down “GET_CEE_DCBx_OPER_CFG” AQ command and waits for its completion.
Refer to Section 9.8.5.2.2.8 for more details on this command.

If retval == success

DCB Mode = CEE.

Negotiated DCB arbitration available in response buffer for this command.

End if

If retval == ENOENT

DCBx Mode = IEEE

Software sends down “GET_LLDP_MIB” AQ command to find out the DCB arbitration
negotiated using DCBx protocol.

End if

If retval == EPERM

Software has taken control of DCBx. Query software DCB agent for any DCBx configuration

End if

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1278 613875-009

8.2.4.5.2.1 CEE vs. IEEE DCBx

This section highlights the main difference between CEE and IEEE modes that affects the DCBx
resolution. Refer to the two standard specifications for more details.

Operational Configuration:

IEEE DCBx TLVs always advertise the operational setting of the feature. CEE DCBx, on the other
hand, computes the operational configuration based on local DesiredCfg and peer’s DesiredCfg. If
software wants to determine the OperCfg, it cannot use the “GET_LLDP_MIB” AQ command, for
CEE as OperCfg is not the wire in case of CEE. Software must use the “GET_CEE_DCBX_OPER_CFG”
AQ command for obtaining the OperCfg in CEE. Refer to Section 9.8.5.2.2.8 for detail on this
command.

Priority Groups:

CEE DCBx has a concept of Priority Group, which is not present in IEEE DCBx. EMP is required to
equate the Priority Group and Traffic Class concepts. That is, treat the Priority to Priority Group
mapping received in the CEE DCBx TLV as the Priority to Traffic Class mapping as well.

Priority Flow Control:

For CEE DCBx, if the PFC does not become operational via CEE DCBx state machine, CEE DCBx
disables PFC and enables link-level flow control. When EMP runs the DCBx agent in IEEE mode, this
recommendation is irrelevant since it behaves in secondary mode and aligns itself to the peer.

8.2.4.5.3 DCBx Managed Objects

When a port DCBx is handled by EMP, the DCBx Managed Objects are the DCBx parameters stored
internally in EMP data RAM and/or in device registers. All DCBx objects are per LAN port. Two instances
are stored per port: one issued by the device to the link partner referred as Local DCBx parameters,
and one received from the link partner referred as Remote DCBx parameters.

When DCBx is handled by EMP, the PFs must restrain themselves from any write access to the DCB
registers listed in Table 8-7. “RW” in the table refers to the EMP capability to write the object.

Table 8-7. Local DCBx Managed Objects

IEEE Object Name
*CEE Object Name Data Type Width

(in Bits) Admin Default

ETS Configuration TLV

Willing Boolean 1 RO 1

Credit-Based Shaper (CBS) Boolean 1 RO 0

Max TCs
*Num TCs Supported Unsigned Integer 3 RW 01

Priority Assignment Table
*Priority Allocation Table

Unsigned Integer
[0..7] 8x4 RW 0

TC Bandwidth Table
*Priority Group Allocation Table

Unsigned Integer
[0..7] 8x7 RW 0

TSA Assignment Table Unsigned Integer
[0..7] 8x8 RW 02

613875-009 1279

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.4.6 DCB Configuration Using MIB TLVs

The E810 manages internally a wider set of MIB TLVs, which allows configuring Tx and Rx DCB pipes
and DSCP settings. Software configures the DCB hardware for both VLAN and DSCP modes using the
same method by calling the AQCs “Get Local LLDP MIB” and “Set Local LLDP MIB”. In addition,
independent and optionally asymmetric setup for Tx and Rx is available using the same method.

Table 8-8 Provides the list of all the TLVs used for DCB configuration.

PFC Configuration TLV

Willing Boolean 1 RO 1

MBC Boolean 1 RO3 0

PFC Cap
*Num TC PFC Supported Unsigned Integer 4 RO 0x84

PFC Enable
*PFC Config Table Boolean [0..7] 8x1 RW 0

Application Priority Configuration TLV

Application Priority Table
*App Protocol Config Table Unsigned Integer 32x24 RW 0

MFS per TC Table Unsigned Integer 8x155 RW 1536

1. 0 is the encoding for 8.
2. Strict Priority algorithm is assumed by default (indicated by a zero value) on each user priority. Setting the value of 2 selects ETS

bandwidth allocation scheme.
3. MACsec support.
4. The E810 is always able to support up to eight PFC-enabled traffic classes, though in some cases (when Jumbo is enabled) fully

independent PFC behavior is partially achieved.
5. Max Frame Size is defined in bytes.

Table 8-8. DCB Configuration MIB TLVs

TLV ID Description Comments

V
L
A
N

P
F
C

M
O
D
E

Multicast
(Rx and Tx)

0x09 ETS Configuration
Standard DCBx TLVs and OUI.
Exchangeable with the link partner.
Every “operational TLV” update in this section is immediately
copied by EMP firmware to both Rx and Tx corresponding TLVs.

0x0A ETS Recommendation

0x0B PFC per UP

0x0C Application Priority

Rx

0x89 ETS Configuration
Separate Rx and Tx configuration TLVs.
OUI == 0xFF_FF_FF
Those TLVs are not exchanged in LLDP.
Any update of a TLV in this section is translated to a hardware
configuration of Rx or Tx DCB pipe.
These TLVs are updated when the operational TLVs are
updated. Software can set separately Rx or Tx TLVs (AQC Set
Local LLDP MIB TLV) to activate different setup for Tx and Rx.

0x8B PFC per UP

0x8C Application Priority

Tx

0x99 ETS Configuration

0x9B PFC per UP

0x9C Application Priority

Table 8-7. Local DCBx Managed Objects [continued]

IEEE Object Name
*CEE Object Name Data Type Width

(in Bits) Admin Default

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1280 613875-009

The format of the Rx (0x89, 0x8B, or 0x8C) and Tx (0x99, 0x9B, or 0x9C) TLVs are identical to the
corresponding standard DCBx TLVs.

The rest are of non-standard TLV formats are as detailed below.

Notes and Restrictions:

• When software configures the Rx or the Tx separately (using the Rx or the Tx MIBs), Tx-Scheduler
is configured with the Tx-Pipe according to the Tx MIBs. Software is responsible for issuing “Stop
LLDP Agent” prior to configuring Rx and Tx separately.

• When a port acts in DSCP mode, DCBx protocol is disabled. Software is responsible for issuing
“Stop LLDP Agent” prior to configuring a port for DSCP mode.

• When software feeds LLDP MIB, VLAN PFC mode TLVs “ETS configuration” and “PFC per UP” are
configured as pairs. If software tries to program one without the other in a single AQ call, this call
returns with the error code EINVAL.

• Same restriction and behavior for the DSCP. TLVs “Bandwidth per TC and TC priority” and “PFC per
UP/TC” are pairs.

• If software tries to set the DSCP-related MIB while PFC mode != DSCP, the command is rejected
with the error code EMODE. Likewise, if software tries to set the VLAN-related MIB while PFC mode
!= VLAN, the command is rejected with the error code EMODE.

8.2.4.6.1 UP-to-TC Mapping Configuration

The configuration of UP-to-TC for Rx is done using CSR PRTDCB_RUP2TC. EMP firmware uses this CSR
when the Rx UP2TC is changed as part of the DCBx handling, or as a response to a software call for Set
Local LLDP MIB (Rx only or multicast).

The configuration of UP-to-TC for Tx is done using CSR PRTDCB_TUP2TC. EMP firmware uses this CSR
when the Rx UP2TC is changed as part of the DCBx handling or as a response to a software call for Set
Local LLDP MIB (Tx only or Multicast).

D
S
C
P

P
F
C

M
O
D
E

Multicast
(Rx and Tx)

0x41 DSCP to UP
OUI == 0xFF_FF_FF
Those TLVs are not exchanged in LLDP.
Every “Multicast TLV” update in this section is immediately
copied by EMP firmware to both Rx and Tx corresponding TLVs.

0x42 DSCP Enforcement

0x43 Bandwidth per TC and TC priority

0x44 PFC per UP/TC (Same ID)

Rx

0x45 DSCP to UP
Separate Rx and Tx configuration TLVs.
OUI == 0xFF_FF_FF
Those TLVs are not exchanged in LLDP.
Any update of a TLV in this section is translated to a hardware
configuration of Rx or Tx DCB pipe.
These TLVs are updated when the operational TLVs are
updated. Software can set separately Rx or Tx TLVs (AQC Set
Local LLDP MIB TLV) to activate different setup for Tx and Rx.

0x46 Bandwidth per TC and TC priority

0x47 PFC per UP/TC (Same ID)

Tx

0x48 DSCP Enforcement

0x49 Bandwidth per TC and TC priority

0x4A PFC per UP/TC (Same ID)

Table 8-8. DCB Configuration MIB TLVs [continued]

TLV ID Description Comments

613875-009 1281

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.4.6.2 DSCP-to-UP - Subtype 0x41 or 0x45

8.2.4.6.3 DSCP Enforcement - Subtype 0x42 or 0x48

Table 8-9. DSCP-to-UP Format

TLV Type = 127
(7 bits)

TLV Information String
Length = 148

(9 bits)

OUI
FF-FF-FF
(24 bits)

Subtype = 0x41 or 0x45
(8 bits)

DSCP-to-UP Table
Table 8-10
(145 bytes)

Table 8-10. DSCP-to-UP Configuration

Name Byte.Bit Value Remarks

IPv4 DSCP-to-UP mapping used for Rx. Affects packets coming from the network or form loopback (VM to VM).

DSCP #0 0 UP value Configured UP value for DSCP #0

DSCP #1 1 UP value Configured UP value for DSCP #1

:
:

:
:

:
:

DSCP #63 63 UP value Configured UP value for DSCP #63

Untagged 64 UP value Configured UP value for Untagged (non-IP packets)

IPv6 DSCP-to-UP mapping used for Rx. Affects packets coming from the network or form loopback (VM to VM).

Reserved 65-79 Padding for alignment.

DSCP #0 80 UP value Configured UP value for DSCP #0

DSCP #1 81 UP value Configured UP value for DSCP #1

:
:

:
:

:
:

DSCP #63 143 UP value Configured UP value for DSCP #63

Table 8-11. DSCP Enforcement Format

TLV Type = 127
(7 bits)

TLV Information String
Length = 132

(9 bits)

OUI
FF-FF-FF
(24 bits)

Subtype = 0x42 or 0x48
(8 bits)

DSCP Enforcement Table
Table 8-12
(128 bytes)

Table 8-12. DSCP Enforcement Configuration

Name Byte.Bit Value Remarks

IPv4 DSCP enforcement1

Port’s TC#0 DSCP 0-7 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#1 DSCP 8-15 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#2 DSCP 16-23 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#3 DSCP 24-31 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#4 DSCP 32-39 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#5 DSCP 40-47 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#6 DSCP 48-55 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#7 DSCP 56-63 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1282 613875-009

8.2.4.6.4 DSCP Bandwidth per TC and TC Priority 0x43, 0x46, or 0x49

Table 8-13 details the DSCP bandwidth per TC and TC priority MIB TLV. Its format is identical to IEEE
DCBx ETS configuration TLV. The irrelevant fields are marked as reserved.

8.2.4.6.5 PFC per UP/TC 0x44, 0x47, or 0x4A

Table 8-14 details the PFC enable TLV. Its format is identical to IEEE DCBx Priority-based Flow Control
TLV. The irrelevant fields are marked as reserved.

IPv6 DSCP enforcement1

Port’s TC#0 DSCP 64-71 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#1 DSCP 72-79 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#2 DSCP 80-87 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#3 DSCP 88-95 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#4 DSCP 96-103 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#5 DSCP 104-111 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#6 DSCP 112-119 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

Port’s TC#7 DSCP 120-127 Bitmap Bit per DSCP value, marks if Block Tx of Packet uses this DSCP.

1. DSCP values enforcement. A per-CGD 64-bit bitmap. Signs per CGD per DSCP value if packet carries DSCP value X when the queue
associated with CGD Y needs to be Blocked. Affects packets going to the network or to loopback (VM to VM). The behavior of the
device in case of wrong DSCP value is configured by CSR GL_DCB_TDSCP2TC_BLOCK_DIS and
GL_MDCK_TX_TDPU.DSCP_CHECK_FAIL_ITR_DIS as explained in Section 8.2.4.1.4.

Table 8-13. DSCP Bandwidth per TC and TC Priority Configuration Format

TLV Type
= 127
(7 bits)

TLV
Information

String
Length =

25
(9 bits)

OUI
FF-FF-FF
(24 bits)

Subtype =
0x43,

0x46, or
0x49

(8 bits)

RSV
(1 bit)

CBS
(1 bit)

RSV
(3 bits)

Max
TCs

(3 bits)

Reserved
(4 bytes)

TC B.W. Table
(8 bytes)

TSA
Assignment

Table
(8 bytes)

Table 8-14. PFC per UP/TC Configuration Format

TLV Type = 127
(7 bits)

TLV Information
String Length = 6

(9 bits)

OUI
FF-FF-FF
(24 bits)

Subtype = 0x44,
0x47, or 0x4A

(8 bits)

Reserved
(1 byte)

PFC Enable
(1 byte)

Table 8-12. DSCP Enforcement Configuration [continued]

Name Byte.Bit Value Remarks

613875-009 1283

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.5 DCB Admin Commands

All parameters in the admin commands are defined in little endian.

8.2.5.1 PFC Ignore (0x0301)

This command is used to request the device to ignore PFC condition present on a Tx path for a TC. The
same command is used to release PFC ignore request. When PFC packets are ignored, they are
considered as regular packets and can be forwarded to host.

Table 8-15. PFC Ignore Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0301 Command opcode.

Datalen 4-5 Must be zeroed by driver.

Return Value/VFID 6-7 Must be zeroed by driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Command_flags 16-17 Bits 16.7-16.0: TC Bitmap
Bitmap of the TCs concerned by the command. Bit n set to 1b means TC n is
concerned by the request. When LFC is used instead of PFC, TC index 0 is used to
request ignoring LFC.

Bits 17.6-17.0: Reserved, must be zeroed.
Bit 17.7: Ignore Flag

0b = The PF requests to release any ignore PFC condition request issued for the TC
indexes set to 1b in the TC Bitmap.

1b = The PF requests to ignore PFC conditions on the TC indexes set to 1b in the TC
Bitmap.

Reserved 18-31 Reserved. Must be zeroed.

Table 8-16. PFC Ignore Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0301 Command opcode.

Datalen 4-5 Must be zeroed.

Return Value 6-7 Return value:
0x0 = No error (success)

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Completion_flags 16 Bits 16.7-16.0: TC Status Bitmap
Returns the TCs for which PFC is currently ignored. Bit n set to 1b means PFC
condition on Tx path for TC n is ignored by the device.

Reserved 17-31 Reserved. Must be zeroed.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1284 613875-009

8.2.5.2 Query PFC Mode (0x0302)

This AQ call returns an indication if DSCP-based PFC or VLAN-based PFC is enabled.

This is a Direct Admin Queue command with additional command attributes, and completion attributes
are provided within the data buffer. Table 8-17 describes command format and defines
command-specific fields.

Table 8-17. Query PFC Mode Command and Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1 for details.

Opcode 2-3 0x0302 Command opcode.

Reserved 4-5 Reserved.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

PFC Mode 16 Zeroed by the Driver. Written by firmware provides the PFC mode setup.
0 = DCB is disabled for this port (by an NVM setting).
1 = VLAN based PFC is enabled.
2 = DSCP based PFC is enabled.

Reserved 17-23 0 Reserved. Must be set to 0.

Data Address High 24-27
0

Data Address Low 28-31

613875-009 1285

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.5.3 Set PFC Mode (0x0303)

This AQ call configures the PFC mode to DSCP-based PFC mode or VLAN-based PFC.

This is a Direct Admin Queue command with additional command attributes, and completion attributes
are provided within the data buffer. Table 8-18 describes command format and defines
command-specific fields.

If DCB is disabled for this port by NVM setting, EMP firmware ignores this command, and in the
response buffer the PFC mode is set to 0 “DCB is disabled for this port (by an NVM setting)”.

As part of flow of this command, EMP firmware resets all PFC parameters of both VLAN and DSCP
modes. After setting the PFC mode, LLDP exchange or software AQ call can configure the PFC
parameters.

Table 8-18. Set PFC Mode Command and Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1 for details.

Opcode 2-3 0x0303 Command opcode.

Reserved 4-5 0 Reserved.

Return Value/VFID 6-7 Return value, Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

PFC Mode 16 In Command:
0 = Reserved.
1 = VLAN based PFC is enabled.
2 = DSCP based PFC is enabled.

In Response:
0 = PFC is not configured for this port.
1 = VLAN based PFC is enabled.
2 = DSCP based PFC is enabled.

Reserved 17-23 0 Reserved. Must be set to 0.

Data Address High 24-27
0

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1286 613875-009

8.2.5.4 Set DCB Parameters (0x0306)

This command is used to request that the firmware apply the DCB configuration even when LLDP/DCBx
is disabled.

Table 8-19. Set DCB Parameters Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1 for details.

Opcode 2-3 0x0306 Command opcode.

Reserved 4-5 0 Must be zeroed by driver.

Return Value 6-7 Must be zeroed by driver.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Command Flags 16 Bit 0: Link-up DCB configuration mode for the port
0b = Firmware does not apply any DCB configuration when a link up event occurs.
1b = Firmware applies the default DCB configuration when a link up event occurs.

Bit 1: Persistently set the DCB configuration mode for the current port:
0b = No persistence of the DCB configuration mode settings
1b = Persistence for the selected DCB configuration mode.

Valid Flags 17 0 Bit 0: Bit 0 of the command flags is valid
If the Valid Flag bit is 0, no change is made to the Link-up DCB configuration mode.

Bit 1: Valid only when Bit 0 is set to 1b. If the Valid Flag bit is 0, the Link-up DCB
configuration is not stored persistently.

0b = Bit 1 of the command flags is not valid.
1b = Bit 1 of the command flags is valid.

Reserved 18-31 0x0 Reserved.

Table 8-20. Set DCB Parameters Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0306 Command opcode.

Datalen 4-5 0 No external buffer.

Return Value 6-7 Return code written by firmware.
In the case of a failure, the existing configuration is unmodified.

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

Reserved 16-31 Reserved.

Table 8-21. Set DCB Parameters Expected Behavior

Command Flags = 0 Command Flags = 1

DCBx Enabled No change to existing behavior. No change to existing behavior.

DCBx Disabled
No change to existing behavior
(i.e., don't touch).

If software has not used Set Local LLDP MIB to change the MIB since
GLOBR, apply the default settings.
If software has changed the MIB, do nothing since software will handle it.

613875-009 1287

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.2.6 LLDP/DCBx Admin Commands

Refer to the LLDP Protocol commands described in Section 9.8.5.2.2.

8.2.6.1 LAN Queue Overflow Event (0x1001)

This event is sent from the device to a PF. It does not generate a response.

Note: Software can reset the problematic function or resolve the issue in any other way. When the
issue is resolved or the function is reset, the PF must clear the relevant timer by writing a 1b
to the corresponding bit in CSR GLDCB_RCGDTI.

Table 8-22. LAN Queue Overflow Event

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x1001 Command opcode.

Datalen 4-5 0x0 N/A

Return Value 6-7 0x0 N/A

Cookie High 8-11 Cookie Opaque value copied by the EMP into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the EMP into the completion of this command.

PRTDCB_RUPTQ 16-19 Contains a copy of the PRTDCB_RUPTQ register reporting the absolute index
(in the device space) of the reported receive queue.

QTX_CTL 20-23 Contains a copy of the QTX_CTL register of the matched transmit Queue Pair
of the reported receive queue.

Reserved 24-31 Reserved. Must be zeroed.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1288 613875-009

8.3 Transmit Scheduling

8.3.1 Hierarchical Scheduling

The E810 supports up to 16K Tx-Queues. The software manages packet enqueues for transmission to
any one of the Tx-Queues, at any time, and in any order. For information on the Tx-Queue, refer to
Section 10.5.5. Each Tx-Queue is associated with a single software entity (PF or VF), CPU core, and
usage type called a user priority. The Tx-Scheduler is responsible for controlling the transmission of all
Tx-Queues. It executes a scheduling algorithm and decides which the Tx-Queue is allowed to transmit
and how many bytes. To meet all QoS agreements while considering the network capacity, and to
reduce packet drop or flow control events, the Tx-Scheduler takes into account the following
configuration parameters:

• Priority.

• Bandwidth allocation, bandwidth limit, minimum guaranteed bandwidth.

• Network topology, the network infrastructure fed by device ports, its capacity, and the deployment
of the Rx units (switches, routers, target NICs, and so on) in the network.

• Those Rx units might be buffer-limited or limited by packet processing power. To address both
types, the E810 can configure each topology node to arbitrate and shape for bytes per second
(BPS) or packets per second (PPS).

• Quality of Service (QoS) and service level agreement (SLA).

The E810 Tx-Scheduler configured topology reflects the network topology to which the port is
connected from one side, and the software functions (PFs, VFs, VMs, users, and so on) running on the
Host on the other side. The network topology is ordered in layers, each layer representing a physical
junction of the network. Each junction is also declared with its capacity that is derived by the line
speed, the buffer sizes of the relevant routers, and so on.

Multiple Tx-Queues can feed every line in the network. These queues are also ordered in groups similar
to VMs. The VMs themselves can be ordered in groups similar to PF.

The network resembles a tree, where each layer represents a physical junction (a router or a logical
entity) with its QoS requirement. Section 8.3.3 shows some tree topology examples that can be used to
represent the network topology in use cases such as cloud, enterprise, and COMMS.

To satisfy the QoS requirements of each layer of grouping and the deployment of the network, the
Tx-Scheduler performs tree-based scheduling, which takes into account the QoS requirements and
deployment limits of the network.

Tx-Scheduler Responsibilities:

The Tx-Scheduler accounts for the bandwidth allocation, bandwidth limit, and minimum bandwidth
settings for payload and all headers generated by software and hardware. This is true for LAN traffic
and payload as well as for headers generated by the Protocol Engine for RDMA traffic. It also
includes the L2 tags, Ethernet, MPA, MPA Markers, and RDMA inserted by hardware on-the-fly. If
hardware TEP is supported in Tx, the Tx-Scheduler also accounts these additional headers.

Section 8.3.2 describes the scheduling concept and its terms.

To support multiple usage models, abstract hardware configuration tables are used for the
Tx-Scheduler and the usage model requirements are achieved by software and EMP firmware
configuration parameters.

613875-009 1289

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.2 Hierarchical Scheduling Concept

8.3.2.1 Abstract Scheduling Tree

This section describes tree scheduling, its concept, terminology, and logical scheduling tree structure.
The tree consists of the following components (examples relate to Figure 8-7):

• Tree Node (or Node) — The basic tree element. Each Tree Node can have at most one Parent
Node, and one or more Child Nodes. The tree configuration establishes Parent/Child relations
between all the Tree Nodes.

• Root Node — A Tree Node lacking a Parent Node. It occupies the lowest level on the tree - Level 0
(Node00 in this example). The Root Node is the end point of every scheduling flow.

• Parent Node — A Tree Node with one or more Child Nodes. Parent Nodes are always located at a
lower tree level than Child Nodes. Node10 is a Parent Node, with two Child Nodes, Node20 and
Node21. A Parent Node leads to its Child Nodes at scheduling tree traversal.

• Child Node — A Tree Node that has a Parent Node. A Child Node might be a Parent Node with
respect to other Nodes. Node20 is a Child Node to Node10, and Parent Node with respect to
Node300.

• Sibling Nodes — Tree Nodes that are Child Nodes of the same Parent Node. All Sibling Nodes are
located on the same Tree Level. Nodes Node20 and Node21 are Sibling Nodes, whose Parent Node
is Node10.

• Leaf Node — A Tree Node that does not have any Child Nodes. Leaf Nodes are located on the
highest level of the Tree. Node300 is a Leaf Node. Every scheduling flow starts from a Leaf Node.

• Tree Level — A tree elevation. All the Tree Nodes located on the same tree elevation are at the
same Tree Level. However, nodes on the same level do not necessarily have same Parent Node,
since they might belong to different subtrees. Nodes Node21 and Node22 are located on the same
Tree Level (Level 2), but they belong to different Subtrees, since they have different Parent Nodes,
the parent of Node21 is Node10 and that of Node22 is Node11.

• Subtree — A portion of the tree comprised of the Tree Node as a Root Node and its descendants.
The Subtree of Node10 includes Node20, Node21, Node300, Node301, Node302 and Node303.

• Height of the Tree — Number of Tree Levels + 1. Height of the tree is a number of steps in the
scheduling tree traversal.

• Blocked Node — A node is considered to be blocked if it cannot satisfy the applied scheduling
constraints or if all its Child Nodes are blocked. A Leaf Node is also defined as a blocked node when
no work is available in its associated transmit descriptor queue or its RDMA QSet. Blocked Nodes
cannot be included in scheduling tree traversal.

• Branch — In the context of Scheduling Tree, a branch is the pass from a Node to the Root Node.
The Branch of a Node is its Parent’s Node ID, Grandparent’s Node, and so on, up until the Port’s
Root Node ID. The Branch of Node310 is Nodes list: Node24, Node11 and Node0. The Branch of
Node20 is the list of Node10 and Node0. Most of the Scheduler operations are iterative walk from
the Leaf Node to its root. Tx-Scheduler keeps the branch data of every Leaf Node in tables called
“Branch Tables”.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1290 613875-009

8.3.2.2 Scheduling Configuration Terms

8.3.2.2.1 Scheduling Quanta

As the network bandwidth exceeds 10 Gb/s, packet-by-packet scheduling requires the Tx-Scheduler to
complete scheduling decisions within a few nanoseconds - this is not trivial. The E810’s Tx-Scheduler
schedules a “quanta” in each scheduling decision. A “quanta” is a configurable amount of bytes that can
consist of one or more packets. The quanta size is configured per Tx-Queue and represents the number
of transmitted bytes per scheduling cycle. The quanta size per queue varies from 250 bytes to 4 KB.
The lower bound depends on LAN speed and topology configuration.

8.3.2.2.2 Configured Quanta vs. Actual Quanta Size

As noted above, a quanta is a number of bytes configured for each queue to be considered a single
scheduling unit. The transmission unit must also take into account the boundaries of the transmitted
packets - the device must not transmit a partial packet.

Packet boundaries are not synchronized with quanta boundaries. Therefore, to avoid transmitting
partial packets, the packet queuing software flow is as follows:

• When a packet enters a Tx-Queue, its actual size is accumulated to the current active quanta of the
queue.

• When the accumulated size of the current quanta exceeds the “per queue configured quanta size”,
the current quanta is locked and next packets are aggregated in the next quanta unit.

• The “Actual Quanta” is the accumulated size of the packets that are included in the quanta.
Typically, the actual quanta size is larger than configured quanta size and it fits the packet
boundaries.

• The actual quanta might include one or more packets. This quanta is queued to the Tx-Scheduler as
a one unit request. The Tx-Scheduler grants this quanta to the queue as one unit.

Figure 8-3. Configured Quanta and Actual Quanta Example

Configured quanta
1000B

450B500B400B300B 300B250B500B400B
TX-Queue packets order

Actual quanta
In packet’s
boundaries

1050B

Conf. 2nd quanta
1000B from actual

stating

Actual 2nd
quanta

In packet’s
boundaries

1350B

613875-009 1291

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.2.2.3 Bandwidth Allocation, Minimum Bandwidth Guarantee, and
Bandwidth Limit

The E810 supports various bandwidth distribution mechanisms that can be applied to any node in the
scheduling tree. These mechanisms define how Parent Node resources are used and shared by the Child
Nodes. Those constrains are stated in the terms of bandwidth.

• Relative Bandwidth Allocation or Bandwidth Share — Allows to specifying a relative share of
available bandwidth among Sibling Nodes. Sibling Nodes share the total amount of bandwidth
available from the Parent Node. The share of the Parent bandwidth is relative, both with respect to
the total amount of bandwidth available, and use of the bandwidth by other Sibling Nodes. If one of
the Sibling Nodes cannot use its bandwidth share, the unused bandwidth can be utilized by other
Sibling Nodes. Bandwidth share can be expressed in terms of weights or credits assigned to each
tree Node.

• Bandwidth Limit (PIR - Peak Information Rate) - Also known as Rate Limit (RL) — Allows
specifying a maximum bandwidth to be consumed by the Tree Node. RL is an absolute number
specifying a maximum amount of byte or packets a Node can consume during the course of one
second. Rate limit guarantees that a link does not oversaturate the receiver on the remote end, and
also enforces an SLA between the subscriber and network provider.

A Child Node cannot consume more bandwidth than the limit of its Parent Node. However, the sum
of the bandwidth limits of the Child Nodes can exceed the bandwidth limit of the Parent Node,
potentially enabling better utilization of the available bandwidth. Figure 8-7 illustrates this concept,
where Child Nodes are represented by overlapping virtual pipes contained within the Parent Node
virtual pipe.

Each tree node can have an individually-assigned bandwidth limit. Some Nodes in the tree might
need to share the Bandwidth Limit and use the Shared Rate Limiter scheme, explained below.

• Shared Bandwidth Limit — Allows specifying a bandwidth limit for a group of nodes that are not
co-located in the tree, for example Child Nodes of different parent nodes. Another example of
shared bandwidth usage is if you want to limit the bandwidth for a subgroup of a sibling group. You
can define one sibling group that shares bandwidth allocation and still limit each subgroup
individually.

A node cannot be configured for both an individual bandwidth limit and a shared bandwidth limit at
the same time. An exception for that statement is the ability to associate a node with a shared
bandwidth limit group, but to configure it for credit contribution only. This means that this node
contributes its bandwidth limit unused credits to the group but it is limited to its individual limit
configuration. This is detailed later in this section.

• Maximum Burst Size — Specifies the maximum number of bytes that can be transmitted in a
short period of time. When a node is configured with a bandwidth limit or a group is configured with
shared bandwidth limit, the maximum burst size specifies the maximum amount of credits (in
bytes) this rate limiter can collect (by the leaky bucket algorithm) when it is not transmitted for any
reason (such as no work available for this node or other node with higher priority...).

• BPS Scheduling vs. PPS Scheduling — As stated in Section 8.3.1, the Tx-Scheduler
configuration must take in account, among other parameters, the receive capabilities of the
network nodes. A network node’s receive capabilities can be declared as Rx packets buffering
limited or as receive pipe processing limited. To address both limits, any node in the E810’s
Tx-Scheduler, can be configured to “Bytes Per Second” mode or to “Packets Per Second” mode. This
configuration is applied to both bandwidth allocation and bandwidth limit.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1292 613875-009

In terms of configuration, each sibling group is configured either for BPS or for PPS mode. As an
implementation, when a scheduling request is fed to the Tx-Scheduler, it includes both the quantity of
bytes and number of packets. When this request is propagated through the Tx-Scheduler pipe, any
node that is configured to PPS considers the request as bytes request of the number of requested
packets multiplied by a constant number. From this point onwards, scheduling and shaping of PPS is
similar to BPS shaping.

• Minimum Bandwidth Guarantee (CIR - Committed Information Rate) — Allows specifying a
minimum bandwidth allocated to a tree node when it is not blocked. Like PIR (detailed above), CIR
specifies an absolute bandwidth. While PIR defines the maximum bandwidth the node can consume,
the CIR marks committed bandwidth for the Node.

Figure 8-4 shows node bandwidth usage levels. The desired working point is the yellow area, where
the node receives more than its minimum guaranteed bandwidth, shares excess bandwidth with its
siblings, and does not reach its rate limit point.

The Tx-Scheduler tracks the bandwidth consumed by the nodes and manages the node state. Any
non-blocked node that does not consume its configured minimum bandwidth is declared an
“Unsatisfied node”. During arbitration flow, when selecting nodes from a sibling group, unsatisfied
nodes receive higher priority to enable them to achieve the configured minimum bandwidth.

A Child Node cannot consume more bandwidth than allocated to its Parent Node. In the Tree
topology configuration, the minimum guaranteed bandwidth must be fully provisioned. Hence, a
node’s minimum bandwidth must not be configured to be higher than the its own bandwidth limit or
that of any of its ancestors all way to the Tree root. When configuring a minimum bandwidth for a
node, it is also necessary to verify that its parent is able to receive this bandwidth as part of its
minimum bandwidth guarantee setting.

Similarly, when multiple nodes are configured with minimum bandwidth, the sum of the minimum
bandwidth of any sibling node group must not exceed that allocated for the parent. Each Tree Node
can be assigned with an individual minimum bandwidth.

• Excess Information Rate (EIR) — Allows specifying a relative share of available bandwidth
among Sibling Nodes. Sibling Nodes share a total bandwidth available from the Parent Node only
after all the group’s sibling nodes are in “satisfied” state (have received their minimum guaranteed
bandwidth).

The share of the Parent’s bandwidth is relative, both with respect to the total amount of bandwidth
available, and use of the bandwidth by other Sibling Nodes. If one of the Sibling Nodes cannot use
its bandwidth share, the unused bandwidth can be utilized by other Sibling Nodes. “Bandwidth
share” can be expressed in terms of weights or credits assigned to each tree Node.

Figure 8-4. Per-Node CIR and PIR Levels

Min BW, high priority

Excess BW share.
Normal working point

Blocked

CIR

PIR

613875-009 1293

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

• Dual Rate Shaper — A method that declares the bandwidth usage of a node. For a given Node,
the Dual Rate Shaper configures all the following parameters: Bandwidth Limit (PIR), Minimum
Bandwidth Guarantee (CIR), and its Excess Information Rate (EIR).

In theory, “Unsatisfied Node” is a short transitional state of the node. As described in the CIR
definition, the CIR setting must be fully provisioned to assure the Minimum bandwidth guarantee
contract. Assuming this is true, the arbitration method between “Unsatisfied Nodes” can be any
simple round-robin scheme, since the “Unsatisfied Nodes” node get higher priority to return to the
“Satisfied” state.

In some usage models, customers might prefer to configure the CIR to be Best Effort higher priority
rather than a strict fully provisioned traffic. In practical terms, not all CIR users are really fully in
use. Statistically, the bandwidth allocated for the CIR almost satisfies the real need. In some cases,
more CIR user really try to use their CIR bandwidth, in this case the CIR users channels are
oversubscribed. For these use cases, the above assumption that CIR traffic is always fully
provisioned is true only in most cases, but not necessarily always. This means Nodes might be
stacked in an “Unsatisfied State” for a longer period of time. To avoid bursty traffic in those cases,
the E810’s Tx-Scheduler also implements a WFQ algorithm with bandwidth allocation configuration
for CIR nodes. Two sets of bandwidth allocation configuration parameters are declared for every
node. One is used when the Node is in CIR state, and the other is used when it is in EIR state.

In Figure 8-5, the left scheme illustrates the usual implementation of Dual Rate Shaper Arbitration.
Each node of the siblings group is connected to both EIR and CIR arbiters. The connection to the
CIR arbiter is shaped to the CIR configuration of this node. A round-robin arbitration is
implemented between all CIR nodes. Any CIR node has higher priority than the EIR nodes.

The right figure illustrates the E810’s implementation. WFQ arbitration in both CIR and EIR.
Implementation-wise, the Tx-Scheduler does not run two WFQ schemes in parallel. Instead, each of
the eligible non-blocked sibling Nodes, sends its CIR value to the arbitration if it is in CIR state.
Otherwise, it sends its EIR value. If at least one of the nodes is in CIR state, arbitration is
performed among all CIR nodes. Otherwise, the arbitration is performed among all the available
nodes.

Figure 8-5. Dual Rate Shaper Arbitration Scheme

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1294 613875-009

Figure 8-6 demonstrates the bandwidth distribution between two sibling nodes. The sum of CIRs of
all siblings is less than or equal to the total bandwidth of the parent. The excess bandwidth is the
part which is above the CIR for all siblings is shared between the siblings according the rate of each
node. The PIR bandwidth of the nodes can overlap so the sum of the max bandwidth of all the
siblings can be more than the total amount of parent’s bandwidth.

Figure 8-7 demonstrates a wider picture of hierarchal bandwidth distribution.

Figure 8-6. Parent Bandwidth Distribution Between Two Child Nodes

Figure 8-7. Hierarchal Bandwidth Distribution

No
de 00

No
de

10
 C

IR

No
de

11
 C

IR

No
de

11
 E

IR

No
de

10
 E

IR

Node10
PIR

Node11
PIR

No
de
00

No
de
10

No
de
11

No
de
20

No
de
21

No
de
22

No
de
23

No
de
30

No
de
31

No
de
32

No
de
33

No
de
34

No
de
35

No
de
36

No
de
37

No
de
00

No
de
10

No
de
11

No
de
20

No
de
21

No
de
22

No
de
23

No
de
30

No
de
31

No
de
32

No
de
33

No
de
34

No
de
35

No
de
36

No
de
37

Bandwidth Limit (PIR)
May be overlapped.

Bandwidth Share
The amount nodes get taking into

account their CIR, EIR and PIR.
The maximum total is less or equal to

parent s bandwidth.

No
de
00

No
de
10

No
de
11

No
de
20

No
de
21

No
de
22

No
de
23

No
de
30

No
de
31

No
de
32

No
de
33

No
de
34

No
de
35

No
de
36

No
de
37

Minimum Bandwidth (CIR)
The sum of CIR s must be

configured to be less than or
equal to parent s CIR.

613875-009 1295

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.2.3 Arbitration Schemes within a Sibling Group

The E810 supports several arbitration schemes that can be used to select a Node among Siblings in a
hierarchal tree-based scheduling process. The selected node is called the group winner or “winner”. This
section explains the way the hierarchal tree-based scheduling process uses the selection or how the
scheduling tree winner is selected.

Each set of Sibling Nodes has a configurable arbitration scheme assigned to it. Siblings participate in
arbitration only if they are not blocked. Siblings can be configured to modify their arbitration scheme
under different situations or in different states.

• Strict Priority (SP) — This arbitration scheme attempts to schedule Nodes based on their priority
as long as the Nodes remain within their bandwidth limit.

A Node can be pre-configured with constant priority, or can be configured to dynamically adopt a
propagated priority from the previous layer. Another dynamic priority option is when a node or
group of nodes is configured with minimum guaranteed bandwidth. In that case, every node whose
current bandwidth consumption is below its configured minimum guaranteed bandwidth (node in
unsatisfied state), is temporarily set with the higher priority. For more details on minimum
bandwidth guarantee, see Section 8.3.2.2.3.

• Round Robin (RR) — This arbitration scheme equally prioritizes Nodes, giving every Sibling Node
a chance to be selected in cyclic round-robin fashion as long as it is not blocked.

The arbiter iterates Sibling Nodes in cyclic round-robin fashion. In every scheduling cycle, the
arbiter moves to the next Sibling Node and grants it another quanta (the quanta size for each node
can be different). If the Node is blocked, the arbiter moves to the next Sibling Node. This arbitration
allows even distribution of bandwidth among Sibling Nodes when all the Nodes are configured with
the same quanta size.

Note: This arbitration is not implemented in the E810 and is described here for background
information.

• Weighted Round-Robin (WRR) — This arbitration scheme equally prioritizes Nodes and allows
configuring each node with a different bandwidth by configuring each node with credits. The arbiter
allows every Sibling Node a chance to be selected in cyclic round-robin fashion as long as it has
credits and is not blocked. The node with most configured credits, survives more round-robin cycles
and is granted greater bandwidth. When the credits of all siblings are exhausted, all the sibling
nodes replenish their credits to the configured value.

Figure 8-8. Arbitration Options - Strict Priority

Figure 8-9. Arbitration Options - Round-Robin

NodeS0 NodeS1 NodeS2 NodeS3 NodeS4 NodeS5

NodeS0 NodeS1 NodeS2 NodeS3 NodeS4 NodeS5

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1296 613875-009

Note: This arbitration is not implemented in the E810 and is described here to clarify the WFQ
description in the next paragraph.

• Deficit Weighted Round Robin (DWRR) — This is an improved WRR scheme. In WRR, a quanta
is granted for a node or queue without taking into account the actual size of the transmitted packet.
A quanta almost never fits exactly to the packet boundaries. DWRR, however, is a responsive
mechanism. After transmission, the delta between the quanta size and the actual transmission size
is fed back to the Tx-Scheduler (Credit Update) and taken into account for the next scheduling
decisions.

Note: DWRR is supported by previous NIC generations, but is not implemented in the E810’s
Tx-Scheduler. It is described here to provide clarification for the WFQ description in the
next paragraph. Instead of DWRR, the E810 provides a better arbitration scheme called
Weighted Fair Queuing (WFQ). WFQ is described in the next section.

• Weighted Fair Queuing (WFQ) — From the output perspective, WFQ arbitration appears similar
to weighted bit-by-bit round-robin arbitration output. The transmitter does not interleave bits of
different packets on the line, but when the last bit of a packet or a quanta is scheduled, the whole
packet is scheduled. This point of time is called the departure time (DT) of the packet/quanta, and
the scheduling grant flow for a packet/quanta transmission is called “dequeue”. When a queue is
selected for transmission, the DT of the winner is registered as the group DT call Last DT (LDT).

Figure 8-10. Weighted Round Robin Example Bandwidth Distribution: 50%, 33% and
17% for Nodes 1, 2 and 3 Correspondingly Credit Configuration is 3, 2 and 1

Figure 8-11. WFQ - Pseudo Bit-by-Bit WRR Arbitration

NodeS1
Credits = 3

NodeS2
Credits = 1

NodeS2
Credits = 2

400B

Bit by
Bit

WRR

Node S1; BW:50%; Credit: 3 ..

160BNode S2; BW:17%; Credit: 1 ..

350BNode S3; BW:23%; Credit: 2 ..

.

.

......

De-queue
order

400B

350B

160B

DT
400B

DT
160B

DT
350B

613875-009 1297

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

The WFQ arbitration method provides better (smaller) burstiness than DWRR. Its main advantages
are:

— It takes in account the actual packet sizes in advance so less deficit update is required.

— Smaller packets naturally have a higher priority. Large packets never starve out small packets
even momentarily.

As mentioned above, the Tx-Scheduler does not really run a bit-by-bit WRR for arbitration. Rather,
it calculates the DT for each sibling node directly.

The example in Figure 8-12 illustrates a sibling group of nodes in a WFQ arbitration. Node S2 is the
winner in that particular example.

• Combination of Strict Priority and Weighted Fair Queuing — As described above, any node in
any group can carry its own priority. This priority can be constant pre-configured, or dynamic. In
each arbitration flow, the winning node is selected from the group’s non-blocked siblings with the
highest priority. Thus, different nodes can be configured with different priorities, even if they are
siblings in the same group.

Figure 8-13 shows two possible schemes of mixed arbitration. The basic rule is that each sibling
group consists of a sub group with high priority nodes, a WFQ sub group with intermediate priority
nodes, and a sub group with low priority nodes. In the lower example of Figure 8-13, NodeS0 is
configured with the highest priority, NodeS1 with the next highest priority, NodeS2 and NodeS3
have the same priority, NodeS4 has a lower priority, and NodeS5 has the lowest priority in the
group. In each sibling group, only one subgroup of nodes can carry one priority, all other nodes
must carry a different priority each node. The upper example in Figure 8-13 is a subset of the
general case.

Figure 8-12. Arbitration Options - WFQ: Calculate DT for All Siblings and Pick the Lowest

Figure 8-13. Combination of Strict Priority and Weighted Fair Queuing

NodeS0
DT=500

NodeS1
DT=1000

NodeS2
DT=100

NodeS3
DT=200

NodeS4
DT=2000

NodeS5
DT=400

+/-

NodeS0 NodeS1 NodeS2 NodeS3 NodeS4 NodeS5

NodeS0 NodeS1 NodeS2 NodeS3 NodeS4 NodeS5

+/
-

+/
-

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1298 613875-009

8.3.2.4 Credit Update

As described in the overview in Section 8.2.3.1, each stage of the Tx pipeline can receive more or less
data on the actual Tx packet length, and can make a decision of packet length change or even drop the
packet. Each of those changes are reflected as updates to the Tx-Scheduler. The report to the
Tx-Scheduler is made as soon as the Tx-Pipe processing discover is required.

8.3.2.4.1 Four-Level Packet Adjustment Credit Update - Requirements

• Transmitted packets pass through different hierarchies in the network. The network hierarchies are
reflected in the Tx-Scheduler layers structure. The capacity of each network unit is reflected in the
rate limit and bandwidth allocation configuration of the nodes.

• Each unit in the network branch can deal with different portions of the packets.

• Typically, for the network hop, the whole packet including the IPG and the L1 header needs to be
taken into account in the bandwidth calculation. Next hops, bridges, or the target station can
consider a portion of the packet. For example, in tunneled environment, the target station does not
see the whole packet, but only inner L4 part.

• The Tx-Scheduler is required to calculate up to four different adjustments of packets lengths for
different Tx-Scheduler layers or nodes.

• The Tx-Scheduler is also required to calculate different adjustments of packets lengths for different
types of packets.

• By default, the four adjustments point to:

— Actual packet length on the wire including preamble and IPG.

— Ethernet-layer (MAC to end of packet including padding. CRC is
optional.

— IP-layer (L3 IP header + L3 IP payload, inclusive) including ESP
trailer.

— TCP/UDP/… - layer (L4 header + L4 payload, inclusive).

• This way, the bandwidth consumption for different hops in the hops of the network is dependent on
the actual portion of the packet run through this network unit.

• In the Tx-Scheduler, each nodes group is configured with the
appropriate adjustment (2-bit setting). According to this configuration,
each node is updated with the credits according the packets’ format.

• When the credit update is propagated through the Tx-Scheduler pipeline
and the tree structure, each node is updated with one of the four credit
update values calculated as described above.

• This way, different adjustment can be configured per node in the scheduler.

• The credit update adjustment values should be programmable. Each COMMS customer (especially
the Base station providers), has its own view on the network structure and restrictions.

IPG + Preamble

MAC

IP

L4 + Payload

PSM
Scheduling

Request

Adjustment 0

Adjustment 1

Adjustment 2

Adjustment 3

613875-009 1299

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.2.4.2 Four-Level Packet Adjustment Credit Update -
Implementation

As stated above, every transmitted packet is analyzed as part of the query flow to identify if it is
transmitted, sent as loopback packet inside the platform, both, or dropped. In this query flow, the
packet structure is analyzed by the E810’s FlexiParser, described in Section 7.7

The E810 packet’s FlexiParser, is a programmable packets analyzer. For each packet it analyzes, it
generates up to 16 protocol reports. Each protocol report points to a packet field location inside the
analyzed packet.

Protocol report is delivered to the E810 pipeline in the format:

• {ProtocolID 8b; Offset 9b}

— ProtocolID = Identification of the protocol header found.

— Offset = Octet offset from the beginning of the packet to the protocol header.

Packet Adjustment Calculator (PAC) is located after FlexiParser, it gets these 16 protocol reports
and offsets (OCLs – Offset Collectors) per packet, and generates the 4 x length adjustments to the
Scheduler. The PAC contains a table of 64 Adjustment Profiles (APs).

Figure 8-14. PAC Profile Structure

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1300 613875-009

8.3.2.4.2.1 PAC - Adjustment Profile (AP) Association

Each AP is associated with a port and optionally with a Service Provider.
This association is managed directly by PF. Per-PF allocation of APs is
managed by software. The profile allocation is aligned with the FlexiParser
root nodes allocation.

The FlexiParser gets the sourceVSI with the packet’s header. The
sourceVSI is used by the FlexiParser to determine the analyzing parse
graph.

Each Tx-Queue is associated with an AP ID. This is configured in the
Tx-Queue context by the PF. The AP ID is propagated with the packet’s
metadata and provided to PAC.

8.3.2.4.2.2 AP Profile Structure and Flow

Each Adjustment Profile (AP) is made of 4 x adjustment components that generate the length
adjustments. Each component defines a list of up to 16 x ProtocolIDs in prioritized order (Protocol ID 0
has the highest priority).

Each one of 16 protocol IDs FlexiParser provided per each packet, are compared with the list of the
protocol ID lists of the relevant AP. The comparison is priority-based. Per adjustment, when a
ProtocolID N matches a FlexiParser output protocol ID, The next protocol IDs in this list are ignored.

The offset of the matched protocol is captured in an Offset Collector (OCL) for calculating the length
adjustment. The selected OCLs [1...4] are used for packet length adjustments [1...4], which are sent
as update to the Tx-Scheduler in Update #2 flow.

Per each adjustment, if there is no match between the FlexiParser outputs and the AP’s Protocol IDs, a
hard-coded 0x1FF value is used as an adjustment value.

Figure 8-15. Adjustment Profile (AP) Structure

Q granularity:
Operator A, Port #2

Q granularity:
Operator B, Port #5

Q granularity:
Operator A, Port #2

Adjustment1

Adjustment1

Adjustment1

Adjustment1

#0

Adjustment Profiles Table

#1

#k

#63

. . . .

. . . .

. . . .

. . . .

ProtocolID0

Adjustment1 Adjustment2 Adjustment3 Adjustment4

ProtocolID1

ProtocolID2

ProtocolID15

Default
No-Match

ProtocolID0

ProtocolID1

ProtocolID2

ProtocolID15

Default
No-Match

ProtocolID0

ProtocolID1

ProtocolID2

ProtocolID15

Default
No-Match

ProtocolID0

ProtocolID1

ProtocolID2

ProtocolID15

Default
No-Match

Adjustment Profile #k

Prioritized
List

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

L1ovrhd ocl esp pad crc

613875-009 1301

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.2.4.2.2.1 Adjustment Profiles Properties

Each protocol ID of the AP is configured with a set of five flags. Those flags define the way this
adjustment is calculated.

• The “CRC” flag marks if packet’s CRC field is included in packet length for scheduling purposes.

• The “PAD” flag marks if in case of small packets. The 64B padding is included in packet length for
scheduling purposes.

• The “OCL” flag marks if for this protocol ID. All headers until this header are included in packet
length for scheduling purposes.

• The “L1ovrhd” flag marks if the L1 preamble and the IPG is included in packet length for scheduling
purposes.

Figure 8-16. Adjustment Profile Properties (APP)

IPsec Trailer

L2Pad

CRC

Included
Headers +
Payload

Excluded
Header

IPG+Preamble

Offset

IPG

Offset

Esp Trailer

L2 Padding

CRC

Packet Recipe SW View

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1302 613875-009

8.3.2.4.2.3 Packets Adjustment Examples

Example #1: Adjust for True L1 Length on the Wire:

• Adjustment #1 =

Packet length for Scheduling = Scheduled packet length + IPG preamble + CRC

Example #2: Adjust for L3 Length:

• Adjustment #3 =

Packet length for Scheduling = Scheduled_Pkt_Length – OCL (IP) – L2PAD

8.3.2.4.3 Four-Level Packet Adjustment Credit Update - Programming
Registers

The configuration of the four adjustment functions are listed below. This list includes the adjustment
calculation based on the parser output. The parser configuration is part of the parser chapter.

• GL_TDPU_PSM_DEFAULT_RECIPE

• GL_TDPU_PSM_PE_PROF_ID

• GLTDPU_NEG_PSM_CREDIT_UPDATE_EN

Flag Operation
Value Description

L1ovrhd 1 Overhead Preamble/IPG = 20.

OCL 1 OCL not relevant, consider start of packet offset.

PacketData Pkt Data PacketData beyond OCL.

ESP 1 Do not subtract ESP trailer.

L2PAD 1 Do not subtract ESP padding.

CRC 1 Do not subtract ESP CRC field.

Flag Operation
Value Description

L1ovrhd 0 Overhead Preamble/IPG = 20.

OCL 0 OCL Outer IP header offset

PacketData Pkt Data PacketData beyond OCL.

ESP 1 Do not subtract ESP trailer.

PAD 0 Do not subtract padding.

CRC 0 Subtract CRC field.
L2 (MAC.SA)

L3 (DIP)

L2 (MAC.DA)

L3 (SIP)

Payload

Header

613875-009 1303

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.3 Network Topologies in Tx-Scheduler

The E810 supports various network topologies and various usage model targets. Each topology is
reflected in the Tx-Scheduler topology. The E810 can work as a single-port or a multi-port device. At
initialization, EMP reads basic configuration from the NVM and configures the Tx-Scheduler with an
initial configuration. The parameters read from the NVM (words Logical Layer Config and Logical Layer
Structure) are number of ports, and number of scheduling layers (5, 7, or 9).

The E810 supports up to 16K LAN Tx-Queue. For RDMA, The E810 supports up to 256K Queue Pairs
(QPs). The 256K QPs of RDMA are organized in Queue Sets (QSets). Each QSet represents a group of
QPs belonging to a function/TC. Typically, the number of RDMA QSets is the number of RDMA-enabled
functions multiplied by the number of supported TCs. For scheduling purposes, a QSet is considered as
one scheduling unit with its configuration for priority, bandwidth allocation, and limit. When the
Tx-Scheduler schedules a quanta to a RDMA QSet, the PE shares this quanta between the QPs
belonging to the QSet in a Round Robin manner.

The Tx-Scheduler supports up to 16K leaf nodes. Each leaf node can be associated with one LAN
Tx-Queue or one RDMA QSet.

As mentioned above, the number of scheduling layers is a parameter loaded from the NVM, and can
take one of the following values: 5, 7, 9. As the number of layers is lower, the performance of the
Tx-Scheduler is higher since each decision flow covers fewer layers.

Note: When operating in 7-layer mode, Layers 5 and 7 are skipped. All other layers are fully
functional.

Note: Only the below 9-layer (default) and 5-layer topologies are POR and considered as validated
Tx-Scheduler topologies. The default 9-layer topology might cause dramatic performance
variance, especially for number of queues that are not divisible by 8. This is due to Tx Queues
assignments and bandwidth allocation not being able to be distributed equally between
leaves. Therefore, as a mitigation, the 5-layer topology was introduced, with 512 leaves,
allowing a more balanced allocation of queues.

Table 8-23. Tx-Scheduler Performance as Function of Number of Active Layers

Topology Depth # Clock Cycles / Quanta per Second Quanta Size @ 100G Part

9 layers 24 cc / 18.58 M 673B

7 layers 20 cc / 22.3 M 561B

5 layers 16 cc / 27.9 M 448B

Table 8-24. Tx-Scheduler 5-Layer and 9-Layer Topologies

Field Iteration Word Offset 5-Layer 9-Layer (Default)

PSM Preserved Type 0x0000 0119 0119

PSM Preserved Length 0x0001 0333 0333

Logical Layer Config 0x0002 2159 3D99

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1304 613875-009

8.3.3.1 ETS-Based Scheduler Configuration

Figure 8-17 shows a logical diagram describing the ETS-based bandwidth distribution scheme.

This figure shows two Virtual Networks VNet1 and VNet2. Each virtual network carries traffic of different
types by Traffic Class (TC). Both virtual networks merge into the Physical Network. The physical
network is configured accordingly to ETS specification. The bandwidth of the physical network is divided
between TCs. Each TC carries traffic belonging to respective traffic types of both virtual networks. The
bandwidth distribution between virtual networks within same TC is invisible outside of the chip.

The diagram of the physical network shows the concept of bandwidth distribution in an ETS-based
configuration. Bandwidth is first distributed between types of traffic (or Traffic Classes) and then
distributed between virtual networks within each TC. Therefore, if one of the virtual networks does not
have traffic of the certain type currently available, the remaining bandwidth is consumed by the same

Logical Layer Structure Order 0 0x0003 2008 2008

Order 1 0x0004 2008 2008

Order 2 0x0005 2040 2008

Order 3 0x0006 2040 2008

Order 4 0x0007 2200 2008

Order 5 0x0008 2008 2008

Order 6 0x0009 2008 2008

Order 7 0x000A 2008 2008

Order 8 0x000B 2008 2008

Figure 8-17. ETS-Based Bandwidth Distribution

Table 8-24. Tx-Scheduler 5-Layer and 9-Layer Topologies [continued]

Field Iteration Word Offset 5-Layer 9-Layer (Default)

7G1GVN1 VN2
7G1G

VN1

VN2

VNet1 VNet2

TC0
TC1

TC2
TC3 TC3

TC1

TC2

7G1G

VN1 1G

VN1

VN2

PNet

613875-009 1305

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

traffic type from other virtual networks. For example, if VNet2.TC3 does not have any work to perform,
the remaining TC3 bandwidth is consumed by VNet1.TC3, as long as it has enough work to occupy it,
and as long as it does not exceed any bandwidth limit.

This scheme allows bandwidth allocation per traffic type for each scheduling component and VSI, and
does not support a bandwidth allocation per virtual network.

This is the default bandwidth allocation scheme for in DCB networks.

Figure 8-18 shows an example of system configuration and bandwidth allocation using the ETS-based
scheduler configuration scheme.

Each of the Scheduling components (SComp, VEB1 and VEB2) and VSIs can be configured with ETS
(bandwidth allocation per traffic type or TC) and bandwidth limit. Bandwidth allocation must be
consistent. That is, if TC has a certain bandwidth allocated on the egress SComp port, the sum of the
bandwidth allocated to the same TC on each level of tree hierarchy should be equal to the bandwidth
allocated on SComp egress port. For example, if:

SComp.TC0 = 4 Gb/s

then:

VEB1.TC0 + VEB2.TC0 + VSI01.TC0 = 4Gb/s

and:

VSI10.TC0 + VSI11.TC0 = VEB1.TC0

Figure 8-19 shows an ETS-based scheduling tree configuration corresponding to the system
configuration shown in Figure 8-18.

Figure 8-18. Example of ETS-Based System Configuration

SComp

VEB1 VEB2 VSI01

VSI10 VSI11 VSI20 VSI21

TC0=4Gb/s
TC1=6Gb/s
TC2=10Gb/s

TC0=2Gb/s
TC2=5Gb/s

TC0=2Gb/s
TC1=5Gb/s
TC2=3Gb/s

TC1=1Gb/s
TC2=2Gb/s

TC2=4Gb/s
TC0=2Gb/s
TC2=1Gb/s

TC0=2Gb/s
TC1=2Gb/s
TC2=2Gb/s

TC1=3Gb/s
TC2=1Gb/s

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1306 613875-009

The structure of this scheduling tree resembles the topology of the system configuration shown in
Figure 8-18. This tree has four tree levels (one not shown):

• Port Level — This is the level that arbitrates between the physical ports.

• TC Level — This is the lowest tree level above the physical port. It is configured with physical port
or SComp egress port ETS bandwidth allocation and priority (for example, nodes TC0, TC1 and TC2
in Figure 8-19).

• Scheduling Component Level — The next scheduling tree level. This level consists of Scheduling
Components (VEB/PA) and VSIs directly attached to SComp. Each tree node corresponds to the TC/
UP configured for the Scheduling Component/VSI. A single scheduling component and VSI can
appear in the tree multiple times, once for each instance configured as TC/UP (for example, nodes
VEB1_TC0, VEB1_TC2, VEB2_TC0, VEB2_TC1, VEB2_TC2, VSI01_TC1 and VSI01_TC2 in Figure 8-
19).

• VSI Level — Last tree scheduling level. This level consists of the VSIs of scheduling components.
Each tree node corresponds to the TC configured for the VSI. A single VSI can appear in the tree
multiple times, once for each configured TC/UP (for example, VSI10_TC2, VSI11_TC0, VSI11_TC2,
VSI20_TC0, VSI20_TC1, VSI02_TC2, VSI21_TC1 and VSI21_TC2).

Internal Scheduling Tree configuration is not visible to software. The EMP firmware creates and
manages the internal scheduler configuration tree and translates software controls to the actual
scheduler configuration. For example, when software provides an ETS configuration of VEB1, it lists TCs
enabled for VEB1 (TC0 and TC2), and specifies an ETS bandwidth allocation per TC. The EMP firmware
allocates multiple scheduling nodes for VEB (VEB1_TC0 and VEB1_TC2) and configures those nodes
with credits provided by software.

Figure 8-19. ETS-Based Scheduling Tree Configuration Example

Port

TC#0TC#1TC#2

VSI
Group

1

VSI
Group

2

VSI
Group

2

VSI
Group 0

VSI01

VSI
Group

1

VSI
Group

2

VSI
Group 0

VSI01

VSI111VSI120VSI120VSI121VSI110VSI111VSI120VSI121

613875-009 1307

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Since the ETS configuration of VEB results in the creation of multiple tree nodes (one per TC), and those
nodes reside on different subtrees, the credits provided should be relative to other VEBs/VSIs belonging
to the same TC, and not relative to the TCs enabled for VEB/VSI. For example, VEB1_TC0 credits must
be relative to VEB2_TC0 credits, and not to VEB1_TC2 credits.

Software can enable a bandwidth limit for any scheduling component and VSI. If a scheduling
component or VSI has more than single traffic class enabled, it appears multiple instances in the
Transmit Scheduling Tree. Use of shared or basic bandwidth limits is hidden from the software, and the
decision whether to use basic or shared bandwidth limits is taken by EMP firmware depending on the
selected bandwidth allocation mode and system configuration.

Figure 8-20 illustrates an example of a super set topology for a DCB network, mainly used in the Cloud/
Enterprise market as detailed below:

• Port Level — This is the level that arbitrates between the physical ports.

• TC Level — This is the lowest tree level above of the physical port. It is configured with physical
port or SComp egress port ETS bandwidth allocation and priority (for example, nodes TC0, TC1 and
TC2 in Figure 8-20).

• Scheduling Component Level — The next scheduling tree level. This level consists of Scheduling
Components (VEB/PA) and VSIs directly attached to SComp. Each tree node corresponds to the TC/
UP configured for the Scheduling Component/VSI. A single scheduling component and VSI can
appear in the tree multiple times, once for each configured TC/UP (for example, nodes VEB1_TC0,
VEB1_TC2, VEB2_TC0, VEB2_TC1, VEB2_TC2, VSI01_TC1 and VSI01_TC2 in Figure 8-20).

• VSI Group Level — This level consists of the groups of VSIs scheduling components. Some
customers can use this intermediate level to bunch multiple VSIs into a scheduling groups. Each
tree node corresponds to the TC configured for the VSI group.

Figure 8-20. ETS-Based Scheduling Super Set Tree Configuration Example

Q Group
/User

Priority

Port

TC#0TC#1TC#2

VSI
group

VSI
group

VSI
group

VSI
group

VSIVSIVSIVSIVSIVSI

VSI
group

VSI
group

Q Group
/User

Priority

Q Group
/User

Priority

Q Group
/User

Priority

Q Group
/User

Priority

Q Group
/User

Priority

VSI
group

VSI
group

VSI
group

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1308 613875-009

• VSI Level — This level consists of the VSIs of scheduling components inside the VSI group. Each
tree node corresponds to the TC configured for the VSI. A single VSI can appear in the tree multiple
times, once for each configured TC (for example, VSI10_TC2, VSI11_TC0, VSI11_TC2, VSI20_TC0,
VSI20_TC1, VSI02_TC2, VSI21_TC1 and VSI21_TC2).

• Queue Group Level — This level consists of the groups of queues inside VSI scheduling
components. Some customers can use this intermediate level to bunch multiple Tx-Queues into
scheduling groups. The queue groups of a VSI can be configured with the same priority or with
different scheduling priorities. The queue group might act as a User Priority Level.

• Queue Level — This level consists of Queue Scheduling Components. Each Tx-Queue or RDMA
QSet is scheduled individually.

Figure 8-21 shows an example for BRAS scheduling tree in ETS-based topology mode.

• Port Level — This is the level which arbitrates between the physical ports.

• Traffic Type/Priority Level — This is the lowest tree level above the physical port. It is
configured with physical port ETS bandwidth allocation and priority. Usually in the BRAS usage
model, this layer is configured with Strict priority. The Voice Traffic with the highest priority,
followed by Video Traffic, Assured Traffic, and Best Effort traffic with the lowest priority. All traffic
types are fully provisioned and rate-limited to their provisioned rate.

• User Level — In ETS-based topology, this Layer arbitrates between the users/subscribers
separately in each traffic type subtree.

— In Voice, Video, and Assured Traffic types, the user nodes are rate limited to their provision
rate. Since the parent node is also fully provisioned, there is no real congestion in the user layer
for those traffic types.

— In the Best Effort traffic type there is real congestion and scheduling between the users. This
traffic is usually oversubscribed. Usually in COMMS application three types (or SLA levels) of
users are served. The distinction between user levels can be implemented by dedicating
minimum bandwidth allocation for high level users. Allocating higher weight bandwidth
allocation. The rate limit configuration of user node also depends on user level.

Figure 8-21. ETS-Based Scheduling Tree in BRAS Example

Port

User
#n

Voice Topology
Highest Priority

low latency
Fully provisioned

Video Topology
Higher Priority

medium latency
Fully provisioned

Assured Topology
Higher Priority

medium latency
Fully provisioned

BE Topology
Low Priority

Oversubscribed

User
#2

User
#1

User
#n

User
#2

User
#1

User
#n

User
#2

User
#1

User
#n

User
#2

User
#1

WFQ WFQ WFQ WFQ

WFQ/SP WFQ/SP WFQ/SP WFQ/SP WFQ/SP WFQ/SP WFQ/SP WFQ/SP WFQ/SP WFQ/SP WFQ/SP WFQ/SP

613875-009 1309

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

• Queue Level — This level consists of Queue Scheduling Components. Each Tx-Queue is scheduled
individually. Queue bandwidth configuration can be evenly shared between the user queues or
setting different SLA per queues of the same level can be used for providing different levels of
service for the queue user (for example, when the user is called by the Skype application, he
prefers to give higher bandwidth/priority to this traffic inside the allocated bandwidth share). Thus,
queue level can also be used for user level priority.

8.3.3.1.1 Shared RL in ETS-Based Scheduler Configuration

When building an ETS-based topology, Shared Rate Limiter (SRL) must be available. The SRL is used to
limit the total amount of bandwidth consumed by a specific user (in BRAS case) or by a VF (cloud/
enterprise case).

8.3.3.2 VNet-Based Scheduler Configuration

Figure 8-22 shows a logical depiction of a VNet-based bandwidth distribution scheme.

Each of the two Virtual Networks VNet1 and VNet2 carries traffic of different types according to Traffic
Class (TC). Both virtual networks are merged into the Physical Network, which is configured to
distribute the available bandwidth between virtual networks first, then within each virtual network
according to traffic types configured for that virtual network.

This bandwidth distribution scheme is logical for cloud-based environments with multiple tenants willing
to share physical resources, and provides isolation of bandwidth allocation throughout the fabric. This
scheme is also used in the COMMS market by some of the service providers.

Figure 8-22. VNet-Based Bandwidth Distribution

VNet2

TC1

TC2
TC3 TC3

TC1

TC2
TC0

VNet1

VNet2

TC3
TC1

TC2

VNet1

TC0
TC1
TC2 TC3

PNet

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1310 613875-009

This scheme also enables distribution of bandwidth between virtual networks, and provides global SLA
guaranty without being limited to particular traffic type, as is the case with ETS-based schemes.
Bandwidth can be then allocated according to traffic type within each virtual network. For example, if
there is not enough demand to use all the resources of VNet2.TC3, the remaining bandwidth can be
consumed by other traffic types configured for VNet2 (VNet2.TC1 and VNet2.TC2), as long as there is
demand and no bandwidth limit is exceeded, rather than VNet1.TC3 consuming the unused bandwidth,
as would happen in an ETS-based scheme.

Figure 8-23 shows an example of the system configuration and bandwidth allocation using a
VNet-based scheduler configuration scheme.

Each of the scheduling components and VSIs has an allocated bandwidth and can have an associated
bandwidth limit. VSIs are also configured with ETS, or per traffic type bandwidth allocation. Bandwidth
allocation must be consistent. The bandwidth allocated to the scheduling component should be equal to
the sum of bandwidth allocated to all VSIs, and the bandwidth allocated for VSI must be equal to the
sum of bandwidth allocated to all the TCs. For example, the bandwidth allocated to VSI10 (4 Gb/s) and
VSI11 (3 Gb/s) should be equal to the bandwidth allocated to PF#1 (7 Gb/s).

Figure 8-24 below shows a VNet-based scheduling tree configuration corresponding to the system
configuration described in Figure 8-23.

Figure 8-23. Example of VNet-Based System Configuration

Port

VSI Group#1 VSI Group#2

VSI31VSI10 VSI11 VSI20 VSI21

TC2=4Gb/s
TC0=2Gb/s
TC2=1Gb/s

TC0=2Gb/s
TC1=2Gb/s
TC2=2Gb/s

TC1=3Gb/s
TC2=1Gb/s

4Gb/s 3Gb/s

7Gb/s 10Gb/s

6Gb/s 4Gb/s

3Gb/s

20Gb/s

VSI Group#3

613875-009 1311

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

The software is not aware of the internal scheduler configuration tree structure and uses a logical
representation (shown in Figure 8-24) to program scheduler configuration tables. EMP firmware,
translates software Admin Queue commands, and performs the actual configuration of the scheduler
configuration tables.

If the software needs to instantiate a bandwidth limit for the scheduling component or VSI, EMP
firmware should use a basic bandwidth limit, since each scheduling component and VSI is represented
by a single tree node.

Figure 8-24. VNet-Based Scheduling Tree Configuration Example

Figure 8-25. VNet-Based Scheduling Tree in BRAS Example

PORT

VSI10

TC2

VSI11 VSI20

TC0 TC1

VSI
Group#1

VSI
Group#2

VSI21 VSI01

TC1 TC2TC1 TC2TC0 TC2 TC2

VSI
Group#3

Strict PriorityStrict Priority

Port

Strict Priority

User
#n

User
#2

User
#1

WFQ

WFQ/SP WFQ/SP WFQ/SP WFQ/SP

Voice
Highest Priority

low latency
Fully provisioned

Video
Higher Priority

medium latency
Fully provisioned

Assured
Higher Priority

medium latency
Fully provisioned

BE
Low Priority

Oversubscribed

WFQ/SP WFQ/SP WFQ/SP WFQ/SP

Voice
Highest Priority

low latency
Fully provisioned

Video
Higher Priority

medium latency
Fully provisioned

Assured
Higher Priority

medium latency
Fully provisioned

BE
Low Priority

Oversubscribed

WFQ/SP WFQ/SP WFQ/SP WFQ/SP

Voice
Highest Priority

low latency
Fully provisioned

Video
Higher Priority

medium latency
Fully provisioned

Assured
Higher Priority

medium latency
Fully provisioned

BE
Low Priority

Oversubscribed

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1312 613875-009

Figure 8-25 shows an example of a VNet-based topology usage in a BRAS network.

• Port Level — This is the level that arbitrates between the physical ports.

• User Level — In VNet-based topology, port bandwidth is shared among users according to their
SLA, as follows:

— In Voice, Video and Assured Traffic types, the user nodes are rate-limited according to their
provision rate. Since the parent node is also fully provisioned, there is no real congestion in the
user layer for those traffic types.

— In the Best Effort traffic type, there is significant congestion and scheduling between the users,
as this traffic is usually oversubscribed. Usually in COMMS applications, three types (or SLA
levels) of users are served. The distinction between user levels can be implemented by setting
a minimum bandwidth allocation for high level users, this allocating higher weight bandwidth
allocation. The Rate limit configuration of user nodes also depends on user level.

• Traffic Type/Priority Level — In each user’s subtree, bandwidth is shared between the four
traffic types. Usually in the BRAS usage model, this layer is configured with strict priority: Voice
Traffic with the highest priority, followed by Video Traffic, Assured Traffic and Best Effort traffic with
the lowest priority. All traffic types are fully provisioned and rate limited according to their
provisioned rate.

• Queue Level — This level consists of Queue Scheduling Components. Each Tx-Queue is scheduled
individually. Queue bandwidth configuration can be evenly shared between the user queues or can
be set to different SLAs so that queues of the same level can be used for providing different levels
of service to the queue user. (For example, when a user calls by the Skype application, it is
desirable to set a higher bandwidth/priority to this traffic in the relevant bandwidth share). In this
way, queue level can also be used for user level priority.

8.3.3.3 VNet and ETS Topologies Support by One General
Purpose Tree Structure in the E810

The previous products (like the X710/XXV710/XL710) limit the scheduling structure to ETS-based
topology. In this product generation, the ETS vs. VNet support was a product mode. The firmware in
these products supports ETS-based topology and was sufficient for enterprise usage models in DCB
networks.

In the E810, both modes are supported. There is no need to set a mode. When DCB is enabled, TC level
is added to the root of the tree, so ETS is always supported. The PF is allowed to configure node priority
in any layer of the tree it owns. Thus, user priority is always supported.

Therefore, without mode changing, both modes are opened for PF programming by configuring the TC
layer with priority or by setting the leaf layer with different priorities. This is a mixed mode where both
TC level priority and user level priority are also supported per PF configuration.

A simple way to have a VNet topology support, is to enable only one of the TCs in layer 2 and leave the
user-level priority active.

613875-009 1313

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.3.4 Tx-Scheduler Configuration Process

The Scheduler implements one set of configuration tables shared by all PCIe functions. To synchronize
access to the shared configuration table and maintain configuration consistency, direct access to the
internal scheduler configuration is restricted to EMP.

The Scheduler does not expose its internal configuration tables to the standard deployment software. A
set of registers allowing indirect access to the internal scheduler structures is exposed to firmware to
allow programming of the Scheduler configuration tables. These registers are exposed in debug mode
to other privileged software. A default configuration of the scheduling tables is performed by EMP
firmware and based on the internal scheduling configuration profiles kept in NVRAM. NVRAM data
includes the number of ports, number of scheduling layers (5, 7, or 9).

A physical function driver is considered to be trusted software and is allowed to modify the default
configuration by proxying its requests through firmware using Admin Queue commands (see
Section 8.3.4.3.6). Software should use an Admin Queue interface to communicate its scheduler
configuration requests with EMP. EMP is responsible for constraining access to the scheduling
configuration tables based on the software privilege level, shared resources, management mandatory,
and resource ownership.

Most of the scheduling components are shared among physical functions. Once a scheduling component
is allocated with a function, it is owned by a single physical function. If a scheduling component is
shared among physical functions (for example, DCB bandwidth configuration), this component is
configured and owned by the DCB agent running in EMP firmware.

8.3.3.4.1 Tx-Scheduler Configuration and Management Principles

• At initialization, a default topology is built, providing a subtree root for each PF. More details are
provided in Section 8.3.4.1.

• The PF is able to build the required topology inside its subtree.

• EMP serves the PF in its task of Tx-Scheduler configuration and enforces basic topology rules. For
example:

— Prevents the PF from affecting the behavior and performance of other PFs.

— Limits sibling groups size to NVM setting per logical layer.

Figure 8-26. Mixed Topology VNet +ETS Example

Port/
SComp

VSI02

TC0

VSI01 VSI02

TC1

VSI01 VSI02

TC2

VSI01

Priority NPriority 1 ... Priority NPriority 1 ...

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1314 613875-009

— Does not let software remove nodes that have children.

• Some examples for rules that are not enforced by EMP firmware, but that PF software is responsible
for keeping:

— TC or node priority consistency between nodes and layers.

— PPS/BPS group consistency.

— Tx-Queue and leaf node priority setting.

• A minimal set of scheduling components is used:

— Port — For each LAN port, a port node is allocated. This point reflects the physical port
bandwidth.

— TC — This layer supports the DCB operation if it is active. The TC nodes are connected as child
objects nested under the port node. When the DCBx message changes the DCB setting, this is
reflected in this layer. The EMP adds TC nodes according the DCBx parameters. The bandwidth
management for the TC layer is also configured by the EMP firmware according the DCBx
parameters. After setting the TC layer, the PFs are notified and adjust their subtree with the
new DCB setting. At init time, prior to receiving the DCBx message, TC0 is active and the entire
topology is built on it. In this way, when further TCs are required, the tree layer remains
unchanged.

— VSI — VSI is a scheduling component. It can reflect VM, VF, or PF.

— LAN Tx-Queue/RDMA QSet — This is a Tx-Scheduler leaf node. A LAN Tx-Queue or a PE QSet
is connected to the leaf node.

— Aggregator — Additional general purpose scheduling component (called aggregator).

• Aggregator can be added and located anywhere in the tree.

• The aggregator is used to build subgroups of scheduling components when it is required.
The subgroup can be configured with bandwidth allocation, minimum bandwidth, and limit.

• Queue can be connected to any Tx-Scheduler leaf node.

• When DCBx adds or removes TCs:

— The port’s TC is expanded.

— PF builds the topology connected to the enabled PF/TC nodes. It can move existing subtrees
and Tx-Queues, or add/delete scheduling components.

• Section 8.3.3 provides some examples of typical tree topologies for different usage models
illustrating the usage of all scheduling components as well the topology building flows.

613875-009 1315

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.4 Flows

8.3.4.1 Tx-Scheduler Initialization Flow

As part of the device initialization flow, the Tx-Scheduler is initialized in two main steps:

• Hardware initialization.

• EMP basic topology configuration.

8.3.4.1.1 Hardware Initialization

• All the CSRs of the Tx-Scheduler block are reset to their default values and then auto-loaded
according NVM settings.

• All Tx-Scheduler tables are cleared (all fields a zeroed).

8.3.4.1.2 EMP Initial Topology Configuration

For each PF, EMP allocates one Port node with one VSI node connected to it. If DCB is supported (NVM
configuration), a TC layer is allocated as layer #2 topology. This VSI is the initial VSI of this PF. At a
later stage, as part of the PF driver init flow, one initial queue is allocated to each initial VSI. Like for
every VSI, PF can add more queues to the VSI. It can also organize the queues belonging to a VSI in
groups according to bandwidth, with or without QoS (user Level TC or just queue groups) configuration.

8.3.4.2 Resets Flows

Tx-Scheduler responds differently to different reset signal types. The following paragraphs detail the
expected behavior for each reset type.

8.3.4.2.1 Power On Reset (POR), Core Reset (CORER), or Global Reset
(GLOBR)

All data in the Tx-Scheduler tables are cleared. EMP configures all Tx-Scheduler tables according to the
NVM setting of the device mode. For more details, see Section 8.3.3.4 and Section 8.3.4.1.

Figure 8-27. Example of Initial Configuration of a Dual Port Device

TC #0

Port #0

VSI #101

Tx Queue #0

TC #0

Port #1

VSI #102

Tx Queue #1

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1316 613875-009

8.3.4.2.2 EMP Reset (EMPR)

EMP reset followed by GLOBR. Tx-Scheduler is reset according the CORER flow detailed in
Section 8.3.4.2.1.

As part of the GLOBR reset as shown above, Tx-Scheduler registers and tables are reset and the EMP
reconfigures the initial topology. Refer to Section 8.3.3.4 and Section 8.3.4.1 for details.

8.3.4.2.3 Function-Level Reset (FLR), PF Reset (PFR), VM Reset
(VMR), VF Reset (VFR), or VFLR

Function-level reset events are not directly propagated to the Tx-Scheduler and no activity is expected
in hardware for those events.

As part of the function-level reset flows, depends on the Reset Type the PF or the EMP firmware is
responsible for function resources cleanup. The cleanup flow includes Tx-Scheduler resources cleanup
using Delete Element(s) AQ Command detailed in Section 8.3.4.3.6.9.

8.3.4.2.4 PCIe Reset (PERST) or In-Band Reset (PCIR)

8.3.4.2.4.1 Single-Home Device

PCIe Reset in a Single-Home topology is followed by GLOBE and/or CORR (depending on the veto bit).

8.3.4.3 Tx-Scheduler Configuration Process

This section describes how to configure Scheduling configuration principles, and guides firmware
through implementation of the Admin Queue commands defined in Section 8.3.4.3.6.

8.3.4.3.1 Scheduling Structure Representation

The internal structure of the Scheduler configuration tables is not exposed to software. EMP firmware is
responsible for the Scheduler configuration, and provides software with an Admin Queue interface
allowing alternative scheduler configuration.

Allocation and deallocation of nodes is also hidden from software and performed by EMP firmware based
on software resource allocation/deallocation requests. EMP firmware manages the shared pool of the
Tx-Scheduler leaf nodes as well as all other nodes.

A new added scheduling component is configured with a minimal default bandwidth allocation. Minimum
bandwidth and bandwidth limit are disabled. Software can modify the default bandwidth allocations
using the Admin Queue commands described in Section 8.3.4.3.6.

To create a common language between the different components in the system (drivers, firmware, and
hardware) a logical representation of the Tx-Scheduler nodes is required. The objects represented in
the models are identified by a device with Tx-Scheduler element identifier (TEID). The TEID of a
component is returned upon creation of the component and is referenced when creating ties between
components. The TEID of components created automatically can be retrieved using the “Query Default
Scheduling Tree Topology” Admin Queue command. See Section 8.3.4.3.6.1 for more details.

If the scheduler runs out of resources (for example, leaf nodes), the respective allocation command
fails and the requesting software is notified with an error return code.

613875-009 1317

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.4.3.2 Scheduler Configuration Tables

Tx-Scheduler is configured using a set of Scheduler configuration tables. Tx-Scheduler configuration
tables are shared by all PCI functions, and managed by EMP firmware. Scheduler table configuration is
performed by EMP firmware, and software can use Admin Queue commands described in
Section 8.3.4.3.6 to alter default scheduler tables configuration.

8.3.4.3.3 Firmware Scheduler Interface

EMP firmware uses a register-based interface to access and program Tx-Scheduler configuration tables.
In the normal operation mode, those registers are accessible and controlled by firmware only. In debug
mode, all scheduler interface registers are mapped to the PCIe address space, and can be accessed by
other CPUs or host software. No access synchronization mechanism is provided by hardware. Therefore,
in debug mode, it would be up to software and firmware to coordinate their access to the Scheduler
programming interface.

Scheduler provides two types of accesses to its configuration structures:

• Immediate Access — A basic operation allowing to read and write one entry of the scheduler
configuration tables. Usually, firmware performs one table access at a time using this interface.

• Batched Access — A more advanced operation mode, allowing firmware to post multiple
commands and have them executed as a single operation that can be executed in atomic manner
when required. Scope of commands that can be used for batch operation is more limited than
immediate commands, and primarily includes operations of copying an existing entry to the new
location, or updating a field in the table entry.

Firmware is allowed to concurrently use both interfaces. Tx-Scheduler does not guarantee ordering
between Batched and Immediate commands, and executes them in round-robin sequence along with
other scheduling operations.

The table below lists all scheduler interface commands supported via Immediate or Batched interface.
The majority of the commands can be posted via either one of interfaces. Any invalid command leads to
a critical error and suspends a respective interface. Detected errors are reported in TSCDIFSTATUS
register. The interface can be re-enabled by setting a ICMDCLRERR or BCMDCLRERR bit in the
GLCD_IFCTRL register.

Submission of Immediate is performed using GLPSM_IFICMDL and GLPSM_IFICMDH CSRs. Batched
commands are performed using GLPSM_IFBCMDL and GLPSM_IFBCMDH CSRs. CSR GLPSM_IFSTATUS
provides the status for both interfaces. Not all the commands use the high DWord part. When the high
part is required, it should be fed first. Write to low register indicates to hardware that command is
ready and can be processed.

Both Immediate and Batched interface support a limited number of outstanding commands
(Immediate: single command; Batched: up to 128 commands). Firmware must use the
GLPSM_IFSTATUS register to validate that the interface has a free space for the new command.
Overflow of immediate or batched interfaces is forbidden; any overflow command is silently dropped.
EMP firmware is considered a trusted entity, and it is instructed to prevent any overflow event.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1318 613875-009

8.3.4.3.3.1 Immediate Command Interface

Firmware flow usually includes:

1. Read the GLPSM_IFSTATUS register to make sure that no Immediate command is pending. This
operation can be skipped if previously posted immediate operation has been completed.

2. Write data to the GLPSM_IFDATA[n] registers (for WriteEntry operations). Order of writing data is
not important.

3. Write command to the GLPSM_IFICMDH/L registers. Only few commands use the
GLPSM_IFDATA[n] register. If posting a different command, firmware can skip writing to the
GLPSM_IFDATA[n] register, and fill the GLPSM_IFICMDH/L register only. Content of the
GLPSM_IFDATA[n] register should the be ignored.

4. Read data from the GLPSM_IFDATA[n] register for ReadEntry operations.

Though the Immediate interface is primarily designed for ReadEntry and WriteEntry operations, it can
be used by firmware to post other commands.

8.3.4.3.3.2 Batched Command Interface

Batched Command interface allows firmware to post multiple commands and gain faster execution.
Batch commands can be executed in atomic fashion if required. This interface allows firmware to
perform the majority of Tx-Scheduler configuration tables without suspending normal Scheduler
operation flow.

Batched Command interface allows firmware to post up to 128 outstanding commands. Each sequence
of commands posted to Batched interface should be completed with BatchDone Control command
posted to Batched interface. This command indicates that Batch sequence is completed. Commands
posted to Batched interface are not executed immediately, but are queued to the 128-deep Batch FIFO.
Firmware should “ring DB” by writing to the GLPSM_IFCTRL register to request execution of the posted
sequence of batched commands.

Following is an example of posting Batched command sequence:

1. Read the GLPSM_IFSTATUS register to make sure that Batched interface has enough space
available.

2. Write one or more commands to the GLPSM_IFBCMDH/L registers.

3. Complete the sequence by writing the BatchDone command to the GLPSM_IFBCMDL register

4. Write to the GLPSM_IFCTRL register to ring DB.

Firmware is allowed to interleave commands posted via Immediate and Batched interface. One usage
model of that would be gathering information using ReadEntry Immediate commands to build a
sequence of Batched commands.

Firmware is allowed to post multiple sequences of commands to Batched interface, each terminated by
the BatchDone command. Each time firmware posts the BatchDone command to the Batched interface,
it must ring DB. Hardware increments an internal counter with each DB ring, and decrements with each
processed BatchDone command. If the counter remains positive, hardware processes the next batch
after it completes a round of performing other scheduling flows.

613875-009 1319

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.4.3.4 LAN Queue or RDMA Queue Set Assignment

As a part of the scheduler configuration, each Tx-Scheduler Leaf node is supplied with a logical queue
handle for LAN queue or RDMA Queue Set.

For basic operation (Prior adding the RDMA support), two look-up tables (LUT) are managed by EMP
firmware and used for Tx-Scheduler: “Tx-Queue ID to Leaf node ID” and “Leaf node ID to Tx-Queue
ID”. The Tx-Queue context does not point directly to the leaf node ID. The Tx-Scheduler block activities
relate to the leaf node ID. The LUTs are used in the interface between the Tx-Scheduler block and the
transmit pipe. This way EMP firmware can update the internal structure and node locations internally
without involving other blocks.

When RDMA is served in parallel to the LAN traffic, the RDMA Queue Set IDs are managed
independently from the LAN Queue IDs. The LAN Queue at PSM interface is a number between 0-16K.
The RDMA Queue Set ID is a number between 0-511. To allow parallel operation of LAN Queue and
RDMA QSets, an additional table is added called “RDMA QSet ID to Leaf Node ID”. This is the LUT for
RDMA. For the calls from the RDMA interface, this table is used to find the Leaf Node ID. Calls from PSM
to the Pipe, Leaf node ID to Tx-Queue ID include a flag in each entry that indicates whether if this call
is targeted at the LAN or the RDMA interface.

The Queue or QSet ID that is propagated in the Tx-Pipe also includes the RDMA or LAN flag. The Update
operation from TDPU carries this flag as well for correct update operations.

Figure 8-28. Parallel RDMA-PQM Connectivity to PSM

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1320 613875-009

8.3.4.3.5 Releasing of Scheduling Elements

The software can use the AQ Command: Delete a Scheduling Component. Removal of the Scheduling
Component is allowed only if the respective uplink Scheduling element has been previously removed.
Software can request to remove a Leaf node only if the Queue/Queue Set associated with that Leaf
node is disabled.

8.3.4.3.6 Admin Queue Commands

The internal structure of the Scheduler configuration tables is not exposed to software. This section
defines Admin Queue commands used by software to program Scheduler configuration attributes.

The standard E810 Scheduler topology configuration is based on the network topology. The Scheduler
configuration adds bandwidth management attributes to the configured scheduling components.
Bandwidth configuration is based on the network topology deployment and capacity. The bandwidth
management also reflects the QoS definition (SLA) required for the connected users and tenants.

The Admin Queue commands described in this section are intended for use by the PF driver only. The VF
driver is not allowed to directly participate in the Scheduler configuration. The PF driver is considered to
be a trusted software component within this PF. EMP firmware validates that Admin Queue commands
do not impact configuration of components not owned by the PF driver issuing the commands. This is
performed using association of the Admin Queue with particular PF and ownership information stored in
the scheduling configuration tables. When the PF performs configuration on behalf of the VF, the
corresponding VF must be provided with the Admin Queue command.

Table 8-25 provides a list of Admin Queue commands that allow configuration of the internal scheduler
structures.

EMP firmware must avoid unrecoverable partial command execution. Some commands that configure
larger amount of entities are broken into a groups of configured entities. In that case, each group must
not be partially configured. All command validation and resource availability checks must be performed
prior to updating Scheduler Configuration tables. Aborting a command with a partially updated
Scheduler Configuration table can lead to unpredictable hardware behavior.

Notes: Bandwidth allocation setup among sibling nodes is configured in weights. As a node is
configured with higher rate, it gets more bandwidth relative to its siblings. The E810 supports
a 0.5% granularity of bandwidth allocation weight setup. In all bandwidth setup commands,
the bandwidth allocation weight is a field of integer in the range of 1..200. Refer to Section
10.5.4.3, “LAN Transmit Queue Modes”, A scheduling subtree is considered fine-grained only
if all its descendant Tx-Queues are configured for “Advanced Transmit Mode” using the
Quanta Queue interface. The full range of 1..200 of the bandwidth allocation is allowed only
inside a fine-grained subtree. If any of the descendant Tx-Queues of the node are configured
for “Legacy Mode”, the node bandwidth weight range is 4..200.

It is the caller PF’s responsibility to limit the range if there is a Legacy Tx-Queue in the
subtree.

613875-009 1321

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Table 8-25. Scheduler Configuration Admin Queue Commands

Command Opcode Brief Description Section
Reference

Query Default Scheduling
Tree Topology 0x0400 Retrieve the scheduler topology from the EMP firmware for a given port. 8.3.4.3.6.1

Add Scheduling Elements 0x0401 Allocate a list of new scheduling elements as a child of the specified
parent’s TEID in the command buffer.

8.3.4.3.6.3

Configure Scheduling
Elements 0x0403 Configure scheduling parameters for a list of existing scheduling

elements as specified by parent’s TEID.
8.3.4.3.6.4

Query Scheduling Elements
Configuration 0x0404

Retrieve the bandwidth and scheduler configuration information for the
list of scheduling elements as specified by their TEIDs from the EMP
firmware.

8.3.4.3.6.2

Move Scheduling Element 0x0408

Move multiple siblings in a scheduling tree from one parent node to
another parent node. This command works on any node in any layer.
If the nodes being moved have children, the whole subtree is moved.
If the old and new parent nodes belong to the same scheduling layer, the
move is done without disrupting any scheduling operation.

8.3.4.3.6.5

Suspend Nodes 0x0409

Suspend scheduling operations for a list of scheduler elements as
specified by their TEIDs.
If the suspended nodes have children, the whole subtree starting as the
scheduling element TEID to the leaf nodes of that element is suspended.

8.3.4.3.6.6

Resume Nodes 0x040A
Resume scheduling operations for a list of scheduler element as
specified by their TEIDs; that were previously suspended using
“Suspend Nodes” AQ.

8.3.4.3.6.7

Query Port ETS 0x040E Retrieve a port’s ETS configuration. 8.3.4.3.6.8

Delete Scheduling Elements 0x040F

Delete scheduling elements identified by their TEIDs. EMP Firmware
checks for validity of the specified TEIDs, and if there are any children
still connected to any of the TEIDs before attempting to delete the
elements.

8.3.4.3.6.9

Add RL Profiles 0x0410 Add Rate Limiter profiles. 8.3.4.3.7.2

Query RL Profiles 0x0411 Retrieve a number of Rate Limiter profiles from the EMP firmware. 8.3.4.3.7.3

Remove RL Profiles 0x0415 Delete 1-4 Rate Limiter profiles. 8.3.4.3.7.4

Query Scheduling Resource
Allocation 0x0412 Retrieve the schedule resources allocated by EMP firmware to the given

PF.
8.3.4.3.7.1

Query Node-to-Root
Topology 0x0413 Retrieve the scheduler topology from the EMP firmware for a given TEID

to the Root node.
8.3.4.3.6.10

Set Tx-Scheduler Topology 0x0417 Sets the Tx-Scheduler topology 8.3.4.3.6.11

Get Tx-Scheduler Topology 0x0418 Gets the Tx-Scheduler topology 8.3.4.3.6.12

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1322 613875-009

8.3.4.3.6.1 Query Default Scheduling Tree Topology (0x0400)

This command retrieves the scheduler topology from the EMP firmware for a given port.

The EMP firmware, as response to this command, returns all the scheduling elements that are visible to
the software in the provided data buffer. The EMP firmware includes only the elements that were
created by firmware as part of initial scheduler tree configuration creation for the given port.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-26 describes command format and defines
command-specific fields.

This command is called by PF only at init time and retrieves the default topology. Once the topology is
modified (by calling a proper AQ), EMP firmware stops serving this command and returns with the error
code EPERM (Operation not permitted).

Table 8-27 describes format of the data returned by firmware in the response buffer for each branch.
EMP firmware returns all the elements starting from Root node to the Scheduling Elements it has added
for a given branch.

Table 8-26. Query Default Scheduling Tree Topology Command and Response Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x0400

Datalen 4-5 Length of response buffer.
Software provides a buffer of 4 KB. Firmware writes here the actual length of the
response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16 0 The value is ignored by firmware and the port number is implicit to the calling
function.
Reserved. Must be set to 0.

Total Branches 17 Must be set to 0 as part of command.
In Command Response this field is the total number of port-to-queue branches
created by firmware (value of 1-8).

Reserved 18-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-27. Query Default Scheduling Tree Topology Command Response Buffer per Branch
Structure

Name Byte.Bit Value Remarks

Reserved 0-3

Number of Elements 4-5 2-9 Total number of elements created for given branch (TC).

Reserved 6-7

Element 0 8-31 First element in the tree for this branch (Root node).

613875-009 1323

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Table 8-28 describes format of the data returned by firmware in the response buffer for each element in
the scheduling tree within a given branch.

.

.

.

Element 9 9th element in the tree for this branch.

Table 8-28. Query Default Scheduling Tree Topology Command Response Buffer per
Element Structure

Name Byte.Bit Value Remarks

Parent TEID 0-3 Element’s parent TEID.
Note: For the Element Type “Root Port”

this would be set to 0xFFFFFFFF.

Node TEID 4-7 Element TEID.

Element Type 8 0 = Undefined
1 = Root Port
2 = TC
3 = SE Generic
4 = Software entry point SE
5 = Leaf
6-255 = Reserved

In some cases, Element Type can be both
software entry point SE and a Leaf. In that
case, the Element is marked as a software
entry point SE.
Note: Root Port, TC nodes are typically in

firmware control.

Valid Sections 9 Bit 9.0: Generic section (Must be set to 1b)
Bit 9.1: CIR BW
Bit 9.2: EIR BW
Bit 9.3: Shared BW
Bits 9.4-9.7: Reserved

Multiple sections can be valid at given time.
For SRL to work, EIR profile has to be
defined.
For CIR, EIR profile has to configured to
non-default profile.

Generic 10 Bit 10.0: Scheduling Mode
0b = BPS
1b = PPS

Bits 10.1–10.3: Priority among siblings (0-7)
Bit 10.4: Single Priority

0b = Node
1b = WFQ

Bits 10.5-10.6: Adjustment value (0-3) used in
PSM Credit Update flow

Bit 10.7: Reserved

Flags 11 Bit 11.0: If set to 1, indicates node is
suspended.

Bits 11.1-11.7: Reserved.

CIR BW Profile ID 12-13

CIR BW Weight 14-15 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Firmware is not aware of the Tx queue used
by software. It is up to software to provide
legal weights according to subtree type.

EIR BW Profile ID 16-17

EIR BW Weight 18-19 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Firmware is not aware of the Tx queue used
by software. It is up to software to provide
legal weights according to subtree type.

Table 8-27. Query Default Scheduling Tree Topology Command Response Buffer per Branch
Structure [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1324 613875-009

8.3.4.3.6.2 Query Scheduling Elements Configuration (0x0404)

This command retrieves the bandwidth and scheduler configuration information for the list of
scheduling elements as specified by their TEIDs from the EMP firmware.

The software provides the list of TEIDs as part of the command buffer, whereas the EMP firmware, as
response to this command, returns bandwidth information on all the scheduling elements to the
software in the software-provided data buffer for the specified TEIDs. EMP firmware validates that all
the TEIDs are owned by the calling PF.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-29 describes command format and defines
command-specific fields.

Table 8-30 describes the format for providing the list of scheduling elements’ TEIDs by software as part
of the command buffer.

Table 8-31 describes format of the data returned by firmware in the response buffer for each element in
the scheduling tree.

Shared RL Profile ID 20-21

Reserved 22-23

Table 8-29. Query Scheduling Elements Command and Response Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x0404

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Elements
Requested

16-17 Total number of scheduling elements.

Number of Elements
Returned

18-19 Command: Set to 0 by driver.
Response: Firmware puts the number of elements returned.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-30. Query Scheduling Elements Command and Response Fields

Name Byte.Bit Value Remarks

Reserved 0-3 0

Node TEID 4-7 Element TEID of the scheduling element. Set by software for retrieving the bandwidth
configuration from the firmware.

Reserved 8-23 0

Table 8-28. Query Default Scheduling Tree Topology Command Response Buffer per
Element Structure [continued]

Name Byte.Bit Value Remarks

613875-009 1325

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Table 8-31. Query Scheduling Elements Configuration Command Response Buffer per
Element Structure

Name Byte.Bit Value Remarks

Parent TEID 0-3 Element’s parent TEID.
Note: For the Element Type “Root Port”

this would be set to 0xFFFFFFFF.

Node TEID 4-7 Element TEID.

Element Type 8 0 = Undefined
1 = Root Port
2 = TC
3 = SE Generic
4 = Software entry point SE
5 = Leaf
6 = SE Padded
7-255 = Reserved

Note: Root Port, TC nodes are typically in
firmware control.

Valid Sections 9 Bit 9.0: Generic section (Must be set to 1b)
Bit 9.1: CIR BW
Bit 9.2: EIR BW
Bit 9.3: Shared BW
Bits 9.4-9.7: Reserved

Multiple sections can be valid at given time.

Generic 10 Bit 10.0: Scheduling Mode
0b = BPS
1b = PPS

Bits 10.1–10.3: Priority among siblings (0-7)
Bit 10.4: Single Priority

0b = Node
1b = WFQ

Bits 10.5-10.6: Adjustment value (0-3) used in
PSM Credit Update flow

Bit 10.7: Reserved

Flags 11 Bit 11.0: If set to 1, indicates node is
suspended.

Bits 11.1-11.7: Reserved.

CIR BW Profile ID 12-13

CIR BW Weight 14-15 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Firmware is not aware of the Tx queue used
by software. It is up to software to provide
legal weights according to subtree type.

EIR BW Profile ID 16-17

EIR BW Weight 18-19 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Firmware is not aware of the Tx queue used
by software. It is up to software to provide
legal weights according to subtree type.

Shared RL Profile ID 20-21

Reserved 22-23

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1326 613875-009

8.3.4.3.6.3 Add Scheduling Elements (0x0401)

This command allocates a list of new scheduling elements as a child of the specified parent’s TEID in the
command buffer.

The EMP firmware as response to this command returns the TEID for the newly added scheduling
elements for each element.

Leaf nodes must be attached to a LAN Tx-Queue or a RDMA QSet. Therefore, Leaf nodes are added only
with the AQ commands field.

EMP firmware verifies that a Leaf node is not added by the “Add Scheduling Elements” command. This
verification must be done prior adding any queue of the Queue Group to prevent partial execution of
the command.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-32 describes command format and defines
command-specific fields.

Table 8-33 describes format of the command buffer per Group, and Table 8-34 describes the format of
the command data set by software for each element that is part of the group. Software can create
multiples of such Groups as identified by the “Number of Groups” field in the command. The EMP
firmware updates the Node TEID field in the response buffer for each element that was added to the
scheduler tree.

Table 8-32. Add Scheduling Elements Command and Response Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x0401

Datalen 4-5 Length of command and response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
Response:

0 = Success.
Otherwise = Not all Groups could be added successfully. Software should look at the

Number of Groups Added Value and the Response Buffer for the
Scheduling Elements added for those groups.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Groups
Requested

16-17 Number of Scheduling element groups to be added per Parent TEID.

Number of Groups
Returned

18-19 Command: Set to 0 by driver.
Response: Firmware puts the number of groups successfully added.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

613875-009 1327

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Table 8-33. Add Scheduling Elements Command Buffer per Group

Name Byte.Bit Value Remarks

Parent TEID 0-3

Number of Elements 4-5

Reserved 6-7

Element 0 8-31 Contains first Element entry (See Table 8-34).

.

.

.

Element n Contains nth Element entry.

Table 8-34. Add Scheduling Elements Command and Response Buffer per Element
Structure

Name Byte.Bit Value Remarks

Reserved 0-3

Node TEID 4-7 Reserved (0): When part of command buffer,
firmware sets this field to Element TEID as
part of the response buffer.

Reserved 8

Valid Sections 9 Bit 9.0: Generic section (Must be set to 1b)
Bit 9.1: CIR BW
Bit 9.2: EIR BW
Bit 9.3: Shared BW
Bits 9.4-9.7: Reserved

Multiple sections can be valid at given time.
When only EIR BW is set, firmware
configures EIR bandwidth only.
When only Shared BW is set, firmware
configures SRL ID and switch Node to SRL.
When both EIR BW and Shared BW are set,
firmware configures EIR, SRL, and switch to
SRL.

Generic 10 Bit 10.0: Scheduling Mode
0b = BPS
1b = PPS

Bits 10.1–10.3: Priority among siblings (0-7)
Bit 10.4: Single Priority

0b = Node
1b = WFQ

Bits 10.5-10.6: Adjustment value (0-3) used in
PSM Credit Update flow

Bit 10.7: Reserved

Reserved 11

CIR BW Profile ID 12-13

CIR BW Weight 14-15 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Firmware is not aware of the Tx queue used
by software. It is up to software to provide
legal weights according to subtree type.

EIR BW Profile ID 16-17

EIR BW Weight 18-19 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Firmware is not aware of the Tx queue used
by software. It is up to software to provide
legal weights according to subtree type.

Shared RL Profile ID 20-21

Reserved 22-23

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1328 613875-009

8.3.4.3.6.4 Configure Scheduling Elements (0x0403)

This command configures scheduling parameters for a list of existing scheduling elements as specified
by parent’s TEID.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-35 describes command format and defines
command-specific fields.

Table 8-36 describes the format of the command data set by software for each element.

Table 8-35. Configure Scheduling Elements Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0403

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
Response:

0 = Success.
1 = Not all Elements could be configured successfully. Software should look at the

Number of Elements Configured Value and the Response Buffer for the
Scheduling Elements configured.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Elements
Requested

16-17 Total number of elements of scheduling elements to be configured.

Number of Elements
Configured

18-19 Command: Set to 0 by driver.
Response: Firmware puts the number of configured elements in response.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-36. Configure Scheduling Elements Command and Response Buffer per Element
Structure

Name Byte.Bit Value Remarks

Reserved 0-3

Node TEID 4-7 Element TEID.

Reserved 8

Valid Sections 9 Bit 9.0: Generic section (Must be set to 1b)
Bit 9.1: CIR BW
Bit 9.2: EIR BW
Bit 9.3: Shared BW
Bits 9.4-9.7: Reserved

Multiple sections can be valid at given time.
When only EIR BW is set, firmware
configures EIR bandwidth only.
When only Shared BW is set, firmware
configures SRL ID and switch Node to SRL.
When both EIR BW and Shared BW are set,
firmware configures EIR, SRL, and switch to
SRL.

613875-009 1329

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.4.3.6.5 Move Scheduling Elements (0x0408)

This command allows software to move multiple siblings in a scheduling tree from one parent node to
another parent node. This command works on any node in any layer, except the root and leaf layers. If
the nodes being moved have children, the whole subtree is moved. If the old and new parent nodes
belong to the same scheduling layer, the move is done without disrupting any scheduling operation.

The Mode field allows the moving of scheduling elements from one port to another,. It also allows
control over the PF ownership change.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-37 describes command format and defines
command-specific fields.

Generic 10 Bit 10.0: Scheduling Mode
0b = BPS
1b = PPS

Bits 10.1–10.3: Priority among siblings (0-7)
Bit 10.4: Single Priority

0b = Node
1b = WFQ

Bits 10.5-10.6: Adjustment value (0-3) used in
PSM Credit Update flow

Bit 10.7: Reserved

Reserved 11

CIR BW Profile ID 12-13

CIR BW Weight 14-15 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Firmware is not aware of the Tx queue used
by software. It is up to software to provide
legal weights according to subtree type.

EIR BW Profile ID 16-17

EIR BW Weight 18-19 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Firmware is not aware of the Tx queue used
by software. It is up to software to provide
legal weights according to subtree type.

Shared RL Profile ID 20-21

Reserved 22-23

Table 8-37. Configure Scheduling Elements Command and Response Buffer per Element
Structure

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x0408

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Sibling
Groups

16-17 Set by the driver. Unchanged by the firmware.

Table 8-36. Configure Scheduling Elements Command and Response Buffer per Element
Structure [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1330 613875-009

Table 8-38 describes the per sibling group structure that provided by software.

Software provides a list of Scheduling Element TEIDs for each sibling as part of the command buffer.

Table 8-39 describes the per-sibling TEID provided by software.

Table 8-40 describes an example of the command buffer (n Siblings need to be moved by software).

Number of Actually
Moved Sibling
Groups

18-19 Zeroed by the driver. Set by the firmware.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-38. Move Scheduling Elements Buffer per Sibling Group

Name Byte.Bit Value Remarks

Existing Parent TEID 0-31

1. The existing parent must be a direct parent of the moved nodes in the logical space (hidden layers remain hidden for that
command). EMP firmware enforces this and returns error if required.

Current TEID of the parent of the siblings being moved in this group.

New Parent TEID 4-7 New Parent TEID where the siblings are moved to as children.

Number of Siblings
to be Moved

8-9 0

Mode 10.0-10.1 Set by software to specify the elements move mode:
00b = Mode 0 — Move is allowed only within the PF owner. If the destination PF

is not the owner, firmware returns EACCESS error code.
01b= Mode 1 — Move to any PF is allowed. Ownership transfers to the

destination PF.
10b= Mode 2 — Move to any PF is allowed. Ownership remains with the source

PF.
11b = Reserved.

Note: The E810 supports Mode 0 only.

Reserved 10.2-11

Table 8-39. Move Scheduling Elements Buffer per Sibling in the Command Buffer

Name Byte.Bit Value Remarks

Element TEID 0-3

Table 8-40. Move Scheduling Elements Buffer per Sibling in the Command Buffer

Bytes Name

0-11 Sibling Group #0

12-15 Element #0

.

.

.

Element #n-1

Table 8-37. Configure Scheduling Elements Command and Response Buffer per Element
Structure [continued]

Name Byte.Bit Value Remarks

613875-009 1331

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.4.3.6.6 Suspend Nodes (0x0409)

This command allows software to suspend scheduling operations for a list of scheduler elements as
specified by their TEIDs.

If the suspended nodes have children, the whole subtree starting at the scheduling element TEID to the
leaf nodes of that element are not scheduled until the suspended parent is resumed.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-41 describes command format and defines
command-specific fields.

.

.

.

Sibling Group #m-1

Element #0

.

.

.

Element #n-1

Table 8-41. Suspend Node Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0409

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Elements 16-17 Number of Elements to be suspended.

Number of Actually
Suspended
Elements

18-19 Zeroed by the driver. Written by the EMP firmware.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-42. Suspend Nodes Buffer per Element in the Command Buffer

Name Byte.Bit Value Remarks

Element TEID 0-3

Table 8-40. Move Scheduling Elements Buffer per Sibling in the Command Buffer

Bytes Name

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1332 613875-009

8.3.4.3.6.7 Resume Nodes (0x040A)

This command allows software to resume scheduling operations for a list of scheduler elements as
specified by their TEIDs; that were previously suspended using “Suspend Nodes” AQ.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-43 describes command format and defines
command-specific fields.

Table 8-43. Resume Node Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x040A

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Elements 16-17 Number of Elements to be resumed.

Number of Actually
Resumed Elements

18-19 Zeroed by the driver. Written by the EMP firmware.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-44. Resume Nodes Buffer per Element in the Command Buffer

Name Byte.Bit Value Remarks

Element TEID 0-3

613875-009 1333

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.4.3.6.8 Query Port ETS (0x040E)

This command allows software to retrieve a port’s ETS configuration.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-45 describes command format and defines
command-specific fields.

Table 8-46 describes format of the command buffer to be returned by firmware to software as a
response.

Table 8-45. Query Port ETS Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x040E

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Port TEID 16-19 Root Port TEID.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-46. Query PORT ETS Response Buffer

Name Byte.Bit Value Remarks

Enabled TC Bitmap 0 TC0-TC7 Bitmap of enabled TCs at the port.

Reserved 1-3 0

Per Priority TC 4-7 Bits 4.0-4.3: UP0 TC
Bits 4.4-4.7: UP1 TC
Bits 5.0-5.3: UP2 TC
Bits 5.4-5.7: UP3 TC
Bits 6.0-6.3: UP4 TC
Bits 6.4-6.7: UP5 TC
Bits 7.0-7.3: UP6 TC
Bits 7.4-7.7: UP7 TC

Currently, this is a placeholder field and is not processed.

TC Bandwidth Share 8-15 Byte 8: TC0 bandwidth
Byte 9: TC1 bandwidth
Byte 10: TC2 bandwidth
Byte 11: TC3 bandwidth
Byte 12: TC4 bandwidth
Byte 13: TC5 bandwidth
Byte 14: TC6 bandwidth
Byte 15: TC7 bandwidth

Each byte represents TC Bandwidth Ratio (%) relative to
other TCs on the specified port.

Port BW Limit Profile 16-19 Byte 16-17: EIR Profile ID
Byte 18-19: Reserved

The Profile ID for Port (Root Node) is fixed and, software
must configure the Root Node’s RL Profile using “Configure
RL Profile” to modify this.

Reserved 20-23

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1334 613875-009

8.3.4.3.6.9 Delete Scheduling Elements (0x040F)

This command allows deletion of a scheduling elements identified by their TEIDs. EMP firmware checks
for validity of the specified TEIDs, and if there are any children still connected to any of the TEIDs
before attempting to delete the elements (EPERM error code is return if software attempts to remove a
node that is associated with children). If the TEID for a specified element is a Leaf Node with a queue
associated with it, EMP firmware should return an error (EPERM).

ENOENT error code is returned if software attempts to delete an non-existent TEID.

Leaf nodes must be attached to a LAN Tx-Queue or a RDMA QSet. Therefore, Leaf nodes are deleted
only with the AQ command field.

EMP firmware verifies that a Leaf node is not added by the “Delete Scheduling Elements” command.
This verification must be done prior deleting any queue of the Queue Group to prevent partial execution
of the command.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-47 describes command format and defines
command-specific fields.

TC Node Priority 24-27 Bits 24.0-24.3: TC0 Node Priority
Bits 24.4-24.7: TC1 Node Priority
Bits 25.0-25.3: TC2 Node Priority
Bits 25.4-25.7: TC3 Node Priority
Bits 26.0-26.3: TC4 Node Priority
Bits 26.4-26.7: TC5 Node Priority
Bits 27.0-27.3: TC6 Node Priority
Bits 27.4-27.7: TC7 Node Priority

Reserved 28-31

TC0 Node TEID 32-35

TC1 Node TEID 36-39

TC2 Node TEID 40-43

TC3 Node TEID 44-47

TC4 Node TEID 48-51

TC5 Node TEID 52-55

TC6 Node TEID 56-59

TC7 Node TEID 60-63

Table 8-46. Query PORT ETS Response Buffer [continued]

Name Byte.Bit Value Remarks

613875-009 1335

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Table 8-48 lists the content of the data buffer provided by software to delete the scheduling elements.

Table 8-47. Delete Scheduling Elements Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x040F

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.
Response:

0 = Success.
Otherwise = Not all Groups could be deleted successfully. Software should look at

the Number of Deleted Groups Value and the Response Buffer for the
Group of Scheduling Elements deleted.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Groups
Requested

16-17 Number of Group of Elements requested to be deleted.

Number of Groups
Deleted

18-19 Command: Set to 0 by driver.
Response: Firmware puts the number of successfully deleted groups.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-48. Delete Scheduling Elements Command Buffer per Group

Name Byte.Bit Value Remarks

Group 0 Parent TEID 0-3

Number of Elements 4-5

Reserved 6-7

Element 0 TEID 8-11 Element TEID.

.

.

.

Element n TEID

Group 1 Parent TEID

Number of Elements

Element 0 TEID

.

.

.

Element n TEID

.

.

.

Group n Parent TEID

Number of Elements

Element 0 TEID

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1336 613875-009

8.3.4.3.6.10 Query Node-to-Root Topology (0x0413)

This command retrieves the scheduler topology from the EMP firmware for a given TEID to the Root
Node.

The EMP firmware, as response to this command, returns all the scheduling elements that are visible to
the software in the provided data buffer, including any padded layers it might have added for the given
hierarchy.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-49 describes command format and defines
command-specific fields.

Table 8-50 describes format of the data returned by firmware in the response buffer for each element in
the hierarchy of scheduling tree for the given TEID.

.

.

.

Element n TEID

Table 8-49. Query Node-to-Root Topology Command and Response Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x0413

Datalen 4-5 Length of response buffer.

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

TEID 16-19 Element TEID.

Number of Nodes 20-23 0 Zeroed by driver. EMP firmware returns the number of elements in the branch.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-50. Query Node-to-Root Topology Response Buffer per Element Structure

Name Byte.Bit Value Remarks

Parent TEID 0-3 Element’s parent TEID.
Note: For the Element Type “Root Port”

this would be set to 0xFFFFFFFF.

Node TEID 4-7 Element TEID.

Table 8-48. Delete Scheduling Elements Command Buffer per Group [continued]

Name Byte.Bit Value Remarks

613875-009 1337

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Element Type 8 0 = Undefined
1 = Root Port
2 = TC
3 = SE Generic
4 = Software entry point SE
5 = Leaf
6 = SE Padded
7-255 = Reserved

Root Port, TC nodes are typically in firmware
control.

Valid Sections 9 Bit 9.0: Generic section (Must be set to 1b)
Bit 9.1: CIR BW
Bit 9.2: EIR BW
Bit 9.3: Shared BW
Bits 9.4-9.7: Reserved

Multiple sections can be valid at given time.
EIR BW and Shared BW profiles are mutually
exclusive and hence only one of them can be
set for any given element.

Generic 10 Bit 10.0: Scheduling Mode
0b = BPS
1b = PPS

Bits 10.1–10.3: Priority among siblings (0-7)
Bit 10.4: Single Priority

0b = Node
1b = WFQ

Bits 10.5-10.6: Adjustment value (0-3) used in
PSM Credit Update flow

Bit 10.7: Reserved

Flags 11 Bit 11.0: If set to 1, indicates node is
suspended.

Bits 11.1-11.7: Reserved.

CIR BW Profile ID 12-13

CIR BW Weight 14-15 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

EIR BW Profile ID 16-17 When the valid section has Shared BW field
set this field points to Share RL Profile ID.
When the valid section has EIR BW field set
this field points to EIR RL Profile ID.

EIR BW Weight 18-19 WFQ Weight (1..200) in Precise subtree, (4..200)
otherwise. (See note in Section 8.3.4.3.6)

Shared RL Profile ID 20-21

Reserved 22-23

Table 8-50. Query Node-to-Root Topology Response Buffer per Element Structure

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1338 613875-009

8.3.4.3.6.11 Set Tx-Scheduler Topology (0x0417)

Table 8-51 describes command format and defines command-specific fields.

This in a indirect command.

Table 8-52 describes the data buffer for the Set Tx-Scheduler Topology command.

Table 8-51. Set Tx-Scheduler Topology Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x0417

Datalen 4-5 Length of data buffer (53 words).

Return value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Control Flags 16 Flags for Set Tx-Scheduler Topology command (see Table 8-53).

Control Flags 17 Reserved in Set Tx-Scheduler Topology command. Used only in Get Tx-Scheduler
Topology command response (see Table 8-53).

Reserved 18-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-52. Data Buffer for the Set Tx-Scheduler Topology Command1

1. The data buffer is used to either store the requested topology in the FW-RAM for subsequent configuration after CORRER (Bit 1 is
set) or update the PSM (Bit 2 is set). If all flags are zero except for Bits 4-7, the data buffer is ignored by firmware.

Word Offset Description Section
Reference

0x0000 Relevant for storing the PSM section in the FW-RAM region as an NVM TLV 6.3.30.1

0x0001 Relevant for storing the PSM section in the FW-RAM region as an NVM TLV 6.3.30.2

0x0002 Logical Layer Config 6.3.30.3

0x0003 + 1*n, n=0...8 Logical Layer Structure 6.3.30.4

0x000C Max_RDMA_Qsets 6.3.30.5

0x000D + 4*n, n=0...7 Logical L2/L3 CIR/EIR 6.3.30.6

0x000E + 4*n, n=0...7 Logical L4/L5 CIR/EIR 6.3.30.7

0x000F + 4*n, n=0...7 Logical L6/L7 CIR/EIR 6.3.30.8

0x0010 + 4*n, n=0...7 Logical L8/L9 CIR/EIR 6.3.30.9

0x002D + 1*n, n=0...7 Node Allocation per Layer 6.3.30.10

613875-009 1339

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Table 8-53 describes the control flags for the Set Tx-Scheduler Topology command.

Global firmware flags for the Set Tx-Scheduler Topology command are listed in Table 8-54. These flags
should be maintained for any Get Tx-Scheduler Topology command responses until restored.

Table 8-53. Set Tx-Scheduler Topology Command Control Flags (Bytes 16 and 17)

Name Byte.Bit Value Remarks

CORRER 16.0 0b = No CORRER after changing
topology.

1b = Do CORRER after changing
topology.

CORRER is mandatory after changing topology. This flag
defines whether firmware initiates the CORRER or is
initiated by the driver.

Topology Source 16.1 0b = Use NVM PFA-PSM section to
define topology.

1b = Use FW-RAM Topology region to
define topology.

If set to 0b (Default behavior):
• During the AQC processing, the Data Buffer is

ignored by the firmware and the topology source flag
in the firmware is set to NVM PFA-PSM.

• During a subsequent CORRER, the firmware uses the
NVM PFA-PSM Section to determine the Tx Scheduler
topology.

If set to 1b (Compatibility Support):
• During the AQC processing, the Data Buffer is used

by the firmware to program the FW-RAM topology
region and the topology source flag in the firmware is
set to FW-RAM Topology Region.

• During a subsequent CORRER, the firmware uses the
FW-RAM Region to determine the Tx Scheduler
topology.

Note: Device topology is only changed by firmware
after a CORRER.

Replace PSM 16.2 0b = No change.
1b = Copy topology data from AQ

Data Buffer to PSM section.

Permanent Opt-in of new topology (may not be
compatible with Old Driver). The changes to the PSM
would only become effective after the next CORRER and
assuming the source flag is set to use the NVM PFA-PSM
section.

Reserved 16.3 Reserved Reserved for future use.

Set TST-US 16.4 0b = Set TST-US PFA TLV to “Use
NVM Default Topology”.

1b = Set TST-US FPA TLV to “Load
New Topology using AQC”.

Bit 4 is a bitmask.
If Bit 4 is set, the first driver to load and take the global
config lock uses the Set Topology AQC to change the
topology.
After issuing the AQC, the driver should set Bit 5 to 1b,
indicating to subsequent drivers not to issue an
additional AQC. See Section 8.3.4.3.6.12 further details.

16.5 0b = Set TST-US FW FLAG to
“Topology AQC not issued”.

1b = Set TST-US FW FLAG to
“Topology AQC already issued”.

Bit 5 is cleared by firmware after a PERST or EMPR, or if
all Drivers are unloaded.

16.6-16.7 Reserved

Reserved 17.0-17.1 Reserved Reserved for Get Tx-Scheduler Topology command.

Reserved 17.2-17.7 Reserved Reserved for future use.

Table 8-54. Global Firmware Flags

Name Byte.Bit Restore to Default

CORRER 16.0 Restore to 0 after EMPR, PERST, All Drivers unloaded.

Topology Source 16.1 Restore to 0 after EMPR, PERST, All Drivers unloaded.

Replace PSM 16.2 Restore to 0 after EMPR, PERST, All Drivers unloaded.

Reserved 16.3 Reserved for future use.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1340 613875-009

8.3.4.3.6.12 Get Tx-Scheduler Topology (0x0418)

Table 8-55 describes command format and defines command-specific fields.

This in a indirect command.

Table 8-56 describes the data buffer for the Get Tx-Scheduler Topology command.

Set TST-US 16.4 Do not restore. Value is persistent in PFA.

16.5 Restore to 0 after EMPR, PERST, All Drivers unloaded.

16.6-16.7 Restore to 0 after EMPR, PERST, All Drivers unloaded.

Reserved 17.0-17.1 Reserved for Get Tx-Scheduler Topology command.

Reserved 17.2-17.7 Reserved for future use.

Table 8-55. Get Tx-Scheduler Topology Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x0418

Datalen 4-5 Length of response buffer (53 words).

Return value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Control Flags 16 Returns the values of the control flags from the latest Set Tx Scheduler Topology
command (see Table 8-57).

Control Flags 17 Includes switch to define GET command operation (see Table 8-57).

Reserved 18-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-56. Data Buffer for the Get Tx-Scheduler Topology Command

Word Offset Description Section
Reference

0x0000 Relevant for storing the PSM section in the FW-RAM region as an NVM TLV 6.3.30.1

0x0001 Relevant for storing the PSM section in the FW-RAM region as an NVM TLV 6.3.30.2

0x0002 Logical Layer Config 6.3.30.3

0x0003 + 1*n, n=0...8 Logical Layer Structure 6.3.30.4

0x000C Max_RDMA_Qsets 6.3.30.5

0x000D + 4*n, n=0...7 Logical L2/L3 CIR/EIR 6.3.30.6

0x000E + 4*n, n=0...7 Logical L4/L5 CIR/EIR 6.3.30.7

0x000F + 4*n, n=0...7 Logical L6/L7 CIR/EIR 6.3.30.8

Table 8-54. Global Firmware Flags [continued]

Name Byte.Bit Restore to Default

613875-009 1341

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Note: See Bits 17.0:1 for source of contents in response buffer.

Table 8-57 describes the control flags for the Set Tx-Scheduler Topology command.

0x0010 + 4*n, n=0...7 Logical L8/L9 CIR/EIR 6.3.30.9

0x002D + 1*n, n=0...7 Node Allocation per Layer 6.3.30.10

Table 8-57. Get Tx-Scheduler Topology Command Control Flags (Bytes 16 and 17)

Name Byte.Bit Value Remarks

CORRER 16.0 0b = No CORRER was requested as part of
Set Tx-Scheduler Topology command.

1b = ORRER was requested as part of Set
Tx-Scheduler Topology command.

Firmware returns the value of the last Set
Tx-Scheduler Topology command or
Default (0) if no Set Tx-Scheduler
Topology command was issued.

Topology Source 16.1 0b = Firmware uses NVM PFA-PSM section
to define topology during CORRER.

1b = Firmware use SHADOW RAM Topology
Section to define topology during
CORRER.

Firmware returns the value of the last Set
Tx-Scheduler Topology command or
Default (0) if no Set Tx-Scheduler
Topology command was issued.

Replace PSM 16.2 0b = No change.
1b = Firmware copied topology data from

Data Buffer to PSM.

Firmware returns the value of the last Set
Tx-Scheduler Topology command or
Default (0) if no Set Tx-Scheduler
Topology command was issued.

Reserved 16.3 Reserved Reserved for future use.

Set TST-US 16.4 Firmware returns the value stored in the
TST-US PFA TLV Bit 4.

16.5 Firmware returns the value stored in the
TST-US FW FLAG Bit 5.

16.6:16.7 Reserved Reserved. Firmware returns zero.

Dump_current_Topology 17.0:17.1 00b = When set to 00b in the Get
Tx-Scheduler Topology command,
firmware does not update the
response buffer.

01b = When set to 01b in the Get
Tx-Scheduler Topology command,
firmware returns the topology values
from the PSM into the response
buffer.

10b = When set to 10b in the Get
Tx-Scheduler Topology command,
firmware returns the topology values
from the FW-RAM topology region
into the response buffer.

11b = Reserved

The Get Tx-Scheduler Topology command
can be used to dump the current
topology options from the PSM or from
the FW-RAM topology Region into the
Response buffer for software reference.

Reserved 17.2:17.7 Reserved Reserved for future use.

Table 8-56. Data Buffer for the Get Tx-Scheduler Topology Command [continued]

Word Offset Description Section
Reference

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1342 613875-009

8.3.4.3.7 Tx-Scheduler Resource Allocation and Management

All Tx-Scheduler entities are shared and can be used by any PF. The EMP firmware manages two types
of Tx-Scheduler shared resources:

• Generic Tx-Scheduler topology structure:

— This structure describes the generic scheme of Tx-Scheduler configuration. It includes the
following:

• The number of supported layers in the Tx-Scheduler topology.

• The number of CGDs available for the entire device and for the calling PF.

• The number of available RDMA QSets.

— In addition, this type includes also a definition per logical layer of Max number of siblings
available in each sibling group and the definition of the chunk size. Chunk size defines the
granularity of resource allocation in this layer.

— This structure is built at reset, based on NVM configuration.

— This structure is static and is not changed during runtime.

• Dedicated usage resources:

— This type of resources includes, Nodes, Profiles, and Shared rate limiters.

— It is managed separately per each logical layer.

— Each PF is allocated with a basic set of guaranteed resources, in addition to a shared pool of
resources.

— When a PF allocates a resource, EMP firmware allocates it from its guaranteed pool. If the
guaranteed pool is exhausted and the shared pool is not, the resource is allocated from the
shared pool.

— On resource deallocation, the resource is first released from the shared pool. If the PF shared
pool usage == 0, a guaranteed pool is released.

— Once a resource of type is allocated for a PF, it is uniquely used by this PF until it is released by
its owner.

Notes: An exception for the above: Rate Limit Profile #0 in both CIR and EIR is pre-allocated by the
device. CIR profile #0 represents a “no committed rate” profile. EIR profile #0 represents a
“no RL” profile. Those profiles are available for shared usage of all the PF's. Those Profiles are
owned by EMP firmware and must not be neither modified nor deleted by any one of the PF's.

In the hardware, setting a profile which all its bits are set to zero, configuring it to “No RL” in
the EIR or to “No committed rate” in the CIR.

Beside those two RL profile #0, no other RL profile can be configured same way. Any attempt
of a PF to configure a profile where all its bits are set to zero, is rejected by the EMP firmware.

613875-009 1343

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.4.3.7.1 Query Scheduler Resource Allocation (0x0412)

This command retrieves the schedule resources allocated by EMP firmware to the given PF.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-58 describes command format and defines
command-specific fields.

Table 8-59 lists the content of the data buffer received by software as a response to Query Scheduler
Resource Allocation command.

Table 8-60 lists the content of the data buffer received by software as a response to Query Scheduler
Resource Allocation command. Table 8-61 and Table 8-62 lists the content of data specific to different
resource types.

Table 8-58. Query Scheduler Resource Allocation Command

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0412 Command opcode.

Datalen 4-5 (2-2048) Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-59. Query Scheduler Resource Allocation Command Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0412 Command opcode.

Datalen 4-5 16 + 32x9 Length of response buffer. Should be Number of resource returned x resource entry
size.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 0

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1344 613875-009

Table 8-60. Query Scheduler Resource Allocation Response Buffer

Offset (Bytes) Description

0-31 Generic Scheduler properties.

32-63 Logical Layer 1 properties.

.

.

.

(32 x n) - (32 x (n + 1) - 1) Logical Layer n properties (maximum 9 layers).

Table 8-61. Data Structure for Generic Scheduler Properties

Offset (Bytes) Description

0-1 Total number of available physical scheduling layers.

2-3 Total number of available logical scheduling layers (software visible).

4 A bitmap indicating for layers 2-9, the layers that are flattened if flattening is enabled.
Bit 0 points to L2 and Bit 7 points to L9

5 Total Number of CGDs supported by the device.

6 Total Number of CGDs available for this PF.

7 Reserved.

8-9 Total number of RDMA QSets in the device.

10-31 Reserved (for future use).

Table 8-62. Data Structure for Each Logical Layer

Offset (Bytes) Description

0 Logical Layer number.

1 Chunk Size: Amount of nodes which allocated as a chunk whenever a PF gains nodes.

2-3 Total number of nodes that can be configured at this layer for the whole device.

4-9 Reserved

10-11 Max sibling group size at this layer.

12-13 Shared number of CIR RL Profiles available at this layer for the PF, including its dedicated and the available
shared ones.

14-15 Shared number of EIR RL Profiles available at this layer for the PF, including its dedicated and the available
shared ones.

16-17 Shared number of SRL Profiles available at this layer for the PF, including its dedicated and the available shared
ones.

18-31 Reserved.

613875-009 1345

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

8.3.4.3.7.2 Add RL Profiles (0x0410)

This Command adds a number of Rate Limiter Profiles.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-63 describes command format and defines
command-specific fields.

Table 8-64 lists the content of the data buffer provided by software to configure RL profiles for each
profile.

Table 8-63. Add RL Profiles Command and Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x0410

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number or Profiles 16-17 Number of RL profiles to be retrieved for given PF.

Number of Actually
Added Profiles

18-19 Zeroed by
software.
Written by

EMP firmware.

Number of added profiles by EMP firmware.

Reserved 20-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-64. Add RL Profiles Data in Command Buffer per Each RL Profile

Name Byte.Bit Value Remarks

Tx-Scheduler Layer 0 Valid values = 1-9 Logical Layer number visible to software (Max = 9).
Note: In case of RLs aimed to Queues, the layer is the

max logical layer independently of where the
queue was attached.

Flags 1 Bits 1.0-1.1: Profile Type
00b = CIR
01b = EIR
10b = Shared
11b = Reserved

Bits 1.2-1.7: Reserved (0)

Type of RL profile to be added.

Profile ID 2-3 Command: Reserved as part of command (0).
Response: The profile index value returned by firmware.

Max Burst Size 4-5 Max valid value is 0xFFF (12 bits in
hardware).

Max burst size.

RL Multiply 6-7 Max valid value is 0x7FF (11 bits in
hardware).

Reserved when adding shared RL.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1346 613875-009

Note: As noted above, software is allowed to add a profile where all its bits are set to zero. Any
attempt to do this is rejected by EMP firmware with the error code EPERM.

8.3.4.3.7.3 Query RL Profiles (0x0411)

This command retrieves a number of Rate Limiter Profiles from the EMP firmware.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 8-65 describes command format and defines
command-specific fields.

Table 8-66 lists the content of the data buffer set by software as part of the Query RL Profile command
for each requested profile.

Wake-Up
Calculation

8-9 When 9.7 is set to 0b:
Bits 8.0-9.0 = Sub-integer
granularity of number of cycles
(1/128…127/128).
Bits 9.1-9.6 = Number of cycles.

When 9.7 is set to 1b:
Bits 8.0-9.6 = Number of cycles.

Reserved when adding shared RL.

RL Encode 10-11 Max valid value is 0x3F (6 bits in
hardware).

Reserved when adding shared RL.

Table 8-65. Query RL Profiles Command and Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0411

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number or Profiles 16-17 Number of RL profiles to be retrieved for given PF.

Number of
Retrieved Profiles

18-23 Number of actually retrieved profiles. If this number is not equal to the requested
number, an error is reported as well.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-64. Add RL Profiles Data in Command Buffer per Each RL Profile [continued]

Name Byte.Bit Value Remarks

613875-009 1347

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Table 8-67 lists the content of the data buffer received by software as a response to Query RL Profile
command.

Table 8-66. Query RL Profile Data in Command Buffer for Each Profile

Name Byte.Bit Value Remarks

Tx-Scheduler Layer 0 Valid values = 1-9 Logical Layer number visible to software (Max = 9).

Flags 1 Bits 1.0-1.1: Profile Type
00b = CIR
01b = EIR
10b = Shared
11b = Reserved

Bits 1.2-1.7: Reserved (0)

Type of RL profile to be retrieved.

Profile ID 2-3 The profile index value.

Reserved 4-11

Table 8-67. Query RL Profile Data in Response Buffer for Each Profile

Name Byte.Bit Value Remarks

Tx-Scheduler Layer 0 Valid values = 1-9 Logical Layer number visible to software (Max = 9).

Flags 1 Bits 1.0-1.1: Profile Type
00b = CIR
01b = EIR
10b = Shared
11b = Reserved

Bits 1.2-1.6: Reserved (0)
Bit 1.7: Profile Allocation

0b = Profile is allocated.
1b = Profile is not allocated by any

PF.

Type of RL profile to be retrieved.

Profile ID 2-3 The profile index value.

Max Burst Size 4-5 0 - 0xFFF Max burst size.

RL Multiply 6-7 0- 0x7FF Reserved when retrieving shared RL.

Wake-Up
Calculation

8-9 When Bit 9.7 is set to 0b:
Bits 8.0-9.0 = Sub-integer
granularity of number of cycles
(1/128…127/128).
Bits 9.1-9.6 = Number of cycles.

When Bit 9.7 is set to 1b:
Bits 8.0-9.6 = Number of cycles.

Reserved when retrieving shared RL.

RL Encode 10-11 0 - 0x3F Reserved when retrieving shared RL.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1348 613875-009

8.3.4.3.7.4 Remove RL Profiles (0x0415)

This command allows PF software to delete a number of Rate Limiter Profiles.

It is the PF’s responsibility to verify that each deleted profile is not associated with any node prior to
removing it. It is the PF's responsibility to limit itself for removing profiles which it owns only.

PF must never remove RL profile #0 of CIR or EIR. Attempting to remove a RL profile #0, is rejected by
EMP firmware with the Error code EPERM.

This is an Indirect Admin Queue command. Table 8-68 describes command format and defines
command-specific fields.

Table 8-69 lists the content of the data buffer set by software as part of the Remove RL Profile
command for each requested profile

The generic structure of the Admin Queue command is defined in Section 9.5.5. All the Transmit
Scheduler Admin Queue commands described in the following sections are derived from the generic
Admin Queue commands, using a generic Admin Queue command structure as a baseline.

Table 8-68. Remove RL Profile Command and Response

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2 for details.

Opcode 2-3 0x415

Datalen 4-5 0 Length of response buffer.

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Profiles
to Remove

16-17

Number of Actually
Removed RL Profiles

18-19 Zeroed by the driver. Written by the EMP firmware.

Reserved 20-23

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 8-69. Remove RL Profile Data in Command Buffer for Each Profile

Name Byte.Bit Value Remarks

Tx-Scheduler Layer 0 Valid values = 1-9 Logical Layer number visible to software (Max = 9).

Flags 1 Bits 1.0-1.1: Profile Type
00b = CIR
01b = EIR
10b = Shared
11b = Reserved

Bits 1.2-1.7: Reserved (0)

Type of RL profile to be retrieved.

Profile ID 2-3 The profile index value. Valid values according to layer. If
software provides out-of-range value, EMP firmware responds
with ERANGE. Same response if ID == 0.

Reserved 4-11

613875-009 1349

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

Sections describing Transmit Scheduler Admin Queue commands relate to the Admin Queue command
fields that are specific to the particular command. For a description of the common Admin Queue
command fields, see Section 9.5.5.

The Transmit Scheduler uses various types of Admin Queue commands. Some of them are Direct Admin
Queue commands (all command information is provided within the body of the command) and some
are Indirect (additional data is provided within the buffer referred to by the Admin Queue command).
Some commands report completion within the Admin Queue command body and others carry
completion information in the buffer provided by the original command. Each Transmit Scheduler Admin
Queue command indicates its type in the command description. For a detailed description of all the
Admin Queue command types and their differences, see Section 9.5.5.

8.3.4.3.8 Common Processing and Error Handling

Transmit Scheduler Admin Queue commands use a generic error reporting structure described in
Section 9.5.9. Table 8-70 lists errors specific to the Transmit Scheduler Admin Queue commands and
reported in Admin Queue Completions, providing their cause and a reported error code.

Table 8-70. Transmit Scheduler Admin Queue Completion Errors

Error Name Error Code Description

Invalid Handle ENOENT Upon allocation of the Transmit Scheduler resources, software is provided with
various handles, such as TC Handle, UP Handle, and QS Handle. Those handles
must be used by software for future reference to the allocated resources. This error
indicates that the handle provided by the software is not valid.

Invalid TEID ENOENT TEID provided within Admin Queue command is not valid.

Parameter out of range ERANGE Provided argument does not match definition (for example, not within allowed
range).

Resource allocation failure ENOSPC Failed to allocate Transmit Scheduler resource.

Operation not permitted EPERM Depending on the scheduler configuration scheme, certain Admin Queue
commands should not be used by the software (for example, ETS-based
configuration software should not attempt configure bandwidth allocation to a VSI
or Scheduling Component).
This error indicates that the software attempted to execute an Admin Queue
command that is not valid in the current context.

Intel® Ethernet Controller E810 Datasheet
Quality of Service (QoS)

1350 613875-009

NOTE: This page intentionally left blank.

613875-009 1351

Intel® Ethernet Controller E810 Datasheet
Device Services

Chapter 9 Device Services

9.1 Interrupts

9.1.1 Interrupt Signaling

The E810 supports the following interrupt signaling according to per-PF setting options:

• Legacy INTA/INTB/INTC/INTD interrupt message on the PCIe is supported for the PFs. The E810
exposes legacy interrupt support in the Interrupt Pin field in the PCI configuration space of the PF.
The Interrupt Pin parameter is loaded from the NVM (to the PFPCI_CNF register), defining the
interrupt pin (A,B,C,D or none) per PF. It is the NVM programmer’s responsibility to follow the PCI
rules for allocating orderly interrupt pins for the PCI functions. The PFPCI_CNF register can be
modified in the NVM using the adaptive NVM admin command. The legacy interrupt is triggered by
the interrupt vector zero of the PF.

• MSI is exposed in the MSI capability structure in the PCI configuration space of each PF. The MSI
interrupt is triggered by the interrupt vector zero of the PF. The MSI capability is enabled per PF by
the MSI_EN bit in the PFPCI_CNF register (loaded from the NVM). The PFPCI_CNF register can be
modified in the NVM using the adaptive NVM admin command.

• MSI-X enables multiple interrupts for the PFs as well as the VFs. MSI-X is exposed in the MSI-X
capability structure in the PCI configuration space of all PFs and VFs. The number of supported
MSI-X vectors is defined by the Table Size parameters in the MSI-X capability structure in the PCI
configuration space of the PFs and the VFs. The Table Size parameters are loaded from the NVM for
each PF and for each of its VFs following FLR. The Table Size parameters setting in the NVM
(according to the values loaded to the PFINT_ALLOC.FIRST/LAST register) must obey the following
limitations:

— The total number of MSI-X vectors in the device is 2048. The sum of the Table Size parameters
for all functions (PFs and VFs) must not exceed it.

— The maximum number of supported MSI-X vectors for the PFs is 2048.

— The maximum number of supported MSI-X vectors for the VFs is 2048.

— The interrupt vectors of the functions are mapped to the internal physical space of the device.

— The settings of FIRST and LAST fields in the PFINT_ALLOC registers can be modified in the NVM
using the adaptive NVM admin command.

— The mapping of all VFs of a PF must be contained within the space of the PF (shown in the
example in Figure 9-1). The GLINT_VECT2FUNC registers provide the inverse mapping from the
internal physical space to the functions. At the PF driver initialization phase, the software
should set the registers of the PF interrupts according to the PFINT_ALLOC and VPINT_ALLOC
settings.

— The mappings for VFs ownership are loaded by software to the VPINT_ALLOC and
GLINT_VECT2FUNC registers when allocating vectors to a VF before SR-IOV enablement.

Intel® Ethernet Controller E810 Datasheet
Device Services

1352 613875-009

9.1.1.1 Interrupt Enable Procedure

Interrupts are enabled at three levels:

• Enablement on the PCIe interface by PCI configuration registers programmed by the OS.

— Legacy INTA/INTB/INTC/INTD interrupt message is controlled by the Interrupt Disable flag in
the Command Register in the PCI configuration space per PF.

— MSI is enabled by the MSI Enable flag in the MSI Capability structure in the PCI configuration
space per PF.

— MSI-X is enabled by the MSI-X Enable flag in the MSI-X Capability structure in the PCI
configuration space per PF and per VF, and further enablement by the Mask bit per MSI-X vector
in the MSI-X Table Structure.

• Enablement of the interrupts by the driver by the INTENA flag in the xxINT_DYN_CTL0 and
xxINT_DYN_CTLN registers (where xx=VF), or GLINT_DYN_CTL for PF.

— The software driver sets the INTENA flag and clears the WB_ON_ITR flag to enable the relevant
interrupt signal. Upon interrupt assertion, the INTENA flag and, in case of legacy interrupts, the
interrupt level are auto-cleared.

— Enablement of the interrupts per cause by the CAUSE_ENA flag in cause control registers (see
Section 9.1.2).

• Interrupt moderation:

— Interrupt Throttling (ITR) is described in Section 9.1.4.1.

— Interrupt rate limiting (INTRL) is described in Section 9.1.4.2.

Figure 9-1. Example for Interrupt Vectors and CEQ Interrupt Control Registers Mapping to
the Internals Space

PFINT_ALLOC[PF 0].FIRST
PFINT_ALLOC[PF 0].LASTPFINT_ALLOC[PF 1].FIRST

PFINT_ALLOC[PF 1].LAST

012345678910111213141516.2047

Internal Physical Interrupt Space of 2K interrupts PF Interrupt Space

VPINT_ALLOC[VF n].FIRSTVPINT_ALLOC[VF n].LASTVPINT_ALLOC[VF n+1].FIRST
VPINT_ALLOC[VF n+1].LASTVPINT_ALLOC[VF n+2].FIRSTVPINT_ALLOC[VF n+2].LAST

VF Interrupt Space
0123401234567891011.

PF 0

PF 1

PF n...

010123012

VF n
VF n+1
VF n+2

Interrupt registers Indexes of the PFs Interrupt registers Indexes of the VFs

613875-009 1353

Intel® Ethernet Controller E810 Datasheet
Device Services

9.1.1.2 Pending Interrupt Array - PBA

On top of the interrupt signaling on the PCIe bus, the E810 also supports the standard PBA structure in
the MSI-X BAR (see BAR description in Section 14.2.6.1). The PBA is relevant only when MSI-X is
enabled. It is described as part of the MSI-X Capability structure in Section 14.3.3 for the PF, and
Section 14.5.3.1 for the VFs. A bit in the PBA is set to one when an interrupt is triggered internally, and
cleared when the MSI-X vector is sent on the PCIe bus.

9.1.1.3 Interrupt Sequence

This section describes the interrupt sequence of events started by an internal event that triggers an
interrupt until it is sent to the PCIe bus, and the expected software response. Note that the description
of the interrupt sequence refers to flags that are explained in the following sections.

MSI and MSI-X interrupts while interrupts are enabled:

1. Any of the interrupt causes has an event that sets an internal INTEVENT flag for the matched
interrupt signal.

2. If the interrupt is enabled by INTENA and also enabled by the interrupt moderation policy (ITR and
rate limiting), the hardware executes the following steps in order:

a. Scan all queues associated with this interrupt by a linked list explained in Section 9.1.3. Write
back the status of all completed descriptors that were not reported so far, and clear the internal
EVENT flags of these queues.

b. Set the matched bit in the pending interrupt block array (PBA).

c. The INTEVENT and INTENA are auto-cleared.

3. If the interrupt is enabled by the OS (by PCIe setting), the interrupt message is sent to the PCIe.

• The interrupt indication in the PBA is auto-cleared.

4. During the interrupt handler, the software processes each individual interrupt cause.

5. At the end of the interrupt handler, the software re-enables the interrupts by setting INTENA.

• On the same register, the software also sets the CLEARPBA flag, which clears the matched bit in
the PBA.

• On the same register, the software can update one of three ITRs of this interrupt by setting the
ITR_INDX and INTERVAL fields. Setting the ITR_INDX to 11b does not impact the ITRs. See the
ITR explanation in Section 9.1.4.1.

MSI/MSI-X interrupts while interrupts are disabled by the OS:

1. Same as above.

2. Same as above.

3. The OS polls the PBA and schedules the interrupt handler

4. Same as above.

5. Same as above.

Intel® Ethernet Controller E810 Datasheet
Device Services

1354 613875-009

Legacy interrupts while interrupts are enabled by the OS (mapped to interrupt zero of the
PF):

1. Same as above.

2. Same as above.

3. If the interrupt is enabled by the OS (by PCIe setting), the interrupt message is sent to the PCIe.

4. At the very beginning of the interrupt service routine, the software driver clears the internal PBA by
setting the CLEARPBA flag in the relevant GLINT_DYN_CTL register.

• As a result, an interrupt de-assertion message is sent on the PCIe bus.

Note: When several PFs are assigned to the same legacy interrupt, the interrupt de-assertion
message must be sent only when all PFs associated with that interrupt have cleared the
internal PBA as mentioned above.

5. During the interrupt handler, the software processes each individual interrupt cause.

6. At the end of the interrupt handler, the software re-enables the interrupts by setting INTENA.

• On the same register, the software can update one of three ITRs as explained above.

9.1.2 Interrupt Causes

This section lists all interrupts causes (sources), while mapping these causes to the interrupt vectors is
described in Section 9.1.3. Note that only the PF has access to any of the cause registers listed in this
subsection. Therefore, VF is required to request its cause-mapping programming from the PF by admin
command or any other sideband channel out of the scope of this document.

9.1.2.1 LAN Transmit Queues

The E810 supports 2K LAN transmit queues in legacy mode and up to 16K queues in comm mode for
the whole device, where each queue is a potential interrupt cause. A status reporting of a completed
descriptor with EOP bit set is considered as a transmit “event” that can trigger an interrupt (if the
interrupt is enabled).

LAN transmit queue ‘n’ is enabled for interrupts by the CAUSE_ENA flag in its QINT_TQCTL[n] register.
The queues are mapped to any interrupt vector within the function space by the MSIX_INDX field in the
QINT_TQCTL[n] register, and mapped to any of it’s ITRs (or immediate interrupt) by the ITR_INDX field
in this register. See ITR description in Section 9.1.4.1.

9.1.2.1.1 Transmit Descriptors Write-Back and Interrupts

Completed transmit descriptors are posted to host memory or its Completion Queue (if applicable) in
one of the following cases:

• Unrelated events to interrupts.

— Transmit descriptors with active RS or RE flags are completed.

— Completion Queue cache line contains an indication of 16 completed transmit descriptors.

• Interrupt scheduling impact on transmit descriptor write-back is a function of the NoExpire flag in
the queue context, plus the CAUSE_ENA bit in the QINT_TQCTL register, plus the INTENA settings
in the xxINT_DYN_CTLx register for the interrupt, as presented in Table 9-1.

613875-009 1355

Intel® Ethernet Controller E810 Datasheet
Device Services

Notes:

1. The NoExpire flag is expected to be set at queue initialization and remain static.

2. All transmit queues associated with the same Completion Queue must have the same NoExpire
setting.

9.1.2.2 LAN Receive Queues

The E810 supports 2K LAN receive queues for the whole device, where each queue is a potential
interrupt cause. A DMA completion of a descriptor with an EOP flag and its buffer is considered as a
receive “event” that triggers an interrupt (if the interrupt is enabled). Furthermore, if the number of
free descriptors on the receive queue drops below threshold, it is considered as “immediate event”
(described in the following subsections). The low threshold is defined by the LRXQTRESH parameter in
the receive queue context.

Similar to the LAN Transmit Queues, the LAN Receive Queues are mapped to any ITR of any interrupt
vector by the matched QINT_RQCTL registers.

9.1.2.2.1 Receive Descriptors Write-Back and Interrupts

Completed receive descriptors are posted to host memory in one of the following cases:

• Unrelated events to interrupts.

— Whole internal cache line of descriptors are completed.

— All completed descriptors in the internal cache are posted to host memory when the receive
queue context is evicted from the cache.

Table 9-1. Tx-Queue Interrupt Setting

NoExpire1

1. The “NoExpire” setting for Tx-Queues is only applicable for Completion Queues usage.

CAUSE_ENA INTENA WB_ON_ITR Functionality2

2. See Section 9.1.4.1 for details on ITR.

N/A 0 N/A N/A

Transmit queue is not associated with any interrupt. Descriptors
write-back do not affect and are not affected by the interrupt logic.
This setting cannot be used with queues associated with a
Completion Queue (since nothing triggers the flush of Completion
Queue).

0 1 1 0

Default LAN driver setting.
Completed descriptors with EOP trigger the ITR.
Completed descriptors with RS or RE flags are written back.
At ITR expiration, the most recent completed descriptors with EOP is
WB for all queues associated with this interrupt. Then, if Completion
Queue(s) are used, its cache line is posted to host memory. Then
the interrupt is initiated.

0 1 Any 1
Polling driver setting.
Same as above while interrupt is NOT initiated.

1 1 1 0

This setting is used only if Completion Queues are used.
Flow is the same as above, while following ITR expiration only the
most recent completed descriptors with EOP are written back for
ONLY one Tx-Queue per Completion Queue, and then the
Completion Queue’s cache line is posted to host memory. Then the
interrupt is initiated.

1 1 Any 1 Same as above while interrupt is NOT initiated.

Intel® Ethernet Controller E810 Datasheet
Device Services

1356 613875-009

— Interrupt scheduling impact on receive descriptors write-back is a function of the NoExpire flag
in the queue context, plus the CAUSE_ENA in the QINT_RQCTL register, plus the WB_ON_ITR
and INTENA settings in the xxINT_DYN_CTLx register for the interrupt, as in Table 9-2.

Note: Software can dynamically switch between WB_ON_ITR mode and ITR mode by setting/
clearing the WB_ON_ITR flag.

Note: The NoExpire bit should be configured at RXQ initialization and cannot be changed on the fly.

Warning: The NoExpire mode specified in Table 9-2 can cause excessive PCIe transaction traffic that
is not limited by any rate control/throttling mechanism. It is advised to enable it only for
traffic types requiring low latency, and with consideration to the packet rate supported by
the platform in this mode.

9.1.2.3 Protocol Engine Queues

A completion of an Asynchronous Event Queue Entry or a Completion Event Queue Entry is considered
as an “event” that triggers an interrupt (if the interrupt is enabled). PE Completion Event Queues
(CEQs) and Asynchronous Event Queues (AEQs) can be mapped to any interrupt, with optional
interrupt moderation described in the following subsections.

The E810 supports a single Asynchronous Event Queue interrupt control register (per function). It is
enabled for interrupts by the CAUSE_ENA flag and is mapped to any ITR of any interrupt vector by the
xxINT_AEQCTL register (where xx=PF or VP).

Completion Event Queues (per function) are enabled for interrupts by the CAUSE_ENA flag and are
mapped to any interrupt vector and its ITRs by the GLINT_CEQCTL registers. The GLINT_CEQCTL
registers are allocated to the functions by the PFINT_ALLOC and VPINT_ALLOC registers (the same as
the interrupts allocation). See Figure 9-1 that illustrates an example of an allocation.

Note: All PFs and up to 32 VFs can be enabled for the PE. Each enabled function has a single AEQ
and a set of global CEQs. All the functions have the a full set of xxINT_AEQCTL and
GLINT_CEQCTL registers (total of 264 AEQ interrupt control registers and 2048 CEQ interrupt
control registers).

Table 9-2. Rx-Queue Interrupt Setting

NoExpire CAUSE_ENA INTENA WB_ON_ITR Functionality1

1. See Section 9.1.4.1 for details on ITR.

0 0 N/A N/A
Receive queue is not associated with any interrupt and descriptors
write-back are made only according to the internal cache policy (in
other words, when a full cache line is available for write-back).

0 1 1 0

Completed descriptors are posted to host memory according to the
internal descriptor cache policy (in other words when a full cache
line is available for write-back).
Completed descriptors also trigger the ITR. Following ITR expiration,
all leftover completed descriptors are posted to host memory, and
then the interrupt is triggered.
Note: This means that in case the ITR expires when the relevant

cache line is not full, the same cache line is written back
twice (once when the ITR expires and once when the cache
line becomes full).

0 1 Any 1 Same as above but the interrupt signal is NOT triggered.

1 0 N/A N/A Each completed descriptor is written immediately to host memory.
No interrupts are associated with the queue.

Else Reserved. Forbidden setting options.

613875-009 1357

Intel® Ethernet Controller E810 Datasheet
Device Services

A CEQ[n] of a function is mapped to the GLINT_CEQCTL[k]. It is expected that the software uses only
those registers that represent “real” AEQs and CEQs behind them.

9.1.2.3.1 CEQ Write-Back and Interrupts

Completed CEQ descriptors are posted to host memory by a similar scheme to the receive descriptors
write-back policy. It depends on the settings of the NoExpire flag in the TBD register, plus the
CAUSE_ENA in the GLINT_CEQCTL, plus the WB_ON_ITR and INTENA settings in the xxINT_DYN_CTLx
register for the interrupt.

9.1.2.4 Admin Queues

The E810 supports three types of Control Queues: Firmware Admin Queues (supported also in
predecessor devices), PF/VF Mailbox queues, and Sideband queues.

A completion of an admin command on the transmit queue or posting a structure on the receive queue
is considered an event for the queue pair that can trigger an interrupt (depending on if it was
configured to do so in the relevant descriptor). The registers that map these queue pairs to interrupt
vectors are listed in the following table:

9.1.2.5 Other Interrupt Causes

The E810 supports asynchronous events that can generate interrupts for the PFs. The “other” causes
interrupt events supported by the PFs are indicated by the PFINT_OICR registers and enabled by the
PFINT_OICR_ENA registers per PF. The register’s fields are shown in the Table 9-3.

The “other” causes are mapped to an interrupt vector per PF by the PFINT_OICR_CTL registers.

Note: The “other” causes must be mapped to an interrupt vector index that is within the boundaries
of the allocating PF and cannot be mapped to an interrupt vector allocated to any of the VFs.
Reusing the example given in Figure 9-1, for PF #0, the OICR can only be mapped to
interrupt vector index in the range [0..4], which are the only vectors in PF #0 range that are
not mapped to any VF.

Any “other” cause event sets its matched bit in the PFINT_OICR register. If enabled by the
PFINT_OICR_ENA register, it triggers an interrupt defined by the PFINT_OCTL register.

Control Queue Pairs Mapping to Interrupt Registers

PF Mailbox queues

• PFINT_MBX_CTL maps the PF/VF mailbox of PF0...PF7 to its interrupts.
• PF0INT_MBX_CPM_CTL maps the CPM PFVF MBX to its interrupt.
• PF0INT_MBX_HLP_CTL maps the HLP PFVF MBX to its interrupt.
• PF0INT_MBX_PSM_CTL maps the PSM PFVF MBX to its interrupt.

VF Mailbox queues

• VPINT_MBX_CTL maps the PF/VF mailbox of VF0...VF767 to its interrupts.
• VPINT_MBX_CPM_CTL maps the CPM PFVF MBX of VF0...VF127 to its interrupts.
• VPINT_MBX_HLP_CTL maps the HLP PFVF MBX of VF0...VF15 to its interrupts.
• VPINT_MBX_PSM_CTL maps the PSM PFVF MBX of VF0...VF15 to its interrupts.

PF Sideband queues
• PFINT_SB_CTL maps the SB-IOSF mailbox of PF0...PF7 to its interrupts.
• PF0INT_SB_CPM_CTL maps the CPM SB-IOSF MBX to its interrupt.
• PF0INT_SB_HLP_CTL maps the HLP SB-IOSF MBX to its interrupt.

Firmware Admin Queues:
PF, HLP, and PSM AQs

• PFINT_FW_CTL map the firmware AQ of PF0...PF7 to its interrupts.
• PF0INT_FW_HLP_CTL maps the HLP FW AQ to its interrupts.
• PF0INT_FW_PSM_CTL maps the PSM FW AQ to its interrupts.

Intel® Ethernet Controller E810 Datasheet
Device Services

1358 613875-009

During nominal operation it is expected that the software reads the PFINT_OICR register that indicates
the “other” cause events (this register is read/clear). Setting the flags in the PFINT_OICR register
(other than the queue flags and the SWINT flag), emulates an interrupt event of the specific cause (if
enabled by the PFINT_OICR_ENA register).

Note: Other causes are latched by the hardware even when the interrupt is not initialized or enabled
by the software. Therefore, when software first enables the interrupt, the hardware can
trigger an interrupt of events that occurred while the interrupt was not enabled. If software
wishes to avoid such behavior, it can read and clear the other causes CSR PFINT_OICR before
enabling the interrupt. This behavior is changed from previous generations.

Table 9-3. “Other” Interrupt Causes of the PFs

“Other” Cause Description Affected Functions

Queue Any LAN or PE queues linked to the other cause
interrupt (with the exception of an AEQ).

TSYN_TX Tx packet time is sampled in the PHY(s). Indicated PFs according to port to PF mapping
(configured by PFGEN_PORTNUM) for ports 0…7
and to PF0 for ports 8 and above.

TSYN_EVNT Event is sampled by the 1588 timer due to a
transition in one of the 1588 input GPIOs.

Indicated PFs according to the PF_MASTER field in
the GLINT_TSYN_PFMSTR registers.

TSYN_TGT One of the target time of the 1588 timer is expired. Same as TSYN_EVNT.

ECC_ERR Unrecoverable ECC Error.
This bit is set when an unrecoverable error is
detected in one of the device memories.

Reported to all PFs.

MAL_DETECT Malicious programming detected. Reflected to the parent PF of the malicious VF.

GRST Global Resets Requested (CORER, GLOBR or
EMPR).

Reported to all PFs.

GPIO GPIO Event indicates an event on any of the GPIO
pins enabled for interrupt by the PFINT_GPIO_ENA
register. The GPIO state can be fetched on the
GLGEN_GPIO_STAT register. The level transition
that generates an interrupt is set for GPIO ‘n’ by
the INT_MODE field in the matched
GLGEN_GPIO_CTL[n] register.

Reported to the relevant PF

STORM_DETECT Indicates a change entering the storm control state
of the LAN port that is connected to this PF. The
storm control state is reflected in the
PRT_SWT_SCSTS register.

Reflected to the PF associated with the port.

HMC_ERR HMC errors: PEPMAT or FPMAT.
Specific PEMAT errors are reported in the
PFHMC_ERRORINFO and PFHMC_ERRORDATA
registers.
Specific FPMAT errors are reported in the
PFHMC_ERRORINFO_FPMAT and
PFCHMC_ERRORDATA_FPMAT registers.

Reported to the relevant PF.

PE_CRITERR Protocol Engine Critical Error.
Indicates that the Protocol Engine has encountered
a critical error.

Reported to all PFs.

VFLR VFLR was initiated by one of the VFs of the PF. The
PF software should read the GLGEN_VFLRSTAT
getting an indication for the VF that generated the
VFLR.

Reported to the parent PF.

VFR_DONE VFR sequence by the hardware is completed. The
PF software should read the GLGEN_VFRDONE
indicating it to the VF driver.

Reported to the parent PF.

613875-009 1359

Intel® Ethernet Controller E810 Datasheet
Device Services

9.1.2.6 Software Initiated Interrupt

In some cases, the software might not be able to process all events in a single interrupt handler. In
such cases, the software can schedule another interrupt to complete processing all interrupt events.
The software can trigger an interrupt on any vector and any of its ITRs or NoITR. The software interrupt
is mapped to one of three ITRs or immediate interrupt by the SW_ITR_INDX field in the
xxINT_DYN_CTLx registers (where xx=PF or VF and x=0 or N). When programming the SW_ITR_INDX
parameter, the SW_ITR_INDX_ENA flag in this register should be set as well.

The software initiates the interrupt by setting the SWINT_TRIG flag in the xxINT_DYN_CTLx registers.

Software has the option of setting the SWINT_TRIG flag in the xxINT_DYN_CTLx registers with or
without setting the INTENA flag by using the INTENA_MSK flag in the same register. Setting or clearing
the INTENA flag, not as part of an interrupt handling routine, can lead to race conditions. Therefore, it
is expected that software never clears the INTENA flag, and clearing of the INTENA flag is always done
by hardware for non-debug conditions. Also, it is expected that software sets SWINT_TRIG together
with INTENA only as part of the interrupt handling routine (in other words, at the end of handling an
interrupt).

Setting the software interrupt in the vector of the PF that is assigned for the other causes, the software
INT flag is set in the OICR register of that PF (on top of the interrupt triggering).

9.1.2.7 Interrupt Status Registers

During nominal operation, the software avoids any possible read accesses. The other causes interrupts
of the PFs is an exception. Following an other causes interrupt, the software is expected to read the
OICR register identifying the source of the interrupt. The OICR register provides indication for the
following events:

• Any of the “other” interrupt causes.

• An indication for LAN receive or transmit queues CEQs that might be associated with the OICR
interrupt.

• SWINT indication, which is a result of software initiated interrupt.

SWINT Software interrupt (detailed in Section 9.1.2.6. Reported to the PF that generated the interrupt.

PE_PUSH_OVERFLOW Indication that the PE push buffer is overflowing. Reported to all PFs.

Table 9-3. “Other” Interrupt Causes of the PFs [continued]

“Other” Cause Description Affected Functions

Intel® Ethernet Controller E810 Datasheet
Device Services

1360 613875-009

9.1.3 Interrupt Linked List

The queues are linked to a specific interrupt vector by the MSIX_INDX field in the xxxQCTL registers.
Specifically, the LAN queues and the PE completion event queues are associated with an interrupt
vector by the following registers: QINT_RQCTL, QINT_TQCTL, and GLINT_CEQCTL. Once an event is
initiated on any of these queues, it is added to the linked list of its associated interrupt (unless the
NoExpire flag is set for the event). Interrupt causes mapping to the interrupt vectors are illustrated in
Figure 9-2.

When an interrupt sequence is triggered, the E810 process all active queues in the linked list of this
interrupt. While processing the queues in the linked list, the hardware writes back the status for those
completed descriptors that were not reported already, as listed below:

• LAN Receive Queues — The hardware triggers a status write-back of all completed descriptors.

• LAN Transmit Queues (in legacy mode) — The hardware writes back the completion indication
of the last completed transmit descriptor that has an EOP flag (regardless of the RS bit) and was
not already reported to host memory.

• LAN Transmit Queues (in comm mode) — The hardware writes back the completion indication
of the last completed transmit descriptor that has an EOP flag (regardless of the RS bit) and was
not already reported to its Completion Queue. Once a whole cache line of 64 bytes of the
Completion Queue is written internally, it is posted to host memory. When all Tx-Queues in the
interrupt linked list that are associated with a specific Completion Queue are processed, any
remaining cache line residual is posted to host memory as well.

Note: Multiple Completion Queues can be assigned to the same interrupt. Yet, all transmit
queues that are associated with a specific Completion Queue must be linked by the
software to the same interrupt.

• PE CEQ entries — The hardware writes back the completion indication of all completed CEQ
entries.

Note: The xxxQCTL registers are accessible only to the PF. A VF can assign causes to interrupts with
the help of the PF using an admin command or any other sideband message (out of the scope
of this document).

Figure 9-2. Mapping Interrupt Causes to Interrupt Signaling

Trigger
Interrupt Per interrupt

Vector LogicLinked List Control Trigger ITRx / No ITRInterrupt Rate
Limit (INTRL)

MSIX_INDX
& ITR_INDX

Rx Queues - QINT_RCTL Tx Queues - QINT_TCTL CEQ’s - xxINT_CEQCTLx

ITR_INDX

MSIX_INDX
& ITR_INDX

MSIX_INDX
& ITR_INDX MSIX_INDX

& ITR_INDX

MSIX_INDX
& ITR_INDX

MSIX_INDX
& ITR_INDXMSIX_INDX

& ITR_INDX

MSIX_INDX
& ITR_INDX

MSIX_INDX
& ITR_INDX

SW Interrupt
PE AEQ

“Other” Causes
Admin Queues

613875-009 1361

Intel® Ethernet Controller E810 Datasheet
Device Services

9.1.3.1 Interrupt Linked List Management

This section describes the required software flow for adding and removing an interrupt cause from an
interrupt linked list.

9.1.3.1.1 Initial Linked List Setting and Adding Interrupt Causes

Any interrupt cause can be added to an interrupt vector at any time (either before or after the interrupt
is already active). The interrupt causes are linked to an interrupt vector by setting the MSIX_INDX field
in the xxxQCTL register of the cause. These registers also map the cause to a specific ITR_INDX of the
interrupt and also contain the interrupt CAUSE_ENA flag.

9.1.3.1.2 Removing an Interrupt Cause from an Active Interrupt

An interrupt cause (queue) can be removed from an active interrupt during run time according to the
following steps. This flow is needed as part of a queue disable flow or a VM reset.

1. Disable the interrupt for the cause by clearing the CAUSE_ENA flag in the xxxQCTL register of the
cause.

2. Generate a software interrupt on the same vector.

3. After the interrupt is generated, it is safe to disable the queue or initiate the VM reset.

Note: This flow is not required for VF or PR resets or any higher reset source.

9.1.3.1.3 Migrating a Queue Between Interrupt Vectors

Migrating a queue (or other cause) from one interrupt to another one is done as follows:

1. Software remaps the queue by simply setting of the MSIX_INDX field to the new interrupt, together
with the ITR_INDX and CAUSE_ENA flag in the xxxQCTL register of the cause.

Note: Depending on timing, the previous interrupt could still be initiated for the queue even
after this action.

2. To ensure that the original interrupt vector is no longer triggered by events associated with the
migrated queue, software should trigger a software interrupt to force the processing of all causes
associated with the original interrupt.

Note: Transmit queues associated with a Completion Queue cannot be migrated dynamically.
Migrating a queue in this case violates the rule by which all transmit queues of a specific
Completion Queue must belong to the same interrupt.

Intel® Ethernet Controller E810 Datasheet
Device Services

1362 613875-009

9.1.4 Interrupt Moderation

The E810 is able to throttle interrupts in two layered methods:

• Interrupt Throttling (ITR)

• Interrupt Rate limiting (INTRL).

These methods are detailed in the following subsections.

9.1.4.1 Interrupt Throttling (ITR)

Interrupt throttling is a mechanism that guarantees a minimum gap between two consecutive
interrupts (other than possible jitter caused by handling the interrupts). The E810 counts the time since
the last interrupt is scheduled and compares it against the ITR setting. If an event associated with this
ITR happens before the ITR expires, the interrupt assertion is delayed until the ITR expires. If the ITR
expires before any event associated with this interrupt, the interrupt logic is “armed” and the interrupt
can be asserted the moment the event happens. The ITR intervals per vector are programmed by the
xxINT_ITRx registers. The ITR is measured in units corresponding to the maximal aggregated port
speeds allowed by the device (see Section 9.1.4.3). Note that ITR expiration sequence is triggered only
when all the following conditions are met:

• The ITR timer is expired.

• The INTENA or the WB_ON_ITR flags in the matched GLINT_DYN_CTL register is set.

• The interrupt has credit(s) by the “Interrupt rate limiting” logic explained in Section 9.1.4.2.

Additionally, to the terms mentioned above, the ITR expires when the interval setting for that ITR is
changed.

The E810 supports three ITRs per MSI-X vector, as well as a NoITR option. The interrupt causes are
mapped to one of the ITRs by the ITR_INDX field (per cause). The ITR intervals can be programmed
directly to the xxINT_ITRx registers or via the xxINT_DYN_CTLx registers. It might be useful to set the
initial values using the xxINT_ITRx registers and dynamic update by the xxINT_DYN_CTLx registers, as
explained in Step 4 of the interrupt sequence explained in Section 9.1.1.3.

When any ITR interval of an interrupt with a pending event is expired and the INTRL1 credit is positive,
the hardware follows these steps:

1. Clear the other ITRs of the same interrupt.

2. Process all causes of the same interrupt (associated with all ITRs).

1. See Section 9.1.4.2 description of the Interrupt Rate Limiting (INTRL).

613875-009 1363

Intel® Ethernet Controller E810 Datasheet
Device Services

9.1.4.2 Interrupt Rate Limiting (INTRL)

Interrupt rate limiting is a credit based mechanism that limits the maximum average number of
interrupts per second. The PF controls the rate limit for the vectors in its space (including his VFs) using
the GLINT_RATE registers. The control parameters of these registers are detailed below.

• INTRL_ENA — Enable/Disable option for the INTRL scheme. When disabled, interrupts can be
generated without rate limiting control.

• INTERVAL — The INTRL is a 6-bit interval defined in units determined by the device configuration
(see Section 9.1.4.3). The value determines the time gap on which new interrupt credit is gained.

9.1.4.3 INTRL/ITR Timing Granularity

Due to the optimization of the internal clock speed in the E810 according to the total aggregated
bandwidth allowed by the device (in other words, the sum of all allowed ports linked at the highest
allowable speed), the timing granularity (time units) used for configuring the INTRL and ITR intervals
changes in accordance with the prior. The granularity is determined according to the device’s
configuration during the power-on phase, and is static throughout its operation.

Table 9-4 specifies the INT and INTRL timing granularity values as a function of the relevant device
configuration.

Table 9-4. ITR/INTRL Granularity Values

Aggregated Bandwidth ITR Granularity INTRL Granularity

Less than or equal to 25 Gb/s 4 μs 8 μs

Less than or equal to 50 Gb/s 2 μs 4 μs

Above 50 Gb/s 2 μs 4 μs

Intel® Ethernet Controller E810 Datasheet
Device Services

1364 613875-009

9.2 Virtualization

9.2.1 Overview

I/O virtualization is a mechanism to share I/O resources among several consumers. For example, in a
virtual system, multiple operating systems are loaded and each executes as though the whole system's
resources are at its disposal. However, for the limited number of I/O devices, this presents a problem
because each operating system might be in a separate memory domain, and all the data movement
and device management must be done by a Virtual Machine Monitor (VMM). VMM access adds latency
and delay to I/O accesses, and degrades I/O performance. Virtualized devices are designed to reduce
the burden of the VMM by making certain functions of an I/O device are shared. Thus, they can be
accessed directly from each guest operating system or Virtual Machine (VM).

Two modes to support operation in a virtualized environment were implemented in previous products:

1. Direct assignment of part of the port resources to different guest operating systems using the
PCI-SIG SR-IOV standard (also known as “Native mode” or pass-through mode). This mode is
called IOV mode in this section.

2. Central management of the networking resources by an IOVM or by the VMM (also known as
software switch acceleration mode). This mode is called Next Generation VMDq mode.

The E810 fully supports Next Generation VMDq mode and SR-IOV. The E810 supports two modes of
offloads as part of Next Generation VMDq: VMDq1 and VMDq2.

In VMDq1, all the VMs are part of the same VSI, and each VM is allocated a single queue. There is no
replication of packets to different VMs, and there is no forwarding of traffic from one VMDq1 VM to
another.

In VMDq2, each VM is assigned a switch port (VSI). Thus, there can be full switching between ports,
including VM-to-VM switching and replication of multicast packets.

On top of these modes, The E810 supports Scalable I/O (which is a lightweight version of SR-IOV), in
which traffic and resources are assigned to VMs through an Assignable Interface (AI) that is a CSR
space within the PF space exposed to the VM. Traffic belonging to an AI is identified through a PASID
prefix. See Section 9.2.3 for details on Scalable I/O and PASID.

In a virtualized environment, the E810 serves up to 768 Virtual Machines (VMs) per device; 256 of
these can be directly assigned and any of them can be accessed in Next Generation VMDq mode. See
Section 9.2.2.4 for details of the VFs and VMs resource allocation.

Most configurations and resources of the device are shared across VMs. The PF driver must resolve any
conflicts in configuration between the VMs. For example, the PF driver should manage all the link
configuration requests of the VFs.

Most of the virtualization offload capabilities provided by the E810, apart from the replication of
functions defined in the PCI-SIG IOV specification, are also part of Next Generation VMDq.

A hybrid model, where some of the virtual machines are assigned a dedicated share of the port and the
others are serviced by an IOVM, is also supported. This model can be used when some of the VMs run
operating systems for which VF drivers are available. Such configurations can benefit from IOV. Others
can run older operating Systems for which VF drivers are not available, and are serviced by an
intermediary or models where VFs are assigned to VMs requiring a higher networking bandwidth. In this
last case, the IOVM or VMM is assigned some VSIs and receives all the packets with MAC Addresses of
the VMs behind it. VSIs are described in Section 7.8.8.

The following section describes the support that the E810 provides for virtualization. This section
assumes a single-root implementation of IOV and no support for multi-root.

613875-009 1365

Intel® Ethernet Controller E810 Datasheet
Device Services

9.2.1.1 Direct Assignment Model

The direct assignment support in the E810 is built according to the software model defined by the
SR-IOV specification.

The Physical function (PF) driver is responsible for the initialization and the handling of the common
resources of the port. Other drivers (VF drivers) might read part of the status of the common parts, but
cannot change it. The PF driver might run either in the VMM or in some service operating system. It
might be part of an IOVM or part of a dedicated service operating system.

In addition, part of the non-time-critical tasks are also handled by the PF driver. For example, access to
CSR through the I/O space or access to the configuration space are available only through the primary
interface. Time-critical CSR space, like control of the Tx-Queue and Rx-Queue or interrupt handling, is
replicated per VF. It is directly accessible by the VF driver.

Note: In some systems with a Thick Hypervisor, the service operating system might be an integral
part of the VMM. For these systems, each reference to the service operating system in this
section refers to the VMM.

A channel is provided between the VF driver and the PF driver through the use of admin commands.
See Section 9.5.14.

9.2.1.1.1 Rationale

The purpose of direct assignment is to enable each of the virtual machines to receive and transmit
packets with minimum overhead. The non-time-critical operations (such as init and error handling) can
be done via the PF driver. In addition, it is important that the VMs can operate independently with
minimal disturbance. It is also preferable that the VM interface to the hardware should be as close as
possible to the native interface in non-virtualized systems to minimize the software development effort.

The main time-critical operations that require direct handling by the VM are:

• Maintenance of the data buffers and descriptor rings in host memory. To support this, the DMA
accesses of the queues associated to a VM should be identified as such on the PCIe using a different
Requester ID.

• Handling of the hardware ring (tail bump and head updates).

• Interrupt handling.

The capabilities needed to provide independence between VMs are:

• Per VM reset and enable capabilities.

• Tx QoS control.

• Allocation of separate CSR space per VM.

The queue context creation, rate control, and VF enable capabilities are controlled by the PF.

9.2.1.2 Virtualized System Overview

The following drawings describe the various elements involved in the I/O process in a virtualized
system. Figure 9-3 describes the flow in software Next Generation VMDq operation mode, while
Figure 9-4 describes the flow in IOV mode.

Intel® Ethernet Controller E810 Datasheet
Device Services

1366 613875-009

This document assumes that in IOV mode, the driver on the guest operating system is aware that it
works in a virtual system (para-virtualized) and there is a channel between each of the virtual machine
drivers and the PF driver, allowing message passing (such as configuration request or interrupt
messages). This channel might use the mailbox implemented in the E810 or any other means provided
by the VMM vendor.

Figure 9-3. VMDq System

VMM

CPUs

IOVM / VMM
Guest
OS 1

 PCIe Root Complex
 (VT-d)

Host
memory

LAN Controller

Shared
part VM-1 VM-n

Guest
OS n

SW

HW

Translated
Mem

Accesses
(VT-x)

Translated DMA
Accesses (VT-d)

IOVM GPA

Physical address (HPA)

IOVM GPA

Control

Internal switch

Data

DMA packet
Buffers

Packet switch

Init +
Control

Translated
Mem

Accesses
(VT-x)

613875-009 1367

Intel® Ethernet Controller E810 Datasheet
Device Services

Figure 9-4. SR-IOV Based System

Real time
Control

VMM

CPU

Init

Real time
Control

IOVM/VMM

Guest
OS 1

Host
memory

LAN Controller

Shared
part VM-1 VM-n

Guest
OS n

SW

HW

Translated
Mem

Accesses
(VT-x)

Control

Internal switch

VM 1 PB

IOVM PB

VM n PB
Translated

Mem
Accesses

(VT-x)

PF

Real time
Control

Root Complex
 (VT-d)

Translated DMA
Accesses (VT-d)

Physical addresses (HPA)

Guest 1
Physical
Address

Guest n
Physical
Address

IOVM
Physical
Address

Intel® Ethernet Controller E810 Datasheet
Device Services

1368 613875-009

9.2.1.3 Virtualization Supported Features

The E810 supports a superset of the virtualization features supported in previous products. The
following table compares the virtualization features of the E810 with these of the X710/XXV710/XL710.

Table 9-5. E810 Versus X710/XXV710/XL710 Virtualization Support

Feature E810 Support X710/XXV710/XL710 Support

Virtualization-Specific Capabilities

SR-IOV support Yes Yes

SIOV support Yes No

VMDq1 support Yes Yes

VMDq2 support Yes Yes

ATS support No No

VF-to-PF mailbox Yes (in hardware). Yes (via firmware).

Base mode VF support Yes. Compatible with the X710/XXV710/
XL710.

Yes.

Support for Generic Capabilities

RSS Yes (per VSI). Small or medium size tables. Yes (per VSI). Small or medium size tables.

DCB Yes Yes

Queue selection criteria Programmable SA, VLAN pairs or SA or VLAN

Statistics Per VSI Per VSI

Stateless Offloads Per queue Per queue

RDMA Supported for 32 VFs Supported for 32 VFs

Quantities

Max number of Virtual Machines (VMs) 768 256

Max number of Virtual functions (VFs) 256 per device (globally) 128 per device (globally)

Max number of queues per VF 16 arbitrary or 256 contiguous 16 arbitrary or 256 contiguous

Max number of queues per VMDq2 VSI 2K (Tx) + 2K (Rx) 1536

Max number of queues per VMDq1 VM According to Hash Filter configuration 1

Max number of VMDq2 VSIs 768 256

Interrupt vectors Up to 9 or 65 per VF Up to 9 per VF

Switching Capabilities

MAC Addresses Up to switch capacity 1024 per device (globally)

VLAN tags Up to switch capacity 512 per device (globally)

Switching modes VEB, VEPA VEB, VEPA

VM-to-VM switching Yes Yes

Broadcast and multicast replication Yes Yes

MAC and VLAN anti-spoof protection Yes Yes

VLAN filtering Global and per pool Global and per pool

Drop if no VIS selected Yes Yes

Mirroring Yes Yes

613875-009 1369

Intel® Ethernet Controller E810 Datasheet
Device Services

For more details about the switching support, see Section 7.8.

9.2.1.3.1 Enablement of Virtualization Features

Table 9-6 describes the way to enable each virtualization feature.

9.2.2 SR-IOV Implementation

9.2.2.1 IOV Concepts

The SR-IOV specification defines the following entities in relation to I/O virtualization:

• Virtual Machine (VM) — A virtual machine to which I/O resources are assigned.

• A PCIe device — The physical device that might contain a few physical functions. In this case, the
E810.

• Physical function (PF) — A function representing a physical instance. In this case, a PCIe
function that represents a physical port or a logical port. The PF driver is responsible for the
configuration and management of the shared resources in the function.

• Virtual function (VF) — A part of a PF assigned to a VM.

9.2.2.2 IOV Control

To control the IOV operation, the physical driver is provided with a set of registers and capabilities.
These include:

• The PF_VIRT_STATUS register, which indicates whether SR-IOV is enabled and the number of VFs
enabled.

• Driver-to-driver communication provided by the virtualization admin commands (see
Section 9.5.14).

• Switch and filtering control admin commands (described in Section 7.8.12).

• Reset indications and traffic enables registers per VF using the GLGEN_VFLRSTAT.VFLRS bit,
indicating that a VFLR reset occurred in one of the VFs. When the GLGEN_VFLRSTAT.VFLRS bit is set
for a given VF, this VF cannot send or receive packets. The PF should clear this bit to enable a VF.

• Malicious driver detection (described in Section 9.2.2.2.1).

Promiscuous modes per VM VLAN, multicast, unicast VLAN, multicast, unicast

Tunnel Endpoint Yes No

Table 9-6. Virtualization Features Enablement

Technology Included Features Enablement

SR-IOV Set the GLPCI_CAPSUP.IOV_EN bit.

VEB VEB, VEPA, VMDq2, mirroring Always enabled.

Table 9-5. E810 Versus X710/XXV710/XL710 Virtualization Support [continued]

Feature E810 Support X710/XXV710/XL710 Support

Intel® Ethernet Controller E810 Datasheet
Device Services

1370 613875-009

The flow used to configure a function when SR-IOV is enabled is described in Section 4.4.1.2.

9.2.2.2.1 Interrupt on Misbehavior of VM (Malicious Driver Detection)

The E810 can protect itself from faulty or malicious behavior on the part of a VM driver. This is done by
checking for specific illegal events.

The bits that enable these checks are grouped into four categories: Rx checks, Tx-Descriptor checks,
Tx tail bump and quanta queue checks, and Tx data checks. Individual checks are controlled by global
registers GL_MDCK_RX, GL_MDCK_TCMD_TCLAN, GL_MDCK_EN_TX_PQM, and GL_TDPU_DROP_DIS,
respectively. If a check is not enabled (the bit is cleared) and such an event happens, the monitoring
hardware does not react to the condition, and the device might malfunction.

Table 9-7, Table 9-8, and Table 9-9 list the checks in each group, the register bits used to enable them,
and the value read from the MDET registers when an event is detected.

The default values for these registers are loaded from NVM.

The checks apply both to VF and PF activity. If such behavior is detected, the queue is stopped and an
interrupt is sent to the PF that owns the function and should be re-initialized. For Rx-Queues, the
Queue_Block Indication bit (Bit 21) is set in the context descriptor. This bit must be cleared as part of
the queue init before it can be reused.

Note: This means that a PF will be interrupted both on events from its queues and on events from
its VFs queues.

Tracking which functions have caused an event is done by reading each function’s VP_MDET_RX,
VP_MDET_TX_TCLAN, VP_MDET_TX_PQM, and VP_MDET_TX_TDPU registers for VFs or PF_MDET_RX
PF_MDET_TX_TCLAN, PF_MDET_TX_PQM, and PF_MDET_TX_TDPU for PFs. The registers are cleared by
writing 1’s to them. After such an event the function needs to reset the queue. Tx Data protection is
different in that it does not stop the queue; it drops the offending packet.

Four global debug registers (GL_MDET_TX_PQM, GL_MDET_TX_TDPU, GL_MDET_TX_TCLAN, and
GL_MDET_RX) record the function number event ID and queue number for the first event observed on
Tx and Rx, respectively. These registers are cleared by writing 1’s.

Note: For Tx events (GL_MDET_TX_PQM, GL_MDET_TX_TDPU, GL_MDET_TX_TCLAN), the VF_NUM
field in the global registers can indicate the VF, the VM or if 0, an error in a PF owned VSI. The
software device driver should deduct the actual offending agent from the reported queue
number and the reporting in the per agent registers. For Rx events (GL_MDET_RX), only the
queue number is valid. The offending function should be derived from the owner of the
offending queue.

Since the malicious driver event indication in the various Tx registers is per function, and the details of
the event in the GL_MDET_TX_PQM, GL_MDET_TX_TDPU, and GL_MDET_TX_TLAN registers are
common to all functions, it might not be simple to determine which queue caused the event. Therefore,
the driver might elect to reset the whole function. The PRTDCB_TDPUC contains information per port for
the first malicious event that was detected.

613875-009 1371

Intel® Ethernet Controller E810 Datasheet
Device Services

9.2.2.2.1.1 Tx Data Checks (GL_MDCK_TX _TDPU Register)

The list below describes the checks that are done by the E810 on data fetches for Tx data:

• TTL error (TTL field in IP header = 0)

• Anti-spoof fail1

• PCIe unsupported request (wrong buffer address)

• Malicious offset detected

• Malicious command detected

• Packet size bigger than allowed

• L2 acceptance failed (asserted if the L2 tag acceptance rules described in Section 7.12.3.2.1 are
not met)

• DSCP enforcement - packet is blocked

9.2.2.2.1.2 Tx Descriptor Validity Checks (GL_MDCK_TCMD Register)

Table 9-7 describes the checks that are done by the E810 on Tx-Descriptor.

1. During a function level reset (PFR, FLR, VFR, VMR), spurious malicious events due to anti-spoof event might occur.

Table 9-7. Malicious Driver - Tx-Descriptor Checks (GL_MDCK_TDAT_TCLAN)

Index Event Mode1 Comments

0 Wrong order/Format of descriptors BC+COMS • Wrong Descriptor type.
• Wrong order/format of descriptors.
• DSI traffic with TSO request.
• Non data buffer in the middle of a packet (before EOP arrived).
• Wrong descriptor type.
• Non NOP descriptor arrives after TLEN reached and before

total_descs_in_tso reached.
Note: A null buffer triggers an event even if this bit is cleared.

1 Unsupported Requests BC+COMS Descriptor fetch failed.

2 Tail descriptor is not DDESC with
EOP/NOP

BC+COMS

3 False Scheduling BC+COMS tail == head (No new descriptors)

4 Tail value is bigger than ring length BC+COMS Non endless transmit mode.

5 More than 8 data commands in
packet

BC+COMS

6 Zero packets sent in quanta and no
head update in this quanta

BC+COMS

7 Packet too small or packet too big BC+COMS LSO mode:
Check that headers + MSS/Last Segment size <=
GLCOMM_MIN_MAX_PKT.MAHDL.
Check that headers + MSS/Last Segment size >=
GLCOMM_MIN_MAX_PKT.LSO_COMS_MIHDL (COMS mode).
Check that headers + MSS/Last Segment size >=
GLCOMM_MIN_MAX_PKT.MIHDL (BC mode).

SSO Mode:
Check that packet <=GLCOMM_MIN_MAX_PKT.MAHDL.
Check that packet >= GLCOMM_MIN_MAX_PKT.MIHDL.

Intel® Ethernet Controller E810 Datasheet
Device Services

1372 613875-009

9.2.2.2.1.3 Tx Checks (GL_MCK_EN_TX_PQM)

The following checks are done on the tail bump events and quanta queues:

8 TSO: TLEN is not coherent with sum
{LSO buffers}

BC+COMS DataDesc.EOP arrives before TSO data ended.
TLEN ended and DataDesc.EOP==0.
TLEN ended, data descriptor buffer is not fully used.

9 TSO: Tail reached before TLEN ended BC+COMS

10 TSO: Headers are spread on more
than 3 descriptors

BC+COMS

11 TSO: Sum of TSO buffers < sum of
headers

BC+COMS EOP on header descriptor.

12 TSO: Sum of headers is 0/MSS is
0/TLEN is 0

BC+COMS Iplen==l4len==maclen == 0
Mss == 0
Tlen == 0
COMS:total_descs_in_lso == 0

14 SSO: Quanta does not include a
whole number of SSO packets

COMS Quanta must finish with NOP/Ddesc.EOP.
CDESC with TSO bit set is not allowed.

15 SSO+TSO: Quanta bytes before
additions exceed pkt_len*64

COMS SSO
LSO last quanta

16 SSO+TSO: Quanta commands
exceed max_cmds_in_sq

COMS Can be disabled by CSR (sometimes it can happen).

17 TSO: total_descs_in_lso is not
coherent with last_lso_quanta

COMS total_descs_in_tso reached and last_lso_quanta not reached (is 0).
last_lso_quanta reached (== 1) and total_descs_in_tso not
reached.

18 TSO: total_descs_in_lso is not
coherent with TLEN

COMS total_descs_in_lso descriptors processed but TLEN was not reached.

19 TSO: Quanta bytes is spread on more
than max descriptors in quanta

COMS last_quanta_in_lso = 0, quanta max descriptors finished, and
(pktlen-1)* 64 bytes were not reached.

20 Number of packets in quanta
mismatch

COMS Number of sent packets in quanta does not equal number of packets
in scheduling command.

1. BC - Backward Compatible. COMS - uses quanta queue.

Table 9-8. Malicious Driver - Tx-Descriptor Checks (GL_MDCK_EN_TX_PQM)

Index Event Comments

0 PCI_DUMMY_COMP Enable detection of PCI Dummy Completion (for a QD Fetch Request).

1 PCI_UR_COMP Enable detection of PCI “Unsupported Request” Completion (for a QD Fetch Request).

3 RCV_SH_BE_LSO Empty Q fetch (initiated by PQMMNG after 1st Quanta was delivered to PQMMNG by DBL)
and LSO QD is expected in completion. Completion is received however received QD is
NOT LSO.

4 Q_FL_MNG_EPY_CH In fetch command (initiated by PQMMNG) force_fetch is set (Q is full PQMMNG wise) but
PQMQDC concluded that the Q is empty.

5 Q_EPY_MNG_FL_CH In fetch command (initiated by PQMMNG) force_fetch is clear (Q is empty PQMMNG wise)
but PQMQDC concludes that the Q is not empty.

6 LSO_NUMDESCS_ZERO Enable detection of LSO QD whose Number of Descriptor is zero.

7 LSO_LENGTH_ZERO Enable detection of LSO QD whose Length is zero.

Table 9-7. Malicious Driver - Tx-Descriptor Checks (GL_MDCK_TDAT_TCLAN) [continued]

Index Event Mode1 Comments

613875-009 1373

Intel® Ethernet Controller E810 Datasheet
Device Services

8 LSO_MSS_BELOW_MIN Enable detection of LSO QD whose MSS is below
GL_MDCK_CFG2_TX_PQM.LSO_MIN_MSS.

9 LSO_MSS_ABOVE_MAX Enable detection of LSO QD whose MSS is above
GL_MDCK_CFG2_TX_PQM.LSO_MAX_MSS.

10 LSO_HDR_SIZE_ZERO Enable detection of LSO QD whose Header Size is zero.

11 RCV_CNT_BE_LSO Enable detection of LSO QD for a Q which is LSO disabled.

12 SKIP_ONE_QT_ONLY The 1st Quanta of a LSO QD which is composed of multiple Quantas is delivered to
hardware.
The 1st Quanta is scheduled and hardware fetches LSO QD so it can schedule the other
Quantas of the same LSO QD.
During processing of the fetched LSO QD, hardware concludes it is a single Quanta (which
already been scheduled) although doorbell suggested it is a multiple Quantas.

13 LSO_PKTCNT_ZERO Enable detection of LSO DBL whose first Quanta Number of Segments is zero

14 SSO_LENGTH_ZERO Enable detection of SSO QD whose Length is Zero.

15 SSO_LENGTH_EXCEED Enable detection of SSO QD whose Length exceeds
GL_MDCK_CFG1_TX_PQM.SSO_MAX_DATA_LEN.

16 SSO_PKTCNT_ZERO Enable detection of SSO QD whose Packet Count is Zero.

17 SSO_PKTCNT_EXCEED Enable detection of SSO QD whose Packet Count exceeds
GL_MDCK_CFG1_TX_PQM.SSO_MAX_PKT_CNT.

18 SSO_NUMDESCS_ZERO Enable detection of SSO QD whose Number of Descriptor is zero.

19 SSO_NUMDESCS_EXCEED Enable detection of SSO QD whose Number of Descriptor exceed Minimum of {Remain-
Ring-Length and GL_MDCK_CFG1_TX_PQM.SSO_MAX_DESC_CNT}.

20 TAIL_GT_RING_LENGTH Enable detection of DBL whose Tail is greater than Ring Length. Applicable for both QD
and Legacy Interfaces.

21 RESERVED_DBL_TYPE Enable detection of DBL whose {Type} field is Reserved (2'b11) which is considered
malicious.

22 ILLEGAL_HEAD_DROP_DBL Enable detection of Head Drop DBL over Comms Queue for which Head Drop is disabled.

23 LSO_OVER_COMMS_Q Enable detection of LSO DBL over Comms Queue for which LSO is disabled.

24 ILLEGAL_VF_QNUM Enable detection of VF-TYPE DBLQ element which is associated with illegal Q number.

25 QTAIL_GT_RING_LENGTH Enable detection of DBL whose QDTail is greater than Ring Length. Applicable for QD
Interface.

Table 9-8. Malicious Driver - Tx-Descriptor Checks (GL_MDCK_EN_TX_PQM) [continued]

Index Event Comments

Intel® Ethernet Controller E810 Datasheet
Device Services

1374 613875-009

9.2.2.2.1.4 Rx Checks (GL_MDCK_RX Register)

Table 9-9 describes the checks that are done by the E810 on data fetches for Rx.

When a malicious event is detected in a receive queue, all packets received by this queue are dropped
and no descriptors are fetched until the queue is re-initialized according to the following flow:

1. Disable queue.

2. Re-configure ring head/tail.

3. Reconfigure context (at least clear the Queue_Block Indication bit).

4. Enable queue.

9.2.2.3 Hardware Resources Not Assigned to VFs

Certain device capabilities are not exposed to VFs, neither directly nor via a PF. The following features
are available only to PFs or controlled solely by the PF:

• Power management and WoL are PF resources and are not supported per VF.

• Link Control - The link is a shared resource and as such is controllable only by the PF. This includes
PHY settings, speed and duplex settings, flow control settings, and so on. Flow control packets are
sent using the station MAC Address stored in the EEPROM. The watermarks of the flow control
process and the timeout value are also controllable by the PF only. In a DCB environment, the
parameters of per-TC flow control and the ETS settings are also PF responsibilities.

• Configuration of Control Domains and Profiles is done solely by the PFs and is not exposed to VFs

• DCB policy and configuration of the device (either via DCBx or otherwise) is not open to VFs’
control. A VF can still associate its queues with specific TCs, can request (via its PF) for
Tx-Scheduler nodes to be added under specific VFs, and to set the appropriate QoS fields in its
transmitted packets.

• Special Filtering Options - Save Bad Packets is a debug feature. As such, Save Bad Packets is
available only to the PF. Bad packets are forwarded to a control VSI and thus should not be seen by
a VF in regular operation.

• Reception of long packets is controlled separately per queue. As this impacts flow control
thresholds, the PF should be made aware of the decisions of all VMs. Because of this, the setup of
large send packets is centralized by the PF and each VF might request this setting.

Table 9-9. Malicious Driver - Tx-Descriptor Checks (GL_MDCK_TDAT_TCLAN)

Check Type GL_MDET_RX Bit Event ID on
MDET_RX Register Comments

Rx-Descriptor Address 0 DESC_ADDR 1 Descriptor fetch failed1

1. A read can time-out or return a UR, It might possibly be poisoned or it might be internally blocked for being outside of the physical
address space. The PCIe error registers can be read to distinguish between the reasons.

613875-009 1375

Intel® Ethernet Controller E810 Datasheet
Device Services

9.2.2.4 Hardware Resources Assignment to VFs

Table 9-10 describes how the E810 shared resources are distributed between different VFs. Details for
each type of resource can be found in the relevant section of this document.

Table 9-10. VF Resource Allocation

Resource Allocation Method Section
Reference

General Resources:

Tx-Queues and Rx-Queues Dynamic allocation. Each VF can have a different number of queues (up to 256). Each
PF allocates the queues to its VFs and their VSIs.
Queue initialization is done by the PF.
Following initialization, the VF manages its queues for Tx/Rx operation.

10.2
10.2.2

Admin Queues An Admin Queue is allocated to each VF to communicate with its PF. The queue
accesses a shared mailbox in the device.

9.5

Interrupt Causes and
Vectors

The allocation of interrupt vectors to VFs is fully flexible, loaded from NVM with a limit
on the max number of vectors.
Assignment of interrupt causes:
• Causes for Tx-Queues, Tx-Queues, PE Queues, Admin Queues to interrupt vectors

are done by each VF.
• Other causes are handled only by the PFs. The PF driver can then propagate the

interrupt to the VFs via Admin Queues or some other mechanism.
VFs operate with MSI-X interrupts only.

9.1

Transmit Scheduling The Scheduler Tree can be programmed to assign a subtree to a VF and its resources
(for example, to its VSIs, and its queues). The nodes in the sub-tree can be configured
with all supported attributes, such as guaranteed bandwidth, rate limiting, and
arbitration scheme. Configuration is done by the PF and not directly by the VF.

8.3

Stateless Offloads Tx:
All the regular transmit offloads, like checksum and TSO, are available to VFs.
Enabling these offloads is done by the PF as part of the queue initialization process.

Rx:
All the regular receive offloads, like checksum and header split, are available to VFs.
Enabling these offloads is done by the PF as part of the queue initialization process.

10.4.4 (Rx)
10.5.8 (Tx)

Packet Analyzer

ACLs A VF can request its PF to add/modify/remove an ACL entry on its behalf. The entry
can be potentially associated with the VSI or the VF.

7.9.2

Statistics The VF is not directly exposed to statistics counters. If a VF needs to get statistics for
its traffic, it is done via its PF.

9.6

IEEE 1588 IEEE 1588 is a per-link function and thus is controlled by the PF driver.

RDMA Resources:

RDMA Capabilities 32 VFs can have RDMA capabilities. The GLPE_VFPFMAP table is used to map RDMA
enabled VFs to the RDMA register sets.

11.10

QPs/CQs/CQEs/SDs According to the profile of the device, the QP/CQ/CQE/SD resources are distributed
evenly between the physical functions supporting iWARP. The resources of a PF can be
evenly distributed between the VFs supporting RDMA.

CSRs All VFs have a set of registers to control RDMA functionality. However, only 32 of these
sets are active.
The RDMA register set contains registers in regular VF CSR space. These registers are
accessible to the VF driver and provide a common doorbell page accessible to all the
userspace processes in the VF.

Intel® Ethernet Controller E810 Datasheet
Device Services

1376 613875-009

9.2.3 Scalable I/O and PASID

Scalable I/O Virtualization is a way to expose thousands of lightweight Assignable Device Interfaces
(ADIs) to non-Kernel processes without paying the cost of a lot of SR-IOV functions.

Each ADI exposes part of the fast path interface of the device to a process that can directly define the
buffer content with no need of intervention by the regular Kernel driver for each packet processing.

Each ADI has the same trust level as a VF. The address translation of GPA to HPA uses the PASID tag
that is appended to all the TLPs associated with a process instead of the BDF used in SR-IOV. The VT-d
uses this information to make sure the process is only accessing pages it is allowed to and with the
right access type (R/W).

All the malicious driver protections are in effect for queues assigned to VMs via a valid PASID.

9.2.3.1 Assumptions

The capabilities to be exposed as part of an ADI are:

• Tx-Queues (Quanta queues access uses the same PASID as the matching Tx-Queue)

• Rx-Queues

• Interrupts

• A mailbox queue

All other capabilities, such as Doorbell Queues and Completion Queues, are either not used for PASID
scenarios, or owned by the PF driver.

Switching Resources:

Switch Resources Switch configuration and resource allocation are not done by a VF directly, but through
its PF. See more details in the lines below.

7.8

VSIs Up to 768 VSIs can be directly supported by the E810. These VSI resources are
distributed between the different PFs dynamically. Each VF is guaranteed to receive at
least one VSI. The PF can allocate multiple VSIs to a VF.
There is no limit on the number of VSIs that can be assigned to a VF apart from the
limit due to the number of Tx/Rx-Queue pairs the VF is allocated.

7.8.8

Unicast MAC Addresses,
Multicast addresses, and
VLAN tags

The PF driver is responsible for the resource allocation to its VFs. The E810 does not
manage the per-VF resources of the switch. The PF assigns filters to VFs VSI using the
admin commands listed in Section 7.8.12.5.2.

7.8.10

Filtering Resources:

RSS Directly controlled by each VF.
RSS per VSI with either Small or Medium RSS Table.

7.10.7

Flow Director Flexible population of FD entries with VF rules.
Programming is done through the PF or directly by a VF.

7.10.8

Quad Hash Filtering Each PF allocates a private memory region for itself and its VFs. Each PF populates its
private memory region with its VFs’ entries. The on-die Quad Hash filter caches entries
for both PFs and VFs

7.10.9

Table 9-10. VF Resource Allocation [continued]

Resource Allocation Method Section
Reference

613875-009 1377

Intel® Ethernet Controller E810 Datasheet
Device Services

9.2.3.2 PASID

PASID is a new capability of PCIe 3.1 that allows identification of DMA traffic belonging to specific flows.
It is used by the VT-d engine to do the GPA-to-HPA translation.

9.2.3.2.1 PASID Context

The PASID context is stored per VSI as described below:

• VSI_PASID.PASID[19:0]

• VSI_PASID.EN[31]

This context is used for all the LAN descriptors and data buffers transactions associated with this VSI.

Note: VSI_PASID.EN should not be set for VSIs belonging to a PF that did not enable PASID in its
config space.

9.2.3.2.2 PASID Stop Mechanism

The specification requires support of a mechanism to gracefully stop using a specific PASID. The
mechanism to support this is disabling of all the queues associated with this PASID.

9.2.3.3 Assignable Device Interface

The following resources can be assigned to an ADI:

• A mailbox — Exposed through the 4K page range of mailboxes (32-35 MB).

• A set of interrupts — Exposed through the 4K page range of interrupts (48-56 MB).

• A set of Rx-Queues — Exposed through the 4K page range of Rx-Queues (56 - 64 MB).

• A set of Tx-Queues — Exposed through the 4K page range of Tx-Queues (64 - 128 MB).

• MSI-X vectors — Accessible to the PF either through regular MSI-X BAR or through a table in the
regular BAR.

To be able to access these registers, the BAR0 userspace extension should be enabled by setting
GLPCI_LBARCTL.PAGES_SPACE_EN_PF bit.

Intel® Ethernet Controller E810 Datasheet
Device Services

1378 613875-009

9.3 Host Memory Cache

The E810 uses host memory as backing store for a number of context objects used to track queue state
and iWARP objects. The Host Memory Cache (HMC) is the component responsible for managing the
iWARP context objects stored in host memory. The HMC manages host memory on a per PCI function
basis and further breaks down each PCI function’s HMC memory space into memory used to manage
each context object that is in use for a given PCI function. Host software is responsible for allocation of
the host pages used by the HMC before accessing a specific object. Additionally, the amount of memory
that can be used for HMC backing store for a specific function is dictated by the active resource profile,
which is determined by the software driver’s operating environment and the number of PCI functions
that are currently active. Resource profiles can be selected at driver initialization time.

9.3.1 Host Memory Usage

The HMC requires backing store for numerous data structures to be resident in host memory to perform
its functions. Table 9-11 provides a list of the data structures and the amount of memory that needs to
be allocated for each data structure. The “HMC Object Location” column indicates if the HMC object
(and the associated backing store pages) is located only in the PF HMC object space or if it is located in
both the PF and the VF HMC object space.

In general, Protocol Engine HMC objects are separated into PF- and VF-specific HMC object spaces. The
resources can be sparsely populated. For example, if a function is allotted 512 QPs and only eight are
used, only 4K of memory needs to be allocated, not the entire memory for all 512 QPs. Some HMC
objects need to be fully populated at driver initialization, such as Protocol Engine Hash Table entries.
See Section 11.5 for more information on the HMC resource allocation policies for the Protocol Engine.

Table 9-11. HMC Objects

HMC Object HMC Object
Location

Size
(Bytes) Max Quantity Description

Protocol Engine QP
Context

PE-enabled
PFs and VFs 512 256K

512 bytes are reserved for QP context. There is a
maximum of 256K QP contexts per device. This number is
divided amongst all Protocol Engine enabled PCI functions.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID). In the case
of a single function device, hardware reserves one of the
256K QPs for internal use.

Protocol Engine CQ
Context

PE-enabled
PFs and VFs 64 512K

64 bytes are reserved for CQ context. There is a maximum
of 512K CQ contexts per device. This number is divided
amongst all Protocol Engine enabled PCI functions.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Protocol Engine TCP
Timers

PE-enabled
PFs and VFs 64 228 per

PCI function

This structure is allocated per PCI function. The number of
elements allocated for this structure is dependent on the
number of QPs associated with the PCI function. The
equation for the number of objects is:

((ROUNDUP512(number of QPs)/512) + 1) * 4096.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

613875-009 1379

Intel® Ethernet Controller E810 Datasheet
Device Services

Protocol Engine Hash
Table Entry

PE-enabled
PFs and VFs 64

(#Protocol Engine
QPs + #Multicast

Groups) *
HTMULTIPLIER
per function

This structure is allocated per PCI function. The number of
elements allocated for this structure needs to be:

(round_up_512(number of QPs + number of Multicast
Groups) rounded up to the next power of two) *
HTMULTIPLIER.

The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID). The actual
number of Hash Table entries for the PF is programmed
using the PFQF_PE_CTL1, PFQF_PE_CTL2, VPQF_PE_CTL1,
and VPQF_PE_CTL1 registers.

ARP Table Entry PE-enabled
PFs and VFs 16 65536 per

PCI function

The maximum size of the ARP table is 65536 entries per
Protocol Engine enabled PCI function.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Accelerated Port Bit
Vector In-Use

PE-enabled
PFs and VFs 8K 1 per

PCI function

This table is used for the E810 to track each PCI functions
usage of the Accelerated Port Bit Vector Table, and is only
required for Protocol Engine enabled PCI functions.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Memory Region
Table Entry (MRTE)

PE-enabled
PFs and VFs 32 4M per

PCI function

Each Protocol Engine enabled PCI function can have up to
4M MRTE entries allocated.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Physical Buffer List
Entry (PBLE)

PE-enabled
PFs and VFs 8 256M per

PCI function

Each Protocol Engine enabled PCI function can have up to
256M PBLE entries allocated. The memory for the VF
objects is allocated by the VF driver and accessed using the
VF Requester ID (RID).
Any associated Page Descriptors are accessed allocated by
the PF driver and accessed using the PF RID.

Xmit FIFO PE-enabled
PFs and VFs 32 128M per

PCI function

Each Protocol Engine enabled PCI function can have up to
128M Xmit FIFO entries per PCI function. Xmit FIFO entries
are used to track unacknowledged Protocol Engine Send
Queue work requests (WQEs).
The number of XMIT FIFO entries to allocate for a given
PCI function can be calculated based on expected network
performance and workload pattern. Allocating too few
XMIT FIFO entries will result in head-of-line blocking for PE
QPs running on a particular PCI function.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).
Must be specified as a power of two.

Xmit FIFO Free List PE-enabled
PFs and VFs 4 32M per

PCI function

Each Protocol Engine enabled PCI function can have up to
32M Xmit FIFO Free List entries per PCI function.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Inbound RDMA Read
Queue (IRRQ or Q1)

PE-enabled
PFs and VFs 64 128M per

PCI function

Each Protocol Engine enabled PCI function can have up to
128M IRRQ entries. IRRQ entries are allocated on a per QP
basis and in quanta’s of the maximum number of
outstanding RDMA Reads that are allowed multiplied by 2.
In other words, if a PE-enabled PCI function has 64K QPs
enabled and each is allowed up to 64 outstanding RDMA
Reads, space for 8M (64K*(64*2)) IRRQ entries (512MB)
must be allocated by the driver.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).
Must be specified as a power of two.

Table 9-11. HMC Objects [continued]

HMC Object HMC Object
Location

Size
(Bytes) Max Quantity Description

Intel® Ethernet Controller E810 Datasheet
Device Services

1380 613875-009

Inbound RDMA Read
Queue (IRRQ or Q1)
Free List

PE-enabled
PFs and VFs 4 32M per

PCI function

Each Protocol Engine enabled PCI function can have up to
32M IRRQ Free List entries.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Read Response FIFO PE-enabled
PFs and VFs 32 128M per

PCI function

Each Protocol Engine enabled PCI function can have up to
128M Read Response FIFO entries per PCI function. Read
Response FIFO entries are used to track unacknowledged
RDMA Read work requests (WQEs). The number of Read
Response FIFO entries to allocate for a given PCI function
can be calculated based on expected network performance
and workload pattern. Allocating too few Read Response
FIFO entries will result in head-of-line blocking for PE QPs
running on a particular PCIe function.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).
Must be specified as a power of two.

Read Response FIFO
Free List

PE-enabled
PFs and VFs 4 32M per

PCI function

Each Protocol Engine enabled PCI function can have up to
32M Read Response FIFO Free List entries per PCI function.
The memory of the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Header PE-enabled
PFs and VFs 64 256K

64 bytes are reserved for the QP-specific static data, which
is used when building a packet. There is a maximum of
256K Header objects per device (one per QP). This number
is divided amongst all Protocol Engine enabled PCI
functions.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Metadata PE-enabled
PFs and VFs 16 8M

128 bytes are reserved for metadata, which is used when
building a packet. It is the packet specific, non-static data.
There are a maximum of 1M Metadata objects per device.
This number is divided amongst all Protocol Engine enabled
PCI functions.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Out-of-Order Send
Completion (OOISC)
FIFO

PE-enabled
PFs and VFs 32 256K

32 bytes are reserved for the Out-of-Order Send
Completion Object. There is one of these per QP. It is the
packet specific, non-static data. This number is divided
amongst all Protocol Engine enabled PCI functions.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Out-of-Order Send
Completion (OOISC)
FIFO Free List

PE-enabled
PFs and VFs 4 256K

Each Protocol Engine enabled PCI function can have up to
256K OOISC FIFO Free List entries.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Multicast Group PE-enabled
PFs 64 8192K per

PCI function

Each Protocol Engine enabled PCI Physical Function can
have up to 8K multicast groups. Virtual Functions do not
have multicast groups.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Address Handles PE-enabled
PFs and VFs 64 128K per

PCI function

Each Protocol Engine enabled PCI Function can have up to
128K Address Handles.
The memory for the VF objects is allocated by the PF driver
and accessed using the PF Requester ID (RID).

Table 9-11. HMC Objects [continued]

HMC Object HMC Object
Location

Size
(Bytes) Max Quantity Description

613875-009 1381

Intel® Ethernet Controller E810 Datasheet
Device Services

To access (and cache in on-chip memory) the data structures defined in Table 9-11, the HMC uses the
concept of private memory address space. The E810 has an 8GB private memory address space that
can be sparsely backed with host memory based on actual context usage. Drivers do not need to
allocate pages for HMC objects that are not currently being used by the driver. The private memory
address space is first broken down by PCI function, then by object or data structure type, and finally by
object index. The portion of the private memory address space that is allocated to a particular PCI
function is termed Function Private Memory (FPM). Also note that the VF FPMs are not programmed
directly by the VF drivers. The PF driver uses the HMC function index to select the VF FPM to be
programmed.

Figure 9-5 shows how the E810 provides the address mapping between Private Memory and Host
Physical Addresses. PM address shown on the left side of the figure indicates E810 Private Memory
address from 0 to 8GB-1. The E810 works with PM address space internally, which is converted to Host
Physical Addresses in order to access host memory.

See Section 9.3.2 for information on the Quad Hash cache.

The left portion of Figure 9-5 shows portions of the HMC that are resident on-chip. This portion includes
the actual object caches that retain portions of the data from host memory to improve performance and
the Segment Descriptors (SD). The SDs reside in a 32 KB RAM on-chip called the Segment Descriptor
Table. The Segment Descriptor Table holds 4096 pointers to host memory pages. Unique ranges of
sequential SDs in the Segment Descriptor Table are allocated to a each PCI function that is active. The
Segment Descriptor Table is the first level of private memory address translation provided by the E810.

Figure 9-5. Host Memory Cache Private Memory Address Space

Intel® Ethernet Controller E810 Datasheet
Device Services

1382 613875-009

SDs are programmed using the PFHMC_SDCMD (Section 13.2.2.20.35), PFHMC_SDDATALOW
(Section 13.2.2.20.36), and PFHMC_SDDATAHIGH (Section 13.2.2.20.37) registers. Protocol Engine
CQP operations can also be used to program Segment Descriptors.

Everything to the right of the Segment Descriptor Table in Figure 9-5 resides in host memory. Each PCI
function has a set of registers (GLHMC_SDPART[n] and GLHMC_VFSDPART[n]) that define the base and
number of SDs that belong to the PCI function. The GLHMC_SDPART[n] and GLHMC_VFSDPART[n]
registers are programmed from NVM and can also be programmed by firmware during the Create
Control Queue Pair operation (Section 11.5.2.1).

The E810 provides range checking for each internal access to ensure that a given PCI function is never
allowed to access memory outside of its valid range of SDs. The E810 manages the SD base and
number registers internally based on the resource profile that is either loaded at NVM load or selected
by the first E810 driver to load for a device during the Create Control Queue Pair operation
(Section 11.5.2.1).

The second level of private memory address translation provided by the E810 is Page Descriptors (PDs).
Each SD points to a single host page that is divided into 512 PDs that are simply 64-bit physical
memory addresses. Each PD points to a backing page for the private memory address space. The total
8 GB private memory address space is derived using a fully-populated Segment Descriptor Table
pointing to 4096 4KB Host pages that hold the 2M PDs. Each of the 2M PDs point to host memory
backing pages for a total of 8 GB of address space. As previously mentioned, there is no requirement to
populate all SDs or PDs with memory if the portion of private memory address space is not in use by
software. The format of the PD structure in host memory is shown in Table 9-12.

The HMC Backing Page Physical Address is the address of a driver allocated page that will hold HMC
object context. This address must be aligned to a 4 KB address in host memory. The PD Valid bit allows
software to sparsely-populate the PD entries on an as-needed basis once HMC context objects are
needed. Software must allocate host memory pages which hold packed arrays of PDs as shown in
Figure 9-5. The physical addresses of these PD pages are used to populate SD entries by using the
PFHMC_SDCMD (Section 13.2.2.20.35), PFHMC_SDDATALOW (Section 13.2.2.20.36), and
PFHMC_SDDATAHIGH (Section 13.2.2.20.37) registers. For more information on how to program SDs
using these registers, see Section 9.3.8.

The Private Memory is further divided into separate PCI Function Private Memory (FPM) Addresses. A
PCI function can be either a physical function or a virtual function. The first eight FPM address spaces
are reserved for NIC PFs. The next eight FPM address spaces are used for PFs that support Protocol
Engine provided accelerations for iWARP, RoCEv2, or UDA. The final 32 FPM address spaces are used for
VFs that support Protocol Engine provided accelerations for iWARP, RoCEv2, or UDA.

Figure 9-6 shows how the private memory address space is divided up for each PCI function. The
smallest amount of private memory that can be allocated to a function is 2 MB (1 SD). The maximum
that could be allocated to a function would be the entire segment table, in which case no other function
can have any private memory resources. Note that the object caches address HMC objects using HMC
function number to determine the correct FPM. The FPM identifies the range of private memory address
space that belongs to a PCI function. Since each SD represents 2 MB of HMC PM address space, the FPM
also identifies the range of SDs that belong to a PCI function.

Table 9-12. HMC Page Descriptor Format

Byte
Offset [Bit Range] Field Name

0 [63:12]
[11:1]

HMC Backing Page Physical Address
Reserved

[0] PD_Valid

613875-009 1383

Intel® Ethernet Controller E810 Datasheet
Device Services

Each PCI Function’s Private Memory space is further divided into separate memory spaces for each
object in host memory. Each PCI function has a set of registers per function that define the object’s
base address in FPM space and the bounds (or maximum number of entries) of a particular object.

Figure 9-7 depicts some of the current objects that reside in the private memory space (see Table 9-11
for a complete list of the objects). The FPM address is calculated based on the object type (which
identifies the object base register) and object index (the FPM base has already been calculated).
Ultimately, the FPM base address, object base address, object size, and object index are all used to
determine the private memory address.

Figure 9-6. Host Memory Cache Function Private Memory Space

PM PD
1st Level

SD
SD

SD
SD

…

Segment
Table

PM
F1: Base, Range

F2: Base, Range

… …

F0
FPM

F0: Base, Range

F1
FPM

F2
FPM

Fn
FPM

Fn: Base, Range

…

SD
SD
SD
SD

F#, FPM

PM
Address
Space

FPM
Address
Spaces

0

8GB

0

xMB
0

yMB
0

wMB

0

zMB

Intel® Ethernet Controller E810 Datasheet
Device Services

1384 613875-009

Figure 9-8 describes the decoding of the Private Memory Address into Host Address. Additionally,
Figure 9-8 depicts an SD addressing a private memory space backing page directly instead of using the
second level of indirect addressing (PD).

Each PCI function can set any SD within its range of SDs to be either pointing to a PD or directly to a
backing page. The segment type is specified in the PFHMC_SDDATALOW.PMSDTYPE register field. The
direct segment approach can be used for PCI functions that do not have large requirement for FPM
space to reduce overhead incurred while accessing HMC objects.

Additional usage of the direct segment approach is possible if the driver is able to allocate a
physically-contiguous range of pages large enough to hold the entire PD space needed to support the
FPM required by the driver loading on a specific PCI function. This mode prevents an additional address
lookup and increases the performance if the driver happens to allocate a block of physically-contiguous
memory, or the operating system has support for 2 MB pages.

Figure 9-7. Host Memory Cache FPM Object Access

O b j: B a s e ,R a n g e

O b j: B a s e ,R a n g e

…

F x :
F P M

O b j: B a s e ,R a n g e

O b j: B a s e ,R a n g e

…

Q P C o n t e x t

F P M
A d d r e s s

S p a c e

P h y s i c a l
F u n c t io n
O b j e c t s

C Q C o n t e x t

M R T E n t r ie s

O b j: B a s e ,R a n g eP B L E n t r ie s

O t h e r O b je c t s

0

q
0

c
0

m
0

p

0

x

0

x M B

613875-009 1385

Intel® Ethernet Controller E810 Datasheet
Device Services

See Section 9.3.7 for more details on the specific formats of the SD entries for Paged and Direct
addressing modes.

9.3.2 Object Caches

The Host Memory Cache for RDMA is split into two caches. One cache contains all RDMA objects except
the Quad Hash entries. The Quad Hash entries are placed in a different cache so they can be referenced
by the filtering mechanism.

When Quad Hash objects are added or deleted, the RDMA firmware is responsible for updating the Quad
Hash objects in the Quad Hash cache.

The two caches have separate registers, but share the same basic mechanisms. Since there are two
components referencing the Quad Hash cache, the registers for both caches must remain consistent.

For more information on the Quad Hash Host Memory Cache (including registers and interrupts) see
section Section 9.4.

9.3.3 Private Memory Space Profiles

The E810 private memory address space configuration is a two step process:

1. Partition the HMC-related resources into per PCI function resources.

2. Divide the resulting Function Private Memory (FPM) into individual objects.

To simplify resource allocation, the E810 provides a resource profile concept that takes into account the
number of PCI functions, the number of Protocol Engine enabled PCI functions, and the Operating
System environment to divide HMC private memory space and Protocol Engine Doorbell resources.
These HMC Resource Profiles are used to partition the HMC Segment Descriptor table and Protocol
Engine Doorbell resources. Software performs the FPM division on a per PCI function basis. The
currently-defined HMC Resource profiles are described in Table 9-13.

Protocol Engine Doorbell resources place constraints on the HMC resource profiles since there is a fixed
number of these resources on-die. There are enough doorbell resources for 256K Protocol Queue Pairs
and 512K Protocol Engine Completion Queues. These resources must be partitioned between PCI
functions that require Protocol Engine functionality. Protocol Engine resources are further discussed in
Section 11.1.

Figure 9-8. Host Memory Cache Direct Segment

Intel® Ethernet Controller E810 Datasheet
Device Services

1386 613875-009

The resource profiles drive the values found in the following registers:

• GLHMC_SDPART — Configures the HMC Segment Descriptor range per PF.

• GLHMC_PFPESDPART — Configures the Protocol Engine HMC Segment Descriptor range per PF.

• GLHMC_VFSDPART — Configures the HMC Segment Descriptor range per Protocol Engine enabled
VF.

• GLHMC_DBQPPART — Configures the range of Protocol Engine QP doorbells per PF.

• GLHMC_VFDBQPPART — Configures the range of Protocol Engine QP doorbells per Protocol
Engine enabled VF.

• GLHMC_DBCQPART — Configures the range of Protocol Engine CQ doorbells per PF.

• GLHMC_VFDBCQPART — Configures the range of Protocol Engine CQ doorbells per Protocol
Engine enabled VF.

• GLHMC_CEQPART — Configures the range of Protocol Engine CEQs per PF.

• GLHMC_VFCEQPART — Configures the range of Protocol Engine CEQs per Protocol Engine enabled
VF.

These registers are loaded from NVM to match the Default profile. The Protocol Engine firmware can be
used to change the programming of these registers to match any of the following resource profiles.

Each of these profiles are simply a set of equations that the E810 uses to configure the HMC. This first
phase of the HMC initialization is activated by an NVM reload (all settings revert back to the default
profile), or by selecting a resource profile when creating a Protocol Engine Control Queue Pair, as
specified in Section 11.5.2.1.

Host software will only need to change from the default profile based upon the need for Protocol Engine
functionality in a VF. If this is not the case, the default profile covers all usage models. In the case
where the Protocol Engine functionality is required in a VF, the driver determines which of the two
resource profiles best fits the users needs and selects that profile at driver initialization time.

Table 9-13. E810 HMC Resource Profiles

Profile Name Description

Default The default profile evenly distributes all HMC Segment Descriptor table entries and Protocol Engine
doorbell resources among all active Physical Functions. No Protocol Engine resources are allocated to
Virtual Functions. See Section 9.3.5 for more details.

SR-IOV VF Primary The SR-IOV VF Primary HMC resource profile distributes a relatively small number of HMC Protocol
Engine resources to the active PFs, and then evenly distributes the remaining HMC Protocol Engine
resources among the Protocol Engine enabled VFs. This resource profile assumes that the Protocol
Engine functionality will primarily be used by VFs when running a Virtualized Operating System. See
Section 9.3.5.1 for more details.

SR-IOV Even Distribution The SR-IOV Even Distribution HMC resource profile evenly distributes the HMC Protocol Engine
resources among the PFs and Protocol Engine enabled VFs. This resource profile assumes that the
Protocol Engine functionality will be used by PFs and VFs when running a Virtualized Operating
System. See Section 9.3.5.2 for more details.

613875-009 1387

Intel® Ethernet Controller E810 Datasheet
Device Services

9.3.4 Host HMC Resource Partitioning

The HMC resource profile can be selected by Expansion ROM code before the operating system loads,
and also by the first Protocol Engine driver that loads within the operating system. It is expected that
Expansion ROM boot code (PXE, iSCSI) does not need to change the profile, but it can change the
profile if needed. Once the Protocol Engine operating system driver loads, it is also allowed to change
the HMC resource profile.

9.3.5 Default HMC Profile Equations

The default HMC resource profile distributes all Protocol Engine resources evenly among all active PFs
(no Protocol Engine Resources are available for VFs). This includes partitioning the SD table, the
Protocol Engine QP and CQ doorbell resources, and the Protocol Engine Completion Event Queues. The
number of active Physical Functions is reported in the GLGEN_PCIFCNCNT registers.

The calculation used by the E810 for the number of Segment Descriptors for the Protocol Engine should
be SDs (4096) divided by the number of PFs, then rounded down to the next integer. The calculation for
the number of PE QPs is the number of PE QPs (256K) divided by the number of PFs, then rounded
down to the next full page size that would be needed for context. PE QP context size is 512 bytes per
QP.

Table 9-14. Default HMC Profile Examples

Number
of

Active
PFs

PF
Index SD Base Index SD Count

PE QP
Doorbell

Base
Index

PE QP
Doorbell

Count

PE CQ
Doorbell

Base
Index

PE CQ
Doorbell

Count

PE CEQ
Base
Index

PE CEQ
Count

1
0 Prot Eng: 0 Prot Eng: 4096 0 256K 0 512K 0 768

1-7 Prot Eng: 0 Prot Eng: 0 0 0 0 0 0 0

2

0 Prot Eng: 0 Prot Eng: 2048 0 128K 0 256K 0 384

1 Prot Eng: 2048 Prot Eng: 2048 128K 128K 256K 256K 128 384

2-7 Prot Eng: 0 Prot Eng: 0 0 0 0 0 0 0

4

0 Prot Eng: 0 Prot Eng: 1024 0 64K 0 128K 0 192

1 Prot Eng: 1024 Prot Eng: 1024 64K 64K 128K 128K 64 192

2 Prot Eng: 2048 Prot Eng: 1024 128K 64K 256K 128K 128 192

3 Prot Eng: 3072 Prot Eng: 1024 192K 64K 384K 128K 192 192

4-7 Prot Eng: 0 Prot Eng: 0 0 0 0 0 0 0

8

0 Prot Eng: 0 Prot Eng: 512 0 32K 0 64K 0 96

1 Prot Eng: 512 Prot Eng: 512 32K 32K 64K 64K 32 96

2 Prot Eng: 1024 Prot Eng: 512 64K 32K 128K 64K 64 96

3 Prot Eng: 1536 Prot Eng: 512 96K 32K 192K 64K 96 96

4 Prot Eng: 2048 Prot Eng: 512 128K 32K 256K 64K 128 96

5 Prot Eng: 2560 Prot Eng: 512 160K 32K 320K 64K 160 96

6 Prot Eng: 3072 Prot Eng: 512 192K 32K 384K 64K 192 96

7 Prot Eng: 3584 Prot Eng: 512 224K 32K 448K 64K 224 96

Intel® Ethernet Controller E810 Datasheet
Device Services

1388 613875-009

The calculation for the number of PE CQs is similar, except that the max number of PE CQs is 512K and
the CQ context size is 64 bytes.

The PE CEQ calculation is similar to the Segment Descriptor Calculation, except that the number of PE
CEQs total is 256 and the maximum number or CEQs for any single PCI function is 768.

Table 9-15 shows the resource counts for all possible PF counts in the Default HMC resource profile
assuming that VFs are evenly distributed to active PFs.

9.3.5.1 SR-IOV VF Primary HMC Profile Equations

The SR-IOV VF Primary HMC resource profile allocates Protocol Engine resources in favor of the VFs. In
this case, the FPM spaces are broken down into two sets:

1. PFs

2. Protocol Engine Enabled VFs

The first eight FPMs are always reserved for PFs even if less than eight PFs are enabled. In the case
where less than eight PFs are enabled, some of the FPMs will have zero resources allocated to them.

The next set of FPMs (8-39) are the Protocol Engine Enabled VFs. The maximum number of VFs in this
set is 32, but can be limited to less by setting PE Enabled VF Count during the Create Control Queue
Pair operation (Section 11.5.2.1).

In this resource profile, all enabled PFs are allocated the following resources:

• 10 SDs for PF Protocol Engine

• 1024 Protocol Engine Queue Pairs

• 2048 Protocol Engine Completion Queues

• 8 Protocol Engine Completion Event Queues

After allocating the resources for the PFs and the NIC VF resources that reside in the PF, the remaining
resources are evenly distributed across all Protocol Engine enabled VFs. Assuming that there are two
PFs active and 128 VFs (32 of which can be enabled for Protocol Engine support), the HMC resources
would be distributed as shown in Table 9-16.

Table 9-15. Initial Host Memory Cache Partitioning per PF

PE Count #PE SDs #PE QPs #PE CQs #PE CEQs

1 4096 262144 524288 786

2 2048 131072 256144 384

3 1365 87376 174762 256

4 1024 65536 131072 192

5 819 52424 104857 153

6 682 43688 87381 128

7 585 37448 74898 109

8 512 32768 65536 96

613875-009 1389

Intel® Ethernet Controller E810 Datasheet
Device Services

The equations for distributing PE QPs and CQs are similar to those used to distribute resources among
PFs in the default HMC resource profile.

9.3.5.2 SR-IOV Even Distribution HMC Profile Equations

The SR-IOV Even Distribution HMC profile is used for environments where there is equal need for
Protocol Engine resources in the PFs and all Protocol Engine Enabled VFs in operating systems that
support I/O virtualization. Typically the number of Protocol Engine enabled VFs is reduced in this profile
to allow sufficient Protocol Engine resources for a VF to run HPC workloads.

In this resource profile, all enabled PFs are allocated the following resources:

• 1 SDs for PF NIC

• Remaining SDs/(Active PFs+RDMA Enabled VFs) SDs for Protocol Engine

• 256K/(Active PFs+RDMA Enabled VFs) Protocol Engine Queue Pairs

• 512K/(Active PFs+RDMA Enabled VFs) Protocol Engine Completion Queues

• 256/(Active PFs+RDMA Enabled VFs) Protocol Engine Completion Event Queues

In this resource profile, all enabled VFs are allocated the following resources:

• Remaining SDs/(Active PFs+RDMA Enabled VFs) SDs for Protocol Engine

• 256K/(Active PFs+RDMA Enabled VFs) Protocol Engine Queue Pairs

• 512K/(Active PFs+RDMA Enabled VFs) Protocol Engine Completion Queues

• 256/(Active PFs+RDMA Enabled VFs) Protocol Engine Completion Event Queues

Assuming the two PFs are enabled, 128 VFs are enabled, and 16 Protocol Engine enabled VFs are
configured, Table 9-17 shows the distribution of resources to the HMC FPMs.

Table 9-16. Example SR-IOV VF Primary Profile Resource Partitioning per FPM

Function Type FPM Index
Range #SDs #PE QPs #PE CQs #PE CEQs

PF (2) Prot Eng: 8-9 Prot Eng: 10 1024 2048 8

Inactive PF (6) Prot Eng: 10-15 Prot Eng: 0 0 0 0

Protocol Engine Enabled VFs (32) Prot Eng: 16-47 Prot Eng: 127 8128 16256 23

Totals 4084 262144 524288 752

Table 9-17. SR-IOV Even Distribution Profile Resource Partitioning per FPM

Function Type FPM Index
Range #SDs #PE QPs #PE CQs #PE CEQs

PF (2) Prot Eng: 8-9 Prot Eng: 22 14560 29127 42

Inactive PF (14) Prot Eng: 10-15 Prot Eng: 0 0 0 0

Protocol Engine Enabled VFs (16) Prot Eng: 16-31 227 14560 29127 42

Totals 4088 262080 524286 756

Intel® Ethernet Controller E810 Datasheet
Device Services

1390 613875-009

9.3.6 Function Private Memory Space

Once NVM has set the default profile or the profile was changed during the Create Control Queue Pair
operation (Section 11.5.2.1), the driver can then continue on with the second step of HMC
configuration, which is to break down the FPM space into individual object regions. To do this, the driver
must perform the following steps:

1. Determine the HMC function index to be configured. In the case of a PF, the HMC function number
is equal to the PCI function number. In the case of a VF when the Protocol Engine resources are
configured, the HMC index depends on the programming of the HMC PM Function table using the
CQP Manage HMC PM Function Table operation. See Section 11.5.3.3 for more information on the
CQP operation.

Note: There are two arrays defined for each HMC FPM register. One array for PFs and a second
array for the Protocol Engine enabled VFs.

2. For Protocol Engine objects, read the current HMC configuration information to determine how to
calculate the numbers of each HMC object that needs to be requested.

a. The GLHMC_SDPART[n] (or GLHMC_VFSDPART[n] in the case of a Protocol Engine enabled VF)
register associated with the HMC FPM reports the currently available SDs for a given PCI function,
which can be used to calculate the maximum FPM space.

b. GLHMC_DBQPPART[n] (or GLHMC_VFDBQPPART[n] in the case of a Protocol Engine enabled VF)
reports the maximum number of Protocol Engine QPs that can be used. The driver does not have
to allocate maximum FPM space based on PMDBMAXQP if less QPs are needed for the active
driver deployment model.

c. GLHMC_DBCQPART[n] (or GLHMC_VFDBCQPART[n] in the case of a Protocol Engine enabled VF)
is used to determine the maximum number of Protocol Engine Completion Queues that can be
used by a given PCI function. Similarly to the maximum QP count, the driver is not required to
allocate the maximum amount of FPM space for CQs if the driver deployment model requires less.

d. GLHMC_CEQPART[n] (or GLHMC_VFCEQPART[n] in the case of a Protocol Engine enabled VF) is
used to determine the maximum number of Protocol Completion Event Queues that can be used
with a given PCI function.

Note: Protocol Engine CEQs do not consume FPM space, but are still partitioned as part of
the HMC resource profiles.

e. Other object maximum values are found in the registers named GLHMC_{object}MAX. See
Table 9-18 for the specific register names.

3. Each FPM object size register is written with the minimum of the values determined in Step 2 or the
actual driver needs.

For Protocol Engine objects, issue the Commit FPM Values CQP operations to program the object base
registers.

Table 9-18 describes all the HMC objects and the registers used to determine the object location within
Function Private Memory space, the size, and limit of each object.

613875-009 1391

Intel® Ethernet Controller E810 Datasheet
Device Services

Table 9-18. FPM Object Registers

HMC Object Base Register Array Object Counter
Register Array

Maximum Object
Count Register

Object Element
Size Register

Protocol Engine QP
Context

GLHMC_PEQPBASE
GLHMC_VFPEQPBASE

GLHMC_PEQPCNT
GLHMC_VFPEQPCNT GLHMC_DBQPMAX GLHMC_PEQPOBJSZ

Protocol Engine CQ
Context

GLHMC_PECQBASE
GLHMC_VFPECQBASE

GLHMC_PECQCNT
GLHMC_VFPECQCNT GLHMC_DBCQMAX GLHMC_PECQOBJSZ

Protocol Engine TCP
Timers

GLHMC_PETIMERBASE
GLHMC_VFPETIMERBASE

GLHMC_PETIMERCNT
GLHMC_VFPETIMERCNT GLHMC_PETIMERMAX GLHMC_PETIMEROBJSZ

Protocol Engine Hash
Table Entry

GLHMC_PEHTEBASE
GLHMC_VFPEHTEBASE

GLHMC_PEHTCNT1

GLHMC_VFPEHTCNT

1. For PFs, the sum of PFQF_PE_CTL1.PEHSIZE and PFQF_PE_CTL2.PEDSIZE must be smaller than or equal to GLHMC_PEHTCNT. For
VFs, the sum of VPQF_PE_CTL1.PEHSIZE and VPQF_PE_CTL2.PEDSIZE must be smaller than GLHMC_VFPEHTCNT.

GLHMC_PEHTMAX GLHMC_PEHTEOBJSZ

ARP Table Entry GLHMC_PEARPBASE
GLHMC_VFPEARPBASE

GLHMC_PEARPCNT
GLHMC_VFPEARPCNT GLHMC_PEARPMAX GLHMC_PEARPOBJSZ

Accelerated Port Bit
Vector In-Use

GLHMC_APBVTINUSEBASE
GLHMC_VFAPBVTINUSEBASE N/A (1 table per function) N/A (1 table per function) N/A (8KB fixed)

Memory Region
Table Entry (MRTE)

GLHMC_PEMRBASE
GLHMC_VFPEMRBASE

GLHMC_PEMRCNT
GLHMC_VFPEMRCNT GLHMC_PEMRMAX GLHMC_PEMROBJSZ

Xmit FIFO GLHMC_PEXFBASE
GLHMC_VFPEXFBASE

GLHMC_PEXFCNT
GLHMC_VFPEXFCNT GLHMC_PEXFMAX GLHMC_PEXFOBJSZ

Xmit FIFO Free List GLHMC_PEXFFLBASE
GLHMC_VFPEXFFLBASE

GLHMC_PEXFFLCNT
GLHMC_VFPEXFFLCNT GLHMC_PEXFFLMAX N/A (4B fixed)

Inbound RDMA Read
Queue (IRRQ or Q1)

GLHMC_PEQ1BASE
GLHMC_VFPEQ1BASE

GLHMC_PEQ1CNT
GLHMC_VFPEQ1CNT GLHMC_PEQ1MAX GLHMC_PEQ1OBJSZ

Inbound RDMA Read
Queue (IRRQ or Q1)
Free List

GLHMC_PEQ1FLBASE
GLHMC_VFPEQ1FLBASE

GLHMC_PEQ1FLCNT
GLHMC_VFPEQ1FLCNT GLHMC_PEQ1FLMAX N/A (4B fixed)

Multicast Group GLHMC_FSIMCBASE
GLHMC_VFFSIMCBASE

GLHMC_FSIMCCNT
GLHMC_VFFSIMCCNT GLHMC_FSIMCMAX GLHMC_FSIMCOBJSZ

Address Handles GLHMC_FSIAVBASE
GLHMC_VFFSIAVBASE

GLHMC_FSIAVCNT
GLHMC_VFFSIAVCNT GLHMC_FSIAVMAX GLHMC_FSIAVOBJSZ

Physical Buffer List
Entry (PBLE)

GLHMC_PEPBLBASE
GLHMC_VFPEPBLBASE

GLHMC_PEPBLCNT
GLHMC_VFPEPBLCNT GLHMC_PEPBLMAX N/A (8B fixed)

Read Response FIFO GLHMC_PERRFBASE
GLHMC_VFPERRFBASE

GLHMC_PERRFCNT
GLHMC_VFPERRFCNT GLHMC_PERRFMAX GLHMC_PERRFOBJSZ

Read Response FIFO
Free List

GLHMC_PERRFFLBASE
GLHMC_VFPERRFFLBASE

GLHMC_PERRFFLCNT
GLHMC_VFPERRFFLCNT GLHMC_PERRFFLMAX N/A (4B fixed)

Header GLHMC_PEHDRBASE
GLHMC_VFPEHDRBASE

GLHMC_PEHDRCNT
GLHMC_VFPEHDRCNT GLHMC_PEHDRMAX GLHMC_PEHDROBJSZ

Metadata GLHMC_PEMDBASE
GLHMC_VFPEMDBASE

GLHMC_PEMDCNT
GLHMC_VFPEMDCNT GLHMC_PEMDMAX GLHMC_PEMDOBJSZ

Out-of-Order Send
Completion (OOISC)
FIFO

GLHMC_PEOOISCBASE
GLHMC_VFPEOOISCBASE

GLHMC_PEOOISCCNT
GLHMC_VFPEOOISCCNT GLHMC_PEOOISCMAX GLHMC_PEOOISCOBJSZ

Out-of-Order Send
Completion (OOISC)
FIFO Free List

GLHMC_PEOOISCFFLBASE
GLHMC_VFPEOOISCFFLBASE

GLHMC_PEOOISCFFLCNT
GLHMC_VFPEOOISCFFLCNT GLHMC_PEOOISCFFLMAX N/A (4B fixed)

Intel® Ethernet Controller E810 Datasheet
Device Services

1392 613875-009

9.3.6.1 Programming the HMC FPM Base Registers

All settings of FPM registers impact only the function associated with the registers. In other words, the
driver on a given PCI function must program only the GLHMC_{object}CNT and GLHMC_{object}BASE
registers for HMC PMs that are owned by that same PCI function or HMC PMs that are associated with
Protocol Engine enabled VFs that the PF owns. The FPM base of the first HMC object for each PCI
function is always 0. The FPM base of subsequent HMC objects increment from previous HMC object
base, the number of elements for the previous HMC object, and the size of the previous HMC object
element. Additional rounding is necessary to get to the next FPM address that is properly aligned for the
HMC object under consideration.

Table 9-19 shows the FPM object order that must be maintained for proper HMC operation and the
alignment requirements for each object.

The special case of Protocol Engine QPs must be rounded up to the next SD boundary. The base
registers for Protocol Engine Objects (indexes 4 and up) can be set using the Commit FPM Values CQP
operation.

Note: The driver can choose to set the GLHMC_{obj}CNT register to 0 if it does not need to utilize
an object.

Table 9-19. FPM Object Order and Alignment

HMC Object
Order HMC Object Alignment Requirement

1 RSVD

2 Protocol Engine QP Context 2MB
(Must be start of an SD)

3 Protocol Engine CQ Context 512B

4 Protocol Engine Hash Table Entry 512B

5 ARP Table Entry 512B

6 Accelerated Port Bit Vector In-Use 512B

7 Memory Region Table Entry (MRTE) 512B

8 Xmit FIFO 512B

9 Xmit FIFO Free List 512B

10 Inbound RDMA Read Queue (IRRQ or Q1) 512B

11 Inbound RDMA Read Queue (IRRQ or Q1) Free List 512B

12 Protocol Engine TCP Timers 512B

13 Physical Buffer List Entry (PBLE) 512B
(4KB for VFs, handled by CQP firmware)

14 Multicast Group 512B

15 Address Handles 512B

16 Read Response FIFO Free List 512B

17 Read Response FIFO 512B

20 Header Information 512B

21 Metadata 512B

22 Out-of-Order Send Completion (OOISC) FIFO 512B

23 Out-of-Order Send Completion (OOISC) FIFO Free List 512B

613875-009 1393

Intel® Ethernet Controller E810 Datasheet
Device Services

9.3.7 Populating HMC Backing Pages

Once the HMC resource profile has been picked (Section 9.3.3) and the Function Private Memory space
has been programmed (Section 9.3.6), the driver must populate the HMC backing pages for the PCI
function that it is initializing. The first step in this phase of initialization is to allocate 4KB pages for the
PDs. Each 4KB PD page holds 512 PDs and occupies a single SD entry. Once a 4KB page has been
allocated, initialized to zero, and pinned by software, the PFHMC_SDCMD (Section 13.2.2.20.35),
PFHMC_SDDATALOW (Section 13.2.2.20.36), and PFHMC_SDDATAHIGH (Section 13.2.2.20.37)
registers are used to populate the SD table for the PCI Function. Protocol Engine enabled VFs use the
GLHMC_VFSDCMD[n], GLHMC_VFSDDATALOW[n], and GLHMC_SDDATAHIGH[n] registers, where n is
the HMC Virtual Function index. Protocol Engine related SDs are programmed using the Update Protocol
Engine SDs CQP operation.

A driver on a given PCI function mus manipulate only SD table entries that are allocated for that PCI
function via the SD partitioning process that involved picking an HMC resource profile. SDs are
addressed on a per PCI function basis starting at 0, and is limited by GLHMC_SDPART[n].PMSDSIZE. In
other words, software is not aware of the actual portion of the SD table that it is using. Accesses
outside of the SD range configured by NVM or a HMC resource profile using the PFHMC_SDCMD or
GLHMC_VFSDCMD registers is ignored (operation is not performed) by the E810, and an error is
returned in the completion for the operation that is in error.

The second step in this phase of driver initialization is to allocate additional host pages for backing HMC
FPM objects for use by the E810 before the driver attempts to access the object. The breakdown of the
FPM address into components is shown in Table 9-19.

Direct-mapped pages in the VF object cache must be fully populated for the entire 2MB space of the SD.

The identification of which SDs to populate and which HMC FPM backing pages to populate in the PD
pages can be calculated as follows in the paged scenario:

FPM_object_address = (GLHMC_{object}BASE * 512) + (2GLHMC_{object}OBJSZ * element_index)

SD_index = INT(FPM_object_address / 2MB)

PD_index = INT(FPM_object_address / 4KB) & 0x1FF

HMC_PM_index = PF index or the HMC VF FPM index

Figure 9-9. FPM Address Decomposition

Intel® Ethernet Controller E810 Datasheet
Device Services

1394 613875-009

Following is an example of populating the backing pages the HMC, assuming that a driver wants to
allocate FPM backing pages for 1024 Protocol Engine QPs starting at index 8 assuming no previous SDs
for Protocol Engine QPs had been allocated:

1. Allocate one PD page (capable of holding 512 backing pages of 4KB each).

2. Identify the first SD necessary:

a. FPM_object_address = (GLHMC_PEQPBASE[HMC_PM_index] * 512) + (2GLHMC_PEQPOBJSZ * 8)

b. FPM_object_limit = FPM_object_address + (2GLHMC_PEQPOBJSZ * 1024)

c. SD_index = FPM_object_address / 2MB

d. Last_SD_index = (FPM_object_limit - 1) / 2MB

3. Allocate, zero, and pin a host memory page (PD page) for each SD needed from SD_index to
Last_SD_index.

4. Calculate the number of PDs that need to be allocated:

a. FPM_PD_index = (FPM_object_address / 4KB) & 0x1FF

b. FPM_PD_limit_index = (FPM_object_limit - 1) / 4KB) & 0x1FF

c. FPM_PD_count = FPM_PD_limit_index + 1 - FPM_PD_index

5. Initialize the PDs:

a. Allocate/zero/pin FPM_PD_count pages (these are the FPM object backing pages).

b. Initialize each of the PDs with the physical address of a page allocated in Step 5a and set the PD
valid bit (see Table 9-12 for the format). The PDs are in the PD pages allocated in Step 3.

6. Update the SD table using the PFHMC_SDCMD, PFHMC_SDDATALOW, and PFHMC_SDDATAHIGH
registers for each PD page allocated in Step 3 (if the PDs are associated with a Protocol Engine
enabled VF, the GLHMC_VFSDCMD[HMC_PM_index], GLHMC_VFSDDATALOW[HMC_PM_index], and
GLHMC_VFSDDATAHIGH[HMC_PM_index] registers must be used). These registers are
programmed via the Update Protocol Engine SDs CQP operation for backing pages related to
Protocol Engine objects.

a. Write the most significant 32 bits of the physical address of the PD page to the
PFHMC_SDDATAHIGH register.

b. Write the last significant 32 bits of the physical address of the PD page to the
PFHMC_SDDATALOW register, ensuring that the lower 12 bits are 0.

c. Write 512 to PFHMC_SDDATALOW.PMSDBPCOUNT. If this was the last SD of the FPM, the value
might be lower than 512, but PE QPs are in the middle of FPM space so the value must be 512.
The PMSDBPCOUNT field is used by the E810 to calculate the end of the FPM space without
having to read the valid bit for each individual PD entry.

d. Write 0 to PFHMC_SDDATALOW.PMSDTYPE.

e. Write 1 to PFHMC_SDDATALOW.PMSDVALID.

f. Write PFHMC_SDCMD with PMSDIDX set to the proper SD index value and PMSDWR=1.

When this process is complete for typical configurations, the second SD is populated with the address of
a single PD page, and entries 1-129 are populated with the address of the 128 FPM object backing
pages that have been allocated.

613875-009 1395

Intel® Ethernet Controller E810 Datasheet
Device Services

9.3.8 De-Populating HMC Backing Pages

The process of de-populating and freeing HMC object backing pages is as follows:

1. Ensure that software and hardware are not going to access objects in the pages.

2. Calculate the SD range and/or PD range that provide the address mapping to the E810.

3. Update the associated PD entries.

4. Invalidate the on-die PD cache entries using the PFHMC_PDINV (or
GLHMC_VFPDINV[HMC_PM_index]) register.

5. Update the SDs using the PFHMC_SDCMD, PFHMC_SDDATALOW, and PFHMC_SDDATAHIGH
registers to notify the E810 that the pages are no longer valid for use. If the PDs are associated
with a Protocol Engine enabled VF, the GLHMC_VFSDCMD[HMC_PM_index],
GLHMC_VFSDDATALOW[HMC_PM_index], and GLHMC_VFSDDATAHIGH[HMC_PM_index] registers
must be used. These registers are programmed via the Update Protocol Engine SDs CQP operation
for backing pages related to Protocol Engine objects.

9.3.8.1 Removing a Backing Page

Once software has determined that a backing page is no longer needed, the software must clear the
PD_Valid bit (see Table 9-12) in the PD entry that references the backing page. After clearing the
PD_Valid bit in the PD in host memory, software must then write the PFHMC_PDINV register with the
SD index and PD index of the newly-invalidated PD entry. This is to ensure that references to the invalid
PD entry have been removed from any E810 cache. Once this write is complete, the backing page can
be freed by software. The write to the PFHMC_PDINV register is not required for direct SDs since there
is not a PD involved in addressing the HMC backing pages. If the backing pages are associated with a
Protocol Engine enabled VF, the GLHMC_VFPDINV[HMC_PM_index] register must be used.

9.3.8.2 Removing a Page Descriptor Page

Once software has determined that an entire PD page is no longer needed, the PFHMC_SDDATALOW
register must be written with PFHMC_SDDATALOW.PMSDVALID set to 0, and then the PFHMC_SDCMD
register must be written with PMSDIDX set to the proper SD index value and PMSDWR=1. Once this
sequence is complete, software is free to deallocate or re-use the PD page. If the PDs are associated
with a Protocol Engine enabled VF, the GLHMC_VFSDCMD[HMC_PM_index],
GLHMC_VFSDDATALOW[HMC_PM_index], and GLHMC_VFSDDATAHIGH[HMC_PM_index] registers must
be used. These registers are programmed via the Update Protocol Engine SDs CQP operation for
backing pages related to Protocol Engine objects.

9.3.9 Special Cases for Protocol Engine Objects

Since there are less HMC VF FPM spaces than there are VFs, there is a mapping required that is
described in Section 9.3.9.1.

Intel® Ethernet Controller E810 Datasheet
Device Services

1396 613875-009

9.3.9.1 Virtual Function Support

The HMC supports eight HMC FPM spaces that are dedicated to PFs (index 0-7) and 32 HMC FPM spaces
that are available for VFs. Since there are less HMC FPM VF spaces available than actual VFs for the
E810, a mapping is required. The virtual function mapping is performed by CQP firmware using the
Manage HMC PM Function Table operation found in Section 11.5.3.10.

9.3.10 HMC Error Reporting

HMC-related errors are reported through the PFHMC_ERRORINFO and PFHMC_ERRORDATA registers.
The HMC_ERR interrupt status bit in the PFINT_OICR register can also deliver an interrupt for HMC
errors if the interrupt is enabled in the PFINT_OICR_ENA register. When the HMC detects an error, it
sets the PFHMC_ERRORINFO.ERROR_DETECTED bit along with the relevant information in the other
fields of the PFHMC_ERRORINFO and PFHMC_ERRORDATA registers. No further notification of
subsequent HMC errors associated with any given PF are issued until the current error is acknowledged
by writing a 0 to the PFHMC_ERRORINFO.ERROR_DETECTED bit.

Table 9-20 describes the errors detected for each HMC object and the behavior associated with each
error.

Table 9-20. HMC Errors

HMC Object Error Type(s) Error Behavior

Protocol Engine QP
Context

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the PE QP is reported in the
PFHMC_ERRORDATA register. Packets associated with the
QP are dropped. Protocol Engine Asynchronous Events are
not reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the PE QP object is
reported in the PFHMC_ERRORDATA register. Packets
associated with the QP are dropped. Protocol Engine
Asynchronous Events are not reported.

Protocol Engine CQ
Context

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the PE CQ is reported in the
PFHMC_ERRORDATA register. Completions for all QPs
associated with the CQ are dropped. Protocol Engine
Asynchronous Events are not reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the PE CQ object is
reported in the PFHMC_ERRORDATA register. Completions
for all QPs associated with the CQ are dropped. Protocol
Engine Asynchronous Events are not reported.

Protocol Engine TCP
Timers

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the PE timer object is reported in the
PFHMC_ERRORDATA register. Timer operation associated
with the function will go idle. Host software is responsible
for cleaning up all Protocol Engine resources associated
with the PCI function and reporting a fatal adapter error to
the RDMA protocol stack.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The index of the PE timer object is reported in the
PFHMC_ERRORDATA register. Timer operation associated
with the function will go idle. Host software is responsible
for cleaning up all Protocol Engine resources associated
with the PCI function and reporting a fatal adapter error to
the RDMA protocol stack.

613875-009 1397

Intel® Ethernet Controller E810 Datasheet
Device Services

Protocol Engine Hash
Table Entry

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the PE Hash Table entry is reported in the
PFHMC_ERRORDATA register. Packets associated with the
hash table entry are dropped. Protocol Engine
Asynchronous Events are not reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the PE Hash Table entry
object is reported in the PFHMC_ERRORDATA register.
Packets associated with the hash table entry are dropped.
Protocol Engine Asynchronous Events are not reported.

ARP Table Entry

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the ARP Table entry is reported in the
PFHMC_ERRORDATA register. Packets associated with the
ARP table entry are dropped. Protocol Engine
Asynchronous Events are not reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the ARP Table entry is
reported in the PFHMC_ERRORDATA register. Packets
associated with the ARP table entry are dropped. Protocol
Engine Asynchronous Events are not reported.

Accelerated Port Bit
Vector In-Use

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the APBVT entry is reported in the
PFHMC_ERRORDATA register. Packets associated with the
APBVT entry are dropped. Protocol Engine Asynchronous
Events are not reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the APBVT entry is
reported in the PFHMC_ERRORDATA register. Packets
associated with the APBVT entry are dropped. Protocol
Engine Asynchronous Events are not reported.

Memory Region
Table Entry (MRTE)

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the MRTE is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the MRTE object is reported
in the PFHMC_ERRORDATA register. The receive data is
dropped and the QP is put into the terminate state. A
Protocol Engine Asynchronous Event for the QP is reported.

Xmit FIFO

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Xmit FIFO entry is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Xmit FIFO entry is
reported in the PFHMC_ERRORDATA register. The receive
data is dropped and the QP is put into the terminate state.
A Protocol Engine Asynchronous Event for the QP is
reported.

Xmit FIFO Free List

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Xmit FIFO Free List entry is reported in
the PFHMC_ERRORDATA register. The receive data is
dropped and the QP is put into the terminate state. A
Protocol Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Xmit FIFO Free List
entry is reported in the PFHMC_ERRORDATA register. The
receive data is dropped and the QP is put into the
terminate state. A Protocol Engine Asynchronous Event for
the QP is reported.

Table 9-20. HMC Errors [continued]

HMC Object Error Type(s) Error Behavior

Intel® Ethernet Controller E810 Datasheet
Device Services

1398 613875-009

Inbound RDMA Read
Queue (IRRQ or Q1)

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the IRRQ entry is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the IRRQ entry is reported
in the PFHMC_ERRORDATA register. The receive data is
dropped and the QP is put into the terminate state. A
Protocol Engine Asynchronous Event for the QP is reported.

Inbound RDMA Read
Queue (IRRQ or Q1)
Free List

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the IRRQ Free List entry is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the IRRQ Free List entry
object is reported in the PFHMC_ERRORDATA register. The
receive data is dropped and the QP is put into the
terminate state. A Protocol Engine Asynchronous Event for
the QP is reported.

Multicast Group

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Multicast Group entry is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Multicast Group entry
object is reported in the PFHMC_ERRORDATA register. The
receive data is dropped and the QP is put into the
terminate state. A Protocol Engine Asynchronous Event for
the QP is reported.

Address Handles

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Address Handle entry is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Address Handle entry
object is reported in the PFHMC_ERRORDATA register. The
receive data is dropped and the QP is put into the
terminate state. A Protocol Engine Asynchronous Event for
the QP is reported.

Physical Buffer List
Entry (PBLE)

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the PBLE entry is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the PBLE entry object is
reported in the PFHMC_ERRORDATA register. The receive
data is dropped and the QP is put into the terminate state.
A Protocol Engine Asynchronous Event for the QP is
reported.

Read Response FIFO

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Read Response FIFO List entry is reported
in the PFHMC_ERRORDATA register. The receive data is
dropped and the QP is put into the terminate state. A
Protocol Engine Asynchronous Event for the QP is reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Scatter Element List
entry is reported in the PFHMC_ERRORDATA register. The
receive data is dropped and the QP is put into the
terminate state. A Protocol Engine Asynchronous Event for
the QP is reported.

Table 9-20. HMC Errors [continued]

HMC Object Error Type(s) Error Behavior

613875-009 1399

Intel® Ethernet Controller E810 Datasheet
Device Services

Read Response FIFO
Free List

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Read Response FIFO Free List entry is
reported in the PFHMC_ERRORDATA register. The receive
data is dropped and the QP is put into the terminate state.
A Protocol Engine Asynchronous Event for the QP is
reported.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the STag Free List entry
object is reported in the PFHMC_ERRORDATA register. The
receive data is dropped and the QP is put into the
terminate state. A Protocol Engine Asynchronous Event for
the QP is reported.

Header

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Header object is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• Invalid LAN Queue Index Not Applicable to this object type.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Header object is
reported in the PFHMC_ERRORDATA register. The receive
data is dropped and the QP is put into the terminate state.
A Protocol Engine Asynchronous Event for the QP is
reported.

Metadata

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Metadata object is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

• Invalid LAN Queue Index Not Applicable to this object type.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Metadata object is
reported in the PFHMC_ERRORDATA register. The receive
data is dropped and the QP is put into the terminate state.
A Protocol Engine Asynchronous Event for the QP is
reported.

Out-of-Order Send
Completion (OOISC)
FIFO

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Out-of-Order Send Completion (OOISC) is
reported in the PFHMC_ERRORDATA register. The receive
data is dropped and the QP is put into the terminate state.
A Protocol Engine Asynchronous Event for the QP is
reported.

• Invalid LAN Queue Index Not Applicable to this object type.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Out-of-Order Send
Completion (OOISC) object is reported in the
PFHMC_ERRORDATA register. The receive data is dropped
and the QP is put into the terminate state. A Protocol
Engine Asynchronous Event for the QP is reported.

Out-of-Order Send
Completion (OOISC)
FIFO Free List

• PMF Invalid
• Invalid PMF Index
• HMC Object Index Too Large

The index of the Out-of-Order Send Completion (OOISC)
FIFO Free List entry is reported in the PFHMC_ERRORDATA
register. The receive data is dropped and the QP is put into
the terminate state. A Protocol Engine Asynchronous Event
for the QP is reported.

• Invalid LAN Queue Index Not Applicable to this object type.

• HMC Private Memory Address Too Large
• Segment Descriptor Invalid
• Segment Descriptor Too Small
• Page Descriptor Invalid

The Private Memory Address of the Out-of-Order Send
Completion (OOISC) FIFO Free List entry object is reported
in the PFHMC_ERRORDATA register. The receive data is
dropped and the QP is put into the terminate state. A
Protocol Engine Asynchronous Event for the QP is reported.

Table 9-20. HMC Errors [continued]

HMC Object Error Type(s) Error Behavior

Intel® Ethernet Controller E810 Datasheet
Device Services

1400 613875-009

9.4 Quad Hash Host Memory Cache

9.4.1 Cache Replication

The HMC for RDMA contains all the RDMA objects. This cache is partially replicated to another cache.
The Quad Hash objects are duplicated for packet filtering to use. No other objects are duplicated.

When Quad Hash objects are added or deleted, the RDMA firmware is responsible for keeping the Quad
Hash objects in sync for both caches. This includes populating, de-populating, and removing backing
pages in both caches.

The duplicate of the Quad Hash objects cache is implemented as a separate caching block. The two
caching controllers are identical design blocks. Therefore, their configuration and operation is identical
as well. A separate set of registers is used for those caching blocks. Table 9-21 provides the register
names of each one of those blocks.

9.4.2 Function Private Memory Space Configuration

The Quad Hash HMC configuration principles are similar to the RDMA block HMC configuration. The
main difference is that Quad Hash HMC manages only one type of caching data elements. Once NVM
has set the default profile or the profile was changed during the Create Control Queue Pair
(Section 11.5.2.1) operation, the driver can then continue on with the second step of HMC
configuration, which is to break down the FPM space into individual object regions. To do this, the driver
must perform the following steps:

1. Determine the HMC function index to be configured. In the case of a PF, the HMC function number
is equal to the PCI function number.

2. Read the current HMC configuration information to determine how to calculate the numbers of each
HMC object that need to be requested.

a. The GLHMC_SDPART_FPMAT[n] (or GLHMC_VFSDPART_FPMAT[n] in the case of a Protocol
Engine enabled VF) register associated with the HMC FPM reports the currently available SDs for
a given PCI function, which can be used to calculate the maximum FPM space.

Table 9-21 describes all the Quad HASH HMC objects and the registers used to determine the object

location within Function Private Memory space, the size and limit of each object.

Table 9-21. FPM Object Registers

HMC Object Base Register Array Object Counter
Register Array

Maximum Object
Count Register

Object Element
Size Register

Quad Hash
Table Entry

GLHMC_PEHTEBASE_FPMAT
GLHMC_VFPEHTEBASE_FPMAT

GLHMC_PEHTCNT_FPMAT
GLHMC_VFPEHTCNT_FPMAT GLHMC_PEHTMAX_FPMAT GLHMC_PEHTEOBJSZ_FPMAT

613875-009 1401

Intel® Ethernet Controller E810 Datasheet
Device Services

9.4.2.1 Programming the HMC FPM Base Registers

All settings of FPM registers impact only the function associated with the registers. In other words, the
driver on a given PCI function must program only the GLHMC_{object}CNT and GLHMC_{object}BASE
registers for HMC PMs that are owned by that same PCI function, or HMC PMs that are associated with
Protocol Engine enabled VFs that the PF owns. The FPM base of the first HMC object for each PCI
function is always 0. The FPM base of subsequent HMC objects increment from previous HMC object
base, the number of elements for the previous HMC object, and the size of the previous HMC object
element. Additional rounding is necessary to get to the next FPM address that is properly aligned for the
HMC object under consideration.

The alignment required for Hash table entry is 512B.

9.4.3 Populating HMC Backing Pages

Once the Quad Hash HMC resource profile has been picked (field) and the Function Private memory
space has been programmed (Section 9.4.2), the driver must populate the HMC backing pages for the
PCI function that it is initializing. The first step in this phase of initialization is to allocate 4KB pages for
the PDs. Each 4KB PD page holds 512 PDs and occupies a single SD entry. Once a 4KB page has been
allocated, initialized to zero, and pinned by software, the PFHMC_SDCMD_FPMAT,
PFHMC_SDDATALOW_FPMAT, and PFHMC_SDDATAHIGH_FPMAT registers are used to populate the SD
table for the PCI Function. Protocol Engine enabled VFs use the GLHMC_VFSDCMD_FPMAT[n],
GLHMC_VFSDDATALOW_FPMAT[n], and GLHMC_SDDATAHIGH_FPMAT[n] registers, where n is the HMC
Virtual Function index. Protocol Engine related SDs are programmed using the Update Protocol Engine
SDs CQP operation.

Refer to the following sections:

• Section 9.3.7, “Populating HMC Backing Pages”

• Section 9.3.8, “De-Populating HMC Backing Pages”

• Section 9.3.8.1, “Removing a Backing Page”

• Section 9.3.8.2, “Removing a Page Descriptor Page”

• Section 9.3.10, “HMC Error Reporting”

Intel® Ethernet Controller E810 Datasheet
Device Services

1402 613875-009

9.4.4 Register Naming in Quad Hash HMC Relative to
PE HMC

Table 9-22 provides control registers naming for PE HMC and Quad Hash HMC. Red text signifies the
difference.

Table 9-22. Control Registers Naming

PE HMC Control Register Quad Hash HMC Control Register

GLHMC_FWPDINV GLHMC_FWPDINV_FPMAT

GLHMC_FWSDCMD GLHMC_FWSDCMD_FPMAT

GLHMC_FWSDDATAHIGH GLHMC_FWSDDATAHIGH_FPMAT

GLHMC_FWSDDATALOW GLHMC_FWSDDATALOW_FPMAT

GLHMC_PEHTCNT_[] GLHMC_PEHTCNT_FPMAT_[]

GLHMC_PEHTEBASE_[] GLHMC_PEHTEBASE_FPMAT_[]

GLHMC_PEHTEOBJSZ GLHMC_PEHTEOBJSZ_FPMAT

GLHMC_PEHTMAX GLHMC_PEHTMAX_FPMAT

GLHMC_PFASSIGN_PMAT_[] GLHMC_PFASSIGN_FPMAT_[]

GLHMC_PFPESDPART_[] GLHMC_PFPESDPART_FPMAT_[]

GLHMC_PMFTABLE_PMAT_[] GLHMC_PMFTABLE_FPMAT_[]

GLHMC_SDPART_[] GLHMC_SDPART_FPMAT_[]

GLHMC_VFPDINV_[] GLHMC_VFPDINV_FPMAT_[]

GLHMC_VFPEHTCNT_[] GLHMC_VFPEHTCNT_FPMAT_[]

GLHMC_VFPEHTEBASE_[] GLHMC_VFPEHTEBASE_FPMAT_[]

GLHMC_VFPMFMAP_PMAT_[] GLHMC_VFPMFMAP_FPMAT_[]

GLHMC_VFPMFTABLE_PMAT_[] GLHMC_VFPMFTABLE_FPMAT_[]

GLHMC_VFSDCMD_[] GLHMC_VFSDCMD_FPMAT_[]

GLHMC_VFSDDATAHIGH_[] GLHMC_VFSDDATAHIGH_FPMAT_[]

GLHMC_VFSDDATALOW_[] GLHMC_VFSDDATALOW_FPMAT_[]

GLHMC_VFSDPART_[] GLHMC_VFSDPART_FPMAT_[]

PF_VT_PFALLOC_PMAT_[] PF_VT_PFALLOC_FPMAT_[]

PFHMC_PDINV_[] PFHMC_PDINV_FPMAT_[]

PFHMC_SDCMD_[] PFHMC_SDCMD_FPMAT_[]

PFHMC_SDDATAHIGH_[] PFHMC_SDDATAHIGH_FPMAT_[]

PFHMC_SDDATALOW_[] PFHMC_SDDATALOW_FPMAT_[]

613875-009 1403

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5 Control Queues

9.5.1 Preface

The Control Queue is designed with the following goals:

• Abstract firmware interface so that firmware can be changed, whether for added functionality or
bug fixes, without changing the driver. Further extension of the firmware can allow changing parts
of the hardware without modifying the driver.

• Remove MMIO access from all non-essential driver paths.

• Incorporate the VF-to-PF and function-to-function mailboxes into a single, extensible interface.
Shared resources should be accessed through the Control Queue.

• It is possible to write one driver that works both on a primary function and on a virtual function.

• A low resource driver, such as a pre-boot driver or an out-of-the-box driver, can use the Control
Queue for limited transmit and receive.

The E810 provides three types of Control Queues:

• Firmware Admin Queues — For communication between the software PF driver and the the
E810’s firmware engine.

• Mailbox Queues — For communications between software drivers, either two different drivers
running on the same function (PF/VF), or a PF driver communicating with its corresponding VF
driver. In this case, the E810’s mailbox transfers the data between the respective host memory
buffers.

• Sideband Queues — For communications between software driver and its hardware. In this case,
the E810’s mailbox transfers the data between the host memory and the connected hardware
device.

The E810 provides the following sets of Control Queues:

• One firmware Admin Queue per PF, used for software (E810 driver)-to-firmware communication,
exposed in the PF memory BAR.

• One mailbox queue at the single PF, used for the PF-to-VF. Each mailbox queue can be used by
different driver on a separate 4K memory space.

• One sideband queue per PF for the E810 driver. Sideband queues are used for the neighbor IP
communication and are exposed in the PF memory BAR. Each sideband queue that can be used by
a different driver is allocated with a separate 4K memory space.

• One mailbox queue per VF, used for the PF-to-VF communications and exposed in the VF memory
BAR. Each mailbox queue can be used by a different driver on a separate 4K memory space.

Assumptions:

• Currently, firmware does not maintain context for any driver operation, except for the state of the
queue itself.

• Firmware deals with one command at a time and does not start working on a new command before
finishing its current task. This might change in a future version of the firmware, so the queue
mechanism must allow for it today to avoid the need for driver modification if this happens.
Firmware does, however, pipeline descriptor and data fetches to optimize execution latency.

• Mailbox queues and sideband queues are handled by hardware mailbox.

Intel® Ethernet Controller E810 Datasheet
Device Services

1404 613875-009

Figure 9-10 describes the control queues organization. Each queue type is represented by a colored
box, with the number of instances on its right.

Rows represent the different queue types. The first row are firmware Admin Queues, the second are
mailbox queues, and the third are sideband queues.

Columns represent the different functions and drivers, where each driver has its own color. We have
four drivers running at the PF space and four drivers running at the VF space.

Colored lines represent messages that might pass between the mailbox queues.

9.5.2 Queue Structure

The Control Queue is comprised of a pair of Control Transmit Queue and Control Receive Queue. Driver
commands are posted on the Control Transmit Queue (ATQ). Mailbox/Firmware completes driver
commands by writing back onto the command descriptor. Events that are not an immediate result of a
command are written to the Control Receive Queue (ARQ). The driver posts empty buffers to the ARQ,
and the mailbox/firmware fills them with events.

Both ATQ and ARQ support direct and indirect commands, where they function as firmware or mailbox
queues. Sideband ATQ queues only support indirect, as their purpose is to take the message within the
buffer and send it over SB-IOSF. Sideband ARQ queues support only direct commands.

Figure 9-10. Control Queues Organization1

1. 768 VF queues are supported in PASID mode (GL_MBX_PASID.PASID_MODE).

PF queues

8 1

8 256/
7681

VF queues

MBX AQ
VF to PF

MBX AQ
PF to VF

FW AQ

256/768
1

PF<->VF

SB AQ

8

 IP

Driver can send message to
any driver at the same PF

1

TOOLS FW AQ

GL queues

PF<->PF

613875-009 1405

Intel® Ethernet Controller E810 Datasheet
Device Services

The Control Queue direct command is one that fits entirely in the queue descriptor, while an extended
or indirect command is one that uses an additional buffer, which is specified in the descriptor. When a
command needs an additional external buffer, it marks the BUF flag. If the buffer contains data that the
mailbox/firmware needs to read, the RD flag is used. A buffer bigger than 512 bytes (AQ_LARGE_BUF)
must have the LB flag set.

The maximum buffer size supported in this version of the queues is 4096 bytes for firmware and
mailbox queues, and 512 bytes for sideband queues.

Both queues use the same descriptor structure. All descriptors and commands are defined using Little
Endian notation with 32-bit words. Drivers using other conventions should take care to do the proper
conversions.

Table 9-23. Control Queue Descriptor Structure (in LE 32 Order)

+3 +2 +1 +0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Opcode F
E

I
E

S
I

B
U
F

V
F
C

R
D

L
B Reserved

V
F
E

E
R
R

C
M
P

D
D

Return Value/VFID/PFID/DRID Datalen

Cookie High

Cookie Low

Param0

Param1

Data Address High

Data Address Low

Table 9-24. Control Descriptor Field Descriptions

Name Byte.Bit Description

Flags.DD 0.0 Set by mailbox/firmware to mark entry done.

Flags.CMP 0.1 Set by mailbox/firmware to mark entry as completion.

Flags.ERR 0.2 Set by mailbox/firmware to mark entry as an error indication.

Flags.VFE 0.3 Set by mailbox/firmware to mark entry as an event forwarded from a VF driver.

Flags.Reserved 0.4-1.0 Reserved. Must be zeroed by sender and ignored by receiver.

Flags.LB 1.1 Set by driver to indicate that indirect buffer is longer than AQ_LARGE_BUF.

Flags.RD 1.2 Set by driver to indicate that mailbox/firmware needs to read indirect buffer.

Flags.VFC 1.3 Set by driver to indicate command on behalf of a VF.

Flags.BUF 1.4 This command uses additional data.

Flags.SI 1.5 Do not interrupt when this command completes1

Flags.EI 1.6 Interrupt on error. Supersedes Flags.SI in case of an error.

Flags.FE 1.7 If previous command completed in error, flush this one.

Opcode 2-3 Command opcode. See Table 9-35.

Datalen 4-5 Indirect data length in bytes (can be used for other purposes if Flags.BUF is unset).

Intel® Ethernet Controller E810 Datasheet
Device Services

1406 613875-009

See Section 9.5.5 for details on the different command types.

9.5.2.1 Control Queue CSRs

The Control queues have 32 byte descriptors. They are serviced by the following registers (Table 9-25).

{PFX} denotes the register scope prefix:

• For VFs, it is “VF_”

• For PFs, it is “PF_” or “PF0_”

• For VSIs, (PASID_MODE), it is “VSI_”

Except for the name prefix the PF and VF registers are exactly the same.

There might be several control queues at the PF or at the VF context. The PF or the VF might have up to
three different types of control queues (firmware, mailbox, and sideband) and up to four different
queues from the same type that belong to different drivers. The queue type is added to the register
name with {TYP} as follows:

• For firmware queue, it is “FW_”

• For mailbox queue, it is “MBX”

• For sideband queue, it is “SB_”

Return Value/VFID/
PFID/DRID

6-7 Return Value / VF ID / PF ID / DR ID for command or event. It is used by mailbox/firmware as a
return value and reflects the error code as described in Section 9.5.9 and Table 9-34. When the
command is used for mailbox or sideband queue, this parameter reflects the destination PF/VF/
driver ID on outgoing messages or the source PF/VF/driver ID on incoming messages.

Cookie High 8-11 Opaque data, echoed by receiver, high half.

Cookie Low 12-15 Opaque data, echoed by receiver, low half.

Param0 16-19 First general use parameter.

Param1 20-23 Second general use parameter.

Data Address High 24-27 Indirect data pointer (can be used for other purposes if Flags.BUF is unset).

Data Address Low 28-31 Indirect data pointer (can be used for other purposes if Flags.BUF is unset).

1. Flags.SI is not applicable for sideband ARQ.

Table 9-25. Control Queue Registers

Name Width
(Bits) Comments

{PFX}{TYP}ATQBAH 32 High bytes of ATQ base address.

{PFX}{TYP}ATQBAL 32 Low bytes of ATQ base address. Address must be 64-byte aligned.

{PFX}{TYP}ATQLEN 10 + 4 ATQ length in descriptors. MSB is set for queue enable. Three error bits (critical error,
overflow error, and VF error) are set by mailbox/firmware to indicate error conditions. See
Section 9.5.10.1, “Critical Error Indication” for more information.

{PFX}{TYP}ATQH 10 ATQ head pointer (mailbox/firmware updates).

{PFX}{TYP}ATQT 10 ATQ tail pointer (driver updates).

{PFX}{TYP}ARQBAH 32 High bytes of ARQ base address.

Table 9-24. Control Descriptor Field Descriptions [continued]

Name Byte.Bit Description

613875-009 1407

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.2.1.1 Control Queues CSRs Mapping

At the PF space, Control Queues targeted for different PF drivers are mapped in separate 4K pages.
However, several Control Queues (for example the firmware Admin Queue and the mailbox, sideband
queues) that are targeted for the same driver might be mapped on the same page. In PASID mode (set
by GL_MBX_PASID.PASID_MODE), the control queues targeted for VSIs are mapped in separate 4K
pages per VSI, at the PF space.

In non PASID mode, the same queues that were targeted for VSI are used for the virtual functions (VF).
However up to 256 queues out of the 768 are in use.

See Section 13.1.2 for the exact mapping of the control queues CSRs.

9.5.2.2 Control Queue Interrupts

Firmware, mailbox, and sideband queues trigger an interrupt when they complete descriptors on the
Transmit Queue or when they post events to the Receive Queue. There is a different interrupt mapping
register to map the interrupts coming from firmware, mailbox, and sideband queues per driver type.
Interrupts are mapped according to the following:

• Type of the control queue: firmware, mailbox, or sideband.

• The function type: PF or VF.

• The driver queue — Up to 4 different drivers, depending on the queue type and function type.

For additional details, see Section 9.1.2.5.

9.5.3 Initialization

When initializing the queue, the driver must do the following:

• The driver allocates and sets up appropriately-sized host memory for the queues.

• The driver must post initialized buffers to the Receive Queue before it can use the Transmit Queue
(see Section 9.5.3.1 for Receive Queue element initialization).

• The driver clears the head and tail registers for each queue.

Head registers are:

{PFX}{TYP}{DRV}ATQH and {PFX}{TYP}{DRV}ARQH

Tail registers are:

{PFX}{TYP}{DRV}ATQT and {PFX}{TYP}{DRV}ARQT

{PFX}{TYP}ARQBAL 32 Low bytes of ARQ base address. Address must be 64-byte aligned.

{PFX}{TYP}ARQLEN 10 + 4 ARQ length in descriptors. MSB is set for queue enable. Three error bits (critical error,
overflow error, and VF error) are set by mailbox/firmware to indicate error conditions. See
Section 9.5.10.1, “Critical Error Indication” for more information.

{PFX}{TYP}ARQH 10 ARQ head pointer (mailbox/firmware updates).

{PFX}{TYP}ARQT 10 ARQ tail pointer (driver updates).

Table 9-25. Control Queue Registers [continued]

Name Width
(Bits) Comments

Intel® Ethernet Controller E810 Datasheet
Device Services

1408 613875-009

• Then, the driver programs the base and length registers for each queue
({PFX}{TYP}{DRV}ATQBAL, {PFX}{TYP}{DRV}ATQBAH, {PFX}{TYP}{DRV}ATQLEN,
{PFX}{TYP}{DRV}ARQBAL, {PFX}{TYP}{DRV}ARQBAH, and {PFX}{TYP}{DRV}ARQLEN), and
sets legnth.enable to 1 to inform mailbox/firmware that the queue is now enabled.

• For a firmware Admin Queue, the driver must then issue a Get Version admin command and check
the queue and firmware major version numbers before it can use the queue for anything else. If the
major versions does not match what the driver expects, the driver reports the mismatch and fails to
load. For details and current queue version number see Section 9.5.13.1, “Get Version (0x0001)”.

• For a firmware Admin Queue, after the driver has verified the queue version, it sends a Driver
Version command to the device. The device then sends an indication to the BMC that the PF driver
is present. This is done using Host NC Driver Status Indication in NC-SI Get Link command or via
the Host Network Controller Driver Status Change AEN.

• A PF driver must have at least one buffer posted to the receive queue for each VF that is currently
running. This can never be greater than the number of logical cores in the system. This must be
done before enabling VFs.

• A PF can disable a mailbox queue that belongs to a VF that is associated with the PF. This is done
with clearing the QUEUE_EN bit of the relevant PF VF control register. The QUEUE_EN bit is
allocated for each mailbox queue and there is a mailbox queue allocated for different drivers (using
register name: PF_VF_MBX_CTRL, so different PF drivers can enable or disable messages from the
corresponding VF driver.

9.5.3.1 Receive Queue Element Initialization by Driver

The driver must clear any unused fields (including unused flags), and set data pointers and data length
to a mapped DMA pointer.

The driver can set the SI and the EI flags in the receive queue element. The driver must not set the FE
flag on receive queue elements.

Table 9-26. Receive Queue Element - Initial Values

Name Byte.Bit Value Description

Flags.DD 0.0 0 Driver must clear.

Flags.CMP 0.1 0 Driver must clear.

Flags.ERR 0.2 0 Driver must clear.

Flags.VFE 0.3 0 Driver must clear.

Flags.Reserved 0.4-1.0 0 Reserved. Must be zeroed by sender and ignored by receiver.

Flags.LB 1.1 Driver can set Set by driver if buffer is longer than AQ_LARGE_BUF (512 bytes).

Flags.RD 1.2 0 Not applicable to receive queue.

Flags.VFC 1.3 0 Driver must clear.

Flags.BUF 1.4 1 Receive queue elements always have an additional buffer.

Flags.SI 1.5 Driver can set Do not interrupt when this command completes.

Flags.EI 1.6 Driver can set Interrupt on error. Supersedes Flags.SI in case of error.

Flags.FE 1.7 0 Driver must clear.

Opcode 2-3 Driver must clear.

Datalen 4-5 Buffer Length Additional data length in bytes.

613875-009 1409

Intel® Ethernet Controller E810 Datasheet
Device Services

The values written by the mailbox/firmware when it uses the EAQ element are discussed in the
following paragraphs.

9.5.4 Driver Unload and Queue Shutdown

When shutting down the Control Queue, the driver (both for PF and VF) does the following:

• Posts a Queue Shutdown admin command (0x0003) (Section 9.5.13.3). In this command, the
driver sets the “Driver Unloading” flag if it intends to unload.

• Software must not send any additional commands on the queue until the flow is completed.

Firmware/mailbox does the following:

• Waits for any pending DMA transactions from firmware/mailbox to be acknowledged by hardware.

• Closes the Rx-Queue by clearing its “enable” bit.

• Sends a completion to the driver as usual, honoring all the interrupt control bits in the descriptor.

Software then closes the Tx-Queue by clearing its “enable” bit. (this is the ATQENABLE bit in the
{PFX}{TYP}{DRV}_ATQLEN register).

If the driver is unloading, it issues a function reset (PFR or VFR) to the device.

If the driver is unloading, firmware informs the BMC. This is done using Host NC Driver Status
Indication in NC-SI Get Link command or via the Host Network Controller Driver Status Change AEN.

• Only for a PF driver posting the Queue Shutdown command on a firmware Admin Queue.

Note: Before the Control Queues are re-enabled, software should clear the head and tail registers of
the transmit and receive Control Queue.

Return Value/VFID/
PFID/DRID

6-7 Driver must clear.

Cookie High 8-11 Driver must clear.

Cookie Low 12-15 Driver must clear.

Param0 16-19 Driver must clear.

Param1 20-23 Driver must clear.

Data Address High 24-27 Buffer Address Indirect data pointer.

Data Address Low 28-31 Buffer Address Indirect data pointer.

Table 9-26. Receive Queue Element - Initial Values [continued]

Name Byte.Bit Value Description

Intel® Ethernet Controller E810 Datasheet
Device Services

1410 613875-009

9.5.5 Command Descriptions

9.5.5.1 Direct Command

9.5.5.1.1 Direct Admin Command

The template for a command that is fully contained in the descriptor and does not need an additional
data buffer.

Table 9-27. Direct Admin Command Template

Name Byte.Bit Value Description

Flags.DD 0.0 0 Driver must clear.

Flags.CMP 0.1 0 Driver must clear.

Flags.ERR 0.2 0 Driver must clear.

Flags.VFE 0.3 0 Driver must clear.

Flags.Reserved 0.4-1.0 0 Reserved. Must be zeroed by sender and ignored by receiver.

Flags.LB 1.1 0 A direct command has no additional buffer.

Flags.RD 1.2 0 A direct command has no additional buffer.

Flags.VFC 1.3 0 Driver must clear.

Flags.BUF 1.4 0 A direct command has no additional write buffer.

Flags.SI 1.5 Driver can set Do not interrupt when this command completes.

Flags.EI 1.6 Driver can set Interrupt on error. Supersedes Flags.SI in case of error.

Flags.FE 1.7 Driver can set If set, command is flushed if the preceding command resulted in an error.

Opcode 2-3 Opcode Command opcode. See Table 9-35.

Datalen 4-5 0

Return Value/VFID/
PFID/DRID

6-7 Mailbox messages use this field for the source/destination PF/VF/driver ID.

Cookie High 8-11 Cookie Opaque value copied by the mailbox/firmware into the completion of this
command.

Cookie Low 12-15 Cookie Opaque value copied by the mailbox/firmware into the completion of this
command.

Param0 16-19 First command parameter.

Param1 20-23 Second command parameter.

Data Address High 24-27 Can be used for an additional command parameter.

Data Address Low 28-31 Can be used for an additional command parameter.

613875-009 1411

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.5.1.2 Direct Command Completion

Table 9-28. Direct Command Completion Event Template

Name Byte.Bit Value Description

Flags.DD 0.0 1 Mailbox/Firmware must set.

Flags.CMP 0.1 1 Mailbox/Firmware must set.

Flags.ERR 0.2 0 or 1 Mailbox/Firmware must set only if it is reporting an error.

Flags.VFE 0.4 0 Mailbox/Firmware must clear.

Flags.Reserved 0.4-1.0 0 Reserved. Must be zeroed by sender and ignored by receiver.

Flags.LB 1.1 echo Mailbox/Firmware copies value from command.

Flags.RD 1.2 echo Mailbox/Firmware copies value from command.

Flags.VFC 1.3 echo Mailbox/Firmware copies value from command.

Flags.BUF 1.4 echo Mailbox/Firmware copies value from command.

Flags.SI 1.5 echo Mailbox/Firmware copies value from command.

Flags.EI 1.6 echo Mailbox/Firmware copies value from command.

Flags.FE 1.7 echo Mailbox/Firmware copies value from command.

Opcode 2-3 Opcode Command opcode. See Table 9-35.

Datalen 4-5 Can be used for an additional command parameter.

Return Value/VFID/
PFID/DRID

6-7 Mailbox/Firmware return value 0=no error (for error codes see Table 9-34).

Cookie High 8-11 echo Opaque value copied by the mailbox/firmware from the command.

Cookie Low 12-15 echo Opaque value copied by the mailbox/firmware from the command.

Param0 16-19 First command parameter.

Param1 20-23 Second command parameter.

Data Address High 24-27 Can be used for an additional command parameter.

Data Address Low 28-31 Can be used for an additional command parameter.

Intel® Ethernet Controller E810 Datasheet
Device Services

1412 613875-009

9.5.5.2 Indirect Command

9.5.5.2.1 Indirect Admin Command

An indirect write command uses an additional DMA buffer specified in the descriptor.

The BUF flag must be set by the driver. If the buffer is larger than 512 bytes, the LB flag must be set.

This version of the queue is limited to buffers up to 4096 bytes. If the command uses the buffer to pass
data, the RD flag must be set.

Table 9-29. Indirect Admin Command Template

Name Byte.Bit Value Description

Flags.DD 0.0 0 Driver must clear.

Flags.CMP 0.1 0 Driver must clear.

Flags.ERR 0.2 0 Driver must clear.

Flags.VFE 0.3 0 Driver must clear.

Flags.Reserved 0.4-1.0 0 Reserved. Must be zeroed by sender and ignored by receiver.

Flags.LB 1.1 Driver can set Set by driver if buffer is longer than AQ_LARGE_BUF (512).

Flags.RD 1.2 Driver can set Set by driver to indicate that mailbox/firmware needs to read indirect buffer.

Flags.VFC 1.3 0 Driver must clear.

Flags.BUF 1.4 1 This command uses additional data buffer. Driver must set this flag on an
indirect command.

Flags.SI 1.5 Driver can set Do not interrupt when this command completes.

Flags.EI 1.6 Driver can set Interrupt on error. Supersedes Flags.SI in case of error.

Flags.FE 1.7 Driver can set If set, command is flushed if the preceding command resulted in an error.

Opcode 2-3 Opcode Command opcode. See Table 9-35.

Datalen 4-5 Buffer Length Usable length of additional buffer in bytes.

Return Value/VFID/
PFID/DRID

6-7 Mailbox messages use this field for the source/destination PF/VF/driver ID.

Cookie High 8-11 Cookie Opaque value copied by the mailbox/firmware into the completion of this
command.

Cookie Low 12-15 Cookie Opaque value copied by the mailbox/firmware into the completion of this
command.

Param0 16-19 First command parameter.

Param1 20-23 Second command parameter.

Data Address High 24-27 Buffer Address High bits of buffer address.

Data Address Low 28-31 Buffer Address Low bits of buffer address.

613875-009 1413

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.5.2.2 Indirect Command Completion

When completing an indirect command, the firmware overwrites the Datalen with the actual length of
data returned by the command.

9.5.6 Firmware Command Fetch and Verification

When a command is posted, firmware looks it up in an internal permission table to decide if the request
should be honored. Possible actions are:

• Allow — Firmware acts upon the command.

• Forward — Firmware halts the queue and forwards the command to the PF driver. A completion for
this command is initiated by the PF driver when it finishes i. Only then is further processing of
commands from this queue allowed. (The PF driver must re-enable the queue after it deals with the
command.)

• Error — Firmware completes the action by returning the error specified in the table.

• Drop — Firmware behaves as if the command succeed but does nothing.

Table 9-30. Direct Command Completion Event Template

Name Byte.Bit Value Description

Flags.DD 0.0 1 Mailbox/Firmware must set.

Flags.CMP 0.1 1 Mailbox/Firmware must set.

Flags.ERR 0.2 0 or 1 Mailbox/Firmware must set only if it is reporting an error.

Flags.VFE 0.3 0 Mailbox/Firmware must clear.

Flags.Reserved 0.4-1.0 0 Reserved. Must be zeroed by sender and ignored by receiver.

Flags.LB 1.1 echo Mailbox/Firmware copies value from command.

Flags.RD 1.2 echo Mailbox/Firmware copies value from command.

Flags.VFC 1.3 echo Mailbox/Firmware copies value from command.

Flags.BUF 1.4 echo Mailbox/Firmware copies value from command.

Flags.SI 1.5 echo Mailbox/Firmware copies value from command.

Flags.EI 1.6 echo Mailbox/Firmware copies value from command.

Flags.FE 1.7 echo Mailbox/Firmware copies value from command.

Opcode 2-3 Opcode Command opcode. See Table 9-35.

Datalen 4-5 echo Mailbox/Firmware copies value from command.

Return Value/VFID/
PFID/DRID

6-7 Mailbox/Firmware return value 0=no error (for error codes see Table 9-34).

Cookie High 8-11 echo Opaque value copied by the mailbox/firmware from the command.

Cookie Low 12-15 echo Opaque value copied by the mailbox/firmware from the command.

Param0 16-19 First command parameter.

Param1 20-23 Second command parameter.

Data Address High 24-27 Can be used for an additional command parameter.

Data Address Low 28-31 Can be used for an additional command parameter.

Intel® Ethernet Controller E810 Datasheet
Device Services

1414 613875-009

9.5.7 Mailbox and Sideband Command Fetch and
Verification

When a command is posted at a mailbox queue or at a sideband queue, the hardware mailbox verifies
permission for the command to decide if the request should be honored. Possible actions are:

• Allow — Mailbox acts upon the command. In other words, it forwards the command to the relevant
mailbox queue or executes the SB-IOSF transaction.

• Error — Mailbox completes the action by returning the error specified in the table.

Table 9-31 specifies the commands allowed in a mailbox queue and the commands allowed in a
sideband queue. A PF driver is allowed to execute a richer set of commands than a VF driver. In
addition, commands that deal with PF-to-VF communications are only allowed on a mailbox queue,
while commands that deal with SB-IOSF are allowed on the sideband queue. If any other command is
posted, the mailbox returns the EPERM (operation not permitted) error code.

A VF driver is only allowed to post commands at the mailbox queue, or at the sideband VF queue. Those
queues are processed by the hardware mailbox. Sideband queue accepts only the Neighbor Device
Request and Neighbor Device Event commands listed in Table 9-31. If any other command is posted by
a VF, the mailbox returns the EPERM (operation not permitted) error code.

A PF driver can post commands at the firmware Admin Queue, Mailbox Queue, or Sideband Queue.
Each queue type supports specific commands. When the command does not match the queue type, an
EPERM error code is returned.

A “Queue Shutdown” command posted to a sideband queue without a buffer attached will result in an
error code of EINVAL. When a buffer is attached to the “Queue Shutdown” command, the hardware will
shutdown the queue.

9.5.8 Non-Completion Events

Events that are not an immediate result of a command completion are posted by the mailbox/firmware
onto the receive queue.

Table 9-32 lists the currently-defined events. Note that whenever possible, the same number is used for
the opcode that generates the event and for the event ID.

Table 9-31. Commands Allowed for Mailbox and Sideband Queues

Opcode Command Function Allowed Queue Type Section
Reference

0x0801 Send to PF VF Mailbox 9.5.14.1

0x0802 Send to VF PF Mailbox 9.5.14.2

0x0C00 Neighbor Device Request PF, VF Sideband

0x0C01 Neighbor Device Event PF, VF Sideband

0x0003 Queue Shutdown PF, VF Mailbox 9.5.13.3

613875-009 1415

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.9 Error Handling

When mailbox/firmware encounters an error, it uses the Return Value field to indicate the type of error.
The error code is comprised of two bytes. The lower byte is a user-visible code from Table 9-34, and the
higher byte can be used by mailbox/firmware to report internal state or debug information. The driver
must log this information. Mailbox/Firmware might change this value from release to release. It is not
to be reported to the user and no other action is to be taken upon this data. When the Return Value is
0 (“no error”), mailbox/firmware must not set the high byte.

9.5.10 Error Codes

When mailbox/firmware completes a command, it must use the following error codes.

Table 9-32. Non-Completion Events

Opcode Command Type Section
Reference

0x0801 Send to PF Indirect/Direct 9.5.14.1

0x0802 Send to VF Indirect/Direct 9.5.14.2

Table 9-33. Control Queue Return Value Fields

Name Bytes Comment

Code 0-7 Return value from Table 9-34.

Mailbox/Firmware Internal Code 8-15 Mailbox/Firmware internal code. Must be 0 if Code field is 0.

Table 9-34. Control Queue Return Values and Error Codes

Error Code Value Meaning

(No Error) 0 No error (success).

EPERM

1

Operation not permitted.
For mailbox queue: VF not allowed to access the PF.
For sideband queue: Driver not allowed to access the sideband IP, or the driver is not allowed to

send the sideband opcode.

ENOENT 2 No such element.

ESRCH 3 Bad opcode.
For mailbox queue: Not a mailbox queue opcode, or incorrect use of opcode (e.g. VF uses the

Send-to-VF opcode).
For sideband queue: Not a sideband queue opcode.

EINTR 4 Operation interrupted.

EIO 5 I/O error or firmware internal error.

ENXIO 6 No such resource.

E2BIG 7 Argument too long.
For mailbox queue: Buffer longer than 4K bytes
For sideband queue: Buffer longer than 512 bytes.

EAGAIN 8 Try again.

ENOMEM 9 Out of memory.

EACCES 10 Permission denied.

Intel® Ethernet Controller E810 Datasheet
Device Services

1416 613875-009

9.5.10.1 Critical Error Indication

On any error that prevents data placement to a queue, the ATQLEN.ATQCRIT (or ARQLEN.ARQCRIT) bit
is set by mailbox/firmware and the queue is stopped (by clearing its enable bit), then an interrupt is
sent by mailbox/firmware to the driver.

Software reads and reports the error, and then resets the queue.

If an overflow occurs and a message to the queue is dropped because the queue is full, mailbox/
firmware sets the ARQLEN.ARQOVFL bit and interrupts the driver. (Mailbox/Firmware does not stop the
queue since, depending on the driver mode, this can be a recoverable error.)

Note: This error can currently only happen on the receive queue, but to simplify the hardware
design, the bit is present on both queues.

EFAULT 11 Bad address.

EBUSY 12 Device or resource busy.

EEXIST 13 Attempt to create something that exists.

EINVAL 14 Invalid argument.
For mailbox queue: Flags.BUF and Flags.RD are set, but Datalen is equal to zero.
For sideband queue: The descriptor is shorter than 8 bytes.

ENOTTY 15 Not a typewriter.

ENOSPC 16 No space left or allocation failure.
For mailbox queue: No valid descriptor at the destination queue or the source buffer is bigger

than the destination buffer.

ENOSYS 17 Function not implemented.
For mailbox queue: Destination queue is disabled or the destination function is disabled.

ERANGE 18 Parameter out of range.

EFLUSHED 19 Command flushed because a previous command completed in error.

BAD_ADDR 20 Internal error. Descriptor contains a bad pointer.

EMODE 21 Operation not allowed in current device mode.
For mailbox queue: VF greater than max supported by this function.

EFBIG 22 File too big.

ESBCOMP 23 Cannot find enough space for the message in the sideband or mailbox queue.
For sideband queue: This error is flagged when the completion message from the neighbor IP was

longer than 512 bytes.
This error can be flagged also for sideband queues when the SB-IOSF completion from the neighbor
IP was unsuccessful, or when the SB-IOSF completion contains data that could not fit the buffer
size in the sideband queue buffer.

RC_ENOSEC 24 Missing security manifest.

RC_EBADSIG 25 Bad RSA signature.

RC_ESVN 26 SVN number prohibits this package.

RC_EBADMAN 27 Manifest hash mismatch.

RC_EBADBUF 28 Buffer hash mismatches manifest.

EACCES_BMCU 29 BMC update in progress. Returned when NVM ownership is required during PLDM firmware update.

Table 9-34. Control Queue Return Values and Error Codes [continued]

Error Code Value Meaning

613875-009 1417

Intel® Ethernet Controller E810 Datasheet
Device Services

When a VF has an event that causes mailbox/firmware to set an error bit in its receive queue. Mailbox/
Firmware sets the ARQLEN.ARQVFE bit in the corresponding PF’s queue and interrupts it. (Mailbox/
Firmware does not stop the PF queue in this case.)

Note: Events and completions that have already been posted before the error are still readable and
can be handled by software.

9.5.11 Command Opcodes

Opcodes are 16 bits. The upper eight bits designate the group of the opcode, and the lower eight bits
are the command in the group. Each group is described in its relevant chapter.

9.5.12 CSR-Based Firmware Admin Queue for Tools

The E810 implements a CSR-based firmware admin queue for the use of tools. The CSR-based firmware
admin queue implements a single command interface to firmware, which is CSR-based. The E810
implements a memory space, including a 32-byte descriptor for Tx and for immediate response, a
32-byte descriptor for events, and a 4KB buffer mapped into the CSR space. This area is directly
accessible by the user mode tools software.

The GL_HICR and GL_HICR_EN registers are used to control the usage of this mechanism.

Table 9-35. Opcode Groups

Name Opcode(s) Section Reference/Remarks

Generic 0x00xx Section 9.5.13 and Table 9-39

MAC Address 0x0100 Section 4.2.1.3

PXE Mode 0x0110 Section 10.4.3.2

Switch 0x02xx Section 7.8.12 and Table 7-22

DCB 0x03xx Section 8.2.5

Scheduler 0x04xx Section 8.3.4.3.6

RESERVED 0x05xx Reserved.

Link 0x06xx Section 3.2.4 and Section 3.3.10 (0x06E0:0x06FF is dedicated to
link topology commands.)

NVM 0x07xx Section 3.4.10

Mailbox 0x08xx Section 9.5.14

Alternate Structure 0x09xx Section 4.3.2.2

LLDP 0x0Axx Section 9.8.5.2.2

Receive Filters 0x0Bxx Section 7.10.11

Sideband Control Interface 0x0C00:0x0C0F

ACL Block 0x0C10:0x0C2F Section 7.9.3.4

Queue Handling 0x0C30:0x0C3F Section 10.5.5.8

Profiles Handling 0x0C40:0x0C5F Section 7.11.9 and Section 7.11.12

Intel® Ethernet Controller E810 Datasheet
Device Services

1418 613875-009

9.5.12.1 CSR-Based Firmware Queue Hardware Implementation

The tools software writes a single admin queue command into the 32-byte descriptor space using the
same format of the admin queue command. It uses the 4K buffer as the buffer needed for the indirect
command. Then, it signals the firmware using a GL_HICR CSR (as defined below) that it wrote for
command execution. The firmware reads the command, executes it, and uses the same memory space
to send back the answer from the admin command.

Note: No asynchronous events can be used by the tool queue (e.g. link change event), except
asynchronous events that are caused by delayed response to a command.

The CSRs are accessible to all PFs, but the assumption is that only PF0 will access it. The CSR-based
firmware admin queue implements:

• 64 bytes of descriptor area.

• 4K bytes of buffer area.

Those areas are accessible for software reads and writes only if the GL_HICR.EN bit is set. Write access
is also limited by GL_HICR.C being zero.

Those areas are also mapped as Aux registers - though aux, the memory is always accessible.

The CSR-based firmware admin queue also implements the GL_HICR and GL_HICR_EN registers.

Table 9-36. CSR-Based Firmware Admin Queue Areas

Area CSR Name Size Offset CSR Usage in Command Usage in Response

Data Buffer GL_HIBA 4K bytes 0x81000 Command Buffer Event Response Buffer

1st Descriptor GL_HIDA 32 bytes 0x82000 Command Descriptor Sync Response

2nd Descriptor GL_HIDA+0x20 32 bytes 0x82020 N/A Async Response

Table 9-37. GL_HICR

Field Bits Init
Value

Firmware
(Aux)
Access

Software
(CSR)
Access

Description

Reserved 0 0b RW RW Reserved.

C 1 0b RW1C RW1 Command
The tool sets this bit when it has finished putting a command
block in the command buffer.
This bit should be cleared by the firmware when the command's
processing is completed. Setting this bit causes an interrupt to
the firmware.
This bit can be only set through the CSR (software) interface and
can be cleared through the AUX (firmware) interface.
While this bit is set, the memory is RO to software.

SV 2 0b RW RW Status Valid
Indicates that there is a valid status in the 1st descriptor that the
device driver can read.
If Flags.BUF is set in the 1st descriptor, the buffer is valid.

0b = Status not valid.
1b = Status valid.

613875-009 1419

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.12.2 Firmware and Software Interaction Using the
CSR-Based Admin Queue

The following interaction is expected:

1. Firmware must register to an interrupt, which is triggered when software writes to the GL_HICR
register. The mechanism is enabled by setting the GL_HICR.EN bit (GL_HICR.EN = 1).

2. Software fills the descriptor + buffer, sets the GL_HICR.C bit, and clears the GL_HICR.SV and
GL_HICR.EV bits.

3. Once the GL_HICR.C bit is set, the firmware on the main CPU reads the data (descriptor + buffer),
parses the packet, and checks the command parameters correctness.

Note: All the commands reach the main CPU, and if needed, it should distribute them to other
CPUs.

4. Firmware executes the command (arbitration with other commands is left to firmware).

5. Firmware then writes a response in the 1st descriptor and optionally to the buffer, and sets the
GL_HICR.SV bit. If there is an error, or the command is completed (synchronous command), it also
clears the GL_HICR.C bit

6. If Flags.BUF is set in the 1st descriptor, the buffer is valid and the SW should process it.

7. If GL_HICR.C bit is cleared, software stops the flow.

8. If the command is asynchronous, firmware waits for the command to complete. It does not process
additional commands.

9. Firmware responds using the same 4KB buffer and the 32-byte 2nd descriptor, clears the
GL_HICR.C bit, and sets the GL_HICR.EV bit.

EV 3 0b RW RW Event Valid
Indicates that there is a valid status in the 2nd descriptor that
the device driver can read.
If Flags.BUF is set in the 2nd descriptor, the buffer is valid.

0b = Status not valid.
1b = Status valid.

RESERVED 31:4 0x0 RSV RSV Reserved.

1. Changing the C bit from 0b to 1b in this CSR create an interrupt to firmware. The firmware implements an interrupt routine, which
reads the admin queue command from the internal memory and executes it, in a similar fashion as it executes any other admin
command. The results of the admin command, is written back to the same memory.

Table 9-38. GL_HICR_EN

Field Bits Init
Value

Firmware
(Aux)
Access

Software
(CSR)
Access

Description

EN 0 0b RW RO Enable
When set, indicates that the buffer is accessible for the device.
Note: This bit is common to all functions.

RESERVED 31:1 0x0 RSV RSV Reserved.

Table 9-37. GL_HICR [continued]

Field Bits Init
Value

Firmware
(Aux)
Access

Software
(CSR)
Access

Description

Intel® Ethernet Controller E810 Datasheet
Device Services

1420 613875-009

10. If Flags.BUF is set in the 2nd descriptor, the buffer is valid and the software should process it.

Note: The buffer may be used for the 1st or 2nd response, but not for both.

Note: The mechanism mimics the synchronous and asynchronous flows used in regular event
queues, but the command buffer and completion buffer are shared. The tool should not post
new commands until the GL_HICR.C bit is cleared.

Note: When the GL_HICR.C bit is set, the entire memory (buffer and descriptors) is RO to software.

9.5.13 Generic Firmware Admin Commands

Table 9-39. Generic Commands

Name Opcode Type Section
Reference

Get Version 0x0001 Direct 9.5.13.1

Driver Version 0x0002 Indirect 9.5.13.2

Queue Shutdown 0x0003 Indirect 9.5.13.3

Set PF Context 0x0004 Direct 9.5.13.4

Request Resource Ownership 0x0008 Direct 9.5.13.5

Release Resource Ownership 0x0009 Direct 9.5.13.6

Discover Function Capabilities 0x000A Indirect
9.5.13.7

Discover Device Capabilities 0x000B Indirect

VM/VF Reset 0x0C31 Indirect 9.5.13.8

Set/Get Shared Driver Parameters 0x0C90 Direct 9.5.13.9

613875-009 1421

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.13.1 Get Version (0x0001)

This must be the first command that the driver issues before it can use the queue for other purposes.
The driver must inspect the reply to ensure that the firmware version is compatible. If firmware is still
initializing, it can delay response until it is done.

Both the firmware and the API have two unassigned 16-bit values as minor and major version. The
driver must not continue loading if the major version mismatches. Minor versions are for tracking
changes that do not need driver modifications.

9.5.13.2 Driver Version (0x0002)

This command is used by the driver to report the driver version. The firmware should use the driver
version to report it to the BMC. See Section 9.5.3.

Table 9-40. Get Version Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0001 Command opcode.

Datalen 4-5 0 No external response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

ROM Build ID 16-19 Device ROM build version.

FW Build ID 20-23 Device firmware build version.

FW Branch 24 Firmware branch identifier (unsigned 8-bit integer).

FW Major Version 25 Firmware major version (unsigned 8-bit integer).

FW Minor Version 26 Firmware minor version (unsigned 8-bit integer).

FW Patch Version 27 Firmware patch version (unsigned 8-bit integer).

AQ API Branch 28 AQ API branch identifier (unsigned 8-bit integer).

AQ API Major Version 29 AQ API major version (unsigned 8-bit integer).

AQ API Minor Version 30 AQ API minor version (unsigned 8-bit integer).

AQ API Patch Version 31 AQ API patch version (unsigned 8-bit integer).

Table 9-41. Driver Version Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0002 Command opcode.

Datalen 4-5 Buffer Length. Can be up to 32.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Intel® Ethernet Controller E810 Datasheet
Device Services

1422 613875-009

9.5.13.3 Queue Shutdown (0x0003)

This is the final command posted to the queue, closing the queue as described in Section 9.5.4. When
this command completes, the driver is allowed to free any host resources associated with the Control
Queue.

If the driver is going to unload, it must set the Driver Unloading flag to inform firmware.

Once this command is posted, the driver is not allowed to issue any more commands on the queue
before a reset is done.

Note: Interrupt generation and the interrupt control flags in this command are handled as usual by
firmware. This means that if an interrupt was not inhibited by setting the SI flag, it happens.
If the driver is in polling mode and can not handle an interrupt, it needs to either inhibit the
interrupt or have interrupts disabled through the interrupt control registers.

Driver Version 16-19 Version Byte 16 = Major version
Byte 17 = Minor version
Byte 18 = Build version
Byte 19 = Sub-build version

Reserved 20-23 0x0 Reserved.

Data Address High 24-27
Address or response buffer.

Data Address Low 28-31

Table 9-42. Driver Version Buffer

Name Length Description

Driver Version Datalen Driver string (not null terminated) as reported by driver.

Table 9-43. Queue Shutdown Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0003 Command opcode.

Datalen 4-5 0 No external data.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Driver Unloading 16.0 1b if the driver intends to unload. 0b otherwise.

Reserved 16.1-31 0x0 Reserved.

Table 9-41. Driver Version Command [continued]

Name Byte.Bit Value Remarks

613875-009 1423

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.13.4 Set PF Context (0x0004)

This admin command is used to set explicit PF ID number. It is needed for some admin commands that
require control on specific PF contexts regardless of the PF from which the admin command is initiated.

9.5.13.5 Request Resource Ownership (0x0008)

This command is used by the driver to request ownership of a shared resource. The driver specifies the
resource and the type of access it requests (listed in Table 9-45). On success, the command returns a
returns value of 0. The completion specifies in the Timeout field the maximum time in milliseconds that
the driver can hold the resource. The driver must free the resource before that time. The driver must
free a resource before asking for it again. A request for a resource that is already held by this driver
fails with the EACCESS error code. A timeout value of zero means no timeout.

If the resource is held by someone else and the resource is different from “Global Config Lock”, the
command completes with a EBUSY return value, and the Timeout field indicates the maximum time the
current owner of the resource has to free it. For the “Global Config Lock” resource, the command
always completes successfully, while the status is reflected in the Status field of the command.

Firmware implements a timeout mechanism, taking back the ownership if the driver hangs. Any further
commands by this driver that attempt to access this resource will fail with the EPERM error code until
the driver frees the resource and requests it again.

Table 9-44. Set PF Context Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0004 Command opcode.

Datalen 4-5 0 No external data.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

PF ID 16 Physical function ID.

Reserved 17-31 0x0 Reserved.

Table 9-45. Shared Resources

Resource ID Supported Modes Default Timeout

NVM 0x0001 1=read, 2=write 3000 ms for read, 180000 ms for write

SDP 0x0002 1=read, 2=write 0 (no timeout)

Change Lock1

1. This resource is used by the Download Package admin command.

0x0003 1=read, 2=write 1000 ms

Global Config Lock1 0x0004 1=read, 2=write 3000 ms

Intel® Ethernet Controller E810 Datasheet
Device Services

1424 613875-009

Notes:

• Global Config Lock (0x0004) always returns success. Command status is reflected by the Status
field.

• If Global Config Lock was not released and a timeout occurs, firmware issues a CORER to load
working configurations from NVM.

• A software driver that successfully acquired Global Config Lock, can use only the following
admin commands: Download Package, Get Version, Get Package Info List, Upload Section,
Update Package, Set VLAN Mode, Get VLAN Mode, Set Port Parameters, Add Recipe, Set
Recipes to Profile Association, Get Recipe, Get Recipes to Profile Association, Release Resource
Ownership, Set Tx-Scheduler Topology, and Get Tx-Scheduler Topology with Resource ID =
0x0004. All the other commands should not be used until Global Config Lock release.

• The rest of the drivers can use Request Resource Ownership with Resource ID = 0x0004 admin
command only, until getting STAT_COMPLETED status.

• Global Config Lock could be successfully acquired only once after CORER/GLOBR or after the
last driver goes down, to the first driver asking for the lock for the first time.

• The Request Resource Ownership admin command might return additional error code.
EACCES_BMCU (0x24) - BMC update in progress. Returned when NVM ownership is required
during PLDM firmware update.

Table 9-46. Request Resource Ownership Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0008 Command opcode.

Datalen 4-5 0 No external buffer for this command.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Resource ID 16-17 ID See Table 9-45 for list of IDs.

Access Type 18-19 Type See Table 9-45 for list.

Timeout 20-23 Timeout Timeout in milliseconds.
For specific resources, such as Change Lock (0x0003) and Global Config Lock
(0x0004), this field is used by software to override the default timeout for the
operation, and also to specify the timeout used for this operation.
As an input, the software might specify timeout longer than the default taken for this
resource, and up to one minute.
As an output, this field is returned in the firmware response structure and indicates
the timeout used for the specific resource.

Resource Number 24-27 Number For an SDP, this is the pin ID of the SDP.

Status 28-29 Status Written by firmware. Used for Global Config Lock (0x0004), reserved for others.
0x0000 = Global Config Lock acquired successfully (STAT_SUCCESS).
0x0001 = Global Config Lock acquired by another driver, configuration is in

progress (STAT_INPROGRESS).
0x0002 = Global Lock could not be acquired, configuration was already completed

(STAT_COMPLETED).

Reserved 30-31 Reserved.

613875-009 1425

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.13.6 Release Resource Ownership (0x0009)

This command is used to return ownership of a shared resource to the firmware. The driver specifies
the ID of the resource it is releasing in the Resource ID field.

9.5.13.7 Discover Function/Device Capabilities (0x000A/
0x000B)

This command is used to request the list of capabilities of the device or the function. The firmware fills
in the capabilities structure and returns the length to the driver. If the buffer size is not big enough for
the whole structure, the firmware returns ENOMEM (at the return value), writes the number of
capabilities that should be returned by the command to the Cap Count field, and resets the Length field
to zero. This can be used to discover the number of capabilities returned, and the structure size can be
calculated by software using the known size of the capability structure.

Capabilities are described using the structure in Table 9-49. The list of resources recognized by this
version of the command are in Table 9-50.

Additional capabilities can be retrieved using the Get PHY Abilities command (0x0600) and the Get
Resource Allocation command (0x0204), described in Section 3.2.4.1.4 and Section 7.8.12.2.3,
respectively.

Note: Unsupported capabilities are not reported.

Table 9-47. Release Resource Ownership Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0009 Command opcode.

Datalen 4-5 0 No external buffer for this command.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Resource ID 16-17 ID See Table 9-45 for list of IDs.

Reserved 18-23 Reserved.

Resource Number 24-27 Number If a resource number was specified in the request, it needs to be specified here too.

Reserved 28-31 Reserved.

Table 9-48. Discover Function/Device Capabilities Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x000A
or

0x000B

Command opcode.
0x000A = Function
0x000B = Device

Length 4-5 Buffer Length Length of buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Intel® Ethernet Controller E810 Datasheet
Device Services

1426 613875-009

Reserved 16-19 Reserved.

Cap Count 20-23 Number of capability records returned. Zeroed by driver. Written by firmware.

Data Address High 24-27 0x0
Address of response buffer.

Data Address Low 28-31 0x0

Table 9-49. Capability Structure

Name Length
(Bits) Remarks

Capability 16 See Table 9-50 for list of capabilities.

Major Version 8

Minor Version 8

Number 32 Number of resources described by this capability.

Logical ID 32
Only meaningful for some types of resources.

Physical ID 32

Additional Data1 64 In the E810, these field are used in the Logical-to-Physical Port Mapping (0x0073) capability
structure.Additional Data2 64

Table 9-50. Resources Recognized by This Version of the Command

Name Capability Ver Number Logical ID Physical ID

Switching
Mode

0x0001 1.0 Returns the switching mode
supported:

0 = EVB switching (including cloud)
All other values are reserved.

Manageability
Mode

0x0002 2.0 Bits 3:0:
Returns the value of the
Manageability Pass-Through Mode
field in the NVM.

Bits 7:4:
Returns the value of the Control
Interface field in the NVM.

Bits 11:8:
Returns the value of the
Redirection Sideband Interface
field in the NVM.

Bits 31:12:
Reserved.

Supported Protocols
over MCTP:

Bit 0: Reserved
Bit 1: PLDM
Bit 2: OEM

commands
Bit 3: NC-SI
Bits 31:4: Reserved

Supported Protocol over
PLDM (relevant only in
PLDM is supported):

Bit 0: PLDM base (always
set if PLDM
supported)

Bit 1: Reserved
Bit 2: PLDM for Platform

Monitoring and
Control

Bit 3: Reserved
Bit 4: Reserved
Bit 5: PLDM FW update
Bit 6: Reserved (RDE)

OS2BMC
Capable

0x0004 1.0 Returns the value of the OS2BMC
Capable field in the NVM.

Functions Valid 0x0005 1.0 Bits 7:0: Each corresponds to a
PFPCI_STATUS1.FUNC_VALID bit for
PFs 0,…,

Alternate RAM
Structure

0x0006 1.0 1

Table 9-48. Discover Function/Device Capabilities Command [continued]

Name Byte.Bit Value Remarks

613875-009 1427

Intel® Ethernet Controller E810 Datasheet
Device Services

WoL and Proxy
Support

0x0008 1.0 Number of ACPI supported filters = 8
if supported, 0 otherwise.
In the E810 it is equal to 0,
excluding Magic Packet filters, which
are always supported.
Same value for all ports and for the
device command.
For the device, return the total
number of filters across all
supporting functions.

SEID of WoL and Proxy
VSI of the port.
N/A if programming
method is hardware.
N/A for device.

Bit 0:
APM WoL is supported
(based on
PFPM_APM.APME bit.
For Device command - OR
of all the PFs bits.

Bit 1:
ACPI Programming
Method (relevant only if
number of ACPI
supported filters is not
zero).

0b = HW
1b = AQC

Bit 2: Proxy Support
0b = Disabled
1b = Enabled

For Device command - OR
of all the PFs bits.

All other bits = Reserved.

SR-IOV 0x0012 1.0 Set to one if enabled in config space.
For device, should be set if set in any
of the functions.

SR-IOV version (1.1).

Virtual
Function

0x0013 1.0 Function: Number of allocated VFs.
Device: Total number of VFs exposed
to all functions.

Logical ID of first VF.

VMDq 0x0014 1.0 Set to one.

802.1Qbg 0x0015 1.0 One if enabled.

VSI 0x0017 1.0 Function: Number of guaranteed VSI
as read from PF allocations structure
for PFs.
Device: Number of VSIs allocated to
the host (not including EMP VSIs).

DCB 0x0018 1.0 One if enabled. Device = 0:
Bitmap of active TCs.

Max number of TCs.
(8 TCs when the device is
configured to 1, 2 or 4
ports. 4 TCs when the
device is configured to
more than 4 port.)

Reserved 0x0021 1.0 Reserved 0x0. Reserved. Reserved.

iSCSI 0x0022 1.0 0x1 if iSCSI is enabled.
0x0 if not enabled.
For a device capability it is always
set. For a function capability it is a
reflection of the
PFGEN_STATE.PFSCEN flag.

RSS 0x0040 1.0 Table size:
2048 for PFs.

Entry width in bits.
8 for PFs.

Rx-Queues 0x0041 1.0 Function: Number of queues
allocated to the PF.
Device: Total number of queues
available to the device.

ID of first queue.

Table 9-50. Resources Recognized by This Version of the Command [continued]

Name Capability Ver Number Logical ID Physical ID

Intel® Ethernet Controller E810 Datasheet
Device Services

1428 613875-009

Tx-Queues 0x0042 1.0 Function:
Number of queues.

Device:
Total number of queues available.

ID of first queue.

MSI-X 0x0043 1.1 Number of vectors.
For functions:

PFINT_ALLOC[PF#].LAST -
PFINT_ALLOC[PF#].FIRST + 1

For the device: 2048

First allocated vector:
PFINT_ALLOC[PF#].FIRST

VF-MSIX1 0x0044 1.0 Number of MSIX vectors available to
VFs of this PF

Flow Director 0x0045 1.0 Function: Number of filters
guaranteed to this PF.
Device: Number of filters available in
device (8192).

Function: Number of
best effort filters.
Device: Number of
filters available in
device (8192).

1588 0x0046 1.1 Function:
Byte 0 (LSB) - Timer info:

Bit 0: TimeSync is enabled on
the port on which this
function runs.

Bit 1: A primary timer is owned
by this function.

Bit 2: Timer enabled. Taken from
NVM structure “1588
functionality
enablement”).

Bit 3: Reserved.
Bit 4: Timer index owned by the

function (0/1). (Note that
this bit defaults to 0, in
the case that the function
owns both timers.)

Bits 7:5: Reserved.
Byte 1 - GPIOs association with
the timer owned by the function:

Bit 8: SDP_TIMESYNC[0]
Bit 9: SDP_TIMESYNC[1]
Bit 10:SDP_TIMESYNC[2]
Bit 11: SDP_TIMESYNC[3]
Bit 12: 1PPS (output)
Bit 13: TIME_SYNC (input)
Bit 14: CLK_SYNCE (output)
Bit 15: Reserved

Byte 2 - Clock source info:
Bits 18:16: Clock frequency

 report from CGU.
Bit 19: Reserved.
Bit 20:Clock source selection

report from CGU.
Bits 23:21: Reserved.

Byte 3 (MSB) - PHY association
with timers:

Bit 24:Timer index associated
with the port on which the
function runs.

Bits 31:25: Reserved.

Function:
N/A.

Device:
A bitmap of the
enabled ports.

Function:
N/A.

Device:
Timer ownership bitmap
of the enabled ports
(each bit value must hold
the timer index for the
port).

Table 9-50. Resources Recognized by This Version of the Command [continued]

Name Capability Ver Number Logical ID Physical ID

613875-009 1429

Intel® Ethernet Controller E810 Datasheet
Device Services

1588
(continued)

0x0046 1.1 Device:
Byte 0 (LSB) - Timer ownership:

Bits 2:0: PF owning timer 0.
Bit 3: Timer 0 owned by a PF.
Bits 6:4: PF owning timer 1.
Bit 7: Timer 1 owned by a PF.

Byte 1 - GPIOs associated with
any of the timers (same structure
as Byte 1 in function response).
Byte 2 - 1588 Clock source info
(same as Byte 2 in function
response).
Byte 3 - General info:

Bit 24:TimeSync enabled on any
of the ports.

Bit 25:Timer 0 is enabled.
Bit 26:Timer 1 is enabled.
Bit 27:Do Not Use
Bit 28:Low-latency Tx timestamp

read is supported
Bits 31:29: Reserved.

Function:
N/A.

Device:
A bitmap of the
enabled ports.

Function:
N/A.

Device:
Timer ownership bitmap
of the enabled ports
(each bit value must hold
the timer index for the
port).

MaxMTU 0x0047 1.0 Function: Max MTU of the function.
Device: Max MTU of the hardware
(9728).

NVM Versions2 0x0048 1.0 1st word: NVM word address.
2nd word: NVM value.

1st word: NVM word
address.
2nd word: NVM value.

1st word: NVM word
address.
2nd word: NVM value.

NVM Pending
Versions3,4,5

0x0049 1.3 1st word: NVM word address.
2nd word: NVM value.

1st word: NVM word
address.
2nd word: NVM value.

1st word: NVM word
address.
2nd word: NVM value.

OROM Version 0x004A 1.3 2 words - OROM version.

OROM Pending
Version4

0x004B 1.3 2 words - OROM version.

Netlist Version5 0x004C 1.3 BaseReleaseVersion.Major BaseReleaseVersion.Ty
pe

BaseReleaseVersion.IANA
+ CustomerNetlistVersion

Netlist Pending
Version4,5

0x004D 1.3 BaseReleaseVersion.Minor BaseReleaseVersion.Ty
pe

BaseReleaseVersion.IANA
+ CustomerNetlistVersion

iWARP 0x0051 1.0 One if enabled

LED6 0x0061 1.0 Always 1. Action. Pin number (GPIO Index).

SDP7 0x0062 1.0 Always 1. Action. Pin number (GPIO Index).

MDIO8 0x0063 1.0 Only if enabled. The interface used to
control this port.

Drop/No Drop
Policy9

0x0065 1.0 Returns the value of the PXE Mode
No-Drop Policy supported NVM bit.

Function:
0x1 if No-Drop policy
is enabled on the port
used by the current
PF.
0x0 if No-Drop policy
is not enabled on the
port used by the
current PF.

Device: N/A

Table 9-50. Resources Recognized by This Version of the Command [continued]

Name Capability Ver Number Logical ID Physical ID

Intel® Ethernet Controller E810 Datasheet
Device Services

1430 613875-009

HII Port
Disable
Allowed

0x0066 1.0 For device and Function, returns the
value of “Features enable: Allow HII
Port Disable” bit from NVM.
For Function 0, always returns 0 (no
supported for PF0).

Reserved 0x0071 1.0 Reserved. Reserved. Reserved.

SKU5 0x0074 1.0 Returns the SKU as described in
register GL_UFUSE_SOC[15:0].

Reserved. Reserved.

Port Mapping10 0x0075 1.3 Reserved Function Number Port Number

PCIe Reset
Avoidance
Supported
Version

0x0076 1.0 1 = Pre version
2 = Full support

Post Update
Double Reset

0x0077 1.0 Post Update Double Reset solution
0 = Not Supported
1 = Supported

Note: When Capability is 0 and
solution is not supported, it
is recommended to not use
EMPR prior to reboot as PCI
may become unresponsive.

NVM Mgmt5 0x0080 1.0 Bitmask:
Bit 0: SRev Disabled

0b = Do not allow rollback
1b = Allow rollback

Bit 1: Update Disabled
0 = no lock-down
1 = lock-down)

Bit 2: Lock-down supported
0 = Not supported
1 = Supported

Bit 3: PFA modification via
firmware support

0 = No support
1 = Support

Bit 4: Netlist update of port
options supported

0 = No support
1 = Support

Topology
Device Image
111

0x0081 3.1 Topology Device Image Version
Number (4 high bytes)

Topology Device Image
Version Number (4 Low
bytes)

Bit 0: Flags - LoadEn
Bit 1: Flags - ProgEn
Bit 7:2: Flags - Reserved
Bits 15:8: Device Part

Number
Bits 31:16: Number of

sections

Topology
Device Image
212

0x0082 3.1

Topology
Device Image
313

0x0083 3.1

Topology
Device Image
414

0x0084 3.1

Tx-Scheduler
Topology SW
Compatibility
Mode

0x0085 1.0 One if enabled.

Table 9-50. Resources Recognized by This Version of the Command [continued]

Name Capability Ver Number Logical ID Physical ID

613875-009 1431

Intel® Ethernet Controller E810 Datasheet
Device Services

Notes:

• Fields that are not applicable (empty in the table) are set to zero by the firmware.

• When device capabilities are requested, total numbers for the whole device should be returned.

9.5.13.8 VF/VM Reset (0x0C31)

In this command, software provides a list of Tx-Queue or RDMA QSet IDs that need to be closed. The
AQ must be called after software stops feeding the closed queues (stop sending doorbells). RDMA QSet
can be closed only when it is not associated with any QP.

The command gets the following parameters as input:

• Number of Disabled Queues/QSets

• List of Queue or QSet IDs (in the PF space)

This command deallocates nodes (in leaf layer and possibly in intermediate layers as well) in the
Tx-Scheduler.

Inside the command structure, the disabled queues are organized in groups. Each group includes
queues belonging to one parent node in the Tx-Scheduler structure. This organization in groups is
added to ease the interface between the software and the firmware. It is not required to disable all the
queues belonging to a parent in one call.

This command is called by software as part of VM/VF reset flow. When it is called as part of VM/VF reset
flow, it is used for a single VM/VF per call. As part of this command flow, the EMP firmware drains the
Tx-Pipe from any in-flight packets (packets scheduled for transmission by the Tx-Scheduler but have
not yet been transmitted) of all disabled Tx-Queues or RDMA QSets. This is required to verify that no Tx
completion is posted to software after the queue resources are released, or even re-used.

OROM Update
in Recovery
Mode 11,15

0x0090 1.0 1 - Full support.

RDMA RoCEv2
LAG

0x0092 1.0 1- Firmware supports the
functionality and AQCs for RDMA
RoCEv2 LAG.

1. This capability is not available in the E810, as any vector can be assigned to a VF, and each VF can get a different number of vectors
2. The NVM Versions capability is used to return NVM version data to software in a centralized location. It appears multiple times,

reporting three NVM versions per entry. The following NVM words are returned as versions: 0x18-0x2E (inclusive) 0x34, and 0x35.
An NVM word address of 0xFFFF indicates an invalid field.

3. This capability takes the same format as in NVM versions capability.
4. This capability appears only if pending image exists.
5. This capability is exposed in recovery mode.
6. Repeat this entry for each assigned LED. In the E810, LEDs are not assigned to functions and therefore this capability is not

returned if called at the context of a function. If Device = 1, returns an entry for each LED in the device, in the E810 returns an
entry for each GPIO in the I/O widget, which is defined as LED in the link topology.

7. Repeat this entry for each assigned pin. In the E810, SDPs are not assigned to functions and therefore this capability is not returned
if called at the context of a function. If Device = 1, returns an entry for each SDP in the device, in the E810 returns an entry for
each GPIO in the I/O widget, which is defined as SDP in the link topology.

8. This entry is not relevant for the E810 and is not returned.
9. The values in this capability are based on the PXE Mode No-Drop Policy Supported NVM bit and on variable sw_force_no_drop.
10.For Discover Device Capabilities, this entry is returned for each enabled function. For Discover Function Capabilities it is returned

only for the current function.
11.This capability is added only when the NVM includes topology device image 1.
12.This capability is added only when the NVM includes topology device image 2.
13.This capability is added only when the NVM includes topology device image 3.
14.This capability is added only when the NVM includes topology device image 4.
15.This capability shouldn't be exposed on platforms without OROM support.

Table 9-50. Resources Recognized by This Version of the Command [continued]

Name Capability Ver Number Logical ID Physical ID

Intel® Ethernet Controller E810 Datasheet
Device Services

1432 613875-009

Normally, the pipe draining flow requires a very short delay. A long (or endless) Flow Control event that
blocks the transmit of one or more TC's or even the entire port transmit, affects the pipe draining flow
as well.

This command is completed when all in-flight packets belonging to the Disabled LAN Queues or RDMA
QSets have left the Tx-Pipe. Alternately, the command is called with a timeout parameter. If the EMP
firmware waits more than the timeout time, it responds with an EAGAIN error code. With the EAGAIN
error code, firmware also provides a bitmap that marks which of the Congestion Domains is blocked by
the long Flow Control.

Software must recall this command (with Call-Again flag set) prior to releasing and reusing of any of
the Tx-Queues that are associated with the blocked Congestion Domains.

This command must be fully completed (all Tx-Queues or RMDA QSets released) prior to any other
calling to it for other queues, and prior to calling that Move/Reconfigure Tx LAN Queues AQC.

The command's timeout is posted by software as part of the command's parameters.

Software can also instruct the EMP firmware to force the Tx-Pipe and Rx-Pipe to flush out and drop all
packets from the blocked Congestion Domain. It is the PF's responsibility and authority to make the
decision when to consider a long Flow Control as a malicious link partner behavior.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 9-51 describes command format and defines
command-specific fields.

Table 9-51. VM/VF Reset Command and Response Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C31 Same as LAN Transmit Queue Disable command (see Section 10.5.5.8.3)

Datalen 4-5 Length of response buffer.

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command Type and
Flags

16 Bits 0:1:
00b = Reserved.
01b = VM Reset operation.
10b = VF Reset operation.
11b = Reserved.

Bit 2:
0b = This is an initial call.
1b = This is a subsequent call.

Bit 3:
0b = Return EAGAIN on timeout.
1b = Flush pipe on timeout.

Bits 4:7:
Reserved. Must set to zero.

Note: Bits 2 and 3 are NOT mutually exclusive.

Number of Queue
Groups

17 In the command:
Number of Disabled Queue Groups (1..127) involved in the Q disable flow.

In the response:
Number of fully-processed groups.

VMVF_NUM 18-19.1 Used when the Command Type (Bits 0-1) is VM Reset (01b) or VF Reset (10b).
Bits 0 and 1 of Byte 19 contain the MSB of the VMVF_NUM.
This is the absolute VM or VF numbers, not relative to PF.

613875-009 1433

Intel® Ethernet Controller E810 Datasheet
Device Services

Table 9-52 describes format of the data buffer carrying additional command attributes.

Timeout Time 19.2-19.7 Command timeout in units of 100 micro seconds.
Valid values are 0-50.

Blocked CGDs 20-23 0 Zeroed by the driver.
A bitmap of blocked CGDs. Set by EMP firmware when returns with EAGAIN.

Data Address High 24-27 0x0
Address of buffer.

Data Address Low 28-31 0x0

Table 9-52. VM/VF Reset Command Buffer1

Category Byte.Bit Field Description

Group #1

0-3 Parent's TEID The TEID of the parent node to which leaves are involved.

4 Number of Queues (1...128).

5 Reserved Reserved.

6-7.6 Queue #1 Tx-Queue ID in PF space of the first queue to be closed.

7.7
QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.

0b = LAN Queue.
1b = RDMA QSet.

8-9.6 Queue #2 Tx-Queue ID in PF space of the second queue to be closed.

9.7
QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.

0b = LAN Queue.
1b = RDMA QSet.

.

.

.

Queue #N Tx-Queue ID in PF space of queue N to be closed.

QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.
0b = LAN Queue.
1b = RDMA QSet.

Padding Alignment to 4-byte units.

.

.

.

Group #N 0-3 Parent's TEID The TEID of the parent node to which leaves are involved.

4 Number of Queues (1...128).

5 Reserved Reserved.

6-7.6 Queue #1 Tx-Queue ID in PF space of the first queue to be closed.

7.7
QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.

0b = LAN Queue.
1b = RDMA QSet.

8-9.6 Queue #2 Tx-Queue ID in PF space of the second queue to be closed.

9.7
QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.

0b = LAN Queue.
1b = RDMA QSet.

Table 9-51. VM/VF Reset Command and Response Fields [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Device Services

1434 613875-009

9.5.13.8.1 Software Activities Prior to Calling VM/VF Reset

• Software must stop sending doorbells to the disabled queues before closing them.

• For Tx-Queues that are associated with the Doorbell Queue, the Doorbell Queue must be drained
from any doorbell message of the disabled queues.

— This is done by sending a draining marker through the Doorbell Queue. A Doorbell Queue
descriptor with Dummy and RS bits set acts as a drain marker.

• Stop getting interrupts for the disabled queue(s)

1. Software clears the CAUSE_ENA bit in the QINT_TQCTL register for all disabled queues.

2. Software waits 100 ns.

3. Software sends software interrupt for the vector associated with the queue.

4. When interrupt arrives, software can continue.

• In case of an VM reset or multiple queues disable, software does Step 1 for all disabled queues and
Step 3 for all vectors associated to the queues.

9.5.13.8.2 Software Activities After VM/VF Reset AQ Completed

• Once the whole operation is complete and the pipe is cleaned from the disabled queues (EMP
firmware responses with “No Error”), software can re-use all involved resources.

• Software can post a VM reset notification via the Completion Queue. This is done directly to each
involved Completion Queue using CSRs GLCOMM_CQ_CTL[512].

9.5.13.9 Set/Get Shared Driver Parameters (0x0C90)

These commands implement a mechanism that allows software drivers to share parameters. When one
PF driver can write a parameter value, the other PF drivers can read this parameter and use it. The
firmware does not implement lock mechanism while executing the Set opcode, and it is assumed that a
single PF should write to this parameter as appointed by the software driver. Any PF can read this
parameter using the Get opcode. The parameter is not persistent and it is reset at CORER and above.

The Set/Get Shared Driver Parameters admin command is used by the software driver to set (write)
firmware opaque parameters and get (read) them back when needed. The parameters are shared
between PFs (that is, all PFs see the same parameters).

.

.

.

Queue #N Tx-Queue ID in PF space of queue N to be closed.

QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.
0b = LAN Queue.
1b = RDMA QSet.

1. The command buffer includes a structure per involved Queues group.

Table 9-52. VM/VF Reset Command Buffer1 [continued]

Category Byte.Bit Field Description

613875-009 1435

Intel® Ethernet Controller E810 Datasheet
Device Services

Notes:

1. At CORER and above, firmware initialize all parameters to 0.

2. The firmware does not maintain any lock/synchronization between PFs. The parameter holds the
value set by the last Set command that was executed. If a Get is executed before any Set, firmware
returns the initialization value (0).

3. The admin command is not provided by firmware during Firmware Recovery mode.

4. It is expected that the PF that owns the parameter resets its value in its reset flow when it goes
down.

5. The Set command can arrive from any PF. Firmware does not limit that.

9.5.14 Mailbox Commands

Table 9-53. Set Shared Driver Parameters Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0C90 Command opcode.

Datalen 4-5 0 Direct command. No external buffer should be attached.

Return Value 6-7 Return value. Zeroed by driver. Written by Firmware.
0 = Success
18 = ERANGE — When the Parameter index is out of range.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command

Set/Get Opcode 16 Bit 16.0: Set/Get opcode
0b = Set
1b = Get

Bits 16.1-16.7: Reserved

Parameter Index 17 Firmware maintains up to 16 32-bit wide parameters for the driver. Software should
range this index between 0 and 15.

Reserved. 18-19 Reserved.

Parameter Value 20-23 32-bit value for the parameter.
When the command is Set, software should give the value here. When the command
is Get, the value is set by firmware at the returned descriptor.

Data Address High 24-27 0x0
Address of data buffer. Not used in this command.

Data Address Low 28-31 0x0

Table 9-54. Virtualization Admin Commands

Name Opcode Type Section
Reference

Send Message to PF 0x0801 Indirect/Direct 9.5.14.1

Send Message to VF 0x0802 Indirect/Direct 9.5.14.2

Intel® Ethernet Controller E810 Datasheet
Device Services

1436 613875-009

9.5.14.1 Send Message to PF (0x0801)

This command, together with the next one, implements a communication channel between PFs and
their VFs. The data in the external buffer is copied into an event on the PF receive queue. The command
completes once the data is copied. The contents of the messages are defined by software.

Since the value of the cookie is copied to the event, if eight bytes are enough for the needed message,
the driver can specify a length of zero, and not use an external buffer. In this case, it should also not set
the BUF flag.

Note: This version of the queues supports messages of up to 4096 bytes.

After posting the event to the PF admin receive queue, the mailbox completes this command by
updating the flags and return value (0 for success).

Table 9-55. Send to PF Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 and Section 9.5.5.2.1 for details.

Opcode 2-3 0x0801 Command opcode.

Length 4-5 Buffer Length Length of message.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by mailbox.

Cookie High 8-11 Cookie Opaque value copied by the mailbox/firmware into the completion of this
command. It is also copied to the descriptor of the target mailbox queue.

Cookie Low 12-15 Cookie Opaque value copied by the mailbox/firmware into the completion of this
command. It is also copied to the descriptor of the target mailbox queue.

Reserved 16-23

Data Address High 24-27 0x0
Address of data buffer

Data Address Low 28-31 0x0

Table 9-56. Message from VF Event

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 and Section 9.5.5.2.1 for details.

Opcode 2-3 0x0801 Event code.

Length 4-5 Buffer Length Length of message.

Return Value/VFID 6-7 VFID ID of sending VF. (In non-PASID mode, this is the relative virtual function ID,
starting from 0 for each PF. In PASID mode, this is the absolute VSI number).

Cookie High 8-11 Cookie Opaque value copied by the mailbox/firmware from the source descriptor.

Cookie Low 12-15 Cookie Opaque value copied by the mailbox/firmware from the source descriptor.

Reserved 16-23

Data Address High 24-27 0x0
Address of data buffer

Data Address Low 28-31 0x0

613875-009 1437

Intel® Ethernet Controller E810 Datasheet
Device Services

9.5.14.2 Send Message to VF (0x0802)

This command, together with the previous one, implements a communication channel between PFs and
their VFs. The data in the external buffer is copied into an event on the VF receive queue. The
command completes once the data is copied. The contents of the messages is defined by software. A PF
can only send messages to one of its VFs.

Since the value of the cookie is copied to the event, if eight bytes are enough for the needed message,
the driver can specify a length of zero, and not use an external buffer. In this case, it should also not set
the BUF flag.

Note: This version of the queues supports messages of up to 4096 bytes.

After posting the event to the VF admin receive queue, the mailbox completes this command by
updating the flags and return value (0 for success).

Table 9-57. Send to VF Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 and Section 9.5.5.2.1 for details.

Opcode 2-3 0x0802 Command opcode.

Length 4-5 Buffer Length Length of message.

Return Value 6-7 Return value. Zeroed by driver. Written by mailbox.

Cookie High 8-11 Cookie Opaque value copied by the mailbox/firmware into the completion of this
command. It is also copied to the descriptor of the target mailbox queue.

Cookie Low 12-15 Cookie Opaque value copied by the mailbox/firmware into the completion of this
command. It is also copied to the descriptor of the target mailbox queue.

VFID 16-19 VFID ID of VF. (In non-PASID mode, this is the relative virtual function ID, starting
from 0 for each PF. In PASID mode this is the absolute VSI number).

Reserved 20-23

Data Address High 24-27 0x0
Address of data buffer

Data Address Low 28-31 0x0

Table 9-58. Message from PF Event

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 and Section 9.5.5.2.1 for details.

Opcode 2-3 0x0802 Event code.

Length 4-5 Buffer Length Length of message.

Return Value/VFID 6-7 Reserved.

Cookie High 8-11 Cookie Opaque value copied by the mailbox/firmware from the source descriptor.

Cookie Low 12-15 Cookie Opaque value copied by the mailbox/firmware from the source descriptor.

Reserved 16-23

Data Address High 24-27 0x0
Address of data buffer

Data Address Low 28-31 0x0

Intel® Ethernet Controller E810 Datasheet
Device Services

1438 613875-009

9.6 Statistics

The E810 provides statistics for the following interfaces:

• Physical ports.

• Virtual switch elements: VEBs and VSIs.

• PE statistics, some of which are global and some are per VSI.

• ACL statistics.

• Flow Director statistics.

• Host Interface statistics.

A minimal set of Ethernet interface group statistics (RFC 2863) is provided by the E810 at the switch
sampling points, while a fuller set of statistics is provided for physical ports.

The prefixes for the statistics counter names are listed in Table 9-59.

9.6.1 Counter Implementation

Most of the counters in the E810 are used by more than one entity. For example, VSI counters are both
a virtual switch port (hence used by a switch monitor agent) and a driver interface. The E810 does not
provide clear-on-read statistics counters, since these would need to be duplicated per client.

As a general rule, E810 statistics counters should not be reset by software, because they are shared
between more than one owner. Software must maintain a delta from the first value seen. If a software
device driver needs the ability to reset counters, this should be implemented by updating the delta
reference value.

To allow firmware to reset counters when a switching element is allocated, or for debug, the counters
are implemented as clear-on-write, meaning that writing any value clears the counter.

The E810 provides 40-bit counters for byte and packet counters, and 32-bit counters for errors and
discard events. Software should maintain counters that are appropriate in size for the OS and MIB
requirement.

40-bit counters are implemented as two registers, whose names end with “high” and “low”, containing
the upper eight bits and lower 32 bits, respectively.

Table 9-59. Counter Name Prefixes

Element Register Prefix Instances Remarks

Port GLPRT 8

VEPA or VEB GLSW 32

VEB per VLAN GL_STAT_SWR 128

VEB per UP GLVEBUP 32x8 Two dimensional array of 8 UPs for 32 VEBs.

VSI GLV 768

Switch ID GLSWID 256

ACL GLSTAT_ACL 2048

FD GLSTAT_FD 8192

613875-009 1439

Intel® Ethernet Controller E810 Datasheet
Device Services

When accessed using a 64-bit operation from PCI, these accesses are guaranteed by design to be
atomic. They are internally converted to two 32-bit accesses that are always consecutive, with no
interleaving between reads from different drivers. A special hardware indication tells the statistics block
that this is the case. The statistics block performs one read of the counter memory to satisfy both
requests, thus providing atomicity.

When 32-bit accesses are used to read the counters, each of them cause a separate read from the
statistics block. Therefore, care must be taken to properly handle the possibility of one half around
between the reads, since atomicity is not guaranteed.

VFs have no access to statistics registers. They should query the PF through the VF-to-PF virtual
channel for their statistics.

9.6.2 Statistics Sample Points

Figure 9-11 and Figure 9-12 show sample points for Tx and Rx statistics, respectively. Error counters
are in red. The figures show the processing stages in which counters are updated.

Intel® Ethernet Controller E810 Datasheet
Device Services

1440 613875-009

Figure 9-11. Rx Statistics Sampling Points

MAC

Port MAC Errors (CRC, Length, etc.)
 MIB Errors

Flow control packets
GLPRT_LXONRXC
GLPRT_LXOFFRXC
GLPRT_PXONRXC
GLPRT_PXOFFRXC

GLPRT_XON2OFFCNT

Packet Buffer
+Storm Control

Port count (packets and octets + Full MIB) -
GLPRT_*R*

Packet Drop
GLPORT_RDPC

GLPRT_STDC[3:0]
 GLRPB_RDSIPDC (DSI packets)

SWITCH ID mapping

VEB/PA stats
(packets and octets) - GLSW_*R*

Switch Events - GLSTAT_SWR_*R*
(packet match statistic action),
 VEB/TC stats -GLVEB_TC*R*

(packet match VEB# & TC)

Drop command

EACL

VEB Rx drops - GLSWID_RUPP
(packet match VEB# & drop)

Queues
PE

PE stats
PFPES_*

FD
FD statistics

GLSTAT_FD_CNT*

L2

Port

VSI selection
 (VEB/VEPA/L2)

VSI

VEB

replication

ACL Rx statistics
GLSTAT_ACL *

VSI Statistics
GLV_*R*

Error conditions (GLV_REPC)

No Descriptor Drops
Pipe drops (after VSI determined)

Errors Drops
GLV_RDPC

Loopback Traffic

LB packet drop
GLPRT_LDPC

MNG
buffer

613875-009 1441

Intel® Ethernet Controller E810 Datasheet
Device Services

Figure 9-12. Tx Statistics Sampling Points

MAC

Port

Packet Buffer

Port count (packets and octets + full MIB) - GLPRT_*T*

VEB

VSI Stats (packets and octets)
 - GLV_*T*

QueuesPEPE stats
PFPES_*

Anti
Spoof,

Malicious
driver

Port

VEB/VEPA

VSI

Flow control packets
PRTLXONTXCNT
PRTLXOFFTXCNT
PRTPXONTXCNT
PRTPXOFFTXCNT

IACL Ingress ACL events
GLSTAT_ACL*

Switch Events - GLSTAT_SWR_*T*
VEB/TC stats -GLVEB_TC*T* (packet match VEB# & TC),

Note: IACL statistics may be logically
counted before the VEB level if counters
are applied to traffic dropped by the VEB

Pipe Drops
(Ingress ACL drops,

Anti Spoof/Malicious Drops, local VLAN no match)
GLV_TEPC

Link down GLPRT_TDOLD

MNG
buffers

Intel® Ethernet Controller E810 Datasheet
Device Services

1442 613875-009

9.6.3 Statistics Consistency Rules

• At each switch sample point, a packet is either good or error. This means that when a packet is
discarded, it is not counted in any of the non-error counters. It is also never counted by any of the
next processing stages.

• All drops are counted. A packet with an error is only counted in one counter. An exception to this
rule is that some debug counters are not mutually exclusive with error counters. For example,
GLPRT_ERRBC and GLPRT_MSPDC are also counted as CRC errors and undersize errors,
respectively.

• Ethernet octet counters count the packet as seen on the wire, from the Ethernet header up to and
including the CRC (for both Rx and Tx). This means that even though an Rx packet might be
stripped of tags before placement, the byte counters record the original size. Tx packets are
counted after all offloads and insertions.

• Flow control packets are only counted in the flow control counters.

• Statistics specific to iWARP/RoCE count packets as they are delivered to the offload engine on Rx,
and as they leave the engine on Tx. This applies to both packet lengths and packets that were
merged or split. For example, packets merged by LRO are counted before the aggregation.

• Maximum lengths are adjusted to accommodate added tags. For example, the highest histogram
bin MIB counter GLPRT_PTC9522 also counts any packet that would have fit in it without the added
STags and VLANs.

9.6.4 Supported MIBs

The E810 supports different statistic counters as described in this chapter. The statistic counters can be
used to create statistic reports as required by different standards. The E810 statistic counters allow
support for the following standards:

• IEEE 802.3 clause 30 management – DTE section

• NDIS 6.0 OID_GEN_STATISTICS

• RFC 2819 – RMON Ethernet statistics group, for ports and VSIs.

• RFC 2863 – SMON Ethernet statistics group, for various switch elements.

• Linux Kernel

• net_device_stats

The following section describes the match between the internal E810 statistic counters and the counters
requested by the different standards.

9.6.5 Interface Statistics at VSIs and Logical Interfaces

The E810 provides Ethernet interface group statistics per RFC 2863 on each of the Virtual Station
Interfaces (VSIs), port aggregators, and virtual bridges. Table 9-60 provides an illustration of interface
counters in the E810 and their sizes.

VF and PF VSIs have the same counter set. The only difference between the counter set for VSIs and
the one for other switch elements is that the RUPP (unknown protocol) counter is replaced by a missed
packet counter RMPC.

613875-009 1443

Intel® Ethernet Controller E810 Datasheet
Device Services

Note: The counter names repeat themselves with a different prefix for the element type. See
Table 9-59 for the list of prefixes.

The width of the counters that are provided, is calculated to allow ample time for software to get the
statistics before they wrap around. The 48-bit counters are a pair of registers, one ending with an “L”
that holds with the lower 32-bits of the counter, while the higher 12 bits are in a register ending with an
“H” (denoted in Table 9-60 as {H,L}). Not all counters are implemented for all prefixes. See Table 9-63
to Table 9-66 for implementation for specific prefixes.

Some error counters are not implemented at specific switch elements because they cannot happen at
those elements in the current switch design. If software is queried about the value of these counters, it
should return zero (see Table 9-61).

9.6.5.1 MAC or Physical Uplink Interface Statistics

The MAC or Physical Uplink Interface statistics counters are accessible to the device management/
control entity in VMM or IOVM through the PF. The MAC or Physical Uplink Interface statistics use the
counters defined in Table 9-62. The only exception is the Unknown Protocol Packet counter, which has
no meaning in the case of the physical port and is therefor absent.

In addition, the E810 provides per MAC port some of the statistics out of the IEEE 802.3 clause 30
management counters, as well as part of the RMON Ethernet statistics group as defined by IETF RFC
2819. See Table 9-62.

Table 9-60. Ethernet Interface Group Statistics Counters

Register Name Width Description

[PFX]GORC{H,L} 40 Incoming packet octets.

[PFX]UPRC{H,L} 40 Incoming number of unicast packets.

[PFX]MPRC{H,L} 40 Incoming number of multicast packets.

[PFX]BPRC{H,L} 40 Incoming number of broadcast packets.

[PFX]RDPC 40 Incoming packet discards.

[PFX]RUPP 32 Incoming unknown protocol packets.

[PFX]GOTC{H,L} 40 Outgoing packet octets.

[PFX]UPTC{H,L} 40 Outgoing number of unicast packets.

[PFX]MPTC{H,L} 40 Outgoing number of multicast packets.

[PFX]BPTC{H,L} 40 Outgoing number of non-unicast packets.

[PFX]TDPC 32 Outgoing number of discards.

[PFX]TEPC 32 Outgoing packet errors.

Table 9-61. Error Counters Not Implemented in Current Design

Counter Name Switch Element Description

GLPRT_XEC Port Port XSUM error count.

GLPRT_TEPC Port Port transmit error packet count (GPLRT_TDOLD counts drops due to link down).

GLV_TDPC VSI VSI transmit packets discarded count.

GLSW_RDPC PA or VEB Switch receive packets discarded count (Replaced by GLSWID_RUPP).

GLSW_TEPC PA or VEB Switch transmit error packet count.

GLPRT_TDPC Port Packets that were discarded on transmit while link was down.

Intel® Ethernet Controller E810 Datasheet
Device Services

1444 613875-009

Table 9-62. Additional per-Port Counters

Register Name Width Description

GLPRT_PRC64{H,L} 40 Packets Received [64 Bytes] Count

GLPRT_PRC127{H,L} 40 Packets Received [65–127 Bytes] Count

GLPRT_PRC255{H,L} 40 Packets Received [128–255 Bytes] Count

GLPRT_PRC511{H,L} 40 Packets Received [256–511 Bytes] Count

GLPRT_PRC1023{H,L} 40 Packets Received [512–1023 Bytes] Count

GLPRT_PRC1522{H,L} 40 Packets Received [1024 to 1522] Count

GLPRT_PRC9522{H,L} 40 Packets Received [1523 to Max Bytes] Count

GLPRT_PTC64{H,L} 40 Packets Transmitted [64 Bytes] Count

GLPRT_PTC127{H,L} 40 Packets Transmitted [65–127 Bytes] Count

GLPRT_PTC255{H,L} 40 Packets Transmitted [128–255 Bytes] Count

GLPRT_PTC511{H,L} 40 Packets Transmitted [256–511 Bytes] Count

GLPRT_PTC1023{H,L} 40 Packets Transmitted [512–1023 Bytes] Count

GLPRT_PTC1522{H,L} 40 Packets Transmitted [1024 to 1522] Count

GLPRT_PTC9522{H,L} 40 Packets Transmitted [1523 to Max Bytes] Count

GLPRT_LXONRXC{H,} 40 Link XON Received Count

GLPRT_LXOFFRXC{H,} 40 Link XOFF Received Count

GLPRT_LXONTXC{H,} 40 Link XON Transmitted Count

GLPRT_LXOFFTXC{H,} 40 Link XOFF Transmitted Count

GLPRT_PXONRXC{H,}[n] 40 Priority XON Received Count

GLPRT_PXOFFRXC{H,}[n] 40 Priority XOFF Received Count

GLPRT_PXONTXC{H,}[n] 40 Priority XON Transmitted Count

GLPRT_PXOFFTXC{H,}[n] 40 Priority XOFF Transmitted Count

GLPRT_CRCERRS{H} 40 CRC Error Count

GLPRT_ILLERRC{H,} 40 Illegal Byte Error Count

GLPRT_MLFC{H,} 40 MAC Local Fault Count

GLPRT_MRFC{H,} 40 MAC Remote Fault Count

GLPRT_RLEC{H,} 40 Receive Length Error Count

GLPRT_RUC{H,} 40 Receive Undersize Count

GLPRT_RFC{H,} 40 Receive Fragment Count

GLPRT_ROC{H,} 40 Receive Oversize Count

GLPRT_RJC{H,} 40 Receive Jabber Count

PRTRPB_RDPC 32 Received packets from the network that are dropped in the receive packet buffer. The
packets are dropped due to possible lack of bandwidth on the PCIe or total bandwidth
of the internal data path.

PRTRPB_LDPC 32 Same as the PRTRPB_RDPC for VM-to-VM loopback packets.

GLPRT_STDC 32 Port Storm Control Discard Count

GLPRT_TDOLD{H,} 40 Transmit Packets Dropped on Link Down

613875-009 1445

Intel® Ethernet Controller E810 Datasheet
Device Services

9.6.5.2 VEB Statistics

The E810 supports SMON statistics per RFC 2613 (Table 9-63) and smonPrioStats counters per priority
(Table 9-64) for up to 32 VEBs. The E810 supports a set of smonVlanStats counters for up to 128
802.1Q VLANs listed in Table 9-65.

Notes:

• These VEB per VLAN counters are implemented by assigning a statistic action to a VLAN entry, and
can also be used to count other types of traffic.

• When a port is using DSCP as the TC indicator, the VEB per UP counters reflects the DSCP to UP
translation.

• Packets replicated by the switch are counted only once.

The following counters are available per VEB/UP:

Table 9-63. Per-VEB Statistics Counters

Register Name Width Description

GLSW_GORC{H,L} 40 Incoming packet octets.

GLSW_UPRC{H,L} 40 Incoming number of unicast packets.

GLSW_MPRC{H,L} 40 Incoming number of multicast packets.

GLSW_BPRC{H,L} 40 Incoming number of broadcast packets.

GLSW_GOTC{H,L} 40 Outgoing packet octets.

GLSW_UPTC{H,L} 40 Outgoing number of unicast packets.

GLSW_MPTC{H,L} 40 Outgoing number of multicast packets.

GLSW_BPTC{H,L} 40 Outgoing number of non-unicast packets.

Table 9-64. VEB per UP Counters

Register Name Width Description

GLVEBUP_RPC{H,L} 40 Total number of packets received per priority.

GLVEBUP_RBC{H,L} 40 Total number of octets received per priority.

GLVEBUP_TPC{H,L} 40 Total number of packets transmitted per priority.

GLVEBUP_TBC{H,L} 40 Total number of octets transmitted per priority.

Table 9-65. Event Counters

Register Name Width Description

GL_STAT_SWR_GORC{H,L} 40 Incoming packet octets.

GL_STAT_SWR_GOTC{H,L} 40 Outgoing packet octets.

GL_STAT_SWR_UPC{H,L} 40 Number of unicast packets

GL_STAT_SWR_MPC{H,L} 40 Number of multicast packets.

GL_STAT_SWR_BPC{H,L} 40 Number of broadcast packets.

Intel® Ethernet Controller E810 Datasheet
Device Services

1446 613875-009

The E810 provides virtual bridge port or interface statistics counters for VSIs and uplinks associated
with a VEB instance. See Section 9.6.5 for additional details on VSI and uplink interface statistics.

Notes:

• VEB statistics and VEB/TC statistics includes action-based mirror packets and manageability
packets passing through this VEB. For example, traffic from BMC to host is counted both in Tx (from
BMC) and Rx (to host) counters of the VEB. Port/VSI-based mirror packets are not counted in the
VEB, VEB/TC counters.

• Transmits counters usually count only packets that are sent either to the LAN or to the loopback. In
some cases, it might count packets that are dropped later when the packet is sent back to the
receive. For example, a valid transmit packet dropped in receive due to VSI source pruning is
counted in Tx counters.

Table 9-66. Per VSI Counters

Register Name Width Description

GLV_TEPC 32 Transmit error packet count.

GLV_GOTC{H,L} 40 Transmit octet count. Counts number of bytes transmitted by this VSI.

GLV_GORC{H,L} 40 Receive octet count. Counts number of bytes received by this VSI. Will count packets forwarded
by switch even if dropped by later stages like ACL or Flow Director.

GLV_UPRC{H,L} 40 Receive unicast packet count. Counts number of unicast packets received by this VSI. Will count
packets forwarded by switch even if dropped by later stages like ACL or Flow Director.

GLV_BPTC[H,L} 40 Transmit Broadcast packet count. Counts number of broadcast packets transmitted by this VSI.

GLV_MPTC{H,L} 40 Transmit multicast packet count. Counts number of multicast packets transmitted by this VSI.

GLV_MPRC{H,L} 40 Receive multicast packet count. Counts number of multicast packets received by this VSI. Counts
packets forwarded by switch even if dropped by later stages like ACL or Flow Director.

GLV_BPRC{H,L} 40 Receive Broadcast packet count. Counts number of broadcast packets received by this VSI.
Counts packets forwarded by switch even if dropped by later stages like ACL or Flow Director.

GLV_UPTC{H,L} 40 Transmit unicast packet count. Counts number of unicast packets transmitted by this VSI.

GLV_RDPC 32 Counts (per VSI) packets that were drop due to no descriptors in host queue or other drops in the
pipe1.

1. Pipe drops includes, for example, Flow Director, ACL, and Packets directed to invalid receive queues drops.

GLV_REPC2

2. Packets dropped due to the following reasons, are not counted by REPC even if it matches one of its criteria: dropped by ACL,
dropped by FD, dropped due to invalid queue.

16 NO_DESC_CNT3,4

Counts drops due to no available descriptors (stuck at 0xFFFF).

3. These are also counted by GLV_RDPC.
4. Packets dropped and counted in GLV_REPC.ERROR_CNT are not counted in this counter even if descriptors are not available.

16 ERROR_CNT3

Counts the following four error cases (stuck at 0xFFFF):
1. Packet size is larger than RXMAX of the queue.
2. Receive descriptor Unsupported Request on the PCI or internal Dummy completion.
3. Packets directed to disabled receive queues.
4. Packets dropped due to VM reset, VF reset or PF reset.

613875-009 1447

Intel® Ethernet Controller E810 Datasheet
Device Services

9.6.5.3 ACL Statistics

The E810 provides 2048 ACL statistic counters to collect statistics based on ACL policy. ACL statistics
are updated when a packet matches the ACL rule. If it matches more than one rule, only the first rule is
counted as a match. ACL statistics can be used for collecting flow base statistics for accounting or billing
purposes, and also to monitor network policy violations. The ACL counters are created by creating a
statistic action in an ACL entry. See Section 7.9.1.6 for further details on ACL counter actions.

ACL counters are accessible via GLSTAT_ACL_CNT_n_L/H[bank_offset] registers. See Section 7.9.1.6.4
for details.

9.6.5.4 Flow Director Statistics

The E810 provides 8192 Flow Director statistic counters to collect statistics based on Flow Director
actions. Flow Director statistics are updated when a packet matches a Flow Director filter and can count
bytes and/or packets. Flow Director statistics can be used for collecting flow base statistics for
accounting or billing purposes and also to monitor network policy violations. The Flow Director counters
are addressed by creating a statistic action in an Flow Director filter. See Section 7.10.8 for further
details on Flow Director counter actions.

Flow Director counters are accessible via GLSTAT_FD_CNT_L/H registers. See Section 7.10.8.1 for
details.

9.6.5.5 Statistics Resources

Almost all statistic counters are statically-allocated. This means that for each element type there is a
1:1 ratio between the number of elements and the number of counter sets. The only two exceptions to
this are VEB and VEB per VLAN statistics. There can be up to 256 VEBs (switch IDs), but only 32 of
these can be allocated a statistic block. The total number of VLAN x VEB combinations in the system
can exceed the number of counter sets.

For statically-allocated counters, the admin command allocating the object returns the offset in the
counter array of the counters for this entity. For dynamically-allocated counters, the allocator must
request statistics counters for the object. If statistics counters are not available, the allocation fails. In
that case, the allocating driver can retry the operation without requesting statistics.

9.6.6 RDMA/RoCE Statistics

Protocol Engine (PE) statistics are defined in Section 11.9. Note that switch VSI statistics are counted
for PE VSIs at PE ingress. That is, before any PE processing.

Intel® Ethernet Controller E810 Datasheet
Device Services

1448 613875-009

9.7 TimeSync (IEEE1588 and 802.1AS)

9.7.1 Overview

Measurement and control applications are increasingly using distributed system technologies such as
network communication, local computing, and distributed objects. The 1588 standard enables accurate
synchronization between clocks on distributed systems.

The E810 supports two 1588 primary timers that can be synchronized to two separate 1588 time
domains. The primary timers are synchronized to additional 1588 timers on the PHY units. Figure 9-13
shows a top-level diagram of the 1588 logic.

PHY Timers:

The timers on the PHY units do the actual time sampling of the packets. The timers in the PHYs are
synchronized to one of the two primary timers by the master_timer parameter in the rx_timer_cmd
and tx_timer_cmd PHY registers. PHY setting is per LAN port.

Primary Timers:

The primary timers synchronize all the timers in the PHYs. It is used by software to synchronize the
time to the network time. It is used to sample and drive GPIO signals synchronized to the timer.

Figure 9-13. 1588 Logic - Top-Level Diagram

PHY Port ‘n’

1588 Timer

E810

PHY Core

PHY Port 0

1588 Timer

1588 Primary
Timer

SW HH GPIO, 1 PPS out

1588
CLK

Tx Rx

PHY Port 1

613875-009 1449

Intel® Ethernet Controller E810 Datasheet
Device Services

9.7.2 Time Synchronization - Background

9.7.2.1 Time Synchronization Flow

The operation of a 1588 logic is based on Precision Time Protocol (PTP). This protocol is composed of
two stages: initialization and time synchronization. These stages are described below, emphasizing
hardware and software roles.

9.7.2.2 Initialization Phase

If enabled as a potential primary timer (by a software setting), the software periodically transmits sync
packets that include the primary timer’s clock parameters. Upon receipt of a sync packet, the software
on any potential primary timer compares the received clock parameters to its own parameters. If the
received parameters are better, the software transitions to a secondary state and stops sending sync
packets.

While in secondary state, the software selects a particular primary timer. The software continuously
compares the received sync packet to its selected primary timer. If the received sync packet belongs to
a different primary timer with better clock parameters, the software switches to the new primary timer.
Eventually only one primary timer (with the best clock parameters) remains active, while all other
nodes act as secondary timers listening to the single primary timer.

Every node has a defined time-out interval. If no sync packets are received from the selected primary
timer, software on each secondary timer switches back to the initialization phase until a new primary
timer is chosen.

Note: There is more than one option for the above flow while there are other flows that are based
on static primary setting. The node can be set statically to primary or secondary modes.
While in a secondary mode, the node can be tuned statically to a specific primary timer.

9.7.2.3 Time Synchronization Phase

There are two phases to the synchronization flow: (1) the secondary timer calibrates its clock to the
primary timer, and then (2) the primary timer performs complete synchronization.

9.7.2.3.1 Clocks Calibration

The primary timer sends sync packets periodically (about of 10 packets per second and up to 128
packets per second according to ITU requirements). These packets are followed by Follow_UP packets
that indicate the transmission time. The secondary timer captures the reception time of the sync
packet, so it holds the packet transmission time at the primary timer and its reception time at the
secondary timer.

Receiving consecutive sync packets, the secondary timer gets the delta T of the primary timer and can
calibrate its timer to get the same delta T. During this phase, the secondary timer adjusts the INCVAL of
its 1588 timer. It can also calibrate its 1588 timer at limited accuracy in the order of the transmission
delay between the primary and the secondary. This process is illustrated in Figure 9-14.

To minimize sampling inaccuracy, both primary and secondary sample the packet’s transmission and
reception time at a location in the hardware that has as much as possible deterministic delay from the
PHY interface.

Intel® Ethernet Controller E810 Datasheet
Device Services

1450 613875-009

9.7.2.3.2 Time Synchronization Phase

The complete synchronization scheme is illustrated in Figure 9-15. It relies on measured timestamp of
sync packets transmission and reception by the primary and the secondary. The scheme is based on
two assumptions:

• The clocks at both nodes are almost identical (achieved in the first step).

• Transmission delays from the primary to the secondary and backward are symmetric. If this
assumption does not hold, the software on the primary as well as the secondary(s) should
compensate it by adjusting the sampled time of the sync packets.

The primary’s software sends periodic sync packets to each secondary timer followed by a Follow_Up
packet (as explained in Section 9.7.2.3.1). The secondary timer samples the sync packet reception
time. The secondary timer responds back, sending a Delay_Req packet to the primary timer and
samples its transmission time. The primary timer samples its reception time and reports it to the
secondary timer by a Delay_Response packet. At this point, the secondary has all the following
parameters (the notations below match the notations used in Figure 9-15):

• T1 — Sync packet transmission time in the primary (based on primary clock)

• T2 — Sync packet reception time in the secondary (based on secondary clock)

• T3 — Delay_Request transmission time in the secondary (based on secondary clock)

• T4 — Delay_Request reception time in the primary (based on primary clock)

The secondary timer can adjust its clock using the following equation:

Secondary Adjust Time = [(T4-T3) - (T2-T1)] / 2

Figure 9-14. Clocks Calibration

Primary Secondary

TM1

TS1

The Secondary tunes its timer speed until:
TS2 – TS1 = TM2 – TM1

TM2

TS2

613875-009 1451

Intel® Ethernet Controller E810 Datasheet
Device Services

9.7.2.3.3 PDelay Flow for Dynamic Primary Selection

The primary sends a Pdelay_Req packet to the secondary, and the secondary response by sending back
a Pdelay_Resp packet followed by a Pdelay_Resp_Follow_Up packet. The primary uses these packets to
calculate the link delay. This process is also used for fast recovery when the primary is changed.

The process is usually activated when dynamic primary selection is enabled. It can operate
asynchronous to the “Time Synchronization” flow described in Section 9.7.2.3.2. The PDelay flow is
shown in Figure 9-16.

Figure 9-15. Sync Flow and Offset Calculation

Figure 9-16. PDelay Flow

Primary Secondary

T1

T2

T3

T4

Calculated delta T = [(T2-T1)-(T4-T3)]/2 // assuming symmetric transmission delays

Secondary Adjust Time = - delta T

T0 + delta TT0

Primary-to-Secondary
Transmission Delay

Secondary-to-Primary
Transmission Delay

T1, T2, T3 and T4 are
sampled by the hardware

Primary Secondary

T1

T2

T3

T4

Calculated Transmission Delay = [(T2-T1) + (T4-T3)] / 2 // assuming symmetric

T0 + delta TT0

Primary-to-Secondary
Transmission Delay

Secondary-to-Prmary
Transmission Delay

T1, T2, T3 and T4 are
sampled by the hardware

Intel® Ethernet Controller E810 Datasheet
Device Services

1452 613875-009

9.7.3 1588 Clock and Timer Registers

9.7.3.1 1588 Primary Timer Enable

The 1588 primary timers are enabled by the GLTSYN_ENA register per primary timer. When the primary
is not enabled, it does not increment.

9.7.3.2 Initialization

9.7.3.2.1 Firmware-Related Initialization

The EMP firmware is responsible for determining the configuration specified in this section and
reflecting it to software using the Discover Function/Device Capabilities admin command (see
Section 9.5.13.7). The EMP firmware must determine the mentioned configuration following each boot
or following an adaptive NVM change.

9.7.3.2.1.1 Timer Ownership

Each of the two 1588 primary timers can be controlled by a single PF driver. The ownership is
determined by an NVM-loaded configuration that can be modified by the adaptive NVM procedure (see
Section 6.1.6).

9.7.3.2.1.2 Association of Timer to PHY(s)

Each PHY can be associated to one of the two primary timers. The ownership is determined by an
NVM-loaded configuration that can be modified by the adaptive NVM procedure (see Section 6.1.6).

9.7.3.2.1.3 Association of GPIOs to Timers

As mentioned in Section 9.7.6.1, each primary timer can be associated with GPIOs. The ownership is
determined by an NVM-loaded configuration.

9.7.3.2.1.4 1588 Source Clock

The 1588 timers in the E810 and the PHYs operate on the same clock of 812.5 MHz.

9.7.3.2.2 Software-Related Initialization

As mentioned in Section 9.7.3.2.1, the PF driver gets the following information using the Discover
Function/Device Capabilities admin command (see Section 9.5.13.7):

• The PF driver ownership on 1588 primary timers (see Section 9.7.3.2.1.1).

• The association of 1588 timers to PHY(s) (see Section 9.7.3.2.1.2).

• The association of GPIOs to 1588 primary timers (see Section 9.7.3.2.1.3).

• Information about the 1588 source clock (see Section 9.7.3.2.1.4).

613875-009 1453

Intel® Ethernet Controller E810 Datasheet
Device Services

The PF driver that owns a 1588 primary timer is expected to initialize and program during run time the
1588 primary timer and its associated PHYs. As part of the PF initialization sequence, the driver of the
PF that owns the 1588 primary timer initializes the clock logic in the PHYs that it controls. The driver
reports the PLL clock frequency to the PHYs.

The PF driver also sets the SEL_MASTER to one of the two 1588 primary timers.

9.7.3.3 1588 Timer Registers

As shown in Figure 9-17, the 1588 timers are composed of two sets of registers: the timer registers and
the step registers:

GLTSYN_TIME:

The E810 has two 1588 primary timers, each of them is a 96-bit counter: GLTSYN_SHTIME_H,
GLTSYN_SHTIME_L, and GLTSYN_SHTIME_0. Each 1588 clock, the 1588 timers are increment by a
programmable “step” called INCVAL. Setting the INCVAL as specified in Table 9-67, the upper 64
bits of the timer represent the time in nanosecond units.

The PHYs have dedicated timer registers for each transmit and each receive port. The timers in the
PHYs are 64-bit registers that match the lower 64-bits of the primary timer in the E810.

During nominal operation, the timers in the PHYs always show the exact values as its primary timer
in the E810. This synchronization is achieved by initializing the primary timer and the PHY’s timers,
including its INCVAL registers, to the same values at the same time. Setting the primary timer and
the PHY timers with the same values is done using the Read/Write 1588 PHY sideband admin
command (the setting flows are detailed in the following sections).

The software can read the primary timer value(s) by the Read 1588 PHY sideband admin command.
It can also read the upper 64 bits of the timer by a direct access to the timer registers in the E810
in the following order: Read first the GLTSYN_TIME_L register and then the GLTSYN_TIME_H
register. The software should re-read the GLTSYN_TIME_L register to ensure that it was not
wrapped around before the read of the GLTSYN_TIME_H register. If it does wrap around, software
should start the read process again.

GLTSYN_INCVAL:

As indicated above, at each 1588 clock pulse the 1588 timers are increment by a programmable
“step” called INCVAL. The INCVAL is a 40-bit field. The E810 contains the INCVAL in the
GLTSYN_INCVAL_L and GLTSYN_INCVAL_H registers per primary timer. The PHYs also have the
same 40-bit INCVAL registers per transmit and receive timers per port.

During nominal operation, the software programs the INCVAL of the primary timer and the INCVAL
of the PHYs together by the Read/Write 1588 PHY sideband admin command.

Figure 9-17. 1588 Timers

Primary
Timer

64
GLTSYN_TIME_H , GLTSYN_TIME_L

32
GLTSYN_TIME_0

Increment Value GLTSYN_INCVAL_L

96 bits

40 bits

GLTSYN_INCVAL_H

8 32

Intel® Ethernet Controller E810 Datasheet
Device Services

1454 613875-009

1588 Clock Frequencies and Its Matched INCVAL:

Table 9-67 shows the INCVAL settings by which the upper 64-bits of the timer represent the time in
nanosecond units. These settings (done by the software) are just an example for the INCVAL values
if the timer operates as asynchronous timer. When the 1588 timer is synchronized to another timer,
the INCVAL is adjusted during time according to the difference between the local clock frequency
relative to the clock frequency of the other timer.

Note: There are applications on which the timer represents the time in units of its input clock.
In this case, the INCVAL in the primary node in the network is set to 0x100000000 and
there is no need for any adjustment as indicated in the last column in Table 9-67.

Time Adjustment and GLTSYN_SHADJ:

Adjusting the timer by ‘N’ or by +-1: On each 1588 clock, the timer is incremented by INCVAL. When
adjusting the timer by ‘N’ or by +-1, the timer is incremented by the INCVAL + (‘N’ or +-1) for one
1588 clock and then it reverts back to incremental step of INCVAL.

Note that +- 1 equals to +- 0x100000000 (one and 32 hex zero’s).

Note: The ‘N’ in the equation above is the value of the ADJUST field in the GLTSYN_SHADJ registers.
Negative numbers are represented in 2’s complement.

9.7.4 Programming the 1588 Timers

As indicated, the E810 supports two 1588 primary timers, plus the timers in the PHYs that are
synchronized to one of the primary timers. This section describes how the software sets the timer
registers and the mechanism by which the PHY timers are synchronized to one of the primary timers.

The synchronization mechanism is based on two pillars:

• All timers (primary timer and PHY timer) operate on the same clock.

• The registers of all timers are programmed to the same values at the exact same clock.

— All the timers that should be programmed by a specific parameter are pre-armed by the
required instruction.

Then the SYNC signals are driven, which executes the pre-armed instruction to all selected timers on
the same clock. See the timing diagram in the Figure 9-18.

Table 9-67. Recommended INCVAL for a Given PLL Frequency

Source Clock
Source Clock

Frequency
(MHz)

Matched PLL
Frequency

(MHz)

INCVAL for Getting a
Timer in Nanosecond units

Time Adjust in Sub-Nanosecond Units
for Accurate Asynchronous Clock

TIME_REF 812.5 MHz 812.5 MHz 1 0x13B13B13B

Figure 9-18. SYNC Timing Diagram

Common CLK for
all 1588 timers

SYNC Signals

Primary Sel

01b = +1 10b = -1 11b = Pre-Programmed CMD

Primary 1 Primary 1 Don’t Care

613875-009 1455

Intel® Ethernet Controller E810 Datasheet
Device Services

It is assumed that only one PF manages one of the 1588 primary timers and the timers in the PHYs that
should be synchronized to that primary timer. Programming or reading some parameters are composed
of a sequence of steps. The whole sequence should be executed as an atomic action. Otherwise,
possible interleaved sequences would result in an unexpected response. The atomic operation is
achieved by using a semaphore scheme explained in Section 9.7.4.1.

Table 9-68 lists the timers’ programming primitives that the primary timer and PHY timers support:

9.7.4.1 Semaphore Scheme Enabling Atomic Sequences

The E810 includes a BUSY flag in the PFTSYN_SEM register that can be used to gain control of a shared
hardware resources. It can be used by a software driver to access the device for a sequence of actions
without possible interference by other software drivers (possibly on other PFs).

1. Software should read the PFTSYN_SEM.BUSY flag.

2. Reading a BUSY flag value of zero (0b) means that the software can access the hardware.

3. Following this read access, the BUSY flag is auto-set by the hardware and the PF index (that
initiated the read access) is captured in the PFTSYN_SEM.PF_OWNER field.

4. Any following read access to the register shows an active BUSY that tells the software it cannot
access the shared hardware resource.

5. It is the responsibility of software to keep the BUSY active as short as possible. Once the software
completes the sequence that must be atomic, it should write to clear the BUSY flag.

6. On a PF reset event, the EMP firmware must read the PFTSYN_SEM register and, in case of a PF
reset to the PF whose index is captured in PFTSYN_SEM.PF_OWNER and while the BUSY indication
is set, the EMP firmware must automatically clear the BUSY indication to allow other PFs to access
the registers.

9.7.4.2 Shadow Registers for Timer Programming

Table 9-68 lists the timers’ programming primitives. Supporting these primitives, each timer (primaries
and secondaries) holds the following shadow registers.

• Shadow Time — These registers are used for one of the following actions:

— Set initial value of the timer.

— Sample the timer registers.

— Set the time for the “Adjust the Timer by 'N' at a specific time” command.

In the E810, it is a 96-bit register per timer, called GLTSYN_SHTIME. In the PHY Core, these
registers are 64 bits long (two sets of registers in the PHY Core: for the Tx and Rx data paths).

• Shadow Adjust — These registers are used for one of the following actions:

— Set initial value of the INCVAL registers.

— Sample the INCVAL registers.

Table 9-68. Programming the 1588 Timer Primitives

Programming Primitive Supported by the PHYs Controlled by the Sideband Messages

No action Init Value of the Inc Value / Timer Value Adjust the Timer by 'N'

Sample the Timer and the Inc Value Increment / Decrement the Timer by 1 Adjust the Timer by 'N' at a specific time

Intel® Ethernet Controller E810 Datasheet
Device Services

1456 613875-009

— Adjust the timer registers.

In the E810, it is a 48-bit register per timer, called GLTSYN_SHADJ. Same register size in the PHY
Core (two sets of registers in the PHY Core: for the Tx and Rx data paths).

• CMD Register 1 — The PHY Core has two sets of command registers: rx_master_timer and
tx_master_timer. These registers are programmed by the command to be executed at SYNC pulse.
It contains the 3-bit opcode and one bit selecting the 1588 primary timer. At any write access, the
associated primary timer should be set (not indicated explicitly in the following subsections).

• CMD Register 2 — The E810 have two command registers used to control the 1588 timers:

— GLTSYN_CMD — Contains the command to be executed and a select the primary timer flag.

— GLTSYN_CMD_SYNC — Writing to this register generates the SYNC pulse.

9.7.4.3 Initializing the 1588 Timers and the INCVAL

This sequence is useful mainly at timer initialization. It makes sense to initialize both the timer values
and its INCVAL in the same step, as shown below. This is the first step that group a set of PHYs with one
of the two primary timers in the E810.

1. Read the PFTSYN_SEM.BUSY flag until it is zero (0b).

2. Program the CMD registers and the shadow registers of all the relevant PHY ports that should be
tied to the selected primary timer using the Read/Write 1588 PHY sideband Admin Queue command
with the following parameters (both the Tx and Rx PHY registers):

a. CMD register = INIT INCVAL + TIMER at SYNC

b. Set the SHTIME_L register (32 bits) // Equivalent to GLTSYN_SHTIME_0 of the primary.

c. Set the SHTIME_H register (32 bits) // Equivalent to GLTSYN_SHTIME_L of the primary.

d. Set the SHADJ_L register (32 bits) // Same as GLTSYN_SHADJ_L of the primary.

e. Set the SHADJ_H register (32 bits) // Same as GLTSYN_SHADJ_H of the primary.

3. Set the GLTSYN_SHTIME (0, L, and H) and GLTSYN_SHADJ (L and H) registers of the primary timer
in the E810.

4. Set the CMD to INIT INCVAL + TIMER and the SEL_MASTER as needed in the GLTSYN_CMD register
in the E810. The Sel_Master signal is driven to the primary timer and the PHYs.

5. Set the SYNC field in the GLTSYN_CMD_SYNC register to 11b.

a. As a response, the E810 drives the sync signals to the primary timers and the PHYs.

b. The programmed values are loaded to the primary timer and the PHY timers: The SHTIME
registers are loaded to the TIME registers and the SHADJ registers are loaded to the INCVAL
registers.

c. After the sync signals are generated, the SYNC field is auto-cleared in the GLTSYN_CMD_SYNC
register.

6. Clear the PFTSYN_SEM.BUSY flag, enabling other software drivers to access the 1588 logic.

Note: In Step 2, the software can indicate the admin commands for all registers of all the relevant
PHYs by a single tail bump of the sideband AQ. The E810 drives these sideband commands to
the PHYs one-by-one, driving the next command in line only after the previous one is
completed. This comment is relevant to all the following flows accessing the PHYs.

613875-009 1457

Intel® Ethernet Controller E810 Datasheet
Device Services

9.7.4.4 Adjust the Timer by ‘N’

This step is useful at run time when the timer should be adjusted by a larger value than one LS bit of
the GLTSYN_TIME_L or more granular value.

1. Read the PFTSYN_SEM.BUSY flag until it is zero (0b).

2. Program the CMD registers and the shadow registers of all the relevant PHY ports that should be
tied to the selected primary timer using the Read/Write 1588 PHY sideband Admin Queue command
with the following parameters (both the Tx and Rx PHY registers):

a. CMD register = ADJUST at SYNC

b. Set the SHADJ_L register (32 bits).

c. Set the SHADJ_H register (32 bits).

3. Set the GLTSYN_SHADJ registers of the primary timer in the E810.

4. Set the CMD to ADJUST and set the SEL_MASTER as required in the GLTSYN_CMD register in the
E810. The Sel_Master signal is driven to the primary timer and the PHYs.

5. Set the SYNC field in the GLTSYN_CMD_SYNC register to 11b.

a. As a response, the E810 drives the sync signals to the primary timers and the PHYs.

b. The TIME registers are updated by the SHADJ value (on top of the INCVAL) in the primary timer
and the selected PHYs.

c. After the sync signals are generated, the SYNC field is auto-cleared in the GLTSYN_CMD_SYNC
register.

6. Clear the PFTSYN_SEM.BUSY flag, enabling other software drivers to access the 1588 logic.

Notes: See note in Section 9.7.4.3 for possible tail bump of the sideband AQ.

This command can only be used to increment the timer. When decrementing the timer is
required, the software should set the SHADJ value to the 2’s complement value of the
requested decrement operand.

9.7.4.5 Adjust the Timer by ‘N’ at Time

This step is very similar to the adjust time sequence, plus an option to execute this step at a specific
time (when the timers cross the value defined by the time parameter).

Note: This timer manipulation action is designed to be performed in a future time (hence the “at
time” term). The hardware assumes that a new operation for the timer is not performed until
this action is executed. Furthermore, if any of the CSRs holding settings mentioned in the
flow below are changed before the timer manipulation executes, the new values are used.

1. Read the PFTSYN_SEM.BUSY flag until it is zero (0b).

2. Program the CMD registers and the shadow registers of all the relevant PHY ports that should be
tied to the selected primary timer using the Read/Write 1588 PHY sideband Admin Queue command
with the following parameters (both the Tx and Rx PHY registers):

a. CMD register = ADJUST at Time after SYNC

b. Set the SHTIME_L register to the target time low // Equivalent to GLTSYN_SHTIME_0.

c. Set the SHTIME_H register to the target time high // Equivalent to GLTSYN_SHTIME_L.

d. Set the SHADJ_L register (32 bits).

Intel® Ethernet Controller E810 Datasheet
Device Services

1458 613875-009

e. Set the SHADJ_H register (32 bits).

3. Set the GLTSYN_SHTIME and GLTSYN_SHADJ registers of the primary timer in the E810:

a. Set the target time to the GLTSYN_SHTIME_0 and GLTSYN_SHTIME_L registers. The hardware
ignores the value of the 32 MS bits of the timer and the GLTSYN_SHTIME_H register in this
command.

b. Set the adjust value to the GLTSYN_SHADJ_L and GLTSYN_SHADJ_H registers.

4. Set the CMD to ADJUST at time and set the SEL_MASTER as required in the GLTSYN_CMD register
in the E810. The Sel_Master signal is driven to the primary timer and the PHYs.

5. Set the SYNC field in the GLTSYN_CMD_SYNC register to 11b.

a. As a response, the E810 drives the sync signals to the primary timers and the PHYs.

b. The TIME registers are updated by the SHADJ value (on top of the INCVAL) in the primary timer
and the selected PHYs, one clock after the TIME registers cross the SHTIME registers. Note that
if the TIME registers are exactly equal to the SHTIME registers at sync time, the TIME is updated
by the SHADJ value only after the next time it cross the SHTIME registers.

c. After the sync signals are generated, the SYNC field is auto-cleared in the GLTSYN_CMD_SYNC
register.

6. Clear the PFTSYN_SEM.BUSY flag, enabling other software drivers to access the 1588 logic.

Notes: See note in Section 9.7.4.3 for possible tail bump of the sideband AQ.

This command can only be used to increment the timer. When decrementing the timer is
required, the software should set the SHADJ value to the 2’s complement value of the
requested decrement operand.

Once the shadow time registers are set using this flow, wait for this flow to complete and for
the timer to be updated before overriding the shadow time registers. That is, the shadow time
registers should not be overridden before the timer update time occurs.

9.7.4.6 Read the Timer Values

Software on any PF can read the primary timer and its INCVAL by direct read access to the
GLTSYN_TIME and GLTSYN_INCVAL registers. Furthermore, the software driver that controls the timer
can sample the timer and its INCVAL of both primary timers and the PHY timers. Checking the PHY
timers against their primary timer can be useful for debug purposes.

Software can also sample both primary timers. It can be useful for applications that care about 2x 1588
time domains and the time delta between the two domains.

The following flow describes the steps to sample the time and INCVAL of the timers.

1. Read the PFTSYN_SEM.BUSY flag until it is zero (0b).

2. Optional: Program the CMD registers of all the relevant PHY ports that should be sampled by the
Read/Write 1588 PHY sideband Admin Queue command with the following parameters:

a. CMD = SAMPLE TIME at SYNC and SEL_TX_RX (selecting the Tx or Rx timer to be sampled)

3. Set the CMD to READ_TIME in the GLTSYN_CMD register. The SEL_MASTER field value is don’t care.

4. Set the SYNC field in the GLTSYN_CMD_SYNC register to 11b.

a. As a response, the E810 drives the Sync signals to the primary timers and the PHYs.

613875-009 1459

Intel® Ethernet Controller E810 Datasheet
Device Services

b. The 1588 timers and the INCVAL of the selected PHYs are sampled by their SHTIME and SHADJ
registers, respectively. The primary timers and INCVAL are sampled by their GLTSYN_SHTIME
and GLTSYN_SHADJ registers, respectively.

5. Software can read the sampled TIME of both primary timers in their GLTSYN_SHTIME registers, and
read the sampled INCVAL in their GLTSYN_INCVAL registers.

6. Software can read the sampled TIME and INCVAL registers of the PHYs that are tied to the selected
primary timer by the Read 1588 PHY sideband Admin Queue command.

7. Clear the PFTSYN_SEM.BUSY flag, enabling other software drivers to access the 1588 logic.

Note: See note in Section 9.7.4.3 for possible tail bump of the sideband AQ.

9.7.5 Timestamp Indication

Packet transmission time is sampled by the PHY logic at a deterministic as possible affinity to the link
interface. The sampled time is taken at the beginning of the packet, as shown in Figure 9-19.

The sampled time in the PHY is a 39-bit word plus a valid indication. These 39 bits are composed of the
PHY_TIME_H value plus the seven MS bits of the PHY_TIME_L (usually the sub-nanosecond units). It is
illustrated in the Figure 9-20.

Figure 9-19. Timestamp Point

Figure 9-20. Sampled Timestamp

Primary
Timer

64
GLTSYN_TIME_H , GLTSYN_TIME_L

32
Internal Register

PHY Secondary Timers PHY_TIME_H
32

PHY_TIME_L
32

Sampled Tx/Rx Time Stamp 32 7

96 bits

64 bits

40 bits

V

Intel® Ethernet Controller E810 Datasheet
Device Services

1460 613875-009

9.7.5.1 Transmit Timestamp

Software indicates to the hardware the packets to be sampled by setting the TSYN flag and the
TSYN_REG field in the transmit context descriptor (see Section 10.5.3.2). The hardware samples the
transmission time of packets with an active TSYN bit. Setting the TSYN flag in the context descriptor is
meaningful only from those queues that are enabled for time sampling. A queue is enabled to use the
TimeSync features using the TSYN_ENA flag in the transmit queue context (see Section 10.5.5.2.1).

Transmit packets are forwarded to the PHY with the TSYN flag and the TSYN_REG field as part of the
packet metadata. The PHY samples the packet transmission time in a register index equals TSYN_REG.
Once the packet is transmitted and its time is sampled, the PHY triggers a Tx_Sample pulse. If the
specific PHY is enabled for the PF by the PFINT_TSYN_MSK register, the 1588_TX flag in the other cause
interrupt register is set, generating an interrupt to the software.

Then, the software can read the timestamp registers of all its transmitted packets that might be
completed (as shown in Figure 9-21). The software reads the sampled timestamps using the following
procedure to obtain the data with low latency:

• Write to PF_SB_ATQBAL with Bit 31 set to 1b and Bits 29:24 containing the register index of the
timestamp to be read.

• Poll on PF_SB_ATQBAL until Bit 31 is read as 0b. Bits 23:16 of this read contain the high eight bits
of the timestamp value obtained from PHY register ETH_TIMESYNC_TX_MEM_H.

• Read PF_SB_ATQBAH to get the low 32 bits of the timestamp value obtained from PHY register
ETH_TIMESYNC_TX_MEM_L.

Note: It is software’s responsibility to read the sampled time before overriding these values by new
packets. The PF driver should enable time sampling for those transmit queues on which it is
guaranteed that the software is well behaved so the above rule is kept.

Figure 9-21. Sampled Timestamp

Tx Packets by the SW

Tx-0 Tx-1 Tx-2

Tx-0 Tx-1 Tx-2

Tx-0 Tx-1 Tx-2

SW reads
Tx-0 & Tx-1
Only Tx-0 is

Valid

SW reads
Tx-0 miss the
INT for some

reason

SW reads
Tx-1 & Tx-2
Both values

are Valid

Tx Packets Time
are Sampled

Tx Time Interrupt

SW Reads the Tx Time

t

t

t

t

613875-009 1461

Intel® Ethernet Controller E810 Datasheet
Device Services

9.7.5.2 Receive Timestamp

The E810 samples the reception time of all packets in the PHY. The sampled time is forwarded from the
PHY to the E810 as part of the packet’s metadata. It is then posted with the packets in the receive
descriptor if enabled in the queue context by the relevant QRXFLXP_CNTXT.TS flag. This option is valid
only when using 32-byte descriptors.

9.7.6 Synchronized Auxiliary Events

The E810 supports the following global auxiliary events:

• Synchronized events to global I/O signals are described in Section 9.7.6.1.

• Synchronized events to PCI target access are described in Section 9.7.7.1.

9.7.6.1 Auxiliary 1588 I/O Signals

The E810 supports a total of four single-ended GPIO signals (SDP[20:23]) plus one differential GPIO
signal (CLK_OUT_P/N), which is configured by default as 1PPS (out). The functionality of these GPIOs is
controlled by the GLGEN_GPIO_CTL[x] registers (expected to be loaded from the NVM). These GPIO
pins are associated to the 1588 logic by the PIN_FUNC fields in the GLGEN_GPIO_CTL[x] registers.

The GPIO signals are set to input or output by the PIN_DIR field in the GLGEN_GPIO_CTL registers.
When set to input signal, the sampling event can be sampled by one of the GLTSYN_EVNT registers (as
programmed by the PIN_FUNC field). When set to output signal, the output event time is defined by
one of the GLTSYN_TGT registers (as programmed by the PIN_FUNC field). The following settings
should be loaded from the NVM and must not be modified by the software:

• GLGEN_GPIO_CTL[5] - CLK_OUT_P/N (out): PIN_DIR must be set to output.

There are several output modes of operation described below. In any of them, the initial state of the
GPIO pins can be set by the GLGEN_GPIO_CTL registers. The output modes related to the 1588 timers
are enabled by the OUT_ENA flag in the GLTSYN_AUX registers.

Note: Though the system configuration allows outputting high-frequency signals using the
single-ended GPIO signals, the maximum, output frequency supported by the system for
these GPIO signals is 20 MHz with a minimum duty cycle of 10%.

• Synchronized Level Output — Software should set the event time in the matched GLTSYN_TGT
registers. Then set the OUT_ENA flag to one and the OUTMOD field to “Output Level Mode” (00b) in
the GLTSYN_AUX_OUT registers. When the upper 64 bits of the GLTSYN_TIME crosses the value of
the GLTSYN_TGT, the assigned GPIO transits to the programmed output level.

Note: The output level is set by the TimeSync logic only once (when reaching or passing the
time specified in GLTSYN_TGT.

• Synchronized Flipped Output Signal — Same flow as the Synchronized Level Output, except set
the OUTMOD field to “Flipped Output Mode” (01b) in the GLTSYN_AUX_OUT registers. When the
upper 64 bits of the GLTSYN_TIME crosses the value of the GLTSYN_TGT the GPIO flips its output
level.

Note: The output is flipped by the TimeSync logic only once (when reaching or passing the time
specified in GLTSYN_TGT.

Intel® Ethernet Controller E810 Datasheet
Device Services

1462 613875-009

• Synchronized Output Pulse — Same flow as the Synchronized Level Output, except set the
OUTMOD field to “Output Pulse Mode” (10b) and the PULSEW field to the required pulse width in the
GLTSYN_AUX_OUT registers. Doing so, when the upper 64 bits of the GLTSYN_TIME crosses the
value of the GLTSYN_TGT, the GPIO signal flips its output state for {16 x (PULSEW + 1)} x 1588
clocks and then reverts back to its previous level.

Note: The output is pulsed by the TimeSync logic only once (when reaching or passing the time
specified in GLTSYN_TGT.

• Synchronized Clock Output — This mode is selected by setting the OUT_ENA flag to one and the
OUTMOD field to “Output Clock Mode” (11b) in the GLTSYN_AUX_OUT register. The matched
GLTSYN_CLKO registers should be set to 50% of the required output clock duration, and the
GLTSYN_TGT registers should be set to the time on which the output clock should start. Each time
the upper 64 bits of the GLTSYN_TIME crosses the value of the GLTSYN_TGT the GPIO signal flips
its output level. Then, the GLTSYN_TGT register is reloaded by the hardware to GLTSYN_TGT plus
GLTSYN_CLKO (while GLTSYN_CLKO is padded by 32 MS bit zero’s).

Note: For proper operation, the GLTSYN_CLKO must be larger than twice the value of
GLTSYN_INCVAL, and for reasonable accuracy, GLTSYN_CLKO should be significantly
larger than twice the value of GLTSYN_INCVAL.

Software can set the initial state of the output signal by direct setting of the GPIO level.

• Sampling Input Event — The E810 can capture the time on which a level transition is sensed on
the 1588 auxiliary signals. The event time is captured by one of the 64 bit GLTSYN_EVNT registers.
The sampled input event type is defined by the EVNTLVL field in the GLTSYN_AUX_IN registers,
equal to one of the following options:

— Disable (00b)

— Rising Edge (01b)

— Falling Edge (10b)

— Any Transition (11b)

When the defined transition is sampled by the hardware (synchronized to the 1588 clock), the
upper 64 bits of the GLTSYN_TIME are latched by the matched GLTSYN_EVNT registers.

9.7.7 Synchronization with Host Timer

The time relationship between the CPU time and devices within the system is a key element in many
applications. Specifically, the relationship with the 1588 clock is critical. The following subsections
describe mechanisms to measure this relationship.

9.7.7.1 Reading and Sampling the 1588 Primary Timers

Reading and sampling the 1588 primary timers is described in Section 9.7.4.6. Software can use the
“sample time” flow described in Section 9.7.4.6 to get the time delta between the two 1588 primary
timers.

613875-009 1463

Intel® Ethernet Controller E810 Datasheet
Device Services

9.7.8 Interrupts

The E810 can generate a 1588 interrupt for one of the following events if the interrupt is enabled by the
TSYN flags in the PFINT_OICR_ENA register.

• The PHY asserts an interrupt signal to the E810 for each transmit packet that is time sampled.
Packet on port ‘n’ asserts bit ‘n’ in the GLINT_TSYN_PHY register. The PF that owns the port as
programmed by the PFINT_TSYN_MSK register gets an interrupt if enabled by the TSYN_TX flag.

• Input event is latched by one of the GLTSYN_EVNT registers while the interrupt is enabled by the
TSYN_EVNT flag. The interrupts is asserted to the PF defined by the PF_MASTER field in the
GLINT_TSYN_PFMSTR0 and GLINT_TSYN_PFMSTR1 registers for an event that is generated by the
1588 primary timer 0 and 1, respectively.

• One of the target time registers has expired while the interrupt is enabled by the TSYN_TGT flag.
See above for PF PF_MASTER impact.

Regardless if the interrupt is enabled, the above AUX events are reported in the applicable PFINT_OICR
register.

9.7.9 1588 Initialization Flow

This section describes the PF software initialization flow required to activate the 1588 logic.

1. Check the PF_MASTER field in the GLINT_TSYN_PFMSTR register if the PF is expected to control the
1588 logic.

2. The 1588 CSRs in the PHYs are initialized by global reset, which might not be triggered by a PCI
reset. Therefore, PF software is required to initialize most of the 1588 registers listed in the
“TimeSync (IEEE 1588) Registers” section:

a. Clear any optional residuals reported in the GLTSYN_STAT register and the GLINT_TSYN_PHY
register.

b. Read all transmit timestamps in the PHYs clearing its possible valid indication.

c. Set the GLTSYN_AUX register as required for the AUX functionality.

d. The timer and the increment values are expected to be programmed as part of the nominal
operation (GLTSYN_TIME and GLTSYN_INCVAL registers).

3. Assign a transmit queue for 1588 transmission and enable TSYN_ENA flag in its queue context.

4. Set the relevant QRXFLXP_CNTXT.TS flag in those receive queues that should get the receive
timestamps.

9.7.10 Software Timer

The E810 includes a 32-bit counter in GLVFGEN_TIMER register, which is based on a free running 1 μs
clock. The counter is cleared by Power On Reset (POR) and increments after being cleared. The timer
wraps around in about 70 minutes.

Intel® Ethernet Controller E810 Datasheet
Device Services

1464 613875-009

9.8 LLDP Protocol

9.8.1 Introduction

The E810 supports the IEEE Data Center Bridging standards such as:

• IEEE 802.1Qaz — Enhanced Transmission Selection (ETS)

• IEEE 802.1Qbb — Priority based Flow Control (PFC)

• IEEE 802.1Qbg — Edge Virtual Bridging (ECB)

Devices that support these standards use IEEE 802.1AB Link Layer Discovery Protocol (LLDP) to
exchange configuration information with their network link partner.

LLDP is a link layer protocol that allows a LAN station to advertise capabilities and status of the system.
An LLDP agent transmits and receives information to and from the LLDP agents of other stations
attached to the same LAN. The information distributed and received in each LLDP Data Unit (LLDPDU) is
stored in two Management Information Bases (MIBs) per physical LAN port, one for Nearest Bridge and
the other for non-TPMR.

9.8.2 Scope

The E810 supports an embedded LLDP agent that runs on the Embedded Management Processor (EMP).

This section describes implementation of the embedded LLDP agent. It describes the agents operational
modes, supported TLVs, configuration, and run time operation of LLDP.

9.8.3 LLDP Agent

The following IEEE standards have configuration parameters and use LLDP to exchange configuration
parameters with the link partner.

• Data Center Bridging (DCB).

The DCB features (PFC, ETS, DCBx, App TLV) are defined as requirements for a VLAN aware bridge
component. Both C-components and S-components are VLAN-aware bridge components. The E810
supports a single instance of DCB logic per physical LAN port. Therefore, the E810 DCB logic is
associated with the component connected to the physical LAN port, either C or S depending on the use
case/configuration.

The E810 supports an LLDP agent that exchanges LLDP MIB with its peer. The LLDP agent exchanges
the LLDP MIB with either an S-VLAN bridge or C-VLAN bridge depending on mode of operation.

The LLDP agent is active under the following conditions

• During pre-boot operations, including S5 (D0u and D0a).

• During OS present mode, unless software explicitly turns off the agent using the Stop LLDP Agent
AQ command.

613875-009 1465

Intel® Ethernet Controller E810 Datasheet
Device Services

The LLDP agent is enabled during power-on by setting the LLDP Admin Status word in NVM, (enabled
separately per Ethernet port). It is disabled when the Stop LLDP Agent AQ command is executed (per
Ethernet port). Software can transfer ownership of LLDP processing back to the device by issuing a
Start LLDP Agent AQ command.

9.8.4 LLDP Processing

9.8.4.1 LLDPDU Addressing and Forwarding

9.8.4.1.1 Egress Rules

On the egress side, the LLDP agent uses the appropriate group MAC Address as destination MAC and
with EtherType 0x88CC:

• DCB — Nearest bridge address.

When an LLDP agent is enabled in the device, the following forwarding rules apply for untagged LLDP
packet originating in the host:

• Packets with a Nearest Bridge destination MAC Address are forwarded to the internal control port.

• Packets with Nearest Customer Bridge destination MAC Address are dropped.

• Packets with a non-TPMR destination MAC Address are forwarded to the internal control port.

A control port that wants to send control packets overriding these rules should use the SWTCH field in
the transmit context descriptor of the control packet. Tagged (802.1Qbg) LLDP packets are forwarded
like regular packets. The driver can define different rules (forward to control VSI or drop) using the Add
Switch Rules admin command (Section 7.8.12.6.1).

9.8.4.1.2 Ingress Rules

When an LLDP agent is enabled in the device, the following forwarding rules apply for Rx LLDP packets:

Table 9-69. Forwarding Rules for Rx LLDP Packets

Destination MAC Address STagged LLDP Packets Untagged LLDP Packets

Nearest Bridge Address Forward to the PF if programmed so by the PF.
Drop otherwise

Forward to EMP.

Non-TPMR Address Forward to the PF if programmed so by the PF.
Drop otherwise

Forward to EMP.

Nearest Customer Bridge Address Forward to the PF if programmed so by the PF.
Drop otherwise

Forward to the PF if programmed so by the PF.
Drop otherwise

Intel® Ethernet Controller E810 Datasheet
Device Services

1466 613875-009

9.8.4.2 Supported TLV

The LLDP agent should include following TLV as part of the LLDPDU.

• Chassis ID TLV — One of four mandatory TLVs. Uses TLV Type value of 1 and subtype value of 4
(MAC Address). This TLV contains the permanent/factory-assigned MAC Address of the LAN port.

• Port ID TLV — One of four mandatory TLVs. Uses TLV Type value of 2 and subtype value of 3 (MAC
Address). This TLV contains MAC Address of any physical function. If there is none assigned to a
physical function, this TLV contains the permanent/factory-assigned MAC Address of the LAN port.

• TTL TLV — One of four mandatory TLVs. Uses TLV Type value 3. This TLV contains time-to-live
value and is the lower between ((msgTxHold * msgTxInterval) +1) and 65535. Default msgTxHold
and msgTxInterval are defined in NVM and are loaded by the agent during initialization. See
Section 9.8.5.2 for default values.

• End of LLDPDU TLV — One of four mandatory TLVs. Uses TLV Type value 0. This TLV does not
contain any information and sets the TLV information string length to 0.

Note: Although this is a mandatory TLV, there are apparently some implementations out there
that do not send it. Therefore, the device does not require that an LLDPDU ends with this
TLV.

• OEM Device type TLV — One of the three OEM required TLVs. This TLV uses TLV Type value of
127 with subtype of 1. For more information, refer to OEM-specific LLDP specifications for OUI and
contents of the TLV.

• OEM Firmware Version TLV — One of the three OEM required TLVs. This TLV uses TLV Type value
of 127 with subtype of 3. For more information, refer to OEM-specific LLDP specifications for OUI
and contents of the TLV.

• OEM Port Capabilities TLV — One of the three OEM required TLVs. This TLV uses TLV Type value
of 127 with subtype of 4. For more information, refer to OEM-specific LLDP specifications for OUI
and contents of the TLV.

• DCBx ETS Configuration TLV — This TLV uses TLV Type value of 127 with OUI of IEEE 802.1,
which is 0x0080C2. Subtype is 0x09.

Note: When receiving a DCBx configuration request that removes active TCs, the firmware does
not perform the configuration change, but only indicates it to software with a “Pending”
MIB Change Event (if enabled). When software (mainly RDMA) is ready (i.e., relevant
queue pairs are destroyed) the software explicitly applies the received DCB configuration
via the Execute Pending LLDP MIB admin queue command.

This TLV information string uses the following default values:

— Willing bit set to 1 (unless the software decides to take control by calling Set Local MIB and
setting the willing bit to 0), indicating that this station is willing to accept configuration from
remote station.

— CBS bit is set to 0, indicating that this station does not support credit based shaper.

— Maximum traffic classes.

— Priority Assignment Table is a four octet string with four bits per entry.

— Bandwidth Table is a string of eight octets with each octet defining the bandwidth percentage
for traffic classes. Octet 0 specifies bandwidth percentage of Traffic Class 0, octet 1 for Traffic
Class 1, and so on.

— TSA Assignment Table is a string of eight octets with an 8-bit value specifying Transmission
selection algorithm per traffic class.

613875-009 1467

Intel® Ethernet Controller E810 Datasheet
Device Services

• DCBx PFC Configuration TLV — This TLV uses type value of 127 with OUI of IEEE 802.1, which is
0x0080C2. Subtype is 0x0B.

This TLV information string uses the following default values:

— Willing bit set to 1 (unless the software decides to take control by calling Set Local MIB and
setting the willing bit to 0), indicating that this station is willing to accept configuration from
remote station.

— MBC bit is set to 0 since MACsec is not processed by the E810.

— PFC Capability is a 4-bit unsigned integer indicating the number of traffic classes that
simultaneously support PFC. Default value is 8.

— PFC Enable is a 8-bit vector that indicates which traffic classes have PFC enabled. Default value
is zero. None of the traffic call uses have PFC enabled by default.

• DCBx Application Priority Configuration TLV — This TLV uses type value of 127 with OUI of
IEEE 802.1, which is 0x0080C2. Subtype is 0x0C.

By default, this optional TLV is not transmitted by the LLDP agent, but the agent reflects the table
received from peer network port if the agent receives LLDPDU with remote link partner.

9.8.4.3 LLDPDU Transmission and Reception

First LLDP transmission is immediate after the LLDP agent reaches ready state and link is up. This first
transmission populates the LLDPDU with default TLV values.

The LLDP agent enters Fast transmission state/period whenever the LLDP agent detects a new neighbor.
The LLDP agent enters new neighbor detected state (Fast transmission period) when an IEEE 802.1az
Link Layer LLDP frame with new Chassis and Port ID is received. Fast transmission state exited after
transmitting txFastInit number of LLDPDUs. Default value of txFastInit is 4.

When not in Fast transmission mode, the LLDP agent transmits every msgTxInterval, unless there is
change in local LLDP MIB variables. LLDPDU is transmitted immediately, without waiting for
msgTxInterval when there is a change in local MIB variables.

The E810 supports a single LLDP neighbor per supported destination LLDP address per port. (that is,
two total neighbors – one for Nearest Bridge and one for Nearest non-TPMR per port). LLDPDUs with
other addresses are ignored.

The transmission and reception flow is interrupted by several events, each causing a disruption in the
normal flow. The behavior in such cases is as follows:

• LLDP events visible to both ends:

— Aging of the LLDP timer or LLDPDU is received with a TTL value of zero (for example, Shutdown
LLDPDU).

• Delete all information in the LLDP remote systems MIB associated with the respective MSAP
identifier.

• EMP reconfigures device based on the local defaults.

— Missing TLV in a received LLDPDU.

• Delete all information for the missing TLV in the LLDP remote systems MIB associated with
the respective MSAP identifier.

• EMP reconfigures device based on the local defaults of this TLV.

Intel® Ethernet Controller E810 Datasheet
Device Services

1468 613875-009

• Events that cause a link down:

— Link Down event (only if LLDP timer has not expired).

• When link is back up, delete all information in the remote systems MIB associated with the
LLDP agent(s) for this link.

• EMP reconfigures device based on the local defaults.

— Device Resets that causes Link Down (in other words, EMP Reset, Global Reset, PCI Resets that
causes Link Down)

• Device performs an Internal GLOBR that brings the link down momentarily.

• Continue as in Link Down case.

— LLDP ownership transfer from software to firmware.

• Software issues a Global Reset to the device.

• Software sends a Start LLDP Agent AQ command to start LLDP agent in firmware.

• Continue as in Link Down case.

• Events not visible to other end:

— LLDP ownership transfer from firmware to software.

• LLDP agent terminated in device.

• No automatic change in device configuration.

• EMP waits for software commands.

— Device resets that do not cause Link Down (like Core Reset, PCI Resets that do not cause link
down, function-level resets).

• Device performs an internal CORER.

• EMP reconfigures core based on the LLDP MIBs.

Note: No change in MAC/PHY state, including Flow Control configuration and operation.

LLDP reception and transmission continues once the above configuration is done.
Configuration is estimated to take milliseconds, well below the LLDP timeout values (usually
in seconds).

9.8.4.4 LLDP Protocol Variables

Unless otherwise specified, the LLDP agent operational state variables are set to values recommended
in Section 9.2.2 of the IEEE 802. AB - 2009 standard. However, certain values can be configured via
NVM, and are loaded from NVM when the LLDP agent reaches operational state; this occurs after a
power-up or a device reset. Refer to Section 9.8.5.2 for a list of LLDP protocol variables that can be
configured via NVM.

613875-009 1469

Intel® Ethernet Controller E810 Datasheet
Device Services

9.8.4.5 LLDP Data Store

The LLDP agent maintains sufficient information to enable a host software based management agent to
support basic LLDP MIB and organizationally-specific LLDP MIB extensions.

The following basic variables are maintained by the LLDP agent:

• msgTxInterval — Defines the time interval in timer ticks between transmissions during normal
transmission periods.

• msgTxHold — Used, as a multiplier of msgTxInterval, to determine the value of txTTL that is
carried in LLDP frames transmitted by the LLDP agent.

• reinitDelay — Indicates the amount of delay from when adminStatus becomes “disabled” until
re-initialization is attempted.

• txCreditMax — Maximum number of consecutive LLDPDUs that can be transmitted at any time.

• msgFastTx — Defines the time interval in timer ticks between transmissions during Fast
transmission periods.

• txFastInit — Determines the number of LLDPDUs that are transmitted during a Fast transmission
period.

• adminStatus — Indicates whether or not the LLDP agent is enabled. The defined values for this
variable are as follows:

— Integer value of 3 means the LLDP agent is enabled for reception and transmission of LLDPDUs.

— Integer value of 2 means the LLDP agent is enabled for transmission of LLDPDUs only.

— Integer value of 1 means the LLDP agent is enabled for reception of LLDPDUs only.

— Integer value of 0 means the LLDP agent is disabled for both reception and transmission.

The LLDP agent maintains last received LLDPDU per port. Upper bound for size of LLDPDU is 1500
bytes. Details of data structure used for information store is implementation specific and beyond scope
of this document.

The E810 provides LSAP services to the OS provided MSAP services that are used by LLDP agents
hosted by system processors.

9.8.5 Initialization and Configuration

9.8.5.1 Initialization

As part of EMP initialization, an the LLDP agent is loaded and initialized by EMP. The LLDP agent loads
default values for TLVs from the NVM. The LLDP agent transitions to “ready” state and waits for LAN link
up before transmitting the first LLDPDU.

DCBx agent operates in secondary mode, sets the Willing bit, and accepts recommendations from the
link partner (unless the software decides to take control by calling Set Local MIB and setting willing bit
to 0).

Intel® Ethernet Controller E810 Datasheet
Device Services

1470 613875-009

9.8.5.2 LLDP Configuration

9.8.5.2.1 LLDP Protocol Variables

The following LLDP timers can be configured via NVM:

• msgFastTx — Defines the time interval in timer ticks between transmissions during Fast
transmission periods. The default value of msgFastTx is 1. This value can be changed by
management to any value in the range 1 through 3600.

• msgTxInterval — Defines the time interval in timer ticks between transmissions during normal
transmission. The default value for msgTxInterval is 30 seconds. This value can be changed by
management to any value in the range 1 through 3600.

• msgTxHold — Used as a multiplier of msgTxInterval, to determine the value of txTTL that is
carried in LLDP frames transmitted by the LLDP agent. The recommended default value of
msgTxHold is 4. This value can be changed by management to any value in the range 1 through
100.

• txCreditMax — Determines maximum number of LLDPDUs that can be sent per second. The
default value of txCreditMax is 5. This value can be changed by management to any value in the
range 1 through 10.

• txFastInit — Determines the number of LLDPDUs that are transmitted during a Fast transmission
period. The default value of txFastInit is 4. This value can be changed by management to any value
in the range 1 through 8.

• reinitDelay — Indicates the amount of delay from when adminStatus becomes “disabled” until re-
initialization is attempted. Default value of reinitDelay is 2.

9.8.5.2.2 LLDP Admin Queue Commands

The following commands are supported by the E810 to manage the LLDP agent and provide information
to the drivers.

Table 9-70. LLDP Admin Queue Commands

Command Opcode Type Description Section
Reference

Get LLDP MIB 0x0A00 Indirect Fetch latest LLDP MIB. 9.8.5.2.2.1

Configure LLDP MIB Change Event 0x0A01 Direct Request and deliver a notification that the peer has
sent an updated LLDP MIB. 9.8.5.2.2.2

Add LLDP TLV 0x0A02 Indirect Add a new TLV to the local LLDP MIB. 9.8.5.2.2.3

Update LLDP TLV 0x0A03 Indirect Update an existing TLV in the local LLDP MIB. 9.8.5.2.2.4

Delete LLDP TLV 0x0A04 Indirect Delete a TLV from the local LLDP MIB. 9.8.5.2.2.5

Stop LLDP Agent 0x0A05 Direct Used to stop or shutdown LLDP agent. 9.8.5.2.2.6

Start LLDP Agent 0x0A06 Direct Start an LLDP agent running. 9.8.5.2.2.7

Get CEE DCBx CFG 0x0A07 Indirect Retrieves the CEE configuration. 9.8.5.2.2.8

Set Local LLDP MIB 0x0A08 Indirect Load the DCBx configuration. 9.8.5.2.2.9

Stop/Start a Specific LLDP Agent 0x0A09 Direct Stop and restart the firmware DCBx agent. 9.8.5.2.2.10

LLDP Filter Control 0x0A0A Direct Request forwarding of LLDP traffic to host. 9.8.5.2.2.11

Execute Pending LLDP MIB 0x0A0B Direct Execute a currently pending MIB change 9.8.5.2.2.12

613875-009 1471

Intel® Ethernet Controller E810 Datasheet
Device Services

9.8.5.2.2.1 Get LLDP MIB (0x0A00)

This command, posted on the ATQ, is an indirect AQ command. The driver requests the complete LLDP
MIB, providing a response buffer (address/length pair) and the type of LLDP MIB requested. The LLDP
MIB is associated with a physical LAN port. Instead of formatting the LLDP MIB in any particular way,
firmware should write the entire packet (including headers) that was sent/received on the wire for the
particular MIB type specified. The MIB is guaranteed to fit in a 1.5K packet, so there is no need to use a
“large buffer”. For a particular Bridge Type, software can request the local MIB, the remote MIB, or both
MIBs.

Firmware writes back the complete LLDP MIB to the response buffer. It writes the length of the LLDP
MIB into the Datalen field in the descriptor on the ATQ. It writes the status of the request in the Return
Value field. For the case where both MIBs are returned, firmware always writes the Local MIB first and
the Remote MIB immediately following the Local MIB.

Table 9-71. Get LLDP MIB Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0A00 Command opcode.

Datalen 4-5 Length or response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Type 16 MIB Type Bits 0:1: Direction
00b = Local MIB (sent by device)
01b = Remote MIB (received by device)
10b = Both Local and Remote MIBs
11b = Reserved

Bits 2:3: Bridge Type
00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:7: Reserved

Reserved. 17-23 Reserved Reserved.

Data Address High 24-27
Address of response buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
Device Services

1472 613875-009

Note: If only one MIB is present, it is written to the response buffer beginning at the first byte of the
response buffer (i.e. offset=0). If two MIBs are present, the Local MIB is always written first
(i.e. offset=0), and the Remote MIB is written immediately following the Local MIB (i.e.
offset=LocalMIBLength).

Table 9-72. Get LLDP MIB Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0A00 Command opcode.

Datalen 4-5 Length of LLDP MIB if Status==Success. In bytes.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
A value of SUCCESS means that command was performed successfully.
Error Codes:

ENOENT = Firmware returns this value if any requested LLDP MIB does not exist.
EPERM = Firmware returns this value if software has taken control of LLDP

processing.
EFBIG = Firmware returns this value when size of LLDPDU is larger than size of

the response buffer.
EINVAL = Firmware returns this value when software asks for a bad request (for

example, invalid bridge type or direction).

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Type 16 MIB Type Bits 0:1: Direction
00b = Local MIB (sent by device)
01b = Remote MIB (received by device)
10b = Both Local and Remote MIBs
11b = Reserved

Bits 2:3: Bridge Type
00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:7: Reserved

Reserved 17 Reserved Reserved.

Local MIB Length 18-19 Length If the response buffer contains a Local MIB, this field reports its length. If no Local
MIB is present, this field is written with a value of 0.

Remote MIB Length 20-21 Length If the response buffer contains a Remote MIB, this field reports its length. If no
Remote MIB is present, this field is written with a value of 0.

Reserved 22-23 Reserved Reserved.

Data Address High 24-27
Address of response buffer.

Data Address Low 28-31

613875-009 1473

Intel® Ethernet Controller E810 Datasheet
Device Services

9.8.5.2.2.2 Configure LLDP MIB Change Event (0x0A01)

This command, posted on the ATQ, is a direct AQ command. The driver uses this command to request
that firmware post an event on the ARQ when the LLDP MIB associated with this interface changes. The
driver can also use this command to request that firmware stop posting this event to the ARQ.

Firmware writes back the status of the request to the Return Value field.

Note: If the Command bit (16.0) is disabled (set to 1b) but the Pending Event Enable bit (16.1) is
enabled (set to 1b), the firmware responds with error code EINVAL.

Table 9-73. Configure LLDP MIB Change Event Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0A01 Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command 16.0 Command Enable/Disable the MIB Change Event
0b = Enable event
1b = Disable event

Pending Event
Enable

16.1 Enable/Disable the Pending Event Mechanism
0b = Disable Pending Event
1b = Enable Pending Event

Reserved 16.2-31 Reserved Reserved.

Table 9-74. Configure LLDP MIB Change Event Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0A01 Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
A value of SUCCESS means that command was performed successfully.
Error Codes:

EPERM =Firmware returns this value if software has taken control of LLDP
processing.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Device Services

1474 613875-009

9.8.5.2.2.2.1 LLDP MIB Change Event

This event is posted on the ARQ to indicate to software that any LLDP MIB associated with the physical
interface has changed. The LLDP MIB change event is also posted if a multiple-peers condition is
detected or if a TLV is aged out.

Firmware provides the status of the event, the length of the LLDP MIB in bytes, and the type of LLDP
MIB that has changed, and copies the Cookie value from the associated Configure LLDP MIB Change
Event.

The response buffer includes the entire MIB that has changed. The formatting is identical to the
response for the Get LLDP MIB command.

When the Pending Event Enable bit is set, the MIB change does not take place until the software sends
the Execute Pending LLDP MIB command to the firmware.

The following configuration changes use the Pending Event Enable bit (and flow):

• DCBx configuration change indicating active TC removal.

Note: The opcode for this event is the same as the opcode for the related command on the ATQ that
enabled this event to be sent to software.

Table 9-75. LLDP MIB Change Event

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0A01 Event code.

Datalen 4-5 0 Length of LLDP MIB if Status==Success. In bytes.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this
command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this
command.

Type 16 MIB Type Bits 0:1: Direction
00b = Local MIB (sent by device)
01b = Remote MIB (received by device)
10b = Reserved
11b = Reserved

Bits 2:3: Bridge Type
00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:5: Miscellaneous
00b = Port's Tx active
01b = Port's Tx suspended and drained.
10b = Reserved
11b = Port's Tx suspended and drained. Blocked TC pipe flushed.

Bits 6:7: DCBx Mode. The firmware may fail the command with return
value EINVAL if TLV is invalid.

00b = N/A
01b = IEEE Mode
10b = CEE Mode
11b = Reserved

State 17.0 MIB Change State 0b = MIB change was executed.
1b = MIB change is pending software response.

613875-009 1475

Intel® Ethernet Controller E810 Datasheet
Device Services

Note: The response buffer is formatted per the DCBx mode indicated in the event Type field. For
IEEE mode, the response buffer includes the entire packet (including headers) that was
received on the wire for the MIB type specified (as sent in Get LLDP MIB response buffer)1.
For CEE mode, the response buffer is be formatted per Table 9-87 (as sent in Get CEE DCBx
OPER CFG response buffer).

9.8.5.2.2.3 Add LLDP TLV (0x0A02)

This command, posted on the ATQ, is an indirect AQ command. The driver provides the type of MIB to
be updated, the TLV to be added, and the address/length of the buffer containing the TLV. Software is
responsible for guaranteeing that the TLV to be added does not already exist in the MIB, or follows the
TLV usage rules for TLVs that allow multiple instances. Software can only add TLVs to the Local LLDP
MIB.

Firmware adds the new TLV to the Local LLDP MIB just before the “End of LLDPDU TLV”. Firmware writes
back the complete LLDP MIB to the response buffer. It writes the length of the LLDP MIB into the
Datalen field in the descriptor on the ATQ.

Reserved 17.1-23 Reserved Reserved.

Data Address High 24-27
Address of response buffer.

Data Address Low 28-31

1. The different DCBx TLV formats can be found in 802.1Q specification, Annex D (normative) IEEE 802.1 Organizationally Specific
TLVs.

Table 9-76. Add LLDP TLV Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0A02 Command opcode.

Datalen 4-5 Length Length of indirect buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Type 16 MIB Type Bits 0:1: Reserved
Bits 2:3: Bridge Type

00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:7: Reserved

Reserved 17 Reserved Reserved.

Length 18-19 Length Length of TLV placed in the indirect buffer by the driver.

Reserved 20-23 Reserved Reserved.

Data Address High 24-27
Address of indirect buffer.

Data Address Low 28-31

Table 9-75. LLDP MIB Change Event [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Device Services

1476 613875-009

9.8.5.2.2.4 Update LLDP TLV (0x0A03)

This command, posted on the ATQ, is an indirect AQ command. The driver provides the bridge type of
the MIB to be updated, the TLV to be updated (both original and updated versions), the offset/length of
both TLVs in the indirect buffer, and the address/length of the indirect buffer. Software is responsible for
guaranteeing that the TLV to be updated does already exist in the MIB. Only a local MIB can be updated
by the driver.

Firmware must match the entire original TLV in the MIB before performing an update. There are some
TLV types that can appear more than once. Therefore, matching based only on Type/Subtype is not
sufficient.

Firmware writes back the complete LLDP MIB to the response buffer. It writes the length of the LLDP
MIB into the Datalen field in the descriptor on the ATQ.

Table 9-77. Add LLDP TLV Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0A02 Command opcode.

Datalen 4-5 Length of LLDP MIB if Status==Success. In bytes.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
Error Codes:

ENOMEM = Firmware returns this value if there is not enough space available to
add the new TLV.

EINVAL = Firmware returns this if the MIB Type associated with this command
does not exist. FW returns this error code for invalid TLV.

EPERM = Firmware returns this value if software has taken control of LLDP
processing.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Type 16 MIB Type Bits 0:1: Reserved
Bits 2:3: Bridge Type

00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:7: Reserved

Reserved 17-23 Reserved Reserved.

Data Address High 24-27
Address of response buffer.

Data Address Low 28-31

Table 9-78. Update LLDP TLV Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0A03 Command opcode.

Datalen 4-5 Length Length of indirect buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

613875-009 1477

Intel® Ethernet Controller E810 Datasheet
Device Services

Type 16 MIB Type Bits 0:1: Reserved
Bits 2:3: Bridge Type

00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:7: Reserved

Reserved 17-23 Reserved Reserved.

Length1 18-19 Length Length of original TLV in the indirect buffer. Offset is assumed to be 0.

Offset2 20-21 Offset Offset of updated TLV in the indirect buffer.

Length2 22-23 Length Length of updated TLV in the indirect buffer.

Data Address High 24-27
Address of indirect buffer.

Data Address Low 28-31

Table 9-79. Update LLDP TLV Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0A03 Command opcode.

Datalen 4-5 Length of LLDP MIB if Status==Success. In bytes.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
Error Codes:

EINVAL = FW returns this value if the MIB Type associated with this command
does not exist. Firmware returns this error code for an attempt to
update to an invalid TLV.

ENOXIO – FW will return this value if the “original” TLV does not exist in
ENOXIO = Firmware returns this value if the “original” TLV does not exist in the

requested MIB.
ENOMEM = Firmware returns this value if the updated TLV is larger than the

original TLV and there is not enough space to increase the size of the
TLV.

EPERM = Firmware returns this value if software has taken control of LLDP
processing.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Type 16 MIB Type Bits 0:1: Reserved
Bits 2:3: Bridge Type

00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:7: Reserved

Reserved 17-23 Reserved Reserved.

Data Address High 24-27
Address of response buffer.

Data Address Low 28-31

Table 9-78. Update LLDP TLV Command [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Device Services

1478 613875-009

9.8.5.2.2.5 Delete LLDP TLV (0x0A04)

This command, posted on the ATQ, is an indirect AQ command. The driver provides the type of MIB to
be updated and a copy of the TLV to be deleted. Software is responsible for guaranteeing that the TLV
to be deleted does already exist in the MIB.

Firmware writes back the complete LLDP MIB to the response buffer. It writes the length of the LLDP
MIB into the Datalen field in the descriptor on the ATQ.

Table 9-80. Delete LLDP TLV Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0A04 Command opcode.

Datalen 4-5 Length Length of indirect buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Type 16 MIB Type Bits 0:1: Reserved
Bits 2:3: Bridge Type

00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:7: Reserved

Reserved 17 Reserved Reserved.

Length 18-19 Length Length of TLV to be deleted. The TLV itself is copied into the indirect buffer by the
driver.

Reserved 20-23 Reserved Reserved.

Data Address High 24-27
Address of indirect buffer.

Data Address Low 28-31

Table 9-81. Delete LLDP TLV Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0A04 Command opcode.

Datalen 4-5 Length of LLDP MIB if Status==Success. In bytes.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
Error Codes:

EINVAL = Firmware returns this value if the requested MIB does not exist.
ENOXIO =Firmware returns this value if the TLV to be deleted does not exist in the

requested MIB.
EPERM = Firmware returns this value if software has taken control of LLDP

processing.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

613875-009 1479

Intel® Ethernet Controller E810 Datasheet
Device Services

9.8.5.2.2.6 Stop LLDP Agent (0x0A05)

This command, posted on the ATQ, is a direct AQ command. The driver uses this command to request
that firmware stop or shutdown the LLDP agent on the port.

If Stop is specified, the device stops the LLDP agent on the port and directs all untagged ingress LLDP
frames received on the port to the default queue of the Control VSI associated with the Port aggregator
or Port extender.

If Shutdown is specified, the device stops the LLDP agent on the port and sends a last LLDP PDU on the
wire with TTL=0 and with Nearest Bridge and non-TPMR destination address. Firmware then directs all
untagged ingress LLDP frames received on the port to the default queue of the S-Component Control
VSI.

When Command Bit 1 is set to 1b to indicate disabling LLDP Agent persistently, it sets the Current LLDP
AdminStatus for the given Port to 0x0. EMP firmware does not attempt to stop the LLDP Agent on that
port if the agent is already disabled.

Firmware writes back the status of the request.

Any preceding registration to events on the port (via the Configure LLDP MIB Change Event command)
is discarded. Software should register for events again once the LLDP agent in the device is active
again.

After the response, the driver should route the LLDP flows to a control VSI using the Add Switch Rules
admin command (Section 7.8.12.6.1).

Type 16 MIB Type Bits 0:1: Reserved
Bits 2:3: Bridge Type

00b = Nearest Bridge
01b = Non-TPMR Bridge
10b = Reserved
11b = Reserved

Bits 4:7: Reserved

Reserved 17-23 Reserved Reserved.

Data Address High 24-27
Address of response buffer.

Data Address Low 28-31

Table 9-82. Stop LLDP Agent Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0A05 Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Table 9-81. Delete LLDP TLV Response [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
Device Services

1480 613875-009

9.8.5.2.2.7 Start LLDP Agent (0x0A06)

It is expected that CORER has occurred before this command is issued. CORER causes the EMP to
reload LLDP forwarding rules from NVM default or based on the Current LLDP AdminStatus and
re-initialize based on those settings.

This command, posted on the ATQ, is a direct AQ command. In response to this command EMP
re-enables LLDP agent over a given port and treats the command as a request to set the LLDP
Configuration variable AdminStatus that indicates the LLDP Agent is enabled for “Both Tx and Rx
enabled”. EMP firmware starts the firmware-based LLDP Agent regardless of the NVM settings in either
default LLDP Admin Status or the Current LLDP AdminStatus fields.

When Command Bit 1 is set to 1b to indicate disabling LLDP Agent persistently, it sets the Current LLDP
AdminStatus for the given Port to 0x3 indicating the LLDP Configuration AdminStatus is set to “Both Tx
and Rx enabled” mode. EMP firmware does not attempt to stop the LLDP Agent on that port if the agent
is already disabled.

If the driver defined LLDP forwarding rules previous to sending this command, these rules should be
removed using the Remove Switch Rules admin command (Section 7.8.12.6.3) before sending this
command.

Command 16 Command Bit 0: Command
0b = Stop LLDP agent
1b = Shutdown LLDP agent

Bit 1: Command
0b = No effect
1b = Persistent disablement of LLDP Agent

Bits 2:7: Reserved

Reserved 17-31 Reserved Reserved.

Table 9-83. Stop LLDP Agent Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0A05 Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
A value of SUCCESS means that command was performed successfully.
Error Codes:

EPERM =Firmware returns this value if software has taken control of LLDP
processing.

EBUSY = Failed to perform command due to busy NVM.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved Reserved.

Table 9-82. Stop LLDP Agent Command [continued]

Name Byte.Bit Value Remarks

613875-009 1481

Intel® Ethernet Controller E810 Datasheet
Device Services

Table 9-84. Start LLDP Agent Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0A06 Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command 16 Command Bit 0: Command
0b = Do not start the LLDP agent (Note: This value should not be used)
1b = Start the LLDP agent

Bit 1: Command
0b = No effect
1b = Persistent disablement of LLDP Agent

Bits 2:7: Reserved

Reserved 17-31 Reserved Reserved.

Table 9-85. Start LLDP Agent Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0A06 Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value.
The following error values can be returned:

EEXIST = LLDP agent is already running in firmware.
EBUSY = Failed to perform command due to busy NVM.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Device Services

1482 613875-009

9.8.5.2.2.8 Get CEE DCBx OPER CFG (0x0A07)

This command, posted on the ATQ, is an indirect AQ command. The driver requests the operational
configuration of CEE/DCBx. The driver provides a response buffer (address/length pair).

EMP writes back the CEE/DCBx configuration to the response buffer.

Table 9-86. Get CEE DCBx OPER CFG Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0A07 Command opcode.

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved Reserved.

Data Address High 24-27
Address of response buffer.

Data Address Low 28-31

Table 9-87. Get CEE DCBx OPER CFG Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0A07 Command opcode.

Datalen 4-5 Length of LLDP MIB if Status==Success. In bytes.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
A value of SUCCESS means that command was performed successfully.
Error Codes:

ENOENT = Firmware returns this value if any requested LLDP MIB does not exist.
EPERM = Firmware returns this value if software has taken control of LLDP

processing.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved Reserved.

Data Address High 24-27
Address of response buffer.

Data Address Low 28-31

613875-009 1483

Intel® Ethernet Controller E810 Datasheet
Device Services

Table 9-88. Get CEE DCBx OPER CFG Response Buffer Format

Offset
(Bytes) Description

0 Local Oper Num Traffic Class Supported
Returns a value between 1-8 for the number of TCs supported locally.

1-4 Local Oper Priority Assignment
For each UP a 4-bit for the TCID. Available value is 0-7. Upper bit == 0

Bits 0:3 assigned for up 0.
Bits 4:7 assigned for up 1.

.

.

.
Bits 27:31 assigned for up 7.

5-12 Local Oper TCB Bandwidth
An 8-byte field. Each byte represents the relative bandwidth allocation of one enabled TC.
Byte 7 assigned for TC 0.
Relative bandwidth allocation is a value 0-100, and represents the percentage of the available bandwidth this TC is
allocated with.
The sum of the bandwidth allocated for all TC equal to 100%

13 Local Oper PFC Enable
A bitmap containing a PFC-enable flag for each UP. Bit 0 concerns UP 0.

14-15 Local Oper Application Priority
Indicates the Application TLV negotiated for FCoE, iSCSI, and FIP (encoded in three bits)

Bits 14.0-14.2: FCoE Application priority.
Bits 14.3-14.5: Reserved for iSCSI Application priority.
Bits 14.6-14.7: Reserved.
Bits 15.0-15.2: Reserved for FIP Application priority.
Bits 15.3-15.7: Reserved.

16-19 Status flags for DCBx TLVs
For each TLV, indicates the status of the TLV (1 = True, 0 = False):
Bit 0 = Operational Mode. Bit 1 = Synced. Bit 2 = Error

Bits 16.0-16.2: Status bits for PG.
Bits 16.3-16.5: Status bits for PFC.
Bits 16.6-16.7: Reserved.
Bits 17.0-17.2: Status bits for FCoE Application Priority.
Bits 17.3-17.5: Status bits for iSCSI Application Priority.
Bits 17.6-17.7: Reserved.
Bits 18.0-18.2: Status bits for FIP Application Priority.
Bits 18.3-18.7: Reserved.
Bits 19.0-19.7: Reserved.

20-31 Reserved. Return 0.

Intel® Ethernet Controller E810 Datasheet
Device Services

1484 613875-009

9.8.5.2.2.9 Set Local LLDP MIB (0x0A08)

This command, posted on the ATQ, is an indirect AQ command. The driver configures the complete
DCBx MIB, providing a response buffer (address/length pair). The DCBx MIB is associated with a
physical LAN port and is expressed in IEEE format even though firmware finally sends it as CEE TLVs on
the wire, if needed. The MIB is guaranteed to fit in a 1.5K packet, so there is no need to use a “large
buffer”. Once DCBx negotiation with the peer completes, the local DCBx MIB returned by the Get LLDP
MIB command reflects the final resolved values. In the future, the command could be extended to
support more other LLDP MIBs.

This command is useful to configure the local DCBx agent into the non-willing mode (a.k.a. primary
mode), and to set the DCB configuration to be pushed to the peer.

Firmware writes back the status of the request in the Return Value field.

If the Willing bit is set in a DCBx TLV, the DCBx agent should take it in account when resolving DCBx
with the peer, as per the rules defined in the IEEE/CEE standard.

Firmware can change the local configuration twice, once upon reception of the AQ command to align
default configuration to what is published in the TLVs sent to the peer, and once upon reception of the
peer's TLV when resolving DCBx. These two steps can be collapsed into one single configuration change
in case peer's TLV is received within short delays. The new default configuration is maintained until the
next GLOBR event or until a Stop DCBx Agent AQ command is received.

If the command is received while the firmware DCBx agent is disabled or stopped, the MIB is parsed by
firmware and used to configure the local DCB settings of the port, with no DCB TLV exchange with the
peer performed by firmware. Firmware drains the Tx-Pipe if TC or PFC changes were pushed, as if it was
resulting from a regular DCBx negotiation flow.

Table 9-89. Set Local LLDP MIB Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0A08 Command opcode.

Datalen 4-5 Length of response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Type 16 MIB Type Bit 0:
0b = Local DCBx MIB (sent by device).

Bit 1:
0b = CEE DCB, APP TLV operates in willing mode.
1b = CEE DCB, APP TLV operates in non willing mode.

Bits 2:7: Reserved

Reserved 17 Reserved Reserved.

Local MID Length 18-19 Length Length of the command buffer.

Reserved 20-23 Reserved Reserved.

Data Address High 24-27
Address of command buffer.

Data Address Low 28-31

613875-009 1485

Intel® Ethernet Controller E810 Datasheet
Device Services

9.8.5.2.2.10 Stop/Start a Specific LLDP Agent (0x0A09)

This command, posted on the ATQ, is a direct AQ command. The driver uses this command to request
that firmware stop or (re-)start the DCBx agent on the port. In the future, the command could be
extended to support more specific agents.

Stopping the DCBx agent on the port means the following:

1. When parsing the LLDP TLVs received from the peer, the LLDP agent skips over all DCBx TLVs.

2. The LLDP agent does not send DCBx TLVs to the peer.

3. Local DCB configuration is returned to the hardware default (single TC, no PFC).

4. Get LLDP MIB still returns the remote DCBx MIBs if such are received from the peer.

(Re-)Starting the DCBx agent on the port means the following:

1. The LLDP agent parses and processes the DCBx TLVs received from the peer.

2. The LLDP agent sends DCBx TLVs to the peer.

3. Local DCB configuration is modified according to the DCBx negotiation with peer.

Firmware writes back the status of the request.

Table 9-90. Set Local LLDP MIB Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0A08 Command opcode.

Datalen 4-5 Length of LLDP MIB if Status==Success. In bytes.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
A value of SUCCESS means that command was performed successfully.
Error Codes:

EPERM = If any local LLDP MIB set in the command does not exist (e.g. if the
specific agent was stopped).

EINVAL = If a DCBx TLV is missing in the pushed MIB or if the TLV’s pushed are
not consistent or illegal.

EAGAIN = If a pending MIB change is in progress. The software retries this request
while this error is returned.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Type 16 MIB Type Bit 0:
0b = MIB is Silently Changed. Event to software is not required.
1b = MIB is Changed. MIB change event is triggered.

Bits 1:7: Reserved

Reserved 17-31 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Device Services

1486 613875-009

Table 9-91. Stop/Start a Specific LLDP Agent Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0A09 Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command 16 Command Bit 0: Command
0b = Stop DCBx agent.
1b = (Re-)Start DCBx agent.

Bits 1:7: Reserved.

Reserved 17-31 Reserved Reserved.

Table 9-92. Start/Start a Specific LLDP Agent Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0A09 Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
A value of SUCCESS means that command was performed successfully.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Status 16 Command Bit 0: Status
0b = DCBx agent stopped.
1b = DCBx agent active.

Bits 1:7: Reserved.

Reserved 17-31 Reserved Reserved.

613875-009 1487

Intel® Ethernet Controller E810 Datasheet
Device Services

9.8.5.2.2.11 LLDP Filter Control (0x0A0A)

Upon reception of this command, the firmware adds a new filter with the requested VSI as destination.

The following resources are reserved for this command: One forwarding rules and one VSI list per port.
These resources are accounted as firmware resources.

Note: A Start LLDP command should be preceded by a LLDP Control command with a “delete”
action to remove the filters used by software.

Table 9-93. LLDP Filter Control Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0A0A Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command Flag 16 Command Bits 1:0: Command
00b =Add
01b =Delete
10b =Update (change VSI number)
11b =Reserved

Bits 2:7: Reserved.

Reserved 17 Reserved Reserved.

VSI 18-19 VSI to send the LLDP traffic to (relevant for Add or Update actions),

Reserved 20-31 Reserved Reserved.

Table 9-94. LLDP Filter Control Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0A08 Command opcode.

Datalen 4-5 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware. Status of request.
A value of SUCCESS means that command was performed successfully.
Error Codes:

EPERM = When the command is sent while LLDP is owned by firmware.
EACESS = When the requested VSI is not owned by the PF.
EINVAL = When there is an attempt to update or remove a non existing filter or

add an existing filter.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
Device Services

1488 613875-009

9.8.5.2.2.12 Execute Pending LLDP MIB (0x0A0B)

This command posted to the ATQ, is a direct AQ command. The software sends this command after
handling a pending MIB change event. EMP firmware applies a pending configuration change to
hardware/firmware only when receiving this command. A successful response to this command
indicates that the pending configuration changes have been applied successfully to firmware and/or
hardware.

If the firmware receives this command while there is no pending MIB change event, an error code of
ENOENT is returned in the Return Value field.

Table 9-95. Execute Pending LLDP MIB Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0x0A0B Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved Reserved.

Table 9-96. Execute Pending LLDP MIB Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0x0A0B Command opcode.

Datalen 4-5 0 Direct command. No response buffer.

Return Value/VFID 6-7 A value of SUCCESS means that pending configuration was successfully applied to
hardware/firmware.
The following error values can be returned:

EINVAL = Firmware returns this value if for any reason it failed to apply the
pending MIB change.

ENOENT = Firmware returns this value if there is currently no pending MIB change
to execute.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved Reserved.

613875-009 1489

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Chapter 10 LAN Engine

10.1 Introduction

This section describes the hardware/software interfaces for transmit and receive LAN functionality.
Details include:

• Associated device registers.

• Device descriptor formats.

• Initialization and run-time flows illustrating the use of the registers and descriptors.

• Stateless offloads in Rx and Tx data path.

10.2 Queues Allocation and Management

10.2.1 LAN Receive Queue Allocation

The PF software device driver is expected to read the values of the PFLAN_RX_QALLOC register
(auto-loaded from NVM at reset) to determine the receive queues it owns. The PF allocates these
receive queues to VFs by programming the VPLAN_RX_QTABLE and VPLAN_RX_QBASE registers and to
VSIs by the Add VSI Admin Queue command, which programs the VSILAN_QTABLE and VSILAN_QBASE
registers.

Figure 10-1. LAN Queues Allocation Example of 8 PFs

:

FIRSTQ

FIRSTQ

FIRSTQ

Queue 0

. . .

. . .

. . .
First Queue of PF[1]
Last Queue of PF[0]

. . .

. . .

. . .
First Queue of PF[2]
Last Queue of PF[1]

. . .

Last Queue of PF[3]
. . .

First Queue of PF[3]
Last Queue of PF[2]

. . .

. . .

. . .

. . .

Last Device Queue

FIRSTQ

LASTQ

LASTQ

LASTQ

VALID = 1b

VALID = 1b

VALID = 1b

VALID = 1b PFLAN_RX_QALLOC
of PF(0) register

FIRSTQ

PFLAN_RX_QALLOC
of PF(1) register

PFLAN_RX_QALLOC
of PF(2) register

PFLAN_RX_QALLOC
of PF(7) register

:
:

PFLAN_RX_QALLOC
of PF(3) register FIRSTQ

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1490 613875-009

The implementation has the following configuration notes:

• VFs used by the VMM are expected to be statically allocated and therefore could be contiguous.
Contiguous space is defined by the VFFIRSTQ and VFNUMQ fields in the VPLAN_RX_QBASE register.
VFs that are allocated contiguous receive queues in the PF space can get up to 256 receive queues.

• Non-statically allocated VFs and VMDq2 VSIs are allocated up to 16 “scattered” receive queues in
the PF space by the VPLAN_RX_QTABLE, and VSILAN_QTABLE registers. The VSILAN_QTABLE
registers enable scattered receive queue allocation useful for dynamic VM motion.

— For VFs, the VSILAN_QTABLE of all its VSIs must be set to the same indexes assigned to the VF
by the VPLAN_RX_QTABLE.

— These tables are not readable for the VFs. Instead, the VF is notified by the PF about the
number of its allocated receive queues (using a software API or the mailbox). The PF on its
side, must allocate the receive queues starting at receive queue zero and setting contiguous
entries in these tables.

• VSIs allocated to nominal PF traffic or PF control ports are expected to be statically allocated and
therefore could be contiguous. Contiguous space is defined by the VSIBASE field in the
VSILAN_QBASE register. VSIs that are allocated contiguous receive queues in the PF space can get
any number of receive queues.

— The size of the contiguous VSI is not enforced by hardware setting; it is the responsibility of
software to keep within the VSI boundaries.

— During reception, hardware checks that the queue index generated by the receive classification
filters does not exceed the PF queue range. However, it does not check if the queue index
exceeds the VSI range. It is the responsibility of PF software to define the receive classification
filters so that the queues do not exceed the VSI space.

• Contiguous versus “scattered” VSI is controlled by the VSIQTABLE_ENA flag in the VSILAN_QBASE
register.

• It is the responsibility of PF software to define “free” receive queues that are within the space of the
PF.

Figure 10-2. PF Queues (Example)

Queue 0 of the PF

PF LPQs

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

VSILAN_QTABLE (PF VMDq2 VSI)

VSILAN_QBASE (PF LAN VSI)

VSILAN_QBASE (PF RDMA VSI)

VSILAN_QBASE (PF control port_1 VSI)

VSILAN_QBASE (PF control port_2 VSI)

VF[n] accesses relative
queue indexes
translated to absolute
indexes by:
VPLAN_QTABLE[n]

Contiguous LQP space
owned by trusted VSIs
Software (belong to the

PF) defined by
VSILAN_QBASE per

VSI

Non-Contiguous LQP
space owned by VMDq2

VSIs defined by
VSILAN_QTABLEs and

VF VSIs defined by
VSILAN_QTABLEs and

VPLAN_QTABLEs

VSILAN_QTABLE (VF[n] LAN VSI)

VSILAN_QTABLE (VF[n] RDMA VSI)

Last LPQ of the PF

Receive Mapping
VSILAN_QBASE or
VSILAN_QTABLE

PF accesses queues
by their absolute
indexes

Host I/F
Absolute or

VPLAN_QTABLE

613875-009 1491

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.2.1.1 Software Access to the Queues of the Functions

PF software accesses its receive queues by their index within the PF space. Queue index “m” of PF “n”
equals “m + PFLAN_RX_QALLOC[n].FIRSTQ” in the device space. Accessing receive queues outside the
PF space does not impact device functionality. Write accesses are terminated successfully on the PCIe
bus with no impact on the hardware, while read accesses provide meaningless data.

VF software accesses its receive queues using an index within the VF space. Receive queue indexes are
translated to indexes in the PF space by the VPLAN_RX_QTABLE and VPLAN_RX_QBASE registers. The
VPLAN_RX_QTABLE supports up to 16 receive queues. When using a contiguous allocation via the
VPLAN_RX_QBASE, up to 256 queues can be accessed. A VF might get less than the maximum number
of receive queues. The selection between contiguous and scattered is done through the
VPLAN_RX_QBASE.VFQTABLE_ENA bit. The mapping for a VF in both modes is set through the
VPLAN_RXQ_MAPENA.RX_ENA bit. A VF software attempt to access receive queues above the allocated
ones does not impact device functionality (the same as described above for the PF).

Note: A function (PF or VF) might have multiple VSIs. Still, software accesses all receive queues by
their index in the function space rather than index in the VSI spaces.

10.2.1.2 Associating Received Packets to VSI Queues

The E810 associates received packets to VSIs by the embedded switch/ACL as described in Section 7.8.
It then associates packets to queues using the classification filters described in Section 7.10.

• As opposed to the software interface, the classification filters assign a queue index in the VSI
space. The queue index “n” is mapped to the PF space as follows:

— Queue index “n” of a contiguous VSI is mapped to queue index “n + VSILAN_QBASE.VSIBASE”

— Queue index “n” of a “scattered” VSI is mapped as follows:

• For an even “n” it is mapped to VSILAN_QTABLE[n/2].QINDEX_0.

• For an odd “n” it is mapped to VSILAN_QTABLE[(n-1)/2].QINDEX_1.

• Invalid receive queues:

— An invalid queue for contiguous VSI is identified if “n + VSILAN_QBASE.VSIBASE” exceeds the
PF queue space.

— An invalid queue “n” for “scattered” VSI is identified if its QINDEX in the VSILAN_QTABLE equals
0x3FF, or if “n” is greater than or equal to 16.

• Packets received to invalid queues are dropped and counted by the GLV_RDPC counter of the VSI.

10.2.1.3 LAN Receive Queue Allocation Example

Allocate the receive queues to the VSIs of the PF by setting the VSILAN_QBASE registers,
VSILAN_QTABLE and VPLAN_RX_QTABLE. The table below shows an example of five VSIs, where the PF
owns 128 receive queues (as configured by PFLAN_RX_QALLOC.FIRSTQ = 128 and
PFLAN_RX_QALLOC.LASTQ = 255):

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1492 613875-009

10.2.1.4 LAN Receive Initialization Flow

This section describes the LAN engine initialization flow executed by the PF software driver. It is
assumed that a PF reset (PFR) was initiated by the software prior to this flow:

1. The LAN receive queues are allocated to the PF by NVM setting loaded to the PFLAN_RX_QALLOC
registers following a core reset (CORER).

2. The statistic counters are cleared only at Power On Reset (POR). As part of the PF driver
initialization, the software should read all the PF and its VF statistic counters. The values of these
counters is the baseline for any statistics collected later.

3. OS driver only step: Transit the device to non-PXE mode by initiating the Clear PXE Mode admin
command. See the command description in Section 10.4.3.2.

4. Most of the LAN engine logic is cleared by the hardware by core reset signal (CORER). If it is not
guaranteed that a CORER was initiated, the software should clear the following control registers
(listed in the “LAN Transmit Receive Registers” section) of the PF and its VFs. Mapping of receive
queues is as follows:

a. Clear the QRX_CTRL and QRX_TAIL registers of all the PF and its VFs LAN receive queues.

Note: Writing the value “0’” to the QRX_CTRL register does not clear it. The Fast_QDIS and
CDS bits are zeroed by writing a value of “1” to them.

b. Initialize LAN port parameters using the Set Port Parameters admin command (setting “save bad
packet”, default VSI and more). In a single VSI per port, the VSI parameters are loaded from
the NVM, while software could execute this step only if it requires other setting then the NVM
image.

Table 10-1. Example Receive Queue Allocation

VSI
No. VSI Usage Requirement Setting

None N/A 1 LQP Allocating dedicated receive queue for the Flow Director Filter Programming
Status Descriptors.
Queue index 0 in the PF space is absolute queue index 128.

0 PF control port 1 LQP VSILAN_QBASE[0].VSIQTABLE_ENA = 0 // contiguous range
VSILAN_QBASE[0].VSIBASE = 1
Queue index 1 in the PF space is absolute queue index 129.

1 PF LAN and its VMDq1 VMs 64 LQPs VSILAN_QBASE[1].VSIQTABLE_ENA = 0 // contiguous range
VSILAN_QBASE[1].VSIBASE = 2
Queue indexes 2...65 in the PF space are absolute queue index 130...193.

2 PF traffic 16 LQPs VSILAN_QBASE[2].VSIQTABLE_ENA = 0 // contiguous range
VSILAN_QBASE[2].VSIBASE = 66
Queue indexes 66...81 in the PF space are absolute queue index 194...209.

10 VMDq2 2 LQPs VSILAN_QBASE[10].VSIQTABLE_ENA = 1 // scattered range
VSILAN_QTABLE[10,0].QINDEX_0 and QINDEX_1 = 100 and 102
QINDEX_0 and QINDEX_1 in VSILAN_QTABLE[10,1...7] = 0x7FF
Queues 100 and 102 in the PF space are absolute queues 228 and 230.

100 VF[20] 4 LQPs VSILAN_QBASE[100].VSIQTABLE_ENA = 1 // scattered range
VSILAN_QTABLE[100,0].QINDEX_0 and QINDEX_1 = 90 and 98
VSILAN_QTABLE[100,1].QINDEX_0 and QINDEX_1 = 110 and 112
QINDEX_0 and QINDEX_1 in VSILAN_QTABLE[100,2...7] = 0x7FF
VPLAN_RX_QTABLE[20; 0,1,2,3,4:15].QINDEX = 90, 98, 110, 112, 0x7FF
Queues 90, 98, 110, and 112 in the PF space are absolute queues 218, 226,
238, and 240.

613875-009 1493

Intel® Ethernet Controller E810 Datasheet
LAN Engine

5. Allocate the receive queues to VFs and VSIs of the PF or each assigned VSI do the following as part
of “create VSI” procedure:

a. Allocate the receive queues to the VSI (see programming example in Section 10.2.1.3).

b. Program the VSILAN_QBASE and VSILAN_QTABLE (use QBASE option for “contiguous” receive
queues or the QTABLE option for “scattered” receive queues).

c. Program the VPLAN_RX_QTABLE and VPLAN_RX_QBASE of each assigned VF.

6. Enable individual receive and transmit queues of the PF and its VFs following the flow described in
Section 10.4.3.1.1 and Section 10.5.5.1, respectively.

10.2.2 LAN Transmit Queue Allocation

The PF software device driver is expected to read the values of the PFLAN_TX_QALLOC register
(auto-loaded from NVM at reset) to determine the transmit queues owned. The PF allocates these
transmit queues by programming the VPLAN_TX_QTABLE and VPLAN_TX_QBASE registers. Note the
following:

• VFs used by the VMM are expected to be statically allocated and therefore could be contiguous.
Contiguous space is defined by the VFFIRSTQ and VFNUMQ fields in the VPLAN_TX_QBASE register.
VFs that are allocated contiguous transmit queues in the PF space can get up to 256 transmit
queues. The selection between contiguous and scattered is done through the
VPLAN_TX_QBASE.VFQTABLE_ENA bit. The mapping for a VF in both modes is set through the
VPLAN_TXQ_MAPENA.TX_ENA bit.

Figure 10-3. LAN Transmit Queues Allocation Example of 8 PFs

:

FIRSTQ

FIRSTQ

FIRSTQ

Queue 0

. . .

. . .

. . .
First Queue of PF[1]
Last Queue of PF[0]

. . .

. . .

. . .
First Queue of PF[2]
Last Queue of PF[1]

. . .

Last Queue of PF[3]
. . .

First Queue of PF[3]
Last Queue of PF[2]

. . .

. . .

. . .

. . .

Last Device Queue

FIRSTQ

LASTQ

LASTQ

LASTQ

VALID = 1b

VALID = 1b

VALID = 1b

VALID = 1b PFLAN_TX_QALLOC_PQM
of PF(0) register

FIRSTQ

PFLAN_TX_QALLOC_PQM
of PF(1) register

PFLAN_TX_QALLOC_PQM
of PF(2) register

PFLAN_TX_QALLOC_PQM
of PF(7) register

:
:

PFLAN_TX_QALLOC_PQM
of PF(3) register FIRSTQ

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1494 613875-009

• Non-statically allocated VFs are allocated up to 16 “scattered” transmit queues in the PF space by
the VPLAN_TX_QTABLE registers.

— These tables are not readable for the VFs. Instead, the VF is notified by the PF about the
number of its allocated transmit queues (using a software API or the Mailbox). The PF on its
side, must allocate the transmit queues starting at transmit queue zero and setting contiguous
entries in these tables.

• It is the responsibility of PF software to define “free” transmit queues that are within the space of
the PF.

10.2.2.1 Software Access to the Queues of the Functions

PF software accesses its transmit queues by their index within the PF space. Queue index “m” of PF “n”
equals “m + PFLAN_TX_QALLOC[n].FIRSTQ” in the device space. Accessing transmit queues outside
the PF space does not impact device functionality. Write accesses are terminated successfully on the
PCIe bus with no impact on the hardware while read accesses provide meaningless data.

VF software accesses its transmit queues using an index within the VF space. Transmit queue indexes
are translated to indexes in the PF space by the VPLAN_TX_QTABLE and VPLAN_TX_QBASE registers.
The VPLAN_TX_QTABLE supports up to 16 transmit queues. When using a contiguous allocation via the
VPLAN_TX_QBASE, up to 256 queues can be accessed. A VF might get less than the maximum number
of transmit queues. A VF software attempt to access transmit queues above the allocated ones does not
impact device functionality (the same as described above for the PF).

Note: A physical function might have multiple VSIs. Still, software accesses all transmit queues by
their index in the function space rather than index in the VSI spaces.

10.2.3 Dynamic Queue Allocation in Rx and Tx

The E810 supports dynamic queue allocation between VSIs of each PF. Dynamic queue allocation is
mainly aimed to support dynamic load balance of VFs according to needs due to VM motion or any other
queuing load balancing scheme. Queues can be deallocated from an active VSI during run time. These
queues can then be allocated to another VSI of the same VF or to another VF. The whole flow is
managed by the PF as detailed below.

Both receive and transmit queues can be dynamically and independently allocated.

The following steps relate to receive queues of VFs while it is similar to receive queues of VMs:

1. PF software communicates to the VF that it needs to give up a specific receive or transmit queue(s).

2. The PF removes the queue(s) from the VF/VM by updating VPLAN_RX_QTABLE(VF),
VPLAN_RX_QBASE(VF).VFNUMQ for Rx VF queues, calling Update VSI (Section 7.8.12.3.2) for Rx
VM queues, or by updating VPLAN_TX_QTABLE and VPLAN_TX_QBASE(VF).VFNUMQ for the VF
transmit queue case. As a result, the VF/VM can no longer access the queue(s).

Note: The fields VFNUMQ and VFQTABLE_ENA of registers VPLAN_RX_QBASE(VF) and
VPLAN_TX_QBASE(VF) must not be changed dynamically. Their setting is done only as
part of the VF establishment flow.

3. PF software disables the relevant queues, following “queue disable” flow described in
Section 10.4.3.1.2 for receive queues, or in Section 10.5.5.8.3 for transmit queues. As part of the
flow, the PF waits for the hardware indication that the queues are disabled with no further activity
to host memory.

4. The PF notifies the VF that it can release the host memory structures of the removed queue(s).

613875-009 1495

Intel® Ethernet Controller E810 Datasheet
LAN Engine

5. The PF remaps these queue(s) to another VF as follows:

a. It programs the new queue and enables these queues (see Section 10.4.3.1.1 for receive queue
enablement flows, and Section 10.5.5.8.1 for transmit queue enablement flows).

b. It maps the queue(s) to the new VF or VM by updating VPLAN_RX_QTABLE(VF),
VPLAN_RX_QBASE(VF).VFNUMQ for Rx VF queues, calling Update VSI (Section 7.8.12.3.2) for
Rx VM queues, or by updating VPLAN_TX_QTABLE and VPLAN_TX_QBASE(VF).VFNUMQ for the
VF transmit queue case.

Note: The fields VFNUMQ and VFQTABLE_ENA of registers VPLAN_RX_QBASE(VF) and
VPLAN_TX_QBASE(VF) must not be changed dynamically. Their setting is done only
as part of the VF establishment flow.

c. The PF informs the VF or VM about this action.

6. The queues are ready to be used by the VF.

10.2.4 LAN Transmit Completion Queue and Doorbell
Queue Allocation

Completion Queues and Doorbell sharing among PF mechanism is similar to Transmit and Receive
Queue allocation mechanism. The PF software device driver is expected to read the values of the
PFLAN_CP_QALLOC and PFLAN_DB_QALLOC registers (auto-loaded from NVM at reset) to determine
the Completion and Doorbell Queues owned.

The PF can allocate those Completion Queues and Doorbell Queues or part of them for VFs usage.
Allocating of a Completion Queue to a VF does not require any special Hardware CSR setting, since
Completion Queue run time operation does not include doorbell.

Doorbell Queues allocation to VFs is programmed in CSR VPLAN_DB_QTABLE. Up to four Doorbell
Queues can be associated with a VF.

10.2.4.1 Software Access to the Queues of the Functions

PF software accesses its Completion and Doorbell Queues by their index within the PF space.
Completion Queue index “m” of PF “n” equals “m + PFLAN_CP_QALLOC[n].FIRSTQ’ in the device space.
Accessing Completion or Doorbell Queues outside the PF space does not impact device functionality.
Write accesses are terminated successfully on the PCIe bus with no impact on the hardware, while read
accesses provide meaningless data.

VF software accesses its Doorbell Queues using an index within the VF space. Doorbell Queue indexes
are translated to indexes in the PF space by the VPLAN_DB_QTABLE registers. The VPLAN_DB_QTABLE
supports up to four Doorbell Queues. A VF software attempt to access Doorbell Queues above the
allocated ones does not impact device functionality (the same as described above for the PF).

Note: A function might have multiple VSIs. Still, software accesses all transmit queues by their
index in the function space rather than index in the VSI spaces.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1496 613875-009

10.3 Steering Tag and Processing Hint Support
for LAN Engine Traffic (TPH)

See Section 3.1.2.6.2 for information on TLP processing hint support.

Table 10-2 describes how steering tag and processing hints are generated and how TPH operation is
enabled for types of DMA traffic associated with the LAN queues.

10.4 LAN Receive Data-Path

The LAN Receive Data-Path sections includes the following major topics:

• Receive packets stored in system memory.

• Indicating free descriptors to the hardware and indicating completed descriptors back to the
software.

• Receive descriptor queues which are called also “descriptor ring”.

• Receive arbitration (covered in Section 8.2.1.2.3).

• Stateless receive offloads.

10.4.1 Receive Packet in System Memory

Receive packets are posted to system (host) memory buffers indicated to the hardware by descriptors.
There are several types of descriptors detailed in Section 10.4.2; these include pointers to the data
buffers and status indications of the received packets. Figure 10-4 shows two examples of receive
packets in host memory composed of two buffers (indicated by two matched descriptors). The E810
fetches the receive descriptors (on demand) to an internal cache.

Table 10-2. Steering Tag and Processing Hint Programming by the LAN Engine

Traffic Access Steering Tag Value and TPH Enablement PH Value

Read Receive Descriptor CPUID and TPHRDesc in the Rx-Queue Context Desc_PH in GLTPH_CTRL register

Write-Back Receive Descriptor CPUID and TPHWDesc in the Rx-Queue Context Desc_PH in GLTPH_CTRL register

Write Receive Packet Payload CPUID and TPHData in the Rx-Queue Context DATA_PH in GLTPH_CTRL register

Write Receive Packet Header CPUID and TPHHead in the Rx-Queue Context DATA_PH in GLTPH_CTRL register

Read Transmit Descriptor and
Quanta Descriptor CPUID and TPHRDesc in the Tx-Queue Context Desc_PH in GLTPH_CTRL register

Write-Back Transmit Descriptor CPUID and TPHWDesc in the Tx-Queue Context Desc_PH in GLTPH_CTRL register

Transmit Head Write-Back CPUID and TPHWDesc in the Tx-Queue Context Desc_PH in GLTPH_CTRL register

Read Transmit Packet CPUID and TPHRPacket in the Tx-Queue Context DATA_PH in GLTPH_CTRL register

Read Doorbell Queue Descriptor CPUID and TPHRDesc in the Doorbell Queue Context Desc_PH in GLTPH_CTRL register

Write-Back Doorbell Queue
Descriptor CPUID and TPHWDesc in the Doorbell Queue Context Desc_PH in GLTPH_CTRL register

Write to Completion Queue
Descriptor CPUID and TPHWDesc in the Completion Queue Context Desc_PH in GLTPH_CTRL register

613875-009 1497

Intel® Ethernet Controller E810 Datasheet
LAN Engine

A few rules relating receive packet posting to host memory are:

• Receive packets can span one to five buffers (descriptors).

• Receive packets shorter than 64 bytes are never posted to host memory (even in save bad frame
mode - enabled by the SBP flag in the PRT_SBPVSI register).

10.4.1.1 Receive Descriptor Cache

10.4.1.1.1 Descriptor Fetch Policy

The E810 fetches multiple receive descriptors at a time to minimize PCIe and memory bandwidth
overhead; 8 or 4 descriptors when using 16-byte or 32-byte descriptors, respectively. New descriptors
are fetched to the cache when there are fewer descriptors than incoming packets require, or the last
free descriptor is used for a received packet.

Note the following rules relating descriptor fetch policy:

• Following a CORE Reset, the hardware wakes up in “PXE” mode (the PXE_MODE flag in the
GLLAN_RCTL_0 register is set (1b)). PXE mode functionality and limitations are:

— Receive queue length restrictions are detailed in Table 10-13 in the QLEN field.

— Software can bump the tail at descriptor granularity. Hardware fetches and writes back these
descriptor at descriptor granularity as well.

— Each packet can span only on a single buffer (in a single descriptor). A receive packet that is
larger than a single buffer is reported as “OVERSIZE” in the receive descriptor.

• During nominal performance operation mode, the PXE_MODE flag must be cleared by the software
by calling the Clear PXE Mode AQ command (0x110). This step is expected to occur during the PF
software initialization procedure. In the case of multiple active PFs, only the first PF affects the
device setting, while the others do nothing.

• When the PXE_MODE flag is cleared (0b), software should bump the tail at whole 8 x descriptors
granularity.

Figure 10-4. Receive Packet in System Memory

Header Payload

Received Packet

Simplified
Descriptor 1
Simplified

Descriptor 2

Buffer 1 Buffer 2

Header Split
Descriptor 1
Header Split
Descriptor 2

Data Buffer 1Header
Buffer 1 Data Buffer 2Header

Buffer 2

Header Payload

Received Packet
Empty Space

Buffer with Data

Legend:

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1498 613875-009

10.4.2 LAN Receive Descriptors

10.4.2.1 Receive Descriptor - Read Format

10.4.2.1.1 16-Byte Receive Descriptors Read Format

Described below is the 16-byte receive descriptor read format prepared by the software.

Packet Buffer Address (Quad Word 0, Bits 0:63, 64 bits)

The physical address of the packet buffer defined in byte units. The packet buffer size is defined by
the DBUFF parameter in the receive queue context.

Header Buffer Address (Quad Word 1, Bits 0:63, 64 bits)

The physical address of the header buffer defined in byte units. The header address should be set
by the software to an even number (word-aligned address). The Header Buffer Address is
meaningful only for Header Split queues and Split Always queues as defined by the DTYPE field in
the receive queue context. If a received packet spans across multiple buffers, only the first
descriptor’s header buffer is used. The header buffer size is defined by the HBUFF parameter in the
receive queue context.

Note: The LS bit should be set to zero regardless of header split enablement, since it is used for
Descriptor Done (DD) indication to the software (as described in the descriptor write-back
format).

10.4.2.1.2 32-Byte Receive Descriptors Read Format

Described below is the 32-byte receive descriptor read format prepared by the software.

The fields in first 16 bytes are Identical to the 16 Byte descriptors described in Section 10.4.2.1.1.

Table 10-3. 16-Byte Receive Descriptors Read Format

Quad
Word

6
3 0

0 Packet Buffer Address

1 Header Buffer Address

6
3 0

Table 10-4. 32-Byte Receive Descriptors Read Format

Quad
Word

6
3 0

0 Packet Buffer Address

1 Header Buffer Address

2 Reserved (0x0)

3 Reserved (0x0)

6
3 0

613875-009 1499

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.4.2.2 Receive Descriptor - Write-Back Format

The following subsections describe the fields of Receive Descriptor write-back when using 16-byte and
32-byte descriptors. In both cases, a single packet might span on a single buffer or multiple buffers
reported by their matched descriptors. If a packet is described by a single descriptor, all the fields are
valid.

Following are some rules that apply for a packet that is described by multiple descriptors:

• The following fields are valid in all descriptors of a packet:

— DD flag (Done)

— EOP flag (End of Packet)

— PKTL field (Packet content length)

• The following fields are valid only in the first descriptor of a packet:

— HDRL (Packet content length in the header buffer)

— SPH (Header is identified for header split functionality)

— HBO (Header Buffer Overflow)

• All other fields are valid only in the last descriptor of a packet.

10.4.2.2.1 16-Byte Legacy Receive Descriptors Write-Back Format

Described below is the 16-byte receive descriptor write-back (WB) format.

RSV (Quad Word 0, Bits 14:15, 2 bits; Quad Word 1, Bits 27:29, 3 bits)

Reserved.

Status (Quad Word 1, Bits 0:18, 19 bits)

Table 10-5. 16-Byte Receive Descriptors Write-Back Format

Quad
Word

6
3

3
2

3
1

1
6

1
5

1
4

1
3 8 7 0

0 Filter Status L2TAG1 RSV MIRR RXDID

1 Length PTYPE RSV Error Status

6
3

3
8

3
7

3
0

2
9

2
7

2
6

1
9

1
8 0

Bit(s) Name Description

0 DD Descriptor done indication flag.

1 EOP End of packet flag is set to 1b indicating that this descriptor is the last one of a packet.

2 L2TAG1P L2 TAG 1 presence indication while the L2 Tag is stripped from the packet and reported in the
L2TAG1 field in the descriptor. The type of the Tag is defined by the L2TSEL flag in the queue
context.
The L2TSEL flag selects between the first or second active flags in the SHOWTAG field in the
VSI_TSR register of the VSI. The structure of this tag is defined by the matched
GL_SWT_L2TAGxxx registers. If the specified L2 tag is not present in the packet the L2TAG1P flag
is cleared.

3 L3L4P For IP packets, this flag indicates that detectable L3 and L4 integrity check is processed by the
hardware.
See Section 10.4.4.3 for details on which headers are processed and how.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1500 613875-009

Error (Quad Word 1, Bits 19:26, 8 bits)

4 CRCP CRCP indicates that the Ethernet CRC is posted with data to the host buffer.
Note: Strip CRC is enabled by the CRCStrip flag in the queue context.
If the RXE error flag is set, the CRC bytes are not stripped regardless of the CRCStrip flag in the
queue context. Loopback packets originated by another local VSI for which the hardware computes
the CRC are never posted with the CRC bytes regardless of the CRCStrip setting in the queue
context.

5:7 Reserved Reserved. Set to “0” by hardware.

8 EXT_UDP_0 This flag is set for received tunneled packets with outer UDP header on which the outer UDP
checksum word equals to zero.
Note: UDP checksum zero is an indication that there is no checksum.
This option is valid only for IPv4 packets and considered an exception error for IPv6 packets
(reported to the stack by the driver).

9:10 UMBCAST Destination Address can be one of the following:
00b = Unicast
01b = Multicast
10b = Broadcast
11b = Mirrored Packet

11 FLM Flow Director filter match indication.
This flag is set if the received packet matches any of the Flow Director (FD) filters that direct the
packet to a specific receive queue. See also the description of the FLTSTAT field below.

12:13 FLTSTAT The FLTSTAT indicates the reported content in the “Filter Status” field (see conditions in the “Filter
Status” field):

00b = No Data in the filter status field (The packet does not meet any of the cases below).
01b = FD filter ID (this option is valid only for 16B descriptor while in 32B it is reported

elsewhere).
10b = Reserved.
11b = Hash filter signature (RSS).

14 LPBK Loopback indication, which means that the packet is originated from this system rather than the
network.

15 IPV6EXADD Set when an IPv6 packet contains a Destination Options Header or a Routing Header. If the packet
contains two IPv6 headers (tunneling), the IPV6EXADD is a logic ‘OR’ function of the two IP
headers.

16:7 Reserved Reserved.

18 INT_UDP_0 This flag is set for received UDP packets on which the UDP checksum word equals zero.
Note: UDP checksum zero is an indication that there is no checksum.
This option is valid only for IPv4 packets and considered an exception error for IPv6 packets
(reported to the stack by the driver).
Note: For tunneled packets with UDP header, this flag relates to the checksum field in the inner

UDP header.

Bit(s) Name Description

0 RXE The RXE error bit is an indication for any of the following MAC errors:
• CRC error.
• Alignment error.
• Oversize error.
• Undersizes error.
• Length error.

Packets with RXE are posted to host memory to Rx-Queue 0 of the VSI defined by the PRT_SBPVSI
register if enabled by the SBP flag in the same register.
If the RXE flag is set then any other status fields reporting the content of the packet are
meaningless.

1 Reserved Reserved.

Bit(s) Name Description

613875-009 1501

Intel® Ethernet Controller E810 Datasheet
LAN Engine

RXDID (Quad Word 0, Bits 0:7, 8 bits)

Rx Write-Back Descriptor Type ID:

0x00 - 0x01 = Legacy Descriptor
0x02 - 0x06 = Flexible Descriptor
0x07 - 0x07 = Mirrored Packet
0x08 - 0x3F = Flexible Descriptor
0X40 - 0x7F = Reserved

MIRR (Quad Word 0, Bits 8:13, 6 bits)

Matched Mirror Rule ID that directed the packet to this queue. If the packet is not mirrored, this
field equals zero.

L2TAG1 (Quad Word 0, Bits 16:31, 16 bits)

Stripped L2 Tag from the receive packet. This field is valid if the L2TAG1P flag in this descriptor is
set (see additional description of the L2TAG1P flag in the Status field).

Filter Status (Quad Word 0, Bits 32:63, 32 bits)

Multiplexed field between RSS (hash filter), FD Filter ID as indicated by the FLTSTAT field. Note that
the FD filter ID is reported in this field only in 16-byte descriptors. In 32-byte descriptors, the data
is reported in a different field.

• If the packet matches a FD filter that enables its FD filter ID reporting while using a 16-byte
descriptor, FLTSTAT equals 01b and this field contains the programmed FD filter ID.

• Else, if the packet matches the Hash filter, FLTSTAT equals 11b and this field contains the hash
signature (RSS).

• Else, FLTSTAT equals 00b and this field is set to zero.

Length (Quad Word 1, Bits 38:63, 26 bits)

2 HBO Header Buffer Overflow. This flag is set when using Header split buffers or Split Always buffers and
the identified packet header is larger than the header buffer.

3:5 L3L4E / FCE For IP packets processed by the hardware, the L3L4E flag has the following encoding:
Bit 3 = IPE: IP checksum error indication (for tunneled packets it is the most inner IP header

indication).
Bit 4 = L4E: L4 integrity error indication (most inner L4 header in case of UDP tunneling).
Bit 5 = EIPE: External (most outer) IP header or UDP checksum error.

Note: For the purpose of these bits, a tunneled packet is a VXLAN/GRE/Geneve packet.

6 OVERSIZE Oversize packet error indicates that the packet is larger than 5 descriptors in nominal operation or
larger than 1 descriptor in PXE mode. In this case, the portions of the packet that exceeds the
permitted number of descriptor(s) is not posted to host memory.

7 Reserved Reserved.

Bit(s) Name Description

0:13 PKTL Packet content length in the packet buffer defined in byte units.

14:24 HDRL Packet content length in the header buffer defined in byte units.

25 SPH The Split Header flag is an indication that the device identified the packet header.
See Section 10.4.4.2 for a complete description of packet types identified for header split and
conditions for usage of the header and data buffers.

Bit(s) Name Description

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1502 613875-009

PTYPE (Quad Word 1, Bits 30:37, 8 bits)

Packet Type field encode supported packet types as listed in Table A-1.

Note: For Packet Types 256 and above, Flexible descriptors must be used. See Section 7.6.

10.4.2.2.1.1 Dummy Receive Descriptors

In some cases, the hardware might reserve one more descriptor than needed for a given packet. In this
case, this dummy descriptor is written back as the last descriptor of the packet with a data length field
== 0. For this packet, the dummy descriptor carries all the flags that are normally written at the last
descriptor of a multi-descriptors packets.

10.4.2.2.2 32-Byte Receive Descriptors Write-Back Format

The 32-byte descriptor is composed of four quad words. The first two quad words are identical to the
16-byte descriptor write-back other than the Flow Director Filter ID that is moved from the “Filter
Status” field to the “FD Filter ID / Flexible Bytes High” field.

Section 10.4.2.2.1.1 describes to concept of Dummy Descriptor in 16-byte descriptor format. Dummy
Descriptor is relevant to 32-Byte descriptor write-back as well.

Ext_Status (Quad Word 2, Bits 0:11, 12 bits)

Table 10-6. 32-Byte Receive Descriptors Write-Back Format

Quad
Word

6
3

4
8

4
7

3
8

3
7

3
2

3
1

3
0

2
9

2
7

2
6

1
9

1
8

1
6

1
5

1
4

1
3 8 7 0

0 Filter Status L2TAG1 RSV MIRR RXDID

1 Length PTYPE RSV Error Status

2 L2TAG2 (2nd) L2TAG2 (1st) Reserved Ext_Status

3 FD Filter ID Reserved

6
3

4
8

4
7

3
2

3
1

1
8

1
7

1
2

1
1 0

Bit(s) Name Description

0 L2TAG2P L2 TAG 2 presence indication while the L2 Tag is stripped from the packet to the L2TAG2 (1st) field
in the descriptor. The type of the Tag is defined by the L2TSEL bit in the queue context. This flag
selects between the first or second active flags in the SHOWTAG field in the VSI_TSR register of
the VSI.
The structure of this tag is defined by the matched GL_SWT_L2TAGxxx registers. If the stripped
tag is larger than one word, the first word is posted to the L2TAG2 (1st) field and the second word
is posted to the L2TAG2 (2nd) field. If it is a single word, it is stored in the L2TAG2 (2nd) field. If
the specified L2 tag is not present in the packet the L2TAG2P flag is cleared.

1:3 Reserved Reserved.

4:5 FLEXBH_STAT The FLEXBH_STAT field indicates the content of the FD Filter ID/Flexible Bytes High field as
follows:

00b = The field is set to zero.
01b = FD filter ID is reported in the FD Filter ID field.
10b = Reserved.
11b = Reserved.

6:8 Reserved Reserved.

613875-009 1503

Intel® Ethernet Controller E810 Datasheet
LAN Engine

L2 Tags (Quad Word 2, Bits 32:63, 32 bits)

FD Filter ID (Quad Word 3, Bits 32:63, 32 bits)

If the packet matches a FD filter that enables reporting the FD filter ID, then FLEXBH_STAT equals
01b and this field contains the programmed FD filter ID. Otherwise, FLEXBH_STAT equals 00b and
this field is set to zero.

10.4.2.2.3 Programming Status Descriptor Write-Back Format

The programming status descriptor provides an indication of FD filter programming.

Quad Word 0

9 FDLONGB The FDLONGB flag is set if the matched FD filter’s index within its bucket is above threshold. If the
packet is searched in the FD filter and it is not found, the FDLONGB represents the bucket length
relative to the same threshold.
The threshold is defined by the FDLONG parameter in the GLQF_FD_CTL register.

10:11 Reserved Reserved.

Bit(s) Name Description

0:15 L2TAG2 (1st) Extracted L2 Tag 2 from the packet (see L2TAG2P flag in the Ext_Status field).

16:31 L2TAG2 (2nd) Extracted second word of the L2 Tag 2 from the packet (see L2TAG2P flag in the Ext_Status field).

Table 10-7. 16-Byte Receive Descriptors Write-Back Format

Quad
Word

6
3

3
2

3
1

1
6

1
5

1
4

1
3 8 7 0

0 Filter Status 1 RSV RXDID

1 Bucket Hash RSV PKT_PROF RSV FLT_Addr 2 3 4 5 6 7

6
3

3
8

3
7

3
5

3
4

2
8

2
7

2
2

2
1 8 7 6 5 4 3 2 1 0

1. Bucket_LEN
2. RSV
3. FAIL_PROFILE
4. FAIL
5. RSV
6. PROD_ID
7. DD

Bit(s) Name Field
Size Description

0:7 RXDID 8 Descriptor Type. For Filter Programming WB it equals 0x40

8:27 Reserved 1 Reserved. Set to 0x0.

28:31 Bucket_LEN 4 The filter location within the bucket capped at 15.1

1. The Bucket_LEN parameter is reported only if enabled by CSR GLQF_FD_CTL. In addition, the Bucket_LEN parameter is
reported only for programming or removal requests that are completed successfully.

32:63 Filter_Status 32 The Filter_Status reports back the programmed FD filter ID.

Bit(s) Name Description

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1504 613875-009

Quad Word 1

Note: If the queue is configured for 32-byte descriptors, this descriptor is padded by all zero two
quad words.

10.4.2.2.4 Receive Flexible Advanced Descriptors Format

The flexible descriptor format is and its programming are detailed in Section 7.6.

10.4.3 LAN Receive Queue (Ring)

Received packets are posted to host memory through a set of queues. Each queue is a cyclic ring made
of a sequence of receive descriptors in contiguous memory. These queues are also called “descriptor
rings”. The E810 supports up to 2048 receive queues allocated to PFs and VFs.

Receive queues are defined by a set of parameters called the “queue context”. The main parameters are
the queue pointers presented in Figure 10-5. The queue context includes additional parameters that
define the queue functionality, as detailed in Section 10.4.3.6. All context parameters are kept in device
registers accessible to the PF, while only the Tail registers (needed at run time) are accessible to the
VFs.

The software interface to the queue for its initialization, during nominal operation as well as queue
disable flow, is described in Section 10.4.3.1. The E810 includes additional global setting option
parameters for the whole device or per function that affect multiple queues described in
Section 10.4.3.1.

Bit(s) Name Field
Size Description

0 DD 1 Descriptor Done flag.

1:2 PROG_ID 2 The PROG_ID indicates the status reported by this descriptor as follows:
00b = FD filter add status.
01b = FD filter remove status.
10b = Reserved.
11b = Reserved.

3 Reserved 1 Reserved.

4 FAIL 1 FD filter programming failed due to no space in the table or the function exhausted its
quota. Or, FD filter removal failed that could be a result of an attempt to remove
non-existent filter entry.

5 FAIL_PROFILE FD filter programming failed due to no matched profile or profile with an empty Field
Vector.

6:7 Reserved 2 Reserved.

8:21 FLT_Addr 14 Filter entry address in the FD table (measured in filter entry units).1

1. The Bucket_HASH and the FLT_Addr parameters are reported only if enabled by CSR GLQF_FD_CTL. In addition, the FLT_Addr
parameter is reported only for programming or removal requests that are completed successfully.

22:27 Reserved 6 Reserved.

28:34 PKT_PROF 7 The packet profile that was identified by the device at filter programming.

35:37 Reserved 3 Reserved.

38:63 Bucket_HASH 26 26 LS bits of the hash function on the input set that is used for bucket index.1

613875-009 1505

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.4.3.1 Receive Queue Programming

Queue enable and disable flows are described in the following subsections.

10.4.3.1.1 Receive Queue Enable Flow

Queue enable flow is executed by the PF software for PF queues as well as for the queues of its VFs. The
flow below assumes that the queue is already allocated as detailed in Section 10.2.

Software steps:

1. The function that owns the queue (PF or VF) allocates contiguous memory in its own memory space
for the receive ring. It then program the receive descriptors in the ring so they are ready for new
packet reception.

2. Program the Rx-Queue context parameters in both RLAN and RCB structures. Receive queue
context structures are detailed in Section 10.4.3.6.

3. Clear the Tail pointer in the QRX_TAIL[n] register (in RLAN Queue Context) and then set the Tail
pointer to the end of the descriptor ring, where “n” is the queue index within the PF space.

4. Set the QENA_REQ flag in the QRX_CTRL[n] register, where “n” is the queue index within the PF
space (in RCB Queue Context).

5. If the Rx-Queue is associated with a No-Drop TC, then:

a. Set CDS bit as well. This resets its state to init state.

b. Set or reset the CDE bit according the queue's fast response policy.

Figure 10-5. Receive Descriptor Ring Structure

Table 10-8. Receive Queue Enable/Disable Flags

QRX_CTRL[n] Register QENA_* Bits
Receive Queue State

QENA_REQ QENA_STAT

0 0 Queue is not enabled.

1 0 Queue Enable request by the software.

1 1 Queue is enabled.

0 1 Queue Disable request by the software.

Descriptor 0
Descriptor 1

. . .

. . .
Descriptor N

Descriptor N+1
. . .
. . .
. . .
. . .

Descriptor Len-1

Head

Tail

Base

Le
ng

th

Descriptors Owned
by the SW

Descriptors Owned
by the HW

Descriptors Owned
by the SW

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1506 613875-009

• QRX_CTRL register structure bits CDE and CDS are used for a QoS configuration of the
queue.

6. As a response, the hardware sets the QENA_STAT flag in the QRX_CTRL[n] register. The
QENA_STAT follows the QENA_REQ almost instantly and not more than 10 μs after that. Once the
QENA_STAT flag in the QRX_CTRL[n] register is set, software can start using the queue.

7. If the queue is targeted for a VF, PF software should also program the matched entry in the
VPLAN_RX_QTABLE. Then it is expected to inform the VF software that the queue is enabled.

10.4.3.1.2 Receive Queue Disable Flow

Queue disable flow is executed by PF software for PF queues as well as for the queues of its VFs.

1. Remove any filtering or switching rule which directs packets to this queue (e.g. RSS, Flow Director,
and so on).

2. Wait for configuration completion.

3. Remove the queue from the interrupt linked list as described in Section 9.1.3.1.2.

4. The PF software clears the QENA_REQ flag in the QRX_CTRL[n] register, where “n” is the queue
index within the PF space.

5. The hardware generates a “queue disable” marker to the receive “pipe”.

6. Eventually, the “queue disable” marker gets to the top of the “pipe”. At this point, it is guaranteed
that the “pipe” does not contain any additional receive packets for the specific queue.

7. The hardware waits for completion of all outstanding requests from the specific queue on the PCIe
bus.

8. The RCB queue context QENA_STAT flag in the QRX_CTRL[n] register is cleared.

9. Once the QENA_STAT flag in the QRX_CTRL[n] register is cleared, software can release all memory
structures of the queue.

10.4.3.1.2.1 Fast Receive Queue Disable Flow

Fast queue disable flow should be executed by software only as part of a VF reset flow (or VM reset
flow). Following a PFR, the device does all this automatically.

1. It is assumed that a VFR was initiated by the PF software and the matched VFRD flag in the register
is already active. Or, a VMR was initiated by PF software and the matched VMRD flag in the
VSIGEN_RSTAT register is already active.

2. The PF software sets the FAST_QDIS flag (and clear the QENA_REQ flag) in the QRX_CTRL[n]
register, where “n” is the queue indexes in the PF space for all VF or VM queues.

3. The RCB queue context QENA_STAT flag in the matched QRX_CTRL[n] register is cleared.

613875-009 1507

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.4.3.2 Clear PXE Mode Admin Command (0x0110)

The Clear PXE Mode admin command transits the device from PXE to non-PXE mode. The structure of
the admin command and its completion are shown below.

Table 10-9. Clear PXE Mode Admin Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0110 Command opcode.

Datalen 4-5 0x00 N/A (reserved zero).

Return Value/VFID 6-7 0x00 N/A (reserved zero).

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16 0x2 Reserved. Set to 0x2.

Reserved 17-31 Reserved.

Table 10-10. Clear PXE Mode Admin Command Completion

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0110 Command opcode.

Datalen 4-5 0x00 N/A

Return Value/VFID 6-7 Some comments on specific errors (see Section 9.5.10 for the errors encoding):
0x0 = No error.
0xD = EEXIST (no action, the device is already in non-PXE mode).

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1508 613875-009

10.4.3.3 Configure No-Drop Policy Admin Command (0x00112)

The Configure No Drop Policy admin command configures the device to use the “No Drop” policy, and it
might be used at PXE mode. The structure of the admin command and its completion are as follows:

Command Operation:

1. The Configure No-Drop Policy AQ command is executed only when the hardware is in PXE mode
(GLLAN_RCTL_0.PXE_MODE is 0x1), and when the PXE Mode No-Drop Policy Supported NVM bit is
1b. Otherwise, the firmware returns EPERM error code.

2. The firmware must maintain an internal variable per port (sw_force_no_drop) that holds the
requested No-Drop policy from software. The internal variable is updated as follows:

a. Initial value, set also after CORER, must be 0.

b. When the Configure No-Drop Policy AQ command is called, the variable is updated to the
received No-Drop Policy field.

Note: The software can disable the No-Drop policy by setting this field to 0.

c. When a Clear PXE Mode AQ command is called, the variable is set to 0 for all ports.

Table 10-11. Configure No-Drop Policy Admin Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0112 Command opcode.

Datalen 4-5 0x00 Must be zero. Value is ignored.

Return Value/VFID 6-7 0x00 Must be zero. Value is ignored.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Force No-Drop 16 0x2 Sets the No-Drop/Drop policy:
0b = Remove the force and return to normal firmware behavior.
1b = Force No-Drop.

Note: At the admin command response for this bit is defined as reserved, making
all of Byte 16 reserved at the response buffer.

Reserved 16.1-31 Reserved.

Table 10-12. Configure No-Drop Policy Completion Buffer

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.2.2 for details.

Opcode 2-3 0x0112 Command opcode.

Datalen 4-5 0x00 N/A

Return Value/VFID 6-7 Return value. Zeroed by device driver. Written by firmware.
0x0 = Command success
EPERM is returned if the command was called while not in PXE mode.
EPERM is returned if software control of the drop/no-drop policy is locked by NVM
setting.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

613875-009 1509

Intel® Ethernet Controller E810 Datasheet
LAN Engine

3. Configure No-Drop Policy AQ command execution:

a. If Force No-Drop is 1 and sw_force_no_drop is currently 0:

• Firmware sets the corresponding bits of the port in GLDCB_RTC2PFC_RCB.TC2PFC (4 bits or
8 bits according to the link topology). In LFC mode, only the bits that correspond for TC0
should be set.

• Firmware changes GLDCB_RSPMC.PFCTIMER to pxe_pfc_timer.

b. If Force No-Drop is 0 and sw_force_no_drop is currently 1:

• Firmware reads the bits of current port from GLRPB_TC2PFC and copies them to the
corresponding bits in GLDCB_RTC2PFC_RCB.TC2PFC. and then writes the value to
GLDCB_RTC2PFC_RCB to align all Rx copies of the CSR.

• Firmware restores GLDCB_RSPMC.PFCTIMER to the NVM default value.

4. If sw_force_no_drop is set for this port, the corresponding bits of the port in
GLDCB_RTC2PFC_RCB.TC2PFC must not be modified when configuring flow control.

5. When executing the Clear PXE Mode AQ command, firmware applies (3b) to all ports for which
sw_force_no_drop is currently 1.

10.4.3.4 Transitioning Flow to non-PXE Mode

10.4.3.4.1 Device Response to Clear PXE Mode Admin Command

1. When the Clear PXE Mode admin command is initiated, the device checks the value of the
PXE_MODE flag in the GLLAN_RCTL_0 register.

2. If the PXE_MODE flag is found cleared then:

a. Return a command completion with “EEXIST” indication.

3. Else, the PXE_MODE flag is active:

a. Disable Rx-Queue 0 and Rx-Queue 1 of all enabled PFs by clearing the QENA_REQ flag in the
QRX_CTRL[0] and QRX_CTRL[1] registers of the PFs.

b. Wait until all receive queues are disabled by polling the QENA_STAT flag in the QRX_CTRL
registers of all above Rx-Queues. It is expected that all Rx-Queues are disabled within a few
microseconds.

c. Clear the PXE_MODE flag in the GLLAN_RCTL_0 register.

d. Flow is completed by posting a command completion with “No Error”.

10.4.3.4.2 Software Steps Transitioning to non-PXE Mode

1. The Admin Queue must be active before the following steps.

2. Software initiates the Clear PXE Mode admin command and waits for its completion.

3. Proceeds with the software initialization flow.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1510 613875-009

10.4.3.5 Receive Queues Doorbells and Completions

10.4.3.5.1 Receive Descriptors and Tail Bump

During nominal operation, the function that owns the queue (PF or VF) accesses the hardware directly.

• Prepare receive descriptors by clearing the DD bit and setting the buffer pointer(s). Start at the
descriptor indicated by the TAIL pointer in the relevant QRX_TAIL register.

• The software should never set the TAIL to a value above the descriptors owned by the hardware
minus 1. The descriptors considered as “owned by the hardware” are those ones already indicated
to the hardware but not yet reported as completed.

• Bump the TAIL to the last prepared descriptor plus one.

• The number of “free” descriptors owned by the hardware is defined by TAIL minus the HEAD. If the
number of “free” descriptors becomes lower than LRXQTRESH, then an immediate interrupt is
triggered. The HEAD and LRXQTRESH are listed in the Rx-Queue context detailed in
Section 10.4.3.6.

10.4.3.5.2 Receive Descriptor Reporting (Descriptor Write-Back)

The E810 reports a completion of receive packet in host memory by status indication in the receive
descriptor(s) of the packet - descriptor write-back (WB). The E810 writes back completed descriptor
status in one of the following cases:

• Whole line of descriptors (4x32-byte descriptors or 8x16-byte descriptors) are completed.

• All completed descriptors of a queue are evicted from the internal cache.

• Upon assertion of the interrupt associated with the queue.

• If queue is configured for “No Expire” (as explained in Section 10.4.3.6.1), every completed
descriptor is written back immediately.

Most applications use interrupts to invoke the driver. Before initiating the interrupt, the E810 posts all
completed descriptors of the queue that might be kept in the device caches. Following an interrupt
assertion, the device masks any further interrupts preventing interrupt nesting (as explained in
Section 9.1.1.3). When the interrupts are re-enabled (by the software), further interrupts that trigger
additional write-back of completed descriptors can be initiated.

In some applications, the E810 is activated in polling mode (with no interrupts). Configuring this option
is done by following the “WB ON ITR” option in Table 9-1 on page 1355.

10.4.3.6 Receive Queue Context Parameters

This section describes the setting options of the LAN receive queue parameters named as “queue
context”. The receive queue context is an on-die structure that contains the configuration, state, and
internal scratch pad of each one of the receive queues. The receive queue context is used and managed
by several blocks in the Rx-Pipe. For easy access of each block, the Rx-Queue context is divided into
two sections, the Receive Queue Context section and the Receive Misc. section.

613875-009 1511

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.4.3.6.1 Receive Queue Context

Receive queue context parameters are initialized by software and then managed by hardware.

The Rx-Queue context consists of two major sections:

• Queue Configuration section.

• Dynamic section.

The first one is programmed by software during the queue init flow. Software does not access this
section on runtime. The dynamic section is accessed by software on runtime and therefore it is
implemented as dedicated registers vectors.

10.4.3.6.1.1 Receive Queue Context - Static Section

The queue configuration section parameters reside in the QRX_CONTEXT[n, 0...7] registers and are
detailed in Table 10-13. The dynamic section is detailed in Section 10.4.3.6.1.2.

The queue context is a set of 256 bits (32 bytes), where bit “i” in the vector is mapped to - bit number
{“i” modulo 32} in QRX_CONTEXT register index {Whole number of (“i”/32)} of the queue. For
example, the QLEN parameter in bits 89 to 101 of the queue context is stored in bit number 25 in
QRX_CONTEXT register index 2 to bit number 5 in QRX_CONTEXT register index 3 of the queue.

Table 10-13. LAN Rx-Queue Context (256 Bits = 32 Bytes)

Alias Width
(bits)

LS
Bit

MS
Bit Type SW Init Description

HEAD 13 0 12 Dynamic 0x0 Receive Queue Head
An index relative to the beginning of the queue that defines the
next descriptor to be used. During idle time, all descriptors
starting by the HEAD up to (excluding) the RTAIL are owned by
the hardware and the rest are owned by software.
During dynamic operation it is not guaranteed that all
descriptors below the HEAD are completed.

CPUID 8 13 20 Dynamic 0x0 CPU Socket ID for TPH
The CPU socket ID is updated by the hardware.

Queue_Block
Indication

1 21 21 Dynamic 0b Queue Block
When set, the device silently drops packets that arrive to this
queue.
This bit is set by hardware as a response to a malicious event or
during Function Reset flow.
This bit must be cleared by the PF before the queue is reused.

Reserved 11 22 31 N/A 0x0 Reserved. Must be set to zeros.

BASE 57 32 88 Static BASE Receive Queue Base Address
Indicates the starting address of the descriptor queue defined
in 128-byte units.

QLEN 13 89 101 Static QLEN Receive Queue Length
Defines the size of the descriptor queue in descriptors units
from eight descriptors (QLEN=0x8) up to 8K descriptors minus
32 (QLEN=0x1FE0).
QLEN Restrictions: When the PXE_MODE flag in the
GLLAN_RCTL_0 register is cleared, the QLEN must be whole
number of 32 descriptors. When the PXE_MODE flag is set, the
QLEN can be one of the following options:

Up to 4 PFs, QLEN can be set to: 8, 16, 24 or 32 descriptors.
Up to 8 PFs, QLEN can be set to: 8 or 16 descriptors.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1512 613875-009

DBUFF 7 102 108 Static DBUFF Receive Packet Data Buffer Size
The Packet Data Buffer Size is defined in 128-byte units. Must
be at least 1 KB and up to 16 KB minus 128 bytes.

HBUFF 5 109 113 Static HBUFF Receive Packet Header Buffer Size
The Header Buffer Size is defined in 64-byte units enabling
buffer size up to 2 KB minus 64 bytes.

DTYPE 2 114 115 Static DTYPE Descriptor Type
Descriptor Type as defined in Table 10-14.

DSIZE 1 116 116 Static DSIZE Descriptor Size
0b = 16-byte descriptors.
1b = 32-byte descriptors.

Note: If the Queue is associated with DSI traffic, this field
must bet to “1”.

CRCStrip 1 117 117 Static CRCStrip CRC Strip
Strip the Ethernet CRC bytes before the packet is posted to
host memory.
Note: The CRC Strip option works properly only if the whole

packet is posted to the data buffer(s) in host memory
with no other strip option.

Reserved 1 118 118 Static 0b Reserved. Must be set to 0b.

L2TSEL 1 119 119 Static 0b L2 Tag Select
The L2TSEL bit defines the reported L2 Tags in the receive
descriptor.

0b = The second L2 Tag defined by the SHOWTAG field in the
VSI_TSR register of the VSI is posted to the L2TAG1
field. The first tag is reported in the L2TAG2 field.

1b = The above L2 tags are switched between the L2TAG1
and L2TAG2 fields.

HSPLIT_0 4 120 123 Static HSPLIT_0 Header Split 0
Header Split 0 control as described in Table 10-15.

HSPLIT_1 2 124 125 Static HSPLIT_1 Header Split 1
Header Split 1 control as described in Table 10-16.

Reserved 1 126 126 Static 0b Reserved. Must be set to 0b.

SHOWIV 1 127 127 Static SHOWIV Show Inner VLAN
The VLAN in the inner L2 header is stripped to the receive
descriptor if enabled by this flag.

Reserved 46 128 173 Static 0x0 Reserved.

RXMAX 14 174 187 Static RXMAX Max Packet Size
Max packet size for this queue defined in byte units. The
RXMAX parameter defines the whole packet size starting at the
L2 header up to and including the Ethernet CRC.
The RXMAX must not be set to a larger value than 5 x DBUFF
(since receive packet must never span on more than five
buffers). Received packets larger than RXMAX are dropped and
counted by the GLV_REPC counter of the VSI.
Note: Packets larger than MFS defined per MAC are marked

with l2_mac_err

Reserved 5 188 192 Static 0x0 Reserved. Must be set to zeros.

TPHRDesc 1 193 193 Static TPHRDesc Read Descriptor TPH Enable
Descriptor fetch.

Table 10-13. LAN Rx-Queue Context (256 Bits = 32 Bytes) [continued]

Alias Width
(bits)

LS
Bit

MS
Bit Type SW Init Description

613875-009 1513

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.4.3.6.1.2 Receive Queue Context - Dynamic Section

This queue context section includes the fields frequently accessed by software. This section is organized
as a set of two separate vectors, each of them indexed separately per Rx-Queue ID.

• Interrupt related registers QINT_RQCTL[n], where “n” is the queue index in the absolute Rx-Queue
space.

• The TAIL pointer in the QRX_TAIL[n] registers for the PF and for the VFs, where “n” is the queue
index of the function (PF or VF).

10.4.3.6.2 Miscellaneous Receive Queue Context

This section lists the queue context parameters that are used by the RCB block.

• Queue enablement flags in the QRX_CTRL[n] registers, where “n” is the queue index in the absolute
Rx-Queue space. Queue enable and disable flow by the PF are explained in Section 10.4.3.1.

• Two additional bits to select and observe drop/no-drop traffic class behavior.

— One bit enables a queue associated with a no-drop TC to start dropping received packets after a
configurable timeout.

— The other bit is a status bit indicating current state.

TPHWDesc 1 194 194 Static TPHWDesc Write Descriptor TPH Enable
Descriptor write-back.

TPHData 1 195 195 Static TPHData Packet Data TPH Enable

TPHHead 1 196 196 Static TPHHead Packet Header TPH Enable

Reserved 1 197 197 Static 0b Reserved. Must be set to 0b.

LRXQTRESH 3 198 200 Static LRXQTRESH Low Receive Queue Threshold
Defined in 64 descriptors units.
When the number of free descriptors (defined by TAIL minus
HEAD) “goes” below the LRXQTRESH, an immediate interrupt is
triggered.

Reserved 55 201 255 Static 0x0...01 Reserved.

Table 10-13. LAN Rx-Queue Context (256 Bits = 32 Bytes) [continued]

Alias Width
(bits)

LS
Bit

MS
Bit Type SW Init Description

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1514 613875-009

10.4.4 Stateless Receive Offloads

10.4.4.1 Strip Ethernet CRC Bytes

See Section 7.12.1.2.

10.4.4.2 Header Split

This feature consists of splitting a received packet into two separate regions based on the packet
content. Splitting is usually between the packet header that can be posted to a dedicated buffer and the
packet payload that can be posted to a different buffer (or multiple buffers). The sizes of these buffers
are defined by the DBUFF and HBUFF parameters in the receive queue context. This kind of splitting is
useful when different buffer allocation rules apply to these buffers, or there are different rules for TPH
enablement.

Header split is enabled per receive queue by the DTYPE, HSPLIT_0, and HSPLIT_1 fields in the receive
queue context, as described in Table 10-14, Table 10-15, and Table 10-16, and illustrated in Figure 10-
6.

Note: Figure 10-6 cannot cover all supported packet formats. but rather the most common cases
that emphasize the header split functionality. For a complete set of packet formats supported
by the default NVM settings, see the parse graph in Appendix A.2.

Split between the header buffer and the payload buffers and the status reporting is detailed in Table 10-
17. The physical pointers to the header and payload buffers are defined in the receive descriptor.

Some rules regarding header split:

• A packet that has a MAC error (reported by the RXE flag) is posted as a whole to the packet buffers
with no split.

Note: Posting such packets to the host is enabled on in “Save Bad Frame” mode (enabled by the
SBP flag in the PRT_SBPVSI register).

• For tunneled packets, the rules defined by HSPLIT_1 parameter take precedence over those ones
defined by the HSPLIT_0 parameter. This means that if any flag in HSPLIT_1 is enabled and the
packet matches that setting, the packet is split according to HSPLIT_1 regardless of HSPLIT_0
settings.

• In each individual register (HSPLIT_1 or HSPLIT_0), the packets are split according to the lowest
matched entry in the tables below. If both HSPLIT_0 and HSPLIT_1 are set to zero, DTYPE in the
receive queue context must be set to 00b. Otherwise (any header split is enabled by these
registers), the DTYPE must be set to one of the header split options: 01b or 10b (explained below).

• If the packet is posted to multiple descriptors, only the header buffer of the first one is used.

• The packet header cannot span across multiple buffers. If the header buffer is smaller than the
received header, the header is posted together with the packet payload. See Table 10-17.

• The header of a fragmented IP packet is defined up to including the IP header regardless if the
fragment includes the L4 header. For IPv6 header, the IP header is defined up to and including the
fragmented extension header.

• When a packet is replicated to multiple receive queues, the packet can be split differently on these
queues according to their settings.

• Header split is supported for packets received from the network as well as local VM-to-VM traffic.

613875-009 1515

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Figure 10-6. Header Split Option by Packet Formats

Table 10-14. Header Split Modes Defined by the DTYPE Field

DTYPE Functionality

00b Single Buffer Descriptors
No header split mode.

01b Header Split Descriptors
Header split is enabled for packets that the hardware identifies their headers as enabled by the HSPLIT field.
The packet content up to and including the most inner header enabled by the HSPLIT is posted to the header
buffer. The rest of the packet is posted to the payload buffer.
See Table 10-17 for rules of the header and payload buffers usage.

10b Split Always
Header split is always enabled regardless of the HSPLIT setting.
If the packet header is identified as defined by the HSPLIT, the packet content up to and including the most inner
header enabled by the HSPLIT is posted to the header buffer.
See Table 10-17 for rules of the header and payload buffers usage.

11b Reserved.

Split on Outer L2

Split on Tunnel

Split on (inner) L2

Color Legend:

Encapsulated Packet

Header Split Options:

DA/SA +
[L2 Tags/MPLS]

Outer
IPv4/6
header

Last
Etype

Inner IP
header

Inner L4
header

C
R
C

IP-in-IP

DA/SA +
[L2 Tags/MPLS]

Last
Etype UDPOuter IP

header
IP in NSH

over VXLAN gpe VXLANgpe NSH

DA/SAIP in native NSH NSH

IP in NSH/MPLS
over GRE

DA/SA +
[L2 Tags/MPLS]

Last
Etype

GRE +
[Key]

Outer IP
header

Inner DA/SA +
[VLAN/MPLS]

Inner IP
header

Inner L4
header

C
R
C

Last
Etype

NSH/
MPLS

Inner IP
header

Inner L4
header

C
R
C

Inner DA/SA +
[L2 Tags/MPLS]

Inner IP
header

Inner L4
header

C
R
C

Last
Etype

Inner IP
header

Inner L4
header

C
R
C

Inner DA/SA +
[VLAN/MPLS]

Inner IP
header

Inner L4
header

C
R
C

Last
Etype

Inner
IPv4/6
header

Inner L4
header

Inner
Payload

C
R
C

DA/SA +
[L2 Tags/MPLS]

Last
Etype UDPOuter IP

header
VXLAN gpe / GRE /

Geneve / MPLS
IP in (VXLAN gpe/GRE/

Geneve/MPLS)

Inner DA/SA +
[VLAN/MPLS]

Inner IP
header

Inner L4
header

Inner
Payload

C
R
C

Last
Etype

Inner IP
header

Inner L4
header

Inner
Payload

C
R
C

Tunneling Headers
DA/SA +

[L2 Tags/MPLS]
Last

EtypeNon Tunneled Packet IP
header L4 header

C
R
C

Inner DA/SA +
[L2 Tags/MPLS]

Last
EtypeMAC in MAC IP

header L4 header
C
R
C

Outer DA/SA +
BVLAN + ITag

DA/SAMAC in native NSH NSH

Outer DA/SA +
[L2 Tags/MPLS]

Outer
Etype UDPOuter IP

header
MAC in NSH

over VXLAN gpe VXLANgpe NSH

MAC in NSH
over GRE

Outer DA/SA +
[L2 Tags/MPLS]

Outer
Etype

GRE +
[Key]

Outer IP
header NSH

Outer DA/SA +
[L2 Tags/MPLS]

Outer
Etype UDPOuter IP

header
VXLAN / Geneve
VXLAN gpe / GRE

MAC in (VXLAN/Geneve/
VXLAN gpe/GRE)

Inner
Payload

Inner
Payload

Inner
Payload

Inner
Payload

Inner
Payload

Inner
Payload

Inner
Payload

Inner
Payload

Split on (inner) L3

Split on (inner) L4

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1516 613875-009

Table 10-15. Split Headers Enabled by the HSPLIT_0 Field

HSPLIT_0 Functionality

0000b No Header are enabled by HSPLIT_0.

xxx1b Enable split after L2 header. In case of L2 tunneling it is the second (inner) L2 header.

xx1xb Enable split after the IP header.
• In case of tunneling it is the second IP header.
• In case of option/extension IP headers the split is after these headers.

Note: If the tunneled pkt doesn't have a tunneled IP header, then split is done on the payload

x1xxb Enable split after the UDP and TCP header (in case of UDP tunneling it is the second UDP header).

1xxxb Enable split after the SCTP header.

Table 10-16. Split Headers Enabled by the HSPLIT_1 Field

HSPLIT_1 Functionality

00b No split on tunneling headers.

x1b Enable split after the outer (tunneling) L2 header.
Note: Split is enabled only if inner L2 header exists.

1xb Enable split on the entire tunneling header as follows:
• Non-tunneled packet — No impact.
• IP in any tunneling — Enable split before the inner IP header. It includes IP in IP, IP in GRE, IP in NSH or MPLS

(w/wo prior headers), IP in any UDP tunneling.
• MAC in any tunneling — Enable split before the inner MAC header. It includes MAC in any UDP tunneling or MAC

in GRE.

Table 10-17. Header Split versus Packet and Buffer Sizes

DTYPE Condition Header and
Payload DMA SPH HBO PKTL1 HSRL1 Comments

00b
(Single Buffer) None.

Post the whole
packet to the packet
buffer(s)

0 0 Size of the
whole packet 0x0

01b
(Header Split)

Header is not
identified

Post the whole
packet to the packet
buffer(s)

0 0 Size of the
whole packet 0x0

Header size ≤
HBUFF

Post header to
header buffer and
payload to the packet
buffer(s)

1 0 Size of the
packet payload Header size Packet Length

calculation includes
the Tags and CRC,
which are striped
later.Header size >

HBUFF

Post the whole
packet to the packet
buffer(s)

1 1 Size of the
whole packet Header size

613875-009 1517

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.4.4.3 Receive L3 and L4 Integrity Check Offload

The E810 offloads the following L3 and L4 integrity checks: IPv4 header(s) checksum, Outer UDP
checksum, Inner TCP or UDP checksum, and SCTP CRC integrity (see Table 10-18). The E810 identifies
the packet type and then checks the matched integrity scheme. The identified packet type is reported
on the PTYPE field in the receive descriptor. Processing indication of the L3 and L4 headers is reported
on the L3L4P flag in the receive descriptor. Potential IPv4 checksum error, L4 integrity error, and outer
IPv4/UDP checksum error are reported by the IPE, L4E, and the EIPE error flags in the legacy receive
descriptor, respectively. In the advanced receive descriptor it is reported in the flexible error flags.

Note: Outer UDP checksum is supported for all supported encapsulation over UDP (VXLAN, Geneve,
and VXLAN-GPE).

Following are some rules for integrity check offload. If the following rules are not met, integrity offload
is not provided and the L3L4P is not set.

• IPv4 header is assumed to be at least 20 bytes long (the length of the basic header).

• IPv4 headers can have any IP option headers that fit within the maximum header size (60 bytes).

• IPv6 support — The pseudo header for the L4 checksum takes into account the addresses in the
IPv6 header, ignoring the optional extension headers. Packets with Routing Header type 2 and
Destination Options Header with Home Address option contain an alternative IP Address in the
extension header. Therefore, checksum calculation for such packets most probably results in an
erroneous value. The E810 indicates the existence of a Destination Options Header or a Routing
Header in the IPV6EXADD bit of the Rx-Descriptor. Software can then do one of the following:

— Ignore the checksum done by the device.

— Parse the extension header and identifying if it contains an IP Address, then ignore the
checksum done by the device only in this case.

10b
(Always Split)

Packet length ≤
HBUFF

Post the whole
packet to the header
buffer(s)

0 0 0x0 Packet length

Packet Length
calculation does not
include the striped
Tags and CRC.

Header is not
identified and
packet length >
HBUFF

Post the whole
packet to the header
buffer + packet
buffer(s)

0 0
Size of the

whole packet
minus HBUFF

HBUFF

Packet Length
calculation includes
the Tags and CRC,
which are striped
later.

Header size ≤
HBUFF

Post header to the
header buffer and
the payload to the
packet buffer(s)

1 0 Size of the
packet payload Header size Packet Length

calculation does not
include the striped
Tags and CRC.Header size >

HBUFF

Post the whole
packet to the header
+ packet buffer(s)

1 1
Size of the

whole packet
minus HBUFF

Header size

1. If the data posted to the packet buffer is larger than PKTL, multiple buffers (descriptors) are used.
 • All buffers but the last one are full (PKTL = DBUFF) while the last one contains the rest of the data.
 • Only the header buffer of the first descriptor is used.

Table 10-17. Header Split versus Packet and Buffer Sizes [continued]

DTYPE Condition Header and
Payload DMA SPH HBO PKTL1 HSRL1 Comments

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1518 613875-009

• Fragmented packets — The E810 parses fragmented receive packets up to and including the IP
header (for IPv4) or up to and including the fragmentation extension header (for IPv6):

— L4 checksum offload is not supported for IPv6 fragmented packets and the L3L4P flag in the
receive descriptor is not set.

— Fragmented IPv4 packet is offloaded up to including the IP header.

• TCP header is assumed to be at least 20 bytes long (the length of the basic header).

• The TCP header can have any option headers that fit within the maximum header size (60 bytes).

• VM-to-VM loopback traffic is processed by the hardware for L3/L4 integrity check as any other
packet received from the network.

Table 10-18 lists all supported packet formats and the processed integrity. The table uses the following
notations:

• IP is a generic term for IPv4 header or IPv6 header. The IPv4 header can have IP option headers
and the IPv6 header can have IPv6 extension headers.

• L4 is a generic term for UDP, TCP, or SCTP headers.

• IP checksum is meaningful only for IPv4.

• Checksum is a generic term for UDP and TCP checksum, as well as SCTP CRC integrity.

• Zero UDP checksum — Zero UDP checksum for IPv4 packet is treated as no checksum and is
reported by the hardware as “no error” and “done”. Zero UDP checksum for IPv6 packet is illegal
and is reported by the hardware as L4 checksum error.

Table 10-18. Integrity Offload Check for Receive Packet Types

Packet Type Supported Integrity Offload Reported L3L4P

IP -> [data / Unknown / fragmented] IP checksum offload. L3L4P is set if any
header in the packet is
checked for integrity.
Note that IP checksum
offload is true only for
IPv4 header.

IP -> L4 IP and L4 checksum offload.

IP -> IP -> [data / Unknown / fragmented] 2 x IP checksum offload.

IP -> IP -> L4 2 x IP and L4 checksum offload.

IP -> [tunnel header] -> IP -> data /
Unknown / fragmented

Only 2 x IP checksum offload and tunneling UDP
checksum (for UDP tunneling).

IP -> [tunnel header] -> IP -> L4 2 x IP checksum, tunneling UDP checksum, and L4
checksum offload.1

1. The L4 checksum offload relates to the inner header:
 • For UDP or TCP protocols, the hardware calculates the expected checksum including the pseudo IP header.
 • For SCTP protocol, the hardware calculates the expected SCTP CRC.

IP -> [tunnel header] -> data
and
IP -> [tunnel header] -> MAC -> data

IP checksum and tunneling UDP checksum offload.

IP -> [tunnel header] -> MAC -> IP -> data 2 x IP checksum (relevant only for IPv4) and tunneling
UDP checksum offload.

IP -> [tunnel header] -> MAC -> IP -> L4 2 x IP, tunneling UDP, and L4 checksum offload.1

613875-009 1519

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5 LAN Transmit Data-Path

10.5.1 LAN Transmit Introduction

The following sections describe the initialization, configuration, data handling, disable and reset flows
related to the LAN transmit functionality. This section covers the following major topics:

• A review of the transmit packet data stored in system memory, and the various assorted queue
structures managed by software and used by hardware to perform data transmission.

• A discussion about the intended usage models, and the application of various features to these
usage models.

• Initialization and configuration flows.

• Various packet transmission flows.

• Queue disable and reset flows.

• Error handling and additional considerations for software.

10.5.2 Transmit Packets in System Memory

Transmit packets are possibly multiple data non-contiguous buffers in host memory posted by software
to hardware for transmission using descriptors (16-byte structures described in Section 10.5.3.2).
These descriptors include pointer and length pairs to the data buffers, as well as control fields for the
transmit data processing. In some cases, additional control parameters that cannot fit within the data
descriptors are needed to process the packet(s). In this case, additional context descriptor(s) are
posted by software to hardware prior to posting the data descriptors. A few common examples for
context descriptor(s) are transmit segmentation (TSO) and Flow Director (FD) filter programming.

Figure 10-7 shows an example of a transmit packet in host memory composed of two buffers (header
buffer and payload buffer), indicated by two matched “data descriptors” and an optional context
descriptor.

The following rules are related to the transmit packet in host memory:

• The total size of a single packet in host memory must be at least 17 bytes and up to the “Max
Frame Size” of the port as configured by the Set MAC Config admin command.

— Packets outside this range are considered malicious. The respective queue is stopped and an
interrupt is issued to the PF. The relevant event is “Bad Single Send size”.

— This rule applies for single packet send as well as any packet within a transmit segmentation
(TSO).

• A single transmit packet can span up to eight buffers (up to eight data descriptors per packet
including both the header and payload buffers).

— When a packet spans on multiple buffers, all the descriptor of that packet must be filled
similarly.

• The total number of data descriptors for the whole TSO (explained later on in this chapter) is
considered unlimited (Limited only by Tx-Queue length) as long as each segment within the TSO
obeys the previous rule (up to eight data descriptors per segment for both the TSO header and the
segment payload buffers).

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1520 613875-009

• If a packet or TSO spans on multiple transmit data descriptors, the fields in all the data descriptors
must be valid.

• The TSO message header should not span on more than three buffers (Max three descriptors).

Enhanced Host-interface modes as explained in Section 10.5.6.2 places additional restrictions on the
maximum number of descriptors, maximum number of descriptors per quanta, maximum commands
per quanta, and the offload commands that can be used.

10.5.3 Descriptors and Doorbells

The software prepares structures for transmission in system memory indicated to hardware by a list of
consecutive descriptors. These descriptors are organized in a contiguous memory handled as a cyclic
queue, which is also called a Transmit Descriptor Ring (TDR). Descriptors are initialized by software,
and posted to hardware for processing via a write to a doorbell register. The E810 supports up to 16K
transmit queues allocated to PFs and VFs.

Transmit queue state and behavior is initialized by software, which programs a set of parameters
collectively called the queue context. The main parameters are the queue pointers presented in
Figure 10-8. The queue context includes additional parameters that define the queue functionality as
detailed in Section 10.5.5.2. The context parameters are kept in an internal memory within hardware.

The software interface to the queue for initialization, nominal operation, and queue disable is described
in Section 10.5.5.1. The E810 has additional global parameters for the whole device or per function
parameters that affect multiple queues.

Figure 10-7. Transmit Packet in System Memory (Example Using Two Buffers)

Data Descriptor 1

Data Descriptor 2

Buffer 2Buffer 1

Header Payload

Transmit Packet

Optional Context Descriptor(s)

613875-009 1521

Intel® Ethernet Controller E810 Datasheet
LAN Engine

When software posts a packet for transmission, it can add some specific rules and commands per the
transmitted packet. This is done by adding extra descriptors on top of the Data descriptors that point to
the transmitted packet.

The following subsections describe the various descriptor types.

10.5.3.1 General Descriptors

Notes:

• For all descriptors, fields indicated as “RSV” (reserved) should be set to zero by the software at
programming time.

• Descriptor types 0x8 and 0x9 are mutually excluded in a single packet transmit.

• Software can use multiple descriptors for a single packet transmission. For example, a transmission
of a single LSO message. For this type of packet, software is required to post a Context Descriptor
(0x1) followed by one or more Data Descriptors (0x0). In any case multiple descriptors are used for
a transmitted packet, software must place them into the Tx-Queue in the order they are
documented in Table 10-19.

Figure 10-8. Transmit Descriptor Ring Structure

Table 10-19. LAN Descriptor Types

Descriptor Type DTYPE
Value Description Section

Reference

NOP (optional) 0x1 NOP descriptors can be used to align descriptors to cache lines (optional
usage).

10.5.3.1.2

LAN Transmit Context 0x1 Used as a companion to the Transmit Data descriptor to provide more
information on the packet.

10.5.3.2

FD Filter Programming 0x8 Used to program Flow Director filters. 10.5.3.3

Transmit Data 0x0 Regular data descriptor used to send LAN packets 10.5.3.1.1

Descriptor 0
Descriptor 1

. . .

. . .
Descriptor N

Descriptor N+1
. . .
. . .
. . .
. . .

Descriptor Len-1

Head

Tail

Base

Le
ng

th

Descriptors Owned
by the SW

Descriptors Owned
by the HW

Descriptors Owned
by the SW

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1522 613875-009

10.5.3.1.1 Transmit Data Descriptor

Descriptor Type - DTYPE (Quad Word 1, Bits 0:3, 4 bits)

0x0 stands for a Transmit Data Descriptor.

Command Field - CMD (Quad Word 1, Bits 4:15, 12 bits)

Quad
Word

6
3 0

0 Tx Packet Buffer Address

1 L2TAG1 Tx Buffer Size OFFSET CMD DTYPE

6
3

4
8

4
7

3
4

3
3

1
6

1
5 4 3 0

Bit(s) Name Description

0 EOP End of Packet.
The EOP flag is set in the last descriptor of a packet or TSO. Applicable for both TCP and UDP
packets.

1 RS Report Status.
When set, the hardware reports the DMA completion of the transmit descriptor and its data buffer.
Completion is reported by Completion Queue or by descriptor write-back as configured by the
HEAD_WBEN flag in the transmit context. When it is reported by descriptor write-back, the DTYPE
field is set to 0xF and the RS flag is set.
The RS flag can be set only on a last Transmit Data Descriptor of a packet or last Transmit Data
Descriptor of a TSO.

2 Reserved Reserved. Must be set to 1b.

3 IL2TAG1 Insert an L2 tag from the L2TAG1 field in this descriptor.
For MAC in UDP or MAC in GRE tunneling, the L2TAG1 field is relevant to the outer L2 header. See
IL2TAG_IL2H for VLAN tag insertion to the inner L2 header. The type of the Tag is defined by the
L2TAG1INSERTID field in the VSI_L2TAGSTXVALID register of the VSI. The structure of this tag is
defined by the matched GL_SWT_L2TAGxxx registers.
If the type of the L2 Tag requires more than two variable bytes, additional bytes are taken from
the L2TAG2 field while the L2TAG1 is first on the wire. In this case, the IL2TAG2 flag must be
cleared.

4 DUMMY When the DUMMY flag is set, the packet is not transmitted (internal and external). The DUMMY
indication can be useful for context programming purposes: FD filters. Note that when using the
DUMMY option, the packet does not have to have a correct checksum. Software should set all the
fields in the data descriptor and context descriptors describing the packet structure as it does for
nominal packets.

5:6 IIPT The IP header type and its offload. In case of tunneling, the IIPT relates to the inner IP header. See
also EIPT field for the outer (External) IP header offload.

00b = Non-IP packet or packet type is not defined by software.
01b = IPv6 packet.
10b = IPv4 packet with no IP checksum offload.
11b = IPv4 packet with IP checksum offload.

For an IPv4 TSO message, this field must be set to 11b.

7 Reserved Reserved.

613875-009 1523

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Header Offset Parameters - OFFSET (Quad Word 1, Bits 16:33, 18 bits)

L2 Tag 1 - L2TAG1 (Quad Word 1, Bits 48:63, 16 bits)

A 16-bit tag to be inserted into the packet if the IL2TAG1 flag is set. If IL2TAG1 is cleared, L2TAG1
should be set to zero by software.

Tx Buffer Size (Quad Word 1, Bits 34:47, 14 bits)

8:9 L4T L4T is the L4 packet type.
00b = Unknown/Fragmented packet
01b = TCP
10b = SCTP
11b = UDP

When the L4T is set to values other than 00b, the L4LEN must be defined as well. When set to UDP
or TCP, the hardware inserts the L4 checksum and when set to SCTP the hardware inserts the L4
CRC.
Note: Requesting SCTP CRC/TCP or UDP offload for a packet that was padded by Software

results in wrong SCTP CRC.

10 RE Report Event.
When set, the hardware reports the DMA completion of the transmit descriptor and its data buffer.
Completion is reported by Completion Queue or descriptor write-back as configured by the queue
context parameters. When it is reported by descriptor write-back, the DTYPE field is set to 0xF and
the RE flag is set.
The RE bit setting must follow the same rules as the RS bit, described above.

11 BT Buffer Type Indication. Indicates the type of the data the associated buffer contains. In case
multiple PASID feature is enabled, this bit can be used to distinguish between Header and Payload
Buffers (and use different PASID value accordingly).
For example:

0b = Type 0 (Payload) Only Payload data
1b = Type 1 (Header) Only Header data

This bit is used to selects one of the VSI 3 PASID values that can be configured per VSI, to be used
on the Tx DMA Packet data Buffer PCIe read request, associated with this Buffer. For hybrid Buffer
(buffer that contains both header and payload data) this feature is meaningless, but the user can
use any of the two values (recommended default is 0).
In case the feature is not enabled, this bit should be cleared.

Bit(s) Name Description

0:6 MACLEN MAC Header Length defined in Words.
In case of a tunnel packet, MACLEN defines the outer L2 header.
MACLEN defines the L2 header length up to including the EtherType. If L2 Tag(s) are provided in
the data buffers, they are included in MACLEN.

7:13 IPLEN IP header length (including IP optional/extended headers) in the Tx buffer defined in DWords.
In case of a tunnel packet, IPLEN defines the most inner IP header length.
If the IIPT flags cleared, this field should be set to zero.

14:17 L4LEN L4LEN is the L4 header length in the Tx buffer defined in DWords.
In case of a tunnel packet, L4LEN defines the most inner L4 header length. L4LEN should obey the
following rules:

When the L4T field is set to 00b, L4LEN must be set to zero. Otherwise, it should be set to 8/12
for UDP/SCTP, respectively, and should be greater than or equal to 20 for TCP.

Bit(s) Name Description

0:13 BSIZE Buffer size in byte units from 1 byte up to 16 KB minus 1.

Bit(s) Name Description

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1524 613875-009

Tx Packet Buffer Address (Quad Word 0, Bits 0:63, 64 bits)

10.5.3.1.2 NOP Descriptor

A NOP descriptor can be used for padding if software needs to align descriptors for cache alignment or
other performance reasons. A NOP descriptor does not cause any activity other than processing of the
descriptor. Most importantly, NOP descriptors do not generate write-backs to indicate the hardware has
processed the descriptor.

NOP descriptors are implemented by the “Null” setting of a context descriptor as follows: DTYPE should
be set to 0x1 (LAN Context Descriptor) and all other fields should be cleared. Note that NOP descriptors
are permitted only between packets.

NOP descriptors are reported as a drop event when the queue is configured with Completion Queue and
Head Drop.

When the queue is configured for advanced host interface mode, NOP descriptor can be issued only as
a piggyback at end of a valid packet in a single doorbell.

10.5.3.1.3 Transmit Descriptors Write-Back Format

Descriptor Type - DTYPE (Quad Word 1, Bits 0:3, 4 bits)

The hardware indicates a completed descriptor by setting the DTYPE field to a value of 0xF. The
write-back status is the same for all transmit descriptors used for LAN traffic, filter programming.

The hardware reports this status in the following two cases:

• For descriptors with the RS and/or RE bit set (Report Status, Report Event) while the Tx-Queue
is configured for descriptor write-back completion (WB_MODE field in the queue context is set
to 0). See rules for setting the RS and/or RE flag in the transmit descriptors in
Section 10.5.3.1.1.

• For the last descriptor of a command that was executed before an interrupt of the queue is
initiated.

Completion Flags - RS and RE (Quad Word 1, Bit 5 and Bit 14, respectively)

RS bit is set if it was active by software.

RE bit is set if it was active by software.

Note: The bits locations are as they are in the data descriptor.

Bit(s) Name Description

0:63 BADDR Buffer address in byte granularity.

Quad
Word

6
3 0

0 Reserved

1 Reserved + RS bit 5 and RE bit 14 DTYPE

6
3 4 3 0

613875-009 1525

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.3.2 LAN Transmit Context Descriptors

A context descriptor can contain some additional setting options for a single packet or TSO defined by
the Data descriptor(s) that follows. Following the transmission of the packet or TSO, the context
provided by this descriptor is “expired”.

Descriptor Type - DTYPE (Quad Word 1, Bits 0:3, 4 bits)

0x1 stands for a LAN Context Descriptor.

Command Field - CMD (Quad Word 1, Bits 4:10, 7 bits)

Quad
Word

6
3

4
8

4
7

3
2

3
1

2
4

2
3 0

0 RSV L2TAG2 (STag / VEXT) RSV Tunneling Parameters

1 MSS / TARGET_VSI RSV TLEN / TSYN_REG RSV CMD DTYPE

6
3

5
0

4
9

4
8

4
7

3
0

2
9

1
1

1
0 4 3 0

Bit(s) Name Description

0 TSO Transmit Segmentation Offload is activated when the TSO flag is set.

1 TSYN 1588 Timestamp.
When set, the hardware samples the packet transmission time in one of PRTTSYN_TXTIME[64]
registers. The TSYN flag is processed by the device only if TimeSync is enabled by the TSYNENA
flag in the transmit queue context.
Note: The TSYN flag is aimed only for a single send with no TSO.
When TSYN is set, the TSYN_REG field must be initialized as well.

2 IL2TAG2 Insert the L2 tag from the L2TAG2 field in this descriptor.
For MAC in UDP or MAC in GRE tunneling, the L2TAG2 field is relevant to the outer L2 header. See
IL2TAG_IL2H for VLAN tag insertion to the inner L2 header. The type of the tag is defined by the
L2TAG2INSERTID field in the VSI_L2TAGSTXVALID register of the VSI. The structure of this tag is
defined by the matched GL_SWT_L2TAGxxx registers.
See also IL2TAG1 in the data descriptor for 32-bit tag handling.

3 IL2TAG_IL2H Insert VLAN to the inner L2 header from the L2TAG2 field in this descriptor.
The VLAN is added after the header defined by L4TUNLEN. The IL2TAG2 and IL2TAG_IL2H bits are
mutually exclusive and the software can set only one of them. The IL2TAG_IL2H can be set to 1b
only for L4 tunneled packets with non-zero L4TUNLEN. Inserting the VLAN in the inner L2 header,
the hardware also updates the IP total length field in the outer IP header. It is done for Single-Send
as well as for TSO.

4:5 SWTCH Switch Control Tag (Can be set to non-zero only by control VSI as programmed by the destination
override” flag per VSI):

00b = No Switch Control Tag. The packet is routed according to the hardware filters.
01b = Uplink packet. The packet is transmitted to the network bypassing hardware filters.
10b = Local packet. The packet is transmitted only to local VSIs according to the hardware filters.
11b = Target VSI. The packet is transmitted to a specific VSI defined in the MSS/VSI field in this

descriptor. TSO is mutually exclusive with this option.

6 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1526 613875-009

Segmentation Parameters / Switching Parameters (Quad Word 1, Bits 30:47; Bits 50:63, 32 bits)

Tunneling Parameters (Quad Word 0, Bits 0:23, 24 bits)

Bit(s) Name Description

30:47 TLEN / TSYN_REG For a TSO message:
TSO Total Length. This field defines the L4 payload bytes that should be segmented. Note
that the sum of all transmit buffer sizes of the TSO should match exactly the TLEN plus the
TSO header size in host memory.
If the TSO flag is cleared, the TLEN should be set to zero by software.
If the TSO flag is set, the TLEN must be set by software to a value larger than zero.

For a TSYN packet:
Bits 30:35 = Contain the index for TSYN_REG[64] register, which is used for this timestamp

sampling.
Bits 36:47 = Reserved. Must be set to zero by software.

50:63 MSS / TARGET_VSI When the TSO flag is set, this field functions as a MSS.
When the SWTCH field is set to 11b, this field functions as a TARGET_VSI. If the TSO flag is
set, the SWTCH field should not be set to 11b and vice-versa.
If both the TSO flag is cleared and the SWTCH field is not equal to 11b, then this field should
be set to zero.
When the TSO flag is set, the MSS field defines the Maximum Segment Size of the packet’s
payload in the TSO (excluding the L2, L3 and L4 headers). In case of tunneling, the MSS
relates to the inner payload. The M.SS should not be set to a lower value than 88. It also
must follow the rule declared in field
When the SWTCH field equals to 11b, it is the destination VSI of the packet. This option is
valid only for control VSIs on which the “Allow destination override” flag is set.

Bit(s) Name Description

0:1 EIPT The External (outer) IP header type and its offload:
00b = No External IP header.
01b = External IPv6.
10b = External IPv4 with no checksum offload.
11b = External IPv4 with checksum offload.

For an IPv4 TSO message, this field must be set to 11b.

2:8 EIPLEN External (outer) IP header length (including IP optional/extended headers) defined in DWords.
When the packet has no outer IP header (EIPT equals to zero), this field must be set to zero.

9:10 L4TUNT L4 Tunneling Type (GRE header / VXLAN header) indication:
00b = No UDP / GRE tunneling (field must be set to zero if EIPT equals to zero).
01b = UDP tunneling header (Any UDP tunneling, VXLAN and Geneve).
10b = GRE tunneling header.
11b = Reserved.

11 Reserved Reserved. Must be set to 0b.

12:18 L4TUNLEN L4 Tunneling Length (GRE header / VXLAN header) defined in Words (field must be set to zero if
L4TUNT equals to zero).
• If the tunneling header includes proprietary content it should be included as well.
• For IP in GRE it should be set to the length of the GRE header.
• For MAC in GRE or MAC in UDP it should be set to the length of the GRE or UDP headers plus

the inner MAC up to including its last EtherType.
Note: This field represents the length of data provided in host memory buffers.
If the L4TUNT is cleared, this field must be set to zero.
If MPLS labels exists, L4TUNLEN should include them as well.

19:22 DECTTL Decrement TTL in the inner IP header by DECTTL and drop the packet if the original TTL was not
greater than DECTTL. If the EIPT is cleared, this field must be set to zero.
Note: If software attempts to transmit a packet with a value of zero in the TTL header field, the

packet is dropped regardless the DECTTL value.

23 L4T_CS Calculate the tunneling UDP checksum. Must be set only if L4TUNT = 01b and EIPT is not zero.

613875-009 1527

Intel® Ethernet Controller E810 Datasheet
LAN Engine

L2 Tag 2 - L2TAG2 (Quad Word 0, Bits 32:47, 16 bits)

A 16-bit tag to be inserted to the packet if the IL2TAG2 flag is set, or if IL2TAG1 is set while L2 Tag
1 include four variable bytes, or if the IL2TAG_IL2H flag is set.

If the above conditions are not met, the L2TAG2 should be set to zero by software.

RSV

Reserved bits that must be set to zero.

10.5.3.3 FD Filter Programming Descriptor

Quad Word 0

Quad
Word

6
3

4
8

4
7

4
4

4
3

4
1

4
0

3
9

3
8

3
7

3
5

3
4

3
2

3
1

3
0

2
9

2
8

1
6

1
5

1
4

1
3

1
2

1
1

1
0 0

0 FLEX_VAL FM FP D
R DPR TP TQ E

E SA STAT_CNT FD CR C
Q QINDEX

1 FDID FMD FPR S
W FD_VSI DESC_PROF DDP P

C DTYPE

6
3

3
2

3
1

2
8

2
7

2
5

2
4

2
3

1
4

1
3 8 7 5 4 3 0

Bit(s) Name Field
Size Description

0:10 QINDEX 11 Destination queue index or region of queues within the VSI space. It is controlled by
the ToQueue and ToQueue_PRIO parameters. The QINDEX must be set to zero if the
ToQueue_PRIO equals zero.
QINDEX is relative within the VSI space within the Flow Director. A VSI can only
have up to 2K Rx Queues.
Note: The E810 has 4K Rx Queues, thus they can still be mapped to a single PF

using multiple VSIs.

11 COMP_QUEUE (CQ) 1 The receive queue of the programming VSI for the completion status is selected by
the COMP_QUEUE flag:

0b = Receive queue zero.
1b = The Rx-Queue defined by the COMP_QINDX field in VSIQF_FD_DFLT.

12:13 COMP_REPORT (CR) 2 COMP_REPORT controls the completion status reported to software, as follows:
00b = No completion status is reported to software.
01b = Completion status is reported to software in the case of failed programming.
10b = Completion status is reported to software for any programming request.
11b = Reserved.

14:15 FD_SPACE (FD) 2 At programming time, software can select between best-effort and guaranteed
spaces in the FD table using the FD_SPACE field:

00b = The FD filter is programmed only on the guaranteed space of the function.
01b = The FD filter is programmed only on the best effort space of the function.
10b = The FD filter programming starts with the guaranteed space of the function.

If no space, programming is made on the best effort space of the function.
11b = The FD filter programming starts with the best effort space of the function.

If no space, programming is made on the guaranteed space of the function.

16:28 STAT_CNT 13 Statistic counter(s) index(es) associated with this filter as controlled by the
STAT_ENA field. The statistic counters are implemented in 2 “banks” with 4K
counters on each bank. The MS bit of the STAT_CNT selects the bank and the LS bits
selects the counter(s) within the bank(s).
If the FD filter uses a single counter, it can be selected on any bank.
If the FD filter uses both packet and byte counters, it is the same counter index in
both banks. In this case, the MS bit must be set to zero.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1528 613875-009

Quad Word 1

29:30 STAT_ENA (SA) 2 The STAT_ENA controls the functionality of the STAT_CNT, as follows:
00b = No statistic counter associated with the filter. The STAT_CNT must be set to

zero.
01b = The STAT_CNT defines a statistic counter that counts packets.
10b = The STAT_CNT defines a statistic counter that counts bytes.
11b = The STAT_CNT defines 2 statistic counters that counts packets and bytes.

Refer Section 7.10.8.1, “Statistic Counters” for counter indexing rules.

31 EVICT_ENA (EE) 1 Filter programmed with the EVICT_ENA setting can be auto-evicted by FIN/RST
packets.

32:34 ToQueue (TQ) 3 The ToQueue parameters controls the functionality of the QINDEX, as follows:
0 = The filter defines a target queue equal to QINDEX.
1-7 = The filter defines a region of queues for the hash filter. The region base

equals to QINDEX. and the region size equals to 2^(ToQueue).

35:37 ToQueue_PRIO (TP) 3 To Queue priority action by the FD filter. Priority = zero means no to Queue action.

38:39 DPU_Recipe (DPR) 2 Reserved for DPU Recipe option. Must be set to 00b.

40 DROP (DR) 1 The matched packet is dropped when the DROP flag is set.

41:43 FLEX_PRIO (FP) 3 Flexible action priority by the FD filter. Priority = zero means no to flexible action.

44:47 FLEX_MDID (FM) 4 Flexible action type. Valid values are 0 to 4.

48:63 FLEX_VAL 16 Flexible action by the FD filter. Must be set to zero if the FLEX_PRIO = 0.
In case of ADQ (FDID_MDID=TBD), contains the 16 MSB bits of the FDID (48 bits
total).

Bit(s) Name Field
Size Description

0:3 DTYPE 4 0x8 for a FD filter programming descriptor.

4 PCMD (PC) 1 Filter Programming Command:
0b = Add filter.(*)

1b = Remove filter.
(*) If the filter entry does not exist, the filter is added. If the filter already
exists, the filter parameters are updated. Filter is candidate for update if all the
fields that are used for the packet identification match: Packet tuples, VSI,
PACKET_DIR.

5:7 DESC_PROF_PRIO (DPP) 3 Receive descriptor profile priority by the FD filter. Priority = zero means no
descriptor profile by the FD filter.

8:13 DESC_PROF 6 Receive descriptor profile. See Section 7.6 for supported profiles. Must be set
to zero if the DESC_PROF_PRIO equals zero.

14:23 FD_VSI 10 Expected VSI index of the packet during reception. Note that the VSI index
might be assigned by the embedded switch or any other logic that overrides it
before the packet is processed by the FD filter.

24 SWAP (SW) 1 When the SWAP flag is set, “source” and “destination” fields in the Tx packet
used for the filter programming are swapped. See description of the
GLQF_FDSWAP register in Section 7.10.4.2.

25:27 FDID_PRIO (FPR) 3 FDID priority. Priority = zero means no FDID by the filter.

28:31 FDID_MDID (FMD) 3 FDID action type. It should be set to 0x05 for FD filter ID. Valid values are 0 to
5.

32:63 FDID 32 The functionality of the FDID is defined by the FDID_MDID field. It must be set
to zero if the FDID_PRIO equals zero.

Bit(s) Name Field
Size Description

613875-009 1529

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.4 LAN Transmit - Advanced Features

The E810 is a device designed to support the COMMS market usage models as well. On the Tx side, this
includes the COMMS Tx-Scheduler detailed in Section 8.3, “Transmit Scheduling” and the Tx advanced
host interface.

10.5.4.1 Advanced Mode Host Interface

The Advanced mode host interface includes some new types of services, as follows:

• Many Tx-Queues

To address fine-grained QoS in Tx, the transmits to many targets are controlled and paced
separately. This is done by supporting many Tx-Queues to allow the fine distinction between targets
and class of services. The E810 supports 16K transmit queues. Each one of the Tx-Queues is
individually controlled by the Tx-Scheduler.

• No Locality Assumption for COMMS Queues

In Enterprise and Cloud usage models, the transmitted data comes from applications running on
the host platform. Those applications can be part of the PFs, and also belong to VMs or VFs in a
virtualized environment. Each function is allocated with set of Tx-Queues. The amount of resources
associated with a function is derived from the amount of CPU cores the function runs, and the
amount of TCs it uses. For the Enterprise and Cloud usage models, the assumption is that the E810
needs 2048 Tx-Queues to address all functions Tx needs. As mentioned above, for the COMMS
usage models, many Tx-Queues are required (16K in the E810).

Another difference between the Enterprise/Cloud and the COMMS usage model is the locality. In the
Enterprise/Cloud usage models, not all the VMs run simultaneously on the CPU core. Rather, they
are swapped in and out. Only the VMs that actively run generate Tx traffic. Hence, the assumption
is that simultaneously a limited amount of Tx-Queues (256 in the E810) are active. In COMMS
usage models, a small amount of software entities run on the platform anyway. Each entity uses
many queues for its QoS purposes.

The E810 manages internal descriptors cache to meet the Tx performance requirements while
optimizing the PCIe bandwidth. Cache helps to improve performance under some locality
assumption. This works for the Enterprise/Cloud usage models.

As explained in Section 10.5.4.3, the E810 supports three types of Tx-Queues. Some of them use
internal cache to accommodate device’s performance requirements. The pure COMMS host
interface is architected to meet the required performance without using the descriptors caching. It
uses the Richer doorbell format explained below and the quanta descriptors explained in
Section 10.5.4.4.

10.5.4.2 Advanced Mode Host Interface New Terms and Entities

The Advanced mode host interface includes some new type of entities, as follows:

• Richer Doorbell Format

Together with quanta queue, it enables accurate scheduling, as well as accurate usage of internal
resources and caches. This way, the device operates fine-grained traffic management with high
performance for 16K queues with no locality assumption.

This adds some complexity to software flows. So, pure COMMS applications are not limited for 256
locality but pay by some complexity in the Host interface.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1530 613875-009

The Advanced Mode Doorbell is detailed Section 10.5.4.6.

• Tx-Queue Behavior Profiles

The Tx-Scheduler of the X710/XXV710/XL710 worked with one fixed quanta size (4 KB) over all
Tx-Queues and RDMA QSets. In the E810, each Tx-Queue can be configured to operate in different
quanta size. Some other features are also profiled per Tx-Queue.

Each Tx-Queue is assigned with three types of profiles, Quanta Profile, Packet Shaping Profile, and
Cache Profile. The Tx-Queue behaves according to the profile definitions it is associated with.

• Quanta Profile

Each Tx-Queue is associated with one of 16 configured quanta profiles. The quanta profile includes
the following parameters:

— Max Descriptors in a quanta:

• In Legacy queue, it defines the number of descriptors fetched when the queue is scheduled
according this parameter.

• In advanced mode for TSO segments, it defines how many descriptors are fetched for each
TSO quanta.

— Max Commands in a quanta:

• Similar to the previous, in Legacy queue or in LSO enabled queue, related to internal
structures of packet processing. Number of commands per packet is driven from number of
descriptors represent the packet.

— Configured quanta size:

• Define the quanta size used by the legacy queues or in TSO.

The Quanta Profile structure is detailed in Section 10.5.5.3.

• Packet Shaping Profile

Used in Legacy Host Interface Queue (Queue type #1 detailed in Section 10.5.4.3). The E810
Tx-Scheduler can shape and schedule traffic based on bytes-per-second, or based on
packets-per-second. This feature is configurable per each scheduling group in any scheduling layer.
When the queue operates in legacy host interface mode, The Packet Shaper Profile provides a
predictable number of packets per scheduled quanta. Like in the regular speculative scheduling,
after the queue is scheduled and the quanta is processed, an update with the real amount of
packets is sent to the Tx-Scheduler to keep all further scheduling decision accurate.

The Number of Packets Profile structure is detailed in Section 10.5.5.5.

• Cache Profile

Used to fine tune quanta descriptor caching between highest single queue performance and faster
response to Head Drop. Described in Section 10.5.5.4.

• Quanta Queue

Quanta Queue is explained in Section 10.5.4.4.

• Completion Queue

Completion Queue is explained in Section 10.5.4.5.

• Doorbell Queue

Doorbell Queue is explained in Section 10.5.4.7.

613875-009 1531

Intel® Ethernet Controller E810 Datasheet
LAN Engine

• Head Drop

Two types of Head Drop are explained in Section 10.5.6.2 and in Section 10.5.6.3.

10.5.4.3 LAN Transmit Queue Modes

Each queue managed by the host interface operates in one of two modes - Legacy and Advanced
Transmit. The Advanced Transmit mode enables software to tightly control the burstiness of the traffic
from this queue, and to interleave transmissions between multiple data sources while limiting the burst
size from any one given queue.

To assist the LAN transmit scheduler to control the burst size, software provides ongoing run-time data
in the form of Quanta Descriptors posted to Quanta Descriptor Rings, as well as in the doorbell writes.
These scheduled quanta include the number and overall size of data posted for transmission to a given
queue. The device-based transmit scheduler uses this data to schedule and pace packets.

The E810 supports two Tx-Queue host interface modes:

• Legacy Mode (X710/XXV710/XL710 backward compatible):

Exposed VF interfaces are binary compatible with prior generation products. This mode supports
the usage model of migrating virtual machines utilizing SR-IOV between product generations of the
same family (the X710/XXV710/XL710 and the E810).

PF managed transmit queue configuration can be changed relative to the X710/XXV710/XL710, as
the PF driver must be updated to support the E810.

• Advanced Transmit Mode:

A higher granularity and controlled burst size for packet transmission scheduling.

Both Legacy and Advanced queues can transmit regular packet (SSO) and TSO messages. The
configuration for Legacy versus Advance Host interface is per Tx-Queue. The hardware identifies three
types of behavior in Tx-Queue modes:

• Legacy Queue — As described above. This queue operates in legacy interface and can transmit
SSO and TSO messages.

• Advanced Mode with TSO Support — Tx-Queue in this operation mode uses the advanced host
interface and enjoys the burst control for both SSO and TSO messages. This queue type does not
support backward compatibility with previous device generations.

• Advanced Mode with ‘NO’ TSO Support — This queue uses the advanced host interface with no
TSO support.

The E810 supports up to 16K Tx-Queues. Each one of these 16K queues can be configured to operate in
one of three above modes of operation with some limits:

• The total amount of queues that are configured for mode 1 or mode 2 must not exceed 2K at any
given time.

• The performance goals of Tx are calculated under the locality assumption where no more than 256
Tx-Queues that are configured for mode 1 or for mode 2 are active simultaneously. There is no
locality restriction for queues of mode 3.

In this section, where the document refers to LSO-enabled queue, it can be a mode 1 or mode 2 queue.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1532 613875-009

10.5.4.4 Quanta Descriptor

Quanta descriptors are submitted on a physically adjacent but separate queue (the QDQ) from the
associated transmit queue, with an equal number of descriptors defined as the transmit queue. Quanta
descriptors themselves are eight bytes in length. Two types of quanta descriptors are supported:

• Single Send (SSO)

• Transmit Segmentation Offload (TSO).

During the descriptor posting flow, when software completes a quanta, software also writes a quanta
descriptor to the QDQ associated with the transmit queue.

Every TSO message is considered as a standalone quanta in the QDQ, and the device can transmit the
TSO in multiple quanta’s, but software posts the TSO operation as a single standalone quanta
descriptor. This means that any partially-filled quanta from previous SSOs are closed automatically by
hardware before submitting the new quanta descriptor associated with the TSO. Furthermore, the
quanta descriptor associated with the TSO is automatically closed and not aggregated with any later
operation.

Figure 10-9. Quanta Descriptor and Data Descriptor

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15

TX-Queue Length

Quanta Queue Length Equals To
Tx-Queue Length in Desc. units

Every Quanta Descriptor
Represents a group of TX

packets

613875-009 1533

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.4.5 Completion Queue (CQ) Descriptor

After each transmit packet is fetched from host memory into device memory, or on packet
transmission, a completion notification can be provided by the device. The E810 supports two
completion methods

• Descriptor write-back — An existing feature.

• Completion Queue — A new feature in the E810.

Completion mode is configurable per Tx-Queue. When a Tx-Queue is configured for Completion Queue
method, it is also associated with a Completion Queue.

Completion Notification is generated in three cases:

• Software marks transmit descriptors with either Report Status (RS) or Report Event (RE) request in
the Tx-Descriptor.

Note: In TSO transmits, RS or RE bit can be set only at the last descriptor of the TSO message.

Table 10-20. SSO Quanta Descriptor Format

Field Bit(s) Description

Type 0 Quanta descriptor type. Set to 0b for Single Send.

Desc 6:1 Amount of data descriptors occupied by the quanta packets. Up to 63 descriptors per quanta.

Length 14:7 Data length in 64-bytes resolution - up to 16K-64 bytes.

Reserved 15 Reserved. Must be set to 0b.

Number of Packets 21:16 Number of packets incorporated in the quanta.
A quanta can include 1-63 packets.
Value of 0 is reserved for special cases.

Reserved 31:22 Reserved. Must be set to zero.

Expire Timestamp 49:32 Expire timestamp.

Timestamp Drop Flag 50 If this bit is set to 1b, the device compares the Expire Timestamp field against the internal
timestamp, and drops the quanta if needed.

Tx-Descriptor 63:51 Tx-Descriptor ID. Points to the first descriptor of the quanta. This data helps the device in the
Head Drop implementation.
If the Head Drop feature is not enabled for this queue (drop enable bit in queue context is
cleared), this field is set to zeros.

Table 10-21. TSO Quanta Descriptor Format

Field Bit(s) Description

Type 0 Quanta descriptor type. Set to 1b for TSO.

Desc 13:1 Amount of descriptors occupied by the TSO message.

Length 31:14 Data length in bytes resolution - up to 256KB-1 bytes.
This field defines the L4 payload bytes that should be segmented.

MSS 46:32 Maximum Segment Size (MSS) in bytes. The required maximal segmentation size. Up to 9.5KB.

Header Size 55:47 Header size. The size of the header in bytes.

Reserved 63:56 Reserved.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1534 613875-009

• When a packet is dropped on transmit due to timestamp expiration or an explicit drop request from
software, the E810 might or might not coalesce drop notifications in case of two contiguous drop
events.

• When ITR expires and there are outstanding completions that have not yet been reported to
software.

When a completion notification is targeted to a Completion Queue, it is not immediately written to the
host memory. Each Completion Queue structure includes a 64-byte internal cache. The completion
notifications are coalesced.

Completion notifications are written to host memory when:

• The internal cache is full with 16 notification (64 bytes).

• At the end of ITR expire flow, the internal completion cache is written to the host even if it is not
full.

• When a Queue Disable marker or a VM reset marker is written to the Completion Queue, the
internal completion cache is written to the host even if it is not full.

Unlike many other descriptors that implement a Descriptor Done (DD) bit, software identifies new
Completion Queue entries by comparing the generation bit. Hardware toggles the generation bit on
every wrap-around on the Completion Queue. Using this method, software can determine the old
entries from the new ones by looking for mis-matches on the generation bit from one descriptor to the
next.

Table 10-22. Completion Queue Descriptor Format

Field Bit(s) Description

Tx Q ID / VM ID 13:0 Transmit Queue ID this completion refers to.
Queue ID in the function space as configured in the Tx-Queue context field qnum_in_func. See
Table 10-29 on page 1539.
When completion type == 6 (VM reset marker), this field = VM ID.

Reserved 14 Reserved.

Generation 15 Completion write generation bit. This bit is flipped every wrap-around of the Completion Queue write.
Software uses this bit to identify newly-written completions versus those that have already been
processed.

Tx Head 28:16 Current Tx-Queue’s head. Points to the next pending descriptor.
Valid when Completion Type is one of 000b–100b.

Completion Type 31:29 Completion entry type (this is a coding of completion types):
000b = Tx Head report as part of ITR flush process (No RS, No RE).
001b = Tx completion upon RS bit set in the Tx-Descriptor.
010b = Tx completion upon RE bit set in the Tx-Descriptor.
011b = Tx completion upon RS + RE bits (both bits are set in Tx-Descriptor).
100b = Drop notification upon transmit timestamp expiration, drop doorbell request or NOP

descriptor.
Note: When Drop completion is about to be reported, if one or more packets are
successfully transmitted and not yet reported, an unsolicited completion is reported for the
prior reporting of the drop. In that case, Completion Type 0 (000b) is used for this
unsolicited. Other Drop events, like anti-spoof, are not reported as a “Drop” completion.

101b = Queue Disable marker. Marks that Tx-Queue disable flow is flushed out via the Completion
Queue. In that case, RS and RE bits from Tx-Descriptor, are not reflected.

110b = VM reset marker. When a VM reset flow is completed and any activity related to any queue
of the VM is drained from the Tx-Pipe, a VM reset marker is posted in any Completion
Queue that is associated with this VM.
Note: This marker is triggered by EMP firmware.

111b = Reserved. Must not be used.

613875-009 1535

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Software must configure the Completion Queue long enough to ensure that completion is not
overlapped before software processes them.

10.5.4.6 Doorbells

E810 Tx-Queues can be configured in one of two Host interface modes: Legacy and Advanced. While
the doorbell registers are shared for both modes, the doorbell format is different in those two modes,
Hitting a doorbell to a specific queue is done by CSR writing to its doorbell register.

10.5.4.6.1 Legacy Mode Doorbell

When a queue is used in legacy host interface mode, the doorbell format is like in legacy devices, where
writes to a queue’s tail register simply reflect advancing of the tail pointer in the transmit ring to post
new descriptors to hardware for processing.

10.5.4.6.2 Advanced Mode Doorbell

When a queue is configured for advanced host interface mode, writes to the queue tail register are
redefined to pass additional information to control packet scheduling via quanta descriptors.
Furthermore, the format of tail writes is different between Single Send (SSO) and Transmit
Segmentation Offload (TSO) operations.

In addition, advanced mode supports current head-of-queue dropping based on quanta descriptors of
scheduled packets via a Drop Doorbell format described below. An expected case is if the transmit
backlog on a given queue grows too long, software can instruct the hardware to ignore existing packets
posted on the transmit queue for transmission. Software specifies the number of quantas to drop.
Hardware automatically selects the packets to drop from the current head-of-queue. Hardware then
generates completion notifications to software to indicate which specific packets were dropped.
Hardware accumulates the drop requests and executes the drops when the Tx-Queue is scheduled for
transmission.

The internal Drop accumulator is a 7-bit counter per Tx-Queue. It can accumulate up to 127 quantas
drop request. Overflow is silently ignored. When the Tx-Queue is empty, any Drop request is ignored
and the accumulator is reset. Advanced Mode also includes the ability for software to specify a
maximum guaranteed transmission time specified as an expiration time for transmitted packets. If
packets are not transmitted in time, the packets are automatically dropped by the transmit pipeline.

The completion notification is identical to the method described above. To enable using this time based
transmission, software must maintain a free running timer of 18 bits with resolution of 1 ms. Software
is required to read this hardware timer from time to time and synchronize its timer.

When queuing a quanta with Expire Timestamp, the timestamp data is part of the quanta descriptor.
When queuing it, software must keep the written timestamp to be later than current free running time
and not later than 18 seconds than current time.

Table 10-23. Legacy Doorbell Format

Field Bit(s) Init. Type Description

TAIL 12:0 0x0 RW The Transmit Tail defines the first descriptor that the software
prepares for the hardware (it is the last valid descriptor plus one).
The Tail is a relative descriptor index to the beginning of the transmit descriptor
ring.

Reserved 31:13 0x0 RSV Reserved. Must be set to zero.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1536 613875-009

18-bits timer in 1 ms resolution wraps around approximately every four minutes. The assumption is
that packets never wait so long in a Tx-Queue. To cover this rare case as well, it is recommended that
software periodically scans the Tx-Queue. When finding a packet that pends a long time in the
Tx-Queue, software can send a drop request to that Tx-Queue.

When adding a packet to the Tx-Queue with an expiration time, the delta time between the expiration
time of the entered packet and the previous packet in the queue must be smaller than 22 seconds.

Note: Legacy queues or queues with TSO enabled (Mode 1 or 2) do not support “Head Drop”.
Queues that use drop mode must also enable Completion Queue notifications.

Table 10-24. SSO Doorbell Format

Field Bit(s) Init. Type Description

TAIL 12:0 0x0 RW The Transmit Tail defines the first descriptor that the software prepares for the
hardware (it is the last valid descriptor plus one). The Tail is a relative
descriptor index to the beginning of the transmit descriptor ring.

DB Type 14:13 00b RW Doorbell Type
00b = SSO (default)
01b = LSO
10b = Drop doorbell
11b = Reserved. Hardware silently ignores this doorbell.

Reserved 15 0b RSV Reserved.

Data Length 23:16 0x0 RW Data length incorporated in current doorbell in 64-byte units, rounded up. For
65-byte packet, Data Length field == 2.

Number of Packets 29:24 0x0 Number of packets incorporated in current doorbell.
A quanta can include 1-63 packets.
a value of 0 is reserved for special cases.

Quanta Completed 30 0b RW Set to 1b if this doorbell closes a full quanta.

Reserved 31 0b RSV Reserved.

Table 10-25. TSO Doorbell Format

Field Bit(s) Init. Type Description

TAIL 12:0 0x0 RW The Transmit Tail defines the first descriptor that the software prepares for
the hardware (it is the last valid descriptor plus one). The Tail is a relative
descriptor index to the beginning of the transmit descriptor ring.

DB Type 14:13 00b RW Doorbell Type
00b = SSO (default)
01b = LSO
10b = Drop doorbell
11b = Reserved. Hardware silently ignores this doorbell.

Reserved 15 0b RSV Reserved. Must be set to 0b.

First Quanta Length 23:16 0x0 RW Data length that is sent in each quanta during this LSO transmission. This
does not include the last quanta (when the TSO spans on more than one
quanta), which can be shorter and covers the tail of the LSO message. The
quanta size is in 64-byte units and it is rounded up.
In Queue Type #2 (LSO enabled), the max quanta size is 2 KB when
transmitting TSO packets.

First Quanta Number
of Segments

29:24 0x0 RW Number of segments that are sent in each quanta during this LSO
transmission. This does not include the last quanta (when the TSO spans on
more than one quanta), which can be shorter and covers the tail of the LSO
message.

613875-009 1537

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Note: Drop commands are supported only for Tx-Queues type #3. Drop doorbell for a Tx-Queue
type #1 or #2 are considered as a malicious behavior.

10.5.4.7 Doorbell Queue Descriptors

At very high packet rates, register writes for each packet to a device doorbell register becomes
inefficient. A common software practice is to batch tail writes to post several packets at a time to
hardware for processing. However, with high queue counts (16K transmit queues), the tail writes
themselves can be spread out over a number of queues at one time, making an effective software tail
batch algorithm difficult to implement. The E810 supports a mode where the individual doorbell writes,
which could be posted directly to the tail register, instead are coalesced into a series of doorbell
descriptors stored in a doorbell descriptor ring. From a single queue, software can advance the tail
pointers on multiple queues simultaneously, effectively posting multiple packets to various queues with
a single Doorbell Queue tail write.

Reserved 30 0b RSV Reserved. Must be set to 0b.

Single Quanta TSO 31 0b RW Set when first quanta is also the last quanta, in case a Large Send packet
contains a single quanta.

Table 10-26. Drop Doorbell Format

Field Bit(s) Init. Type Description

Number of Quantas
to Drop

6:0 0x0 RW Drop command work in quanta granularity.
This field marks how many quantas to drop.
a value of 0 in this field is Illegal and is silently be ignored by hardware.
Software can instruct the hardware to drop 1-127 Quanta’s.
If this queue is configured to Completion Queue method, the Drop Done (DD)
is reported by the Completion Queues. If the queue is configured for the other
completion methods, the Drop takes effect with no Done reporting.
The hardware manages a Drop register per each Tx-Queue. This is a 7-bit
register. When this register is saturated, the hardware uses the saturated
value and drops the reminder with no overflow notification to software.
It is recommended that software checks the Drop status in the Completion
Queue before posting more Drop commands.

Reserved 12:7 0x0 RSV Reserved.

DB Type 14:13 00b RW Doorbell Type
00b = SSO (default)
01b = LSO
10b = Drop doorbell
11b = Reserved. Hardware silently ignores this doorbell.

Reserved 31:15 0x0 RSV Reserved.

Table 10-27. Doorbell Queue Doorbell Format

Field Bit(s) Init. Type Description

TAIL 12:0 0x0 RW The Transmit Tail defines the first descriptor that the software prepares for the
hardware (it is the last valid descriptor plus one). The Tail is a relative descriptor
index to the beginning of the transmit descriptor ring.

Reserved 31:13 0x0 RSV Reserved. Must be set to zero.

Table 10-25. TSO Doorbell Format [continued]

Field Bit(s) Init. Type Description

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1538 613875-009

A single Doorbell Queue serves one and only one PF or VF. Software advances the Doorbell Queue by
writing to the Doorbell Queue Doorbell CSR.

When processing a Doorbell Descriptor, if the RS bit is set, a descriptor write-back is required right after
it was processed. The hardware writes back the value 0xFFFF_FFFF_FFFF_FFFF to the descriptor
location.

10.5.4.8 Transmit During Link Down

In most usage models, when the link becomes inactive, it is not required to preserve the transmit
packets that were not sent. During link down, the hardware continues to fetch transmit descriptors and
data regardless of the link status. Packets directed to the network are discarded, while packets directed
to local VSI port are forwarded successfully.

Note: When the link becomes inactive, PFs on this port get a link status change interrupt. It is
expected that the VFs get the link status change indication from their parent PF.

10.5.5 Transmit Configuration

This section covers the various initialization and configuration requirements and examples of the
following areas:

• Transmit queue context configuration.

• Quanta descriptor queue context configuration, and associated quanta profile context.

• Doorbell Queue configuration.

• Completion Queue context configuration.

10.5.5.1 Transmit Queue Programming

Queue enable and disable flows are described and summarized in Table 10-32 on page 1544.

Unlike previous products, which used host memory to cache queue contexts, the E810 implements all
queue contexts in on-die internal memories. In response to an Add Queue Admin Queue command,
EMP firmware uses a series of indirect register accesses (a pair of index and data registers) to program
the queue contexts. The flow is described below.

Table 10-28. Doorbell Descriptor Format

Field Bit(s) Init. Type Description

TXQ_ID 13:0 0x0 RW Target Transmit Queue ID.

DD 14 0b RW Descriptor Done bit. Set to 0b by software, Set to 1b by hardware

RS 15 0b RW Report Status.

DUMMY 16 0b RW Used for marker. Treated as a no-op by hardware.

Reserved 31:17 0x0 RSV Reserved.

DBData 63:32 0x0 RW Doorbell Data.
The exact format of a doorbell as it would sent in the Direct Doorbell. All three
doorbell formats can be sent via the Doorbell Queue.

613875-009 1539

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.5.2 Transmit Queue Context

This section describes the setting options of the LAN transmit queue parameters named as “queue
context”.

Transmit Q context is an on-die structure that contains the configuration, state, and internal scratch
pad of each one of the transmit queues.

Context configuration change cannot be performed while the Tx-Queue is active. Configuration is
allowed only when the queue is disabled or suspended (in the Tx-Scheduler).

10.5.5.2.1 Transmit Queue Context Structure

Table 10-29. LAN Tx-Queue Context in the QTXCOMM_CNTX Array

Alias Type Width
(Bits)

LS
Bit

MS
Bit Description

Queue_addr Static 57 0 56 Descriptor queue 57 MS bits of the start address. Every queue
address must be 128B-byte aligned. 7 LS bits are 0.

PORT_num Static 3 57 59 Port number with which the queue is associated.

CGD_num Static 5 60 64 CGD number with which the queue is associated.

PF_num Static 3 65 67 PF number that owns this queue.

VMVF_NUM Static 10 68 77 VF/VM index should be programmed per VMVF_TYPE setting:
• For VMVF_TYPE=VF, it is the VF number between 0:256.
• For VMVF_TYPE=VM, it is the VM number between 0:767.
• For PF or EMP, this field should be set to zero.

VMVF_TYPE Static 2 78 79 VF/VM Type
00b = Queue belongs to VF.
01b = Queue belongs to VM.
10b = Queue belongs to PF.
11b = Reserved.

SRC_VSI Static 10 80 89 The VSI with which the queue is associated (0: 767).

TSYN_ENA Static 1 90 90 TimeSync (1588) enabled via this queue.

Internal Usage Flag Static 1 91 91 This Flag is reserved for internal usage.
This bit must be equal to the TSO_Enabled_Queue flag.

ALT_VLAN Static 1 92 92 Alternate VLAN tag select.

CPUID Static 8 93 100 CPU ID for TPH. If enabled, it is updated by the read completion
of transmit data rather than the descriptors, as implemented in
the legacy LAN queues.

WB_MODE Static 1 101 101 Select between descriptor write-back and Completion Queue
write-back:

0b = Descriptor write-back.
1b = Completion Queue write-back.

TPHRDdesc Static 1 102 102 Descriptor read TPH enable.

TPHRDdata Static 1 103 103 Data read TPH enable.

TPHWRdesc Static 1 104 104 Descriptor write TPH enable.

CMPQ_ID Static 9 105 113 Completion Queue ID.

qnum_in_func Static 14 114 127 Queue ID in PF or VF space, as reported in Completion Queue.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1540 613875-009

ITR Notification_Mode
(Int NoExpire Mode)

Static 1 128 128 ITR Notification Mode:
0b = This queue notifies Tx state when descriptor signed with

RS or RE, and also as part of ITR flow.
1b = This queue notifies Tx state only when descriptor signed

with RS or RE.

adjust_profile_id Static 6 129 134 Profile ID for packet length Adjustment. See Section 8.3.2.4.2.1
for description.

Queue_length Static 13 135 147 Transmit Queue Length (QLEN).
Defines the size of the descriptor queue in descriptors units
from eight descriptors (QLEN=0x8) up to 8K-32 descriptors
(QLEN=0x1FE0).
QLEN restrictions: At smaller queue size than 32 descriptors,
the QLEN must be whole number of eight descriptors. At larger
size than 32 descriptors, the QLEN must be whole number of 32
descriptors.
Note: If the queue is configured to Mode #2 or #3 (uses

quanta descriptors), its length must be equal to or
longer than 32 Tx-Descriptors.

Quanta_profile_idx Static 4 148 151 Quanta Profile Index.
Each Tx-Queue must be associated with one of eight quanta
profiles.

TSO_Enabled_Queue Static 1 152 152 Legacy Queue or Advanced Mode Queue.
Setting this bit for Queue Type 1 or 2 enables internal usage of
descriptor caching, which is required when Legacy interface or
TSO are used.

TSO_Qnum Static 11 153 163 The E810 supports up to 16K Tx-Queues. 2K of them can be
TSO-enabled. Each TSO-enabled queue is associated with a TSO
internal state structure. This field is the TSO state pointer.
This field must be initialized for every TSO-enabled Tx-Queue.
TSO structures are equally shared between the PFs (e.g., in an
8-ports configuration, each PF is associated with 256 TSO
context structures). Each PF manages the TSO associating
inside across the PF and VF queues.
When calling the “Add Tx-Queue” AQC, the software provides a
Tx-Queue context for each added Tx-Queue. inside the software
structure, software provides a zero-based ID TSO_Qnum in the
PF space. EMP firmware converts it to a physical TSO_Qnum
and writes it to the queue context.

legacy interface Static 1 164 164 Legacy or Advanced Host Interface:
0b = Advanced host interface.
1b = Legacy host interface.

drop enable Static 1 165 165 When this bit is set to one, the Tx-Queue supports Head Drop
feature. For those queues, software must issue the correct
Tx-Descriptor Field with each quanta descriptor.
When the queue is not configured for Drop support, the
Tx-Descriptor field in the quanta descriptor is ignored.

cache_profile_idx Static 2 166 167 Association of the queue to a quanta cache profile.
Cache profile declare parameter can limit the number of quanta
descriptors accumulated in the device cache per the Tx-Queue.
This allows a per-queue fine tuning for Drop command response
and single queue performance of the queue.

Table 10-29. LAN Tx-Queue Context in the QTXCOMM_CNTX Array [continued]

Alias Type Width
(Bits)

LS
Bit

MS
Bit Description

613875-009 1541

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.5.3 Quanta Profile

The E810 supports 16 quanta profile registers. Every enabled transmit queue is configured with an
index to one of the 16 quanta profiles. Each quanta profile specifies resource limits each transmit queue
can consume of the shared transmit pipeline. Resource limits include limiting the number of descriptors,
commands, and size in bytes allowed per quanta. These limits enable the arbiter and scheduler to
guarantee the desired transmit performance of high-priority queues by limiting sources of disruption
from lower-priority queues.

The quanta Profiles span on 16 registers: GLCOMM_QUANTA_PROF[0..15]. The quanta profiles are
auto-loaded from the NVM. They can be reconfigured by the active PFs. When reconfigured by a PF, the
ownership is managed by the PFs itself.

The Field QUANTA_SIZE in the Profile is used to configure the quanta size in bytes. Used by hardware
for LSO processing and for legacy queue. When it configures a legacy queue quanta size, the value
must configured in 64-byte granularity (The five LSB must be set to 0).

The QUANTA_SIZE field is configured to a value between 256 bytes and 4 KB.

Notes:

• GLLAN_TCLAN_CACHE_CTL.MIN_ALLOC_THRESH represents descriptors fetching caching policy.
This register needs to be configured to (the MAX between all Number of descriptors in a quanta
from all Quanta Profiles) + 4.

• It is recommended that legacy queues will be configured to 1 KB quanta.

10.5.5.4 Quanta Descriptor Cache Profile

Cache profiles are used to fine tune quanta descriptor caching between highest single queue
performance and faster response to Head Drop.

There are four quanta descriptor cache profiles used to configure the quanta descriptor cache behavior
of any given transmit queue. As the case with most other descriptors, posted quanta descriptors are
read ahead into local memory for fast access and processing by the scheduler. The quanta descriptor
cache itself is a limited and shared resource. Cache profiles enable software to bias device processing
preference to high priority queues over best effort queues.

Quanta descriptor caching has two related potential impacts to device performance. If insufficient cache
is allocated to a given cache profile, single-queue transmit performance can suffer from excessive
quanta descriptor fetch latency. Likewise, any queue that is subject to drop quanta doorbell commands
from software should point to a cache profile that limits the number of pre-fetched quanta descriptors.
Drop quanta doorbell commands can introduce unnecessary bubbles in the transmit pipeline as
pre-fetched quanta must be drained from the transmit pipeline.

packet shaper profile idx Static 3 168 170 Used in Legacy Host interface Queue (Queue Type #1).
Some of the Tx-Scheduler nodes are configured for packet
shaping. In Legacy queues, the number of packet in the quanta
are not known in advance, The packet shaper profile defines a
preliminary packets number. The Tx-Scheduler takes this
number into consideration until the descriptors' fetch and
update flow.

Internal Queue state Dynamic 122 171 292 Internal queue state.

Table 10-29. LAN Tx-Queue Context in the QTXCOMM_CNTX Array [continued]

Alias Type Width
(Bits)

LS
Bit

MS
Bit Description

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1542 613875-009

The Cache Profiles span on four registers: GLQDC_CFG_PRFL_1[0..3]. The cache profiles are
auto-loaded from the NVM. They can be reconfigured by the active PFs. When reconfigured by a PF, the
ownership is managed by the PF itself.

10.5.5.5 Packet Shaping Profile

Packet Shaping profile is used for Legacy Queues. When packet shaping is used, when queue is
configured with advanced mode host interface, the number of packets in a quanta is provided by
software in the doorbell and in the quanta descriptor.

If a queue is configured to legacy host interface, the number of packets is not provided by software.
The queue is associated with Packet Shaping Profile, which provides a prediction per usage model
queue type of the number of packets in a quanta, where its size is configured in Quanta Profile.

Packet Shaping Profile is an 8-CSRs structure: GLCOMM_PKT_SHAPER_PROF[0..7].

10.5.5.6 Doorbell Queue Configuration

Software is required to fully initialize the entire Doorbell Queue Context to zero prior to enabling the
Doorbell Queue. The Doorbell Queue configuration can only be changed while the associated transmit
queues are disabled. Read/Write operations to the context structure are performed via direct register
access to the Doorbell Queue Configuration context QTX_COMM_DBLQ_CNTX[5][256].

The Doorbell Queue Context structure is detailed in Table 10-30.

Table 10-30. Doorbell Queue Context

Alias Width
(Bits)

LS
Bit

MS
Bit Type SW Init. Description

Queue_addr 57 0 56 Static Variable Descriptor queue start address.

Reserved 7 57 63 Reserved.

Queue_length 13 64 76 Static Variable Queue length in descriptor units.

Reserved 3 77 79 Reserved.

PF_NUM 3 80 82 PF number.

Reserved 1 83 83 Reserved.

VF_NUM 8 84 91 Static Variable VF number.

Reserved 2 92 93 Reserved.

PFVF_TYPE 2 94 95 00b = Queue belongs to VF.
01b = Reserved.
10b = Queue belongs to PF.
11b = Reserved.

CPUID 8 96 103 Dynamic

TPH Desc Rd 1 104 104 Static

Reserved 3 105 107 Reserved.

TPH Desc Wr 1 108 108 Static

Reserved 3 109 111 Static Reserved.

DBL_Q_ENA 1 112 112 Static Doorbell Queue Enable.
When disabled, the queue is not scanned by the device.

Reserved 15 113 127 Reserved.

613875-009 1543

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.5.7 Completion Queue Configuration

Unlike many other queue usage models, Completion Queues are expected to be associated with a given
CPU core. The expected usage model assumes that software is bound to a given CPU core, and
furthermore schedules data for transmission on one or more transmit queues. The Completion Queue
serves to aggregate transmit completions from multiple transmit queues to a single Completion Queue.

The Completion Queue is associated with one and only one PF or VF. All transmit queues that can post
completion events must be associated with this associated PF or VF. The completions can be generated
at various rates depending on the per-queue ITR settings.

Software is required to fully initialize the entire Completion Queue context structure to zero prior to
enabling of the Completion Queue. The queue configuration can only be changed after all associated
transmit queues are disabled. Read/Write operations to the context structure are performed via direct
register access to the Completion Queue Configuration context GLTCLAN_CQ_CNTX[21][512].

The Completion Queue context structure is detailed in Table 10-31.

Read Head 13 128 140 Dynamic Queue Head.
Read by software. Written by hardware.

Reserved 3 141 143 Reserved.

Read Tail 13 144 156 Dynamic Queue Tail.
Written by software. Read by hardware.

Reserved 3 157 159 Reserved.

Table 10-31. Completion Queue Context

Field Bit(s) Type Description

Queue Address 56:0 RW Base Address of the Completion Queue. Completion Queue base must be cache-line
aligned. This field does not contain the low seven bits of the address, which are
always zero.

Reserved 63:57 RSV Reserved.

Queue Length 81:64 RW Completion Queue length in units of 16 completion descriptors. The Completion
Queue length is a multiple of catch-lines. This field does not contain the low four bits
of real Completion Queue length.
Max Completion Queue length is 4M entries. This high number is to cover completion
from multiple transmit queues in case software is delayed in completion entries
processing.

Reserved 95:82 RSV Reserved.

Generation 96 RW Current generation bit. This bit is flipped every wraparound event.

WritePTR 118:97 RW Current completion write pointer (0. 4M-1).

Reserved 127:119 RSV Reserved.

PF_NUM 130:128 RW PF number.

VMVF_NUM 140:131 RW VM/VF number.

VMVF_TYPE 142:141 RW 00b = Queue belongs to VF.
01b = Queue belongs to VM.
10b = Queue belongs to PF.
11b = Reserved.

Table 10-30. Doorbell Queue Context [continued]

Alias Width
(Bits)

LS
Bit

MS
Bit Type SW Init. Description

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1544 613875-009

Some other commands can be operated for a Completion Queue, like initiating VM reset marker and
flushing out of internal Completion Queue cache. Those commands are operated using CSRs
GLCOMM_CQ_CTL[512].

10.5.5.8 Tx-Queue Handling Admin Queue Commands

Reserved 159:143 RSV Reserved.

TPH Desc Wr 160 RW

CPUID 168:161 RW

Reserved 191:169 RSV Reserved.

Internal completions
cache

703:192 RW Internal cache of completions.
Completions are written to the host as a full, aligned cache-line. If a write of a
partial cache-line is required, the remaining bytes are padded out with zeros and
with the opposite generation bit, such that software does not consider the padding
as a completion.

Table 10-32. Tx-Queue Handling Admin Queue Commands

Command Opcode Brief Description Section
Reference

Add Tx-Queues 0x0C30 This command configures queues in the PQM, configures leaf nodes in the PSM, and
associates the queues with the leaf nodes.
This command allocates leaf nodes. Software provides the parent node’s TEID and
number of queue to allocate. With the completion, a separate TEID is provided per
each added queue.

10.5.5.8.1

Queues Disable 0x0C31 This command gets a list of QIDs, disables the Tx-Queues, and releases relevant
Tx-Scheduler resources.
This command serves both LAN queues and RDMA QSets

10.5.5.8.3

Move/Reconfigure
Tx-Queues

0x0C32 This command reconfigures Tx-Queues in the E810. This AQ can be used to:
1. Restructure the Tx-Scheduler and move a leaf node or a group of leaf node

from on parent to another.
2. Reconfigure the Tx-Queues’ CGDs settings.
3. Both 1 and 2.

10.5.5.8.4

Add RDMA Queue
Set

0x0C33 This command configures leaf nodes in the PSM and associate the queue sets with
the leaf nodes.
This command allocates leaf nodes. software provides the parent node’s TEID and
number of queue sets to allocate. With the completion, a separate TEID is provided
per each added queue set.

10.5.5.8.2

Move RDMA Queue
Sets

0x0C34 This Command moves Leaf nodes in the PSM associated with RDMA Queue Sets
from one port to another.

10.5.5.8.5

Move RDMA Tx-
Queue Sets

N/A Note: This is covered by Tx-Scheduler AQ command “Move Node”. RDMA QSet
CGD is managed inside the PE.

Table 10-31. Completion Queue Context [continued]

Field Bit(s) Type Description

613875-009 1545

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.5.8.1 Add Tx LAN Queues (0x0C30)

This command configures Tx-Queues in the E810, configures leaf nodes in the PSM, and associates the
queues with the leaf nodes.

The command gets the following as input parameters:

• Number of added Queues Groups (a Queue Group is a group of queues that are added to a single
Scheduling Parent).

• List of Parent Nodes’ TEIDs. Each is the handle of the parent node of all added queues.

• Number of added queues in each Queue Group.

• List of Queue IDs (in the PF space).

• A queue context structure for each one of the queues.

• Tx-Scheduler leaf node bandwidth configuration parameters for each leaf node associated with add
queue.

This command allocates leaf nodes. Software provides the parent node’s TEID and number of queues to
allocate. Upon completion, a separate TEID is provided per each added queue.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 10-33 describes command format and defines
command specific fields.

Table 10-34 describes format of the data buffer carrying additional command attributes and the
response buffer.

Table 10-33. Add Tx LAN Queue Command Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C30

Datalen 4-5 Length of response buffer.

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Queue
Groups

16 Number of added queue groups. Each added queue group is associated with a
structure inside the command buffer containing the parent TEID, the number of added
queues in the group, and their queue IDs
A maximum of 73 queue groups can be added in one AQ call.
Since the command buffer containing the Queue Groups Structures is bounded to
4 KB, when adding many queues in each queue group, this number can be limited to
the lower number of queue groups.
0 is an invalid value for this field.
In the command response, this field returns the number of successfully-added queue
groups (the first N added queue groups).

Reserved 17-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1546 613875-009

Table 10-34. Add Tx LAN Queue Command and Response Buffer

Category Byte.Bit Field Description

Per Queue Group Structure Per each added queue group, a structure.

0-3 Parent’s TEID The TEID of the parent node to which leaves are added.

4 Number of Queues Number of added queues (1..85).

5-7 Reserved Reserved.

Per-Queue Structure Per-queue 48-byte structure.

0-1
in per-queue

structure

Tx Q ID Tx-Queue ID in LAN space. The number is in PF space. Firmware is
required to translate to global numbering.

2-3 Reserved Reserved. Must be set to 0.

4-7 Queue TEID In the command: Reserved
In the response: Added Tx-Queue TEID.

8-29 Tx-Queues Context
Structure

Per each added queue, raw data structure of Q context 170 bits. The
“Internal Queue State” is not included. It is reset by hardware.

30-31 Reserved Reserved. Must be set to 0.

Tx-Scheduler Leaf Node Configuration The flow of adding a Tx-Queue includes adding of a Tx-Scheduler leaf
node associated with it. The structure below is this node’s configuration.
The structure is identical to the node’s configuration structure in “Add
Scheduling Component” AQC.

32 Reserved Reserved. Must be set to 0.

33 Valid Sections Multiple sections can be valid at a given time.
Bit(s) Description

0 = Generic section (Must be set to 1b.)
1 = CIR BW
2 = EIR BW
3 = Shared BW
4-7 = Reserved.

When only the EIR BW (bit 2) is set, firmware configures EIR bandwidth
only.
When only the Shared BW (bit 3) is set, firmware configures SRL ID and
switch node to SRL.
When both EIR BW and Shared BW are set, firmware configures EIR, SRL
and switch to SRL.

34 Generic Bit(s) Description
0 = Scheduling mode BPS (0) or PPS (1).
1-3 = Priority among siblings (0-7).
4 = Single priority node (1) or WFQ (0).
5-6 = Adjustment value (0-3) used in PSM Credit Update flow.
7 = Reserved.

35 Reserved Reserved.

36-37 CIR BW Profile ID

38-39 CIR BW WFQ Weights
(1-200)

40-41 EIR BW Profile ID When the valid section has Shared BW set, this field is treated as
reserved.

42-43 EIR BW WFQ Weight
(1 -200)

44-45 Shared RL Profile ID When the valid section has EIR BW set, this field is treated as reserved.

46-47 Reserved Padding.

613875-009 1547

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.5.8.1.1 Software Activities Prior to Calling Add Tx LAN Queues AQ

• If a queue uses Completion Queue, then:

— The Completion Queue ID is part of Tx-Queue context.

— Completion Queue must be initialized by software and ready prior to associating a Tx-Queue to
it.

— Configuring of a Completion Queue is implemented directly by software with no firmware
involvement.

• Quanta profile, Cache profile, and Packet Shaper profile that the Tx-Queue points to must be
initialized before the association. This is done by software.

— Profile configuration is implemented directly by software with no firmware involvement.

10.5.5.8.1.2 Software Activities After Add Tx LAN Queues AQ Completed

• Interrupt association with a specific queue is detailed in Section 9.1.2.1.

• Association of a Tx-Queue to DB queue is not reflected in hardware and not part of Add Tx LAN
queue flow.

10.5.5.8.2 Add Tx RDMA Queue Sets (0x0C33)

This command configures leaf nodes in the PSM and associates the queue sets with the leaf nodes.

The command gets the following parameters as input:

• Number of added Queue Sets Groups.

— Queue Set Group is a group of Queue Sets that are added to a single Scheduling Parent.

• List of Parent Nodes’ TEIDs. Each is the handle of the parent node of all added queue sets.

• Number of added Queue Sets in each Queue Group.

• List of Queue Set IDs (in the PF space).

This command allocates leaf nodes. Software provides the parent node’s TEID and number of queues to
allocate. With the completion, a separate TEID is provided per each added queue set.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 10-35 describes command format and defines
command specific fields.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1548 613875-009

Table 10-36 describes format of the data buffer carrying additional command attributes and the
response buffer.

Table 10-35. Add Tx RDMA Queue Sets Command Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C33

Datalen 4-5 Length of response buffer.

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of Queue
Set Groups

16 Number of added queue set groups. Each added queue set group is associated with a
structure inside the command buffer containing the parent TEID, number of added
queue sets in the group, and their queue IDs.
Maximum 127 queue set groups can be added in one AQ call.
The E810 contains maximum 512 RDMA QSets.
0 is an invalid value for this field.
In the command response, this field returns the number of successfully-added queue
set groups (the first N added queue groups).

Reserved 17-23 0 Reserved. Must be set to 0.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 10-36. Add Tx RDMA Queue Sets Command and Response Buffer

Category Byte.Bit Field Description

Per Queue Group Structure Per each added queue group, a structure.

0-3 Parent’s TEID The TEID of the parent node to which leaves are added.

4-5 Number of QSets Number of added queue sets (1..170).

6-7 Reserved Padding.

Per-Queue Structure Per-QSet 4-byte structure.

0-1
in per-queue

structure

Tx QSet ID Tx QSet ID in RDMA space. The number is in physical space.

2-3 Reserved Reserved.

4-7 Queue TEID In the command: Reserved
In the response: Added Tx-Queue TEID.

Tx-Scheduler Leaf Node Configuration The flow of adding a Tx-Queue includes adding of a Tx-Scheduler leaf
node associated with it. The structure below is this node’s configuration.
The structure is identical to the node’s configuration structure in “Add
Scheduling Component” AQC.

613875-009 1549

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.5.8.2.1 Software Activities Prior to Calling Add Tx RDMA Queue Sets AQ

No specific requirements from software.

10.5.5.8.2.2 Software Activities After Add Tx RDMA Queue Sets AQ Completed

• Interrupt association with a specific Q is detailed in Section 9.1.2.3.

• With the Initialized QSet ID, software uses the QSet ID when calling the related RDMA AQs to
associated RDMA QPs with the Initialized QSet.

8 Reserved Reserved. Must be set to 0.

9 Valid Sections Multiple sections can be valid at a given time.
Bit(s) Description

0 = Generic section (Must be set to 1b.)
1 = CIR BW
2 = EIR BW
3 = Shared BW
4-7 = Reserved.

When only the EIR BW (bit 2) is set, firmware configures EIR bandwidth
only.
When only the Shared BW (bit 3) is set, firmware configures SRL ID and
switch node to SRL.
When both EIR BW and Shared BW are set, firmware configures EIR, SRL
and switch to SRL.

10 Generic Bit(s) Description
0 = Scheduling mode BPS (0) or PPS (1).
1-3 = Priority among siblings (0-7).
4 = Single priority node (1) or WFQ (0).
5-6 = Adjustment value (0-3) used in PSM Credit Update flow.
7 = Reserved.

11 Reserved Reserved.

12-13 CIR BW Profile ID

14-15 CIR BW WFQ Weights
(1-200)

16-17 EIR BW Profile ID

18-19 EIR BW WFQ Weight
(1 -200)

20-21 Shared RL Profile ID

22-23 Reserved Padding.

Table 10-36. Add Tx RDMA Queue Sets Command and Response Buffer [continued]

Category Byte.Bit Field Description

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1550 613875-009

10.5.5.8.3 Transmit Queue Disable Flow - LAN and RDMA (0x0C31)

In this command, software provides a list of Tx-Queue or RDMA QSet IDs that need to be closed. The
AQ must be called after software stops feeding the closed queues (stop sending doorbells). RDMA QSet
can be closed only when it is not associated with any QP.

The command gets the following parameters as input:

• Number of disabled Queues/QSets.

• List of Queue or QSet IDs (in the PF space).

This command deallocates nodes (in leaf layer and possibly in intermediate layers as well) in the
Tx-Scheduler. Inside the command structure, the disabled queues are organized in groups. Each group
includes queues belonging to one parent node in the Tx-Scheduler structure. This organization in group
is added to ease the interface between the software and firmware. It is not required to disable all the
queues belonging to a parent in one call.

This command is called by software as part of the queue disabling flow. As part of this command flow,
the EMP firmware drains the Tx-Pipe of any in-flight packets (packets that are scheduled for
transmission by the Tx-Scheduler but have not yet been transmitted) of all disabled Tx-Queues or
RDMA QSets. This is required to verify that no Tx completion is posted to software after the queue
resources are released or even re-used.

Normally, the pipe draining flow requires a very short delay. A long (or endless) flow control event that
blocks the transmit of one or more TCs (or even the entire port transmit) affects the pipe draining flow
as well.

This command is completed when all in-flight packets belonging to the Disabled LAN Queues or RDMA
QSets have left the Tx-Pipe. Alternately, the command is called with a timeout parameter. If the EMP
firmware waits more than the timeout time, it responds with EAGAIN error code. With the EAGAIN error
code, firmware also provides a bitmap that marks which of the Congestion Domains is blocked by the
long flow control.

Software must re-call this command (with the Call-Again flag set) prior to releasing and reusing of any
of the Tx-Queues that are associated with the blocked congestion domains.

This command must be fully completed (all Tx-Queue or RMDA QSets are released) prior to any other
calling to it for other queues, and prior to calling to “Move/Reconfigure Tx LAN Queues” AQC.

The command’s timeout is posted by software as part of the command’s parameters.

Software can also instruct the EMP firmware to force the Tx-Pipe to flush out and drop all packets from
the blocked congestion domain. It is the PF’s responsibility and authority to make the decision when to
consider a long flow control as a malicious link partner behavior.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 10-37 describes command format and defines
command-specific fields.

613875-009 1551

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Table 10-38 describes format of the data buffer carrying additional command attributes. The command
buffer includes a structure per involved Queues group.

Table 10-37. LAN Transmit Queue Disable Command and Response Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C31

Datalen 4-5 Length of response buffer.

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Command Type and
Flags

16 Bits 0:1:
00b = Queue Disable with no function reset. Must be set to 1.
01b = Reserved. Must be set to 0.
10b = Reserved. Must be set to 0.
11b = Reserved. Must be set to 0.

Bit 2:
0b = This is an initial call.
1b = This is a subsequent call.

Bit 3:
0b = Return EAGAIN on timeout.
1b = Flush pipe on timeout.

Bits 4:7:
Reserved. Must set to zero.

Note: Bits 2 and 3 are NOT mutually exclusive.

Number of Queue
Groups

17 In the command:
Number of Disabled Queue Groups (0..127) involved in the Q disable flow.
Note: For the VF/VM reset flow, there might be 0 groups for VFs without queues.

In the response:
Number of fully-processed groups.

Reserved 18-19.1 Reserved. Must be set to 0.

Timeout Time 19.2-19.7 Command timeout in units of 100 micro seconds.
Valid values are 0-50.
If this field is 0, the AQ will return “EAGAIN”.

Blocked CGDs 20 0 Zeroed by the driver.
A bitmap of blocked CGDs. Set by EMP firmware when returns with EAGAIN.

Reserved 21-23 0 Reserved.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1552 613875-009

Table 10-38. LAN Transmit Queue Disable Command Buffer1

1. The command buffer include a structure per involved Queues group.

Category Byte.Bit Field Description

Group #1

0-3 Parent’s TEID The TEID of the parent node to which leaves are involved.

4 Number of Queues (1...128).

5 Reserved Reserved.

6-7.6 Queue #1 Tx-Queue ID in PF space of the first queue to be closed.

7.7 QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.
0b = LAN Queue.
1b = RDMA QSet.

8-9.6 Queue #2 Tx-Queue ID in PF space of the second queue to be closed.

9.7 QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.
0b = LAN Queue.
1b = RDMA QSet.

.

.

.

Queue #N Tx-Queue ID in PF space of queue N to be closed.

QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.
0b = LAN Queue.
1b = RDMA QSet.

Padding Alignment to 4-byte units.

.

.

.

Group #N

0-3 Parent’s TEID The TEID of the parent node to which leaves are involved.

4 Number of Queues (1...128).

5 Reserved Reserved.

6-7.6 Queue #1 Tx-Queue ID in PF space of the first queue to be closed.

7.7 QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.
0b = LAN Queue.
1b = RDMA QSet.

8-9.6 Queue #2 Tx-Queue ID in PF space of the second queue to be closed.

9.7 QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.
0b = LAN Queue.
1b = RDMA QSet.

.

.

.

Queue #N Tx-Queue ID in PF space of queue N to be closed.

QSet/LAN Queue Marks if this ID points to a LAN Queue or to a RDMA QSet.
0b = LAN Queue.
1b = RDMA QSet.

613875-009 1553

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.5.8.3.1 Software Activities Prior to Calling Transmit Queue Disable

• Software must stop sending doorbells to the disabled queues before closing them.

• For Tx-Queues that are associated with Doorbell Queue, the Doorbell Queue must be drained from
any doorbell massage of the disabled queues.

— This is done by sending a draining marker through the Doorbell Queue. A Doorbell Queue
descriptor with Dummy and RS bits set acts as a drain marker.

• Stop getting interrupts for the disabled queue(s):

1. Software should clear the CAUSE_ENA bit in the QINT_TQCTL register for all disabled queues.

2. Software waits 100 ns.

3. Software sends software interrupt for the vector associated with the queue.

a. When interrupt arrives, software can continue.

• In case of a VM reset or multiple queues disable, software does Step 1 for all disabled queues, and
Step 3 for all vectors associated with the queues.

10.5.5.8.3.2 Software Activities After Transmit Queue Disable AQ Completed

• Once the whole operation is complete and the pipe is cleaned from the disabled queues, EMP
firmware responds with “No Error” and software can re-use all involved resources.

• Software can post a VM reset notification via the Completion Queue. This is done directly to each
involved Completion Queue using CSRs GLCOMM_CQ_CTL[512].

10.5.5.8.4 Move/Reconfigure Tx LAN Queues (0x0C32)

This command reconfigures Tx-Queues in the E810. This AQ can be used to:

1. Restructure the Tx-Scheduler and move a leaf node or a group of leaf nodes from on parent to
another.

2. Reconfigure the Tx-Queues’ CGDs settings.

3. Both 1 and 2.

The command gets the following parameters as input:

• Number of involved queues.

• Source parent node’s TEID.

• Destination parent node’s TEID.

• List of queue IDs (in the PF space) and their new CGDs configuration.

By this command, software can instruct the EMP firmware to move nodes belonging to one sibling
group. The moved nodes can be the entire group or part of it.

This command is usually called as part of DCBx flow. It allows moving some of the queues between TCs
or CGDs.

As part of this flow, the Tx-Scheduler structure is updated in parallel to changing the CGD setting of the
LAN Tx-Queues. Moved RDMA QSet CGD setting is managed internally in the RDMA block. It is under
software responsibility to call the RDMA CQP for the updating of the moved RDMA QSet contexts.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1554 613875-009

When CGD association of LAN queue is changed as part of this command flow, the EMP firmware drains
the Tx-Pipe of any in-flight packets (packets that are scheduled for transmission by the Tx-Scheduler
but have not yet been transmitted) of all updated Tx-Queues. This is required to prevent out-of-order
transmission or completion.

Normally, the pipe draining flow requires a very short delay. A long (or endless) flow control event that
blocks the transmit of one or more TCs (or even the entire port transmit) affects the pipe draining flow
as well.

This command is completed when all in-flight packets belong to the disabled LAN queues or RDMA
QSets left in the Tx-Pipe. Alternately, the command is called with a timeout parameter. if the EMP
firmware waits more than the timeout time, it responds with EAGAIN error code. With the EAGAIN error
code, firmware also provides a bitmap that marks which of the Congestion Domains is blocked by the
long flow control.

Software must re-call this command (with the Call-Again flag set) prior to updating any of the
Tx-Queues that are associated with the blocked congestion domains.

This command must be fully completed (all Tx-Queues drained) prior to any other calling to it for other
queues, and prior to calling to “Transmit Queue Disable Flow (LAN and RDMA)” AQC.

The command’s timeout is posted by software as part of the command’s parameters.

Software can also instruct the EMP firmware to force the Tx-Pipe to flush out and drop all packets from
the blocked congestion domain. It is the PF’s responsibility and authority to make the decision when to
consider a long flow control as a malicious link partner behavior.

Note: This command is an atomic command. EMP firmware must verify it can complete the entire
command prior updating any Tx-Queue context or moving any element in the Tx-Scheduler
hierarchy.

This is an Indirect Admin Queue command, with additional command attributes and completion
attributes provided within the data buffer. Table 10-39 describes command format and defines
command specific fields.

Table 10-39. Move/Reconfigure Tx-Queues Command and Response Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C32

Datalen 4-5 Length of response buffer.

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

613875-009 1555

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Table 10-40 describes format of the data buffer carrying additional command attributes and the
response buffer

Command Type and
Flags

16 Bits 0:1:
00b = Reserved. Must not be used.
01b = Move nodes with no TC change.
10b = TC change, with no nodes movement.
11b = Both nodes movement and TC change.

Bit 2:
0b = This is and initial call.
1b = This is a subsequent call.

Bit 3:
0b = Return EAGAIN on timeout.
1b = Flush pipe on timeout.

Bits 4:7:
Reserved. Must set to zero.

Note: Bits 2 and 3 are NOT mutually exclusive.

Number of Queues 17 Number of moved queues.
In the command response, this field returns the number of successfully-moved
queues (the first N moved queues).

Reserved 18-19.1 Reserved. Must be set to zero.

Timeout Time 19.2-19.7 Command timeout in units of 100 micro seconds.
Valid values are 0-50.
The two LSB are unused to keep coherency with other commands.

Blocked CGDs 20 0 Zeroed by the driver.
A bitmap of blocked CGDs. Set by EMP firmware when returns with EAGAIN.

Reserved 21-23 0 Reserved

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

Table 10-40. Move/Reconfigure Tx-Queues Command and Response Buffer

Category Byte.Bit Field Description

0-3 Source TEID Source Parent TEID. The parent of the leaf nodes before moving.

4-7 Destination TEID Destination Parent TEID. The parent of the leaf nodes after moving.

Per-Queue Structure Per-queue 8-byte structure.

0-1
in per-queue

structure

Tx Q ID Tx Q ID in LAN. The number is in PF space. Firmware is required to
translate to global numbering

2 Queue CDG 0..7

3 Reserved Reserved. Padding. Must be set to zero.

4-7 Queue TEID Tx-Queue Leaf node TEID.

Table 10-39. Move/Reconfigure Tx-Queues Command and Response Fields [continued]

Name Byte.Bit Value Remarks

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1556 613875-009

10.5.5.8.4.1 Software Activities Prior to Calling Move/Reconfigure Tx LAN
Queues AQ

No specific requirements from software.

10.5.5.8.4.2 Software Activities After Move/Reconfigure Tx LAN Queues AQ
Completed

No specific requirements from software.

10.5.5.8.5 Move RDMA Queue Sets (0x0C34)

This command moves Leaf nodes in the PSM associated with RDMA Queue Sets from one port to
another. Leaf nodes can be moved with or without PF ownership change to the destination port. This is
controlled by the Mode field.

Software provides the source and destination node's TEID and number of queue-sets to move. This is
an Indirect Admin Queue command. Additional command attributes and completion attributes are
provided within the data buffer. Table 10-41 describes command format and defines command specific
fields.

Table 10-42 describes format of the data buffer carrying additional command attributes and the
response buffer.

Table 10-41. Move RDMA Queue Sets Command and Response Fields

Name Byte.Bit Value Remarks

Flags 0-1 0 See Section 9.5.5.2.1 for details.

Opcode 2-3 0x0C34

Datalen 4-5 Length of response buffer.

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Number of RDMA
Queues Sets

16 Number of moved queue sets.
In the command response, this field returns the number of successfully moved queue
sets (the first N moved queue sets).

Mode 17.0-17.1 Set by software to specify the elements move mode:
00b = Mode 0 — Move is allowed only within the PF owner. If the destination PF is

not the owner, firmware returns EACCESS error code.
01b= Mode 1 — Move to any PF is allowed. Ownership transfers to the destination

PF.
10b= Mode 2 — Move to any PF is allowed. Ownership remains with the source PF.
11b = Reserved.

Reserved 17.2-23 0 Reserved. Must be zero.

Data Address High 24-27
Address of buffer.

Data Address Low 28-31

613875-009 1557

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.6 Packet Transmission

During nominal operation, the function that owns the queue (PF or VF) accesses the hardware directly.
To transmit a packet, software prepares transmit descriptors starting at the descriptor indicated by the
TQTAIL pointer in the relevant QTX_TAIL register. The descriptors point to the transmitted packet. After
the descriptors are ready in the Tx-Queue, software notifies the hardware. This notification is called a
doorbell. The doorbell flow is different between the legacy mode and the advanced mode, as detailed in
Section 10.5.6.1 and Section 10.5.6.2. A doorbell can be pushed directly to the proper address in the
PCIe space or to issue it into the Doorbell Queue, coalescing multiple doorbell notifications in the
Doorbell Queue before issuing a Doorbell Queue doorbell to push them to the device.

10.5.6.1 Transmit Doorbell Flow in Legacy Mode

1. Software updates queue tail (TQTAIL) using registers QTX_COMM_DBELL [16K].

2. Software updates TQTAIL at whole structures boundaries. For TSO, it is the whole TSO; for a single
packet, it is the whole packet; and for filter programming, it is the whole packet that is associated
with the filter programming. Updating TQTAIL to point into the middle of a multi-descriptor
operation can trigger a Malicious Driver Detection (MDD) event and halt the queue.

3. The software should never set the TQTAIL to a value above the descriptors owned by the hardware
minus 1. Descriptors considered as “owned by the hardware” are those already indicated to the
hardware, but are not yet reported as completed. Overrunning the queue triggers an MDD event.

4. The hardware reports completed descriptors only for those ones indicated by an RS or RE (or both)
bit in the CMD field in the descriptor. As part of the ITR expire flow, hardware reports the latest
head, even if it is not marked with RS or RE bits. Completion indication is provided in one of two
modes as programmed by the HEAD_WBEN parameter in the queue context as follows:

• Descriptor Write-Back: The hardware changes the value of the DTYPE field in the completed
descriptor to a 0xF (DTYPE equals to 0xF is reserved for completed descriptor indication).
Besides the DTYPE field, the rest of the descriptor fields can remain as is or be changed by
hardware.

• Completion Queue Event: For details of the data written back, see Section 10.5.4.5,
“Completion Queue (CQ) Descriptor”.

Table 10-42. Move RDMA Queue Sets Command and Response Buffer

Category Byte.Bit Field Description

0-3 Source Parent TEID The parent of the leaf nodes before moving.

4-7 Destination Parent TEID The parent of the leaf nodes after moving.

Per-Queue Structure Per-queue 4-byte structure.

0-1
in per-queue

structure

Tx Q ID TX QSet id in RDMA space. The number is in physical space.

2-3 Queue CDG RDMA queue Set Leaf node TEID.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1558 613875-009

10.5.6.2 Advanced Transmit Mode

Advanced transmission is a per Tx-Queue configured mode. In advanced mode, the actual quanta
request is provided by software prior to scheduling. This enables the Tx-Scheduler to make more
accurate decisions and to more efficiently control this queue’s burstiness.

As described in Section 10.5.4.4, quanta descriptors describing the size of a quanta are queued to the
device prior to en-queuing data packets for transmission (doorbell). Software uses two interfaces to
feed the scheduled quanta to the device.

• Doorbell — For each new packet or packets, the software writes to a CSR
QTX_COMM_DBELL[16K], advancing the transmit descriptor ring tail pointer and providing
additional metadata used to schedule packets.

• Quanta Descriptor — Detailed in Section 10.5.4.4.

The following subsections detail the Doorbell and the Quanta Descriptor.

Note: When the transmit descriptor queue is smaller than 32, software must complete and close a
quanta for every transmitted packet.

Figure 10-10. Quanta Descriptor and Data Descriptor

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15

TX-Queue Length

Quanta Queue Length Equals To
Tx-Queue Length in Desc. units

Every Quanta Descriptor
Represents a group of TX

packets

613875-009 1559

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Prior to transmitting data on a transmit queue, software is assumed to have a queue-specific burst size,
which is defined as the quanta size. The quanta size, in addition to the quanta profile, is used as a hint
by the device to implement the WFQ transmit arbitration and scheduling algorithm. In addition, an
associated Quanta Descriptor Ring (QDR) is initialized by software. The quanta queue reflects the actual
transmit data posted by software to a given transmit queue.

Software allocates a Transmit Descriptor Ring (TDR), followed immediately and contiguously by the
corresponding QDR. Unlike the TDR, the QDR does not have explicit head and tail pointer registers.
Instead, software implicitly advances the QDR tail pointer by completing one quanta context in the TDR
doorbell write. Every transmit descriptor queue, when operated in advanced transmit mode, must have
a corresponding quanta descriptor ring of equal length.

As software initializes transmit descriptors in the transmit ring, software writes to the associated
transmit queue doorbell register, posting one or multiple transmit descriptors. In addition, software
initializes a quanta descriptor in the QDR to track the data bytes consumed per quanta.

The quanta size can change from one quanta to the next. As additional packet headers can be
transparently added to transmitted packets by hardware, hardware also tracks the actual physical
bandwidth used on a per packet basis when managing the posted quanta descriptors.

For SSO packets, software posts a quanta descriptor under these conditions:

• Whenever the total amount of pending transmit data equals or exceeds the expected quanta size.

• Whenever the total number of posted transmits is about to exceed 54 descriptors.

• Whenever a TCP Segmentation Offload is requested, the E810 automatically closes a previous
quanta context and starts a new quanta descriptor context.

Under the expected usage model for this operating mode, software is expected to generally batch
doorbell writes to the device spanning multiple transmit descriptors, and close out quanta descriptors
simultaneously.

For non-TSO (SSO) packets, software would perform the following:

1. Software writes out transmit context and data descriptors to the Tx-Queue. See Section 10.5.3.1
for detailed structures.

2. Software internally accumulates the pending amount of posted transmit data and increments a
pending packet count.

3. When a quanta needs to be closed (based on the above criteria), software:

a. Rounds up total amount of pending data to the nearest 64-byte unit.

b. Updates the current QDR entry and advances software’s QDR write pointer.

c. A transmit doorbell is sent to the device. The doorbell contains the new Tail, the amount of added
data from the last doorbell (in 64-byte units rounded up), and the Quanta Completed bit is set
to one. See Table 10-24.

Software can post a transmit doorbell without closing the current quanta (including for each and every
packet) simply by not setting the Quanta Completed bit in the TDR doorbell write. Packets transmitted
into an otherwise empty transmit queue are considered immediately for transmission based solely on
the transmit doorbell contents.

For TSO messages, software would perform the following:

1. Software writes out transmit context and data descriptors to the TDR. See Section 10.5.3.1 for
detailed structures.

2. If software has accumulated pending non-TSO (SSO) transmit data and has an open quanta
context:

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1560 613875-009

a. Software rounds up total amount of pending data to the nearest 64-byte unit.

b. Software updates the QDR entry and advance write pointer.

c. Hardware automatically closes any previous open quanta on LSO.

3. For TSO, software initializes a quanta descriptor for each TSO message:

a. Software provides the exact number of bytes in byte-level granularity. Software updates the
current QDR entry.

b. A transmit doorbell is sent to the device. The doorbell format is detailed in Table 10-25.

Note: The minimum supported TSO MSS is 88. Whenever the supplied MSS is less than 256 bytes,
the resulting TSO segments generated would be scheduled for transmission as if the MSS was
256 bytes.

• The above applies for both the TSO Quanta Descriptor and the TSO Doorbell (First Quanta
Length).

In TSO message, a quanta must not span on more than 16 Tx-Descriptors including the
context descriptor and header buffers.

10.5.6.3 Head Drop via Quanta Expiration

As software initializes SSO quanta descriptors with the associated transmit data descriptors on the
transmit queue, software can specify an expiration timestamp. If the individual packets associated with
the transmit quanta end up being selected for transmission later than the given timestamp, the packets
are internally dropped by the transmit pipeline. Packets can be delayed for a variety of reasons, such as
transient transmit scheduling contention, traffic class pause, or other.

The specific packets that are dropped are explicitly identified by Completion Queue notifications.

Note: Quanta expiration is enabled only for queue type #3 (advanced host interface with no TSO).

10.5.6.4 Head Drop via Drop Request

Software can also determine after the fact, that various packets that have been posted to the transmit
queue should be dropped. One example could be either the transmit queue length has grown beyond
some software-defined threshold, or other method to track forward progress of packets on a given
transmit queue.

In this situation, software can utilize an explicit drop doorbell (or use the drop doorbell command) to
signal hardware that one or more quanta be dropped from the head of the transmit queue. As one or
more packets can be associated with a quanta, several packets can be dropped at once from the head
of the queue. If the affected packets have been selected for transmission, a late drop notification is
passed through the transmit pipeline.

Note: Head Drop is enabled only for queue type #3 (advanced host interface with no TSO).

If late packet transmission is an ongoing issue, the situation suggests a system configuration and usage
issue. Various statistics can be queried from the various PF instances to determine the source of
scheduling contention.

Hardware accumulates the drop requests and executes the drops when a Tx-Queue is scheduled for
transmission. The internal drop accumulator is a 7-bit counter per Tx-Queue. It can accumulate up to
127 quantas drop request. Overflow is silently ignored. When the Tx-Queue is empty, any drop request
is ignored and the accumulator is reset.

613875-009 1561

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.6.5 Quanta Size Selection

Quanta sizes are used in combination with the various packet scheduler rules to implement packet
pacing, while simultaneously interleaving packet transmissions from other queues on the device. For
legacy LAN queues with TSO enabled, the device’s internal data cache is optimized for 1 KB quanta
sizes. Use of larger quanta values reduces the number of simultaneously-active queues that can be in
use and still meet device performance objectives.

Quanta values are further governed by the quanta profile referenced in the queue context. The quanta
profile places limits on the number of descriptors as well as the number of commands per quanta.
These upper bounds ensure a queue (perhaps used by an untrusted VF) cannot be used in such a
manner as to deliberately skew the internal queue arbiter to service a queue more frequently than
other queues. Attempts to exceed these profile thresholds triggers a malicious driver detection event to
the associated PF.

10.5.7 Performance Consideration

Tx path is required to operate 100 MPPS for packets with one data descriptor with no context descriptor,
or with context descriptor when the next conditions are true:

• TSO bit is cleared.

• TSYN is cleared or TSYN is disabled in queue context.

• SWICH field != TARGET_VSI

• EIPT == NO_HEADER or DECTTL == 0

10.5.8 Stateless Transmit Offloads

10.5.8.1 Insert Ethernet CRC Bytes

See Section 7.12.1.1.

10.5.8.2 Insert L2 Tags (VLAN)

See Section 7.12.3.2 for a complete description of L2 tag insertion. This section provides some rules
relating to the supported headers for which L2 tag can be inserted by the device. See Figure 10-11 for
the structure of the supported packets, and Table 10-43 for the L2 tag insertion.

Table 10-43. Transmit L2 Tag Insertion Offload

Packet Type Parsing Hints in the Transmit Descriptors L2 Tag Insertion Supported

Non-tunneled packet MACLEN = the length of the L2 header provided by
the software.

Insert L2 tags depending on IL2TAG1 and IL2TAG2
setting. The L2 tags are inserted after.

NSH over L2 packet MACLEN = the length of the L2 header provided by
the software up to including the NSH header.

MAC in MAC packet MACLEN = the length of the 2 x L2 headers
provided by the software.

Yes, only for the inner L2 header depending on
IL2TAG1 and IL2TAG2 setting. The L2 tags are
inserted after.

IP in UDP tunneling or
IP in GRE Same as non-tunneled packet.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1562 613875-009

10.5.8.3 Transmit L3 and L4 Integrity Offload

The E810 can offload the following L3 and L4 integrity checks:

• IPv4 header(s) checksum for “simple” and tunneled packets.

• Inner TCP or UDP checksum.

• Tunneling UDP checksum.

• SCTP CRC integrity.

If a checksum is required, software should provide it, as well as the inner checksum value(s) that are
required for the outer checksum. To request L3 and L4 integrity offloads, software should define the
packet format and the required offload in the transmit descriptors as described in Figure 10-11 and
Table 10-45.

Some rules for integrity offload are:

• Offloads for inner headers to an IPv6 header with fragment extension header or fragmented IPv4
packets do not make sense. Note that this rule is not enforced by the E810.

• IPv6 support: The pseudo header for the L4 checksum takes into account the addresses in the IPv6
header ignoring the optional extension headers. Packets with Routing Header type 2 or Destination
Options Header with Home Address option contain an alternative IP Address in the extension
header. Therefore the OS should not request checksum nor segmentation offload for packets with
routing extension header type 2 or Destination Options Header with Home Address option.

• IP Header Length requirements (IPLEN and EIPLEN):

— In case of a non-tunneled packet, the IPLEN defines the IP header length in DWord units, and
the IIPT defines the IP header type.

— In case of tunneled packets, the IPLEN defines the inner IP header length, and the EIPLEN
defines the outer (external) IP header length. The IIPT defines the inner IP header type, and
the EIPT defines the outer IP header type.

— The Length field in the IP header is prepared by the software in the packet buffers. This length
field includes the payload of the IP header. In MAC tunneling, the inner MAC header (including
optional VLAN tag) is part of the outer IP header payload. This optional VLAN tag can be
embedded in the packet buffers or by using the IL2TAG_IL2H option in the transmit context
descriptor. Regardless of the above, the optional VLAN tag should be taken into account in the
length field of the outer IP header.

— For IPv4, it should be at least 20 bytes (basic header size), and not more than 60 bytes.

— For IPv6, it should be at least 40 bytes (basic header size), and up to the maximum size
enabled by the parsing fields for basic IPv6 header and its extension headers.

MAC in UDP tunneling
or MAC in GRE

MACLEN = same as non-tunneled packet.

= The length of the tunneling UDP or GRE up to the
inner IP header (including optional NSH or MPLS)

Insert VLAN after NATLEN if IL2TAG_IL2H is set.
Note: The IL2TAG2 and IL2TAG_IL2H are

mutually exclusive (only one of them can
be set).

Inner VLAN insertion offload should not be
requested if MPLS follows the tunneling MAC
header.

Table 10-43. Transmit L2 Tag Insertion Offload [continued]

Packet Type Parsing Hints in the Transmit Descriptors L2 Tag Insertion Supported

613875-009 1563

Intel® Ethernet Controller E810 Datasheet
LAN Engine

• L4 Header Length requirements (L4LEN):

— For TCP, it should be at least 20 bytes (basic header size), and not more than 60 bytes.

— For SCTP, it should be set to 12 (SCTP common header size).

— For UDP, it should be set to 8 (UDP header size).

Table 10-45 lists all supported packet formats and the processed integrity. The table uses the following
notations:

• IP — A generic term for IPv4 header or IPv6 header. The IPv4 header can have IP option headers
and the IPv6 header can have IPv6 extension headers.

• L4 — A generic term for UDP, TCP, or SCTP headers.

• IP checksum — Meaningful only for IPv4.

• Checksum — A generic term for UDP and TCP checksum as well as SCTP CRC integrity.

Offload details:

• IPv4 checksum calculation (both inner and outer IP header for tunneled packets):

— The software should set the IPv4 checksum to zero.

— The hardware calculates the IPv4 header checksum starting at the beginning of the IPv4 header
up to the end of the header.

• Outer UDP checksum calculation (UDP tunneling):

— The software provides the pseudo IP header checksum in the outer UDP header.

— The hardware calculates the UDP checksum starting at the beginning of the tunnel header up to
the end of the packet, which includes the pseudo header provided by software.

• UDP and TCP checksum calculation (inner L4 header in case of UDP/GRE tunneling):

— The software provides the pseudo IP header checksum in the L4 header.

— The hardware calculates the L4 checksum starting at the beginning of the L4 offset up to the
end of the packet, which includes the pseudo header provided by software.

• See Table 10-44 for details of the fields that the software device driver should fill when sending a
packet.

• SCTP CRC calculation (inner L4 header in case of UDP/GRE tunneling):

— The software should set the CRC in the header to zero.

— The hardware calculates the CRC according to SCTP standard starting at the beginning of the
SCTP header up to the end of the packet.

• Tunneling UDP/GRE Header Length requirements:

— For UDP/GRE tunneling, the header can be any value in 2-byte granularity from eight bytes
(bare UDP header) and up to 254 bytes (including optional network key and optional inner L2
header up to including the last EtherType). Note that the header length includes only those
bytes provided in the packet buffers in host memory.

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1564 613875-009

Table 10-44. Pseudo Header Pre-Loaded Values

Field Single Send Packet (No TSO) Transmit Segmentation Offload (TSO)

Outer IP Length IPv4: IP header +payload size
IPv6: Payload size only, including header extensions.
Should match the data size stored in host memory.
(Hardware modifies it upon offloads.)

Don't care.
(calculated by hardware.)

Outer L4 (UDP) Length UDP Header size + Payload size
Should match the data size that stored in host
memories.
(Hardware modifies it upon offloads.)

Don't care.
(calculated by hardware.)

Outer L4 CS field IP header pseudo checksum, calculated on IP header
fields:

IPv4: Source addr +Destination addr + Protocol
(=0x11) + “UDP Length”

IPv6: Source addr +Destination addr + NextHeader
(=0x11) + “UDP Length”

Note: UDP Length is the payload that follows the IP
header. It includes the size of UDP header and
data.

IP header pseudo checksum, calculated on IP
header fields. Not including “UDP Length”:

IPv4: Source addr +Destination addr +
Protocol (=0x11)

IPv6: Source addr +Destination addr +
NextHeader (=0x11)

Inner/Single IP Length IPv4: IP header +payload size
IPv6: Payload size only, including header extensions.
Should match the data size stored in host memory.
(Hardware modifies it upon offloads.)

Don't care.
(calculated by hardware.)

Inner/Single L4 (UDP/
TCP) Length

Header size + Payload size
Should match the data size that stored in host
memories.
(Hardware will modify it upon offloads.)

Don't care.
(calculated by hardware.)

Inner/Single L4 CS Field IP header pseudo checksum, calculated on IP header
fields:

IPv4: Source addr +Destination addr + Protocol +
“L4 Length”

IPv6: Source addr +Destination addr + NextHeader
+ “L4 Length”

Protocol or NextHeader values are 0x11 for UDP and
0x6 for TCP.
Note: L4 Length is the payload that follows the IP

header. It includes the size of L4 header and
data.

IP header pseudo checksum, calculated on IP
header fields. Not including “L4 Length”:

IPv4: Source addr +Destination addr +
Protocol

IPv6: Source addr +Destination addr +
NextHeader

Protocol or NextHeader values are 0x11 for
UDP and 0x6 for TCP.

613875-009 1565

Intel® Ethernet Controller E810 Datasheet
LAN Engine

Figure 10-11. Transmit L3 and L4 Header Lengths (in Host Memory) for Integrity Offload

Table 10-45. Transmit Integrity Offload for Packet Types

Packet Type Parsing Hints and Offload Enablement in the
Transmit Descriptors1,2

Supported Transmit Checksum
Offload

Fragmented IPv4 or IPv4 ->
Unknown

IIPT = 10b or 11b.
L4T = 00b (unknown).

IPv4 checksum if IIPT = 11b.

Fragmented IPv6 or IPv6 ->
Unknown

IIPT = 01b.
L4T = 00b (unknown).

None.

IP -> L4 IIPT = 10b or 11b for IP.v4.
IIPT = 01b for IPv6
IPLEN = The length of the IP header (including IP

optional or extension headers).
L4T = 11b, 01b, 10b (UDP, TCP, SCTP).
L4LEN = L4 header length.
EIPT = EIPLEN = L4TUNT = 0 (no tunneling).

IPv4 checksum if IIPT = 11b:
L4 checksum if L4LEN is meaningful
(i.e., L4T <> 0).

IP -> (Fragmented IP or IP ->
Unknown)

IIPT = 10b or 11b for inner IPv4.
IIPT = 01b for inner IPv6.
IPLEN = The length of the inner IP header (including

IP optional or extension headers).
L4T = 00b (unknown).
EIPT = 10b or 11b for outer IPv4.
EIPT = 01b for outer IPv6.
EIPLEN = The length of the outer IP header

(including IP optional or extension
headers).

L4TUNT = 00b (no L4 tunneling).

Inner IPv4 checksum if IIPT = 11b.
Outer IPv4 checksum if EIPT = 11b.
No L4 checksum.

MAC Header
(1)

Outer IP
Header [L4 header]UDP Tunneling with

optional NSH or MPLS
UDP Tunnel +
[NSH / MPLS]

MACLEN IPLEN L4LEN EIPLEN L4TUNLEN

PayloadIP Header

Outer MAC
Header (1)

Outer IP
Header [L4 header]

MAC in UDP /
MAC in GRE with

optional NSH or MPLS

UDP Tunnel / GRE
+ [NSH / MPLS]

MACLEN IPLEN L4LEN EIPLEN L4TUNLEN

Payload[IP Header]

MAC Header
(1) [IP Header] Payload[L4 header]Non-Tunneled Packet

MACLEN IPLEN L4LEN

* (1) / (2) If L2 Tags are present in the data
buffers then MACLEN / L4TUNLEN include them
* Header in [brackets] are optional. If IP header is
not present then L4 header is not present as well

Inner MAC
Header (2)

Outer MAC
Header (1)

Outer IP
Header L4 headerIP in GRE GRE

MACLEN IPLEN L4LEN EIPLEN L4TUNLEN

PayloadIP Header

Outer MAC [IP Header] Payload[L4 header]MAC in MAC Packet

MACLEN IPLEN L4LEN

Inner MAC
Header (1)

MAC Header [IP Header] Payload[L4 header]NSH over L2 Packet

MACLEN IPLEN L4LEN

NSH

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1566 613875-009

IP -> IP -> L4 IIPT = 10b or 11b for inner IPv4.
IIPT = 01b for inner IPv6.
IPLEN = The length of the inner IP header (including

IP optional or extension headers).
L4T = 11b, 01b, 10b (UDP, TCP, SCTP).
EIPT = 10b or 11b for outer IPv4.
EIPT = 01b for outer IPv6.
EIPLEN = The length of the outer IP header

(including IP optional or extension
headers).

L4TUNT = 00b (no L4 tunneling).

Inner IPv4 checksum if IIPT = 11b.
Outer IPv4 checksum if EIPT = 11b.
L4 checksum if L4LEN is meaningful
(i.e., L4T <> 0).

IP -> (Tunneling UDP/GRE) ->
IP -> L4

IIPT = 10b or 11b for inner IPv4.
IIPT = 01b for inner IPv6.
IPLEN = The length of the inner IP header

(including IP optional or extension
headers).

L4T = 11b, 01b, 10b (UDP, TCP, SCTP).
EIPT = 10b or 11b for outer IPv4.
EIPT = 01b for outer IPv6.
EIPLEN = The length of the outer IP header

(including IP optional or extension
headers).

L4TUNT = 01b for UDP/GRE tunneling.
L4TUNLEN = Tunneling header length.

Same as IP -> IP -> L4:
Inner IPv4 checksum if IIPT = 11b.
Outer IPv4 checksum if EIPT = 11b.
L4 checksum if L4LEN is meaningful
(i.e., L4T <> 0).

Plus tunneling UDP checksum if
L4T_CS=01b and EIPT != 00b.

IP -> (Tunneling UDP/GRE) ->
(Fragmented IP or IP ->
Unknown)

IIPT = 10b or 11b for inner IPv4.
IIPT = 01b for inner IPv6.
IPLEN = The length of the inner IP header (including

IP optional or extension headers).
L4T = 00b (unknown).
EIPT = 10b or 11b for outer IPv4.
EIPT = 01b for outer IPv6.
EIPLEN = The length of the outer IP header

(including IP optional or extension
headers).

L4TUNT = 00b (no L4 tunneling).

Same as IP -> (Fragmented IP or IP ->
Unknown):

Inner IPv4 checksum if IIPT = 11b.
Outer IPv4 checksum if EIPT = 11b.
No L4 checksum.

Plus tunneling UDP checksum if
L4T_CS=01b and EIPT != 00b.

IP -> (Tunneling UDP/GRE) ->
[NSH/MPLS] -> MAC (w/wo
VLAN) -> IP -> L4

IIPT = 10b or 11b for inner IPv4.
IIPT = 01b for inner IPv6.
IPLEN = The length of the inner IP header

(including IP optional or extension
headers).

L4T = 11b, 01b, 10b (UDP, TCP, SCTP).
EIPT = 10b or 11b for outer IPv4.
EIPT = 01b for outer IPv6.
EIPLEN = The length of the outer IP header

(including IP optional or extension
headers).

L4TUNT = 01b for UDP/GRE tunneling.
L4TUNLEN = UDP/GRE header length in the packet

buffers up to excluding the inner IP
header.

Same as IP -> IP -> L4:
Inner IPv4 checksum if IIPT = 11b.
Outer IPv4 checksum if EIPT = 11b.
L4 checksum if L4LEN is meaningful
(i.e., L4T <> 0).

Plus tunneling UDP checksum if
L4T_CS=01b and EIPT != 00b.

Table 10-45. Transmit Integrity Offload for Packet Types [continued]

Packet Type Parsing Hints and Offload Enablement in the
Transmit Descriptors1,2

Supported Transmit Checksum
Offload

613875-009 1567

Intel® Ethernet Controller E810 Datasheet
LAN Engine

10.5.8.4 Transmit Segmentation Offload (Also Known as TSO or
LSO)

Transmit Segmentation Offload (TSO, also called Large Send Offload - LSO) enables the TCP/IP or
UDP/IP stack to pass a ULP datagram larger than the Maximum Transmit Unit (MTU) size to the network
device. The E810 divides the large ULP datagram to multiple segments according to the MTU size, as
illustrated in the Figure 10-12. The size of the ULP datagram supported for TSO can be as small as a
single byte (obviously transmitted on a single segment) and up to 256 KB (2^18) supporting TSO and
“Giant” TSO.

IP -> (Tunneling UDP/GRE) ->
[NSH/MPLS] -> MAC (w/wo
VLAN) -> (Fragmented IP or IP
-> Unknown)

IIPT = 10b or 11b for inner IPv4.
IIPT = 01b for inner IPv6.
IPLEN = The length of the inner IP header

(including IP optional or extension
headers).

L4T = 00b (unknown).
EIPT = 10b or 11b for outer IPv4.
EIPT = 01b for outer IPv6.
EIPLEN = The length of the outer IP header

(including IP optional or extension
headers).

L4TUNT = 01b for UDP/GRE tunneling.
L4TUNLEN = UDP/GRE header length in the packet

buffers up to excluding the inner IP
header.

Same as IP -> (Fragmented IP or IP ->
Unknown).

Inner IPv4 checksum if IIPT = 11b.
Outer IPv4 checksum if EIPT = 11b.
No L4 checksum.

Plus tunneling UDP checksum if
L4T_CS=01b and EIPT != 00b.

1. Common settings to all cases: When context descriptor is used, the TSO flag should be cleared.
2. When IP-IP or other supported tunneling is transmitted, a context descriptor must be used to provide the additional fields types

and sizes. For non-tunneled packets, the context descriptor might be needed for other offloads than checksum. The values
indicated in this table assume that the context descriptor is used.

Figure 10-12. TSO Functionality (Example)

Table 10-45. Transmit Integrity Offload for Packet Types [continued]

Packet Type Parsing Hints and Offload Enablement in the
Transmit Descriptors1,2

Supported Transmit Checksum
Offload

ULP Datagram

TSO Header

Tx Data Descriptors
Coverage 1 2 3 54

Transmitted Packets

Header

ULP Datagram

ULP 1 ULP 2 ULP 3Header Header Header

First Packet Last Packet

EOP

MSS MSS Residual

MTU MTU

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1568 613875-009

10.5.8.4.1 Frame Formats and Assumptions

The following packet formats are supported for TSO:

Note: For all the formats below, IP is IPv4 or IPv6 with/without Option/Extension headers. L4 is TCP
or UDP.

• IP -> L4

• IP -> IP -> L4

• IP -> Tunneling header(s) -> IP -> L4

• IP -> Tunneling header(s) -> MAC -> [VLAN] -> IP -> L4

SNAP packet formats are not supported for TSO.

The following assumptions apply to the TCP segmentation implementation in the E810:

• TSO is activated by setting the TSO flag in the transmit context descriptor. On top of it, the software
should follow the data and context descriptor settings for integrity offload as described in Table 10-
45.

• The TSO header (L2, L3 and L4) should be provided by a maximum three descriptors, while still
allowed to mix header and data in the last header buffer. The maximum size of the TSO header is
512 bytes.

• The maximum size of a single TSO can be as large as 256 KB minus 1 (defined by the TLEN field in
the transmit context descriptor).

• The RS bit in the data descriptor can be set only on the last data descriptor of the TSO (on which
the EOP bit is set).

• It is assumed that the software initializes the “pseudo header” checksum excluding the TCP length
(as opposed to single send on which the pseudo header checksum includes the TCP length).

10.5.8.4.2 Transmit Segmentation Flow

The TSO flow includes the following steps:

1. The protocol stack receives from an application a ULP datagram to be transmitted.

2. The protocol stack calculates the number of packets required to be transmitted based on the MSS.

3. The stack interfaces with the device driver and passes the block down with the appropriate header
information: Ethernet, IP header(s), optional tunneling headers, and the L4 header.

4. The stack interfaces with the device driver and commands the driver to send the whole datagram.
The device driver sets up the interface to the hardware (via descriptors) for the segmentation.

5. The hardware fetches the segmentation parameters as well as the data and header buffers
description by the transmit context and data descriptors.

6. The hardware fetches the header and data buffers and then transmits them by segments according
to the TSO parameters.

7. Dynamic fields set by the software:

• For IPv4 the IP header, checksum should be set to zero.

• The Total Length field in the IP header(s) should be set to zero.

• The IP ID of the first segment to be transmitted.

613875-009 1569

Intel® Ethernet Controller E810 Datasheet
LAN Engine

• The pseudo header checksum of the TCP/UDP header should be calculated and placed as part of
the packet data in the TCP or UDP checksum offset.

• Initial value of the TCP flags (see later on for its value in the TSO packets).

8. Dynamic fields in the IPv4 header(s) that are modified by the hardware:

• The Total Length field should reflect the IP payload size plus the IP header length. The L4
payload size is MSS for all packets but the last one, which contains the rest of the data. So for
the inner IP header (in case of tunneling), it is:

L4 Payload + L4LEN + IPLEN.

This is the same rule for the IP header in non tunneling case. For an outer IP header (in case of
tunneling) it equals:

 L4 Payload + L4LEN + IPLEN + optional L4TUNT length + EIPLEN

Note that in case of MAC tunneling, the length of the outer IP includes the inner L2 header,
including optional VLAN (updated by the hardware if the VLAN is inserted by the hardware).

• The Identification field (in the IP header in non-tunneled packets, or the inner IP header in
tunneled packets) is taken from the TSO header in the first segment, and is increased by one
for each transmitted segment.

• The header checksum is calculated after the other parameters in the IP header are updated.

9. Dynamic fields in the IPv6 header(s) that are modified by the hardware:

• The Payload Length should reflect the payload size. It is the MSS for all packets but the last
one, which contains the rest of the data. The Payload Length should reflect the IP payload size.
Therefore, for the inner IP header (in case of tunneling) it is:

L4 Payload + L4LEN + IP Extensions

This is the same rule for the IP header in non tunneling case. For an outer IP header (in case of
tunneling) it equals:

L4 Payload + L4LEN + IPLEN + optional L4TUNT length + IP Extensions

The IP Extensions length equals to IPLEN minus 40, or EIPLEN minus 40 for the inner or
external IP headers, respectively. Note that in case of MAC tunneling, the length of the outer IP
includes the inner L2 header including optional VLAN.

10. Dynamic fields in the TCP header that are modified by the hardware:

• The Sequence number in the TCP header is taken from the TSO header in the first segment. It
is then incremented by MSS for each transmitted segment.

• The TCP flags are taken from the TSO header. The header is then masked (logic AND) by the
TCPMSKF, TCPMSKM, and TCPMSKL fields in the GLLAN_TSOMSK_F/M/L global registers. The
TCPMSKF is used for the first segment of the TSO, TCPMSKL is used for the last segment of the
TSO, and TCPMSKM is used for all other segments of the TSO. If the TSO is composed of a
single segment, it is processed the same as the last segment of a multi-segment TSO.

• The TCP checksum is calculated starting by the initial value (of the pseudo header). The
checksum includes the updated TCP header, TCP payload and the calculated TCP length (equals
the payload size plus the TCP header size).

11. Dynamic fields in a tunneling UDP header that are modified by the hardware:

• The UDP length reflects the size of the tunneling UDP payload plus 8 (which is the size of the
UDP header).

Intel® Ethernet Controller E810 Datasheet
LAN Engine

1570 613875-009

• The UDP checksum is calculated starting by the initial value (of the pseudo header). The
checksum includes the updated UDP length and the UDP payload.

10.5.8.4.3 Transmit Arbitration

The E810 arbitrates between transmit queues at packet boundaries while enabling each queue to
transmit at least pre-defined quanta (as long as the queue is not empty). TSOs are not an exception to
this rule. If the queue exhausts its quanta in the middle of a TSO, the E810 switches to the next queue
in line at the end of the transmitted segment of the TSO. See Section 8.3, “Transmit Scheduling” for a
description of transmit arbitration.

10.5.8.4.4 Segmentation Indication to the Hardware

Software indicates a TCP.UDP segmentation by a transmit context descriptor just before the data
descriptor with the following parameters:

• TSO flag is set, indicating a TSO is requested.

• Insert STag or External VLAN can be set only by the PF (the same as a single send).

• Switch control fields must not be enabled for TSO.

• MSS should be set to the required size of the L4 payload on each segment (MTU minus the size of
the headers).

— MSS smaller than 88-bytes or larger than allowed (declared in field), are considered malicious.
The respective queue is stopped and an interrupt is issued to the PF. The relevant event is “Bad
LSO MSS”.

• TLEN is the total ULP datagram length.

• Other parameters in the data descriptor(s) and the context descriptor are defined the same as a
single send.

The data descriptors indicate the TSO header as well as the ULP datagram while following the frame
formats and assumptions described in Section 10.5.8.4.1.

613875-009 1571

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Chapter 11 Protocol Engine

11.1 Protocol Engine Overview

The Protocol Engine (PE) adds Remote Direct Memory Access (RDMA) capabilities to the traditional LAN
functionality found in standard NICs. RDMA is a networking performance optimization that enables
servers to communicate across a network using high-performance, low-latency, zero-copy DMA
semantics. It is designed to reduce host CPU utilization, host memory bandwidth used for network
traffic, and network latency when compared to traditional networking stacks such as sockets with
TCP/IP. Here are some of the RDMA capabilities provided by the PE:

• Secure, direct access to PE hardware for userspace or kernel applications

— Supported in Virtual Machine environments using SR-IOV.

• Translation Protection Table (TPT)

— Similar to a CPU Memory Management Unit (MMU).

— Enables definition of > 1M Memory Regions.

— A Memory Region is a virtually or logically contiguous area of application address space
registered with the OS. An enabled Memory Region enables the PE to perform DMA access for
local and (optional) remote requests, and enables userspace applications to specify buffers in
Virtual Address space.

— 100M+ Virtual-to-Physical page translations.

• Reliable Connection Transport

— 100K+ connections, analogous to a DMA engine with 100K+ channels

— Sequence number checks

— Acknowledgment

— Dynamic congestion control

— Retransmission

— Timers

• IP Routable RDMA

The remaining subsections in this chapter are organized as follows:

• Section 11.2, “Features” — Gives details on PE features.

• Section 11.3, “Functional Description” — Describes the hardware infrastructure external to PE that
a silicon device must implement, in order to successfully integrate PE.

• Section 11.4, “Verbs Programming Model” — Defines PE implementation details related to the
RDMA Verbs programming model.

• Section 11.5, “Resource Management” — Defines how PE hardware resources are managed by a
driver.

• Section 11.6, “RDMA Functionality” — Defines RDMA-related structures a driver must program.

• Section 11.7, “UD/UDA Functionality” — Defines UD/UDA functionality.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1572 613875-009

• Section 11.8, “UDA Functionality” — Describes the PE UDA capabilities, a way to give kernel
applications direct access to PE hardware to enable iWARP connection setup and error handling.

• Section 11.9, “Protocol Engine Statistics” — Describes PE hardware statistics counters.

• Section 11.10, “SR-IOV Protocol Engine Functionality” — Describes PE SR-IOV support.

• Section 11.11, “NVM RDMA Register Initialization” — Describes RDMA registers that are initialize
from NVM values.

11.2 Features

Table 11-1 shows the Protocol Engine feature set.

Table 11-1. Protocol Engine Features

Category Description

General RDMA Protocol Support
Simultaneous support for both iWARP and RoCE v2.

General PCIe Function Enabled for RDMA
All of the device’s PCIe Physical Functions, and any 32 of the device’s PCIe Virtual Functions can be enabled to use
RDMA. The number of VFs enabled for RDMA can be reduced via resource profiles. RDMA resources can be
redistributed between VFs and PFs based on resource profiles.
Note: The maximum number of Physical Functions supported is 8.

General Ethernet Ports Supported
Support for 4 Ethernet ports with 8 TCs, or 8 Ethernet ports with 4 TCs.

General IP Version
Support both IPv4 and IPv6 offloaded RDMA connections.

General ARP Table
Supports a unique ARP Table instance with up to 65536 entries per PCI function (PF or VF). Each entry contains a 6-
byte Ethernet address, plus control/status information for neighbor reachability detection. The ARP Table supplies a
destination Ethernet address for all transmitted RDMA packets.

General RDMA-Enabled MAC Addresses
The Source Ethernet MAC Addresses are kept with the QP context. There is no table of MAC Addresses.

General IP Datagrams/Fragmentation
RDMA IP datagrams are never transmitted with fragmentation. RDMA IPv4 datagrams are always transmitted with
the Don't Fragment flag set and the Fragment Offset field set to 0. Received RDMA IP datagram fragments are sent
to the LAN stack and not processed by the RDMA offload engine.

General RDMA Statistics
128 sets of RDMA statistics. Each set can be assigned to an arbitrary/programmable group of one or more Queue
Pairs. Any Queue Pair can be assigned to only one stat set. A typical configuration assigns one set to each active
PCIe PF and VF, with the extra sets available for assignment as requested by the OS. For example, if 8 PCIe PFs and
32 PCIe VFs are active, then 40 RDMA stat sets are assigned to these functions, with the sets remaining for
allocation as requested by the OS.

QP Max QP Count
Supports 256K Queue Pairs for RDMA that are dynamically assigned to PCI functions at runtime by Protocol Engine
firmware.

613875-009 1573

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

QP Work Queue Elements (WQEs)
These WQE properties are supported:
• Similar WQE format for SQs and RQs.
• Each iWARP or RoCE v2 WQE can vary in size from 1 to 14 fragments, with these sizes: 32B, 64B, 96B, 128B,

160B, 192B, 224B, 256B.
• Fragments are specified with virtual addresses and are virtually contiguous.
• The Protocol Engine performs virtual-to-physical translation using its built-in Memory Management Unit (MMU).
• An iWARP or RoCE v2 SQ WQE can (optionally) directly convey 216B of inline data for small message latency

optimization.
• Send Queue Push mode support is required.

QP Work Queues (WQs)
RDMA WQs are mapped into host memory as physically or virtually contiguous ring buffers. Maximum WQ size is 32K
entries x 32B = 1 MB. Maximum WQ depth is configurable on a per-WQ basis. Supported values range from 8 to 32K
32B WQEs, in power-of-two increments. Dynamic WQ resizing is not supported.

QP SQ Operations (Baseline)
Support for these baseline SQ operations:
• Send
• Send with Invalidate
• Send with Solicited Event
• Send with Solicited Event and Invalidate
• RDMA Write
• RDMA Read (iWARP-style single local SGE)
• RDMA Read with Local Invalidate (iWARP-style single local SGE)
• Bind Memory Window
• Fast-Register Memory Region
• Invalidate Local STag.

These operations work with either iWARP or RoCE v2, except the iWARP-style RDMA Reads, which are iWARP-only.

QP SQ Operations (RDMA Write with Immediate Data)
Support for RDMA Write with Immediate Data. CQE and SQ WQE formats enable 8B of Immediate Data for both
iWARP and RoCE. For iWARP, 8B of Immediate Data is conveyed on the network. For RoCE, only 4B of Immediate
Data is conveyed on the network.

QP SQ Operations (RDMA Read Special)
Support RDMA Read (IB-style with multiple local SGEs). For RoCE v2, this is the only form of RDMA Read. Each
iWARP QP is configured by software to use either canonical iWARP-style RDMA Reads, or to use IB-style RDMA
Reads. In the later mode, RDMA Read with Local Invalidate must not be considered an illegal operation, for
backwards compatibility with existing iWARP applications.

QP SQ Operations (Send with Immediate)
For RoCE v2 Queue Pairs only, support Send with Imm, Send with SE and Imm.

QP Number of RDMA Reads
The number of outstanding inbound RDMA Reads, defined by Inbound RDMA Read Queue Depth (IRD) is configured
independently per QP. These IRD settings are supported: 2, 8, 32, 64, 128, 256. IRD can not be modified after the
QP has been created.
The number of outstanding outbound RDMA Reads, defined by Outbound RDMA Read Queue Depth (ORD), is also
configured independently per QP. These ORD settings are supported: 0 to 255, in single-step increments. ORD can
be modified after the QP has been created, if the proper quiesce conditions are met.

QP Send Queue Push Mode
This device supports Send Queue Push Mode. In this mode, the Host CPU writes or pushes SQ WQEs with or without
inline data to the device memory-mapped address space using CPU write-combining buffers. Each of the device's
PCIe PFs MUST support up to 1024 separate 4KB Push Pages. Each of the device's RDMA-enabled VFs MUST support
16 4KB Push Pages. The Push Pages are typically exposed through an extension of the memory BAR that contains
the CSRs. PF Push Pages MUST be assignable to VMs via device firmware in para-virtualized driver models.

Table 11-1. Protocol Engine Features [continued]

Category Description

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1574 613875-009

CQ Completion Queues
Supports up to 524288 CQs that are dynamically assigned to PCI functions at runtime by device firmware. A CQ/ring
buffer can be either virtually or physically contiguous. CQE size is 32B for standard operations, and 64B for special
cases including some Immediate Data and UD operations. 32B CQEs can optionally be padded to 64B cache-line
boundary to avoid memory conflicts. Max CQ size is 1M entries x 64B = 64 MB. Supports user-defined mapping of
WQs to CQs. Supports CQ resizing, CQ size can be increased or decreased while the CQ is active. Supports CQ
overflow detection.

EQ Completion Event Queues
Supports 256 Completion Event Queues for RDMA that are dynamically assigned to PCI functions at runtime by
device firmware.

EQ Asynchronous Event Queues
Supports 48 Asynchronous Event Queues for RDMA that are dynamically assigned to PCI functions at runtime by
Protocol Engine firmware.

MMU Protection Domains
Each PCIe PF or VF enabled to use RDMA can define up to 256K Protection Domains.

MMU Memory Regions and Windows
Each PF or VF enabled to use the Protocol Engine can allocate up to 4M (i.e. 222) Memory Regions or Memory
Windows. The maximum size of a standard Memory Region or Memory Window is 32TB (245 bytes). The Protocol
Engine also supports a special privileged unbounded Memory Region configuration. When set to unbounded, a
Memory Region is configured to register all of contiguous physical memory, and to treat Memory Region Length as
“unused and unenforced”.

MMU Wide Memory Windows
Support Wide Memory Windows for both iWARP and RoCE. Wide Memory Windows have Protection Domain scope,
whereas standard iWARP Memory Windows have QP scope.

MMU Host Memory Page Sizes (Baseline)
Host Memory page sizes supported: 4 KB, 2 MB. Each Memory Region can be independently configured for either
page size.

MMU Host Memory Page Sizes (Enhanced)
Includes everything in baseline, plus support for 1 GB Host Memory page size.

MMU Physical Buffer List (PBL)
Each RDMA Memory Region can be Physically Mapped (that is, the region is physically contiguous in Host Memory) or
Virtually Mapped with a one- or two-level PBL.
Each RDMA-enabled PF or VF can allocate up to 256M (228) PBL Entries. A single PBL Entry maps a single Host
Memory page.

MMU Maximum Virtually Mapped Memory (Enhanced)
The maximum virtually-mapped memory a single PF or VF can register for RDMA depends on host page sizes used.
The examples below illustrate this for different page sizes. Supported page sizes are defined elsewhere, and some of
these examples might not be relevant for this device. If a PF or VF allocates its maximum limit of 256M PBL Entries,
then...
...its maximum virtually mapped memory using 100% 1 GB host memory pages is: 230 x 228 = 258 bytes = 256 PB
...its maximum virtually mapped memory using 100% 2 MB host memory pages is: 221 x 228 = 249 bytes = 512 TB
...its maximum virtually mapped memory using 100% 4 KB host memory pages is: 212 x 228 = 240 bytes = 1 TB

UD Address Handles
Supports 128K Address Handles per PCIe function.

iWARP Standards Compliance
IETF RFC 5040, 5041, 5042, 5044, 6580, 6581, 7306 (immediate data only, atomics are not supported)
RDMA Consortium Verbs

iWARP Receive Window Size
Each RDMA connection has a configurable Receive Window with maximum size of 1GB-1B.

iWARP Non-Permissive IETF RNIC
Using a term coined in IETF RFC 5044, this device is a non-permissive IETF RNIC (an RNIC that implements the IETF
protocols, but not the RDMAC protocols).

Table 11-1. Protocol Engine Features [continued]

Category Description

613875-009 1575

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.3 Functional Description

11.3.1 Packet Classification and the PE

The E810 provides several filtering checks that can be used to distinguish LAN traffic that should be
handled by the PE from other LAN traffic. The mechanism to direct a packet to be processed by the PE
is to enable the RDMA Packet Profiles for RDMA in the VSI. The internal switching components described
in Section 7.10, including this special setting, are used to identify a Virtual Station Interface (VSI).
Once the VSI has been identified, the checks shown in Figure 11-1 determine if a packet is processed
by the PE.

iWARP MPA - Baseline Support
Supports all of the following:
• Insertion of Transmit markers (can be enabled/disabled per QP).
• MPA CRC generation for outbound iWARP packets.
• Transmit up to four FPDUs in a single Ethernet packet.
• Able to transmit partial FPDUs when there is outstanding (unacknowledged) data and an MSS change occurs.
• MPA CRC checking on inbound packets (can be enabled/disabled per QP).
• Process received Ethernet packets with any number of iWARP FPDUs (bounded by max packet size).
• Support for detection/handling of received partial FPDUs.
• Drop out-of-order received FPDUs without ACKing the TCP segment containing them.

iWARP MPA - Place Out-of-Order Received FPDUs
When Receive Markers are enabled, place out-of-order FPDUs.

RoCE Standards Compliance
InfiniBand Architecture Specification Volume 1 Release 1.3 (support the subset of this spec that applies to RoCE v2)
InfiniBand Architecture Specification Annex A17: RoCE v2 Sept 2014

Table 11-1. Protocol Engine Features [continued]

Category Description

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1576 613875-009

Once the internal switch packet classification has been performed, the following checks must be passed
before a packet is processed by the PE:

1. The VSI configuration option that enables traffic to be routed to the PE must be enabled.

2. The packet must be a protocol that is supported by the PE. The current protocols that the PE is
capable of handling are TCP/IP and UDP/IP. Multicast and unicast packets are supported for UDP/IP.

3. Additional checks to validate the IP and TCP or UDP headers must succeed.

4. If the packet is an IP packet it must not be a fragmented IP datagram.

5. If the packet is targeted for the RoCEv2 port and is a unicast packet, it is sent to the Protocol
Engine.

Figure 11-1. PE Packet Classification

613875-009 1577

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

6. If the packet is targeted for the RoCEv2 port and is a multicast packet, it skips the next step. That
is, it does not have an APBVT entry but it does go through the Protocol Engine Hash Table.

7. Otherwise, the destination port of the TCP or unicast UDP packet header must have its associated
bit set in the Accelerated Port Bit Vector Table (APBVT). APBVT is described in Section 11.5.3.18.

8. The packet is then sent through a hash table lookup and must be found. The fields from the packet
that are used for the lookup vary based on the packet contents. TCP/IP packets that do not have
the SYN bit set, or have the SYN bit set and the ACK bit set, use the combination of destination MAC
Address, VLAN tag (if present), source and destination IP Addresses, and the source and
destination port fields. TCP/IP packets with the SYN bit set and the ACK bit clear or unicast UDP/IP
packets use the destination MAC Address, VLAN tag (if present), destination IP Address and
destination port. See Section 11.5.3.20 for more details on the PE hash filter. If this check fails, a
bit indicating that a hit in the APBVT was found, the IP table index from check number #7 and
destination TCP port number are reported in the receive descriptor as status.

7. Finally, the packet must not have IPv4 options or IPv6 extension headers.

If any of the previous checks fail, the packet is processed by the LAN engine.

The PE has some limitations regarding the packet formats that are supported with RDMA and UDA
traffic. The PE supports all packet formats that are configured using the internal switch and configured
for the VSI. Additional headers (such as an extra inserted IP header, IP and NAT tunneling headers, or
IP and Teredo headers) that are inserted for L2 traffic on a per packet basis are not supported for PE
traffic. When the VSI is not configured for handling specific header formats, the PE is capable of
handling packets with up to one extra packet headers to match the L2 VLAN capability. The VLAN tag
specified in QP context matches the definition for L2TAG1 for LAN descriptors.

Two different values have been used for the RoCEv2 well-known port number: 1021 (early
development) and 4791 (assigned by IANA). Two port numbers per physical port are recognized by the
Parse Graph as RoCEv2 well-known ports. See the section on Packet Parsing for more information on
how to program the parser for these values.

11.4 Verbs Programming Model

The verbs programming model is specified for iWARP from the RDMA Consortium.

http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf

The E810 supports the verbs constructs of QPs, CQs, and events. The E810 supports verbs events by
implementing CEQs and AEQs. Further description of each of these constructs in provided in the
following sections. Additional information on the verbs programming model can be found in the link to
the RDMA consortium website previously provided.

11.4.1 Verbs from a System View

The following sections provide an overview of each verbs construct supported by the E810 from a
system view. It is expected that the user is generally familiar with the verbs programming interface.

http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1578 613875-009

11.4.1.1 Asynchronous Event Queue (AEQ)

The E810 supports a single AEQ per PE-enabled PCI function. AEQs are used to report status and errors
associated with PE QPs, CQs, and ARP table entries.

AEQs are a packed array of AEQ entries (see Section 11.4.6 for the format of an AEQ entry) located in
a virtually contiguous buffer in host memory (see Figure 11-2). AEQs should be sized to enable a two
entries for every QP, CQ, and ARP table entry that is active for the PCI function. Each QP, CQ and ARP
table entry ensures that it generates only a single AEQ entry at a time.

Software interaction is required for each resource to enable subsequent AEQ entries. If the AEQ is not
sized appropriately, AEQ overflows can result [(Head+2)%AEQ_Size=Tail], in which case AEQ entries
are lost, and the AEQE_Overflow bit in the AEQE is set to notify software that the overflow condition
occurred. Once the AEQ has overflowed, no new AEs are delivered to that queue. The AEQ must be
destroyed and recreated to resume AE processing.

The initial condition for software shown in Figure 11-2 is AEQE_Index set to 0b. The last valid is shown
strictly for discussion purposes. The E810 first writes to the AEQE index specified by Head. After an
AEQE is written, an interrupt is generated if AEQ interrupts are not masked. Once an interrupt has been
received that indicates that a new AEQ element (AEQE) is available, software reads the AEQE at
AEQE_Index and increments AEQE_Index.

Software processes all valid AEQEs until it encounters an invalid entry, and stores the index of the
invalid entry in the AEQE_Index variable. Subsequent AEQ entries might be generated by the E810
after the entry that caused the interrupt while interrupts are masked. For each valid AEQ entry found,
the PFPE_AEQALLOC register (see Section 13.2.2.28.10) must be written to notify the E810 that the
AEQ entry is available for use by hardware. Writing the PFPE_AEQALLOC register causes the E810 to
increment the on-chip tail context variable. The PFPE_AEQALLOC register supports batching of AEQ
entry acknowledgment into a single write to enable software to minimize the number of register writes
necessary to complete AEQ interrupt processing. PE enabled VF must use the VFPE_AEQALLOC
registers instead of the PFPE_AEQALLOC.

If software stops processing the AEQ before it has consumed all valid AEQEs, software must use a
software-initiated interrupt to return to processing AEQEs. Otherwise, no further interrupts are
generated until a new AE is generated. Once the E810 has run through the AEQ and wrapped back to
AEQ0, the polarity of the AEQE_Valid bit is switched to avoid the need for software to go back and clear
the AEQE_Valid bit for each AEQE processed.

Figure 11-2. AEQ

AEQE (t-1)

AEQE (t-2)

......
...

AEQE_Valid

Head

AEQ_Base

AEQ_Size

Tail

AEQE (0)
AEQE (1)

AEQE (a)
AEQE (b)

AEQE (h)
AEQE (i)

AEQE (c)
AEQE (d)
AEQE (e)
AEQE (f)
AEQE (g)

...

Last Valid

AEQE_Index

613875-009 1579

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.4.1.2 Completion Event Queue (CEQ)

The E810 supports one CEQ per MSI-X vector per PE enabled PCI function and a maximum of 768 CEQs
total. HMC resource profiles are used to distribute the number of CEQs across the PE enabled PCI
functions.

Software can determine the number of CEQs and the specific instances assigned to a particular PCI
function by reading the GLHMC_CEQPART[n] (see Section 13.2.2.20.27) or GLHMC_VFCEQPART[n]
(see Section 13.2.2.20.25) registers after the HMC profile has been selected. Each CEQ is associated
with a separate interrupt cause. It is expected that the number of CEQs that software uses is the
minimum of the number of MSI-X vectors available, the number of CPU cores, and the value reported
from the GLHMC_CEQPART[n].PMCEQSIZE. Software uses multiple CEQs to distribute the completion
process workload across multiple CPUs. Each CQ is individually assigned a CEQ via the CreateCQ or
ModifyCQ operations defined in Section 11.5.3.3.

Figure 11-3 shows that CEQs are a packed array of CEQ elements (see Section 11.4.5 for the CEQ
element definition) located in a virtually contiguous buffer in host memory. CEQs should be sized
according to the maximum number of active CQs that are assigned to the CEQ. Each CQ guarantees
that it generates a maximum of one CEQ entry without having software acknowledge that the CEQ
entry has been consumed. CEQs are not checked for overflow conditions, so it is important that they
are sized correctly or completion events are lost.

The initial conditions for software shown in Figure 11-3 is CEQE_Index is set to 0. The last valid is
shown strictly for discussion purposes. When the E810 generates a new CE, a CEQE is written to the
CEQ at index value of head with the CEQE_Valid bit indicating that a new event is available and an
interrupt is generated. The E810 bumps Head as part of the CEQE generation process, and when the
Head reaches the end of the CEQ it wraps back to 0. Software management of CEQE_Index must match
the E810’s head algorithm.

Subsequent CEQEs might be written after the entry that caused the interrupt while CEQ interrupts are
masked. Software is required to process all valid CEQEs up to the point where the first invalid entry is
found. If software stops processing CEQEs before it has found an invalid entry, software must force the
E810 to generate a new interrupt using the SWINT_TRIG bit in the interrupt control registers. This is
necessary since the E810 does not track a tail value for CEQs and therefore cannot determine if a new
interrupt is required to process CEQEs that have already been written and not processed by software.
Once software has processed a valid CEQ entry, software writes the PFPE_CQACK register (see
Section 13.2.2.28.9) to enable the CE to generate new events.

Figure 11-3. CEQ

CEQE (t-1)

CEQE (t-2)

......
...

CEQE_Valid

Head

CEQ_Base

CEQ_Size

CEQE_Index

CEQE (0)
CEQE (1)

CEQE (a)
CEQE (b)

CEQE (h)
CEQE (i)

CEQE (c)
CEQE (d)
CEQE (e)
CEQE (f)
CEQE (g)

...

Last Valid

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1580 613875-009

Once the E810 has wrapped back to CEQE0, the polarity of the CEQE_Valid bit is switched to avoid the
need for software to go back and clear the CEQE_Valid bit for each CEQE processed.

11.4.1.3 Completion Queues

When work requests submitted to Work Queues (WQs) complete, the E810 might post CQEs to
associated CQs. Queue Pair WQs might be Send Queues (SQs) or Receive Queues (RQs). SQs and RQs
are associated with their CQs at QP creation time. This association remains (and cannot be changed)
until the QP is destroyed. Each SQ and RQ can be bound to same or separate CQs. CQs can also be
shared by multiple WQs from different QPs.

The E810 supports up to 512K CQs that are distributed among that active PCI functions using HMC
resource profiles. See Section 9.3.3 for more information on the resource distribution mechanism used
with CQs. The E810 maintains the context of each Completion Queue in CQ context data structures in
the HMC’s function private memory space. The storage elements of CQs reside in system memory. See
Section 9.3 for more information on the E810’s usage of host memory for CQ context.

As shown in Figure 11-4, CQs are organized as a circular array of CQEs. Each CQE is 32 or 64 bytes in
length, and the format is dependent on the type of the WQ that is associated with the CQE. CQP, RDMA,
and UDA WQs all can be related to CQs. CQs are managed using the Create/Modify/ DestroyCQ
operations defined in Section 11.5.3.3.

In addition to the CQ itself, software maintains a shadow area that the E810 reads when the CQ is
getting low on CQEs for hardware to write, or when the CQ has been armed for event generation. The
E810 supports the verbs interface calls for requesting completion notification based on the next
completion or based on the next completion that is associated with an operation that is a solicited
event. The shadow area contains variables that must be maintained by software in an atomic fashion,
since the E810 could read that area at anytime. Specifically, the two 32-bit words (first one at byte
offset 0 and second at byte offset 32) in the Completion Queue doorbell shadow area must be accessed
using atomic 32-bit processor instructions. The arm_seq_num, arm_next and arm_next_se fields are
ignored if an arm request has not been made by writing to the PFPE_CQARM register (see
Section 13.2.2.28.8). The PFPE_CQARM register exists in CSR space for kernel mode drivers to access
and also in the doorbell page area of the PCI function’s BAR space that can be mapped directly to a
userspace application’s memory space for kernel bypass operation. The format of the shadow area for
CQs is shown in Table 11-27 on page 1645.

Figure 11-4. CQ

CQE (t-1)

CQE (t-2)

......
...

CQE_Valid

Head

CQ_Base

CQ_Size

Tail

CQE (0)
CQE (1)

CQE (a)
CQE (b)

CQE (h)
CQE (i)

CQE (c)
CQE (d)
CQE (e)
CQE (f)
CQE (g)

...

Last Valid

CQE_Index

arm_next
arm_next_se
sw_cq_select

arm_seq_num

Shadow
Area

613875-009 1581

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

The CQ is organized as a circular queue, written by the E810 and read by the driver software. Initially,
both the E810 and the driver software point to the first entry in the queue. The E810 advances the
Head context field after it writes a CQE to the CQ. Similarly, when the driver picks up a CQE, it advances
the CQE_Index context field in shadow area in host memory. When Head approaches Tail, the E810
reads the CQ shadow area and writes the CQE_Index value from the shadow area to the Tail context
variable. If Head reaches Tail-1 when the E810 attempts to write a CQE, an overflow condition is
reported and the CQ is put into the error state. CQs generate a single Asynchronous
AE_CQ_OPERATION_ERROR event at this point and any further CQEs that are attempted to be
generated by the E810 are lost.

Completion events are generated if the CQ is armed for the appropriate event. The E810 generates
completion events under the following conditions assuming the Tail does not equal Head:

• Any CQE is written (or has been written since the last event) and the CQ is armed for the next
completion.

• A CQE is written (or has been written since the last event) that is associated with a Solicited Event
operation and the CQ is armed for next solicited event.

• The CQ is armed on a recently re-sized CQ and software has not moved over to the new CQ yet
based on the sw_cq_select value in the shadow area.

Completion Events can be deferred if a Completion Event has been generated for a CQ and the
PFPE_CQACK register (see Section 13.2.2.28.9) has not been written by software.

The E810 differs slightly from the verbs specification definition of generating completion events in two
ways. First, the E810 generates a completion event for a CQ that is armed for next completion without
waiting for a new completion to be generated if it appears that CQEs have not been processed by
software (Head != Tail after reading the doorbell shadow area). Second, the E810 does not track the
exact location of the solicited events that have been generated since the last completion event. The
E810 generates a completion event for a solicited event operation if any solicited event completion has
been generated since the last completion event was generated, and it appears that CQEs have not been
processed by software.

The E810 process for arming CQs for event generation is simply to first write to the appropriate bit in
the CQ shadow area to enable either next or next solicited completion notification events, increment
arm_seq_num, and then write to the PFPE_CQARM register (see Section 13.2.2.28.8). The E810 then
reads the shadow area and the CQ context is used to either immediately generate a new completion
event if the CQ has unprocessed CQEs remaining, or arm the CQ to generate a new event once a
subsequent CQE is written. As previously described, completion events can be deferred under certain
circumstances. The E810 maintains a copy of the last arm_seq_num value that was read during the last
arm request in CQ context. The E810 compares the value of arm_seq_num in CQ shadow area with the
value in CQ context during arm requests and drops arm requests that have the same value in the
shadow area and in CQ context. This comparison prevents CQ arm requests from rogue applications
from changing the arm state of a CQ unless the application also has access to the CQ shadow area.

CQ resize operations with the E810 involve four steps.

1. Allocate a new CQ in host memory based on the new size requested by an application.

2. Issue a ModifyCQ operation to the E810. ModifyCQ operations notify The E810 to start using the
new CQ for new CQEs.

3. Completely process CQEs from the old CQ.

4. Start to process CQEs from the new CQ after freeing the buffer for the old CQ. The old CQ can be
considered to be completely processed when an invalid CQE has been found in the old CQ and at
least a single valid CQE has been encountered on the new CQ.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1582 613875-009

When the transition to updating CQE_Index based on the new CQ occurs, sw_cq_select must be
incremented. During the ModifyCQ operation, the E810 incremented its cq_select value and switched
over to writing CQEs to the new CQ. Since there could be pending CQEs still on the old CQ, the E810
compares the CQ shadow area sw_cq_select to the hardware cq_select value during any reads of the
CQ shadow area due to arms or CQ tail updates. If hardware cq_select does not match sw_cq_select,
the E810 ignores CQE_Index and does not update CQ Tail, assuming that software is still working with
the old CQ. Arm requests generate new events immediately, since the E810 is no longer aware of the
state of the old CQ. Once software has properly set CQE_Index to reflect progress on the new CQ, it
must also increment sw_cq_select so the E810 will start processing arm requests and CQ Tail updates
based on the new CQ.

Figure 11-5 shows a CQ during a resize operation. The original CQ is shown on the left side of the
diagram. At the time that the ModifyCQ operation occurred for the resize, the CQ had valid CQEs that
had not been processed by software. The E810 switched over to the new CQ shown on the right side of
the diagram at the time of the ModifyCQ and incremented its cq_select value. New CQEs are shown as
generated on the new CQ in Figure 11-5. Any arm requests immediately generate new CEs while
sw_cq_select does no match the hardware cq_select value. If the doorbell region is read during this
time, the CQE_Index0 value is ignored because sw_cq_select0 does not match cq_select. Once software
has found an invalid entry in the original CQ and CQE0 from the new CQ is valid, software can reset
CQE_Index to 0, increment sw_cq_select, and start processing CQEs on the new CQ. At this time it is
safe to free the memory used for the original CQ, since the E810 no longer writes to the old CQ. While
two CQ shadow areas are shown in Figure 11-5, there is really only one. Two are shown to indicated
that values of sw_cq_select and CQE_Index have changed to signal the change over to the new CQ.

11.4.1.4 Memory Registration (Translation/Protection)

In today's modern operating systems, applications running at user protection level use virtual
addresses and they are not aware of their data buffers' physical addresses. However, traditional I/O
devices require physical addresses to transfer data to/from system memory. This gap is typically
bridged by the device driver, which runs in the kernel protection level. Transitioning from user to kernel
protection level, and than back to user protection level is not only quite expensive (in terms of MIPs),
but also contributes to increased latency. The RDMA architecture solves this inefficiency by:

Figure 11-5. CQ Resize Operation

CQE (t-1)

CQE (t-2)

......
...

CQE_Valid

CQ_Base0

CQ_Size0

CQE (0)
CQE (1)

CQE (a)
CQE (b)

CQE (h)
CQE (i)

CQE (c)
CQE (d)
CQE (e)
CQE (f)
CQE (g)

...

Last Valid0

CQE_Index0

arm_next
arm_next_se

sw_cq_select0

CQE (t-1)

CQE (t-2)

......
...

CQE_Valid

Head

CQ_Base1

CQ_Size1

Tail
CQE (1)

CQE (b)

CQE (h)
CQE (i)

CQE (c)
CQE (d)
CQE (e)
CQE (f)
CQE (g)

... Last Valid1

CQE_Index1

arm_next
arm_next_se

sw_cq_select1

CQE (0)
CQE (1)

 CQE (a)

arm_seq_num

arm_seq_num

Shadow
Area

Shadow
Area

613875-009 1583

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

• Using virtual data buffer addresses in the RNIC programming model.

• Servicing latency critical functions through libraries running at the user protection level

This approach requires RNICs to implement robust address translation and protection techniques. This
section provides in-depth descriptions of the address translation and protection mechanism used by the
E810. However, the reader is assumed to be familiar with the memory management concepts,
operations, and related terms described by the RDMA specification.

The E810 uses a Memory Region Table (MRT) and Physical Buffer Lists (PBLs) to represent virtually
contiguous system memory locations that are accessible for RDMA operations. The data structures in
MRT are used to describe these memory locations and their protection attributes. PBLs provide the page
lists that back each MRT entry. Both of the data structures are HMC objects that are described further in
Section 9.3. These concepts, supporting data structures, and related operations are described in
Section 11.4.1.4.1. In these sections, the actual MRT and PBL construction details through the HMC are
intentionally omitted and a virtually contiguous HMC function private memory space is assumed.

11.4.1.4.1 Address Translation and Protection Overview

As shown in Figure 11-6, the E810 supports a two-level protection and translation flow. The STag and
tagged offset pair define the protection attributes and physical address of the system memory being
accessed.

The STag portion of the address is used to locate the Memory Region Table Entry (MRTE) in the MRT.
This data structure provides the protection attributes (Type, Access Control, Protection Domain and
Key), the bounds check attributes (Base Tagged Offset, Length and First Byte Offset), and the address
translation attributes (Page Size, and Base PBL Index). These attributes are described in detail later in
this section.

After the protection attributes are checked and the address bounds checks are performed, the address
translation attributes, along with tagged offset, are used to calculate the PBL virtual address. The
translation flow is explained in detail later in this section. The PBL Index portion of the PBL virtual
address is used to locate the Physical Buffer List Entry (PBLE), which provides the physical page
address. Finally, the page address is concatenated with the offset portion of the PBL virtual address to
form the physical system address.

Figure 11-6. STag Decomposition to Physical Address

Memory Region Table
Entry (MRTE)

Memory Region
Table

Address = f(Steering Tag, Tagged Offset)

KeyIndex

+
PBL Index Offset

M
R

TE
 A

ttr
ib

ut
es

Page Address Offset

Physical AddressTranslation Table

Physical Buffer List
Entry (PBLE)

PBL Virtual Address

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1584 613875-009

Depending on its size, each MRTE might be associated with multiple PBLEs. In this case, the PBLEs must
be allocated consecutively to form the PBL. The PBLs can also be shared between multiple MRTEs when
memory windows or shared memory regions are used. This enables efficient representation of a section
of the system memory that is registered multiple times; potentially with different protection attributes.

The E810 also supports two other modes of address translation. The first is termed direct page
translation, which can be used when the STag is backed by a physically contiguous buffer is depicted in
Figure 11-7. In this case, the PBL translation step is skipped, which enables more efficient calculation of
the physical address accessed for a given STag.

The second additional mode of address translation is designed to enable software to make more
efficient use of PBL address space when large numbers of large buffers are used for an application at
the expense of additional accesses to host memory in order to calculate the ultimate physical address.
Figure 11-8 shows a mode where PBLs are accessed twice by breaking the PBL virtual address into
three pieces instead of two. The root PBLE is first accessed to find the PBLE associated with the leaf
PBL. Once the leaf PBL is identified, the leaf PBL index is used to identify the leaf PBLE address that
contains the page address portion of the physical address. In this mode, the leaf PBLs must be either
256 (64 root PBLEs or 32 leaf PBLEs) or 4096 (1024 root PBLEs or 512 leaf PBLEs) bytes in size. The
root PBLs can be any size. This mode enables software to slice up the PBL space into fixed size PBLs for
large memory regions of up to 2 GB/s instead of having to reserve large contiguous regions of PBL
space for a single STag.

Figure 11-7. Direct Page Translation

Memory Region Table
Entry (MRTE)

Memory Region
Table

Address = f(Steering Tag, Tagged Offset)

KeyIndex

+
Page Address Offset

M
R

TE
 A

ttr
ib

ut
es

Physical Address

Physical Address

613875-009 1585

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Each Root PBLE is just a 28-bit object index of the starting PBLE object for the associated leaf PBLE. In
other words, each root PBLE points to a another PBLE HMC object that is the start of the leaf PBL. Each
leaf PBL is an array of 32 or 512 PBLEs. The size of the root PBL is determined from the region size
specified in the MRTE. Each leaf PBLE is a 64-bit pointer to a host memory page which can be a 4 KB or
a 2 MB page. For 4 KB pages the lower 12 bits of the host memory page pointer are ignored and for
2 MB pages the lower 21 bits are ignored.

Before we dive into the details of the MRTE and PBL data structures and operations, a brief overview of
commonly used terms are provided in the sections that follow.

11.4.1.4.1.1 STag

All local and remote memory accesses require use of an STag. The STag, along with a tagged offset, is
used to identify a memory location within a specific memory region or memory window. STags are
found in RQ and SQ WQEs and in tagged iWARP messages received from the wire. As shown in
Figure 11-9, 32-bit wide STag is further divided into two fields.

Where:

• STag Index — The most significant 24-bits of STag is called the STag Index. Since this field is used
as an index into the MRT, it is also known as the memory region table index or MRT index in short.
The E810 supports up to 4 MB protection entries. Note that the unused most significant bits of the
STag Index can be randomized by software to provided reduced predictability for any MRT attacks.

• STag Key — The least significant 8-bits of the STag is called the STag Key. The STag Key field is a
user- or driver-provided key that provides an additional level of security for the STag protection
check.

Figure 11-8. Two-Level Page Translation

Figure 11-9. STag Format

Memory Region Table
Entry (MRTE)

Memory Region
Table

Address = f(Steering Tag, Tagged Offset)

KeyIndex

+

M
R

TE
 A

ttr
ib

ut
es

Page Address Offset

Physical AddressPhysical Buffer
List Table

Leaf Physical Buffer
List Entry (PBLE)

PBL Virtual Address

Root Physical Buffer
List Entry (PBLE)

OffsetLeaf PBL
Index

Root PBL
Index

+

Stag KeySTag Index
07831Bits:

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1586 613875-009

11.4.1.4.1.2 Memory Region and Memory Window

Applications must register memory regions prior to accessing the system memory either locally or
remotely. Memory regions, and their translation and protection attributes are represented by properly
formatted MRT entries. MRT entries of this type are also called Region Entries or RE in short. Memory
region registration and de-registration requests are communicated to the E810 (1) by using CQP
commands (like: register memory region and de-register memory region) or (2) by work request
through a SQ (like: fast register non-shared memory region and invalidate STag).

The Verbs specification also defines the memory windows concept. The InfiniBand specification defines
Type 1 and Type 2 Windows. Memory windows can be placed anywhere within a valid memory region.
Multiple memory windows are allowed within a memory region. Memory windows are allowed to
overlap, or be completely included within another memory window. However, memory windows are not
allowed to cross memory region boundaries. The E810 supports memory windows through another type
of protection entry. These protection entries are also referred as Window Entry (WE). Figure 11-10
shows the relations between memory regions and memory windows.

Memory windows can only be bound to bindable memory regions. A memory window's protection
attributes are constrained by the protection attributes of the memory region. The E810 supports
byte-level lower and upper address limits for both memory regions and memory windows.

11.4.1.4.1.3 Tagged Offset (TO)

The 64-bit wide Tagged Offset (TO) field specifies the first byte of the buffer being addressed in a
memory region or memory window. Memory regions and memory windows have a base attribute as
either zero-based TO or Virtual Address (VA)-based TO. For a VA-based TO, the TO of the first memory
location associated with the memory region equals the base virtual address value specified when the
memory region is registered. For a zero-based TO, the TO of the first memory location associated with
the memory region equals zero.

Figure 11-10. Memory Region to Memory Window Relationship

Virtual Memory

Memory Window

Memory
Region

R
egion Pages

Memory Window

Memory Window
Lower Limit

Upper Limit

Region Entry (RE)

Memory Region
Table

Window Entry (WE)

Window Entry (WE)
Window Entry (WE)

613875-009 1587

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.4.1.4.1.4 Page Size

Each memory region and memory window has a page size attribute. Memory windows inherit the page
size attribute of their associated memory regions. The E810 supports three different page sizes: 4 KB,
2 MB, and 1 GB. All system memory pages that are part of a memory region or memory window must
be of the same size.

11.4.1.5 QP

The PE in the E810 supports the verbs QP. QPs are made up of a pair of WQs.

QP WQs are either SQs or RQs. SQs and RQs are associated with their CQs at QP creation time. The
E810 supports QPs for PE administrative commands (control QP or CQP), RDMA is supported by iWARP,
RoCEv2, and UDA. Each QP type has unique operation types that are described in Section 11.5.3,
Section 11.6.6, Section 11.7.1, and Section 11.8.8. Note that CQP does not implement a RQ.

The E810 supports a maximum of 256K QPs that are distributed among that active PCI functions using
HMC resource profiles. See Section 9.3.3 for more information on the resource distribution mechanism
used with QPs.

The E810 maintains the context of each QP in QP Context data structures in the HMC’s function private
memory space. The storage elements of QP context reside in system memory. See Section 9.3 for more
information on the E810’s usage of host memory for QP context.

11.4.1.5.1 Doorbell Pages

To support direct access to E810 hardware for PE functionality, the E810 implements adapter memory
that is mappable to a userspace process. The memory is exposed to the system through the PCI BAR
registers in a similar manner to the CSRs. Each PCI function optionally has a number of PE pages as
shown in Figure 11-11.

As shown in Figure 11-12, the first PE page is used for submitting work to PE SQs and also for arming
CQs from userspace. 60 KB of space is reserved and then the remaining pages are used to support low
latency push mode operation that is described further in Section 11.4.1.5.6.

Figure 11-11. PE Page Location in BARs

PCI PF BAR 0

C
SR

s

Fl
as

h
Ac

ce
ss

Pr
ot

oc
ol

En

gi
ne

Pa

ge
s

PCI VF BAR 0

C
SR

s

Pr
ot

oc
ol

En

gi
ne

Pa

ge
s

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1588 613875-009

The format of the doorbell portion of the PE pages is listed in Table 11-2. The details of each register
found in the PE pages are documented in Section 13, “Programming Interface”.

11.4.1.5.2 SQ

As shown in Figure 11-13, SQs are organized as circular array of SQ Elements (SQEs). The host
memory used for SQs might be physically contiguous or dis-contiguous. Each SQE is 32 bytes in size
and can have up to 13 additional fragments for a total of 14. This approach enables Work Requests
(WRs) to consume a variable amount of SQ space that enables software to advertise 14 fragments as
the maximum supported, but opportunistically pack multiple WRs into a smaller space if the application
needed fewer fragments for a given WR.

The E810 takes advantage of variable size WRs by reading 256 bytes at a time from the SQ when
processing work. If a WR used all 14 fragments, it would consume the 256 bytes and would be
transmitted by itself. If instead the application happened to be using eight consecutive single fragment
WRs, all eight WRs would be fetched (assuming software posted the WRs before the E810 managed to
read the first WR) with a single read of the SQ, which boosts bus efficiency.

The minimum size of a SQ is four maximum-sized WQEs for proper operations. For example, this means
that if a WR can ever use 14 fragments, the SQ must be 1024 bytes. An additional optimization (iWARP
only) that the E810 provides is that WRs that are small enough to fit into a single Ethernet packet and
fetched as part of the same read of the SQ are sent as a single Ethernet packet for efficiency on the
Ethernet fabric.

Figure 11-12. PE Pages

Table 11-2. Doorbell Page Register Summary

Offset/Alias Offset Abbreviation Name Block RW Section
Reference

0x00000000 PFPE_WQEALLOC PE WQE Allocate Register PE RW 13.2.2.28.19

0x00000040 PFPE_CQARM PE CQ Arm PE RW 13.2.2.28.8

PF Protocol Engine Pages

Doorbell
(4KB)

Rsvd
(60KB)

Pushn
(4KB)

...

Push0
(4KB)

VF Protocol Engine Pages

Doorbell
(4KB)

Rsvd
(4KB)

Pushn
(4KB)

...

Push0
(4KB)

613875-009 1589

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Figure 11-13 depicts a typical SQ, where software is tracking SQ_Head and SQ_Tail, and the E810
tracks HW_SQ_tail in QP context. Software must size the SQ large enough to support every SQE with
the maximum number of additional fragments. The amount of space required per work request is listed
in Table 11-3. Essentially the WR space requirements on the SQ end up rounding up to the next
multiple of 32 bytes. SQE 0 is shown using four additional fragments and therefor takes up 96 bytes.

Every SQE must start on an offset that is a multiple of 32 bytes within the SQ and an SQE, and all of
related additional fragments must fit into a single 256 byte SQ read block. NOP SQEs can be added if
necessary to pad SQEs out when necessary to satisfy this requirement. The 32-byte boundary
requirements for SQEs means that there is no difference in SQ size between a WR with four fragments
and a WR with five fragments. If SQE 1 required any additional fragments, a single NOP SQE would
need to be added in place of SQE 1 and all subsequent SQEs would move down in the SQ so that the
SQE 1 and all related additional fragments would fit in the same 256 byte SQ read block.

For the SQ, the maximum size of inline data must also be taken into account when calculating the
amount of space required per work request (see Table 11-3).

Figure 11-13. PE SQ

Table 11-3. QP WR Size Requirements

Number of Fragments
Requested at QP Creation Max Inline Size (SQ Only) Size Required per Work Request

1 ≤ 8 bytes 32 bytes (1 SQE)

2-3 ≤ 39 bytes 64 bytes (1 SQE + 2 additional fragments)

4-5 (SQ only) ≤ 70 bytes 96 bytes (1 SQE + 4 additional fragments)

6-7 ≤ 101 bytes 128 bytes (1 SQE + 6 additional fragments)

8-9 ≤ 132 bytes 160 bytes (1 SQE + 8 additional fragments)

10-11 ≤ 163 bytes 192 bytes (1 SQE + 10 additional fragments)

12-13 ≤ 194 bytes 224 bytes (1 SQE + 12 additional fragments)

14 ≤ 224 bytes 256 bytes (1 SQE + 13 additional fragments)

......
...

SQE_Valid

SQ_Head

SQ_Base

SQ_Size
HW_SQ_Tail

...

Last Valid

SQ_Tail

 Addn’l Frags
 SQE (0)

 SQE (2)

 SQE (a)
 SQE (b)
 SQE (c)
 SQE (d)
 SQE (e)
 SQE (f)
 SQE (g)
 SQE (h)
 SQE (i)

SQE (t-2)
SQE (t-1)

 SQE (1)

SQ Read Size
(128 Bytes)

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1590 613875-009

Figure 11-14 shows a system view of how the E810 processes PE QP SQs. Before describing the flow in
Figure 11-14, software must perform a fair amount of initialization. Software starts by populating all
QP-related HMC objects necessary for CQs, QPs as well as related memory regions. Next, software
allocates buffers for software QP and CQ context, SQ and RQ WRID tracking arrays (software context
and WRID tracking arrays do not need to be pinned, QP40, CQ48, and CQ41 in Figure 11-14), QP and
CQ doorbell shadow/status areas, Q2 areas, and finally the SQ, RQ, and CQ buffers themselves.

The doorbell shadow/status areas, Q2 and WQs all need to be pinned, and if they are physically
dis-contiguous, the page list for each of the pinned buffers must be collected. CQP operations are used
to create the CQs (if they do not already exist) and QPs.

Now that all structures have been created and defined to the E810, the steps shown in Figure 11-14 to
process a post-send verbs request are the following:

1. Software stores the WRID supplied by the application on the post-send request to the SQ WRID.

2. Software creates a SQE along with any additional fragments necessary to represent the WR.

a. If the SQE being created does not consume the rest of the 256-byte SQ read block, software
must ensure that the next SQE has the Valid bit set to the invalid setting. This is not required if
the next SQE starts in a different 256-byte SQ read block.

b. Step 2a must be done before this step. The Valid bit in the SQE must only be set once after all
fields are valid, since the E810 can read SQEs at any time. Note that the Valid bit is a
generational valid bit, which means that for the first (and all subsequent odd) iteration through
the SQ, 1b means valid. On all even iterations through the SQ, 0b indicates that the SQE is valid.

3. Software reads HW_SQ_Tail from the doorbell status area for the QP.

Figure 11-14. PE Operation: SQ

CQ48

QP40
SW

Context

CQ48
SW

Context
Doorbell

Shadow/Status
Areas

QP40 CQ41

QPx CQ48

Completion
Event Queue0

1 3

9

1012

CQ41
SW

Context

CQ41

PD4

SQ
RQ

WRIDs

QP40

Q2
SQ

WRIDs RQ

Doorbell

2 4

5 8

11

67

613875-009 1591

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

4. Software determines whether or not to ring the SQ doorbell.

a. If HW_SQ_Tail is in the range of WQEs just posted (taking into account the possibility of
wrapping), ring the SQ doorbell.

b. SQE_Head is incremented by the number of SQEs posted since the last doorbell check (WR size
in bytes/32 bytes).

5. The E810 reads the 256-byte SQ read block that contains the SQE indicated by QP context value of
HW_SQ_Tail.

a. The E810 processes all valid SQEs contained in the 256 byte SQ read block. If no SQEs are valid,
proceed to Step 6.

b. The E810 processes the SQEs, which likely includes fetching data from host memory, sending
packets through the Ethernet port, and waiting for TCP acknowledgments.

c. The E810 can increment the HW_SQ_Tail in the doorbell shadow/status area during this
processing.

d. If the last SQE in the 256-byte SQ read block is valid, Step 5 is repeated, which reads the next
256-byte SQ read bock.

6. The E810 writes the doorbell status area for the QP with the current value of HW_SQ_Tail or the
write can be delayed until later.

7. The E810 reads the 256-byte SQ read block one more time to ensure that software has not posted
new work.

a. If a new valid SQE is found, proceed back to Step 5a.

8. The E810 optionally writes to the CQ associated with the SQ.

9. The E810 optionally writes to the CEQ if the CQ was written and generates an interrupt.

10. Software then fields the interrupt if one was generated and reads the CEQ to determine the CQ that
generated the event (an application might be polling the CQ directly in which case Step 9 and
Step 10 are skipped). Typically the CEQE contains the most significant 63 bits of the virtual address
of CQ context to make CE processing efficient.

11. Software then reads the CQ to determine the QP and WQ that generated the work completion. The
SQE index of the WR is reported in the CQE along with a 64-bit pointer that is typically set to the
Software QP context address at QP creation time.

12. Software then reads the SQ WRID array for the SQE index from the completion. The resulting WRID
is returned to the application as an indication that the original work request completed.

Note: While Step 6 and Step 8 are shown as sequential, the E810 starts both steps simultaneously.
Also, Step 1 can be initiated by software at any time as well.

11.4.1.5.2.1 Immediate Data Operations

The E810 supports Immediate Data operation for the SQ.

In iWARP, the intention of this operation was to combine it with a previously-adjacent RDMA Write
operation to emulate an RDMA Write with Immediate Data operation. iWARP supports a Write with
Immediate Data operation. Send with Immediate Data is not defined for iWARP and is not supported.
From a wire perspective, the Immediate data is an untagged operation and consumes an RQ WQE and
also a CQE at the peer.

RoCEv2 supports Send with Immediate Data and Write with Immediate Data.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1592 613875-009

11.4.1.5.2.2 RDMA Read with Multiple SGEs or Local Data Sink Buffer

The InfiniBand definition for RDMA Read has more flexibility than iWARP:

• InfiniBand supports multiple SGEs. iWARP does not.

• InfiniBand does not require remote write access on sink buffers. iWARP does.

• InfiniBand allows privileged applications to use the Reserved L-Key in the SGEs. Because of the
remote write access requirement, iWARP does not allow STag 0.

The last item especially puts iWARP at a disadvantage since it requires privileged applications to do fast
register and invalidates around RDMA Reads.

The E810 supports RoCEv2, so it has to implement the more general RDMA Read semantics. The E810
provides a way to eliminate these differences for iWARP without changing the wire protocol.

In general, this approach enables multiple data sink SGEs to be used for RDMA Reads by using the
AdditionalFragmentCount field of the RDMA Read WQE. When the Read Response comes in, the
hardware re-read the WQE to determine where to place the data. The hardware validates that the data
can be placed against each SGE.

11.4.1.5.2.2.1 iWARP - RDMA Read with Multiple SGEs

Hardware generates an artificial data sink STag. The low 14 bits have the index to the RDMA Read WQE
in the SQ. The high bits are randomized and are guaranteed to be non-zero.

When the Read Response comes in, the WQE index in the STag field is used to tell hardware where the
WQE is in the SQ. Hardware re-reads the WQE to determine where to place the data. Standard STag
validation is done on the RDMA Read WQE SGEs. The exception for the WQE SGEs is that Remote Write
access is not required. Since the STag in the Read Response directly references the SQ WQE, there is no
additional object required.

The artificial STag is very specific to RDMA Reads and is not used for any other purpose. Nor is it known
by software. It is possible that a real STag and an artificial STag could use the same value. Hardware
will not have problems since the two values are used in different ways.

Note: The Infiniband_read_en flag must be set in the QP context to support InfiniBand style RDMA
reads for iWARP. If this flag is not set, iWARP RDMA Reads operate the old way (one SGE,
write_access required, no support for STag 0).

11.4.1.5.2.2.2 RoCEv2 - RDMA Read

In RoCEv2, hardware allocates a Read Response Entry object before the RDMA Read Request is sent.
This object tracks the index of the WQE that needs to be re-read. When a Read Response is received,
the SQ WQE index is used to re-read the WQE. When the RDMA Read completes, hardware places the
object on the Read Response Entry Free List.

11.4.1.5.3 Memory Keys

When iWARP registers a block of memory, it allocates an STag, which is used for local and remote
operations. RoCEv2 defines separate keys for local operations (L_Key) and remote operations (R_Key).
The E810 generates one key for registered memory. The key is used for both the L_Key and R_Key
values.

This document uses the term STag generically when referring to memory keys.

613875-009 1593

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.4.1.5.4 Privileged Keys

The use of a privileged key allows QPs to reference physical addresses. They are never placed on the
wire, and only privileged QPs are allowed to use them. For this purpose, iWARP defines STag 0, and
RoCEv2 defines a Reserved L_Key.

Unlike iWARP’s STag 0, RoCEv2 does not architecturally define the value for the Reserved L_Key - it is
defined by the device. This implementation uses the value of 0 for the Reserved L_Key.

11.4.1.5.5 Virtual Queues

The E810 supports physically contiguous and physically dis-contiguous WQs for PE QPs. CQs, and CEQs
also support both physically contiguous and dis-contiguous buffers. In the case of QPs, the support for
physically dis-contiguous WQs is referred to a virtual WQ support. This section describes an example of
a SQ.

Figure 11-15 shows a virtually contiguous but physically dis-contiguous SQ. The left side of the figure
shows the applications view of the SQ. This particular SQ is composed of four host memory physical
pages that are not contiguous. In this scenario, the virtual buffer is pinned and the 1 level page list is
retrieved from the operating system. Then an unused page list must be allocated from the HMC PBLE
object space with four contiguous PBLEs. This PBL is now populated with the page list retrieved from
the operating system. When the QP is created, the Virtual_WQs bit is set in CQP Create QP WQE and
the SQ_Base in QP context is set to the starting PBLE HMC object index instead of a host physical
address of the SQ. The RQ for a QP with the Virtual_WQs bit set must also use a PBL even if it happens
to be physically contiguous. Note that the SQ and RQ in this case must be allocated a host page
boundary.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1594 613875-009

11.4.1.5.6 SQ Push Mode

Push mode reduces processing latency of the short message posted for transmission on the low-latency
QP by eliminating a read of WQE or WQE with inline data from the host memory. This is achieved by
software writing WQEs to the adapter memory-mapped address space using processor write-combining
buffers. Processor write-combined buffers allow combine writes and make transactions on the bus more
efficient. Software is not expected to use this mode to stream high rate of the short messages or use
this mode to post a large messages. The size of the message posted using push mode should not
exceed a configured scheduling quanta. This feature can be either exposed to the application and have
an application responsible for the potential QP bandwidth degradation caused by overuse of this
feature, or a verb layer can be instrumented to use information provided by hardware and
opportunistically take advantage of push mode messages for the given connection based on true
low-latency messaging requirements.

In modern systems, a memory type can be specified within an operating system page structure using
an index in the PAT register. This way an individual page of adapter memory can be mapped to the
application address space as a write-combined memory. Writes to such page would be combined in the
processor write combining buffers. These buffers are flushed on PCI bus in cache lines. In some
systems, the same page can be mapped as an un-cached memory page that enables software to use
un-cached write (or doorbell ring) to flush push mode WQEs from processor write-combining buffers to
the PCIe bus.

Figure 11-15. PE Operation: Virtual SQ

Host Memory

Page P

Physical Memory
Pages

Page P+1

Page P+2

Page P+3

Page P+4

Page P+5

Page P+6

Page P+7

Page P+8

HMC
Physical

Buffer List
(PBL)

HMC QP Context

QP N

SQ Base = HMC PBLE Index
Virtual WQs = 1

Application View
of Work Queue via MMU

......
... ...

 Addn’l Frags

 SQE (0)

 SQE (2)

 SQE (a)
 SQE (b)
 SQE (c)
 SQE (d)
 SQE (e)
 SQE (f)
 SQE (g)
 SQE (h)
 SQE (i)

SQE (t-2)

SQE (t-1)

 SQE (1)

SQE_Valid

1st Page

4th Page

3rd Page

2nd Page

613875-009 1595

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Adapter memory-mapped pages used for push mode WQEs are called push pages. The number of push
pages exposed to the driver depends on the chip configuration and PCIe function. In most systems, it is
not possible to map the same page as both un-cached (non-write-combined) and write-combined. In
this case, the GLPE_PSHCFG.PSHCFG_DB_SPLIT bit must be set, which forces the doorbell pages to be
treated separately from the page used to push the WQEs and data. When
GLPE_PSHCFG.PSHCFG_DB_SPLIT is set, two push pages are mapped to the application address space
where the odd number push page is mapped as un-cached (used as the push doorbell page) and the
even numbered push page is mapped as write-combined. This reduces the amount of push pages
available to applications by half since a single application requires two separate push pages for proper
operation.

Combining writes using dedicated write-combining buffers is a very old feature of the processors. This
feature was mainly used for the ancient graphic adapters. Now days all graphics adapters use their own
DMA engines to pull the data from the host memory, rather than having it pushed with CPU.

Processors specify a write combining memory region using several mechanisms.

• The MTRR register specifies a memory type per region. Granularity of memory region sizes does not
allow the use of MTRR for wide deployment of write-combining for the E810.

• Page Attribute Table (PAT) in conjunction with flags in Page Table Entry (PTE) enables
write-combining on a per-page base, which makes it feasible for E810 deployment. Relatively
recent distribution of Linux added an interface allowing change page attributes to write-combined
page.

Processors have a set of buffers for write-combined accesses. Each buffer has a size of several cache
lines. Writes to write-combined memory are intended to be delayed to enable better memory access
efficiency and reduced overhead.

Write-combined buffers are evicted or flushed by serialization events, such as SFENCE, LOCK, interrupt,
and so on, and read/write to un-cached memory. Partial write-combined buffer eviction can be a result
of the serialization event. Eviction of a full write-combined buffer is implementation dependent. Intel
assumes that serialization events are evicting/flushing both full and partially filled write-combined
buffers. The intention is to use doorbell ring (write to un-cached memory) as a serialization event to
evict write-combined buffers.

All types of the PE SQ WQEs can posted using a push mechanism. The maximum size of data that can
be pushed together with WQE as an inline data is limited to the 224 bytes, matching the maximum size
of data that can be posted using WQE with inline data. Larger messages can be pushed using regular
WQE, eliminating a need to read a WQE from the host memory. If an application requested post send,
verb layer can decide whether to push the message to adapter based on the message size, configurable
threshold and outstanding WQEs previously posted to SQ. In any case, verb layer should always first
post WQE to the SQ (without ringing the doorbell) and only then write WQE push mode page, followed
by un-cached write to the associated push mode page. Posting WQE to the SQ is required for the proper
re-transmission process, and enables hardware to opportunistically discard push mode messages and
transmit those using regular SQ processing mechanism.

To avoid security implications, a push mode page cannot be shared by different processes. If it was
allowed to be shared, then ProcessA could guess the QP number of ProcessB and other QP attributes,
like the push mode page, and make ProcessB send a message pushed by ProcessA as its own. This can
lead to a severe security violation. Multiple threads residing in the same process share a process virtual
space and belong to the same security domain. The number of push pages for VFs is limited to 15 to
reduce the amount of BAR space that the operating system is required to allocate for the E810. To
overcome this restriction, a para-virtualized driver is allowed to map PF push pages to the VF for use.

Push mode is an opportunistic latency optimization that is supposed to be used on lightly loaded QPs. If
the adapter runs out of resources or software attempts to use push mode WQEs too aggressively, the
adapter can discard a push mode WQE, and transmit it later as a regular WQE with inline data posted to
SQ.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1596 613875-009

Software is allowed to post any SQ message using push mechanism. The size of the message should
not exceed a configurable quanta value (default of 4 KB). Messages specified as inline operations by
application can be pushed together with data. A total of 224 bytes of the message with inline data can
be pushed to the E810 to avoid overhead of the SQE and data fetches. Larger messages would avoid a
fetch of the SQE element, but still requires a data fetch. Software can post multiple messages with
single push operation, as long as all messages are continuously located and do not cross a boundary of
the push page SQE element, shown in Figure 11-16 and Figure 11-17.

Push mode does not require any change in WQE format, except for setting a push bit in the SQ WQE. A
process is enabled for push mode by allocating a push page shown in Figure 11-16, or a pair of push
pages as shown in Figure 11-17 (see Section 11.5.3.8 for the CQP WQE format) from the E810’s BAR to
a QP and including the push page Index in QP context when the QP is created. Each PCI function has a
number of Push mode pages that must be assigned to a queue set handle. See Figure 11-11 and
Figure 11-12 for more details on how the E810 exposes push pages to the system. The E810 validates
that the push operation is associated with the correct push page and Push SQE index as well as PCI
function before acting on the operation.

On a combined push page, the number of WQEs is 15.

Figure 11-16. Combined Push Page Detail

Figure 11-17. Split Push Page Detail

613875-009 1597

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

On a split push page, the number of WQEs is 16.

When GLPE_PSHCFG.PSHCFG_DB_SPLIT is clear, the push doorbell area is located at first 256-byte
region of the push page. Push doorbell area for PFs contains 31 instances of the PFPE_WQEALLOC
register described in Section 13.2.2.28.19. PFPE_WQEALLOC instances are continuously located within
the push doorbell area starting at offset four bytes into the 256-byte region. Push doorbell area for VFs
contains 31 instances of the VFPE_WQEALLOC register described in Section 13.2.2.28.18.
VFPE_WQEALLOC instances are continuously located within the Push Doorbell area starting at offset
four bytes into the 256-byte region. All QPs associated with a given push page use the same push
doorbell area. Each instance of the PFPE_WQEALLOC and VFPE_WQEALLOC corresponds to the
respective Push SQE. The Push SQE index matches an index of the respective PFPE_WQEALLOC or
VFPE_WQEALLOC registers.

When GLPE_PSHCFG.PSHCFG_DB_SPLIT is set, the WQEALLOC instances are located in odd numbered
push pages and the PUSH SQEs are located in even numbered push pages. Additionally, the stride of
the doorbell array to 256 bytes instead of the packed array of doorbells shown in Figure 11-16. In other
words, each odd numbered push page has WQEALLOC instances at offsets 0, 256, 512, ... instead of 0,
4, 8, ... to allow for write-combine avoidance on un-cached writes to the push doorbells.

Figure 11-18 shows the mechanism for pushing a WQE to the E810.

Push mode operation builds on the typical SQ operation shown in Figure 11-14. The following two steps
replace Step 4 from the procedure defined in Section 11.4.1.5.2.

For the Push operation to be effective, the SQ should be empty before placing WQEs. Software can
place multiple Push WQEs (that is, the SQ does not have to be empty as long as they are all Push
WQEs). Once a non-Push WQE is placed to the SQ, software should not place any more Push WQEs until
the SQ is empty again. In other words, software should not intermix Push and non-Push WQEs.
Additionally, if a CQE indicates that a Push WQE has not completed as a Push WQE, software should
cease posting Push WQEs until the SQ is empty again.

Figure 11-18. PE Operation: SQ Push Mode

Push Page

CQ48

QP40
SW

Context

CQ48
SW

Context
Doorbell

Shadow/Status
Areas

QP40 CQ41

QPx CQ48

Completion
Event Queue0

CQ41
SW

Context

CQ41

PD4

SQ
RQ

WRIDs

QP40

Q2
SQ

WRIDs RQ

Doorbell

1 2

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1598 613875-009

1. Instead of the usual doorbell page write, a copy of the SQE is written to one of the push page SQEs
from Figure 11-16. This page is configured with write combine attributes for this step. If less than
256 bytes WQEs are written to the 256-byte Push WQE and the WQE did not start on a 256-byte
boundary within the SQ, the WQE data from the SQ must be written to the matching offset in the
Push WQE from the start of the most recent 256-byte boundary in the SQ. For example, if WQE
index 9 from the SQ happens to be 32 bytes long and needs to be pushed, 32 bytes need to be
written 32 bytes past the start of the Push WQE instead of at offset 0 in the Push WQE. This is
because WQE index 9 starts 32 bytes past the previous 256-byte boundary in the SQ. Write to the
Push WQE must be eight bytes at a time, on 8-byte boundaries, and all bytes of a Push WQE must
be written. There must be no partial cache line writes. If writes are not on natural 8-byte
boundaries, the Push WQE is dropped.

2. After writing the SQE to the push page SQE, the push page doorbell is written to indicate that the
push is complete. Note that the doorbell written for non-push operations is not written for push
operations.

Step 7 from the procedure described in Section 11.4.1.5.2 is typically skipped for push mode operations
unless the E810 is low on resources, the traffic class associated with the push page has insufficient
bandwidth allocation to complete the operation. Push mode operations are also ignored if the traffic
class associated with the push page is flow controlled. In the cases where the E810 ignores the SQE
pushed in Step 2 above, the WQE is re-fetched normally and processing continues. The only side effects
of the dropped push operation is wasted bandwidth on the PCI bus and wasted CPU cycles. To keep the
wasted bandwidth and CPU cycles to a minimum, the next CQE generated after the dropped push
operation indicates that the drop occurred and software should stop issuing push operations until it
reaches an empty SQ condition.

The maximum number of pending push doorbell resources is 128. Software can prepare the next 128
WQEs, but it should not exceed 128 pending push doorbells. If software exceeds this amount, the
hardware directs the push doorbell to the SQ.

11.4.1.5.7 SQ Suspend and Resume

Software is provided with CQP Commands allowing a suspend and resume operation of the SQ.
Commands are defined in Section 11.5.3.22 and Section 11.5.3.23, respectively. Those commands are
primarily used to migrate QP from one QS to another QS. This migration might be triggered by a
system configuration change. For example, a change in number of TCs configured for the particular
physical port, which in turn requires reassignment of QPs to the QSs associated with the TCs.

Software is required to reassign all QPs associated with particular QS prior posting an AQ Command
that might result in QS removal. Such reassignment of the QP to the new QS should be performed using
Suspend and Resume CQP commands (Section 11.5.3.22 and Section 11.5.3.23, respectively). Both
Suspend and Resume CQP commands are asynchronous requests, and their completion does not
indicate completion of a requested operation. Completion of a resume operation is never reported to
software. Completion of a suspend operation is reported using AE_QP_SUSPEND_COMPLETE. Software
is allowed to request multiple suspend and resume operations for different QPs accelerating transfer of
multiple QPs from one QS to another.

613875-009 1599

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.4.1.5.8 RQ

As shown in Figure 11-13, RQs are organized as circular array of RQ Elements (RQEs). The host
memory used for RQs can be physically contiguous or dis-contiguous. Each RQE is 32 bytes in size and
can have up to 13 additional fragments for a total of 14. Unlike SQs, RQs all have fixed size Work
Requests (WR) even if the application uses a smaller number of fragments that could be used to
represent a WR. The minimum size of a RQ is four maximum sized WQEs for proper operations. For
example, this means that if a WR can ever use 14 fragments, then the RQ must be 1024 bytes. This is
necessary to allow out-of-order placement of inbound RDMA send operations for iWARP QPs. All RQEs
must start on an offset that is a multiple of RQ WQE size and an RQE along with its associated
additional fragments must be contained in a single 256-byte RQ read size buffer. This leads to the same
RQ buffering requirements per WR as those listed for the SQ in Table 11-3.

Figure 11-19 shows a typical RQ where software is tracking RQ_Head and RQ_Tail, and the E810 tracks
HW_RQ_Tail in QP context. Software must size the RQ large enough to support every RQE with the
maximum number of additional fragments. All RQEs are shown using two additional fragments and
therefore takes 64 bytes. NOP RQEs can be added if necessary to pad RQEs out when necessary to
satisfy the RQE alignment requirements. The 32-byte boundary requirements for RQEs means that
there is no difference in RQE size between a WR with two fragments and a WR with three fragments.

Figure 11-19. PE RQ

......
...

RQE_Valid

RQ_Head

RQ_Base

RQ_Size
HW_RQ_Tail

...

 Addn’l Frags
 RQE (0)

 RQE (a)

 RQE (b)
 Addn’l Frags
 RQE (c)
 Addn’l Frags
 RQE (d)
 Addn’l Frags
 RQE (e)
 Addn’l Frags

RQE (t-1)
Addn’l Frags

 RQE (1)
RQ Read Size

(128 Bytes)
 Addn’l Frags

 Addn’l Frags

Last Valid

RQ_Tail

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1600 613875-009

The initialization required to bring a QP to an operation state was generally described in
Section 11.4.1.5.2. Once this initialization has been performed, the steps in Figure 11-20 show how
software and the E810 interact for RQ operations.

1. Software saves the Work Request ID (WRID) passed in on the post-receive verbs call.

2. Software builds a RQE using the fields that passed in on the post-receive verbs call.

a. The Valid bit in the RQE must only be set once all fields are valid since the E810 might read RQEs
at any time. Note that the Valid bit is a generational valid bit, which means that the first (and all
subsequent odd) iterations through the RQ, 1 means valid, on all even iterations through the RQ,
0 indicates that the RQE is valid.

3. Once an operation targeting a QPs RQ is received, the E810 reads QP context to determine the
location of the RQE to be read.

a. The RQE is read from host memory and the Valid bit is checked. If the RQE is invalid, the packet
associated with RQE is dropped, or the QP is put into the error state and an AE is generated.

4. The E810 reads the 256-byte RQ read block that contains the RQE indicated by the QP context
value of HW_RQ_Tail.

a. The E810 potentially processes all valid RQEs contained in the 256-byte RQ read block if more
than one inbound operation targeted this QP’s RQ. For this example, it is assumed that a single
inbound operation has been received.

b. The E810 processes RQE 0, which likely includes writing data to host memory and sending TCP
acknowledgments.

c. The E810 increments the HW_RQ_Tail.

5. The E810 writes to the CQ associated with the RQ.

6. The E810 optionally writes to the CEQ if the CQ was written and generates an interrupt.

Figure 11-20. PE Operation: RQ

CQ48

QP40
SW

Context

CQ48
SW

Context
Doorbell

Shadow/Status
Areas

QP40 CQ41

QPx CQ48

Completion
Event Queue0

CQ41
SW

Context

CQ41

PD4

SQ
RQ

WRIDs

QP40

Q2
SQ

WRIDs RQ

Doorbell

12

3 4 5

678

613875-009 1601

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

7. Software then fields the interrupt if one was generated and reads the CEQ to determine the CQ that
generated the event (an application might be polling the CQ direction in which case Step 6 and
Step 7 are skipped). Typically, the CEQE contains the most significant 63 bits of the virtual address
of CQ context to make CE processing efficient.

8. Software then reads the CQ to determine the QP and WQ that generated the work completion. The
RQE index of the WR is reported in the CQE along with a 64-bit pointer that is typically set to the
software QP context address at QP creation time.

9. Software then reads the RQ WRID array for the RQE index from the completion. The resulting WRID
is returned to the application as an indication that the original WR has completed.

11.4.2 iWARP State Management

iWARP QP state is controlled by the application to a large extent. The verbs interface enables the
application to manage QP transitions and provides rules for what the RNIC Interface (RI) must enforce.

This section is not intended to repeat all information from the verbs specification. It is intended to be an
overview of the expected usage model to be used with the E810. In the end, it is a combination of
hardware support from the E810 and supporting software that provides a verbs-compliant interface.

Table 11-4 lists the operations performed by the E810 based on the iWARP QP state.

QP state transitions and the associated software and hardware/firmware actions driven from software
interactions with the application are listed in Table 11-5.

Table 11-4. iWARP QP State Behavior

QP State QP Activities

Non-existent • Doorbell rings are dropped silently.
• No transmit (because doorbell rings are dropped).
• No receive processing (no hash entry).

Idle • SQ/RQ WQEs can be posted.
• No SQ WQEs are processed.
• No receive processing (no hash entry).

RTS • Normal SQ/RQ/CQ/CEQ processing (hash entry added on transition to RTS by firmware).

Closing • No new SQ work is expected.
• Doorbell rings are dropped silently.
• No new RQ work is expected. However, if a packet arrives with data it is treated as an error (BAD_CLOSE)

and the QP transitions to error state.

Terminate • No RQ processing (discarding received data).
• No new SQ WQEs processed.
• SQ WQEs might be retransmitted.
• Terminate/FIN might be transmitted.

Error • No SQ WQEs processed.
• No RQ WQEs processed.
• Host software eventually requests CQP to remove the hash entry.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1602 613875-009

Table 11-5. iWARP QP State Transition

Initial and Next
QP State Software Actions During State Transition Hardware Actions During State Transition

Nonexistent -> Idle
(CreateQP)

• Initialize the HMC backing pages necessary to
support the QP.

• Allocate/Initialize all software tracking
structures for the PD, CQ, QP.

• Assign QP to a PD.
• Create CQ.
• Allocate SQ and RQ.
• Allocate terminate message buffer (Q2).
• Allocate the doorbell shadow area.
• Perform parameter checks specified by the

verbs specification.
• Issue CreateQP WQE to CQP.

• Update QP context.

Idle -> Idle • Perform parameter checks specified by the
verbs specification.

• Issue Modify QP to CQP, next state = Idle.

• QP state parameters are updated.

Idle -> RTS • Create a TCP socket and ensure that it is in the
established state.

• If a streaming mode message is desired,
ensure that it has been placed on the SQ
immediately following any unacknowledged
TCP send data.

• Perform parameter checks specified by the
verbs specification.

• Issue Modify QP to CQP, next state = RTS.

• Set the TCP state to established and RDMA
state to RTS.

• Insert the QP's hash table entry to receive
accelerated data.

• Start scheduling work for the QP.

Idle -> Error • Perform parameter checks specified by the
verbs specification.

• Issue Modify QP WQE to CQP with the next
state set to error, reset connection (if
connection not already reset) and remove
quad hash (if quad hash entry has not been
previously removed) by setting appropriate
bits in the bits set.

• If any WQEs are still pending, issue flush
WQEs operation to CQP after the Modify QP
operation completes, if the QP has been setup
with a last streaming mode message, the first
WQE on the SQ is the streaming mode
message, not an iWARP message, a unique
completion context should be put in the LSSM
WQE in order to correctly distinguish it from
iWARP WQEs.

• Handle poll for completion requests for flushed
WQEs, the CQ has one CQE for each WQ that
had pending WQEs, software must report all
pending WQEs as flushed once it gets the
single flushed CQE (per WQ with pending
WQEs), the number of WQEs flushed can be
determined from software's head and tail for
the SQ and RQ at the point in time that the
poll for completion call is made that returns a
flushed CQE.

• Set RDMA state to error.
• When the flush WQEs operation is issued and

any WQEs are outstanding on the SQ and/or
RQ as requested by host software, complete
the first pending WQE for each WQ (flushed
completion status).

613875-009 1603

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

RTS -> Closing • Perform parameter checks specified by the
verbs specification.

• Stop processing new PostSQ/RQ requests.
• Ensure that no outstanding SQ or outbound

RDMA read responses are pending (this is
really up to the application).

• Start a timer to put a bound on how long a
connection is allowed to stay in the closing
state.

• Submit a Modify QP WQE to CQP the next state
= Closing.

• If the completion error is a bad close, generate
an AE, QP state is already error.

• If any RQ WQEs are still pending, issue Flush
WQEs operation to CQP.

• If there is pending SQ or Q1 work, generate a
completion error (bad close), software needs
to translate into an AE.

• Else, update RDMA state to closing.
• When the flush WQEs operation is issued and

any RQ WQEs are outstanding, complete the
first pending WQE for each WQ (flushed
completion status).

RTS -> RTS • Perform parameter checks specified by the
verbs specification.

• Ensure that the number of currently pending
outbound RDMA read requests is less than or
equal to the new ORD value.

• Ensure the only parameter that is changed is
ORD size, it is only allowed to shrink or remain
the same.

• Update the ORD value.

RTS -> Terminate
 or
Terminate -> Terminate

• Perform parameter checks specified by the
verbs specification for the RTS -> Terminate
case.

• Set terminate action (usually send FIN and
terminate).

• Start a timer to put a bound on how long the
QP is allowed to stay in the terminate state in
the case of an abortive tear-down.

• If completion error indicates tcp_state = error:
 — Issue Modify QP WQE to CQP with next

state = Error.
 — Generate LLP connection reset AE.

• If terminate sent AE is received, issue an
additional Modify QP with next state =
Terminate and terminate action set to 3 (do
not sent FIN or terminate).

• If completion code indicates LLP closed, the
TCP state has transitioned to closed or time
wait so an LLP close complete AE should be
generated by software.

• If the TCP state = Closed, generate completion
error indicating tcp_state was closed (indicates
a reset was received).

• Update iWARP state to terminate.
• Once all outstanding TCP segments have been

acknowledged, send the terminate message
and/or FIN.

• Generate a terminate sent AE.

RTS -> Error
 or
Closing -> Error
 or
Terminate -> Error

• Perform parameter checks specified by the
verbs specification.

• See IDLE->Error case for CQP and completion
processing.

• Block until the RST sent AE has been seen
(probably want to start a timer, and upload QP
context if it expires to see what has
happened).

• If any WQEs are still pending, issue flush
WQEs operation to CQP after the Modify QP
operation completes, if the QP has been setup
with a last streaming mode message, the first
WQE on the SQ is the streaming mode
message, not an iWARP message, a unique
completion context should be put in the LSSM
WQE in order to correctly distinguish it from
iWARP WQEs.

• If host software requested the connection to
be reset, send a TCP RST segment.

• Remove the QP's HTE if the
Remove_Hash_Entry field is set.

• Update iWARP state to error.
• Wait for all packets to clear the pipeline.
• Clean up QP context (prevent future

scheduling).
• Generate a RST sent AE.
• Set the TCP state to closed.

Table 11-5. iWARP QP State Transition [continued]

Initial and Next
QP State Software Actions During State Transition Hardware Actions During State Transition

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1604 613875-009

QP state transitions and the associated software and hardware/firmware actions driven from wire
interactions with remote peer are listed in Table 11-6.

Error -> Idle • Software issues destroy QP operation to CQP. • Destroy the QP.

Error -> Error • Submit a Modify QP WQE to CQP with next
state = Error and the reset_connection bit set.

• If any WQEs are still pending, issue flush
WQEs operation to CQP after the Modify QP
operation completes, if the QP has been setup
with a last streaming mode message, the first
WQE on the SQ is the streaming mode
message, not an iWARP message, a unique
completion context should be put in the LSSM
WQE in order to correctly distinguish it from
iWARP WQEs.

See RTS-> Error.

Table 11-6. iWARP QP State Transition Driven from the Wire

Row
#

Wire
Activity

Initial QP State
(TCP, iWARP) E810 Actions Software Actions

0 FIN
Received

EST, RTS • Set the TCP state to close wait (note that
iWARP state is not changed).

• If no work was outstanding on the SQ or
Q1:
 — Issue AE_LLP_FIN_RECEIVED.
Else:
 — Issue

AE_RDMAP_ROE_BAD_LLP_CLOSE.
• Send ACK to the FIN.
• Continue processing SQ WQEs.

• Stop processing new post RQ operations
if not already stopped.

• Issue appropriate AEs.
• If system software does not

automatically generate closing, start the
closing process based on the received
event by issuing Modify QP with the
next state set to closing.

1 FIN
Received

FW1, Closing • Send ACK to the FIN.
• If the ACK receive with the inbound FIN

acks the transmitted FIN:
 — Set the TCP state to Time Wait.
 — Issue AE_LLP_CLOSE_COMPLETE.
Else:
 — Set the TCP state to Closing (note

that iWARP state is not changed).

• If the AE_LLP_CLOSE_COMPLETE is
received:
 — Cancel the pending disconnect fail

safe timer.
 — Stop processing new post RQ

operations if not already stopped.
 — SQ operation processing should

have been stopped on the Modify
QP with the next state set to
closing.

 — Issue appropriate AEs.
 — Issue Flush WQE CQP operation.
 — The application or system software

starts the QP cleanup process.

2 FIN
Received

FW2, Closing • Send ACK to the FIN.
• Set the TCP state to time wait (note that

iWARP state is not changed).
• Issue AE_LLP_CLOSE_COMPLETE.

See Row 1 of Software Actions.

3 FIN
Received

EST, Terminate See Row 0 of E810 Actions. See Row 1 of Software Actions.

4 FIN
Received

FW1, Terminate See Row 1 of E810 Actions. See Row 1 of Software Actions.

5 FIN
Received

FW2, Terminate See Row 2 of E810 Actions. See Row 1 of Software Actions.

7 ACK
Received

FW1, Closing or
Terminate

• Set the TCP state to FW2. N/A

Table 11-5. iWARP QP State Transition [continued]

Initial and Next
QP State Software Actions During State Transition Hardware Actions During State Transition

613875-009 1605

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.4.3 RoCEv2 State Management

RoCEv2 QP state is controlled by the application to a large extent. The verbs interface enables the
application to manage QP transitions and provides rules for what the RNIC Interface (RI) must enforce.

This section is not intended to repeat all information from the specification. It is intended to be an
overview of the expected usage model to be used with the E810. In the end, it is a combination of
hardware support from the E810 and supporting software that provides a verbs-compliant interface.

Table 11-7 lists the operations performed by the E810 based on the RoCEv2 QP state.

QP state transitions and the associated software and hardware/firmware actions driven from software
interactions with the application are listed in Table 11-8.

8 ACK
Received

FW2, Closing or
Terminate

• Send ACK to the FIN.
• Set the TCP state to time wait (note that

iWARP state is not changed).
• Issue AE_LLP_CLOSE_COMPLETE.

See Row 1 of Software Actions.

9 ACK
Received

Closing, Closing
or Terminate

• Set the TCP state to time wait (note that
iWARP state is not changed).

• Issue AE_LLP_CLOSE_COMPLETE.

See Row 1 of Software Actions.

Table 11-7. RoCEv2 QP State Behavior

QP State QP Activities

Non-existent • Doorbell rings are dropped silently.
• No transmit (because doorbell rings are dropped).
• No receive processing.

Reset • Software-only state.

Initialized • RQ WQEs can be posted.
• No SQ WQEs can be posted.
• No receive processing.

RTR • RQ WQEs are processed by hardware.
• Process and respond to any inbound operations including read requests.
• Software prevents SQ WQEs from being posted.
• RQ WQEs can be posted.

RTS • Normal SQ/CQ/CEQ processing.

SQ Drain • Hardware finishes SQ WQEs that have been started but does not start new WQEs.

SQ Error (RoCEv2 UD only) • Software-only state.

Error • No SQ WQEs processed.
• No RQ WQEs processed.

Table 11-6. iWARP QP State Transition Driven from the Wire [continued]

Row
#

Wire
Activity

Initial QP State
(TCP, iWARP) E810 Actions Software Actions

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1606 613875-009

Table 11-8. RoCEv2 QP State Transition

Initial and Next
QP State Software Actions During State Transition Hardware Actions During State Transition

Nonexistent -> Initialized
(CreateQP)

• Initialize the HMC backing pages necessary to
support the QP.

• Allocate/Initialize all software tracking
structures for the PD, CQ, QP.

• Assign QP to a PD.
• Create CQ.
• Allocate SQ and RQ.
• Allocate the doorbell shadow area.
• Perform parameter checks specified by the

verbs specification.
• Issue CreateQP WQE to CQP.

• Update QP context.

Initialized -> Initialized • Perform parameter checks specified by the
verbs specification.

• Issue Modify QP to CQP, next state =
Initialized.

• QP state parameters are updated.

Initialized -> RTR • Issue Modify QP to CQP, next state = RTR,
which allows Receives to be processed.

• Software maintains the RTR state so it will
prevent Sends from being posted.

• Receives can be processed by hardware.

RTR -> RTS • Modify the software state to RTS (QP is
already in RTS state).

• Perform parameter checks specified by the
verbs specification.

• Start scheduling work for the QP.

AnyState -> Error • Perform parameter checks specified by the
verbs specification.

• Issue Modify QP WQE to CQP with the next
state set to error, reset connection (if
connection not already reset) and remove
quad hash (if quad hash entry is present and
has not been previously removed) by setting
appropriate bits in the bits set.

• If any WQEs are still pending, issue flush
WQEs operation to CQP after the Modify QP
operation completes. Handle poll for
completion requests for flushed WQEs, the
CQ has one CQE for each WQ that had
pending WQEs, software must report all
pending WQEs as flushed once it gets the
single flushed CQE (per WQ with pending
WQEs), the number of WQEs flushed can be
determined from software's head and tail for
the SQ and RQ at the point in time that the
poll for completion call is made that returns a
flushed CQE.

• Set RoCEv2 state to error.
• Wait for all packets to clear the pipeline.
• Clean up QP context (prevent future

scheduling).
• When the flush WQEs operation is issued and

any WQEs are outstanding on the SQ and/or
RQ as requested by host software, complete
the first pending WQE for each WQ (flushed
completion status).

RTS -> RTS • Perform parameter checks specified by the
verbs specification.

• Ensure that the number of currently pending
outbound RDMA read requests is less than or
equal to the new ORD value.

• Ensure the only parameter that is changed is
ORD size, it is only allowed to shrink or
remain the same.

• The ARP index and local MAC Address can
also be modified.

• Update the changed value(s).

RTS -> SQD • Issue Modify QP WQE with the next state set
to SQD.

• Hardware completes SQ WQEs that have
been started. When these are finished, an
AE_QP_SUSPEND_COMPLETE asynchronous
event is generated.

• Inbound operations continue to be processed.

613875-009 1607

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

QP state transitions and the associated software and hardware/firmware actions driven from wire
interactions with remote peer are listed in Table 11-9. Software state transitions are not listed.

SQD -> RTS • Issue Modify QP WQE with the next state set
to RTS.

• Resume processing on the SQ.

Error -> Initialized • Software issues destroy and create QP
operations to CQP.

• The hardware does not support this
transition, but it can be accomplished by
software as described in the Software
Actions.

Error -> Error • Submit a Modify QP WQE to CQP with next
state = Error.

• If any WQEs are still pending, issue flush
WQEs operation to CQP after the Modify QP
operation completes.

• See RTS -> Error.

Table 11-9. RoCEv2 QP State Transition Driven from the Wire

Row
#

Wire
Activity Initial QP State E810 Actions Software Actions

0 DREQ
message
Received

Any state except
Error

• Stop processing new post RQ operations if not already
stopped.

• Issue appropriate events.
• If system software does not automatically generate closing,

start the closing process based on the received event by
issuing Modify QP with the next state set to error.

1 DREQ
message
Received

Error • When this message is received:
 — Stop processing new post RQ operations if not already

stopped.
 — SQ operation processing should have been stopped on

the Modify QP with the next state set to closing.
 — Issue appropriate events.
 — Issue Flush WQE CQP operation.
 — If DREP has not been sent, send it now.
 — The application or system software starts the QP

cleanup process.

Table 11-8. RoCEv2 QP State Transition [continued]

Initial and Next
QP State Software Actions During State Transition Hardware Actions During State Transition

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1608 613875-009

11.4.4 Exception Queues

Each QP designates a UDA queue to receive exceptions. Some exceptions are iWARP partial FPDU
support and CRC error packets received during closing errors. The designated UDA queue receives
completions, and software is responsible for taking the appropriate action. For most cases, software
logs the error and puts the QP in error state. iWARP Partial FPDUs are handled as described in
Section 11.4.4.1.

11.4.4.1 iWARP Partial FPDU Support

The E810 supports partial iWARP FPDUs using software assist. High performance iWARP
implementations pay attention to the underlying network MTU and form iWARP FPDUs that do not span
Ethernet segments. In the case where software iWARP implementations (or other RNICs) form iWARP
FPDUs that span Ethernet segments, the E810 reports these Ethernet packets to the UDA queues.
Additionally, the PE writes the first_partial_sequence_number field in the Q2 area of the associated QP
context. See Section 11.6.1 for the definition of the Q2 area.

Once a partial FPDU has been received, all subsequent packets for that QP are also forwarded to the
UDA queue until software has been able to process the packets and send them back to the E810. Host
software must process the packets, break them into full FPDUs, and send them back to the E810
through a UDA SQ with the DOLOOPBACK bit set. The E810 then processes the packets as if they had
come from the wire as full FPDUs. Once all the packets have been sent back to the E810, the QP is
automatically set back to normal operation and no further packets are sent to the UDA queues until a
new partial FPDU is received.

Each time the Q2 area has an updated expected sequence number; the Sequence_Update_Toggle field
is toggled. Software must keep track of the last value that it has seen in the Q2 area. If the value does
not match, software should update its expected sequence number.

Note: Software must perform the MPA CRC check on all packets that are sent back through to the
PE using the DOLOOPBACK bit in addition to reforming full iWARP FPDUs. The E810 does not
support checking the MPA CRC in hardware on this path through the chip.

The high-level software algorithm used to handle partial FPDUs is shown in Figure 11-21.

613875-009 1609

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Figure 11-21. Partial FPDU Software Algorithm

Send new packet
through UDA
queue (set

DoLoopback)

More Data from
packet at head of

queue?
Create new packet
with Ethernet, IP
and TCP Header

Read MPA Header

Room for FPDU in
new Packet?

At least 1 Full
FPDU in new

Packet?

Calculate MPA
CRC and Copy
FPDU to new

packet

Complete FPDU?

Update or Insert
residual partial

FPDU data into a
packet at head of

queue

More Data in
Packet?

Last FPDU Partial?

Partial
FPDU

Received

Retrieve QP
context

Packet
at Head of list next
expected Sequence

number?

Add packet to list
of pending packets
in sequence order

Update Packet info
to remove partial

FPDU

Done

Packet in Progress

Yes

No

No

Yes

No

Yes

No

No

Yes

1

1

Yes

Yes

No

Yes

1

No

No

Yes

MPA CRC Correct?

Yes

Update Packet info
to remove bad
FPDU and start
error processing

No

Remove Packet
from Head of

Queue

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1610 613875-009

11.4.5 Completion Event Queue (CEQ) Entry Format

A CEQ is a circular ring of Completion Event Queue Entries (CEQEs) in host memory. CEQs can be
virtually or physically contiguous and are managed using the control QP (see Section 11.5.3.11).

CEQE_Valid (1 bit)

The CEQE_Valid bit for CEQE is a bit that indicates that a CEQE is ready to be processed by
software. The polarity of the Valid bit changes each time the CEQ wraps from the last entry back to
the first entry. This change in polarity reduces software overhead by avoiding the need to clear the
Valid bit once software has processed a valid CEQE. Software is responsible to clear (set to 0b) all
memory in a CEQ initially at CEQ creation. The first iteration (and subsequent odd numbered
iterations) through the CEQ, the E810 sets the Valid bit to 1b when it writes a new CEQE. For the
second iteration (and all even numbered iterations) through the CEQ, the E810 sets the Valid bit to
0b when it writes a new CEQE.

CQ_Context_Value (63 bits)

CQ_Context_Value is the value of CQ_Context_Value specified at CQ creation (see
Section 11.5.3.3). Typically this value is the low 63 bits of a pointer to a software CQ object to
enable software to quickly process new CEs.

11.4.6 Asynchronous Event Queue (AEQ) Entry Format

An AEQ is a circular ring of Asynchronous Event Queue Entries (AEQEs) in host memory. AEQs can be
virtually or physically contiguous and are managed using the Control QP (see Section 11.5.3.12).

Completion_Context_Value (64 bits)

Completion_Context_Value is a software-supplied token that can be used to efficiently locate the
software resources necessary to process an AE. The token that is reported can be the
QP_Completion_Context from the QP that caused the AE, or can be the CQ_Context_Value supplied
during CQ creation, depending upon the AE_ID and AE_Source fields of the AE.

Table 11-10. PE CEQ Entry Format

Byte
Offset [Bit Range] Field Name

0 [63] CEQE_Valid [62:0] CQ_Context_Value

Table 11-11. PE AEQ Entry Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Completion_Context_Value

8

[63]
[62:61]
[60:57]
[56:54]
[53:50]
[49:47]

AEQE_Valid
Q2_data_written
TCP_State
RDMA_State
AE_Source
RSVD

[46]
[45:34]
[33]
[32:18]
[17:0]

QP_CQ_ID_High
AE_Code
AEQE_Overflow
WQ_Desc_Index
QP_CQ_ID_Low

613875-009 1611

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

WQ_Desc_Index (15 bits)

WQ_Desc_Index value is valid only if the source of the event is a WQ (SQ or RQ) and the AE_Code
indicates that the WQ_Desc_Index field is valid. See Section 11.4.7 for more details on how to
determine if WQ_Desc_Index is valid.

QP_CQ_ID_Low (18 bits), QP_CQ_ID_High (1 bit)

This field carries either the QP ID that is associated with the AE or the CQ ID that is associated with
the AE. The AE_Source field (defined later) or the AE_ID field are used to determine if the AE is
associated with a QP or a CQ.

AE_Code (12 bits)

AE_Code is the AE code the caused the AE. See Section 11.4.7 for more details.

AE_Source (4 bits)

AE_Source defines the source of the AE. The following table lists the values and the related source
of the problem.

Note: Some AE_ID values uniquely define the source of the AE. For these events, AE_Source
should be ignored. See Section 11.4.7 for more details.

RDMA_State (3 bits)

RDMA_State reflects the RDMA state of the connection at the time the AE occurred according to
E810 hardware.

Value Description

0000b Reserved.

00x1b The AE is associated with the RQ of a QP. QP_CQ_ID is the QP ID. Completion_Context_Value is set to the value
of QP_Completion_Context from the associated QP, and WQ_Desc_Index is valid.

xx10b The AE is associated with a CQ. QP_CQ_ID is the CQ ID and Completion_Context_Value is the
CQ_Context_Value specified at CQ creation. WQ_Desc_Index not valid.

01x1b QP_CQ_ID is the QP ID. Completion_Context_Value is set to the value of QP_Completion_Context from the
associated QP, and WQ_Desc_Index is valid. The event is associated with the SQ of a QP.

10x1b The AE is associated with an inbound RDMA write or inbound RDMA read response operation related to a QP.
QP_CQ_ID is the QP ID. Completion_Context_Value is set to the value of QP_Completion_Context from the
associated QP, and WQ_Desc_Index is not valid.

11x1b The AE is associated with an outbound RDMA read response operation related to a QP. This value can also be
returned is other cases in which the WQ_Desc_Index value cannot be retrieved by the E810.
Completion_Context_Value is set to the value of QP_Completion_Context from the associated QP, and
WQ_Desc_Index is not valid.

Value Description

000b Non-existent

001b Idle

010b Ready to Send (RTS)

011b Closing

100b Reserved

101b Terminate

110b Error

111b Reserved

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1612 613875-009

TCP_State (4 bits)

TCP_State reflects the TCP state of the connection at the time the AE occurred according to E810
hardware. The TCP_State is not valid for RoCEv2 QPs.

AEQE_Valid (1 bit)

The AEQE_Valid bit for AEQE indicates that an AEQE is ready to be processed. The polarity of the
Valid bit changes each time the AEQ wraps from the last entry back to the first entry. This change in
polarity reduces software overhead by avoiding the need to clear the Valid bit once software has
processed a valid AEQE. Software is responsible to clear (set to 0b) all memory in a AEQ initially at
AEQ creation. The first iteration (and subsequent odd numbered iterations) through the AEQ, the
E810 sets the Valid bit to 1b when it writes a new AEQE. For the second iteration (and all even
numbered iterations) through the AEQ, the E810 sets the Valid bit to a 0b when it writes an new
AEQE.

AEQE_Overflow (1 bit)

The AEQE_Overflow bit for AEQE indicates that an AEQE has been completely filled and that there
might have been a loss of subsequent AEQEs. No further AEQEs are generated until additional
space is allocated to the AEQ using the PFPE_AEQALLOC or VFPE_AEQALLOC register.

Q2_data_written (2 bits)

Q2_data_written provides status regarding error information that is reported for errors detected for
iWARP connections when an AE is generated. The Q2 data area is configured as part of QP setup.
See Section 11.5.3.2 for more information. This values for this field are:

Value Description

0000b Non-existent

0001b Closed

0010b Listen

0011b Syn_Sent

0100b Syn_Received

0101b Established

0110b Close_Wait

0111b Fin_Wait_1

1000b Closing

1001b Last_Ack

1010b Fin_Wait_2

1011b Time_Wait

Note: All other values are reserved.

Value Description

00b No data associated with this AE has been written to Q2.

01b Data written to Q2 starts at the Ethernet header of the offending packet.

10b Data written to Q2 starts at the MPA header of the offending PDU.

11b Reserved.

613875-009 1613

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.4.7 AE Codes

Table 11-12 lists the values that can be returned in the AE_ID field of an AEQ entry. The column titled
“Source” defines if the source of the AE is pre-determined based on the AE_Code, or the AE_Source
field of the AE field must be used to determine the source. Note that the source of the AE effects the
Completion_Context_Value, WQ_Desc_Index, and QP_CQ_ID fields in the AE queue entry defined in
Section 11.4.6. The WQ_Desc_Index field is not valid for AE codes that have a source designated as QP
or CQ.

Table 11-12. PE AE Codes (AE_ID)

Asynchronous Event Code Value Description

iWARP/
RoCEv2
State

after AE

Source

iWARP /
RoCEv2

UDA
I/R/U

AE_AMP_UNALLOCATED_STAG 0x102 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access a
memory region or memory window that is in an
unallocated state.

Terminate/
Error

AE_Source I/R/U

AE_AMP_INVALID_STAG 0x103 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access a
memory region or memory window that is in an
invalid state.

Terminate/
Error

AE_Source I/R/U

AE_AMP_BAD_QP 0x104 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access a
memory window from a different QP than the
QP to which the memory window was bound.

Terminate/
Error

AE_Source I/R/U

AE_AMP_BAD_PD 0x105 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access a
memory region or memory window from a QP
with a different PD than the PD associated
memory region or window.

Terminate/
Error

AE_Source I/R/U

AE_AMP_BAD_STAG_KEY 0x106 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access a
memory region or memory window when the
key portion of the STag does not match the key
associated with the memory region or window.

Terminate/
Error

AE_Source I/R/U

AE_AMP_BAD_STAG_INDEX 0x107 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access a
memory region or memory window with an
STag index larger than the largest index
allowed for the PCI function.

Terminate/
Error

AE_Source I/R/U

AE_AMP_BOUNDS_VIOLATION 0x108 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access
memory outside of the memory area defined by
the memory region or memory window.

Terminate/
Error

AE_Source I/R/U

AE_AMP_RIGHTS_VIOLATION 0x109 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access a
memory region or memory window and a rights
violation occurred.

Terminate/
Error

AE_Source I/R/U

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1614 613875-009

AE_AMP_TO_WRAP 0x10A This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access a
memory region or memory window and the
tagged-offset plus the ULPDU length caused the
address generated for the memory region or
window to wrap.

Terminate/
Error

AE_Source I/R/U

AE_AMP_FASTREG_VALID_
STAG

0x10C This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to issue a
registration operation to a valid memory region.

Terminate/
Error

AE_Source I/R

AE_AMP_FASTREG_MW_STAG 0x10D This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to issue a
registration operation to a memory window.

Terminate/
Error

AE_Source I/R

AE_AMP_FASTREG_INVALID_
RIGHTS

0x10E This AE is generated when a memory protection
error is detected by the E810. This error
indicates that a rights mismatch was detected
during a registration operation.

Terminate/
Error

AE_Source I/R

AE_AMP_FASTREG_INVALID_
LENGTH

0x110 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to issue a
registration operation with an invalid length.

Terminate/
Error

AE_Source I/R

AE_AMP_INVALIDATE_SHARED 0x111 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to
invalidate a shared memory region.

Terminate/
Error

AE_Source I/R

AE_AMP_INVALIDATE_NO_
REMOTE_ACCESS_RIGHTS

0x112 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to
remotely invalidate a memory region or
memory window that does not have remote
access rights specified.

Terminate/
Error

AE_Source I/R

AE_AMP_INVALIDATE_MR_
WITH_BOUND_WINDOWS

0x113 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to
invalidate a memory region that still has one or
more memory windows bound to it.

Terminate/
Error

AE_Source I/R

AE_AMP_MWBIND_VALID_
STAG

0x114 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that the STag used on a bind
operation is a memory window that is already
valid.

Terminate/
Error

AE_Source I/R

AE_AMP_MWBIND_OF_MR_
STAG

0x115 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that the STag used on a bind
operation is a memory region instead of a
memory window.

Terminate/
Error

AE_Source I/R

AE_AMP_MWBIND_TO_ZERO_
BASED_STAG

0x116 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to bind a
memory window to a zero-based memory
region.

Terminate/
Error

AE_Source I/R

AE_AMP_MWBIND_TO_MW_
STAG

0x117 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that the STag specified for the
memory window to be bound to is a memory
window instead of a memory region.

Terminate/
Error

AE_Source I/R

Table 11-12. PE AE Codes (AE_ID) [continued]

Asynchronous Event Code Value Description

iWARP/
RoCEv2
State

after AE

Source

iWARP /
RoCEv2

UDA
I/R/U

613875-009 1615

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

AE_AMP_MWBIND_INVALID_
RIGHTS

0x118 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that a rights violation was detected
during a memory window bind operation.

Terminate/
Error

AE_Source I/R

AE_AMP_MWBIND_INVALID_
BOUNDS

0x119 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that a bounds violation was detected
during a memory window bind operation.

Terminate/
Error

AE_Source I/R

AE_AMP_MWBIND_TO_
INVALID_PARENT

0x11A This AE is generated when a memory protection
error is detected by the E810. This error
indicates that the memory region that a
memory window attempted to bind to was
invalid.

Terminate/
Error

AE_Source I/R

AE_AMP_MWBIND_BIND_
DISABLED

0x11B This AE is generated when a memory protection
error is detected by the E810. This error
indicates that the memory region that a
memory window bind operation was attempted
on a memory region that has bind support
disabled.

Terminate/
Error

AE_Source I/R

AE_PRIV_OPERATION_DENIED 0x11C This AE is generated when a privileged
operation is attempted on a non-privileged QP.
This includes:
• Bind operations without bind enabled.
• Fast register without fast register enabled.
• STag zero without privilege is not enabled.

Terminate/
Error

QP I/R/U

AE_AMP_INVALIDATE_TYPE1_
MW

0x11D A Local Invalidate or Inbound Invalidate
targeted a Type 1 memory window.

Terminate/
Error

QP I/R

AE_AMP_MWBIND_ZERO_
BASED_TYPE1_MW

0x11E A memory window bind operation specified
zero-based addressing for the memory window
to be bound.

Terminate/
Error

QP I/R

AE_AMP_FASTREG_INVALID_
PBL_HPS_CFG

0x11F An unsupported PBL/Host Page Size
configuration was requested (1G pages cannot
have a 2-level PBLE with 4K pages).

Terminate/
Error

QP I/R

AE_AMP_MWBIND_WRONG_
TYPE

0x120 A memory window bind specified a non-
matching window type.

Terminate/
Error

QP I/R

AE_AMP_FASTREG_PBLE_
MISMATCH

0x121 Invalid VM Fast Register request to change a
physical MR to a virtually mapped MR or
vice-versa.

Terminate/
Error

QP I/R

AE_UDA_XMIT_DGRAM_TOO_
LONG

0x132 This AE is generated by the E810 when the total
length of the packet exceeds MSS configured
for QP.

Terminate/
Error

QP U

AE_UDA_XMIT_BAD_PD 0x133 This AE is generated when a memory protection
error is detected by the E810. This error
indicates that an attempt was made to access
an Address Handle from a QP with a different
PD than the PD associated Address Handle.

Error QP U

AE_UDA_L4LEN_INVALID 0x135 The L4LEN field is not valid, or the payload
length is less than L4LEN DWords.

Error QP U

AE_BAD_CLOSE 0x201 This AE is generated when in iWARP state =
closing and an iWARP PDU is received. If the
E810 detects SQ or Q1 work during a Modify QP
RTS->Closing then a completion error is
returned to the Modify QP request instead of an
AE.

Error QP I

Table 11-12. PE AE Codes (AE_ID) [continued]

Asynchronous Event Code Value Description

iWARP/
RoCEv2
State

after AE

Source

iWARP /
RoCEv2

UDA
I/R/U

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1616 613875-009

AE_RDMAP_ROE_BAD_LLP_
CLOSE

0x202 This AE indicates that there was either SQ or
Q1 work pending when a FIN was received.

Terminate QP I

AE_CQ_OPERATION_ERROR 0x203 The E810 attempted to generate a CQ entry on
a full CQ that has overflow detection enabled.

N/A AE_Source I/R/U

AE_RDMA_READ_WHILE_ORD_
ZERO

0x205 This AE is generated when an RDMA read
request is issued to a QP that has the Outbound
RDMA Read Queue Depth (ORD) set to 0b.

Terminate/
Error

QP I/R

AE_STAG_ZERO_INVALID 0x206 Detected on an inbound RDMA write, RDMA
read response, or RDMA read request (either
source or sink). Inbound 0 byte RDMA read and
RDMA write operations are not indicated as
errors since no host data is accessed.

Terminate/
Error

QP I/R

AE_IB_RREQ_AND_Q1_FULL 0x207 This AE is generated if an inbound RDMA read is
received and the target QP’s inbound RDMA RQ
(Q1) is full.

Terminate/
Error

QP I/R

AE_IB_INVALID_REQUEST 0x208 The remote side detected an operation that is
outside the established use for the transport
service (such as an invalid opcode or length too
long).
Note: The error is detected on the remote

machine, but the AE is on the local
machine.

Error QP R

AE_WQE_UNEXPECTED_
OPCODE

0x20A This AE is generated if QP encounters a WQE
with an invalid OP code on an SQ.

Transmit
Suspended

QP I/R/U

AE_WQE_INVALID_PARAMETER 0x20B This AE is generated if QP encounters a WQE
with invalid parameters.

Terminate/
Error

AE_Source I/R/U

AE_WQE_INVALID_FRAG_DATA 0x20C This occurs when a WQE has more than 14
fragments or more than 224 bytes of inline
data. It also occurs when a WQE crosses a
256-byte boundary.

Terminate/
Error

I/R/U

AE_IB_REMOTE_ACCESS_
ERROR

0x20D This occurs when the receives a NAK for remote
access error.

Error QP R

AE_IB_REMOTE_OP_ERROR 0x20E This occurs when the receives a NAK for remote
operational error

Error QP R

AE_WQE_LSMM_TOO_LONG 0x220 This AE is generated if the last streaming mode
message specified on the Modify QP operation
from the iWARP IDLE state to RTS state is
longer than the MSS.

Terminate/
Error

AE_Source I

AE_DDP_INVALID_MSN_GAP_
IN_MSN

0x301 The AE is generated when a gap is detected in
the MSN used to index the RQ or Q1 when data
is in order with respect to TCP sequence space.

Terminate/
Error

AE_Source I

AE_DDP_UBE_DDP_MESSAGE_
TOO_LONG_FOR_AVAILABLE_
BUFFER

0x303 This AE is generated on inbound iWARP PDUs if
the message offset plus the size of the PDU
data is larger than the number of bytes in the
RQ WQE targeted by the PDU.

Terminate/
Error

AE_Source I/R

AE_DDP_UBE_INVALID_DDP_
VERSION

0x304 This AE is generated when an inbound iWARP
PDU has an incorrect DDP version number.

Terminate QP I

AE_DDP_UBE_INVALID_MO 0x305 This AE is generated if the message offset is
larger than the number of bytes in the RQ WQE
targeted by the PDU on inbound iWARP PDUs.

Terminate/
Error

QP I

Table 11-12. PE AE Codes (AE_ID) [continued]

Asynchronous Event Code Value Description

iWARP/
RoCEv2
State

after AE

Source

iWARP /
RoCEv2

UDA
I/R/U

613875-009 1617

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

AE_DDP_UBE_INVALID_MSN_
NO_BUFFER_AVAILABLE

0x306 This AE is generated if an inbound send
operation targets an unallocated RQ WQE and
the E810 is configured to drop the connection
for this condition.

Terminate AE_Source I

AE_DDP_UBE_INVALID_QN 0x307 This AE is generated when an inbound
untagged iWARP PDU has an incorrect queue
number.

Terminate QP I

AE_DDP_NO_L_BIT 0x308 Detected when there is no L bit on an inbound
RDMA read request.

Terminate QP I

AE_RDMAP_ROE_INVALID_
RDMAP_VERSION

0x311 This AE is generated when an inbound iWARP
PDU has an incorrect RDMAP version number.

Terminate QP I

AE_RDMAP_ROE_UNEXPECTED
_OPCODE

0x312 This AE is generated when an inbound iWARP
PDU has an incorrect opcode number.

Terminate/
Error

QP I/R

AE_ROE_INVALID_RDMA_READ
_REQUEST

0x313 This AE is generated when an inbound RDMA
read iWARP PDU is received, but the QP is not
enabled for inbound RDMA read support.

Terminate/
Error

QP I/R

AE_ROE_INVALID_RDMA_
WRITE_OR_READ_RESP

0x314 This AE is generated when an inbound RDMA
read response or RDMA write iWARP PDU is
received, but the QP is not enabled for inbound
RDMA read responses or RDMA writes.

Terminate/
Error

QP I/R

AE_RoCE_RSP_LENGTH_
ERROR

0x316 The RoCEv2 responder received a packet with
an RETH and the dma_length field is
inconsistent with the payload length.

Error QP R

AE_INVALID_ARP_ENTRY 0x401 This AE is reported when a connection attempts
to transmit a packet using an invalid ARP entry.
Host software either enables the QP for
transmitting after updating the ARP entry, or
uploads/destroys the connection because the
ARP entry is no longer valid. In the case of
updating the ARP entries, statistics report can
be off by the number of packets/octets/
messages that were attempted to be
transmitted while the ARP entry was invalid.

Transmit
Suspended

QP I/R/U

AE_INVALID_TCP_OPTION_
RCVD

0x402 This AE is generated when the E810 encounters
an unsupported TCP option and the E810 is not
configured to ignore unsupported TCP options
via the ignore_tcp_uns_options QP context bit.
The packets with invalid TCP options are
dropped if this AE is generated.

No Change QP I

AE_INVALID_AH_ENTRY 0x406 This AE indicates that the AH was not valid. Error QP R

AE_LLP_CLOSE_COMPLETE 0x501 This AE indicates that the TCP state of an
iWARP QP has transitioned to either closed or
time wait in a graceful fashion.

No Change QP I

AE_LLP_CONNECTION_RESET 0x502 This AE indicates that a TCP packet with the
RST bit set has been received on a TCP
connection that is associated.

Error QP I

AE_LLP_FIN_RECEIVED 0x503 This AE indicates that a TCP packet with the FIN
bit set has been received and the iWARP state
is RTS (implies TCP state is established). Host
software is responsible for issuing a Modify QP -
> Closing to complete the QP transition to the
closing the state.

No Change QP I

Table 11-12. PE AE Codes (AE_ID) [continued]

Asynchronous Event Code Value Description

iWARP/
RoCEv2
State

after AE

Source

iWARP /
RoCEv2

UDA
I/R/U

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1618 613875-009

AE_LLP_RECEIVED_MPA_CRC_
ERROR

0x505 This AE is reported when an MPA or ICRC Error
CRC error is detected by software using the AE
code capability of the CQP Flush WQEs
operation.

Terminate/
Error

QP I/R

AE_LLP_SEGMENT_TOO_SMALL 0x507 This AE is reported when an iWARP segment is
received that is too small to contain a DDP or
RDMAP header.

Terminate/
Error

QP I

AE_LLP_SYN_RECEIVED 0x508 This AE indicates that a TCP packet with the
SYN bit set is received on a connection that is
associated with an iWARP connection.

Error QP I

AE_LLP_TERMINATE_RECEIVED 0x509 This AE indicates that a terminate message has
been received for an iWARP QP. The received
terminate data is placed in the Q2 area
associated with the QP in host memory.

Terminate QP I

AE_LLP_TOO_MANY_RETRIES 0x50A This AE is used to report too many
retransmission retries.

Transmit
Suspended

QP I/R

AE_LLP_DOUBT_REACHABILITY 0x50C This AE is used to report that it has reached the
doubt reachablity threshold for the given
connection. This is used in dead gateway
detection.

No Change QP I/R

AE_LLP_CONNECTION_
ESTABLISHED

0x50E This AE is used to report that a connection has
been established. It occurs when the first
iWARP message has been received.

RTS QP I

AE_RESOURCE_EXHAUSTION 0x520 This AE is used to report that a QP attempted to
allocate Q1 or XMIT FIFO resource and no
resource was available.

No Change AE_Source I/R

AE_RESET_SENT 0x601 This AE is generated when the E810 sends a
reset after host software has requested the
connection to be reset via a Modify QP
operation.

No Change QP I

AE_TERMINATE_SENT 0x602 This AE is generated when the E810 sends a
terminate message after host software has
requested a terminate to be sent on a
connection via a Modify QP operation.

No Change QP I

AE_RESET_NOT_SENT 0x603 This AE is generated when the E810 did not
send a reset after host software has requested
the connection to be reset via a Modify QP
operation. The reset is not sent due to TCP
state already having been transitioned to time
wait or closed.

No Change QP I

AE_LCE_QP_CATASTROPHIC 0x700 This AE is generated by the E810 when it
receives an error on a hardware transaction.

Terminate/
Error

QP I/R/U

AE_LCE_FUNCTION_
CATASTROPHIC

0x701 This AE is generated by the E810 when it
receives an error on a hardware transaction
that impacts the entire PCI function. QP_CQ_ID
is not reliable for this AE and should be ignored.

Terminate/
Error

N/A I/R/U

AE_LCE_CQ_CATASTROPHIC 0x702 This AE is generated by the E810 when it
receives a local catastrophic error on a
hardware transaction that impacts a CQ.

Terminate/
Error

CQ I/R/U

AE_QP_SUSPEND_COMPLETE 0x900 This AE is generated upon completion of the
requested QP Suspend operation.

Transmit
Suspended

QP I/R

Table 11-12. PE AE Codes (AE_ID) [continued]

Asynchronous Event Code Value Description

iWARP/
RoCEv2
State

after AE

Source

iWARP /
RoCEv2

UDA
I/R/U

613875-009 1619

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.4.8 Steering Tag (STag) and Processing Hint Support
for PE Traffic (TPH)

See Section 3.1.2.6.2 for information on how to enable TLP processing hint support.

Table 11-13 lists how the STag and processing hints are generated and how TPH operation is enabled
for different types of DMA traffic associated with the PE.

The E810 has TPH values for CQ and CEQ in each of the various contexts. When a read is done (such as
reading the CQ shadow area), the E810 updates the context with the current TPH hint that is returned
in the completion (CQ:TPH_value). If the enable bit is set in the particular context, the E810 should
provide the TPH information on all subsequent PCI transactions associated with CQ or CEQ transactions.
There is no TPH value used on AEQE writes because they are so infrequent that it is unlikely to ever get
them on the correct CPU.

QP context has two values for TPH: SQ_TPH and RQ_TPH. They are independent of each other because
the SQ and RQ could be on different processors in PE accelerations. They also have separate enable
bits.

11.5 Resource Management

PE resources are managed through a combination of the HMC Function Private Memory (FPM) space
(described in Section 9.3) and Control QP operations (described in the following sections).

Figure 11-22 shows the PE-related data structures that are located in host memory and that reside
on-die for the E810. Before any QP, or CQ operation is attempted with CQP, the associated HMC pages
must be initialized and allocated as specified in Section 9.3.7. Once all FPM Page Descriptor pages and
backing pages have been properly allocated, initialized, and allocated to the E810, CQP can be used to
create/modify/destroy various objects necessary for PE operations. Note that Figure 11-22 only depicts
memory that is visible to the E810. Many other software allocated data structures are allocated to track
progress of QPs, CQs, an so on, as shown in Section 11.4.1. All of the host memory shown in Figure 11-
22 must be pinned memory. QP and CQ memory including the doorbell shadow areas might be
allocated from kernel or userspace virtual memory. However, all other memory shown must be
allocated from the kernel to provide the proper level of protection between different processes
accessing the E810 concurrently.

Table 11-13. STag and Processing Hint Programming

Traffic Access STag Location PH Value Enable

CQ Element Writes CQ Context TPH_value GL_TPH_CTRL.Data_PH1

1. Default is 10b (target).

CQ Context TPH_en

CQ Doorbell Shadow Area Reads CQ Context TPH_value GL_TPH_CTRL.Data_PH1 CQ Context TPH_en

CEQ Element Writes CEQ Context TPH_value GL_TPH_CTRL.Data_PH1 CEQ Context TPH_en

SQ WQ Element Reads QP Context SQ_TPH_value GL_TPH_CTRL.Data_PH1 QP Context SQ_TPH_en

SQ Work Doorbell Shadow Area Writes QP Context SQ_TPH_value GL_TPH_CTRL.Data_PH1 QP Context SQ_TPH_en

RQ WQ Element Reads QP Context RQ_TPH_value GL_TPH_CTRL.Data_PH1 QP Context RQ_TPH_en

Data Payload Writes QP Context RQ_TPH_value GL_TPH_CTRL.Data_PH QP Context RCV_TPH_en

Data Payload Reads QP Context SQ_TPH_value GL_TPH_CTRL.Data_PH1 QP Context XMIT_TPH_en

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1620 613875-009

Note: Any reset that affects a single PCI function also resets the HMC and require reprogramming of
all HMC resources. Global resets also reset the segment descriptor programming that require
re-selecting the HMC resource profile if the default profile was not in use.

FPM page descriptors and backing pages can be allocated on the fly in order to reduce the kernel
drivers memory footprint. However, certain objects must be allocated at driver initialization.

Figure 11-22. E810 and Host Memory Data Structures

CQP
SQ

CQP
CQ CEQ AEQ

QP10
SQ

QP10
RQ CQ

Host Memory Resident
Device Resident

Private Memory
Page Descriptors

Segment
Descriptors

Asynch.
Event
Queue
Context

(48)

Completion
Event
Queue
Context

(256)

Accelerated Port Bit Vector
Tables (64K bits)

CQP

Doorbell
Shadow Area

QP CQ QP10

QP Q2

FPM
Backing
Pages

FPM
Backing
Pages

FPM
Backing
Pages

FPM
Backing
Pages

...

FPM
Backing
Pages

FPM
Backing
Pages

FPM
Backing
Pages

FPM
Backing
Pages

...

Host Memory Cache Function Private Memory Space

CQs MRT PBLsQuad
Hash

TX
FIFOQPs IRRQ APBVT

In Use Timers ...

......

Arp
Table

...

TXF
FL

...

IRRQ
FL

613875-009 1621

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

All PE objects marked as “Static” in Table 11-14 must be allocated at driver initialization time. Entries
marked as “Dynamic” can be allocated and deallocated on an as-needed basis. Deallocation of HMC FPM
page descriptor pages and backing pages is described in Section 9.3.8. Objects shown as dependencies
must be populated and allocated via CQP (along with the HMC FPM memory for the object itself) prior
to issuing a CQP operation to manipulate the PE object. More information regarding the object
dependencies is available in the individual CQP operations in following sections.

Note: PF resets clears the PE state including any HMC configuration settings for the PF and all
associated VFs. VF resets clear all PE state and HMC configuration settings only for the VF if
the VF is enabled for PE accelerations. See Table 4-1 on page 342 for more information on
reset sources and the affected internal logic.

Dynamic objects of the same type can share a cache line. However, a dynamic object must not share
any cache lines with another object that has a different type.

Table 11-14. PE Objects Dependencies

PE HMC Object

HMC Object
Page

Population
Algorithm

Object Dependencies Non-HMC Object
Dependences

QP Context Dynamic • ARP Table Entries
• Quad Hash Entries
• Tx FIFO Entries
• APBVT In-Use Table
• CQ
• Physical Buffer List Entries if

Virtually Mapped

• VSI
• Local MAC Address
• L2 Tag Configuration

CQ Context Dynamic • Physical Buffer List Entries if
Virtually Mapped

ARP Table Entries Dynamic None

Quad Hash Entries Static None

Tx FIFO Entry Free List Static None

Tx FIFO Entries Static • Tx FIFO Entry Free List

Inbound Read Request Queue Entry Free List Static None

Inbound Read Request Queue Entries Static • IRRQ Entry Free List

Accelerated Port Bit Vector Table In-Use Table Static None

Multicast Groups Dynamic None

Address Handles Dynamic None

Memory Registration Table Dynamic None

Physical Buffer List Entries Dynamic None

Read Response FIFO Entries Free List Static None

Read Response FIFO Entries Static • Read Response FIFO Entries
Free List

Header Static • Metadata

Metadata Static • Header

Out of Order Send Completion (OOISC) FIFO Static • Out of Order Send Completion
(OOISC) FIFO Free List

Out of Order Send Completion (OOISC) FIFO
Free List

Static None

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1622 613875-009

11.5.1 PE Initialization

Table 11-15 lists the high-level steps required to initialize a PE. Table 11-16 and Table 11-17 list the
high-level steps required to bring an RDMA or UDA QP to the operational state for the E810. These lists
are not meant to be exhaustive, but more as a guide to show examples of a typical initialization flow. It
is assumed that the LAN initialization of the VSI has enabled PE operation and has the LAN queues
operational for the PF.

Table 11-15. PE Resource Initialization

Step Resource Responsible Software
Component Action(s) Notes

1 Determine the IP and
MAC Addresses for the
associated LAN queue
pool.

E810 driver. Each PE interface is associated
with a specific LAN interface. The
mechanism to find the interface
information is operating system
specific.

2 Enable RDMA/UDA for
the corresponding VSI.

E810 driver. Enable the RDMA Packet Profiles
for RDMA in this VSI.

3 Enable Local VSI
Loopback.

E810 driver. PE enables communication
between QPs associated with the
same VSI. Set ALLOWLOOPBACK
and ALLOWLOCALLOOPBACK bits
in VSI_SRCSWIDCTRL register.

This step is not required. The
PE uses SWPE to perform
loopback.

4 Setup the PE portion of
the HMC.

E810 driver. Wait for PE firmware to be
initialized by polling
GLPE_CPUSTATUS0 is set to 0x80.
First the HMC base and size
registers must be programmed for
this PF. Subsequently appropriate
backing pages must be initialized.

See Section 9.3 for details on
initializing the HMC.

5 Acquire one or more
MSI-X vectors for the PE.

E810 driver. MSI-X vectors can be shared
between LAN and protocol
operation or can be partitioned to
enable independent operation.

See the previous section on
LAN initialization for more
information on MSI-X vector
initialization.

6 Initialize the PE control
QP.

E810 driver. Allocate memory for the CQP SQ
and CQP context and write to the
PECCQPHIGH and PECCQPLOW
registers.

See Section 11.5.2.1 for more
details.

7 Initialize the PE CQ 0. E810 driver. Allocate memory for the CQ and
issue a create CQ operation to CQP.

See Section 11.5.3.3 for
details on the Create CQ CQP
operation.

8 Initialize the PE CEQ 0. E810 driver. Allocate memory for the CEQ and
issue a create CEQ operation to
CQP, The CEQ is associated with a
E810 interrupt.

See Section 11.5.3.11 for
details on the create CEQ CQP
operation.

9 Initialize the PE AEQ. E810 driver. Allocate memory for the AEQ and
issue a create CEQ operation to
CQP.

See Section 11.5.3.12 for
details on the create AEQ CQP
operation.

613875-009 1623

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Table 11-16 lists steps required to bring RDMA QP to the operational state. PE initialization steps are
common for RDMA and UDA traffic and should be done only once.

Table 11-16. RDMA Resource Initialization

Step Resource Responsible Software
Component Action(s) Notes

1 Create a Protection
Domain.

E810 driver on behalf of
a verbs application.

Reserve a doorbell page from the
PE doorbell pages in the E810 BAR.

See Section 11.4.1.5.1 for
more information on doorbell
pages.

2 Allocate a CQ. E810 driver on behalf of
a verbs application.

Allocate memory for the CQ and
issue a create CQ operation to CQP.
The CQ is associated with the CEQ
from Step 7.

See Section 11.5.3.3 for
details on the create CQ CQP
operation.

3 Allocate a QP. E810 driver on behalf of
a verbs application.

Allocate memory for the QPs SQ
and RQ and issue a Create QP
operation to CQP.

See Section 11.5.3.2 for
details on the create QP CQP
operation.

4 Allocate Memory
Regions.

E810 driver on behalf of
a verbs application.

Allocate physical buffer list entry
ranges for the page list that backs
the memory provided by the
application and then issue register
memory region CQP operation.

See Section 11.5.3.4 for more
information on the register
memory region operation and
also Section 11.4.1.4 for an
overview of the E810's
memory registration
capabilities.

5 Post Work Requests to
the QPs RQ.

E810 driver on behalf of
a verbs application.

Fill in a RQ work request with the
information supplied by the
application and submit the work.

See Section 11.6.6.2 for
information about the RQ
work request format and
Section 11.4.1.5.8 for more
information on RQ operation.

6 Post Work Requests to
the QPs SQ.

E810 driver on behalf of
a verbs application.

Fill in a SQ work request with the
information supplied by the
application and submit the work.

See Section 11.6.6.1 for
information about the SQ
work request format and
Section 11.4.1.5.2 for more
information on SQ operation.

7 Process Interrupts and
the CEQ (optional).

E810 driver. Once an interrupt occurs for a
CEQ, the CQ can be determined
from the CEQ Entry. Events are
generated to that application to let
the application know that an event
for a specific CQ has been
received.

See Section 11.4.1.2 for more
information on processing
CEQ entries.

8 Process the CQ
(optional).

E810 driver on behalf of
a verbs application.

Once the application has either
received a completion event or is
constantly polling the CQ, CQ
entries are processed by the
application.

See Section 11.4.1.3 for more
information on processing CQ
entries.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1624 613875-009

Table 11-17 lists steps required to bring UDA QP to the operational state. PE initialization steps are
common for RDMA and UDA traffic and should be done only once.

Table 11-17. UDA Resource Initialization

Step Resource Responsible Software
Component Action(s) Notes

1 Create a Protection
Domain.

E810 driver on behalf of
a verbs application.

Reserve a doorbell page from the
PE doorbell pages in the E810 BAR.

See Section 11.4.1.5.1 for
more information on doorbell
pages.

2 Allocate a CQ. E810 driver on behalf of
a verbs application.

Allocate memory for the CQ and
issue a create CQ operation to CQP.
The CQ is associated with the CEQ
from Step 7.

See Section 11.5.3.3 for
details on the create CQ CQP
operation.

3 Allocate a QP. E810 driver on behalf of
a verbs application.

Allocate memory for the QPs SQ
and RQ and issue a create QP
operation to CQP.

See Section 11.5.3.2 for
details on the create QP CQP
operation.

4 Allocate Memory
Regions.

E810 driver on behalf of
a verbs application.

Allocate PBL entry ranges for the
page list that backs the memory
provided by the application and
then issue register memory region
CQP operation.

See Section 11.5.3.4 for more
information on the register
memory region operation and
also Section 11.4.1.4 for an
overview of the E810's
memory registration
capabilities.

5 Allocate Address Handle
(optional).

E810 driver on behalf of
a verbs application.

For each destination Node issue a
create address handle operation to
CQP. Allocated address handle is
used to generate Ethernet/IP
headers.

See Section 11.5.3.16 for
more information on the
create address handle
operation and also
Section 11.5.3.6 for an
overview of the E810's
address handle capabilities.

6 Bind to Local Port
(optional).

E810 driver on behalf of
a verbs application.

For each local port allocated for
UDP traffic issue a management
quad hash entry operation to CQP.
This operation will enable
forwarding of unicast packet to the
QP.

See Section 11.5.3.20 for
more information on the
manage quad hash operation.

7 Post Work Requests to
the QPs RQ.

E810 driver on behalf of
a verbs application.

Fill in a RQ work request with the
information supplied by the
application and submit the work.

See Section 11.6.6.2 for
information about the RQ
work request format and
Section 11.4.1.5.8 for more
information on RQ operation.

8 Post Work Requests to
the QPs RQ.

E810 driver on behalf of
a verbs application.

Fill in a SQ work request with the
information supplied by the
application and submit the work.

See Section 11.6.6.1 for
information about the RQ
work request format and
Section 11.4.1.5.2 for more
information on RQ operation.

9 Process Interrupts and
the CEQ (optional).

E810 driver. Once an interrupt occurs for a
CEQ, the CQ can be determined
from the CEQ Entry. Events are
generated to that application to let
the application know that an event
for a specific CQ has been
received.

See Section 11.4.1.2 for more
information on processing
CEQ entries.

10 Process the CQ
(optional).

E810 driver on behalf of
a verbs application.

Once the application has either
received a completion event or is
constantly polling the CQ, CQ
entries are processed by the
application.

See Section 11.4.1.3 for more
information on processing CQ
entries.

613875-009 1625

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.2 Control QP (CQP) Operation

CQP operations are modeled after verbs SQ operations as far as the work submission process. Some
differences exist for CQP when compared to a typical PE QP:

• CQP QP context is located on-die instead of in the HMC.

• The doorbell register used for work submission is PFPE_CQPDB instead of PFPE_WQEALLOC.

• PFPE_CQPDB take SQ head as input and there is no QP ID specified since each PE enabled PCI
function has a dedicated CQP.

• There is no doorbell shadow area associated with CQP.

• Hardware tail can be read from the PFPE_CQPTAIL, but in general software can just track SQ tail
based on completion processing from CQ0.

The operations defined for CQP are listed in Table 11-21. CQ0 is the CQ associated with the CQP for
each function. All other CQs are available for accelerated PE use.

11.5.2.1 Creating the CQP

CQP is created by first allocating memory for CQP context shown in Section 11.5.2.3 and initializing
context. The HMC resource profile is also able to be selected during the CQP creation process.

Note: HMC resource profile is selected during first CQP creation on a device and is then locked.
Subsequent attempts to change the HMC resource profile are ignored until all CQPs created
on the device have been destroyed.

The resource profile that has been selected is reported in the PFPE_CCQPSTATUS register after CQP has
been successfully created. Additionally, the SQ memory and FPM configuration buffer must also be
allocated. This memory must be pinned and the physical address must be determined.

Once software has filled in the CQP context properly, the physical address of CQP context is written to
the PFPE_CCQPHIGH and PFPE_CCQPLOW registers to notify the E810 of the create CQP operation.
Both registers must be written, and the PFPE_CCQPLOW register must be written last. The E810 then
fetches the context and create CQP for the current PCI function.

Once CQP has be successfully created, the CCQP_DONE bit in the PFPE_CCQPSTATUS register is set to
1b. If an error was encountered while attempting to create CQP, the CCQP_ERR bit is set instead of the
CCQP_DONE bit. The major and minor error codes are available in the PFPE_CQPERRCODES register.
The next six operations necessary to get CQP to a functional state are to:

1. Query FPM Values.

2. Commit FPM Values.

3. Initialize the HMC resources for CQ0.

4. Create CQ 0.

5. Create CEQ.

6. Create the AEQ.

The operations must be done in this order or unexpected results might be observed. In addition to the
CQ0 HMC backing pages initialized in Step 3, if either the CQ or CEQ need to be virtually mapped, the
PBLE HMC object backing pages must also be populated before creating the CQ and/or CEQ.
RDMA-enabled VFs use the VFPE_* versions of the registers previously mentioned. These steps involve
issuing standard CQP operations with the following exceptions:

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1626 613875-009

• PFPE_CQPTAIL must be polled until the create CQ operation has been submitted to CQP, and only a
single CQP operation must be submitted at a time to CQP while polling CQP Tail. Any errors
encountered via CQP is reported via the CQP_ERR bit in the PFPE_CQPTAIL register. The major and
minor error codes are available in the PFPE_CQPERRCODES register.

• CQ0 can be polled for the completion of the create CQ operation. No events can be generated since
there is no CEQ created at the point when CQ0 is created.

One additional CQP operation must be issued anytime after Step 3 but before any iWARP QPs can be
created. The static HMC pages allocated operation must be submitted after all static HMC objects have
been allocated and configured for the PCI function. See Table 11-14 for the list of statically configured
HMC objects.

11.5.2.2 Destroying the CQP

Once all PE resources have been destroyed and deallocated, the control QP related resources much also
be destroyed. The flow is the following:

1. Issue a CQP operation to destroy the AEQ.

2. Issue a CQP operation to destroy the CEQ(s).

3. Poll CQ0 to verify these operations completed.

4. Issue a CQP operation to destroy CQ0 (CQP's CQ).

5. Poll CQP tail for completion of the destroy CQ.

6. Destroy CQP by writing the PFPE_CCQPHIGH and PFPE_CCQPLOW registers with 0b.

7. Poll the PFPE_CCQPSTATUS register until it changes to 0b.

8. Destroy the CQ0 HMC resources to ensure that no further accesses to host memory is performed.

Once CQP is destroyed, CQ0 is destroyed as well.

613875-009 1627

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.2.3 CQP Context

CQP context describes the SQ for the control QP.

StructVersion (8 bits)

Used to specify changes in CQP context format. The only value defined is 0.

Enable_Fine_Grained_Timers (1 bit)

This bit enables fine-grained TCP timer mode for the PCI function associated with the CQP to be
created. Fine-grained TCP timer mode changes the PE TCP timers from normal values (2 minutes to
~100 ms) to a more aggressive set of values (~1 s to ~100 μs). Fine-grained TCP timer mode is
useful for environments with low packet congestion and/or low packet loss.

SQ_Size (4 bits)

This field encodes the maximum number of work requests for each WQ. The encoding of the SQ
sizes are 4*2SQ_Size in terms of 32-byte quanta of memory. Since each CQP WQE takes 64 bytes
(as if it consumed an additional fragment descriptor), only the following settings are valid for CQP
(all other settings are reserved and might cause unexpected results):

Table 11-18. CQP Context Format

Byte
Offset [Bit Range] Field Name

0

[63:40]
[39:32]
[31:24]
[23:12]
[11:8]

RSVD
num_CEQs_per_VF
StructVersion
RSVD
SQ_Size

[7:5]
[4:3]
[2]
[1]
[0]

RSVD
protocol_used
RoCEv2_RTO_Policy
Disable_FPDU_Packing
Enable_Fine_Grained_Timers

8 [63:9] SQ_Base [8:0] RSVD

16
[63:38]
[37:32]
[31:8]

RSVD
PEEnabledVfCount
RSVD

[7:4]
[3]
[2:0]

rdpa_assist
remote_endpoint_trk_en
HMCProfileType

24 [63:0] QP_Completion_Context

32
[63:56]
[55:48]
[47:32]

dcqcn_min_dec_factor
dcqcn_min_rate
RSVD

[31:16]
[15:0]

hw_major_version
hw_minor_version

40 [63:0] RSVD

48 [63:48]
[47:32]

cc_rai_factor
cc_hai_factor

[31:16]
[15:0]

RSVD
dcqcn_T

56
[63:32]
[31]
[30:28]

dcqcn_rreduce_mperiod
cc_cfg_valid
RSVD

[27:25]
[24:0]

dcqcn_F
dcqcn_B

Value Description

0001b 4 WQEs

0010b 8 WQEs

0011b 16 WQEs

0100b 32 WQEs

0101b 64 WQEs

0110b 128 WQEs

0111b 256 WQEs

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1628 613875-009

Software can only submit N-1 WQEs to a WQ without processing completions for the WQ without
exposing the possibility of a WQ overflow. WQ overflow results in indeterministic behavior for the
affected WQ.

SQ_Base (55 bits)

SQ_base is the most significant bits of the physical address of the SQ for the control QP. The WQ
base address must be evenly divisible by 512 for proper behavior.

HMCProfileType (3 bits)

This field specifies the HMC resource profile to be activated.

Specifying a reserved HMC resource profile causes the current HMC resource profile to remain
active. This field is ignored for VFs.

remote_endpoint_trk_en (1 bit)

This field enables/disables endpoint tracking. This is experimental.

PEEnabledVfCount (6 bits)

Only valid when HMCProfileType is one of the SR-IOV profile types. Specifies the number of PE
enabled VFs to be allocated. Values larger than 32 are rounded down to 32. A value of zero forces
the default profile to be selected. This field is ignored for VFs.

See Section 9.3.3, “Private Memory Space Profiles” for more information on HMC resource profiles.

QP_Completion_Context (64 bits)

QP_Completion_Context is reported in every CQ Entry related to the CQP.

Disable_FPDU_Packing (1 bit)

Disables transmission of packets with more than one FPDU per packet for iWARP Queue Pairs.

1000b 512 WQEs

1001b 1024 WQEs

1010b 2048 WQEs

Note: All other values are reserved.

Value Description

001b Default

010b SR-IOV VF Primary

011b SR-IOV Even Distribution

Note: All other values are reserved.

Value Description

0b Disabled

1b Enabled

Value Description

613875-009 1629

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

RoCEv2_RTO_Policy (1 bit)

protocol_used (2 bits)

Selects which protocol is used.

num_CEQs_per_VF (8 bits)

This specifies the max CEQs needed for each VF. The purpose of this field is to limit the number of
CEQs a VF uses in the even distribution profile to leave enough CEQs for the PF. A value of 0
preserves the behavior of evenly allocating the CEQs across all functions. This field is valid only if
SR-IOV is enabled and the balanced profile is in use.

hw_major_version, hw_minor_version (16 bits each)

Version of hardware that the software driver supports.

Major version values are:

rdpa_assist (4 bits)

This specifies the rate of assist:

cc_cfg_valid (1 bit)

dcqcn_min_dec_factor (8 bits)

Only valid when cc_cfg_valid is set (1b). The minimum factor by which the current transmit rate
can be changed when processing a CNP. The value is given as a percentage (1-100).

Value Description

0b The RoCEv2 retransmission timer stays constant.

1b The RoCEv2 retransmission timer doubles on every retransmission up to a maximum value.

Value Description

01b iWARP

10b RoCEv2

11b Reserved

Value Description

0 E810

Note: All other values are reserved.

Value Description

0x0 None

0xF Max

Value Description

0b The congestion control values are initialized using default values.

1b Indicates that the dcqcn_ and cc_ parameters are valid (software is setting the initial congestion control
settings).

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1630 613875-009

dcqcn_min_rate (8 bits)

Only valid when cc_cfg_valid is set (1b). The minimum (in Mbits per second) rate limit value.

cc_rai_factor (16 bits)

Only valid when cc_cfg_valid is set (1b). The number of MSS to add to the congestion window
during the active increase phase of recovery. This field is used in DCQCN and in Timely congestion
control protocols.

cc_hai_factor (16 bits)

Only valid when cc_cfg_valid is set (1b). The number of MSS to add to the congestion window
during the hyperactive increase phase of recovery. This field is used in DCQCN and in Timely
congestion control protocols.

dcqcn_rreduce_mperiod (32 bits)

Only valid when cc_cfg_valid is set (1b). The minimum time between 2 consecutive rate reductions
for a single flow. Rate reduction will occur only if a CNP is received during the relevant time interval.

dcqcn_T (16 bits)

Only valid when cc_cfg_valid is set (1b). The number of microseconds that should elapse before
increasing the congestion window in DCQCN mode.

dcqcn_F (3 bits)

Only valid when cc_cfg_valid is set (1b). The number of times to stay in each stage of bandwidth
recovery.

dcqcn_B (25 bits)

Only valid when cc_cfg_valid is set (1b). The number of bytes to transmit before updating the
congestion window in DCQCN mode.

613875-009 1631

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.2.4 CQP Error Codes

CQP can return a number of error and status code the operations that it performs. Table 11-19 lists
these error and status codes that can be returned in the CQ entry listed in Table 11-20.

Table 11-19. CQP Error Codes

Major
Error
Code

Minor
Error
Code

Completion Reason Description

0x0000 0xkk00 STag Valid The STag queried is in the valid state, where kk is the STag key.

0x0000 0x0001 STag Invalid The STag queried is in the invalid state.

0x0000 0x0002 RQ WQE Flushed A RQ WQE was flushed as a result of the flush WQEs operation.

0x0000 0x0003 SQ WQE Flushed A SQ WQE was flushed as a result of the flush WQEs operation.

0x0000 0x0004 SQ and RQ WQEs Flushed Both a RQ WQE and a SQ WQE were flushed as a result of the flush
WQEs operation.

0x0000 0x0005 Suspend Pending A suspend QP WQE was issued referencing a busy QP. An
AE_QP_SUSPEND_COMPLETE AE is generated when the QP has been
successfully suspended.

0xF000 0x000x Object Cache Error An object cache error has reported to CQP during this operation. Object
cache errors reported in x include:

0: Cache Address Translation Error

0xF001 0x000x Context Cache Error A context cache error was reported to CQP during this operation.
Context cache errors include:

0x1 – PMAT Error during normal operation
0x2 – PMAT Error during reset
0x4 - Context CRC Error

0xFFFF 0x3000 Packet Count Error A packet count issue has been detected on a QP that is either being
destroyed or uploaded. The state of the QP is indeterminate once this
completion code has been observed.

0xFFFF 0x3001 Scratchpad Flush Error CQP has timed out waiting for TEP to flush scratchpads for a QP that is
getting destroyed or uploaded. This error has never been observed and
is not expected.

0xFFFF 0x3002 Bad Queue Set Handle The given queue set handle is associated with a work scheduler node
that was not properly enabled.

0xFFFF 0x3003 Invalid WS Node Weight Returned by Manage Work Scheduler Node if an invalid weight is
provided for the specified node_type and/or priority_type.

0xFFFF 0x3004 Invalid Traffic Class Returned by Manage Work Scheduler Node if the given traffic class is
invalid for the current system configuration

0xFFFF 0x4000 Memory Window Bound The destroy QP operation failed because there are still MWs bound to
the QP.

0xFFFF 0x6000 Insufficient Resources (General) There is an insufficient amount of the resources needed to complete
this operation.

0xFFFF 0x6001 Insufficient FLM Resources A create QP was attempted but there were no available transmit of Q1
FIFO entries.

0xFFFF 0x6002 Insufficient Doorbell Resources Returned by commit FPM (if requested number of QPs or CQs is greater
than count allotted in partition registers).

0xFFFF 0x6003 Hash Filter Programming Failed An ADD or REMOVE of a hash filter entry was attempted but was not
successful.

0xFFFF 0x6004 PCIe Unsupported Request Access of a software-provided host physical address resulted in an
Unsupported Request response from PCIe.

0xFFFF 0x8000 ID Too Big The ID specified on the operation is too large for the on-board memory
configuration.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1632 613875-009

0xFFFF 0x8002 Invalid State The operation requested is not valid for this resource based upon its
current state.

0xFFFF 0x8003 Invalid Next QP State The next state specified on the Modify QP operation is not valid based
on the QP’s current state.

0xFFFF 0x8004 Invalid Queue Size The SQ, RQ, or Q1 is too large or to small.

0xFFFF 0x8005 Invalid QP Type The operation is not valid for this type of QP.

0xFFFF 0x8006 No WQE Pending A flush operation was attempted but there was not a WQE pending.

0xFFFF 0x8007 Bad Close A Modify QP from RTS->Closing was attempted while there was SQ
and/or Q1 activity in progress.

0xFFFF 0x8009 LLP Closed Returned by Modify QP (next RDMA state = Terminate if the TCP state
is already closed or time wait).

0xFFFF 0x800A Reset Not Sent Returned by Modify QP (if the TCP state is already closed).

0xFFFF 0x800C SD Index Out of Range An attempt has been made to update a VF’s page descriptor using an
SD that does not reference a PBLE object.

0xFFFF 0x800D PD Index Out of Range An attempt has been made to update a VF’s page descriptor using a SD
and PD index that does not reference a PBLE object.

0xFFFF 0x800E PD Page Boundary Exceeded An attempt has been made to update a VF’s page descriptor but the
request has crossed from one PD page to the next PD page.

0xFFFF 0x800F SD Boundary Exceeded Returned by commit FPM (if requested number of HMC objects crosses
SD boundary for that function).

0xFFFF 0x8010 Invalid Function Type The operation is not valid for the PCI function type that attempted to
issue the operation.

0xFFFF 0x8011 FLM Not Initialized Returned by create QP if an attempt to create a QP has been attempted
before the static resources allocated WQE has been issued.

0xFFFF 0x8012 Invalid ECN Codepoint An attempt was made to create a QP with an invalid initial ECN
codepoint value.

0xFFFF 0x8013 Bad Access A PF or VF attempted to access resources that it does not own.

0xFFFF 0x8014 Invalid MRTE Index An attempt was made to access a reserved STag.

0xFFFF 0x8015 Invalid Terminate Message Size A Terminate was requested with a Term_length value that is too small.

0xFFFF 0x8016 Bad Send MSS Value The value given for SndMSS is invalid.

0xFFFF 0x8017 Shared MR FBO Mismatch A Shared Memory Region was created with a virtual address that did
not match the First Buffer Offset of the parent Memory Region.

0xFFFF 0x8018 Reserved Reserved.

0xFFFF 0x8019 Invalid Access Rights An invalid combination of access rights was requested.

0xFFFF 0x8020 Invalid flag on Reg MR Memory Region bit was no set during a Register MR operation.

0xFFFF 0x8021 Invalid PBL/Host Page Unsupported PBL/Host Page Size configuration was requested.

0xFFFF 0x8022 Invalid Push Ready List An attempt has been made to enable Push Mode with a ready list that
was not associated with a valid Push Mode Page Table.

0xFFFF 0x8023 Invalid RoCE QPID An attempt was made to create a RoCE QP (RC or UD) with an ID of 0
or a RoCE RC QP with an ID of 1.

0xFFFF 0x8024 Invalid MW Type Used An attempt was made to allocate a Type1 Memory Window on a HMC
function not configured for the RoCEv2 protocol.

0xFFFF 0x80EE Unsupported Opcode The opcode given is unsupported.

Table 11-19. CQP Error Codes [continued]

Major
Error
Code

Minor
Error
Code

Completion Reason Description

613875-009 1633

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.2.5 CQP CQE Format

The CQP CQ entry is listed in Table 11-20. Every work request processed by the control QP returns a
completion on CQ 0 (CQ_ID 0). If CQ0 is created with the Avoid_Memory_Conflicts bit set, an additional
32 bytes of padding is added to each CQE for a total of 64 bytes per CQE. This doubles the size of the
CQ in host memory.

Op (6 bits)

This field reports the opcode from the operation associated with the CQE.

QP_Completion_Context (64 bits)

This field is transferred to the CQE from CQP QP context listed in Table 11-18.

WQ_Desc_Index (15 bits)

WQ are sliced up into 32-byte descriptor quanta. Every WQE must start with a 32-byte descriptor
on a 32-byte boundary. WQ_Desc_Index reports the 32-byte quanta index of the WQE associated
with the completion.

QP_ID (18 bits)

QP associated with the completed message.

Operation_Return_Value (32 bits)

This field is filled in by CQP with operation dependent return values such as the reachability
timestamp or the MAC and IP table Index.

CQE_Valid (1 bit)

The CQE_Valid bit for CQE indicates that a CQE is ready to be processed. The polarity of the Valid
bit changes each time the CQ wraps from the last entry back to the first entry. This change in
polarity reduces software overhead by avoiding the need to clear the Valid bit once software has
processed a valid CQE.

0xFFFF 0x80EF WQE Not Valid The WQE fetched due to a CQP doorbell ring is not valid.

0xFFFF 0xFFFF Error CQP encountered an error during the processing of this WQE.

Table 11-20. CQP CQ Entry Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] QP_Completion_Context

16 [63:32] RSVD [31:0] Operation_Return_Value

24

[63]
[62]
[61:56]
[55]

CQE_Valid
SQ
Op
Error

[54:47]
[46:32]
[31:16]
[15:0]

RSVD
WQ_Desc_Index
Major_Error_Code
Minor_Error_Code

Table 11-19. CQP Error Codes [continued]

Major
Error
Code

Minor
Error
Code

Completion Reason Description

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1634 613875-009

Software is responsible to clear (set to 0b) all memory in a CQ initially at CQ creation. The first
iteration (and subsequent odd numbered iterations) through the CQ, the E810 sets the Valid bit to
1b when it writes a new CQE. For the second iteration (and all even numbered iterations) through
the CQ, the E810 sets the Valid bit to a 0b when it writes an new CQE.

Error (1 bit)

The Error bit indicates if there was a problem with the operation specified by the WQE associated
with the WR that is associated with completion.

SQ (1 bit)

The SQ bits is used to determine if the completion is associated with a SQ (SQ) or a RQ (RQ).
Always 1b for CQP.

Major_Error_Code (16 bits) and Minor_Error_Code (16 bits)

The Error_Code fields are valid if the Error bit is set or if the operation submitted was query STag.
See Table 11-19 for the values that are returned for CQP operations.

Value Description

0b No error is being reported with this completion.

1b An error occurred when processing the WQE associated with this CQE and that the Error_Code field is valid.

Value Description

0b RQ

1b SQ

613875-009 1635

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3 CQP SQ Descriptor Format

The following WQE formats are used in conjunction with the Control QP (CQP) to manage internal PE
structures that the E810 uses to communicate with host software. Operations that are supported for
CQPs are the following:

Table 11-21. CQP Operations

Operation
Code Operation Name Section

Reference
Operation

Code Operation Name Section
Reference

0x00 Create QP

11.5.3.2

0x1A Reserved N/A

0x01 Modify QP 0x1B Destroy AEQ 11.5.3.12

0x02 Destroy QP 0x1C Create Address Handle

11.5.3.130x03 Create CQ

11.5.3.3

0x1D Modify Address Handle

0x04 Modify CQ 0x1E Destroy Address Handle

0x05 Destroy CQ 0x1F Update PE SDs 11.5.3.14

0x06-0x08 Reserved N/A 0x20 Query FPM Values 11.5.3.15

0x09 Allocate STag
11.5.3.4

0x21 Commit FPM Values 11.5.3.16

0x0A Register MR 0x22 Flush WQEs 11.5.3.17

0x0B Query STag 11.5.3.5 0x23 Manage APBV Table Entry 11.5.3.18

0x0C Register Shared MR
11.5.3.4

0x24 NOP 11.5.3.19

0x0D Deallocate STag 0x25 Manage Quad Hash Table Entry 11.5.3.20

0x0E Reserved N/A 0x26 Create Multicast Group

11.5.3.210x0F Manage ARP Cache 11.5.3.6 0x27 Modify Multicast Group

0x10 Manage VF PBLE Backing Pages 11.5.3.7 0x28 Destroy Multicast Group

0x11 Manage Push Page 11.5.3.8 0x29 Suspend QP 11.5.3.22

0x12 RDMA Get Features 11.5.3.29 0x2A Resume QP 11.5.3.23

0x13 Upload Context 11.5.3.9 0x2B Static HMC Pages Allocated 11.5.3.24

0x14 Reserved N/A 0x2C Manage Work Scheduler Node 11.5.3.27

0x15 Manage HMC PM Function Table 11.5.3.10 0x2D Manage Statistics Instance 11.5.3.25

0x16 Create CEQ 11.5.3.11 0x2E Gather Statistics 11.5.3.26

0x17 Reserved N/A 0x2F Set UP-UP Mapping 11.5.3.28

0x18 Destroy CEQ 11.5.3.11 0x30-0x3F Reserved N/A

0x19 Create AEQ 11.5.3.12

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1636 613875-009

11.5.3.1 Common CQP Descriptor Format Fields

The basic CQP WQE is a 64-byte structure that is broken up into 64-bit (8-byte) words. The placement
of these fields within the WQE are common among all CQP WQEs and also RDMA WQEs. Table 11-22
lists the basic structure of a CQP WQE including the common fields. The definition of fields marked as
“Operation Code Dependent” vary from operation-to-operation and are detailed in subsequent sections.

OP (6 bits)

CQP operation code for create QP, modify QP, or destroy QP. See Table 11-21 for the specific values.

WQE_Valid (1 bit)

The WQE_Valid bit for WQ Entries (WQE) indicates that a WQE is ready to be processed by the
E810. The polarity of the Valid bit changes each time the WQ wraps from the last entry back to the
first entry. This change in polarity reduces software overhead associated with the need to clear a
Valid bit and also to enable the E810 to read ahead in the WQ to reduce the need for doorbell rings.
See Section 11.4.1.5 for more information on submitting work to a QP with the E810.

Software is responsible to clear (set to 0b) all memory in a WQ initially at QP creation. The first
iteration (and subsequent odd numbered iterations) through the WQ, software sets the Valid bit to
1b when it writes a new WQE. For the second iteration (and all even numbered iterations) through
the WQ, software sets the Valid bit to a 0b when it writes an new WQE.

Table 11-22. CQP Common WQE Fields

Byte
Offset [Bit Range] Field Name

0 [63:0] Operation Code Dependent

8 [63:0] Operation Code Dependent

16 [63:0] Operation Code Dependent

24
[63]
[62:42]
[41:38]

WQE_Valid
Operation Code Dependent
RSVD (AdditionalFragmentCount)

[37:32]
[31:0]

OP
Operation Code Dependent

32 [63:0] Operation Code Dependent

40 [63:0] Operation Code Dependent

48 [63:0] Operation Code Dependent

56 [63:0] Operation Code Dependent

613875-009 1637

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.2 Create/Modify/Destroy QP Descriptor Format

This WQE format is used by host software to manage QPs. The various Valid bits in this format are
designed to reduce the load on CQP for determining what has changed. If a Valid bit is set for a
particular field, CQP updates the value in the E810’s context. Otherwise, it does not. The only valid
operation for QP type CQP is the destroy operation. See Section 11.5.2.1 for more details on created
CQP.

Note: Software is responsible for populating the appropriate HMC objects and have having created
objects for the HMC and through CQP that the QP depends on.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

ARP_Table_Index_Valid (1 bit)

TOE_Context_Valid (1 bit)

Table 11-23. CQP Create/Modify/Destroy QP WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:52]
[51:48]

RSVD
Term_Length1

1. Not used for Destroy QP operations.

[47:0] RSVD

16 [63:0] QP_Context_Address1

24

[63]
[62:60]
[59]
[58]
[57:56]
[55]
[54]
[53:52]
[51]
[50:48]

WQE_Valid
Next_RDMA_State1

ARP_Table_Index_Valid1

Reset_Connection1

Terminate_Actions1

Remove_Hash_Entry1

Ignore_MW_Bound2

RSVD
MAC_Valid
QP_Type

2. Only used for Destroy QP operations.

[47]
[46]
[45]
[44]
[43]
[42]
[41:38]
[37:32]
[31:18]
[17:0]

CQ_Numbers_Valid1,3

Force_Loopback3

Virtual_WQs3

Cached_Variables_Valid1

TOE_Context_Valid3

ORD_Valid1,3

RSVD (AdditionalFragmentCount)
OP
RSVD
QP_ID

3. Valid for Create and Modify QP operations as long as the iWARP state is not already RTS, error, or terminate.

32 [63:0] RSVD

40 [63:7] Doorbell_Shadow_Address3 [6:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b CQP must ignore ARP Cache_Index field in QP context.

1b ARP cache index has been updated in the QP context.

Value Description

0b Ignore the TOE portion of QP context.

1b The TOE portion of QP context is valid.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1638 613875-009

This bit is useful if an iWARP QP is created that does not yet have a TOE connection associated with
it. Host software can create the SQ/RQ and so on, and then later issue a modify QP to update the
TOE context. Updating TOE context is only allowed prior to setting the QP iWARP state to RTS for
iWARP QPs and prior to setting the QP TOE state to established for TOE QPs.

ORD_Valid (1 bit)

Virtual_WQs (1 bit)

When a QP is using virtual WQs, the RQ and SQ base address in QP context point to the first HMC
FPM space PBLE index for the page table for each WQ. Host software is responsible for populating
the PBLEs with the page list associated with each WQ before making the QP active (Modify QP with
next state of RTS). Both the SQ and the RQ buffers must be aligned to a multiple of 4 KB in host
memory when Virtual_WQs is set. This field is only valid for QPs in the IDLE state or during the
IDLE to RTS transition.

Remove_Hash_Entry (1 bit)

Only valid with Modify QP opcodes.

CQ_Numbers_Valid (1 bit)

Force_Loopback (1 bit)

This field is used to enable loopback traffic for different IP Addresses with a single VSI.

Value Description

0b CQP must ignore the ORD field in QP context.

1b ORD has been updated in QP context.

Value Description

0b The SQ and RQ for this QP are physically mapped.

1b The SQ and RQ for this QP are virtually mapped.

Value Description

0b No effect.

1b The hash table entry associated with this QP is removed from the hash list.

Value Description

0b RxCmpQueueNum and TxCmpQueueNum in QP context are ignored.

1b The values for RxCmpQueueNum and TxCmpQueueNum in QP context are used to update internal context.

Value Description

0b The traffic is switched normally unless the source and destination IP Addresses and MAC Addresses match.

1b The traffic for the QP is internally looped back within the VSI associated with the QP.

613875-009 1639

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

QP_Type (3 bits)

QP_Type indicates the type of QP for CQP to create. The valid QP types are:

MAC_Valid (1 bit)

This field is for changing the MAC after RTS. Before RTS, this field is ignored.

Ignore_MW_Bound (1 bit)

This field is only meaningful for Destroy QP for RDMA QPs.

Terminate_Actions (2 bits)

Only valid for Modify QP for iWARP QPs with Next_RDMA_State set to terminate. Values for this field
are:

Term_Length (4 bits)

Only valid with modify opcodes when the next RDMA state is set to 5 (terminate) and
Terminate_Actions is set to 0b or 1b. This field is ignored in all other cases. This field specifies the
number of 4-byte DWords to transfer from the Q2 outbound terminate data area when a terminate
message is requested. The Q2 area starts with a DWord specifying the Terminate Control field as
specified in the RDMAP RFC. A maximum of 13 DWords are transmitted (terminate control DWord
plus 48 bytes of data for an RDMA read header). Values greater than 13 results in 13 DWords being
transmitted.

Value Description

000b CQP (only valid for DestroyQP)

001b iWARP

010b UDA

011b RoCEv2 RC

100b RoCEv2 UD

Note: All other values are reserved.

Value Description

0b CQP must ignore Src_MAC_Address field in QP context.

1b Src_MAC_Address has been updated in QP context.

Value Description

0b The destroy fails with a major/minor code of 0xFFFF/0x4000 when memory windows are still bound to the QP.

1b The QP is destroyed even if memory windows are still bound to the QP.

Value Description

00b Send both Terminate and FIN

01b Send Terminate Only

10b Send FIN Only

11b Do not send Terminate or FIN

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1640 613875-009

Cached_Variables_Valid (1 bit)

Only valid with modify opcodes.

See Table 11-67 on page 1693 for the list of variable that are cached. Each cached variable is
marked with a table footnote.

Next_RDMA_State (3 bits)

Only valid on Modify QP opcodes for RDMA QPs. The iWARP state definitions are:

Reset_Connection (1 bit)

Only valid with Modify QP opcodes. If set (1b), a TCP reset is sent out if the TCP state for the QP has
already been ESTABLISHED is not TIME_WAIT or CLOSED. If the QP TCP state is already
TIME_WAIT or CLOSED, an AE_RESET_NOT_SENT AE is generated.

QP_ID (18 bits)

QP_ID identifies the QP that is to be acted upon by the E810.

QP_Context_Address (64 bits)

A physically-mapped pointer in host memory that contains QP context. The format of the QP
context structures are define in Section 11.6.2, Section 11.5.2.3, and Section 11.6.3. This buffer
must be aligned to a multiple of four bytes.

Doorbell_Shadow_Address (57 bits)

A physically-mapped pointer in host memory that hardware writes to when forward progress has
been made on SQ work. The format of the doorbell shadow area is listed in Table 11-25. This buffer
must be aligned to a multiple of cache-line size bytes.

Modify QP processing performed by CQP for the E810 is not designed to be verbs compliant from
the point of view of which iWARP state transitions are allowed. The E810 enables invalid state
transitions to enable host hardware to make state transitions to ERROR or TERMINATE
autonomously to prevent subsequent work from being processed, but still enable host software the
ability to provide verbs compliant behavior to the application.

Value Description

0b No effect.

1b Only the cached variables associated with this QP are updated on the Modify operation.

Value Description

000b NON EXISTENT

001b IDLE

010b RTS

011b CLOSING

100b RTR (RoCEv2 only)

101b TERMINATE (iWARP only)

110b ERROR

111b Reserved

613875-009 1641

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Additionally, the E810 is not providing support for the transition back to IDLE. It is expected that
host software destroys QPs and recreate them when the transition from non-IDLE to IDLE is
desired. Table 11-24 describes the transitions allowed by the E810.

For information on the doorbell ringing algorithm and usage of the QP doorbell shadow area, see
Section 11.4.1.5.2.

Table 11-24. E810 iWARP QP State Transitions

Current iWARP
State

Next RDMA State

Idle RTS Closing Terminate Error

Idle Yes Yes No No Yes

RTS No Yes Yes Yes Yes

Closing No No No No Yes

Terminate No No No Yes Yes

Error No (No error
reported) No No No Yes

Table 11-25. QP Doorbell Shadow Area

Byte
Offset [Bit Range] Field Name

0 [63:15] RSVD [14:0] HW_SQ_Tail

8 [63:0] RSVD

16 [63:0] RSVD

24 [63:0] RSVD

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1642 613875-009

11.5.3.3 Create/Modify/Destroy CQ Descriptor Format

Host software uses the following structure to manage CQs through the control QP. CQs are comprised of
a packed array of CQEs (which are WQ type specific) that are managed as a circular queue. They can be
either virtually or physically contiguous memory buffers. Further discussion of CQ operation is found in
Section 11.4.1.3.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

enable_ceqe_mask (1 bit)

CEQ_ID (10 bits)

CEQ_ID specifies the CEQ to associated with the CQ specified by CQ_ID. This field is only
meaningful when CEQ_ID_Valid is set (1b).

CEQ_ID_Valid (1 bit)

Table 11-26. CQP Create/Modify/Destroy CQ WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:21] RSVD [20:0] cq_size1

1. Valid on Modify operations with the CQ_Resize bit set, or on Create operations.

8 [63] RSVD [62:0] CQ_Context_Value

16 [63:18] RSVD [17:0] cq_shadow_read_threshold2

24

[63]
[62]
[61]
[60]
[59:50]
[49]
[48]
[47]

WQE_Valid
RSVD
Avoid_Memory_Conflicts2

TPH_en
RSVD
CEQ_ID_Valid
enable_ceqe_mask2

Virtually_Mapped1

2. Only valid on Create operations.

[46]
[45:44]
[43]
[42:38]
[37:32]
[31:22]
[21:19]
[18:0]

Check_Overflow2

Leaf_PBL_Size1

CQ_Resize
RSVD
OP
CEQ_ID
RSVD
CQ_ID

32 [63:8] Physical_Buffer_Address1 [7:0] RSVD

40 [63:6] Doorbell_Shadow_Address [5:0] RSVD

48 [63:28] RSVD [27:0] first_pm_pbl_index1

56 [63:18]
[17:8]

RSVD
VSI_Index

[7:0] TPH_Value

Value Description

0b The E810 potentially generates multiple CEQEs per CQ if a request for completion notification is generated by
software before a CEQE is consumed by software. This behavior can lead to CEQ overflows.

1b The E810 only allows one CEQE to be generated per CQ. Subsequent CEQE generation is enabled by writing the
CQ ACK register.

Value Description

0b The CEQ_ID field is ignored.

1b The E810 updates the CEQ for the CQ.

613875-009 1643

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Changing the CEQ_ID for an active CQ is allowed to enable software to redistribute CQ event
processing between different processors. Each CEQ for a given function must be assigned to
independent MSI-X vectors to take advantage of this capability.

CQ_Resize (1 bit)

If a resize operation is performed, the cq_resize_count CQ context variable (known as
hw_cq_select in the description of CQ resizing) is incremented by the E810. See the description of
CQ resizing in Section 11.4.1.3 for more information on the CQ resizing operation.

Avoid_Memory_Conflicts (1 bit)

TPH_en (1 bit)

TPH_Value (8 bits)

If TPH_en is set (1b), TPH STag is initialized with TPH_Value. If TPH_en is clear (0b), this field is
ignored.

VSI_Index (10 bits)

The VSI index for the CQ. Only defined for Create CQ. It is ignored on Modify CQ and Destroy CQ.

Leaf_PBL_Size (2 bits)

See Section 11.4.1.4.1 for more details on usage of two level PBLs.

A leaf page size of 4 KB is not supported for 1 GB pages.

Value Description

0b Ignore CQ_Resize.

1b CQ resize operation is being requested.

Value Description

0b Each CQE is 32 bytes in size.

1b The size of each CQE is padded with 0’s to a total of 64 bytes, and the size of the CQ doubles.

Value Description

0b TPH is not used for this resource.

1b TPH is enabled for this resource.

Value Description

00b Reserved

01b Variable (one level)

10b 256 bytes (two level)

11b 4 KB (two level)

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1644 613875-009

Check_Overflow (1 bit)

Virtually_Mapped (1 bit)

The CQ buffer must be aligned to a multiple of 4 KB in host memory when Virtually_Mapped is set.

first_pm_pbl_index (28 bits)

Points to the first HMC FPM space PBLE index for the page table for the CQ. Host software is
responsible for populating the PBLEs with the page list associated with the CQ before issuing the
create CQ operation and the page table is not allowed to be changed.

Physical_Buffer_Address (56 bits)

If Virtually_Mapped is set to 0b, this field specifies the physical buffer address associated with the
queue in host memory. If Virtually_Mapped is set to 1b, this field is ignored by the E810. This
address must be aligned to a 256-byte boundary.

cq_size (21 bits)

The number of CQEs allowed on the CQ. Note that the actual number of concurrent CQEs that might
be allocated to the CQ is cq_size -1. 0 and 1 are invalid sizes for a CQ. Also note that each
Immediate Data operation CQE consumes the space of two CQEs.

cq_shadow_read_threshold (18 bits)

Controls when the CQ shadow area is read to update hardware’s copy of CQE_Index. When the CQ
drops below the number for CQEs specified by cq_shadow_read_threshold, the CQ shadow area is
read to determine which CQEs have been processed by software. The value of 0 indicates that the
CQ shadow area is only read when the CQ has no more available entries to use for a new CQE that
needs to be generated.

CQ_ID (19 bits)

Identifies the CQ index associated with the current CQP operation.

CQ_Context_Value (63 bits)

This value is returned in the CEQE when an event is generated for the CQ specified by CQ_ID. This
value is intended to be used by host software to quickly locate host software’s CQ context (virtual
pointer to CQ context).

Doorbell_Shadow_Address (58 bits)

A physically-mapped pointer in host memory that hardware reads to determine the CQEs that are
owned by hardware. The format of the doorbell shadow area is listed in Table 11-27. This buffer
must be aligned to a multiple of cache-line size bytes or 64 bytes, whichever is greater.

Value Description

0b It is host software’s responsibility to ensure that a CQ cannot overflow.

1b The E810 checks for CQ overflow conditions.

Value Description

0b Physical_Buffer_Address is the physical address of the physically-contiguous CQ ring buffer.

1b The CQ is virtually-mapped, and first_pm_pbl_index is the index of the PBLE HMC object to use for mapping the
virtually-contiguous CQ.

613875-009 1645

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

CQE_Index (21 bits)

Indicates the next CQE that software are polling through verbs. This field is used to update the
hardware’s version of context to detect CQ overrun conditions.

arm_next (1 bit)

Indicates that software wants a CEQE generated for the next CQ entry posted to the CQ.

arm_next_se (1 bit)

Indicates that software wants a CEQE generated for the next CQ entry posted to the CQ that is
associated with a solicited event operation.

arm_seq_num (2 bits)

Arm Sequence Number (arm_seq_num) is a valued incremented by software each time an arm
request is issued. It is expected that no more than two arm requests are issued per CE
received. If more than three arm requests are issued without waiting for a CE, arm request
might be lost.

sw_cq_select (14 bits)

This field is used for CQ resize operations. See Section 11.4.1.3 for more details on the usage
of this field.

Table 11-27. CQ Doorbell Shadow Area

Byte
Offset [Bit Range] Field Name

0 [63:21] RSVD [20:0] CQE_Index

8 [63:0] RSVD

16 [63:0] RSVD

24 [63:0] RSVD

32
[63:18]
[17:16]
[15]

RSVD
arm_seq_num
arm_next_se

[14]
[13:0]

arm_next
sw_cq_select

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1646 613875-009

11.5.3.4 Allocate/Register/Registershared/Deallocate STag
Descriptor Format

This WQE format is used by host software to manage memory regions and windows. See
Section 11.4.1.4.1 for more details on memory registration concepts with the E810.

OP (6 bits) and WQE_Valid (1 bits)

See Section 11.5.3.1.

Virtual_Address or First_Buffer_Offset (64 bits)

Indicates the base VA for this region/window for VA-based entries and indicates the first buffer
offset for zero-based entries. For VA-based entries, the least significant bits (12 bits for entries
based on 4 KB pages, 21 bits for entries based on 2 MB pages) of the VA indicate the offset in bytes
from the beginning of the first page where the entry begins.

Physical_Buffer_Address (64 bits)

If Leaf_PBL_Size is set to zero (00b), this field specifies the physical buffer address associated with
the virtual address. If Leaf_PBL_Size is not set to zero, this field is ignored by the E810. This
address must be aligned to the page size specified in Host_Page_Size. Any offset into the page is
ignored by the E810.

PD_ID (18 bits)

Indicates the protection domain ID associated with the memory region or window.

STag_Length (46 bits)

Length of the memory region or memory windows specified by the STag index specified by
Driver_Key_Stag_Index. A value of 0b indicates that the length is not checked. This is typically
used for systems that want to address all of RAM with a single STag. The maximum size that can be
registered with a single STag with 4 KB pages and 1-level PBLs is 1 TB (228 4 KB pages). The
maximum size that can be registered with a single STag with 2 MB pages and 1-level PBLs is 32 TB
(224 2 MB pages). The maximum size that can be registered with a single STag with 1 GB pages and
1-level PBLs is 32 TB (215 1 GB pages).

Table 11-28. CQP Allocate/Register/Registershared/Deallocate STag WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Virtual_Address or First_Buffer_Offset

8 [63:46] PD_ID [45:0] STag_Length

16 [63:54]
[53:32]

RSVD
Parent_STag_Index

[31:8]
[7:0]

Driver_Key_STag_Index
Consumer_Key

24

[63]
[62:61]
[60]
[59]
[58]
[57:54]
[53]
[52:48]

WQE_Valid
RSVD
use_hmc_fcn_index
VA_Based_TO
MW1_bind_dont_vldt_key
RSVD (for PM flags)
Remote_Access_Enabled
Access_Rights

[47:46]
[45:44]
[43]
[42]
[41:38]
[37:32]
[31:0]

Host_Page_Size
Leaf_PBL_Size
Memory_Region
Memory_Window_Type
RSVD
OP
RSVD

32 [63:0] Physical_Buffer_Address

40 [63:6] RSVD [5:0] hmc_fcn_index

48 [63:28] RSVD [27:0] first_pm_pbl_index

56 [63:0] RSVD

613875-009 1647

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Parent_STag_Index (22 bits)

Index of the STag associated with the memory window (Memory_Region = 0) or linked memory
region (OP = Register Shared MR).

Driver_Key_STag_Index (24 bits)

Index and Driver Key fields of the STag associated with the memory window (Memory_Region =
0b) or linked memory region (OP = register shared MR). The E810 supports a variable size STag
index. This means that the number of bits used for Driver Key and for STag_Index are dependent
on the maximum number of STag supported for a given PCI function. For example, if a PCI function
read the FPMPEMRSZ field (See Section 13.2.2.20.130) and found that the maximum number of
MRTEs was 64 KB, the lower 16 bits of this field would be the STag Index and the upper eight bits
would be a driver key that the driver can randomize to make guessing the MRTE layout more
difficult to guess. STag index 4M-1 (4,194,303) is reserved for hardware use. The completion
returns an error if this reserved STag index is specified.

The width of the STag_Index field is based on two things: the Memory Region count supplied in the
Commit FPM Buffer and the bit width mask size defined in the MRTE Index Mask
(PFPE_MRTEIDXMASK) register. If the Memory Region count requires fewer bits that the minimum
mask size, the STag Index size is adjusted up to the minimum. The driver must not randomize bits
in the range of the STag index mask bits.

Consumer_Key (8 bits)

Consumer key is the least significant 8-bit portion of the STag. This field is supplied by the user
application or the driver.

use_hmc_fcn_index (1 bit)

Only valid when issued to a PF CQP instance. Ignored (treated as if set to 0b) for VF CQP instances.

hmc_fcn_index (6 bits)

Only valid when issued to a PF CQP instance and use_hmc_fcn_index is set to 1b. Ignored
otherwise.

VA_Based_TO (1 bit)

VA_Based_TO specifies if the STag is zero-based or Virtual Address (VA)-based. Zero-based STags
carry only the first buffer offset in the VA or First Buffer Offset field. VA-based STags carry the full
base VA including first buffer offset in the VA or First_Buffer_Offset field. The STag is VA-based if
VA_Based_TO is set (1b). Otherwise, the STag is zero-based.

Remote_Access_Enabled (1 bit)

If set, the entry is enabled for remote access. See the remote access flag in verbs for more details.

Value Description

0b The HMC function index is determined by the PCI function associated with the PCI function that issues the CQP
operation.

1b hmc_fcn_index can be set to a HMC function index that is a VF associated with the PF associated with the CQP
instance used to issue the command.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1648 613875-009

Access_Rights (5 bits)

Indicates the rights assigned to this STag. The values for this field are:

Host_Page_Size (2 bits)

Host_Page_Size specifies the page size of the backing pages for the STag. The values for this field
are:

Leaf_PBL_Size (2 bits)

The E810 supports physically-contiguous STags and two forms of virtually-contiguous STags.
Physically-contiguous STag do not require any PBLs and store physical address of the first page of
the STag directly with the STag (No leaf PBL). Virtually-contiguous STags that can be represented
with a single HMC virtually-contiguous address range require a single level PBL of Variable size.
Virtually-contiguous STags that are large (or in cases where the HMC address space for PBLs
becomes fragmented) might require two level PBLs. In this case, the E810 needs to know the
length of the leaf PBLs to properly manage access to the PBLs. The valid settings for Leaf_PBL_Size
are the following:

Memory_Region (1 bit)

Value Description

00001b Enable local read

00010b Enable local write

00100b Enable remote read

01000b Enable remote write

10000b Enable window bind

Note: All other values are reserved.

Value Description

00b 4 KB pages

01b 2 MB pages

10b 1 GB pages

11b Reserved

Value Description

00b No leaf PBL

01b Variable (one level)

10b 256 bytes (two level)

11b 4 KB (two level)

Value Description

0b The entry describes a memory window.

1b The entry describes a memory region.

613875-009 1649

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Memory_Window_Type (1 bit)

Valid only if Memory_Region is clear (0b) indicating a memory window.

Note: Type 1 Windows are not valid for iWARP.

MW1_bind_dont_vldt_key (1 bit)

Specifies whether the consumer key is validated on a bind of a Type 1 memory window. This bit is
valid only if this is an Allocate of a Type 1 Memory Window.

first_pm_pbl_index (28 bits)

Designates the HMC base address for the PBLs for this STag.

Table 11-29 shows the WQE fields that are valid for the STag management WQEs. Fields that are
marked as not valid are ignored by the E810.

Value Description

0b The entry describes a Type 2 memory window.

1b The entry describes a Type 1 memory window (sometimes called a wide window).

Value Description

0b The consumer key is validated before being updated.

1b The consumer key is not validated before being updated.

Table 11-29. WQE Fields Valid for Allocate/Register/Registershared/Deallocate STAG

WQE Field Allocate Register Register
Shared Deallocate Comments

Memory_Region Valid Valid Not Valid Valid

VA_Based_TO Not Valid Valid Valid Not Valid

Leaf_PBL_Size Valid if MR=1 Valid Not Valid Not Valid

Access_Rights Not Valid Valid Valid Not Valid

Remote_Access_Enabled Valid Valid Valid Not Valid

PD_ID Valid Valid Valid Valid

Driver_Key_STAG_Index Valid Valid Valid Valid

Parent_STAG_Index Not Valid Not Valid Valid Not Valid

Consumer_Key Not Valid Valid Valid Not Valid
Host software is expected to validate the
consumer key on a deallocate and on
register shared.

Base_VA_or_First_Buffer
_Offset Not Valid Valid Valid if

VA_Based_TO=1 Not Valid

Physical_Buffer_Address Not Valid Valid Not Valid Not Valid

first_pm_pbl_index Valid Valid Not Valid Not Valid

STag_Length Valid if MR=1 Valid Not Valid Not Valid

Host_Page_Size Valid Valid Not Valid Not Valid

use_hmc_fcn_index Valid Valid Valid Valid This field is ignored (assumed to be 0b)
for VFs.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1650 613875-009

11.5.3.5 Query STag Descriptor Format

WQE returns the STag value and current state of an STag (valid or invalid) and the consumer key in the
completion for the WQE. See Table 11-19 for information on CQP completion codes that indicate the
STag state. The full STag value is returned in the Operation_Return_Value. Note that the error bit in the
CQE should be ignored for query STag operations.

OP (6 bits) and WQE_Valid (1 bits)

See Section 11.5.3.1.

STag_Index (22 bits)

STag_Index specifies the index of the STag to be queried.

use_hmc_fcn_index (1 bit)

Only valid when issued to a PF CQP instance. Ignored (treated as if set to 0b) for VF CQP instances.

hmc_fcn_index (6 bits)

Only valid when issued to a PF CQP instance and use_hmc_fcn_index is set to 1b. Ignored
otherwise.

hmc_fcn_index Valid Valid Valid Valid Only used when use_hmc_fcn_index is 1b.

Memory_Window_Type Valid Not Valid Not Valid Not Valid

Table 11-30. CQP Query STag WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:30]
[29:8]

RSVD
STag_Index

[7:0] RSVD

24

[63]
[62:61]
[60]
[59:42]

WQE_Valid
RSVD
use_hmc_fcn_index1

RSVD

1. This field is only valid for PF operations and is treated as 0b for VFs.

[41:38]
[37:32]
[31:0]

RSVD (AdditionalFragmentCount)
OP
RSVD

32 [63:0] RSVD

40 [63:6] RSVD [5:0] hmc_fcn_index1

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b The HMC function index is determined by the PCI function associated with the PCI function that issues the CQP
operation.

1b hmc_fcn_index can be set to a HMC function index that is a VF associated with the PF associated with the CQP
instance used to issue the command.

Table 11-29. WQE Fields Valid for Allocate/Register/Registershared/Deallocate STAG

WQE Field Allocate Register Register
Shared Deallocate Comments

613875-009 1651

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.6 Manage ARP Table Descriptor Format

This WQE format is used to manage the E810’s ARP table. An ARP table entry must be created before a
QP can be transitioned to RTS or established since the QP context references an ARP table entry.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

ARP_Entry_Index (16 bits)

ARP_Entry_Index specifies the index of the ARP table entry to be manipulated.

Permanent (1 bit)

Query (1 bit)

Entry_Valid (1 bit)

Note: The lower 32 bits of the AE generated when an ARP entry is stale contain the timestamp
value from the ARP table entry.

Table 11-31. Manage ARP Table WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:32] RSVD [31:0] Reachability_Max

16 [63:48] RSVD [47:0] MAC_Address

24

[63]
[62:45]
[44]
[43]
[42}

WQE_Valid
RSVD
Query
Permanent
Entry_Valid

[41:38]
[37:32]
[31:16]
[15:0]

RSVD (AdditionalFragmentCount)
OP
RSVD
ARP_Entry_Index

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b The entry is created in the reachable state and is aged.

1b The ARP entry is marked as permanent and is not aged.

Value Description

0b The ARP entry is written according to the specified parameters.

1b The ARP entry is not written. Instead, the entry is read and the reachability timestamp from the ARP entry is
returned in the Operation_Return_Value field of the CQE.

Value Description

0b The ARP entry is set to the invalid state.

1b The ARP entry is set to the valid state.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1652 613875-009

Reachability_Max (32 bits)

The maximum number of microseconds that should be allowed to expire before generating a doubt
neighbor reachability AEQE. Doubt neighbor reachability AEs indicate that there has been TCP/IP
transmits outstanding for Reachability_Max without receiving any inbound traffic from the
associated neighbor. To receive subsequent doubt neighbor reachability AEs, a manage ARP table
WQE must be re-submitted to CQP with query clear (0b) and all original information supplied when
the ARP entry was last updated.

MAC_Address (48 bits)

MAC Address to be placed in the ARP cache table.

11.5.3.7 Manage VF PBLE Backing Pages Descriptor Format

The Manage VF PBLE Backing Pages Descriptor is used to populate and depopulate VF related HMC page
descriptor content. A VF that allocates the PBLE HMC object backing pages can request CQP to copy the
page list associated with the backing pages to the PF driver allocated page descriptor pages. A VF might
also request CQP to invalidate VF related page descriptor entries. This operation reduces the number of
VF to PF messages required to populate the VF related HMC PBLE object backing pages.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

Invalidate_PD_Entries (1 bit)

PD_Entry_Count (10 bits)

This field indicates the number of PD entries to be populated or invalidated. Valid values for this
field are 1 through 512. Other values generate completion errors for the CQP operation.
PD_Entry_Count + First_PD_Index must not exceed 512 or a completion error is generated.

Table 11-32. CQP Manage VF PBLE Backing Pages WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16
[63:44]
[43:32]
[31:25]

RSVD
SD_Index
RSVD

[24:16]
[15:10]
[9:0]

First_PD_Index
RSVD
PD_Entry_Count

24
[63]
[62]
[61:42]

WQE_Valid
Invalidate_PD_Entries
RSVD

[41:38]
[37:32]
[31:0]

RSVD (AdditionalFragmentCount)
OP
RSVD

32 [63:3] PD_Pagelist_Physical_Buffer_Address [2:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b VF PD entries are copied from VF address space to the PF allocated PDs.

1b The PF allocated PDs are invalidated.

613875-009 1653

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

First_PD_Index (9 bits)

This field indicates the starting index of the PD page. SD_Index identifies the PD page, and
First_PD_Index provides the offset into the PD page that is the destination of the CQP operation. If
the PD entries associated with the SD_Index and First_PD_Index are not related to a PBLE object, a
completion error is generated by CQP for this operation.

SD_Index (12 bits)

This field indicates the SD index that identifies the PD page. The SD entries are in no way modified.
If the SD is not related to a PBLE object, then CQP returns a completion error.

PD_Pagelist_Physical_Buffer_Address (61 bits)

If Invalidate_PD_Entries is clear, this field indicates the 8-byte aligned physical address of the
packing page list to be copied to the PD page. This address is a guest physical address. Host
software is responsible to properly set the fields of the PD page list entries previous to issuing the
request to CQP.

11.5.3.8 Manage Push Page Descriptor Format

The Manage Push Page Descriptor is used to assign a push page from BAR0 to a VSI and TC. For an
allocate operation, the push page index assigned by CQP is returned in the Operation_Return_Value of
the CQE associated with the WQE. For VFs, the push page index is function relative. When
GLPE_PSHCFG.PSHCFG_DB_SPLIT is set, two pages (one for doorbells and one for push WQEs) are
represented by push page index instead of one.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

Free_Page (1 bit)

Table 11-33. CQP Manage Push Page WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:10] RSVD [9:0] QS_Handle

24

[63]
[62]
[61:60]
[59:42]

WQE_Valid
Free_Page
Push_Page_Type
RSVD

[41:38]
[37:32]
[31:10]
[9:0]

RSVD (AdditionalFragmentCount)
OP
RSVD
Push_Page_Index

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b A push page is allocated for the VSI and TC specified by QS_Handle.

1b The push page specified by Push_Page_Index is freed.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1654 613875-009

Push_Page_Index (10 bits)

Only valid when Free_Page is set (1b). Identifies the push page to be freed. For VFs, the push page
index is function relative.

QS_Handle (10 bits)

Identifies the QS handle associated with the push page. See Section 8.3.3.4 for more information
on scheduler configuration.

Push_Page_Type (2 bits)

The userspace DB alias page is a way to re-map the doorbell page intended for containers.

11.5.3.9 Upload Context Descriptor Format

Upload Context is used by host software to freeze a QPs state and upload the context to the host.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

QP_ID (18 bits)

Identifies the QP number be uploaded to host memory.

QP_Type (3 bits)

Value Description

00b Push page.

01b Userspace DB alias page (experimental).

Note: All other values are reserved.

Table 11-34. CQP Upload Context WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] QP_Context_Address

24

[63]
[62]
[61:51]
[50:48]
[47:42]

WQE_Valid
Freeze_QP
RSVD
QP_Type
RSVD

[41:38]
[37:32]
[31:18]
[17:0]

RSVD (AdditionalFragmentCount)
OP
RSVD
QP_ID

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

001b iWARP

010b UDA

613875-009 1655

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Freeze_QP (1 bit)

QP_Context_Address (64 bits)

A physically-mapped pointer in host memory that contains uploaded context structure format listed
in Table 11-35. This buffer must be aligned to a multiple of four bytes.

hw_sq_tail

This is the 32-byte WQE quanta index of the first unacknowledged WQE for the SQ. There is not
a CQE generated for this WQE.

011b RoCEv2 RC

100b RoCEv2 UD

Note: All other values are reserved.

Value Description

0b The QP continues processing normally after the snapshot of the context has been returned.

1b The QP is frozen before the context is retrieved.

Table 11-35. Uploaded Context Structure Format (iWARP/UDA)

Byte
Offset [Bit Range] Field Name

0
[63:56]
[55:48]
[47:8]

RSVD
kalive_timer_probes
RSVD

[7:4]
[3:0]

RDMA_state
TCP_state

8 [63:32] timestamp_page [31:0] timestamp_recent

16 [63:32] snd_wnd [31:0] snd_nxt

24 [63:32] rcv_wnd [31:0] rcv_nxt

32 [63:32] snd_una [31:0] snd_max

40 [63:32] rtt_var [31:0] srtt

48 [63:32] cwnd [31:0] ss_thresh

56 [63:32] snd_wl2 [31:0] snd_wl1

64 [63:54]
[53:48]

RSVD
rexmit_count

[47:32]
[31:0]

RSVD
max_snd_window

72

[63:47]
[46:32]
[31]
[30:27]

RSVD
hw_sq_tail
q1_wa
RSVD

[26:24]
[23:16]
[15:0]

dupacks
probe_cnt
RSVD

80 [63:14] RSVD [13:0] hw_rq_tail

88 [63:0] RSVD

96 [63:0] RSVD

104 [63:0] RSVD

112 [63:0] RSVD

120 [63:0] RSVD

Value Description

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1656 613875-009

hw_rq_tail

This is the 32-byte WQE quanta index of the first incomplete WQE for the RQ. There is not a
CQE generated for this WQE.

q1_wa

This value is set (1b) if Q1 (or inbound RDMA read queue) work is pending when the context
was uploaded. The value is clear (0b) if no Q1 work was pending when the context was
uploaded.

kalive_timer_probes

The number of retransmits that have been sent (RFC 1122).

Note: Note: Refer to Section 11.6.2 for more on context variable definitions.

Table 11-36. Uploaded Context Structure Format (RoCEv2)

Byte
Offset [Bit Range] Field Name

0
[63:21]
[20:16]
[15:8]

RSVD
ack_credits
RSVD

[7:6]
[5:3]
[2:0]

dctcp_state
RoceStateRx
RoceStateTx

8 [63:60]
[59:32]

RSVD
Xmit_tail

[31:28]
[27:0]

RSVD
Q1_tail

16 [63:60]
[59:32]

RSVD
rdrresp_tail

[31:0] RSVD

24 [63:56]
[39:32]

RSVD
psn_una

[31:24]
[23:0]

RSVD
ssn_una

32 [63:56]
[55:32]

RSVD
psn_nxt

[31:0] RSVD

40 [63:32] rtt_var [31:0] srtt

48 [63:32] cwnd [31:0] RSVD

56 [63:0] RSVD

64 [63:54]
[53:48]

RSVD
rexmit_count

[47:0] RSVD

72
[63:47]
[46:32]
[31]

RSVD
SQ_tail
SQ_WA

[30:24]
[23:16]
[15:0]

RSVD
probe_cnt
RSVD

80 [63:14] RSVD [13:0] RQ_tail

88 [63:0] RSVD

96 [63:0] RSVD

104 [63:0] RSVD

112 [63:0] RSVD

120 [63:0] RSVD

613875-009 1657

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.10 Manage HMC PM Function Table

The Manage HMC PM Function Table is used to allocate and free HMC private memory functions for VFs
associated with a PF. This WQE is only supported for PF CQPs. For allocate operations
(Free_PM_FCN=0b), the HMC function index is reported in the Operation_Return_Value field of the CQE
associated with this WQE if the operation is successful.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

Free_PM_FCN (1 bit)

VF_Index (8 bits)

VF_Index indicates the PCI VF index to be used for the allocation or free request.

Table 11-37. CQP Manage HMC PM Function Table WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24
[63]
[62]
[61:38]

WQE_Valid
Free_PM_FCN
RSVD

[37:32]
[31:8]
[7:0]

OP
RSVD
VF_Index

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b The E810 attempts to allocate a PM function for the VF specified in VF_Index.

1b The E810 frees the PM function specified in VF_index.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1658 613875-009

11.5.3.11 Create/Destroy CEQ Descriptor Format

Host software uses the following structure to manage CEQs through the control QP. CEQs are comprised
of a packed array of CEQ entries (see Section 11.4.5) that are managed as a circular queue. They can
be either virtually- or physically-contiguous memory buffers. When MSI-X is enabled, each CEQ might
be assigned to independent MSI-X vectors to enable distribution of completion event processing across
multiple CPUs. Application’s process and MSI-X vector assignment capabilities and mechanisms are
specific to each operating system.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

CEQ_ID (10 bits)

CEQ_ID specifies the CEQ to manipulated.

TPH_en (1 bit)

TPH_Value (8 bits)

If TPH_en is set (1b), TPH STag is initialized with TPH_Value. If TPH_en is clear (0b), this field is
ignored.

VSI_Index (10 bits)

The VSI index for the CEQ. Only defined for Create CEQ. It is ignored on Destroy CEQ.

first_pm_pbl_index (28 bits)

Points to the first HMC FPM space PBLE index for the page table. Host software is responsible for
populating the PBLEs with the page list associated with the object before using the object.

Table 11-38. CQP Create/Destroy CEQ WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:18] RSVD [17:0] ceq_size

24

[63]
[62:61]
[60]
[59:48]
[47]
[46]

WQE_Valid
RSVD
TPH_en
RSVD
Virtually_Mapped
itr_no_expire

[45:44]
[43:42]
[41:38]
[37:32]
[31:10]
[9:0]

Leaf_PBL_Size
RSVD
RSVD (AdditionalFragmentCount)
OP
RSVD
CEQ_ID

32 [63:8] Physical_Buffer_Address [7:0] RSVD

40 [63:0] RSVD

48 [63:28] RSVD [27:0] first_pm_pbl_index

56 [63:18]
[17:8]

RSVD
VSI_Index

[7:0] TPH_Value

Value Description

0b THP is not used for this resource.

1b TPH is enabled for this resource.

613875-009 1659

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Leaf_PBL_Size (2 bits)

See Section 11.4.1.4.1 for more details on usage of two level PBLs.

Virtually_Mapped (1 bit)

The CEQ buffer must be aligned to a multiple of 4 KB in host memory when virtually mapped is set.

itr_no_expire (1 bit)

Physical_Buffer_Address (56 bits)

If Virtually_Mapped is set to 0b, this field specifies the physical buffer address associated with the
queue in host memory. If Virtually_Mapped is set to 1b, this field is ignored by the E810. This
address must be aligned to a 256-byte boundary.

ceq_size (18 bits)

The number of CEQEs allowed on the CEQ. Note that the actual number of concurrent CEQEs that
can be allocated to the CEQ is ceq_size -1. 0 and 1 are invalid sizes for a CEQ.

Value Description

00b Reserved

01b Variable (one level)

10b 256 bytes (two level)

11b 4 KB (two level)

Value Description

0b Physical_Buffer_Address is the physical address of the physically-contiguous CEQ ring buffer.

1b The CEQ is virtually-mapped, and first_pm_pbl_index is the index of the PBLE HMC object of the PBL to use for
mapping the virtually-contiguous CEQ.

Value Description

0b There is a short delay before a CEQE is written and the interrupt is issued (if enabled).

1b The CEQE is written and the interrupt (if enabled) occurs immediately.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1660 613875-009

11.5.3.12 Create/Destroy AEQ Descriptor Format

Host software uses the following structure to manage AEQs through the control QP. AEQs are comprised
of a packed array of AEQ entries (see Section 11.4.6) that are managed as a circular queue. They can
be either virtually- or physically-contiguous memory buffers.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

first_pm_pbl_index (28 bits)

Points to the first HMC FPM space PBLE index for the page table. Host software is responsible for
populating the PBLEs with the page list associated with the object before using the object.

Leaf_PBL_Size (2 bits)

See Section 11.4.1.4.1 for more details on usage of two level PBLs.

Virtually_Mapped (1 bit)

The AEQ buffer must be aligned to a multiple of 4 KB in host memory when virtually mapped is set.

Table 11-39. CQP Create/Destroy AEQ WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:19] RSVD [18:0] AEQE_Count

24

[63]
[62:48]
[47]
[46]
[45:44]

WQE_Valid
RSVD
Virtually_Mapped
RSVD
Leaf_PBL_Size

[43:42]
[41:38]
[37:32]
[31:0]

RSVD
RSVD (AdditionalFragmentCount)
OP
RSVD

32 [63:8] Physical_Buffer_Address [7:0] RSVD

40 [63:0] RSVD

48 [63:28] RSVD [27:0] first_pm_pbl_index

56 [63:0] RSVD

Value Description

00b Reserved

01b Variable (one level)

10b 256 bytes (two level)

11b 4 KB (two level)

Value Description

0b Physical_Buffer_Address is the physical address of the physically-contiguous AEQ ring buffer.

1b The AEQ is virtually-mapped, and first_pm_pbl_index is the index of the PBLE HMC object of the PBL to use for
mapping the virtually-contiguous AEQ.

613875-009 1661

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Physical_Buffer_Address (56 bits)

If Virtually_Mapped is set to 0b, this field specifies the physical buffer address associated with the
queue in host memory. If Virtually_Mapped is set to 1b, this field is ignored by the E810. This
address must be aligned to a 256-byte boundary.

AEQE_Count (19 bits)

The number of AEQEs allowed on the AEQ. Note that the actual number of concurrent AEQEs that
can be allocated to the AEQ is AEQE_Count -1. 0 and 1 are invalid sizes for an AEQ.

11.5.3.13 Create/Modify/Destroy Address Handle Descriptor
Format

Host software uses following structure to create, modify or destroy address handle. Address Handle is
used by UDA and RoCEv2 UD traffic to allow protected Ethernet and IP Headers generation by
hardware, while ULP headers (such as UDP) and datagram payload is provided directly by the
application or the software library running in the application address space. Address Handle in
conjunction with UDA Queue context carries all information necessary for the header generation.

Internal switching capabilities within the same VSI are controlled using the DoLoopback bit in Address
Handle. Physical Function driver might need to Modify Address Handle to set or clear this bit at runtime
using the Modify Address Handle CQP command, depending on the changes in configuration. For
example, UDA and OS consumers subscribed or unsubscribed from the multicast group.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

Table 11-40. CQP Create/Modify/Destroy Address Handle WQE Format

Byte
Offset [Bit Range] Field Name

0

[63:56]
[55:48]
[47:40]
[39:32]

Src_MAC_Address[5]
Src_MAC_Address[4]
Src_MAC_Address[3]
Src_MAC_Address[2]

[31:24]
[23:16]
[15:0]

Src_MAC_Address[1]
Src_MAC_Address[0]
RSVD

8
[63:48]
[47:40]
[39:32]

PD_Index
RSVD
Traffic_Class_or_TOS

[31:16]
[15:0]

RSVD
VLAN_Tag

16
[63:48]
[47:40]
[39:32]

ARP_Index
RSVD
Hop_Limit_or_TTL

[31:22]
[21:20]
[19:0]

RSVD
pd_indexd_high
Flow_Label

24

[63]
[62]
[61]
[60]
[59]

WQE_Valid
DoLoopback
RSVD
Insert_VLAN_Tag
IPv4_Valid

[58:42]
[41:38]
[37:32]
[31:17]
[16:0]

RSVD
RSVD (AdditionalFragmentCount)
OP
RSVD
AH_ID

32 [63:32] Dest_IP_Address_2 [31:0] Dest_IP_Address_3

40 [63:32] Dest_IP_Address_0 [31:0] Dest_IP_Address_1

48 [63:32] Src_IP_Address_2 [31:0] Src_IP_Address_3

56 [63:32] Src_IP_Address_0 [31:0] Src_IP_Address_1

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1662 613875-009

IPv4_Valid (1 bit)

DoLoopback (1 bit)

AH_ID (17 bits)

Index of Address Handle as allocated by software. This index together with HMC configuration for
the PCI function identifies location of the hardware Address Handle structure in the host memory.

Traffic_Class_or_TOS (8 bits)

This field specifies the IPv4 Type of Service bits (RFC 2474). If these bits represent the IPv4 TOS
bits, only the lower 4-bits are valid. These bits are set by software when the address handle is
created and transmitted in the IP header of all sent datagrams for this address handle.

Hop_Limit_or_TTL (8 bits)

This field specifies the IPv4 Time-To-Live (TTL) parameter in the IP header (RFC 791). It is
initialized by the software.

Dest_IP_Address_0 (32 bits)

This field specifies bits 127 through 96 of the IPv6 IP Address. Reserved when IPv4_Valid is set
(1b). The most significant byte of this field (Bits 31:24) is the first byte on the wire for this field.

Dest_IP_Address_1 (32 bits)

This field specifies bits 95 through 64 of the IPv6 IP Address. Reserved when IPv4_Valid is set (1b).

Dest_IP_Address_2 (32 bits)

This field specifies bits 63 through 32 of the IPv6 IP Address. Reserved when IPv4_Valid is set (1b).

Dest_IP_Address_3 (32 bits)

This field specifies the 32-bit IPv4 IP Address (see RFC 791) or the least significant 32-bits of the
IPv6 IP Address. The least significant byte of this field (Bits 7:0) is the last byte on the wire for this
field.

Src_IP_Address_0 (32 bits)

This field specifies bits 127 through 96 of the IPv6 IP Address. Reserved when IPv4_Valid is set
(1b). The most significant byte of this field (Bits 31:24) is the first byte on the wire for this field.

Src_IP_Address_1 (32 bits)

This field specifies bits 95 through 64 of the IPv6 IP Address. Reserved when IPv4_Valid is set (1b).

Src_IP_Address_2 (32 bits)

This field specifies bits 63 through 32 of the IPv6 IP Address. Reserved when IPv4_Valid is set (1b).

Value Description

0b Dest_IP_Address is an IPv6 IP Address.

1b Dest_IP_Address is an IPv4 IP Address.

Value Description

0b Multicast and unicast packets generated using this Address Handle should not be internally switched within
same VSI. Internal switching rules between VSIs are based on the switch configuration.

1b All unicast UDA packets generated using this Address Handle should be internally switched within VSI. All
multicast UDA packets should be both sent to the external port, and internally switched within same VSI.

613875-009 1663

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Src_IP_Address_3 (32 bits)

This field specifies the 32-bit IPv4 IP Address (see RFC 791) or the least significant 32-bits of the
IPv6 IP Address. The least significant byte of this field (Bits 7:0) is the last byte on the wire for this
field.

Src_MAC_Address[5-0] (8 bits each)

Specifies the MAC Address associated with the source IP Address. Index 0 is the LSB and byte 5 is
the MSB.

ARP_Index (16 bits)

Index into the ARP cache to specify the Ethernet MAC Address to use for this connection. Initialized
by software during connection establishment. Allows access to the entry ARP table. There are no
reserved index values. This field is valid for unicast destination MAC Addresses only. Multicast MAC
Address is calculated by hardware based on the destination IP Address.

Flow_Label (20 bits)

Flow Label field of IPv6 header.

PD_Index (16 bits) and pd_index_high (2 bits)

Protection Domain for this address handle. This specifies which one of the 256K protection domains
this address handle belongs too. There are no reserved index values.

Insert_VLAN_Tag (1 bit)

This bit is set to enable VLAN processing on a connection. The tag configured in the VLAN_Tag field
is used for all processing. If this bit is clear (0b), there is no VLAN insertion or removal performed
by the Protocol Engine. Additional VLAN and priority setting can be configured through the VSI
associated with the QP. The most significant portion of the VLAN tag carries the user-specified
priority.

VLAN_Tag (16 bits)

Specifies one of the 4096 VLAN tags for this connection, Three bits of priority and one bit canonical
format. All bits are valid. The VLAN is in the lower 12 bits of the VLAN Tag field. The upper three bits
are priority.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1664 613875-009

11.5.3.14 Update PE SDs Descriptor Format

This WQE is used to program HMC segment descriptors (SDs) associated with PE-enabled PCI functions.
CQP ensures that PFs only access HMC functions that belong to the PF at the time of issues the CQP
request. PFs can access its own SDs or SDs of RDMA-enabled VFs that belong to the PF. Accesses to
other HMC functions are denied and generate a completion error. This operation is restricted to PF CQP
operations.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

HMC_FCN_ID (6 bits)

This field specifies the HMC function ID for the FPM settings to be queried. For PFs, the
HMC_FCN_ID is strictly the PF index. For VFs, the HMC function ID was returned from the manage
HMC PM function CQP operation.

SD_CMDn (32 bits)

Table 11-41. CQP Update PE SDs WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:32] RSVD [31:0] SDCMD0

8 [63:32] SDDATAHIGH0 [31:0] SDDATALOW0

16 [63:7]
[6]

SD_Buffer_Address
RSVD

[5:0] HMC_FCN_ID (PF only)

24

[63]
[62:42]
[41:38]
[37:32]

WQE_Valid
RSVD
RSVD (AdditionalFragmentCount)
OP

[31:8]
[7]
[6:4]
[3:0]

RSVD
SKIP_SD_ENTRY_0
RSVD
SD_ENTRY_COUNT

32 [63]
[62:32]

SD_ENTRY_VALID1
RSVD

[31:0] SDCMD1

40 [63:32] SDDATAHIGH1 [31:0] SDDATALOW1

48 [63]
[62:32]

SD_ENTRY_VALID2
RSVD

[31:0] SDCMD2

56 [63:32] SDDATAHIGH2 [31:0] SDDATALOW2

Table 11-42. SD_CMD Format

Byte
Offset [Bit Range] Field Name Description

0
[32:12] RSVD Reserved.

[11:0] PMSDIDX Index of the HMC Segment Descriptor.

613875-009 1665

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

SD_DATA_LOWn (32 bits)

SD_DATA_HIGHn (32 bits)

SD_ENTRY_VALIDn (1 bit)

Indicates the SDCMD and DATA information is used to update additional SD entries.

SKIP_SD_ENTRY_0 (1 bit)

Indicates SD_CMD0, SD_DATA_LOW/HIGH0 are to be ignored. This is typically useful only if all the
SD updates are specified in the update SD host memory structure instead of this WQE.

SD_Buffer_Address (57 bits)

Most significant address bits of the physical address of the update SD host memory structure (listed
in Table 11-45). This structure is used to provide additional SD updates. This host memory is only
accessed if SD_ENTRY_COUNT is not equal to 0b. The number of entries used from the update SD
host memory structure is indicated by SD_ENTRY_COUNT.

SD_ENTRY_COUNT (4 bits)

Indicates the number of contiguous (starting with SDCMD3) SD updates found in the update SD
host memory structure.

Table 11-43. SD_DATA_LOW Format

Byte
Offset [Bit Range] Field Name Description

0

[32:12] PMSDDATALOW Bits 31-12 of the segment descriptor.

[11:2] PMSDBPCOUNT When PMSDTYPE is 0, this field has the number of Page Descriptors in this SD.

[1] PMSDTYPE 0b = SD points to a page of 512 Page Descriptors.
1b = SD has the physical address of a physically contiguous region.

[0] PMSDVALID Marks the segment descriptor as valid or invalid.

Table 11-44. SD_DATA_HIGH Format

Byte
Offset [Bit Range] Field Name Description

0 [32:0] PMSDDATAHIGH Most significant 32 bits of a segment descriptor.

Table 11-45. Update SD Host Memory Structure

Byte
Offset [Bit Range] Field Name

0 [63:32] RSVD [31:0] SDCMD3

8 [63:32] SDDATAHIGH3 [31:0] SDDATALOW3

16 [63:32] RSVD [31:0] SDCMD4

24 [63:32] SDDATAHIGH4 [31:0] SDDATALOW4

32 [63:32] RSVD [31:0] SDCMD5

40 [63:32] SDDATAHIGH5 [31:0] SDDATALOW5

48 [63:32] RSVD [31:0] SDCMD6

56 [63:32] SDDATAHIGH6 [31:0] SDDATALOW6

64 [63:32] RSVD [31:0] SDCMD7

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1666 613875-009

11.5.3.15 Query FPM Values Descriptor Format

This WQE is used to query the FPM configuration for the PE portion of the HMC objects. The query FPM
values command is used to trigger firmware to return the FPM base registers based on the previous
software settings or default values.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

HMC_FCN_ID (6 bits)

This field specifies the HMC function ID for the FPM settings to be queried. For PFs, the
HMC_FCN_ID is strictly the PF index. For VFs, the HMC function ID was returned from the manage
HMC PM function CQP operation. If a CQP instance associated with a VF submits this operation, this
field is ignored and the HMC_FCN_ID is determined by firmware.

Physical_Buffer_Address (62 bits)

This field specifies the physical address of the buffer that firmware fills with the object maximum
counts and the object size values.

72 [63:32] SDDATAHIGH7 [31:0] SDDATALOW7

80 [63:32] RSVD [31:0] SDCMD8

88 [63:32] SDDATAHIGH8 [31:0] SDDATALOW8

96 [63:32] RSVD [31:0] SDCMD9

104 [63:32] SDDATAHIGH9 [31:0] SDDATALOW9

112 [63:32] RSVD [31:0] SDCMD10

120 [63:32] SDDATAHIGH10 [31:0] SDDATALOW10

Table 11-46. CQP Query FPM Values WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:6] RSVD [5:0] HMC_FCN_ID (PF only)

24
[63]
[62:42]
[41:38]

WQE_Valid
RSVD
RSVD (AdditionalFragmentCount)

[37:32]
[31:0]

OP
RSVD

32 [63:2] Physical_Buffer_Address [1:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Table 11-45. Update SD Host Memory Structure [continued]

Byte
Offset [Bit Range] Field Name

613875-009 1667

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

first_pe_sd_index (14 bits)

This field specifies the function relative starting HMC segment descriptor index for PE resources.

max_pe_sds (13 bits)

This field specifies the maximum number of PE SDs allowed for the HMC function.

max_qps (19 bits)

This field specifies the maximum number of PE QPs allowed for the HMC function.

max_cqs (20 bits)

This field specifies the maximum number of PE CQs allowed for the HMC function.

max_ceqs (10 bits)

This field specifies the maximum number of PE CEQs allowed for the HMC function.

Table 11-47. FPM Query Configuration Structure Format

Byte
Offset [Bit Range] Field Name

0 [63:45]
[44:32]

RSVD
max_pe_sds

[31:14]
[13:0]

RSVD
first_pe_sd_index

8 [63:32]
[31:19]

GLHMC_PEQPOBJSZ
RSVD

[18:0] max_qps

16 [63:32]
[31:20]

GLHMC_PECQOBJSZ
RSVD

[19:0] max_cqs

24 [63:0] RSVD

32 [63:32] GLHMC_PEHTEOBJSZ [31:0] GLHMC_PEHTMAX

40 [63:32] GLHMC_PEARPOBJSZ [31:0] GLHMC_PEARPMAX

48 [63:32] GLHMC_PEMROBJSZ [31:0] GLHMC_PEMRMAX

56 [63:32] GLHMC_PEXFOBJSZ [31:0] GLHMC_PEXFMAX

64 [63:32] XFBLOCKSIZE [31:0] GLHMC_PEXFFLMAX

72 [63:32] GLHMC_PEQ1OBJSZ [31:0] GLHMC_PEQ1MAX

80 [63:32] Q1BLOCKSIZE [31:0] GLHMC_PEQ1FLMAX

88 [63:32] GLHMC_PETIMEROBJSZ [31:0] GLHMC_PETIMERMAX

96 [63:32] GLHMC_FSIMCOBJSZ [31:0] GLHMC_FSIMCMAX

104 [63:32] GLHMC_FSIAVOBJSZ [31:0] GLHMC_FSIAVMAX

112 [63:32] RSVD [31:0] GLHMC_PEPBLMAX

120
[63:48]
[47:32]
[31:20]

RSVD
TIMERBUCKETCNT
RSVD

[19:16]
[15:10]
[9:0]

HTMULTIPLIER
RSVD
max_ceqs

128 [63:32] GLHMC_PERRFOBJSZ [31:0] GLHMC_PERRFMAX

136 [63:32] RRFBLOCKSIZE [31:0] GLHMC_PERRFFLMAX

144 [63:32] GLHMC_PEHDROBJSZ [31:0] GLHMC_PEHDRMAX

152 [63:32] GLHMC_PEMDOBJSZ [31:0] GLHMC_PEMDMAX

160 [63:32] GLHMC_PEOOISCOBJSZ [31:0] GLHMC_PEOOISCMAX

168 [63:32] OOISCFBLOCKSIZE [31:0] GLHMC_PEOOISCFFLMAX

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1668 613875-009

XFBLOCKSIZE (32 bits)

This field specifies the number of transmit FIFO entries per transmit FIFO free list entry. This
field is used to determine how much space is consumed for transmit FIFO free list entries. The
number of transmit FIFO free list entries is calculated with the following equation:

number of transmit FIFO entries / XFBLOCKSIZE

Q1BLOCKSIZE (32 bits)

This field specifies the number of Q1 FIFO entries per Q1 FIFO free list entry. This field is used
to determine how much space is consumed for Q1 free list entries. The number of Q1 free list
entries is calculated with the following equation:

number of Q1 entries / Q1BLOCKSIZE

HTMULTIPLIER (4 bits)

This field specifies the number of hash filter bucket entries per QP. This field is used to
determine how much space is consumed for hash filter entries. The number of hash entries is
calculated with the following equation:

(round_up_512 (number of QPs + number of Multicast Groups) rounded up to the next
power of two) * HTMULTIPLIER

TIMERBUCKETCNT (16 bits)

This field specifies the number of timer buckets. This field is used to determine how much space
is consumed for timers. The number of timer entries is calculated with the following equation:

(round_up_512 (number of QPs) / 512 + 1) * TIMERBUCKETCNT

The remaining fields are register values from the HMC function specified by HMC_FCN_ID or the
VF index.

RRFBLOCKSIZE (32 bits)

This field specifies the number of Read Response FIFO entries per Read Response FIFO free list
entry. This field is used to determine how much space is consumed for Read Response FIFO free
list entries. The number of Read Response FIFO free list entries is calculated with the following
equation:

number of Read Response FIFO entries / RRFBLOCKSIZE

OOISCFBLOCKSIZE (32 bits)

This field specifies the number of Out of Order Send Completion FIFO entries per Out of Order
Send Completion FIFO free list entry. This field is used to determine how much space is
consumed for Out of Order Send Completion FIFO free list entries. The number of Out of Order
Send Completion FIFO free list entries is calculated with the following equation:

number of Out of Order Send Completion FIFO entries / OOISCFBLOCKSIZE

613875-009 1669

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.16 Commit FPM Values Descriptor Format

This WQE is used to commit the FPM configuration for the PE portion of the HMC objects. The Commit
FPM Values command is used to trigger firmware to calculate the FPM base registers based on the
software settings.

The Commit FPM Values operation can be applied only once per function. Subsequent uses of this
operation for the same function fail with an Invalid State CQP return code. However, the existing values
for the function are returned as output in the buffer.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

HMC_FCN_ID (6 bits)

This field specifies the HMC function ID for the FPM settings to be programmed. For PFs, the
HMC_FCN_ID is strictly the PF index. For VFs, the HMC function ID was returned from the manage
HMC PM function CQP operation. If a CQP instance associated with a VF submits this operation, this
field is ignored and the HMC_FCN_ID is determined by firmware.

Physical_Buffer_Address (62 bits)

This field specifies the most significant bits of the physical address of the buffer that firmware uses
to configure the object maximum counts and the object size values. The buffer described must be
aligned to a 4-byte aligned boundary.

Table 11-48. CQP Commit FPM Values WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:6] RSVD [5:0] HMC_FCN_ID (PF only)

24
[63]
[62:42]
[41:38]

WQE_Valid
RSVD
RSVD (AdditionalFragmentCount)

[37:32]
[31:0]

OP
RSVD

32 [63:2] Physical_Buffer_Address [1:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Table 11-49. FPM Commit Configuration Structure Format

Byte
Offset [Bit Range] Field Name

0 [63:32]
[31:19]

GLHMC_PEQPBASE
RSVD

[18:0] GLHMC_PEQPCNT

8 [63:32]
[31:20]

GLHMC_PECQBASE
RSVD

[19:0] GLHMC_PECQCNT

16 [63:0] RSVD

24 [63:32] GLHMC_PEHTEBASE [31:0] GLHMC_PEHTCNT1

32 [63:32] GLHMC_PEARPBASE [31:0] GLHMC_PEARPCNT

40 [63:32] GLHMC_APBVTINUSEBASE [31:0] RSVD

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1670 613875-009

These fields are register values from the HMC function specified by HMC_FCN_ID or the VF_Index. On
request submission, the GLHMC_{obj}CNT fields must be filled in the software. Upon completion of the
request, all fields are filled in with the updated values that were actually committed.

48 [63:32] GLHMC_PEMRBASE [31:0] GLHMC_PEMRCNT

56 [63:32] GLHMC_PEXFBASE [31:0] GLHMC_PEXFCNT

64 [63:32] GLHMC_PEXFFLBASE [31:0] GLHMC_PEXFFLCNT1

72 [63:32] GLHMC_PEQ1BASE [31:0] GLHMC_PEQ1CNT

80 [63:32] GLHMC_PEQ1FLBASE [31:0] GLHMC_PEQ1FLCNT1

88 [63:32] GLHMC_PETIMERBASE [31:0] GLHMC_PETIMERCNT1

96 [63:32] GLHMC_FSIMCBASE [31:0] GLHMC_FSIMCCNT

104 [63:32] GLHMC_FSIAVBASE [31:0] GLHMC_FSIAVCNT

112 [63:32] GLHMC_PEPBLBASE [31:0] GLHMC_PEPBLCNT

120 [63:0] RSVD

128 [63:32] GLHMC_PERRFBASE [31:0] GLHMC_PERRFCNT

136 [63:32] GLHMC_PERRFFLBASE [31:0] GLHMC_PERRFFLCNT1

144 [63:32] GLHMC_PEHDRBASE [31:0] GLHMC_PEHDRCNT

152 [63:32] GLHMC_PEMDBASE [31:0] GLHMC_PEMDCNT

160 [63:32] GLHMC_PEOOISCBASE [31:0] GLHMC_PEOOISCCNT

168 [63:32] GLHMC_PEOOISCFFLBASE [31:0] GLHMC_PEOOISCFFLCNT1

1. These fields are calculated by CQP and returned on completion. On submission, these fields are ignored.

Table 11-49. FPM Commit Configuration Structure Format [continued]

Byte
Offset [Bit Range] Field Name

613875-009 1671

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.17 Flush WQEs Descriptor Format

This WQE is used to flush pending WQEs to a CQ. The initial usage for the WQE is to support Winsock
Direct socket hand-off from one process to another. This WQE is now also used for all WQE flushing.
Host software uses this after the quad hash has been deleted for a QP in order to comply with verbs
requirements. Note that only a single unprocessed WQE is flushed from the WQ(s) specified by the
FlushRQ/FlushSQ bits. Host software must generate additional completions if more than one
outstanding WQE is pending on a WQ that has been flushed.

This WQE can be used to flush pending transmit and receive WQEs for UDA and RDMA QPs. For UDA all
filters forwarding to the specified UDA QP must be disabled, prior to flushing WQEs.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

FlushRQ (1 bit)

FlushSQ (1 bit)

Table 11-50. CQP Flush WQEs WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:20]
[19:16]

RSVD
AE_Source

[15:12]
[11:0]

RSVD
AE_Code

16 [63:48]
[47:32]

SQ_Major_Code
SQ_Minor_Code

[31:16]
[15:0]

RQ_Major_Code
RQ_Minor_Code

24

[63]
[62]
[61]
[60]
[59]

WQE_Valid
FlushRQ
FlushSQ
UserFlushCode
GenerateAE

[58:42]
[41:38]
[37:32]
[31:18]
[17:0]

RSVD
RSVD (AdditionalFragmentCount)
OP
RSVD
QP_ID

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b Do not flush any pending WQEs from the RQ.

1b Generate a completion for the first pending RQ with a flushed return code.

Value Description

0b Do not flush any pending WQEs from the SQ.

1b Generate a completion for the first pending SQ with a flushed return code.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1672 613875-009

UserFlushCode (1 bit)

UserFlushCode indicates that the WQEs flushed should carry the values specified by SQ/RQ major
and minor codes.

SQ_Major_Code (16 bits)

Valid only when UserFlushCode=1b. SQ_Major_Code is reported in Major_Error_Code field of the
CQE for the first flushed WQE for the SQ of the QP specified by QP_ID.

SQ_Minor_Code (16 bits)

Valid only when UserFlushCode=1b. SQ_Minor_Code is reported in Minor_Error_Code field of the
CQE for the first flushed WQE for the SQ of the QP specified by QP_ID.

RQ_Major_Code (16 bits)

Valid only when UserFlushCode=1b. RQ_Major_Code is reported in Major_Error_Code field of the
CQE for the first flushed WQE for the RQ of the QP specified by QP_ID.

RQ_Minor_Code (16 bits)

Valid only when UserFlushCode=1. RQ_Minor_Code is reported in Minor_Error_Code field of the
CQE for the first flushed WQE for the RQ of the QP specified by QP_ID.

GenerateAE (1 bit)

GenerateAE indicates that an AE should be generated after the CQEs have been generated for the
flushed WQEs.

AE_Code (12 bits)

Valid only when GenerateAE=1. See Table 11-12 for the values that should be used for this field.

AE_Source (4 bits)

Valid only when GenerateAE=1. See Section 11.4.6 for the values that should be used for this field.

QP_ID (18 bits)

Identifies the QP number targeted for the flush operation. This must be an accelerated QP (UDA or
iWARP or RoCEv2).

Value Description

0b Any flushed WQEs carry the flushed completion major and minor codes.

1b Flushed WQEs for the SQ carry SQ_Major_Code and SQ_Minor_Code. Flushed WQEs on the RQ carry
RQ_Major_Code and RQ_Minor_Code.

613875-009 1673

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.18 Manage Accelerated Port Bit Vector (APBV)

This WQE sets or clears the bit in the APBV table for the host NIC, IP Address, and TCP or UDP port
number specified in the WQE. The APBV table is used to filter TCP segments belonging to accelerated
RDMA connections, TCP segments, UDP multicast and unicast datagrams belonging to accelerated UDA
QPs. Host software also uses the APBV table to flag inbound TCP packets used for connection setup of
accelerated connections.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

Add_Port (1 bit)

Local_TCP/UDP_Port (16 bits)

The local (destination port for inbound packets) TCP/IP or UDP/IP port that is used for accelerated
RDMA connections and accelerated UDA UDP unicast and multicast datagrams, and UDA TCP
streams. Any inbound TCP packet and UDP datagram who’s destination IP Address matches that IP
Address table and destination TCP/UDP port matches Local_TCP/UDP_Port is filtered through quad
hash table. If missed, TCP packet and UDP datagram is passed to the host NIC.

Table 11-51. CQP Manage Accelerated Port Table WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:16] RSVD [15:0] Local_TCP/UDP_Port

24
[63]
[62]
[61:42]

WQE_Valid
Add_Port
RSVD

[41:38]
[37:32]
[31:0]

RSVD (AdditionalFragmentCount)
OP
RSVD

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b The port is deleted from the table.

1b The port is added to the table.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1674 613875-009

11.5.3.19 NOP Descriptor Format

This WQE can be used to generate a CQE that can be used to trigger subsequent processing in a
completion handler or as a synchronization mechanism to indicate when all previously issued CQP
requests have completed.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

11.5.3.20 Manage Quad Hash Table Descriptor Format

The quad hash table entry can be configured to forward packets to the UDA QP. Multiple entries of the
quad hash table can refer to the same QP or multicast group.

The same quad hash table is intended to be shared by RDMA QPs and UDA QPs and multicast groups.
The quad hash table must be properly sized to allow a good hit rate. It also must be properly sized with
respect to the maximum number of entries that are intended to be allocated. One approach is to limit
the total number of resources that can be allowed to use quad hash for the given function. This would
enable the best use of the shared table. In any case, since allocation of entries in the quad hash table is
controlled by PCI function driver, sizing of the table, and allocation policy should be controlled there.

UDA UDP and TCP traffic should be using quad hash tables associated with respective PCI function (PF
or VF).

The quad hash table index is calculated by hardware. All hash functions include destination MAC
Address and VLAN (if valid) in addition to the description provided later. Hash function inputs and a kind
of hash function depends on a hash table entry type:

• UDP Unicast — For the first UDP unicast fragment, or UDP unicast datagram, Hash Function should
use as an input a destination IP Address and destination UDP port. Hash Table entry should match
both destination IP Address and destination UDP port, and should be of UDP Unicast entry type.
Matching entry should carry a destination Queue Pair Number.

• TCP SYN (ACK Clear) — For the TCP packets with the SYN bit set, a hash function should be used
as an input a destination IP Address and destination TCP port. A hash table entry should match both
destination IP Address and destination TCP port, and should be of TCP SYN (ACK clear) entry type.
Matching entry should carry a destination QP number.

Table 11-52. CQP NOP WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24
[63]
[62:42]
[41:38]

WQE_Valid
RSVD
RSVD (AdditionalFragmentCount)

[37:32]
[31:0]

OP
RSVD

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

613875-009 1675

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

• Established TCP — For the TCP packets with the SYN bit clear or the SYN bit set and ACK bit set,
the hash function should be used as an input source and destination IP Addresses, and source and
destination TCP ports. The hash table should match both source and destination IP Addresses, and
source and destination TCP ports. Matching entry should carry a destination QP number.

• RoCEv2 Multicast — RoCEv2 multicast packets go through the Quad Hash to look up the multicast
group number. Hash Table entry should match the destination IP Address, the destination QP has all
bits on (1’s), and should be of multicast entry type. Matching entry should carry a multicast group
number. RoCEv2 unicast packets do not go through the Quad Hash.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

QS_Handle (10 bits)

Identifies the queue set handle associated with the hash entry. See Section 8.3.3.4 for more
information on scheduler configuration.

Dest_IP_Address_0 (32 bits)

This field specifies bits 127 through 96 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b). The MSB of this field (Bits 31:24) is the first byte on the wire for this field.

Dest_IP_Address_1 (32 bits)

This field specifies bits 95 through 64 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b).

Dest_IP_Address 2 (32 bits)

This field specifies bits 63 through 32 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b).

Dest_IP_Address_3 (32 bits)

This field specifies the 32-bit IPv4 (see RFC 791) or the least significant 32-bits of the IPv6 IP
Address. The LSB of this field (Bits 7:0) is the last byte on the wire for this field.

Table 11-53. CQP Manage Quad Hash Table WQE Format

Byte
Offset [Bit Range] Field Name

0

[63:48]
[47:40]
[39:32]
[31:24]

RSVD
Dest_MAC_Address[5]
Dest_MAC_Address[4]
Dest_MAC_Address[3]

[23:16]
[15:8]
[7:0]

Dest_MAC_Address[2]
Dest_MAC_Address[1]
Dest_MAC_Address[0]

8 [63:50]
[49:32]

RSVD
QPN/MGN

[31:16]
[15:0]

src_port
dest_port

16 [63:44]
[43:32]

RSVD
VLAN_ID

[31:10]
[9:0]

RSVD
QS_Handle

24

[63]
[62:61]
[60]
[59]
[58:45]

WQE_Valid
ManageEntry
IPv4_Valid
VLAN_Valid
RSVD

[44:42]
[41:38]
[37:32]
[31:0]

EntryType
RSVD (AdditionalFragmentCount)
OP
RSVD

32 [63:32] Src_IP_Address_2 [31:0] Src_IP_Address_3

40 [63:32] Src_IP_Address_0 [31:0] Src_IP_Address_1

48 [63:32] Dest_IP_Address_2 [31:0] Dest_IP_Address_3

56 [63:32] Dest_IP_Address_0 [31:0] Dest_IP_Address_1

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1676 613875-009

Src_IP_Address_0 (32 bits)

This field specifies bits 127 through 96 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b). The MSB of this field (Bits 31:24) is the first byte on the wire for this field.

Src_IP_Address_1 (32 bits)

This field specifies bits 95 through 64 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b).

Src_IP_Address_2 (32 bits)

This field specifies bits 63 through 32 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b).

Src_IP_Address_3 (32 bits)

This field specifies the 32-bit IPv4 (see RFC 791) or the least significant 32-bits of the IPv6 IP
Address. The LSB of this field (Bits 7:0) is the last byte on the wire for this field.

src_port (16 bits)

Source UDP/TCP port.

dest_port (16 bits)

Destination UDP/TCP port.

QPN/MGN (18 bits)

Index of the QP context or Multicast Group Context associated with the entry. When modifying a
quad hash entry for a Multicast Group, the Multicast Group Number is smaller than the QP number.
The high bits must be filled with leading zeros.

EntryType (3 bits)

The quad hash table is used as a perfect filter for multiple types of accelerated traffic (Userspace
TCP, RoCEv2, Userspace UDP unicast and multicast). Depending on the traffic type different
hardware accelerations might apply.

IPv4_Valid (1 bit)

Value Description

001b Userspace TCP Established

010b Userspace TCP SYN (ACK clear)

011b Userspace UDP Unicast

110b Userspace UDP Multicast

Note: All other values are reserved

Value Description

0b Indicates that both source and destination IP Addresses are IPv6.

1b Indicates that both source and destination IP Addresses are IPv4.

613875-009 1677

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

ManageEntry (2 bits)

Dest_MAC_Address[5-0] (8 bits each)

Specifies the MAC Address associated with the destination IP Address. Index 0 is the LSB and byte
5 is the MSB.

VLAN_ID (12 bits)

Specifies the VLAN ID associated with the hash entry. This field is ignored unless VLAN_Valid is set
(1b).

VLAN_Valid (1 bit)

Specifies if the hash entry has a VLAN associated with it.

Value Description

00b Delete entry from the table.

01b Add entry to the table.

10b Modify entry.

11b Reserved.

Value Description

0b The hash entry is not associated with a VLAN.

1b The VLAN associated with the hash entry is specified in the VLAN_ID field.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1678 613875-009

11.5.3.21 Create/Modify/Destroy Multicast Group Descriptor
Format

This WQE can be used to Create/Modify/Destroy Multicast Group. This WQE can be used only by
Physical PCI Function driver. Software owns content of the Multicast Group Context. Every time new QP
subscribes or leaves the multicast group, driver should Modify the contents of the Multicast Group
Context and issue the Modify Multicast Group descriptor to CQP.

The Create Multicast Group creates an entry in the Quad Hash. The Destroy Multicast Group removes
the Quad Hash entry. Modify Multicast Group does not modify the Quad Hash entry.

The Modify Multicast Group requires HMC_FCN_ID, MG_ID and an updated MG context. The other fields
are ignored.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

MG_ID (13 bits)

Index of the Multicast Group. Allocated and managed by physical function driver. Each PCI function
has a dedicated zero-based Multicast Group IDs space.

MGContextAddress (64 bits)

Physical address of the software Multicast Group context. MGContextAddress should be aligned to
64 bytes.

HMC_FCN_ID (6 bits)

This field specifies the HMC function ID for the FPM settings to be queried. For PFs, the
HMC_FCN_ID is strictly the PF index. For VFs, the HMC function ID was returned from the manage
HMC PM function CQP operation.

Table 11-54. CQP Create/Modify/Destroy Multicast Group WQE Format

Byte
Offset [Bit Range] Field Name

0

[63:48]
[47:40]
[39:32]
[31:24]

RSVD
Dest_MAC_Address[5]
Dest_MAC_Address[4]
Dest_MAC_Address[3]

[23:16]
[15:8]
[7:0]

Dest_MAC_Address[2]
Dest_MAC_Address[1]
Dest_MAC_Address[0]

8 [63:6] RSVD [5:0] HMC_FCN_ID

16 [63:44]
[43:32]

RSVD
VLAN_ID

[31:16]
[9:0]

RSVD
QS_Handle

24

[63]
[62:61]
[60]
[59]

WQE_Valid
RSVD
IPv4_Valid
VLAN_Valid

[58:38]
[37:32]
[31:13]
[12:0]

RSVD (AdditionalFragmentCount)
OP
RSVD
MG_ID

32 [63:0] MGContextAddress

40 [63:0] RSVD

48 [63:32] Dest_IP_Address_2 [31:0] Dest_IP_Address_3

56 [63:32] Dest_IP_Address_0 [31:0] Dest_IP_Address_1

613875-009 1679

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

IPv4_Valid (1 bits)

Dest_IP_Address_0 (32 bits)

This field specifies bits 127 through 96 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b). The MSB of this field (Bits 31:24) is the first byte on the wire for this field.

Dest_IP_Address_1 (32 bits)

This field specifies bits 95 through 64 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b).

Dest_IP_Address 2 (32 bits)

This field specifies bits 63 through 32 of the IPv6 IP Addresses. Reserved when IPv4_Valid is set
(1b).

Dest_IP_Address_3 (32 bits)

This field specifies the 32-bit IPv4 (see RFC 791) or the least significant 32-bits of the IPv6 IP
Address. The LSB of this field (Bits 7:0) is the last byte on the wire for this field.

Dest_MAC_Address[5-0] (8 bits each)

Specifies the MAC Address associated with the destination IP Address. Index 0 is the LSB and byte
5 is the MSB.

VLAN_ID (12 bits)

Specifies the VLAN ID associated with the hash entry. This field is ignored unless VLAN_Valid is set
(1b).

VLAN_Valid (1 bit)

Specifies if the hash entry has a VLAN associated with it.

QS_Handle (10 bits)

This field specifies Tx-Scheduler QS handle associated with the TC for this QP. See Section 8.3.3.4
for more information on scheduler configuration. For VFs, the QS_Handle is checked to ensure that
the VF issuing the CQP command is associated with the QS_Handle. QS_Handle is valid only for
Create Multicast Group.

Value Description

0b Indicates that both source and destination IP Addresses are IPv6.

1b Indicates that both source and destination IP Addresses are IPv4.

Value Description

0b The hash entry is not associated with a VLAN.

1b The VLAN associated with the hash entry is specified in the VLAN_ID field.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1680 613875-009

11.5.3.22 Suspend QP Descriptor Format

This WQE can be used to suspend a QP that is to be moved to a different QS than the one to which it is
currently assigned. QP suspension is required before changing the QS. This WQE might return suspend
pending in which case an AE_QP_SUSPEND_COMPLETE AE is issued when the suspend operation
completed.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

QP_ID (18 bits)

Index of the QP to be suspended.

Table 11-55. CQP Suspend QP WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24
[63]
[62:42]
[41:38]

WQE_Valid
RSVD
RSVD (AdditionalFragmentCount)

[37:32]
[31:18]
[17:0]

OP
RSVD
QP_ID

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

613875-009 1681

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.23 Resume QP Descriptor Format

This WQE can be used to resume a QP that had been previous suspended in order to be moved to a
different QS than the one to which it was assigned. QP suspension is required before changing the QS.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

QP_ID (18 bits)

Index of the QP to be suspended.

QS_Handle (10 bits)

This field specifies Tx-Scheduler QS handle associated with the TC for this QP. See Section 8.3.3.4
for more information on scheduler configuration. For VFs, the QS_Handle is checked to ensure that
the VF issuing the CQP command is associated with the QS_Handle.

Table 11-56. CQP Resume QP WQE Format

Byte
Offset [Bit Range] Field Name

8 [63:0] RSVD

8 [63:0] RSVD

16 [63:10] RSVD [9:0] QS_Handle

24
[63]
[62:42]
[41:38]

WQE_Valid
RSVD
RSVD (AdditionalFragmentCount)

[37:32]
[31:18]
[17:0]

OP
RSVD
QP_ID

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1682 613875-009

11.5.3.24 Static HMC Resources Allocated Descriptor Format

This WQE must be used after the commit FPM values operation is complete and all of the static HMC
resources from Table 11-14 have HMC backing pages allocated and configured. CQP then completes
initializing the function for PE operation.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

HMC_FCN_ID (6 bits)

This field specifies the HMC function ID that software has completed the allocation and
configuration of the static HMC backing pages. For PFs, the HMC_FCN_ID is strictly the PF index.
For VFs, the HMC function ID was returned from the manage HMC PM function CQP operation. If a
CQP instance associated with a VF submits this operation, this field is ignored and the HMC_FCN_ID
is determined by firmware.

Table 11-57. Static HMC Resources Allocated WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:6] RSVD [5:0] HMC_FCN_ID (PF only)

24
[63]
[62:42]
[41:38]

WQE_Valid
RSVD
RSVD (AdditionalFragmentCount)

[37:32]
[31:0]

OP
RSVD

32 [63:0] RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

613875-009 1683

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.25 Manage Statistics Instance Descriptor Format

Every function (PF or VF) is assigned a statistics instance. By default, all QPs in that function uses the
one assigned to its function. However, software is able to allocate a new statistics instance that can be
used for one or a set of QPs within the function. For example, all QPs belonging to a VSI.

This WQE is used to allocate or free a statistics instance. This WQE can be used only by the Physical PCI
Function driver.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

alloc_stats_instance (1 bit)

use_hmc_fcn_index (1 bit)

Only valid when issued to a PF CQP instance. Ignored (treated as if set to 0b) for VF CQP
operations.

hmc_fcn_index (6 bits)

Only valid when issued to a PF CQP instance and use_hmc_fcn_index is set to 1b. Ignored
otherwise.

Table 11-58. Manage Statistics Instance WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24

[63]
[62]
[61]
[60]
[59:42]

WQE_Valid
alloc_stats_instance
RSVD
use_hmc_fcn_index
RSVD

[41:38]
[37:32]
[31:7]
[6:0]

RSVD (AdditionalFragmentCount)
OP
RSVD
Statistics_Instance_Index

32 [63:0] RSVD

40 [63:6] RSVD [5:0] hmc_fcn_index

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b The statistics set is deallocated.

1b A new statistics set is to be allocated. If successful, the number of the statistics set is returned in
Operation_Return_Value.

Value Description

0b The HMC function index is determined by the PCI function associated with the PCI function that issues the CQP
operation.

1b hmc_fcn_index can be set to a HMC function index that is a VF associated with the PF associated with the CQP
instance used to issue the command.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1684 613875-009

Statistics_Instance_Index (7 bits)

Statistics Set to be deleted. Only valid when alloc_stats_instance is set to 0b.

11.5.3.26 Gather Statistics Descriptor Format

This WQE is used to gather the statistics for a function (PF or VF). This WQE can be used only by the
Physical PCI Function driver.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

use_hmc_fcn_index (1 bit)

Only valid when issued to a PF CQP instance. Ignored (treated as if set to 0) for VF CQP operations.

hmc_fcn_index (6 bits)

Only valid when issued to a PF CQP instance and use_hmc_fcn_index is set to 1b. Ignored
otherwise.

Physical_Buffer_Address (64 bits)

This field specifies the physical address of the buffer that firmware fills with the statistics.

Table 11-59. Gather Statistics Instance WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24

[63]
[62]
[61]
[60]

WQE_Valid
RSVD
Use_Statistics_Instance
use_hmc_fcn_index

[59:38]
[37:32]
[31:7]
[6:0]

RSVD (AdditionalFragmentCount)
OP
RSVD
Statistics_Instance_Index

32 [63:0] Physical_Buffer_Address

40 [63:6] RSVD [5:0] hmc_fcn_index

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b The HMC function index is determined by the PCI function associated with the PCI function that issues the CQP
operation.

1b hmc_fcn_index can be set to a HMC function index that is a VF associated with the PF associated with the CQP
instance used to issue the command.

613875-009 1685

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Use_Statistics_Instance (1 bit)

This field indicates if the default per Private Memory Function statistics are gathered or if one of the
additional RDMA statistics instances are gathered for this QP.

Statistics_Instance_Index (7 bits)

Statistics Set to be gathered. This field is ignored if Use_Statistics_Instance is 0b.

Value Description

0b The default statistics are used.

1b The statistics instance indicated by the Statistics_Instance_Index field are used.

Table 11-60. Statistics Buffer

Byte
Offset [Bit Range] Field Name

0 [63:56]
[55:32]

RSVD
PES_RXVLANERR

[31:0] RSVD

8 [63:48]
[47:32]

RSVD
PES_IP4RXOCTSHI

[31:0] PES_IP4RXOCTSLO

16 [63:48]
[47:32]

RSVD
PES_IP4RXPKTSHI

[31:0] PES_IP4RXPKTSLO

24 [63:32] PES_IP4RXDISCARD [31:0] PES_IP4RXTRUNC

32 [63:48]
[47:32]

RSVD
PES_IP4RXFRAGSHI

[31:0] PES_IP4RXFRAGSLO

40 [63:48]
[47:32]

RSVD
PES_IP4RXMCOCTSHI

[31:0] PES_IP4RXMCOCTSLO

48 [63:48]
[47:32]

RSVD
PES_IP4RXMCPKTSHI

[31:0] PES_IP4RXMCPKTSLO

56 [63:48]
[47:32]

RSVD
PES_IP6RXOCTSHI

[31:0] PES_IP6RXOCTSLO

64 [63:48]
[47:32]

RSVD
PES_IP6RXPKTSHI

[31:0] PES_IP6RXPKTSLO

72 [63:32] PES_IP6RXDISCARD [31:0] PES_IP6RXTRUNC

80 [63:48]
[47:32]

RSVD
PES_IP6RXFRAGSHI

[31:0] PES_IP6RXFRAGSLO

88 [63:48]
[47:32]

RSVD
PES_IP6RXMCOCTSHI

[31:0] PES_IP6RXMCOCTSLO

96 [63:48]
[47:32]

RSVD
PES_IP6RXMCPKTSHI

[31:0] PES_IP6RXMCPKTSLO

104 [63:48]
[47:32]

RSVD
PES_IP4TXOCTSHI

[31:0] PES_IP4TXOCTSLO

112 [63:48]
[47:32]

RSVD
PES_IP4TXPKTSHI

[31:0] PES_IP4TXPKTSLO

120 [63:48]
[47:32]

RSVD
PES_IP4TXFRAGSHI

[31:0] PES_IP4TXFRAGSLO

128 [63:48]
[47:32]

RSVD
PES_IP4TXMCOCTSHI

[31:0] PES_IP4TXMCOCTSLO

136 [63:48]
[47:32]

RSVD
PES_IP4TXMCPKTSHI

[31:0] PES_IP4TXMCPKTSLO

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1686 613875-009

144 [63:48]
[47:32]

RSVD
PES_IP6TXOCTSHI

[31:0] PES_IP6TXOCTSLO

152 [63:48]
[47:32]

RSVD
PES_IP6TXPKTSHI

[31:0] PES_IP6TXPKTSLO

160 [63:48]
[47:32]

RSVD
PES_IP6TXFRAGSHI

[31:0] PES_IP6TXFRAGSLO

168 [63:48]
[47:32]

RSVD
PES_IP6TXMCOCTSHI

[31:0] PES_IP6TXMCOCTSLO

176 [63:48]
[47:32]

RSVD
PES_IP6TXMCPKTSHI

[31:0] PES_IP6TXMCPKTSLO

184 [63:56]
[55:32]

RSVD
PES_IP4TXNOROUTE

[31:24]
[23:0]

RSVD
PES_IP6TXNOROUTE

192 [63:48]
[47:32]

RSVD
PES_TCPRXSEGSHI

[31:0] PES_TCPRXSEGSLO

200 [63:56]
[55:32]

RSVD
PES_TCPRXOPTERR

[31:24]
[23:0]

RSVD
PES_TCPRXPROTOERR

208 [63:48]
[47:32]

RSVD
PES_TCPTXSEGHI

[31:0] PES_TCPTXSEGLO

216 [63:32] PES_TCPRTXSEG [31:0] RSVD

224 [63:48]
[47:32]

RSVD
PES_UDPRXPKTSHI

[31:0] PES_UDPRXPKTSLO

232 [63:48]
[47:32]

RSVD
PES_UDPTXPKTSHI

[31:0] PES_UDPTXPKTSLO

240 [63:48]
[47:32]

RSVD
PES_RDMARXWRSHI

[31:0] PES_RDMARXWRSLO

248 [63:48]
[47:32]

RSVD
PES_RDMARXRDSHI

[31:0] PES_RDMARXRDSLO

256 [63:48]
[47:32]

RSVD
PES_RDMARXSNDSHI

[31:0] PES_RDMARXSNDSLO

264 [63:48]
[47:32]

RSVD
PES_RDMATXWRSHI

[31:0] PES_RDMATXWRSLO

272 [63:48]
[47:32]

RSVD
PES_RDMATXRDSHI

[31:0] PES_RDMATXRDSLO

280 [63:48]
[47:32]

RSVD
PES_RDMATXSNDSHI

[31:0] PES_RDMATXSNDSLO

288 [63:48]
[47:32]

RSVD
PES_RDMAVBNDHI

[31:0] PES_RDMAVBNDLO

296 [63:48]
[47:32]

RSVD
PES_RDMAVINVHI

[31:0] PES_RDMAVINVLO

304 [63:48]
[47:32]

RSVD
PES_RXNPECNMARKEDPKTSHI

[31:0] PES_RXNPECNMARKEDPKTSLO

312 [63:48]
[47:32]

RSVD
PES_RXRPCNPIGNORED

[31:0] PES_RXRPCNPHANDLED

320 [63:32] RSVD [31:0] PES_TXNPCNPSENT

328-1016 [63:0] RSVD

Table 11-60. Statistics Buffer [continued]

Byte
Offset [Bit Range] Field Name

613875-009 1687

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.27 Manage Work Scheduler (WS) Node Descriptor Format

This WQE can be used to Create/Modify/Destroy a WS Node.

Software must create the root node (Node_ID=0) for its port. Intermediate or Leaf Nodes can be
attached to the root node by specifying that the Parent_Node_ID=0 during the add operation.

For an Add operation of a Leaf node, the QSet handle is returned in the Operation_Return_Value if the
operation is successful.

For a Modify operation, the only fields that can be modified are Weight and enable_node.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

Node_Type (1 bit)

This field indicates if this is a Leaf Node (1b) or a Parent Node (0b). The following fields must be
filled in for a Leaf Node: Priority_Type, Traffic_Class, VSI_Index, Parent_Node_ID, and Weight.

Priority_Type (2 bits)

This field specifies the priority type used for this node:

Traffic_Class (3 bits)

The port’s traffic class represented by this node.

Table 11-61. CQP Create/Modify/Destroy Work Scheduler Node WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24

[63]
[62]
[61]
[60:59]
[58:56]
[55:52]
[51:42]

WQE_Valid
enable_node
Node_Type
Priority_Type
Traffic_Class
node_op
RSVD

[41:38]
[37:32]
[31:26]
[25:16]
[15:10]
[9:0]

RSVD (AdditionalFragmentCount)
OP
RSVD
Parent_Node_ID
RSVD
Node_ID

32

[63:58]
[57:48]
[47]
[46:44]
[43]

RSVD
VSI_Index
RSVD
failing_port
RSVD

[42:40]
[39]
[38:32]
[31:0]

failover_port
RSVD
Weight
RSVD

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

00b Reserved

01b Weighted Round-Robin

10b Strict Priority

11b Weighted Strict Priority

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1688 613875-009

Parent_Node_ID (10 bits)

This field specifies where in the tree to place the new Node. That is, the new Node becomes the
child of the node indicated in the Parent_Node_ID field. Node IDs are zero relative within a
function. Software does not know what port it is on so a value of (0x0) means “this function’s root
node”.

Node_ID (10 bits)

This is the Node ID that will be used to modify and delete the node. This value is assigned by
software and must be unique. Software does not know what port it is on so a value of (0x0) means
“this functions root node”.

node_op (4 bits)

What operation to perform:

Only one failover can be active at a time.

VSI_Index (10 bits)

The VSI index for the WS node. This field is required for all manage work scheduler node
operations.

Weight (7 bits)

Weight given to this node expressed as a percentage relative to it siblings. This value is valid only
for Weighted Round-Robin and Weighted Strict Priority (zero is not valid).

enable_node (1 bit)

This is only for leaf nodes. It is ignored for non-leaf nodes.

failing_port (3 bits)

If node_op=failover_start, the work scheduler node is being moved from this port. This field is
ignored for any other node_op value.

failover_port (3 bits)

If node_op=failover_start, the work scheduler node is being moved to this port. This field is ignored
for any other node_op value.

Value Description

0x0 Add

0x1 Modify

0x2 Delete

0x3 failover_start

0x4 failover_complete

Note: All other values are reserved

Value Description

0b The Work Scheduler node is disabled. This allows a Work Scheduler node to be created but not yet enabled. The
node can be enabled/disabled later with the modify Work Scheduler operation.

1b The Work Scheduler node is enabled.

613875-009 1689

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.5.3.28 Set UP-UP Mapping

This WQE is used on a PF to set the User Priority (UP) mapping table for a VF. Only valid when issued to
a PF CQP instance. Ignored otherwise.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

hmc_fcn_index (6 bits)

HMC index of the function for this mapping.

UP_mapping[7-0] (8 bits each)

User priorities indexed by the VF UP number.

use_CNP_UP_override (1 bit)

use_VLAN (1 bit)

Table 11-62. Set UP-UP Mapping WQE Format

Byte
Offset [Bit Range] Field Name

0

[63:56]
[55:48]
[47:40]
[39:32]

UP_mapping[7]
UP_mapping[6]
UP_mapping[5]
UP_mapping[4]

[31:24]
[23:16]
[15:8]
[7:0]

UP_mapping[3]
UP_mapping[2]
UP_mapping[1]
UP_mapping[0]

8 [63:0] RSVD

16 [63:0] RSVD

24

[63]
[62]
[61]
[60]

WQE_Valid
use_VLAN
use_CNP_UP_override
RSVD

[59:38]
[37:32]
[31:0]

RSVD (AdditionalFragmentCount)
OP
RSVD

32 [63:0] RSVD

40 [63:38]
[37:32]

RSVD
CNP_UP_override

[31:6]
[5:0]

RSVD
hmc_fcn_index

48 [63:0] RSVD

56 [63:0] RSVD

Value Description

0b Indicates that CNP packets are sent using the assigned UP.

1b Indicates that Congestion Notification Packets (CNP) are sent using the UP value in CNP_UP_override.

Value Description

0b The priority field is put into the TOS/DSCP field. Bits 0-5 of each byte are used to map the 64 DSCP priorities.

1b The priority field is put into a VLAN. Bits 0-2 of each byte are used to map the priority.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1690 613875-009

11.5.3.29 Query RDMA Features

This WQE is used to query the RDMA features and the firmware version. Firmware returns the list of
features up to buffer_len. Software is responsible for ensuring that the buffer is large enough.

The feature_cnt indicates the number of entries that firmware would return assuming the buffer_len is
large enough. Software should allocate a reasonably-sized buffer. If needed, software can determine if
the buffer is too small by looking at the returned feature_cnt field, allocate a larger buffer, and re-issue
the WQE.

OP (6 bits) and WQE_Valid (1 bit)

See Section 11.5.3.1.

Physical_Buffer_Address (64 bits)

This field specifies the physical address of the buffer that firmware fills with the RDMA feature
information. The buffer must be aligned to an 8-byte boundary.

buffer_len

Length of the buffer provided by software. The minimum length is 8 bytes and must be a multiple of
8 bytes.

Table 11-63. Query RDMA Features Descriptor Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24 [63]
[62:38]

WQE_Valid
RSDV

[37:32]
[31:0]

OP
buffer_len

32 [63:0] Physical_Buffer_Address

40 [63:0] RSVD

48 [63:0] RSVD

56 [63:0] RSVD

Table 11-64. Query RDMA Features Buffer Format

Byte
Offset [Bit Range] Field Name

0-n [63:48] feature_type [47:0] feature specific information

613875-009 1691

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

feature_type

Enumerated value.

hw_model_used (16 bits)

The lower value of the hw_major_version of the RNIC hardware and the hw_major_version
supplied by software at Create CQP time.

hw_major_version, hw_major_version (16 bits each)

See CQP Context description in Section 11.5.2.3.

qsets_max (16 bits)

The maximum number of QSets supported. Each leaf node in the RDMA Work Scheduler refers to a
QSet.

Table 11-65. Query RDMA Feature Types with Specific Information

Feature
Type

Number
Feature Type Name Feature Specifics

0 RDMA_FTN_Header
(Must always be the first entry in the table.)

[63:48]
[47:32]
[31:16]
[15:0]

0
feature_cnt (minimum is 1)
firmware_major_version
firmware_minor_version

1 RDMA_FTN_HW_VERSION [63:48]
[47:32]
[31:16]
[15:0]

1
hw_model_used
hw_major_version
hw_minor_version

24 RDMA_FTN_ENDPT_TRK [63:48]
[39:1]
[0]

24
RSVD
0b = Disabled. 1b = Enabled

26 RDMA_FTN_QSETS_MAX [63:48]
[47:16]
[15:0]

26
RSVD
qsets_max

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1692 613875-009

11.6 RDMA Functionality

The operations for RDMA via iWARP and RoCEv2 RC are implemented using the context and WQE
formats described in the following sections. QP operation, the verbs interface, and system view of the
E810 are described in Section 11.4.1. The CQP operations and HMC structures necessary to bring the
E810 to a functional state for RDMA are described in Section 11.5.

The maximum number of PE contexts for the device is 256K. These contexts can be allocated in a
flexible manner between the functions with a maximum number limit per each function of 256K - 1.

11.6.1 iWARP Q2 Area

iWARP QPs have a memory area that is written under error conditions. The format of this area is listed
in Table 11-66. This memory area is reference from the Q2_Address variable from the QP context listed
in Table 11-67.

Outbound_Terminate_Header (56 bytes)

This field contains the outbound terminate header used for Modify QP CQP operations when
Terminate_Actions is set to “Send Terminate Only” or “Send both Terminate and FIN”.

First_Partial_Sequence_Number (32 bits)

This field contains the sequence number of the first partial FPDU receive by the E810. This field is
defined for partial FPDU support only, and must be ignored during Asynchronous Event (AE)
processing. See Section 11.4.3 for more details on partial FPDU support.

Sequence_Update_Toggle (1 bit)

This field toggles each time the First_Partial_Sequence_Number is updated by the E810. This field
is defined for partial FPDU support only, and must be ignored during Asynchronous Event (AE)
processing. See Section 11.4.3 for more details on partial FPDU support.

Inbound_Q2_Data (184 bytes)

This field contains the first 184 bytes of the packet that caused an AE. This could either be an
inbound terminate message or the Ethernet packet that had an error.

Table 11-66. iWARP Q2 Structure Format

Byte
Offset [Bit Range] Field Name

0-55 Outbound_Terminate_Header

56-63 RSVD

64 [63]
[62:32]

Sequence_Update_Toggle
RSVD

[31:0] First_Partial_Sequence_Number

72-255 Inbound_Q2_Data

613875-009 1693

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.6.2 iWARP QP Context Format

iWARP QP context is used by software to initialize or update the E810 QP context. Create and Modify QP
CQP operations (see Section 11.5.3.2) reference this structure.

Table 11-67. iWARP QP Context Structure Format

Byte
Offset [Bit Range] Field Name

0

[63:62]
[61:48]
[47]
[46:42]
[41:32]
[31]
[30]
[29]
[28]
[27:26]
[25]
[24:22]
[21:20]
[19]

iwarp_rdmap_ver3
RSVD
Push_Mode_Enable
RSVD
Push_Page_Index
SQ_TPH_en
RQ_TPH_en
XMIT_TPH_en
RCV_TPH_en
RSVD
DCTCP_enable
RSVD
pd_index_high
err_RQ_index_valid1

[18:16]
[15]
[14]
[13:12]
[11:10]
[9:8]
[7]
[6]
[5]
[4]
[3]
[2]
[1:0]

dupack_thresh
drop_out_of_order_seg
ECN_enable
limit
RSVD
RQ_WQE_Size
timestamp
RSVD
Insert_VLAN_Tag
NoNagle2

IPv4
infiniband_read_en
iwarp_ddp_ver3

8 [63:0] SQ_Address

16 [63:0] RQ_Address

24

[63:48]
[47:32]
[31:24]
[23]

Dest_Port_Number
Source_Port_Number
Traffic_Class_or_TOS2

avoid_stretch_ack

[22:16]
[15:12]
[11:8]
[7:0]

RSVD
SQ_Size
RQ_Size
Hop_Limit_or_TTL2

32 [63:32] Dest_IP_Address_2 [31:0] Dest_IP_Address_3

40 [63:32] Dest_IP_Address_0 [31:0] Dest_IP_Address_1

48
[63:48]
[47:32]
[31:30]

ARP_Index
VLAN_Tag2

syn_rst_handling

[29:16]
[15:0]

snd_mss
RSVD

56

[63:48]
[47:44]
[43:40]
[39:36]
[35:32]
[31:28]

pd_index
RSVD
Snd_wscale
RSVD
Rcv_wscale
TCP_state

[27:24]
[23]
[22]
[21]
[20]
[19:0]

RSVD
ignore_tcp_uns_options
ignore_tcp_options
RSVD
wscale
Flow_Label2

64 [63:0] RSVD

72 [63:32] timestamp_age [31:0] timestamp_recent

80 [63:32] snd_wnd [31:0] snd_nxt

88 [63:32] rcv_wnd2 [31:0] rcv_nxt

96 [63:32] snd_una [31:0] snd_max

104 [63:32] rtt_var [31:0] srtt

112 [63:32] cwnd [31:0] ss_thresh

120 [63:32] snd_wl2 [31:0] snd_wl1

128
[63:57]
[56:54]
[53:48]

Manage Work Scheduler
RSVD
rexmit_thresh

[47]
[46:32]
[31:0]

RSVD
err_RQ_index
max_snd_window

136 [63:51]
[50:32]

RSVD
RxCmpQueueNum

[31:19]
[18:0]

RSVD
TxCmpQueueNum

144 [63:8]
[7]

Q2_Address
RSVD

[6:0] Statistics_Instance_Index

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1694 613875-009

Push_Page_Index (10 bits)

This field identifies the push page associated with the QP. For VFs, the push page index is
function-relative.

Push_Mode_Enable (1 bit)

This field indicates if push mode is enabled for the QP.

ignore_tcp_options (1 bit)

Specifies that the TCP options should be ignored when processing received TCP headers.

ignore_tcp_uns_options (1 bit)

Specifies that the unsupported TCP options should be ignored when processing received TCP
headers.

NoNagle (1 bit)

This field indicates if Nagle algorithm is in use on this connection. If this field is set (1b), the Nagle
algorithm is disabled on this connection (RFC 896).

152

[63:56]
[55:48]
[47:40]
[39:32]

Src_MAC_Address[5]
Src_MAC_Address[4]
Src_MAC_Address[3]
Src_MAC_Address[2]

[31:24]
[23:16]
[15:8]
[7:0]

Src_MAC_Address[1]
Src_MAC_Address[0]
RSVD
last_byte_sent

160

[63:57]
[56:48]
[47:41]
[40:32]
[31]
[30]
[29]
[28]
[27]
[26]

RSVD
snd_mrk_offset
RSVD
rcv_mrk_offset3
rcv_no_mpa_crc3

assume_aligned_headers
Receive_Markers3

iWARP_Mode
TimelyEnable
Use_Statistics_Instance

[25]
[24]
[23]
[22]
[21]
[20]
[19]
[18:16]
[15:8]
[7:0]

PrivilegedEnable
FastRegisterEnable
BindEnable
Send_Markers
rdmard_ok
rdmawr_rdresp_ok
RSVD
IRD_Size
RSVD
ORD_Size

168 [63:0] QP_Completion_Context

176
[63:50]
[49:32]
[31:26]

RSVD
Exception_UDA_Queue
RSVD

[25:16]
[15:8]
[7:0]

QS_Handle
RQ_TPH_value
SQ_TPH_value

184 [63:32] Local_IP_Address_2 [31:0] Local_IP_Address_3

192 [63:32] Local_IP_Address_0 [31:0] Local_IP_Address_1

200 [63:52]
[51:40]

t_high
RSVD

[39:32]
[31:0]

t_low
RSVD

208 [63:0] RSVD

216 [63:48]
[47:32]

RSVD
remote_endpoint_index

[31:0] RSVD

224-248 [63:0] RSVD

1. err_RQ_index_valid and err_RQ_index are only valid on Modify QP to Terminate or Error.
2. This variable is a cached variable. See Cached_Variables_Valid in Modify QP operations for more details on cached context

variables.
3. Only valid for iWARP QPs.

Table 11-67. iWARP QP Context Structure Format [continued]

Byte
Offset [Bit Range] Field Name

613875-009 1695

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

PrivilegedEnable (1 bit)

This bit is used to enable privilege mode on STags.

STag 0 is never allowed in an inbound RDMA packet.

FastRegisterEnable (1 bit)

This bit is used to enable fast register opcodes on privilege mode QPs.

BindEnable (1 bit)

This bit is used to enable memory window bind operations on this QP.

TimelyEnable (1 bit)

This bit enables the TIMELY congestion control algorithm.

Receive_Markers (1 bit)

This field specifies if we are to receive MPA markers in the receive stream.

Send_Markers (1 bit)

This field specifies if generating MPA markers in the transmit stream.

Value Description

0b STag 0 is NOT allowed for a local STag, and an AEQE is generated with privilege error indicated.

1b A local STag of zero (STag 0) is allowed on this connection, and the TO field should be treated as a physical
address.

Value Description

0b A fast register is NOT allowed for this connection, and an AEQE is generated with privilege error indicated.

1b A fast register is allowed on this connection.

Value Description

0b Memory window bind operations are NOT allowed on this connection, and an AEQE is generated with privilege
error indicated.

1b Memory window bind operations are allowed on this connection.

Value Description

0b No markers are expected in the receive stream.

1b Markers are expected every 512 bytes.

Value Description

0b Markers are not included in the transmit stream.

1b Markers are expected every 512 bytes.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1696 613875-009

rdmard_ok (1 bit)

rdmawr_rdresp_ok (1 bit)

timestamp (1 bit)

This field indicates if timestamp option is in use on this connection.

wscale (1 bit)

This field indicates if window scale option is in use on this connection.

dupack_thresh (3 bits)

Specifies the number of dupacks received before starting fast retransmit (1-7). A value of 0 is
remapped to a default value of 3.

err_RQ_index_valid (1 bit)

Indicates that the err_RQ_index is valid. This setting is allowed only for a Modify QP to Terminate or
a Modify QP to Error operation.

err_RQ_index (15 bits)

Software uses err_RQ_index to override the index in the RQ during a FlushWQEs CQP operation.
This is only valid if err_RQ_index_valid is on and it is a Modify QP to Terminate or Modify QP to Error
operation.

drop_out_of_order_seg (1 bit)

Value Description

0b Inbound iWARP RDMA read requests are disabled, and an AEQE is generated.

1b Inbound iWARP RDMA read requests are enabled.

Value Description

0b Inbound iWARP RDMA write requests and inbound RDMA read responses are disabled, and an AEQE is
generated.

1b Inbound iWARP RDMA write requests and inbound RDMA read responses are enabled.

Value Description

0b The timestamp option is not present.

1b The timestamp option is enabled on this connection (RFC 1323).

Value Description

0b Windows are not scaled.

1b The window scale option is enabled on this connection in both directions (RFC 1323). The window is scaled by
the snd_wscale and rcv_wscale variables described later.

Value Description

0b The out-of-order segment is processed.

1b If a segment is received that is out-of-order, TRX drops the segment and sends an acknowledgment as required
by TCP.

613875-009 1697

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

DCTCP_enable (1 bit)

TimelyEnable, and DCTCP_enable are mutually exclusive. At most, only one can be set.

ECN_enable (1 bit)

XMIT_TPH_en (1 bit)

SQ_TPH_en (1 bit)

SQ_TPH_value (8 bits)

If SQ_TPH_en is set (1b), TPH STag associated with SQ operations is initialized with SQ_TPH_value.
If SQ_TPH_en is clear (0b), this field is ignored.

SQ_Size (4 bits)

This field encodes the maximum size for the WQ. The encoding of the SQ sizes are 4*2SQ_Size in
terms of 32-byte quanta of memory. The following value are allowed for SQ_Size:

Value Description

0b Data Center TCP is disabled.

1b Data Center TCP is enabled and ECN_enable is ignored.

Value Description

0b ECN functionality per RFC 3168 is disabled.

1b The TOS field of the IPv4 header or IP TC field of the IPv6 header contains the ECN code point (bits 6 and 7 -
least significant bits) and the code point in the IP TC or TOS context field must be set to 01b (normal) or code
point 10b (optional).

Value Description

0b THP is not used for data reads associated with this QP.

1b TPH is enabled for data reads associated with this QP.

Value Description

0b THP is not used for this resource.

1b TPH is enabled for the SQ of this QP.

Value Description

0001b 256 bytes

0010b 512 bytes

0011b 1024 bytes

0100b 2048 bytes

0101b 4096 bytes

0110b 8192 bytes

0111b 16384 bytes

1000b 32768 bytes

1001b 65536 bytes

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1698 613875-009

Software can only allocate N-1 WQEs on the SQ. Each WQE is variable in size and can consume up
to 256 bytes of memory. For more information see Section 11.4.1.5.2. The minimum size for an SQ
is four WQEs of the maximum size that is used.

RCV_TPH_en (1 bit)

RQ_TPH_en (1 bit)

RQ_TPH_value (8 bits)

If RQ_TPH_en is set (1b), TPH STag associated with RQ operations is initialized with RQ_TPH_value.
If RQ_TPH_en is clear (0b), this field is ignored.

RQ_Size (4 bits)

This field encodes the maximum size for the WQ. The encoding of the RQ sizes are 4*2RQ_Size in
terms of 32-byte quanta of memory. The following value are allowed for RQ_Size:

1010b 131072 bytes

1011b 262144 bytes

1100b 524288 bytes

1101b 1048576 bytes

Note: All other values are reserved.

Value Description

0b THP is not used for data placement associated with this QP.

1b TPH is enabled for data placement associated with this QP.

Value Description

0b THP is not used for this resource.

1b TPH is enabled for the RQ of this QP.

Value Description

0001b 256 bytes

0010b 512 bytes

0011b 1024 bytes

0100b 2048 bytes

0101b 4096 bytes

0110b 8192 bytes

0111b 16384 bytes

1000b 32768 bytes

1001b 65536 bytes

1010b 131072 bytes

1011b 262144 bytes

1100b 524288 bytes

Value Description

613875-009 1699

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

The actual number or WQEs that can be posted to the RQ is the size of the WQ divided by the WQE
size determined from RQ_WQE_Size. Software can only submit N-1 WQEs to a WQ without
processing completions for the WQ without exposing the possibility of a WQ overflow. WQ overflow
results in indeterministic behavior for the affected WQ. The minimum size for an RQ is eight WQEs.

RQ_WQE_Size (2 bits)

Specifies the number of 32-byte chunks of memory included with each RQ WQE. The maximum
number of additional fragments allowed for an RQ WQE is 13 for a total of 14 fragments and a
maximum WQE size of 256 bytes. Valid values are:

Insert_VLAN_Tag (1 bit)

This bit is set to enable VLAN processing on a connection. The tag configured in the VLAN_Tag field
is used for all processing. If this bit is clear (0b), there is no VLAN insertion or removal performed
by the PE. Additional VLAN and priority setting can be configured through the VSI associated with
the QP. The most significant portion of the VLAN tag carry the user-specified priority.

IPv4 (1 bit)

This field indicates if the QP is IPv4 or IPv6.

infiniband_read_en (1 bit)

iwarp_ddp_ver (2 bits)

These bits are used to set and check the DV fields of DDP PDUs for this connection.

1101b 1048576 bytes

Note: All other values are reserved.

Value Description

00b 32 bytes per WQE (no additional fragments)

01b 64 bytes per WQE (1 or 2 additional fragments)

10b 128 bytes per WQE (3 to 6 additional fragments)

11b 256 bytes per WQE (7 to 13 additional fragments)

Value Description

0b Received packets destined for the QP with VLAN tags are sent to LAN queues.

1b Received packets destined for the QP with mis-matched VLAN or no VLAN tag are sent to LAN queues.

Value Description

0b Indicates IPv6.

1b Indicates IPv4.

Value Description

0b Indicates that the RDMA Read operation is iWARP style.

1b Indicates that the RDMA Read operation can do InfiniBand style reads.

Value Description

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1700 613875-009

iwarp_rdmap_ver (2 bits)

These bits are used to set and check the RV fields of RDMAP PDUs for this connection.

RxCmpQueueNum (19 bits)

This field specifies which of the 512K CQs is used for receive completion notification. The Rx and Tx
completions can be mapped to the same CQ or different queues.

TxCmpQueueNum (19 bits)

This field specifies which of the 512K CQs is used for transmit completion notification.The Rx and Tx
completions can be mapped to the same CQ or different queues.

SQ_Address (64 bits)

If Virtual_WQs bit is clear (0b), this field holds SQ base physical address. It must be aligned to an
address divisible by 256 bytes. If Virtual_WQs bit is set (1b), this field specifies the first HMC PBLE
index of the 1-level page list for the SQ (first first_pm_pbl_index).

RQ_Address (64 bits)

If Virtual_WQs bit is clear (0b), this field holds RQ base physical address. It must be aligned to an
address divisible by 256 bytes. This is the RQ base pointer when this is an iWARP accelerated
connection. If Virtual_WQs bit is set (1b) and the QP is not associated with a shared RQ, this field
specifies the first HMC PBLE index of the 1-level page list for the SQ (first first_pm_pbl_index).

Traffic_Class_or_TOS (8 bits)

This field specifies the IPv4 type of service bits (RFC 2474). If these bits represent the IPv4 TOS
bits, only the lower 4-bits are valid. These bits are set by software when the connection is created
and transmitted in the IP header of all sent datagrams for this connection.

rexmit_thresh (6 bits)

Specifies the number of re-transmissions on this connection that can occur before the
AE_LLP_TOO_MANY_RETRIES AE is generated. A value of 0b disables generation of the AE and
allows infinite retries.

err_RQ_index_valid (1 bit)

Indicates that the err_RQ_index is valid. This setting is allowed only for a Modify QP to Error
operation.

err_RQ_index (15 bits)

Software uses err_RQ_index to override the index in the RQ during a Flush WQEs CQP operation.
This is only valid if err_RQ_index_valid is set and it is a Modify QP to Error operation.

avoid_stretch_ack (1 bit)

This field is normally clear for iWARP connections.

QS_Handle (10 bits)

This field specifies Tx-Scheduler Queue Set handle associated with the TC for this QP. See
Section 8.3.3.4 for more information on scheduler configuration. For VFs, the QS_Handle is checked
to ensure that the VF issuing the CQP command is associated with the QS_Handle.

Value Description

0b ACKs can be coalesced if the E810 is busy. In the E810, this works for all cases except when an immediate ACK
needs to be generated, in which case the ACK sequence number can advance by more than 2*MSS segments.

1b An ACK is generated ever 2*MSS sequence numbers from cur_ack_seq_num up to current rcv_nxt value.

613875-009 1701

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Exception_UDA_Queue (18 bits)

This field specifies UDA queue that receives partial iWARP FPDUs and TCP/IP packets with the URG
bit set. The exception queue MUST use 32-byte RQ WQEs.

limit (2 bits)

This field specifies a limit value for the number of bytes that increase cwnd for each received
acknowledgment (as per RFC3465). If an acknowledgment is for less than limit, cwnd is advanced
by that number of bytes. Generally, this field should be set to 3 (11b) for iWARP connections; other
values are for inter-operation with various TCP offload engines:

if limit = 3 (cwnd += ACK_SEQ - snd_una)

else cwnd += min(ACK_SEQ - snd_una, SMSS<<limit)

Hop_Limit_or_TTL (8 bits)

This field specifies the IPv4 Time-To-Live (TTL) parameter in the IP header (RFC 791). It is
initialized by software.

Dest_Port_Number (16 bits)

This field specifies the destination TCP port number for the TCP header (RFC 793).

Source_Port_Number (16 bits)

This field specifies the source TCP port number for the TCP header (RFC 793).

Dest_IP_Address_0 (32 bits)

This field specifies bits 127 through 96 of the IPv6 IP Addresses. Reserved when IPv4 is set (1b).
The MSB of this field (Bits 31:24) is the first byte on the wire for this field.

Dest_IP_Address_1 (32 bits)

This field specifies bits 95 through 64 of the IPv6 IP Addresses. Reserved when IPv4 is set (1b).

Dest_IP_Address_2 (32 bits)

This field specifies bits 63 through 32 of the IPv6 IP Addresses. Reserved when IPv4 is set (1b).

Dest_IP_Address_3 (32 bits)

This field specifies the 32-bit IPv4 (see RFC 791) or the least significant 32-bits of the IPv6 IP
Address. The LSB of this field (Bits 7:0) is the last byte on the wire for this field. For IPv4
Addresses, the MSB (Bits 31:24) of this field is the first byte of the destination IP Address on the
Ethernet wire.

Local_IP_Address_0 (32 bits)

This field specifies bits 127 through 96 of the IPv6 IP Addresses. Reserved when IPv4 is set (1b).
The MSB of this field (Bits 31:24) is the first byte on the wire for this field.

Local_IP_Address_1 (32 bits)

This field specifies bits 95 through 64 of the IPv6 IP Addresses. Reserved when IPv4 is set (1b).

Value Description

00b cwnd updated by at most 1*SMSS bytes

01b cwnd updated by at most 2*SMSS bytes.

10b cwnd updated by at most 4*SMSS bytes (experimentation).

11b cwnd updated by the number of bytes Acknowledged (experimentation).

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1702 613875-009

Local_IP_Address_2 (32 bits)

This field specifies bits 63 through 32 of the IPv6 IP Addresses. Reserved when IPv4 is set (1b).

Local_IP_Address_3 (32 bits)

This field specifies the 32-bit IPv4 (see RFC 791) or the least significant 32-bits of the IPv6 IP
Address. The LSB of this field (Bits 7:0) is the last byte on the wire for this field. For IPv4
Addresses, the MSB (Bits 31:24) of this field is the first byte of the destination IP Address on the
Ethernet wire.

Src_MAC_Address[5-0] (8 bits each)

Specifies the MAC Address associated with the source IP Address. Index 0 is the LSB and byte 5 is
the MSB.

snd_mss (14 bits)

Maximum segment size the sender is allowed to transmit. The E810 snd_mss is often set to values
smaller than the maximum based on the capabilities of the fabric or connection partner. It can
change based on the minimum of the rcv_mss, Path MTU or Ethernet MTU. This field needs to be
set to a value less any TCP options. Rather than setting the value to 1460, if the timestamp option
is enabled it would be set to 1448. If VLAN is enabled on this QP, subtract 4. The snd_mss value will
be rounded down to the nearest multiple of 4.

ARP_Index (16 bits)

Index into the ARP cache to specify the Ethernet MAC Address to use for this connection. Initialized
by software during connection establishment. Allows access to 65536 entry ARP table.

VLAN_Tag (16 bits)

Specifies one of the 4096 VLAN tags for this connection; three bits of priority and one bit canonical
format. All bits are valid. The VLAN is in the lower 12 bits of the VLAN_Tag field. The upper three
bits are priority.

TCP_state (4 bits)

Following are the state definitions (RFC 793):

Value Description

0000b NON EXISTENT (software state)

0001b CLOSED

0010b LISTEN (software state)

0011b SYN_SENT (software state)

0100b SYN_RECEIVED (software state)

0101b ESTABLISHED

0110b CLOSE_WAIT

0111b FIN_WAIT_1

1000b CLOSING (software state)

1001b LAST_ACK (software state)

1010b FIN_WAIT_2

1011b TIME_WAIT (software state)

Note: All other values are reserved.

613875-009 1703

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Flow Label (20 bits)

This field specifies the IPv6 Flow Label field contents (RFC 2460). This field is set by software when
a connection is offloaded and can be changed during operation.

pd_index (16 bits) and pd_index_high (2 bits)

Protection domain for this context. This specifies which one of the 256K iWARP protection domains
this connection context belongs to. There are no reserved index values.

Snd_wscale (4 bits)

This field specifies the shift count used on the advertised window size received from the other end
to obtain the real 32-bit Advertised Window Size (AWS). A value of 0 selects no window scaling. A
value of 14 supports a maximum window of 1,073,725,440 bytes [(65536 x 16384) - 1) (RFC
1323]. Software initializes this field from the value supplied during connection establishment (such
as SYN segment). Valid values are 0-14, supporting windows up to 1 GB -1. A value of 15 is rolled
back to a value of 14.

Rcv_wscale (4 bits)

This field specifies the shift count used every time TCP sends a segment to determine the window
size to report. The internal 32-bit window size is right shifted by this field to give the value to place
in the TCP header. A value of 0 selects no window scaling. A value of 15 supports a maximum
window of 1,073,725,440 bytes ((65536 x 16384) - 1) (RFC 1323). Software initializes this field
from the value it supplied during connection establishment (like on the SYN segment) based on the
receive buffer size. Valid values are 0-14, supporting a receive window up to 1 GB -1. A value of 15
is rolled back to a value of 14.

timestamp_recent (32 bits)

This field is updated when a segment arrives that includes the expected segment number
(RFC 1323). This field is returned in the Echo Reply field of a timestamp.

timestamp_age (32 bits)

This field records the value from tcp_now (500 ms timer) the last time ts_recent was copied from a
receive segment (RFC 1323). This field is required for TCP to perform PAWS.

snd_nxt (32 bits)

The next sequence number that TCP sends in a transmitted packet (RFC 793).

snd_wnd (32 bits)

This field specifies the senders Advertised Window Size (AWS). This field is the 16-bit receive
window shifted by snd_wscale to come up with the AWS (RFC 793). This is a window our partner
advertised that limits our transmit operations.

rcv_nxt (32 bits)

This is the next expected receive sequence number. It is also referred to as the left hand receive
pointer (RFC 793).

rcv_wnd (32 bits)

This field specifies the receivers AWS. The AWS is flow control imposed by the receiver. This field is
used to generate the 16-bit window size reported in the TCP header, shifted by the receive window
scale (rcv_wscale). This is the value advertised to the sender (RFC 793).

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1704 613875-009

snd_max (32 bits)

This sequence number points to the maximum send sequence number that has been transmitted.
This field sets the upper bound of valid ACK when processing a re-transmission timeout (RFC 793).
On connection offload this field is normally set to the same sequence number as snd_nxt unless a
retransmission was in progress when the connection was offloaded.

snd_una (32 bits)

This sequence number points to the oldest unacknowledged sequence number for this connection
(RFC 793).

srtt (32 bits)

This field is the smoothed round-trip time (rtt) << 3 (RFC 793 and RFC 2988) in microseconds. If
this field is set to 0b on connection offload then the hardware calculates the value.

rtt_var (32 bits)

Round-trip variation (RTTVAR in RFC 2988) in microseconds. This field MUST never be set to 0b if
srtt is also set to 0b. Make this a non-zero value if srtt is 0b.

ss_thresh (32 bits)

Slow start threshold (RFC 2581).

cwnd (32 bits)

This field is the sender congestion widow. It gets incremented by MSS when an ACK arrives.
Software should initialize this field to 1b segment size (in bytes). If a duplicate ACK arrives, this is
set to min (cwnd, rcv_wnd) but at least two segments. On a transport timeout this is set to 1b
segment (RFC 2581).

snd_wl1 (32 bits)

Segment sequence number used for last send window update (RFC 793).

snd_wl2 (32 bits)

Segment acknowledgment used for last send window update (RFC 793).

max_snd_window (32 bits)

Indicates the largest send window advertised by the remote peer. Used in step 3 of the sender side
SWS algorithm. If at least half of the largest window seen so far is available, send a segment.

Q2_Address (56 bits)

This field points to a buffer in host memory that is used to report a terminate message received on
this QP. This pointer is the high 56 bits of the address. The low eight bits are implied as zero (thus
the buffer is aligned on a 256-byte boundary). The field can be located at a fixed offset based on
some other pointer (receive base pointer); it only points to a one entry queue to handle errors
(terminate requests).

last_byte_sent (8 bits)

This is the last byte transmitted on the wire. It is only used during window probes. During modified
iWARP only window probes, the E810 transmits the last acknowledged data byte on the wire. This
corresponds to the last byte sent because a zero window condition is defined as all bytes
acknowledged but no window to continue transmitting. Software should initialize it to the last byte
sent before the connect was offloaded the connection to the hardware, so if a streaming mode
message had been sent, it is the last byte sent of the last MPA message sent. If after a SYN/ACK
handshake then initialize this field to 0b.

613875-009 1705

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

rcv_no_mpa_crc (1 bit)

This field specifies if we are to check MPA CRCs in the receive stream.

assume_aligned_headers (1 bit)

This field is set by software during connection setup if it knows the other adapter is a E810 that
does not generate unaligned headers. This enables the E810 to place all segments that arrive if it
passes basic header checks even if the packet was received out of order. Markers are not examined.

iWARP_Mode (1 bit)

This field sets the mode of operation when RQ empty conditions are encountered.

IRD_Size (3 bits)

This field specifies the number of inbound RDMA resources available for this connection (Q1). Valid
settings are:

When advertising resources to the other side, only half the queue is available. For example, if
IRD_Size is set to 64 entries, the ORD size for the connection partner should be set to 32 or less.

ORD_Size (8 bits)

This field specifies the number of outbound RDMA resources available for this connection. Up to 255
outbound RDMA read requests are supported. This field is not encoded because a partner might
support a different number of RDMA read requests than on transmit (such as 1, or 10, or 64, and so
on).

snd_mrk_offset (9 bits)

This field specifies the offset to the MPA marker in the transmit stream of bytes. Subsequent
markers are located every 512 bytes from this location. So modulo math can be used to place the
markers in the transmitted byte stream. Software initializes this field upon connection setup.

Value Description

0b All inbound FPDUs are checked by the E810.

1b No MPA CRC checks are performed on FPDUs in the receive stream.

Value Description

0b The connection is placed in the terminate state and an AE is generated.

1b The offending packet is dropped and the peer re-transmits the packet in the hope that the empty condition is
resolved by the time the re-transmission occurs.

Value Description

000b 4 WQEs

001b 16 WQEs

010b 64 WQEs

011b 128 WQEs

100b 256 WQEs

101b Reserved (defaults to 4 WQEs)

110b Reserved (defaults to 4 WQEs)

111b Reserved (defaults to 4 WQEs)

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1706 613875-009

rcv_mrk_offset (9 bits)

This field specifies the offset to the MPA marker in the receive stream of bytes. Subsequent markers
are located every 512 bytes from this location. So modulo math can be used to extract the markers
in the receive byte stream. Software initializes this field upon connection setup.

QP_Completion_Context (64 bits)

This field is reported in CQEs and also in AEQEs.

Use_Statistics_Instance (1 bit)

This field indicates if the default per Private Memory Function statistics are used or if one of the
additional RDMA statistics instances are used for this QP.

Statistics_Instance_Index (7 bits)

This field specifies which of the additional RDMA statistics indexes are used if
Use_Statistics_Instance is set to 1b. This field is ignored if Use_Statistics_Instance is set to 0b.

t_high (12 bits)

The high RTT threshold in microseconds for TIMELY. If the current RTT is higher than this threshold,
the congestion window is multiplicatively decreased. If zero, the default value of 500 microseconds
is used. This value applies only if TimelyEnable is set (1b).

t_low (8 bits)

The low RTT threshold in microseconds for TIMELY. If the current RTT is less than this threshold, the
congestion window will be additively increased. If zero, the default value of 50 microseconds is
used. This value applies only if TimelyEnable is set (1b).

syn_rst_handling (2 bits)

This field indicates how syns and resets are handled.

remote_endpoint_index (16 bits)

Index in the local table of the remote endpoint. This field is only valid if the
remote_endpoint_trk_en bit is set (see Section 11.5.2.3). This field is experimental.

RTOmin(7)

Provides a minimum floor for the TCP retransmission timeout value. This field is defined in 10 ms
units and has a maximum value of 100, which equates to a 1 s min_rto. Any value greater than 100
and a value of 0 are treated as if a value of 100 was provided.

Value Description

0b The default statistics are used.

1b The statistics instance indicated by the Statistics_Instance_Index field are used.

Value Description

00b Hardware uses RFC 5961 syn/rst handling.

01b Hardware uses RFC 793 syn/rst handling.

10b Hardware passes syn/rst to firmware which uses RFC 5961 syn/rst handling.

11b Hardware passes syn/rst to firmware which uses RFC793 syn/rst handling.

613875-009 1707

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.6.3 RoCEv2 QP Context Format

RoCEv2 QP context is used by software to initialize or update the E810 QP context. Create and Modify
QP CQP operations (see Section 11.5.3.2) reference this structure for RoCEv2 QPs.

Table 11-68. RoCEv2 QP Context Structure Format

Byte
Offset [Bit Range] Field Name

0

[63:60]
[59:48]
[47]
[46:42]
[41:32]
[31]
[30]
[29]
[28]
[27:26]
[25]
[24:22]

roce_tver
RSVD
Push_Mode_Enable
RSVD
Push_Page_Index
SQ_TPH_en
RQ_TPH_en
XMIT_TPH_en
RCV_TPH_en
RSVD
DCTCP_enable
RSVD

[21:20]
[19]
[18:15]
[14]
[13:10]
[9:8]
[7]
[6]
[5]
[4]
[3]
[2:0]

pd_index_high
err_RQ_index_valid1

RSVD
ECN_enable
RSVD
RQ_WQE_Size
RSVD
is_QP1
Insert_VLAN_Tag
RSVD
IPv4
RSVD

8 [63:0] SQ_Address

16 [63:0] RQ_Address

24

[63:48]
[47:32]
[31:24]
[23:16]

Dest_Port_Number
Source_Port_Number
Traffic_Class_or_TOS
RSVD

[15:12]
[11:8]
[7:0]

SQ_Size
RQ_Size
Hop_Limit_or_TTL

32 [63:32] Dest_IP_Address_2 [31:0] Dest_IP_Address_3

40 [63:32] Dest_IP_Address_0 [31:0] Dest_IP_Address_1

48
[63:48]
[47:32]
[31:30]

ARP_Index
VLAN_Tag
RSVD

[29:16]
[15:0]

mtu
RSVD

56
[63:48]
[47:32]
[31:25]

pd_index
p_key
RSVD

[24:20]
[19:0]

ack_credits
Flow_Label

64 [63:32]
[31:24]

q_key
RSVD

[23:0] Dest_QPN

72 [63:0] RSVD

80 [63:56]
[55:32]

RSVD
lsn

[31:24]
[23:0]

RSVD
psn_nxt

88 [63:24] RSVD [23:0] epsn

96 [63:56]
[55:32]

RSVD
psn_una

[31:24]
[23:0]

RSVD
psn_max

104 [63:0] RSVD

112 [63:56]
[55:32]

RSVD
cwnd

[31:0] RSVD

120 [63:0] RSVD

128
[63:57]
[56:54]
[53:48]

RTOmin
rnr_nak_thresh
rexmit_thresh

[47]
[46:32]
[31:0]

RSVD
err_RQ_index
RSVD

136 [63:51]
[50:32]

RSVD
RxCmpQueueNum

[31:19]
[18:0]

RSVD
TxCmpQueueNum

144 [63:7] RSVD [6:0] Statistics_Instance_Index

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1708 613875-009

For the following field definitions, see Section 11.6.2

152

[63:56]
[55:48]
[47:40]
[39:32]

Src_MAC_Address[5]
Src_MAC_Address[4]
Src_MAC_Address[3]
Src_MAC_Address[2]

[31:24]
[23:16]
[15:0]

Src_MAC_Address[1]
Src_MAC_Address[0]
RSVD

160

[63:32]
[31]
[30:29]
[28]
[27]
[26]
[25]
[24]

RSVD
rcv_no_icrc
RSVD
fw_cc_enable
TimelyEnable
Use_Statistics_Instance
PrivilegedEnable
FastRegisterEnable

[23]
[22]
[21]
[20]
[19]
[18:16]
[15:8]
[7:0]

BindEnable
DCQCNEnable
rdmard_ok
rdmawr_rdresp_ok
UDPrivCQEnable
IRD_Size
RSVD
ORD_Size

168 [63:0] QP_Completion_Context

176 [63:26]
[25:16]

RSVD
QS_Handle

[15:8]
[7:0]

RQ_TPH_value
SQ_TPH_value

184 [63:32] Local_IP_Address_2 [31:0] Local_IP_Address_3

192 [63:32] Local_IP_Address_0 [31:0] Local_IP_Address_1

200 [63:52]
[51:40]

t_high
RSVD

[39:32]
[31:0]

t_low
RSVD

208 [63:0] RSVD

216 [63:48]
[47:32]

RSVD
remote_endpoint_index

[31:0] RSVD

224-248 [63:0] RSVD

1. err_RQ_index_valid and err_RQ_index are only valid on Modify QP to Error.

• Push_Mode_Enable (1 bit) • err_RQ_index (15 bits)
• Push_Page_Index (10 bits) • pd_index (15 bits)
• SQ_TPH_en (1 bit) • Flow_Label (20 bits)
• RQ_TPH_en (1 bit) • RxCmpQueueNum (19 bits)
• XMIT_TPH_en (1 bit) • TxCmpQueueNum (19 bits)
• RCV_TPH_en (1 bit) • Statistic_Instance_Index (4 bits)
• DCTCP_enable (1 bit) • Use_Statistics_Instance (1 bit)
• pd_index_high (2 bits) • PrivilegedEnable (1 bit)
• ECN_enable (1 bit) • FastRegisterEnable (1 bit)
• RQ_WQE_Size (2 bits) • BindEnable (1 bit)
• Insert_VLAN_Tag (1 bit) • TimelyEnable (1 bit)
• IPv4 (1 bit) • rdmard_ok (1 bit)
• SQ_Address (64 bits) • rdmawr_rdresp_ok (1 bit)
• RQ_Address (64 bits) • IRD_Size (3 bits)
• Dest_Port_Number (16 bits) • ORD_Size (8 bits)
• Source_Port_Number (16 bits) • QP_Completion_Context (64 bits)
• Traffic_Class_or_TOS (8 bits) • Exception_UDA_Queue (18 bits)
• Source_MAC_Address_Index (6 bits) • QS_Handle (10 bits)
• SQ_Size (4 bits) • RQ_TPH_value (8 bits)
• RQ_Size (4 bits) • SQ_TPH_value (8 bits)

Table 11-68. RoCEv2 QP Context Structure Format [continued]

Byte
Offset [Bit Range] Field Name

613875-009 1709

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

roce_tver (4 bits)

The protocol engine uses this value when generating the BTH and compares this value to received
BTH headers. The only valid value is 0.

p_key (16 bits)

This field is the Partition Key. It is required for RC and UD QPs.

q_key (32 bits)

This field is the Queue Key. It is used for UD flows. This value is used as the q_key if the value in
the sending request has the most significant bit set.

ack_credits (5 bits)

This is used to set the initial encoded ACK credit syndrome field in ACKs issued by this node for this
connection. The only value defined is 11111b, which disables participation in credit management for
this connection on this node.

Dest_QPN (24 bits)

This field is the destination QP number. It is used for RC QPs.

psn_nxt (24 bits)

This field is the send packet sequence number. It is set to the initial psn value for the QP. It should
be set to a random value.

epsn (24 bits)

This field is the expected incoming (receive) packet sequence number. It is required for RC
connections. The Starting PSN is received in the REQ/REP headers during connection setup.

psn_una (24 bits)

This field is the PSN of the unacknowledged request. On QP create, it should be set to psn_nxt.

psn_max (24 bits)

This field is the high watermark of Tx requests. It should be set to the same value as psn_nxt at QP
create time.

mtu (14 bits)

The maximum payload size. The only supported values are 256, 512, 1024, 2048,and 4096.

is_QP1 (1 bit)

Indicates that the QP is used for RoCEv2 Management Datagram (MAD) processing. This bit is not
valid for RC connections. This bit is intended to be used for VMs (not PFs/VFs which have their own
QP1).

• Hop_Limit_or_TTL (8 bits) • Local_IP_Address_0 (32 bits)
• Dest_IP_Address_0 (32 bits) • Local_IP_Address_1 (32 bits)
• Dest_IP_Address_1 (32 bits) • Local_IP_Address_2 (32 bits)
• Dest_IP_Address_2 (32 bits) • Local_IP_Address_3 (32 bits)
• Dest_IP_Address_3 (32 bits) • t_high (12 bits)
• ARP_Index (16 bits) • t_low (8 bits)
• VLAN_Tag (16 bits) • remote_endpoint_index (16 bits)
• err_RQ_index_valid (1 bit) •

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1710 613875-009

UDPrivCQEnable (1 bit)

Indicates that the additional values, SMAC and VLAN, are in the UD completion. This bit is not valid
for RC connections.

DCQCNEnable (1 bit)

Enables the DCQCN algorithm for RoCEv2. DCQCNEnable, TimelyEnable, and DCTCP_enable are
mutually exclusive. At most, only one can be set. When this bit is set (1b), Data Center TCP is
enabled and ECN_enable is ignored. TimelyEnable, and DCTCP_enable are mutually exclusive. At
most, only one can be set.

rcv_no_icrc (1 bit)

This field specifies if whether to check ICRCs in the receive stream.

fw_cc_enable (1 bit)

When fw_cc_enable is set (1b), all Congestion Notification Packets (CNPs) are forwarded to
firmware. Firmware handles the packet and updates the congestion window. When fw_cc_enable is
set (1b), DCQCNEnable and TimelyEnable are ignored.

Src_MAC_Address[5-0] (8 bits each)

Specifies the MAC Address associated with the source IP Address. Index 0 is the LSB and byte 5 is
the MSB.

cwnd (24 bits)

Initial congestion window in terms of packets.

lsn (24 bits)

Initial setting for the Limit Sequence Number (LSN). LSN limits the number of messages that can
be outstanding at one time. Logically, LSN = MSN + credit count.

rexmit_thresh (6 bits)

Specifies the number of re-transmissions on this connection that can occur before the
AE_LLP_TOO_MANY_RETRIES AE is generated. A value of 0b disables generation of the AE and
allows infinite retries.

rnr_nak_thresh (3 bits)

Specifies the number of rnr_naks on this connection that can occur before the
AE_LLP_TOO_MANY_RETRIES AE is generated. A value of 0 disables generation of the AE and
allows infinite retries.

RTOmin (7 bits)

See RTOmin definition in iWARP context (Section 11.6.2). In RoCEv2, it is intended only for lossy
networks.

Value Description

0b All inbound ICRCs are checked.

1b No ICRC checks are performed in the receive stream.

613875-009 1711

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.6.4 RDMA QP Completion Codes

RDMA QP errors are typically reported via AEs with the E810. After fielding the AEs, software might
issue the flush WQES CQP operation (see Section 11.5.3.17) to complete any pending operations.
Table 11-69 lists the completion codes reported by the E810 in a CQ entry (Table 11-67). Also note that
host software can report any completion code necessary using the flush WQEs operation instead of the
codes listed in Table 11-69.

11.6.5 RDMA CQ Entry Formats

CQ operation for RDMA is described in Section 11.4.1.3. CQs are manipulated through CQP operations.
See Section 11.5.3.3 for further details.

When Avoid_Memory_Conflicts is not set (0b), the CQE is normally 32 bytes. However, some
completions require additional information. In this case, the Extended_CQE bit is set (1b) and an
additional 32 bytes is added just for that CQE.

When Avoid_Memory_Conflicts is set (1b), the CQE is always 64 bytes. If the Extended_CQE bit is not
set (0b), and the second half of the CQE is all zeros. If the Extended_CQE bit is set (1b), the second
half of the CQE is described in Table 11-71.

Table 11-69. RDMA QP Error Codes

Major Error Code Minor Error Code Completion Reason Description

0x0001 0x0001 WQE Flushed The WQE has been flushed due to a ModifyQP state transition.

Table 11-70. RDMA CQ Entry Format

Byte
Offset [Bit Range] Field Name

0 [63:32] TCP_or_Packet_Sequence_Number_or_RTT [31:0] Payload_Length

8 [63:0] QP_Completion_Context

16 [63:50]
[49:32]

RSVD
QP_ID

[31:0] Invalidated_STag_or_L/RKey

24

[63]
[62]
[61:56]
[55]
[54]
[53]
[52]

CQE_Valid
SQ
OP
Error
Solicited_Event (RDMA RQ only)
STag_or_L/RKey (RDMA RQ only)
RSVD

[51]
[50]
[49:47]
[46:32]
[31:16]
[15:0]

Push_Dropped (RDMA SQ only)
Extended_CQE
RSVD
WQ_Desc_Index
Major_Error_Code
Minor_Error_Code

Table 11-71. Extended CQ Entry Format

Byte
Offset [Bit Range] Field Name

32

[63:56]
[55:48]
[47:40]
[39:32]

Immediate_Data Byte[7]
Immediate_Data Byte[6]
Immediate_Data Byte[5]
Immediate_Data Byte[4]

[31:24]
[23:16]
[15:8]
[7:0]

Immediate_Data Byte[3]
Immediate_Data Byte[2]
Immediate_Data Byte[1]
Immediate_Data Byte[0]

40 [63:0] RSVD

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1712 613875-009

OP (6 bits)

This field reports the opcode from the operation associated with the CQE.

Extended_CQE (1 bit)

When the Extended_CQE bit is set (1b), the CQE is extended to 64 bytes. The second half of the
CQE format is shown in Table 11-71. When the Extended_CQE is valid, software must ensure that
the CQE_Valid2 flag has the right polarity. If it is not valid, then the CQE is not complete and
software cannot yet process the CQE.

WQ_Desc_Index (15 bits)

WQ is sliced up into 32-byte descriptor quanta. Every WQE must start with a 32-byte descriptor on
a 32-byte boundary. WQ_Desc_Index reports the 32-byte quanta index of the WQE associated with
the completion.

CQE_Valid (1 bit)

The CQE_Valid bit for CQE indicates that a CQE is ready to be processed. The polarity of the Valid
bit changes each time the CQ wraps from the last entry back to the first entry. This change in
polarity reduces software overhead by avoiding the need to clear the Valid bit once software has
processed a valid CQE.

Software is responsible to clear (set to 0b) all memory in a CQ initially at CQ creation. The first
iteration (and subsequent odd numbered iterations) through the CQ, the E810 sets the Valid bit to
1b when it writes a new CQE. For the second iteration (and all even numbered iterations) through
the CQ, the E810 sets the valid bit to 0b when it writes an new CQE.

Error (1 bit)

STag_or_L/RKey (1 bit)

Indicates if the Invalidated_STag_or_L/RKey field has valid contents.

48 [63:0] RSVD

56
[63]
[62]
[61]

CQE_Valid2
Immediate_Data_valid
UD_smac_valid

[60]
[59:0]

UD_VLAN_Tag_valid
RSVD

Value Description

0b No error.

1b An error occurred when processing the WQE associated with this CQE and that the Error_Code field is valid.

Value Description

0b Ignore Invalidated_STag_or_L/RKey.

1b An STag or L/RKey was invalidated and Invalidated_STag_or_L/RKey field is valid.

Table 11-71. Extended CQ Entry Format [continued]

Byte
Offset [Bit Range] Field Name

613875-009 1713

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Solicited_Event (1 bit)

Valid for receive only. Value for SQ completions is undefined.

SQ (1 bit)

Push_Dropped (1 bit)

Valid only when SQ is set.

Payload_Length (32 bits)

Total payload length of the completed message. This field is only valid for RQ WQE completions.

TCP_or_Packet_Sequence_Number_or_RTT (32 bits)

For iWARP, this field reports the TCP sequence number associated with the work request specified
by the completion. For SQ-related CQEs, RTT is reported instead of the TCP Sequence number if the
SQ WQE has the ReportRTT bit set.

For a RoCEv2 SQ completions, this field is the Packet Sequence Number or RTT.

QP_Completion_Context (64 bits)

Completion context pointer. This field is transferred to the CQE from QP context.

QP_ID (18 bits)

QP associated with the completed message.

Invalidated_Stag_or_L/RKey (32 bits)

Any STag or L/RKey that was invalidated by the completed message. Only valid if the STag or L/
RKey bit is also set. If the STag or L/RKey bit is clear, Invalidated_Stag or L/RKey must be ignored.
This is valid only for RC QPs.

Major_Error_Code (16 bits)

Valid if the Error is set (1b). See Table 11-69 for defined values. Software can also report any value
via the Flush WQEs CQP operation (see Section 11.5.3.17).

Minor_Error_Code (16 bits)

Valid if Error is set (1b). See Table 11-69 for defined values. Software can also report any value via
the Flush WQEs CQP operation (see Section 11.5.3.17).

Value Description

0b SE bit not set in received packet.

1b SE bit set in received packet.

Value Description

0b RQ

1b SQ

Value Description

0b Push operations are being processed successfully.

1b A recent push mode operation has been dropped by the E810. Software should refrain from submitting
additional push mode operations until the SQ has encountered an empty condition.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1714 613875-009

The following items are in the extended CQE:

CQE_Valid2 (1 bit)

The CQE_Valid2 bit must match the setting for a valid CQE in the CQ. Normally the value of the
CQE_Valid2 bit will be the same as the CQE_Valid bit in this completion. However, there is one case
where it is different: if the completion starts in the last entry of the CQ, the second half of the CQE
wraps to the start of the CQ so the CQE_Valid2 bit flips to match the CQE_Valid setting for the next
pass of the CQ.

Immediate_Data_valid (1 bit)

This bit indicates that immediate data was received.

Immediate_Data (8 bytes)

For iWARP, the Immediate_Data field is all eight bytes, which are in bytes 0-7 of the
Immediate_Data field.

For RoCEv2, the Immediate_Data field is four bytes, which are in bytes 0-3 of the Immediate_Data
field, and bytes 4-7 are ignored.

UD_smac_valid (1 bit)

Must be 0b for RC QPs. See Section 11.7.1.1 for a description of UD CQEs.

UD_VLAN_Tag_valid (1 bit)

Must be 0b for RC QPs. See Section 11.7.1.1 for a description of UD CQEs.

11.6.6 RDMA Descriptor Formats

11.6.6.1 RDMA SQ Descriptors

The following WQE formats are used in conjunction with RDMA QPs. Operations that are supported for
RDMA QPs are the listed in Table 11-72.

Table 11-72. RDMA QP Operations

Operation
Code Operation Name Section

Reference
Operation

Code Operation Name Section
Reference

0x00 RDMA Write 11.6.6.1.5 0x09 Fast Register Memory Region 11.6.6.1.10

0x01 RDMA Read 11.6.6.1.7 0x0A Local Invalidate STag 11.6.6.1.9

0x02 Reserved N/A 0x0B RDMA Read with Local Invalidate 11.6.6.1.7

0x03 Send

11.6.6.1.3

0x0C NOP 11.6.6.1.2

0x04 Send with Invalidate 0x0D RDMA Write with Solicited Event 11.6.6.1.5

0x05 Send with Solicited Event 0x0E-0x2F Reserved N/A

0x06 Send with Solicited Event and
Invalidate 0x30 Connection Established 11.6.6.1.11

0x07 Reserved N/A 0x31-0x3F Reserved N/A

0x08 Memory Window Bind 11.6.6.1.8

613875-009 1715

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.6.6.1.1 Common RDMA SQ Descriptor Format Fields

The basic RDMA WQE is a 32-byte structure that is broken up into 64-bit (8-byte) words. The
placement of these fields (when they apply) within WQE are common among all CQP WQEs and also
RDMA WQEs.

Table 11-73 lists the basic structure of a QP WQE including the common fields. The definition of fields
marked as “Operation Code Dependent” vary from operation-to-operation and are detailed in
subsequent sections. Fields marked as “Reserved” must be set to 0b or undesired behavior related to
the specific QP associated with the WQE might occur. Additionally, RDMA WQEs can optionally include
additional descriptors to enable larger WQEs to be created. The additional descriptor format is listed in
Table 11-74 and Table 11-2.

OP (6 bits)

RDMA operation code. See Table 11-72 for the specific values.

WQE_Valid (1 bit)

The WQE_Valid bit for Work Queue Entries (WQE) indicates that a WQE is ready to be processed by
the E810. The polarity of the Valid bit changes each time the WQ wraps from the last entry back to
the first entry. This change in polarity reduces software overhead associated with the need to clear
a Valid bit and also to enable the E810 to read ahead in the WQ to reduce the need for doorbell
rings. See Section 11.4.1.5.2 for more information on submitting work to a QP with the E810.

Software is responsible to clear (set to 0b) all memory in a WQ initially at QP creation. The first
iteration (and subsequent odd numbered iterations) through the WQ, software sets the Valid bit to
1b when it writes a new WQE. For the second iteration (and all even numbered iterations) through
the WQ, software sets the Valid bit to 0b when it writes an new WQE.

AdditionalFragmentCount (4 bits)

The maximum number of fragments is 14. In the WQE, the AdditionalFragmentCount specifies the
number of additional fragment descriptors that are valid for this WQE. When there is no Immediate
Data, the first fragment descriptor is in the first quanta, so the max for AdditionalFragmentCount is
13. When Immediate Data is present, it consumes the initial fragment, so the max
AdditionalFragmentCount is 14.

Table 11-73. RDMA Common WQE Fields

Byte
Offset [Bit Range] Field Name

0 [63:0] Operation Code Dependent

8 [63:0] Operation Code Dependent

16 [63:0] Operation Code Dependent

24

[63]
[62]
[61]
[60]
[59]
[58]
[57]
[56]

WQE_Valid
Signaled_Compeltion
Local_Fence
Read_Fence
Operation Code Dependent (wait_for_rcvFPDU)
Operation Code Dependent (Streaming_Mode)
Operation Code Dependent (Inline_Data_Flag)
Push_WQE

[55:48]
[47]
[46]
[45:42]
[41:38]
[37:32]
[31:0]

Operation Code Dependent (Inline_Data Length)
Operation Code Dependent (Immed_Data_Flag)
Operation Code Dependent (ReportRTT)
RSVD
AdditionalFragmentCount
OP
Operation Code Dependent

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1716 613875-009

Push_WQE (1 bit)

Indicates that the WQE was pushed to the push page associated with the QP. If this bit is set and
the E810 dropped the push operation, the Push_Dropped bit is set in the next CQE following this
WQE to indicate to software to stop pushing WQEs until an empty SQ condition has been observed.
Using this rule prevents additional CPU and PCI bus bandwidth from being consumed when the
Ethernet fabric is congested or the E810 is temporarily unable to process push mode operations.

Signaled_Completion (1 bit)

Local_Fence (1 bit)

This bit set (1b) signifies that the current WQE MUST NOT start until all prior SQ WQEs on the QP
completed.

ReportRTT (1 bit)

This bit set (1b) indicates that RTT will be reported in the CQE instead of TCP or Packet Sequence
Number. This is the latest SRTT (Smoothed Round Trip Time) according to RFC 6298.

Read_Fence (1 bit)

This bit set (1b) signifies that the current WQE MUST NOT start until any outstanding RDMA read
requests on the SQ complete.

11.6.6.1.1.1 Fragment Descriptor Format

Tagged_Offset (64 bits)

The tagged offset (relative to the STag) associated with the data described by the additional
fragment descriptor.

STag (32 bits)

STag associated with the data described by the additional fragment descriptor.

Fragment_Valid (1 bit)

Indicates the fragment is valid. A fragment is valid when this bit matches the WQE_Valid bit.

In the additional 32-byte descriptor quantas, when only one fragment is used it is still necessary to
set the Fragment_Valid bit in both fragments. The second fragment in the 32-byte descriptor
quanta will not be used since the AdditionalFragmentCount did not include it.

Fragment_Length (31 bits)

Length in bytes of the data described by the additional fragment descriptor.

Value Description

0b Do not generate a CQE for this message unless there is an error associated with the WQE.

1b Generate a CQE for this WQE. A CEQE might or might not be generated depending on the state of the CQ.

Table 11-74. RDMA Fragment Descriptor Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Tagged_Offset

8 [63]
[62:32]

Fragment_Valid
Fragment_Length

[31:0] STag

613875-009 1717

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.6.6.1.1.2 Inline Data Format

Whether or not the WQE includes Immediate Data, the first eight bytes of Inline Data begin in the first
fragment (offset 8 in the WQE). If the Inline Data exceeds eight bytes, the data continues in the next
32-byte descriptor quanta(s).

The format of each additional 32-byte descriptor quanta follows:

The maximum inline data size is 224 bytes.

The Inline_Valid flag must be set in every 32-byte descriptor quanta that has inline data. The
Inline_Valid flag must match the WQE_Valid flag.

Table 11-75. Inline Data Format for the First 32-Byte Descriptor Quanta in a WQE

Byte
Offset [Bit Range] Field Name

0 [63:0] Immed_Data or RSVD

8 [63:0] Inline_Data

16 [63:0] Operation Dependent

24 [63:0] Opcode, flags, and so on

Table 11-76. Inline Data Format for the Additional 32-Byte Descriptor Quanta(s) in a WQE

Byte
Offset [Bit Range] Field Name

0 [63:0] Inline_Data

8 [63:0] Inline_Data

16 [63:0] Inline_Data

24 [63]
[62:56]

Inline_Valid
RSVD

[55:0] Inline_Data

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1718 613875-009

11.6.6.1.2 SQ WQE Format - NOP

For the following field definitions, see Section 11.6.6.1.1.1

OP (6 bits)

This WQE format is valid for the NOP operation. See Section 11.6.6.1.1 for the associated opcode
values.

11.6.6.1.3 SQ WQE Format - Send

For the following field definitions, see Section 11.6.6.1.1.

Table 11-77. RDMA SQ NOP WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24

[63]
[62]
[61]
[60]
[59:57]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
RSVD

[56]
[55:42]
[41:38]
[37:32]
[31:0]

Push_WQE
RSVD
AdditionalFragmentCount
OP
RSVD

1. The AdditionalFragmentCount can be used instead of placing multiple individual NOPs.

• WQE_Valid (1 bit) • Read_Fence (1 bit)
• Signaled_Completion (1 bit) • Push_WQE (1 bit)
• Local_Fence (1 bit) • AdditionalFragmentCount (4 bits)1

Table 11-78. RDMA SQ Send WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Tagged_Offset

8 [63]
[62:32]

Fragment_Valid
Fragment_Length

[31:0] STag

16 [63:0] RSVD

24

[63]
[62]
[61]
[60]
[59]
[58]
[57]
[56]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
wait_for_rcvFPDU
Streaming_Mode
Inline_Data_Flag
Push_WQE

[55:48]
[47]
[46]
[45:42]
[41:38]
[37:32]
[31:0]

RSVD
Immed_Data_Flag
ReportRTT
RSVD
AdditionalFragmentCount
OP
Remote_Invalidate_STag

• WQE_Valid (1 bit) • Push_WQE (1 bit)
• Signaled_Completion (1 bit) • ReportRTT (1 bit)
• Local_Fence (1 bit) • AdditionalFragmentCount (4 bits)
• Read_Fence (1 bit)

613875-009 1719

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

OP (6 bits)

This WQE format is valid for the “Send”, “Send with Invalidate”, “Send with Solicited Event”, and
“Send with Solicited Event and Invalidate”, as well as the versions of these operations that include
inline data. See Section 11.6.6.1.1 for the associated opcode values.

Streaming_Mode (1 bit)

Indicates that this WQE contains data that is to be sent in streaming mode (normal TOE, not
iWARP). The only valid OP value with this bit is “Send”. The total length of the message must be less
than or equal to MSS or an AE (AE_WQE_LSMM_TOO_LONG) is generated and the QP state is
transitioned to terminate. This bit does not apply to RoCEv2.

wait_for_rcvFPDU (1 bit)

Only valid if Streaming_Mode is set to 1b. When this bit is set, the E810 does not process the WQE
following this one until a valid inbound iWARP ULPDU is received. This is useful for the last WQE of
the IETF response frame. This bit does not apply to RoCEv2.

Inline_Data_Flag (1 bit)

Set to 0b for no inline data.

Remote_Invalidate_STag (32 bits)

The STag on the remote peer that is to be invalidated by the message. This field is only valid if the
operation type indicates an invalidate operations.

Tagged_Offset (64 bits), STag (32 bits), Fragment_Length (31 bits), Fragment_Valid (1 bit)

These fields describe the first fragment of the message to be sent. Additional fragments can be
added to the WQE by setting AdditionalFragmentCount to a non-zero value.

Immed_Data_Flag (1 bit, RoCEv2 only)

When this bit is set (1b), indicates that immediate data is present. The WQE format is modified as
follows:

The fragment at offset 0 will contain only the Immediate Data. The SGEs (if any) start in the
first additional fragment.

Note: Immediate Data is not allowed for the invalidate operations (“Send with Invalidate”
and “Send with Solicited and Invalidate”). For the invalidate operations, the
Immed_Data_Flag is reserved and should be set to zero by software.

Immediate_Data (4 bytes, RoCEv2 only)

Byte 0 is the least significant byte of the data and byte 3 is the most significant. The data is
specified in little endian format.

Table 11-79. Immediate Data Format (First Fragment at Offset 0)

Byte
Offset [Bit Range] Field Name

0
[63:32]
[31:24]
[23:16]

RSVD
Immediate_Data Byte[3]
Immediate_Data Byte[2]

[15:8]
[7:0]

Immediate_Data Byte[1]
Immediate_Data Byte[0]

8 [63:0] RSVD

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1720 613875-009

11.6.6.1.4 SQ WQE Format - Send with Inline Data

For the following field definitions, see Section 11.6.6.1.1.

OP (6 bits)

This WQE format is valid for the “Send”, “Send with Invalidate”, “Send with Solicited Event”, and
“Send with Solicited Event and Invalidate”, as well as the versions of these operations that include
inline data. See Section 11.6.6.1.1 for the associated opcode values.

Inline_Data_Flag (1 bit)

The Inline_Data_Flag must be set to 1b. This bit specifies that the data is contained inline with the
WQE.

Inline_Data_Length (8 bits)

Inline_Data_Length indicates the number of bytes included in the WQE and all subsequent
additional fragment descriptors.

Remote_Invalidate_STag (32 bits)

See Section Section 11.6.6.1.3.

Inline_Data

See Section 11.6.6.1.1.2.

Immed_Data_Flag (1 bit, RoCEv2 only)

The Immed_Data_Flag set to 1b indicates that immediate data is present.

Note: Immediate Data is not allowed for the invalidate operations (“Send with Invalidate” and
“Send with Solicited and Invalidate”). For the invalidate operations, the
Immed_Data_Flag is reserved and should be set to zero by software.

Table 11-80. RDMA SQ Send with Inline Data WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Immediate_Data or RSVD

8 [63:0] Data

16 [63:0] RSVD

24

[63]
[62]
[61]
[60]
[59:58]
[57]
[56]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
RSVD
Inline_Data_Flag
Push_WQE

[55:48]
[47]
[46]
[45:38]
[37:32]
[31:0]

Inline_Data_Length
Immed_Data_Flag
ReportRTT
RSVD
OP
Remote_Invalidate_STag

• WQE_Valid (1 bit) • Read_Fence (1 bit)
• Signaled_Completion (1 bit) • ReportRTT (1 bit)
• Local_Fence (1 bit) • Push_WQE (1 bit)

Value Description

0b The WQE is using descriptors and the WQE format is listed in Table 11-78.

1b The WQE has inline data and the WQE format is listed in Table 11-80.

613875-009 1721

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Immediate_Data (4 bytes)

See Section 11.6.6.1.3.

11.6.6.1.5 SQ WQE Format - RDMA Write

For the following field definitions, see Section 11.6.6.1.1.

OP (6 bits)

This WQE format is valid for the “Write”, “Write with Solicited” opcodes. Write can be used with or
without immediate data. Write with Solicited only makes sense if the Immed_Data_Flag is on (1b).
If the Immed_Data_Flag is off (0b), it is the same as a Write. See Section 11.6.6.1.1 for the
associated opcode values.

Tagged_Offset (64 bits), STag (32 bits), Fragment_Length (31 bits), Fragment_Valid (1 bit)

These fields describe the first fragment (data source) of the message to be sent. Additional
fragments can be added to the WQE by setting AdditionalFragmentCount to a non-zero value.

Remote_Tagged_Offset (64 bits), Remote_STag (32 bits)

These fields describe the remote buffer (data sink).

Inline_Data_Flag (1 bit)

Set to 0b for no inline data.

Immed_Data_Flag (1 bit)

The Immed_Data_Flag set to 1b indicates that immediate data is present. The WQE format is
modified as follows:

The fragment at offset 0 will contain only the Immediate Data. The SGEs (if any) start in the first
additional fragment.

Table 11-81. RDMA SQ RDMA Write WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Tagged_Offset

8 [63]
[62:32]

Fragment_Valid
Fragment_Length

[31:0] STag

16 [63:0] Remote_Taged_Offset

24

[63]
[62]
[61]
[60]
[59:58]
[57]
[56]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
RSVD
Inline_Data_Flag
Push_WQE

[55:48]
[47]
[46]
[45:42]
[41:38]
[37:32]
[31:0]

RSVD
Immed_Data_Flag
ReportRTT
RSVD
AdditionalFragmentCount
OP
Remote_STag

• WQE_Valid (1 bit) • Push_WQE (1 bit)
• Signaled_Completion (1 bit) • ReportRTT (1 bit)
• Local_Fence (1 bit) • AdditionalFragmentCount (4 bits)
• Read_Fence (1 bit)

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1722 613875-009

Immediate_Data (8 bytes, iWARP only)

Byte 0 is the least significant byte of the data and byte 7 is the most significant. The data is
specified in little endian format.)

Immediate_Data (4 bytes, RoCEv2 only)

Byte 0 is the least significant byte of the data and byte 3 is the most significant. The data is
specified in little endian format. Bytes 4-7 are ignored.

11.6.6.1.6 SQ WQE Format - RDMA Write with Inline Data

For the following field definitions, see Section 11.6.6.1.1.

OP (6 bits)

See Section 11.6.6.1.1 for the associated opcode value.

Inline_Data_Flag (1 bit)

The Inline_Data_Flag must be set to 1b for inline data operations. This bit specifies that the data is
contained inline with the WQE.

Table 11-82. Immediate Data Format (First Fragment at Offset 0)

Byte
Offset [Bit Range] Field Name

0

[63:56]
[55:48]
[47:40]
[39:32]

Immediate_Data Byte[7]
Immediate_Data Byte[6]
Immediate_Data Byte[5]
Immediate_Data Byte[4]

[31:24]
[23:16]
[15:8]
[7:0]

Immediate_Data Byte[3]
Immediate_Data Byte[2]
Immediate_Data Byte[1]
Immediate_Data Byte[0]

8 [63:0] RSVD

Table 11-83. RDMA SQ RDMA Write with Inline Data WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Immed_Data or RSVD

8 [63:0] Data

16 [63:0] Remote_Tagged_Offset

24

[63]
[62]
[61]
[60]
[59:58]
[57]
[56]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
RSVD
Inline_Data_Flag
Push_WQE

[55:48]
[47]
[46]
[45:38]
[37:32]
[31:0]

Inline_Data_Length
Immed_Data_Flag
ReportRTT
RSVD
OP
Remote_STag

• WQE_Valid (1 bit) • Read_Fence (1 bit)
• Signaled_Completion (1 bit) • ReportRTT (1 bit)
• Local_Fence (1 bit) • Push_WQE (1 bit)

Value Description

0b The WQE is using descriptors and the WQE format is listed in Table 11-81.

1b The WQE has inline data and the WQE format is listed in Table 11-83.

613875-009 1723

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Inline_Data_Length (8 bits)

Inline_Data_Length indicates the number of bytes included in the WQE and all subsequent
additional fragment descriptors.

Remote_Tagged_Offset (64 bits), Remote_STag (32 bits)

These fields describe the remote buffer (data sink).

Inline_Data

See Section 11.6.6.1.1.2.

Immed_Data_Flag (1 bit)

The Immed_Data_Flag set to 1b indicates that immediate data is present.

Immed_Data (8 bytes or 4 Bytes)

See Section 11.6.6.1.5.

11.6.6.1.7 SQ WQE Format - RDMA Read

RDMA Read now supports multiple SGEs for iWARP as well as RoCEv2. Read with local invalidate is
expanded as well. If a Read with local invalidate is issued with multiple SGEs, only the first STag is
invalidated.

For the following field definitions, see Section 11.6.6.1.1.

OP (6 bits)

This WQE format is valid for the RDMA read and RDMA read with local invalidate operations. See
Section 11.6.6.1.1 for the associated opcode value.

Tagged_Offset (64 bits), STag (32 bits), Fragment_Length (31 bits), Fragment_Valid (1 bit)

These fields describe the local target (data sink) of the RDMA read operation. STag also specifies
the local STag to be invalidated for RDMA read with local invalidate operations.

Table 11-84. RDMA RDMA Read WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Tagged_Offset

8 [63]
[62:32]

Fragment_Valid
Fragment_Length

[31:0] STag

16 [63:0] Remote_Tagged_Offset

24

[63]
[62]
[61]
[60]
[59:58]
[57]
[56]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
RSVD
RSVD (Inline_Data_Flag, must be 0)
Push_WQE

[55:48]
[47]
[46]
[45:42]
[41:38]
[37:32]
[31:0]

RSVD
RSVD (Immed_Data_Flag)
ReportRTT
RSVD
AdditionalFragmentCount
OP
Remote_STag

• WQE_Valid (1 bit) • Read_Fence (1 bit)
• Signaled_Completion (1 bit) • Push_WQE (1 bit)
• Local_Fence (1 bit) • ReportRTT (1 bit)

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1724 613875-009

Remote_Tagged_Offset (64 bits), Remote_STag (32 bits)

These fields describe the remote buffer (data source).

If the infiniband_read_en bit is set in the iWARP context, this QP supports new semantics for RDMA
Read. See Section 11.4.1.5.2.2.1 for a description of the capabilities.

AdditionalFragmentCount (4 bits)

See Section 11.6.6.1.1.

The AdditionalFragmentCount field is reserved for iWARP QPs if infiniband_read_en is off (0b).

11.6.6.1.8 SQ WQE Format - Memory Window Bind

For the following field definitions, see Section 11.6.6.1.1.

OP (6 bits)

See Section 11.6.6.1.1 for the associated opcode value.

Memory_Window_Base_VA (64 bits)

This field specifies the starting point of the memory window within the parent memory region’s
virtual address range for the memory window.

Memory_Window_Length (46 bits)

This field specifies the size of the memory window. Specifying 0b as a length results in an AE code
of AE_AMP_MWBIND_INVALID_BOUNDS for Type 2 Windows. Specifying 0b as a length results in
an invalidate of a Type 1 Window.

Memory_Window_STag (32 bits)

This field specifies STag of the memory window including the index and additional keys.

If the Window is a Type 1 Window, the key value (STag/R_Key) must change. Software will change
the random bits and/or the user key, but the index field must not change. Hardware uses the index
to locate the MRTE and will change the key value. Since the index field does not change, the same
MRTE continues to be used.

Table 11-85. SQ Bind Memory Window WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Memory_Window_Base_VA

8 [63:32] Parent_Memory_Region_STag [31:0] Memory_Window_STag

16 [63:46] RSVD [45:0] Memory_Window_Length

24

[63]
[62]
[61]
[60]
[59:57]
[56]
[55]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
RSVD
Push_WQE
RSVD

[54]
[53]
[52:48]
[47]
[46:38]
[37:32]
[31:0]

Memory_Window_Type
VA_Based_TO
Access_Rights
RSVD (Immed_Data_Flag)
RSVD
OP
RSVD

• WQE_Valid (1 bit) • Read_Fence (1 bit)
• Signaled_Completion (1 bit) • Push_WQE (1 bit)
• Local_Fence (1 bit)

613875-009 1725

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Memory_Window_Type (1 bit)

Parent_Memory_Region STag (32 bits)

This field specifies STag of the parent memory region to which this memory window is bound
including the index and additional keys.

VA_Based_TO (1 bit)

VA_Based_TO specifies if the memory window is zero-based or VA-based.

Access_Rights (5 bits)

Indicates the rights assigned to this STag. The valid bits for this field are:

11.6.6.1.9 SQ WQE Format - Local Invalidate

For the following field definitions, see Section 11.6.6.1.1.

Value Description

0b The entry describes a Type 2B memory window.

1b The entry describes a type 1 memory window.

Value Description

0b The memory window is zero-based

1b The memory window is VA-based

Value Description

00100b Enable remote read.

01000b Enable remote write

Note: All other values are reserved.

Table 11-86. Local Invalidate WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:32] RSVD [31:0] STag

16 [63:0] RSVD

24

[63]
[62]
[61]
[60]
[59:57]
[56]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
RSVD
Push_WQE

[55:48]
[47]
[46:38]
[37:32]
[31:0]

RSVD
RSVD (Immed_Data_Flag)
RSVD
OP
RSVD

• WQE_Valid (1 bit) • Read_Fence (1 bit)
• Signaled_Completion (1 bit) • Push_WQE (1 bit)
• Local_Fence (1 bit)

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1726 613875-009

OP (6 bits)

See Section 11.6.6.1.1 for the associated opcode value.

STag (32 bits)

STag specifies the STag to be invalidated.

11.6.6.1.10 SQ WQE Format - Fast Register

Fast register support for the E810 has two modes of operation that depend on the number of available
PBL resources. The prerequisite for issuing a fast register operation is to allocate an invalid memory
region with a specific number of page list entries (or PBLEs for the E810). Since the E810 allows host
software to directly populate PBLs for memory registration, it is desirable to keep the same approach
for fast register operations. The issue with allowing only the mode where host software directly
populates the PBLs for fast register is apparent if an application issues fast register, send, local
invalidate, fast register operations using the same memory region without waiting for completions for
the local invalidate operation. If the E810 only allowed the mode where software directly populated
PBLs for fast register operations in these cases, memory corruption would be highly likely to occur.
Software mechanisms to resolve the races end up with extremely inefficient fast register operations if
they could be made to work at all. To not penalize every application for the previous behaviors, but still
provide proper handling of these behaviors, the following algorithm should be used for fast register
operations:

1. During the allocate memory region operation, software must reserve the full number of PBL
resources necessary to satisfy the allocate memory region request.

2. Software must keep a reference count per allocated memory region to track the number of
outstanding fast register operations that are outstanding against the memory region that used the
PBL resources allocated during the allocate memory region operation.

3. On fast register operation, if there are enough free PBL resources to satisfy the new request,
software should populate a new area of PBLEs and issue the fast register operation without setting
the Copy_Host_PBLs flag.

4. If there are not enough free PBL resources to satisfy the new request but the reference count of the
users of the PBLs allocated during the allocate memory region operation is zero, software can use
the PBL resources but must increment the reference count for the memory region.

5. If there are not enough free PBL resources to satisfy the new request but the reference count is one
or more, host software must allocate a pinned buffer large enough to hold the page list specified on
the fast register operation, populate that buffer with the page list specified by the fast register
operation, and set the Copy_Host_PBLs bit and increment the reference count.

6. When the memory region associated with the fast register has been invalidated, the reference
count for the memory region must be decremented.

This algorithm minimizes that cases where the page list associated with a fast register operation must
be copied across the PCI bus while maintaining safe access to the memory region state and page list.

613875-009 1727

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

For the following field definitions, see Section 11.6.6.1.1.

OP (6 bits)

See Section 11.6.6.1.1 for the associated opcode value.

VA_Based_TO (1 bit)

VA_Based_TO specifies if the STag is zero-based or VA-based.

Zero-based STags carry only the first buffer offset in the Virtual_Address_or_First_Buffer_Offset
field. VA-based STags carry the full base VA including first buffer offset in the
Virtual_Address_or_First_Buffer_Offset field.

Virtual_Address_or_First_Buffer_Offset (64 bits)

Indicates the base VA for this region/window for VA-based entries and indicates the first buffer
offset for zero-based entries.

STag_Length (46 bits)

Length of the memory region or memory windows specified by the STag index specified by
Driver_Key_Stag_Index. Specifying 0 as a length results in an AE code of
AE_AMP_FASTREG_INVALID_LENGTH. If Leaf_PBL_Size is set to 1b and Host_Page_Size = 0,
AE_AMP_FASTREG_INVALD_LENGTH is also generated if the size exceeds 228 x 4096, or 27 host
page sizes for VMs.

Table 11-87. SQ Fast Register WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Virtual_Address_or_First_Buffer_Offset

8 [63:12] PBL_Address [11:0] first_pm_pbl_index_high

16 [63:48]
[47:46]

first_pm_pbl_index_low
RSVD

[45:0] STag_Length

24

[63]
[62]
[61]
[60]
[59:57]
[56]
[55:54]
[53]

WQE_Valid
Signaled_Completion
Local_Fence
Read_Fence
RSVD
Push_WQE
RSVD
VA_Based_TO

[52:48]
[47:46]
[45:44]
[43]
[42:38]
[37:32]
[31:8]
[7:0]

Access_Rights
Host_Page_Size
Leaf_PBL_Size
Copy_Host_PBLs
RSVD
OP
Driver_Key_STag_Index
Consumer_Key

• WQE_Valid (1 bit) • Read_Fence (1 bit)
• Signaled_Completion (1 bit) • Push_WQE (1 bit)
• Local_Fence (1 bit)

Value Description

0b The memory window is zero-based.

1b The memory window is VA-based.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1728 613875-009

Access_Rights (5 bits)

Indicates the rights assigned to this STag. The values for this field are:

Host_Page_Size (2 bits)

Host_Page_Size specifies the page size of the backing pages for the STag. The values for this field
are:

Driver_Key_STag_Index (24 bits)

Index and Driver Key fields of the STag associated with the memory region. The E810 supports a
variable size STag index. This means that the number of bits used for Driver Key and for
STag_Index are dependent on the maximum number of STags supported for a given PCI function.
For example, if a PCI function read the FPMPEMRSZ field (See Section 13.2.2.20.130) and found
that the maximum number of MRTEs was 64 KB, the lower 16 bits of this field would be the STag
index and the upper 8 bits would be a driver key that the driver can randomize to make guessing
the MRTE layout more difficult to guess.

Consumer_Key (8 bits)

Consumer_Key is the least significant 8-bit portion of the STag. This field is supplied by the user
application or the driver.

Copy_Host_PBLs (1 bit)

PBLs for an STag are located in host memory for the E810 in the pages allocated for the E810 HMC.
In most situations, software copies backing pages for an STag directly to the HMC pages to optimize
performance. If software needs the E810 to populate the HMC pages, Copy_Host_PBLs must be set
to 1b and PBL_Address must point to the physical address of the backing pages in host memory.

Note: All PBLEs (root and leaf) must be allocated in chunks of eight.

Value Description

00001b Enable local read.

00010b Enable local write.

00100b Enable remote read.

01000b Enable remote write.

10000b Enable window bind.

Note: All other values are reserved.

Value Description

00b 4 KB pages.

01b 2 MB pages.

10b 1 GB pages.

11b Reserved.

613875-009 1729

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Leaf_PBL_Size (2 bits)

The E810 supports physically-contiguous STags and two forms of virtually-contiguous STags.
Physically-contiguous STags do not require any PBLs and store physical address of the first page of
the STag directly with the STag (no leaf PBL). Virtually-contiguous STags that can be represented
with a single HMC virtually contiguous address range require a single-level PBL of Variable size.
Virtually-contiguous STags that are large (or in cases where the HMC address space for PBLs
becomes fragmented) might require two level PBLs. In this case, the E810 needs to know the
length of the leaf PBLs to properly manage access to the PBLs. The valid settings for Leaf_PBL_Size
are the following:

PBL_Address (52 bits)

Only valid if Copy_Host_PBLs is set (1b) or if Leaf_PBL_Size is set to 0b. If Copy_Host_PBLs is set
and Leaf_PBL_Size is not set to 0b, PBL address is the physical address of the PBLs in host memory
if they were not copied to HMC pages by software. If Leaf_PBL_Size is 256 or 4 KB, PBL address
contains the physical address of a packed array of Root PBLEs. The format of the Root PBLEs is
listed in Table 11-88.

If Leaf_PBL_Size is variable, PBL_Address contains the physical address of the page list in host
memory to be copied to first_pm_pbl_index. If Copy_Host_PBLs is clear and Leaf_PBL_Size is set to
0b, the physical address of the physically contiguous memory is contained in this field.

first_pm_pbl_index (28 bits)

This field defines the HMC PBLE object index used for the memory region page list. If
Copy_Host_PBLs is set (1b), the E810 copies the page list from the host address specified by
PBL_Address to the HMC object specified by first_pm_pbl_index. If Copy_Host_PBLs is clear
(0b), first_pm_pbl_index designates the HMC base address for the PBLs for this STag that
software has already initialized with PBL information.

Value Description

00b No leaf PBL.

01b Variable (one level).

10b 256 bytes (two level).

11b 4 KB (two level).

Table 11-88. Format of Root PBLEs in Host Memory for Two-Level PBLs

Byte
Offset [Bit Range] Field Name

0 [63:0] Leaf_PBL_Address

8 [63:28] RSVD [27:0] first_pm_pbl_index

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1730 613875-009

11.6.6.1.11 SQ WQE Format - Connection Established

For the following field definitions, see Section 11.6.6.1.1.

OP (6 bits)

This WQE tells the device to notify software when the connection is established. An AE
(AE_LLP_CONNECTION_ESTABLISHED) informs software that the connection is complete. This WQE
is not valid for RoCEv2 or UDA QPs. See Section 11.6.6.1.1 for the associated opcode value.

11.6.6.2 RQ WQE Format

WQE_Valid (1 bit) and AdditionalFragmentCount (4 bits)

See Section 11.6.6.1.1.

Tagged_Offset (64 bits), STag (32 bits), Fragment_Length (31 bits), Fragment_Valid (1 bit)

These fields describe the first fragment of the byte stream to be sent. Additional fragments can be
added to the WQE by setting AdditionalFragmentCount to a non-zero value.

Table 11-89. SQ Fast Register WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] RSVD

8 [63:0] RSVD

16 [63:0] RSVD

24
[63]
[62]
[61:38]

WQE_Valid
RSVD (Signaled_Completion)
RSVD

[37:32]
[31:0]

OP
RSVD

• WQE_Valid (1 bit) • Signaled_Completion (1 bit)

Table 11-90. iWARP RQ WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Tagged_Offset

8 [63]
[62:32]

Fragment_Valid
Fragment_Length

[31:0] STag

16 [63:0] RSVD

24
[63]
[62:42]
[41:38]

WQE_Valid
RSVD
AdditionaFragmentCount

[37:32]
[31:0]

RSVD (OP)
RSVD

613875-009 1731

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.7 UD/UDA Functionality

The operations for RoCEv2 UD and UDA are implemented using the WQE formats described in the
following sections. QP operation, the verbs interface, and system view of the E810 are described in
Section 11.4.1. The CQP operations and HMC structures necessary to bring the E810 to a functional
state for RDMA are described in Section 11.5.

11.7.1 UD/UDA Descriptor Formats

11.7.1.1 UD/UDA CQ Entry Formats

CQ operation for RDMA is described in Section 11.4.1.3. CQs are manipulated through CQP operations.
See Section 11.5.3.3 for further details.

For RQ completions, see Section 11.7.1.4 for a description of the received data.

When Avoid_Memory_Conflicts is not set (0b), the CQE is normally 32 bytes. However, some
completions require additional information. In this case, the Extended_CQE bit is set (1b) and an
additional 32 bytes is added just for that CQE.

When Avoid_Memory_Conflicts is set (1b), the CQE is always 64 bytes. If the Extended_CQE bit is not
set (0b), the second half of the CQE is all zeros. If the Extended_CQE bit is set (1b), the second half of
the CQE is described in Table 11-92.

Table 11-91. CQ Entry Format from UD/UDA QP

Byte
Offset [Bit Range] Field Name

0 [63:32] Packet_Sequence_Number_or_RTT [31:0] Payload_Length

8 [63:0] QP_Completion_Context

16 [63:50]
[49:32]

RSVD
QP_ID

[31:24]
[23:0]

RSVD
UD_Src_QPN

24

[63]
[62]
[61:56]
[55]
[54]
[53]
[52]

CQE_Valid
SQ
OP
Error
Solicited_Event (RQ Only)
IPv4
RSVD

[51]
[50]
[49:47]
[46:32]
[31:16]
[15:0]

Push_Dropped (SQ Only)
Extended_CQE
RSVD
WQ_Desc_Index
Major_Error_Code
Minor_Error_Code

Table 11-92. Extended CQ Entry Format from UD QP

Byte
Offset [Bit Range] Field Name

32
[63:32]
[31:24]
[23:16]

RSVD
Immediate_Data Byte[3]
Immediate_Data Byte[2]

[15:8]
[7:0]

Immediate_Data Byte[1]
Immediate_Data Byte[0]

40 [63:0] RSVD

48 [63:48] UD_VLAN_Tag [47:0] UD_smac

56
[63]
[62]
[61]

CQE_Valid2
Immediate_Data_valid
UD_smac_valid

[60]
[59:0]

UD_VLAN_Tag_valid
RSVD

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1732 613875-009

OP (6 bits)

This field reports the opcode from the operation associated with the CQE.

Extended_CQE (1 bit)

When the Extended_CQE bit is set (1b), the CQE is extended to 64 bytes. The second half of the
CQE format is shown in Table 11-92. When the Extended_CQE is valid, software must ensure that
the CQE_Valid2 flag has the right polarity. If it is not valid, the CQE is not complete and software
cannot yet process the CQE.

WQ_Desc_Index (15 bits)

WQ is sliced up into 32-byte descriptor quanta. Every WQE must start with a 32-byte descriptor on
a 32-byte boundary. WQ_Desc_Index reports the 32-byte quanta index of the WQE associated with
the completion.

CQE_Valid (1 bit)

The CQE_Valid bit for CQE indicates that a CQE is ready to be processed. The polarity of the Valid
bit changes each time the CQ wraps from the last entry back to the first entry. This change in
polarity reduces software overhead by avoiding the need to clear the Valid bit once software has
processed a valid CQE. Software is responsible to clear (set to 0b) all memory in a CQ initially at CQ
creation. The first iteration (and subsequent odd numbered iterations) through the CQ, the E810
sets the Valid bit to 1b when it writes a new CQE. For the second iteration (and all even numbered
iterations) through the CQ, the E810 sets the Valid bit to 0b when it writes an new CQE.

Error (1 bit)

Solicited_Event (1 bit)

Valid for receive only. Value for SQ completions is undefined.

IPv4 (1 bit)

This field indicates that the message received was IPv4 or IPv6.

SQ (1 bit)

Value Description

0b No error.

1b An error occurred when processing the WQE associated with this CQE and that the Error_Code field is valid.

Value Description

0b SE bit not set in received packet.

1b SE bit set in received packet.

Value Description

0b IPv6

1b IPv4

Value Description

0b RQ

1b SQ

613875-009 1733

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Push_Dropped (1 bit)

Valid only when SQ is set.

Payload_Length (32 bits)

Total payload length of the completed message. This field is only valid for RQ WQE completions. The
length includes the 40 bytes for the IP header. For UDA QP, the length also includes the L4 header.

Packet_Sequence_Number_or_RTT (32 bits)

For a RoCEv2 SQ completions, this field is the Packet Sequence Number or RTT.

QP_Completion_Context (64 bits)

Completion context pointer. This field is transferred to the CQE from QP context.

QP_ID (18 bits)

QP associated with the completed message.

UD_Src_QPN (24 bits)

QP number of the sender. This is valid only for UD QPs.

Major_Error_Code (16 bits)

Valid if Error bit is set (1b). See Table 11-69 for defined values. Software can also report any value
via the Flush WQEs CQP operation (see Section 11.5.3.17).

Minor_Error_Code (16 bits)

Valid if Error bit is set (1b). See Table 11-69 for defined values. Software can also report any value
via the Flush WQEs CQP operation (see Section 11.5.3.17).

The following items are in the extended CQE:

CQE_Valid2 (1 bit)

The CQE_Valid2 bit must match the setting for a valid CQE in the CQ. Normally the value of the
CQE_Valid2 bit will be the same as the CQE_Valid bit in this completion. However, there is one case
where it is different: if the completion starts in the last entry of the CQ, the second half of the CQE
wraps to the start of the CQ, so the CQE_Valid2 bit flips to match the CQE_Valid setting for the next
pass of the CQ.

Immediate_Data_valid (1 bit)

This bit indicates that immediate data was received.

For RoCEv2, the Immediate_Data field is four bytes, which are in bytes 0-3 the Immediate_Data
field and bytes 4-7 are ignored.

UD_smac_valid (1 bit)

Indication that the MAC Address of the sender is valid. This is set only if the UDPrivCQEnable flag is
set in the QP context.

Value Description

0b Push operations are being processed successfully.

1b A recent push mode operation has been dropped by the E810. Software should refrain from submitting
additional push mode operations until the SQ has encountered an empty condition.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1734 613875-009

UD_smac (48 bits)

The MAC Address of the sender. This is only set if UD_smac_valid is set.

UD_VLAN_Tag_valid (1 bit)

Indication that the VLAN_Tag field is valid. This value is set only if the UDPrivCQEnable flag is set in
the QP context. Port VLAN must not be reported.

UD_VLAN_Tag (16 bits)

VLAN Tag of the sender. This value is set only if UD_VLAN_Tag_valid is set.

11.7.1.2 UD/UDA SQ Descriptors

The following WQE formats are used in conjunction with UD QPs. Operations that are supported for UD
QPs are the listed in Table 11-93.

The NOP operation is unchanged (see Section 11.6.6.1.2).

11.7.1.3 UD/UDA SQ Descriptor Formats

11.7.1.3.1 Common UD/UDA SQ Descriptor Format Fields

The basic RDMA WQE is a 32-byte structure that is broken up into 64-bit (8-byte) words. The
placement of these fields with WQE are common among all CQP WQEs, RDMA WQEs and also UD WQEs.
Section 11.5.3.1 lists the basic structure of a CQP WQE, including the common fields.

The definition of fields marked as “Operation Code Dependent” vary from operation to operation and
are detailed in subsequent sections. Fields marked as “Reserved” must be set to 0b or undesired
behavior related to the specific QP associated with the WQE might occur.

Additionally, RDMA WQEs can optionally include additional fragments to enable larger WQEs to be
created.

The only UD operation defined for the SQ is Send (immediate data and inline data are allowed).

11.7.1.3.2 UD/UDA SQ WQE Format - NOP

See Section 11.6.6.1.2.

Table 11-93. UD/UDA QP Operations

Operation
Code Operation Name Section

Reference
Operation

Code Operation Name Section
Reference

0x00-0x02 Reserved N/A 0x06-0x0B Reserved N/A

0x03 Send 11.7.1.3.3 0x0C NOP 11.7.1.3.2

0x04 Reserved N/A 0x0D-0x3F Reserved N/A

0x05 Send with Solicited Event 11.7.1.3.3

613875-009 1735

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.7.1.3.3 UD/UDA SQ WQE Format - Send

For UDA queues, the first fragment must contain the TCP or UDP header. The payload can start in the
first fragment after the header or it can begin in the second fragment.

For the following field definitions, see Section 11.6.6.1.1.

OP (6 bits)

This WQE format is valid for the “Send” and “Send with Solicited Event” as well as the versions of
these operations that include immediate data. See Section 11.7.1.2 for the associated opcode
values.

Send with solicited and immediate data are not valid for UDA QPs.

Inline_Data_Flag (1 bit)

Set to 0b for no inline data.

Tagged_Offset (64 bits), STag (32 bits), Fragment_Length (31 bits), Fragment_Valid (1 bit)

These fields describe the first fragment of the message to be sent. Additional fragments can be
added to the WQE by setting AdditionalFragmentCount to a non-zero value.

AH_ID (17 bits)

Index of Address Handle as allocated by software. This index together with HMC configuration for
the PCI function identifies location of the hardware Address Handle structure in the host memory.

Dest_QPN (24 bits)

QP Number on the remote machine.

Dest_QKey (32 bits)

If the most significant bit is not set, this is an unprivileged Q_Key. The hardware will send this value
for the destination Q_Key.

If the most significant bit is set, this is a privileged Q_Key so hardware will not use this value.
Instead, hardware will send the Q_Key that is in the QP context.

Table 11-94. UD/UDA SQ Send WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Tagged_Offset

8 [63]
[62:32]

Fragment_Valid
Fragment_Length

[31:0] STag

16 [63:56]
[55:32]

RSVD
Dest_QPN

[31:0] Dest_QKey

24

[63]
[62]
[61]
[60:58]
[57]
[56]
[55:48]

WQE_Valid
Signaled_Completion
UDP_Header
RSVD
Inline_Data_Flag
Push_WQE
RSVD

[47]
[46]
[45:42]
[41:38]
[37:32]
[31:17]
[16:0]

Immed_Data_Flag
RSVD
L4LEN
AdditionalFragmentCount
OP
RSVD
AH_ID

• WQE_Valid (1 bit) • Push_WQE (1 bit)
• Signaled_Completion (1 bit) • AdditionalFragmentCount (4 bits)

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1736 613875-009

Immed_Data_Flag (1 bit)

The Immed_Data_Flag set to 1b indicates that immediate data is present. The WQE format is
modified as follows:

The fragment at offset 0 will contain only the Immediate Data. The SGEs (if any) start in the
first additional fragment.

The Immed_Data_Flag is only valid for UD QPs, It is ignored for UDA queues.

UDP_Header (1 bit)

Software must supply the UDP/TCP header at beginning of the first fragment. The payload can start
in the first fragment after the header or it can start in the second fragment.

The UDP_Header flag is valid only for UDA QPs. It is ignored for UD QPs.

L4LEN (4bits)

The L4 header length in DWords. It should be set to 8/12 for UDP, respectively, and be equal to or
larger than 5 (or 20 bytes) for TCP.

The L4LEN field is valid only for UDA QPs. It is ignored for UD QPs.

Immediate_Data (4 bytes)

Byte 0 is the least significant byte of the data and byte 3 is the most significant. The data is
specified in little endian format.

Value Description

0b Indicates that request is sent using TCP.

1b Indicates that request is sent using UDP.

Table 11-95. Immediate Data Format (First Fragment at Offset 0)

Byte
Offset [Bit Range] Field Name

0
[63:32]
[31:24]
[23:16]

RSVD
Immediate_Data Byte[3]
Immediate_Data Byte[2]

[15:8]
[7:0]

Immediate_Data Byte[1]
Immediate_Data Byte[0]

8 [63:0] RSVD

613875-009 1737

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.7.1.3.4 UD/UDA SQ WQE Format - Send with Inline Data

For UDA queues, the inline data must start with the TCP or UDP header. The payload starts after the
header.

For the following field definitions, see Section 11.6.6.1.1.

For the following field definitions, see Section 11.7.1.3.3.

OP (6 bits)

This WQE format is valid for the send and send with solicited event. See Section 11.7.1.2 for the
associated opcode values.

Send with solicited and immediate data are not valid for UDA QPs.

Inline_Data_Flag (1 bit)

The Inline_Data_Flag must be set to 1b. This bit specifies that the data is contained inline with the
WQE.

Inline_Data_Length (8 bits)

Inline_Data_Length indicates the number of bytes included in the WQE and all subsequent
additional fragment descriptors.

Inline_Data

See Section 11.6.6.1.1.2.

Table 11-96. UD/UDA SQ Send with Inline Data WQE Format

Byte
Offset [Bit Range] Field Name

0 [63:0] Immediate_Data or RSVD

8 [63:0] Data

16 [63:56]
[55:32]

RSVD
Dest_QPN

[31:0] Dest_QKey

24

[63]
[62]
[61]
[60:58]
[57]
[56]
[55:48]

WQE_Valid
Signaled_Completion
UDP_Header
RSVD
Inline_Data_Flag
Push_WQE
Inline_Data_Length

[47]
[46]
[45:42]
[41:38]
[37:32]
[31:17]
[16:0]

Immed_Data_Flag
ReportRTT
L4LEN
RSVD
OP
RSVD
AH_ID

• WQE_Valid (1 bit) • Push_WQE (1 bit)
• Signaled_Completion (1 bit)

• Dest_QPN (24 bits) • Immed_Data_Flag (1 bit)
• Dest_QKey (32 bits) • L4LEN (4 bits)
• UDP_Header (1 bit) • AH_ID (16 bits)
• Immediate_Data (4 Bytes) •

Value Description

0b The WQE is using descriptors and the WQE format is listed in Table 11-78.

1b The WQE has inline data and the WQE format is listed in Table 11-80.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1738 613875-009

11.7.1.4 UD/UDA RQ Descriptors

The RQ descriptors are not changed. See Section 11.6.6.2 for details.

When a receive completion arrives, the first 40 bytes of the receive buffer contains the IP header of the
incoming packet. If the packet was sent using IPv6, the IP header consumes the entire 40 bytes. If the
packet was sent using IPv4, the IP header is placed in the second 20 bytes. That is, the IP header
consumes bytes 20 through 39 of the receive buffer. The contents of the first 20 bytes is undefined.

For UDA only, in addition to the 40-byte IP header area, the L4 header is included in the receive buffer.

The form of the UD/UDA received buffer is:

• 40-byte area for the IP header (same for UD and UDA).

• UDA QP receive buffers have the L4 header (e.g. TCP or UDP header). This is not present for UD QP
receive buffers.

• Payload

613875-009 1739

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.8 UDA Functionality

Userspace Direct Access (UDA) was intended to provide userspace access queues in a general way, but
this feature is not supported in the E810. UDA is available only in the kernel and is limited to iWARP
connection setup and error handling. UDA is not available in user space.

The UDA host interface and semantics are very similar to one exposed by RDMA.

• Sending and receiving data.

• Application uses UDA QPs and CQs to send and receive data, see Section 11.5.3.2 and
Section 11.5.3.3 for UDA QP and CQ management requests. UDA QPs and CQs resources are
shared with RDMA.

• Completion and AE management.

• CE notification mechanism is identical to one used for RDMA, see Section 11.5.3.11 and
Section 11.5.3.12 for CEQ and AEQ allocation description. UDA can share event and completion
notification structures with RDMA or have its own resources.

• Application buffer memory management.

• An application should register its buffers (see Section 11.5.3.4) to enable direct placement to and
from application buffers. Memory registration used for UDA buffers is identical to the memory
registration of RDMA, and uses resources from the same pool of memory regions available for PCI
function.

• UDA enables send and receive Ethernet frames by posting frame payload and ULP protocol headers
to UDA QP using post send and post receive operations described in Section 11.8.8.1 and
Section 11.8.8.4. Separate SQ/RQ WQE is used to send and receive single Ethernet frame.

UDA provides a protocol agnostic interface with limited stateless accelerations for the well known
protocols. To enable secure userspace networking for non-privileged consumers UDA limits scope of
supported protocols to IP-based protocol only, by offloading Ethernet and IP header generation to
hardware. Address Handles (see Section 11.5.3.13) are used to provide hardware with information
required to generate Ethernet and IP headers.

Hardware provides partial stateless acceleration for the limited scope of protocols, discussed in
Section 11.8.1 and Section 11.8.2 later.

UDA acceleration enables a wide scope of applications to take advantage of direct communication with
hardware bypassing system overhead. UDA brings a variety of benefits, including deterministic and low
latency, low-latency deviation and jitter, high-message processing rate with a very low network
communication overhead, lock-free networking, and linear scalability with number of cores in the
system without compromising system security.

11.8.1 Transmit UDA Hardware Acceleration

Transmit UDA hardware provides a limited number of partial stateless accelerations.

UDA traffic is not expected to use a dedicated internal switching resources (VSIs). It shares an internal
switch virtual port with RDMA traffic. Depending on the assignment of the user priority, UDA traffic
might share a QS with RDMA QPs, or use a dedicated QS. Assignment of UDA traffic to the QS is done
at QP creation time, and is similar to assignment of RDMA QP.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1740 613875-009

The E810 generates Ethernet and IP headers based on information provided in address handle for
IP-based userspace protocols (see Section 11.5.3.2). Offloading Ethernet and IP headers generation
does not bring much performance improvement, but does improve security of UDA for IP-based
protocols. In the standard deployment configuration, UDA supports only IP-based protocols, with an
option available for the privileged software running in trusted environment allowing to generate all
headers by software. Privileged mode can be enabled by setting Privileged Header Generation Enable
bit in the UDA QP context, see Section 11.8.4.

The E810 supports header generation for non-fragmented datagrams. Hardware is responsible for the
IP Identification field. Hardware maintains one instance of the IP Identification field per UDA QP.

Software is responsible for generating upper protocol headers (UDP/TCP, and so on). Those headers can
be provided as a part of the payload WQE fragment or as a separate WQE fragment. In privileged
mode, software can provide headers in the same WQE fragment with payload or using one or more
dedicated WQE fragments. The E810 also supports an option of inline data, when both upper layer
protocol headers and a frame payload are copied directly to the WQE (see Section 11.8.8.2 for more
details). Push mode, described in Section 11.4.1.5.6, can be used to transmit UDA WQEs with inline
data (see Section 11.8.8.2 for more details).

The E810 offloads checksum generation for non-fragmented UDP and TCP packets.

UDA traffic uses standard internal switching capabilities provided by the E810 to internally switch traffic
between different VSIs. Unlike traffic generated by standard operating system stack, UDA QPs also
require additional internal switching capabilities within VSI, similar to RDMA. This enables internal
switching between userspace processes directly communicating with hardware using UDA QPs. This
capability is enabled by setting a DoLoopback bit in the Address Handle corresponding to the
destination residing on the same VSI. Physical Function device driver is responsible for allocation and
management of Address Handles, also responsible for setting and clearing this bit in previously-
allocated Address Handles. For the unicast traffic this bit is set to 1b, at Address Handle allocation time,
and indicates that all UDA packets generated using this Address Handle are internally switched.

UDA and the host operating system networking stack independently generates the IP Identification
field. To avoid collision of the IP identification space, the E810 has a configurable option to override IP
Identification fields generated by the host networking stack and UDA and forces the MSB of the IP
identification to different values. The IP Identification field override can be enabled per function using
IPCONFIG.USEENTIREIDRANGE register/bit.

11.8.2 Receive UDA Hardware Filtering and Acceleration

Receive UDA acceleration is focusing on identifying UDA frames and delivering those frames to the
associated UDA RQ. This section describes how UDA frames can be identified using various E810 filters,
lists E810 filters that can be programmed for UDA traffic identification, and refers to the sections
describing programming of each filter in details. UDA E810 filtering descriptions are organized by the
traffic types.

11.8.2.1 UDP UDA Filtering and Acceleration

The E810 supports UDA acceleration of the UDP non-fragmented datagrams. Each VSI has a
configuration bit that allows to enable UDA UDP acceleration for that VSI. Once enabled, UDP packets
forwarded by the E810 internal switching fabric to the VSI are forwarded for the further filtering and
processing by PE.

Figure 11-2 on page 1578 shows filtering steps that apply to all traffic types accelerated by Protocol
Engine. Following is a description of each one of those steps applied to UDA UDP traffic.

613875-009 1741

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Each VSI allows enabling of UDA UDP acceleration. When enabled, all UDP packets forwarded to such
VSI are forwarded for the further processing by PE Filters associated with VSI. If UDA UDP is disabled,
all packets forwarded to VSI are processed by LAN. The E810 uses internal switching forwarding tables
to forward packets to VSIs.

UDP traffic is processed by UDA filters associated with PCI function that owns VSI (either VF or PF). If
PE filters do not accept packet, the packet is forwarded to the LAN logic for further processing.

The Accelerated Port Table (see Section 11.5.3.18) is used by UDA in conjunction with other accelerated
traffic types (iWARP) to filter inbound traffic based on the transport protocol destination port. UDA uses
this table for UDP and TCP protocol filtering. When UDA QP expects to receive accelerated datagrams on
the particular port (result of bind local port operation), UDA software should request to update the
Accelerated Port Table (see Section 11.5.3.18). Since the Accelerated Port Table is shared by multiple
PCI functions, false positive identification is possible. The Accelerated Port Table applies to filtering
non-fragmented UDP datagrams only, or first fragments. Non-first fragments are not forwarded to the
Protocol Engine.

If a UDP datagram is allowed by the Accelerated Port Table, it is filtered through perfect Hash Table (see
Section 11.5.3.20). When UDA software binds to the local port, it should add a new entry to the Hash
table belonging to the respective PCI function. Binding to the local port, software should add an entry to
the Hash Table belonging to VF or PF respectively. Actual CQP request to update the Hash Table (see
Section 11.5.3.20) should be done by PF driver only. This operation assumes communication between
VF and PF UDA drivers.

The Hash Table is used to filter UDP datagrams belonging to the accelerated UDA QPs, and resolve QP
for the UDP datagrams. The Hash filter uses different packet header fields to match Quad Hash table
entries depending on the protocol type:

• Unfragmented UDP unicast datagrams are matched based on the destination MAC Address,
innermost VLAN tag (if present), destination IP Address, and destination UDP port.

• Fragmented UDP packets are not forwarded to the Protocol Engine.

A packet forwarded to UDA QPs are placed to the application buffers provided in RQ WQEs. UDA places
the entire Ethernet frame to the buffers provided by the application, except for L2 Tags that can be
stripped depending on VSI configuration. See Section 11.8.8.4 for description of RQ WQE format.

A single Ethernet frame consumes one RQ WQE. RQ WQE should have enough buffering for the header
and packet payload. The most inner VLAN Tag is provided in completion along with other information
describing received packet. See Section 11.8.6.

If the size of the packet header or payload exceeds buffers provided by software, UDA RQ can be
configured to:

• Truncate the packet, or the header, and report an error in corresponding Completion Queue Entry
(CQE).

• Silently drop the packet, and do not consume the WQE even if packet/header placement is started.
Effectively hardware should pretend that packet was never received and unroll the pointers.

If UDA RQ is empty (i.e., software is lagging behind and did not post RQ WQE in time), the inbound
packet is dropped, and the GLPES_PFIP4RXDISCARD statistics counter is incremented. E810 RQs can
be configured to a large number of WQEs that can be pre-posted by software, in addition to the internal
chip buffers that can be flexibly configured to provide additional buffering space. These two factors
should minimize chances of intermittent failures by software to pre-post receive descriptors in time.

In addition to filtering inbound accelerated UDP traffic to one or more UDA QPs, the E810 provides
several hardware accelerations, described below.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1742 613875-009

• Checksum validation for the non-fragmented UDP datagrams — The E810 calculates and
validates IP and UDP checksums for the non-fragmented UDP/IP datagrams. If the checksum does
not match, the Ethernet frame is dropped and not delivered to UDA RQ.

11.8.2.2 TCP UDA Filtering and Acceleration

TCP UDA acceleration enables taking advantage of UDA QPs to send and receive unfragmented TCP
segments directly from the application address space or from the kernel. iWARP connection
management and exception handling is the usage model for this capability.

On the transmit side, TCP UDA acceleration can take advantage of the generic UDA acceleration
capabilities described in Section 11.8.1.

This section describes receive filtering capabilities and hardware accelerations that can be used to
accelerate TCP segments.

UDA TCP acceleration is enabled as soon as iWARP capabilities are enabled for the E810. Similar to
iWARP, PCI function for the inbound TCP segments are identified using destination MAC Address.

UDA TCP acceleration does not support fragmented IP datagrams. All fragments are processed by
stateless filters and delivered to the standard host stack.

UDA TCP acceleration uses an accelerated port table to filter out accelerated traffic based on the
destination TCP port. Software should allocate a port to be used for UDA TCP accelerated traffic using
the CQP operation described in Section 11.5.3.2.

TCP packets that hits an accelerated port table are filtered through the quad hash table.

The quad hash table is a perfect filter that carries an entry for each accelerated TCP connection that is
offloaded to the E810’s PE. The quad hash table has two kinds of entries used for TCP traffic.

• Quad-touple entries carrying and using as input to hash function a quad of source and destination
IP Addresses and source and destination TCP ports.

• Du-touple entries carrying and using as an input to the hash functions a pair of destination IP
Address and destination TCP port.

The du-entries are allocated to filter out connection establishment packets that are targeting
accelerated connections. Those entries are used to filter out TCP packets with a SYN bit set and ACK bit
clear.

The quad-touple entries are allocated to filter out packets targeting already established accelerated
QPs.

The passive side connection establishment flow:

• Listen.

— Allocate du-touple entry with local IP Address and local port socket is bound to.

• SYN is received on QP associated with du-touple.

— Allocate quad-touple entry with local/remote IP Addresses and local/remote TCP ports.

— Send SYN-ACK.

• ACK is received on the QP associated with quad-touple.

613875-009 1743

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

The active side connection establishment flow:

• Connect.

— Allocate quad-touple entry with local/remote IP Addresses and local/remote TCP ports.

— Allocate quad-touple entry with local/remote IP Addresses and local/remote TCP ports.

— Send SYN.

• SYN-ACK is received on QP associated with quad-touple.

— Send ACK.

UDA TCP uses the quad hash table in the same way this table is used for iWARP traffic. A hit in the table
resolves a number of destination QPs. The E810 uses information in QP context to identify iWARP and
UDA TCP traffic. If a packet misses the quad hash table, it is forwarded for the further processing to the
stateless filters.

TCP UDA software should program the quad hash table with du-touple entry to establish UDA
accelerated TCP connection (such as listen or connect socket calls) and to add a quad-touple entry once
connection has been established. To avoid race and loss of data, the quad-touple entry can be allocated
before the connection establishment handshake completed.

The E810 does not terminate TCP connections for UDA traffic. It forwards identified UDA TCP segments
to the corresponding RQ. Multiple TCP tuples can be configured to be delivered to the same RQ. Each
WQE in UDA TCP RQ is consumed by single TCP segment.

In addition to forwarding UDA TCP segments, the E810 provides several hardware accelerations.

• TCP checksum calculation and validation — The E810 supports calculation and validation of
TCP checksum for UDA TCP segments. TCP packets with invalid a checksum is dropped and not
delivered to RQ.

11.8.3 UDA Programming Interface

The UDA programming interface is based on the verb semantics described in Section 11.4.1. It uses
same basic constructs as RDMA: QP, CQ, CEQ, AEQ and memory regions. Those constructs are
described in detail in Section 11.4.1. In addition to those constructs, UDA uses address handles
described later in this section.

11.8.3.1 CEQ

CEQ construct enables hardware to provide software with asynchronous completion notifications.
Application has a full control over requesting asynchronous completion event for the particular CQ. UDA
uses CEQ construct defined for RDMA, described in Section 11.4.1.2.

CEQs are allocated per MSI-X vector per PCI function, and if UDA and RDMA applications are deployed
by the same PCI functions or the same application uses both types of traffic, it shares the same CEQ.
Each entry in CEQ indicates that a requested CE was received by specified CQ and the application
should poll CQ and retrieve completion of transmit or receive operation.

11.8.3.2 AEQ

AEQ construct enables hardware to report AE and error notifications. UDA uses AEQ defined for RDMA,
described in Section 11.4.1.1. AEQ is allocated per PCI function and shared by iWARP and UDA if
application(s) using both types of traffic are deployed in the same PCI function.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1744 613875-009

11.8.3.3 CQ

CQ is a construct that enables an application to receive notification about completed transmit and
receive operations directly in the application address space. UDA uses CQ construct defined for RDMA,
described in Section 11.4.1.3. CQ is associated with RQ and SQ to report completion of transmit and
receive operations. The same CQ can be configured to report completion of transmit and receive
operations on the same and different QPs. Application is allowed to use same CQ to report completion
of UDA and RDMA traffic.

CQ entry indicates what operation has been completed, and depending on the completed operation, it
carries additional information. The format of a UDA CQ entry is described in Section 11.8.5. Among
other fields, CQ entry carries a 64-bit pointer to the QP completion information. This field can be used
to identify a QP that posted completed operation.

Completion of receive operation is always reported in associated CQ. Completion of transmit operation
is not necessarily reported and the application can control whether it wants to be notified about a
completed transmit operation. Application MUST request completion of transmit operation at least once
per SQ size worth of transmit requests.

11.8.3.4 QP

QP is a construct that enables an application to post transmit and receive operations directly from the
application address space. QP consists of the pair of queues: SQ and RQ. UDA uses QP construct
defined for RDMA, described in Section 11.4.1.5.

Unlike iWARP QP, UDA QP does not have to be associated with any particular connection or connection
oriented service and enables mixing of various ULPs such as UDP and TCP on the same QP.

Userspace QP is associated with a particular local IP Address. Non-privileged UDA consumers need to
allocate multiple UDA QPs to send UDA packets using different local IP Addresses. Local IP Address in
QP context is used for UDA IP header generation only. E810 filters can be configured to receive packets
targeting different local IP Addresses on the same QP.

Software should use WQEs described in Section 11.8.6 to post new transmit and receive work to the
UDA QP.

UDA QP is associated with a particular TC, and VLAN. If the application needs to use multiple TCs and
VLANs, it must create multiple QPs and spread traffic, respectively.

All software errors such as invalid WQE format, invalid STag and memory region boundary violation are
considered to be critical errors and result in a transition of QP to the error state and immediately
suspend transmit and receive operations of that QP. Respective AE would be reported via AEQ
associated with QP (see Section 11.4.7).

11.8.3.5 Send Operation

The process of posting WRs to UDA SQ and flow is similar to one described for RDMA SQs in
Section 11.4.1.5.2.

UDA QP enables the application to transmit individual Ethernet frames per posted SQ WQE. Each
transmit WQE must refer to a single Ethernet frame. Software is responsible to limit the frame size to
the configured MSS. If frame size exceeds MSS, frame would be discarded and error reported in CQE.

Software is allowed to post Ethernet frames shorter than a minimum Ethernet frame length. Hardware
pads Ethernet frames to the minimal Ethernet frame length.

613875-009 1745

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Hardware is responsible for Ethernet FCS and IP checksum generation. Software might request
hardware to generate TCP/UDP checksum for non-fragmented datagrams.

In default operation mode, Ethernet and IP headers are generated by hardware using information
provided in the address handle. Software can provide additional ULP header (e.g. UDP) either as a part
of the application buffer referred by SQ WQE fragments or using a private header ring buffer (if enabled
for the QP). If the size of the extended header exceeds the size of the private header ring buffer entry,
the packet is discarded and the error is reported in CQE.

Privileged consumers are allowed to post Ethernet frames with all headers. To enable privileged SQ
operation mode, the Privileged Header Generation bit should be set at QP creation (see Section 11.8.4).

Software can selectively request completion of WQEs by setting the Signaled bit. Completions with
errors are returned regardless of the Signaled bit setting. UDA WQE is completed as soon as hardware
finished processing WQE and validated lengths and fragments. Completion of UDA SQ WQE does not
indicate that respective Ethernet frames are transmitted or received by the destination.

11.8.3.6 Receive Operation

The structure of RQ is a process of posting WRs to UDA RQ and flow is similar to one described for
RDMA RQs in Section 11.4.1.5.8.

UDA QP enables an application to receive an individual Ethernet frame in pre-posted RQ WQEs. Each
inbound Ethernet frame consumes one RQ WQE. Software needs to make sure that buffers posted to
RQ WQE are large enough. If the size of the Ethernet frame exceeds the size of RQ WQE, the frame is
truncated and an error is reported in CQE.

Ethernet frames failing CRC or checksum checks (IP/UDP/TCP) are dropped and not delivered to UDA
QPs.

If an Ethernet frame is received while UDA RQ is empty, such frame is dropped and the
GLPES_PFIP4RXDISCARD statistics counter is incremented.

RQ completion is delivered with each completed RQ WQE. If a packet carries one or more VLAN tags,
the most inner VLAN tag is reported by RQ CQE. Note that VLAN tag is not stripped from the packet
header.

11.8.3.7 Memory Registration

Memory region is a construct that enables hardware to access data directly from the application buffers.
To enable direct hardware access, an application must register application buffers using the register
memory region operation. UDA uses memory regions defined for RDMA described in Section 11.4.1.4.

Memory region construct is not associated with any particular traffic type, and registered memory
region can be accessed both by RDMA and UDA traffic. This enables an application to have the same
application buffer be directly accessed by iWARP and UDA traffic. For example, UDP data received via
one of UDA QPs can be then accessed via RDMA QP without requiring copy operation.

UDA application must register application buffers to be used to send and receive UDA packets.

UDA supports only basic memory registration capabilities and does not support fast memory
registration, bind and invalidate operations.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1746 613875-009

11.8.3.8 Address Handle

Address Handle is a construct that used solely by UD and UDA traffic. Address Handle allows protected
generation of Ethernet and IP Headers for the UDA traffic. Application has to allocate Address Handle
using CQP command described in Section 11.5.3.13 prior to posting data to transmit. Content of
Address Handle is validated by driver. Allocated Address Handle is referred in transmit descriptors, and
used by hardware to generate Ethernet and IP Headers.

Address Handle can be allocated by VF or PF driver. Standard anti-spoofing capabilities of the E810
internal switch applies to UDA traffic as well.

11.8.3.9 Push Mode Support

Push mode enables software to reduce processing latency of the short messages by pushing
corresponding WQE with inline data to the memory-mapped adapter address space. Pushed WQE with
inline data can be immediately processed by the adapter and transmitted to eliminate the need to read
WQE and data from the host memory. See Section 11.4.1.5.6 for a detailed description of push mode
concept and constructs.

UDA QPs take advantage of push mode defined for RDMA. Software can use push mode WQEs,
described in Section 11.4.1.5.6 to reduce processing latency of the short UDA messages. Similar to
RDMA, the size of the UDA push mode message is limited to 224 bytes. The UDA push mode message
cannot use private ULP header buffers and the entire message with ULP headers must fit the push
mode message size restrictions and posted as inline data. The remainder of push mode message
software processing flow is identical to one described for RDMA messages in Section 11.4.1.5.6.

11.8.4 UDA QP Context Format

UDA QP context is used by software to initialize or update the E810’s QP context. Create and Modify QP
CQP operations (see Section 11.5.3.2) reference this structure.

Userspace QP is associated with a particular local IP Address. Non-privileged UDA consumers need to
allocate multiple UDA QPs to send UDA packets using different local IP Addresses. The local IP Address
in QP context is used for UDA IP header generation only. The E810 filters can be configured to receive
packets targeting different local IP Addresses on the same QP.

Table 11-97. UDA QP Context Structure Format

Byte
Offset [Bit Range] Field Name

0

[63:48]
[47]
[46:42]
[41:32]
[31]
[30]
[29]
[28]
[27:22]
[21:20]
[19]
[18:16]

RSVD
Push_Mode_Enable
RSVD
Push_Page_Index
SQ_TPH_en
RQ_TPH_en
XMIT_TPH_en
RCV_TPH_en
RSVD
pd_index_high
RSVD
RSVD (dupack_thresh)

[15]
[14]
[13:12]
[11:10]
[9:8]
[7]
[6]
[5]
[4]
[3:2]
[1:0]

RSVD (drop_out_of_order_seg)
RSVD
RSVD (limit)
RSVD
RQ_WQE_Size
RSVD (timestamp)
RSVD
RSVD (Insert_VLAN_Tag)
RSVD (NoNagle1)
RSVD
RSVD (iwarp_ddp_ver2)

8 [63:0] SQ_Address

16 [63:0] RQ_Address

613875-009 1747

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

PrivilegedEnable (1 bit)

This bit is used to enable privilege mode on STags.

24

[63:48]
[47:32]
[31:24]
[23]

RSVD (Dest_Port_Number)
RSVD (Source_Port_Number)
RSVD (Traffic_Class_or_TOS2)
RSVD (avoid_stretch_ack)

[22:16]
[15:12]
[11:8]
[7:0]

RSVD
SQ_Size
RQ_Size
RSVD (Hop_Limit_or_TTL2)

32 [63:32] RSVD (Dest_IP_Address_1) [31:0] RSVD (Dest_IP_Address_0)

40 [63:32] RSVD (Dest_IP_Address_3) [31:0] RSVD (Dest_IP_Address_2)

48
[63:48]
[47:32]
[31:30]

RSVD (ARP_Index)
RSVD (VLAN_Tag2)
RSVD

[29:16]
[15:14]
[13:0]

snd_mss
RSVD
RSVD (rcv_mss)

56

[63:48]
[47:44]
[43:40]
[39:36]
[35:32]
[31:28]

pd_index
RSVD
RSVD (Snd_wscale)
RSVD
RSVD (Rcv_wscale)
RSVD (TCP_state)

[27:24]
[23]
[22]
[21]
[20]
[19:0]

RSVD
RSVD (ignore_tcp_uns_options)
RSVD (ignore_tcp_options)
RSVD
RSVD (wscale)
RSVD (Flow Label2)

64-128 [63:0] RSVD

136 [63:51]
[50:32]

RSVD
RxCmpQueueNum

[31:19]
[18:0]

RSVD
TxCmpQueueNum

144 [63:8]
[7]

RSVD (Q2_Address)
RSVD

[6:0] Statistics_Instance_Index

152 [63:8] RSVD [7:0] last_byte_sent

160

[63:57]
[56:48]
[47:41]
[40:32]
[31]
[30]
[29]
[28]
[27]
[26]

RSVD
RSVD (snd_mrk_offset)
RSVD
RSVD (rcv_mrk_offset)
RSVD (rcv_no_mpa_crc)
RSVD (assume_aligned_headers)
RSVD (Receive_Markers)
RSVD (iWARP_Mode)
RSVD
Use_Statistics_Instance

[25]
[24]
[23]
[22]
[21]
[20]
[19]
[18:16]
[15:8]
[7:0]

PrivilegedEnable
RSVD (FastRegisterEnable)
RSVD (BindEnable)
RSVD (Send_Markers)
RSVD (rdmard_ok)
RSVD (rdmawr_rdresp_ok)
RSVD
RSVD (IRD_Size)
RSVD
RSVD (ORD_Size)

168 [63:0] QP_Completion_Context

176
[63:44]
[43:32]
[31:26]

RSVD
RSVD (Exception_UDA_Queue)
RSVD

[25:16]
[15:8]
[7:0]

QS_Handle
RQ_TPH_value
SQ_TPH_value

184-248 [63:0] RSVD

1. This variable is a cached variable. For more details on cached context variables, see Cached_Variables_Valid in Modify QP
operations (Section 11.5.3.2).

2. Only Valid for iWARP QPs.

Value Description

0b STag 0 is NOT allowed for a local STag, and an AEQE is generated with a privilege error indicated.

1b A local STag of zero (STag 0) is allowed on this connection, and the TO field should be treated as a physical
address.

Table 11-97. UDA QP Context Structure Format [continued]

Byte
Offset [Bit Range] Field Name

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1748 613875-009

XMIT_TPH_en (1 bit)

SQ_TPH_en (1 bit)

SQ_TPH_value (8 bits)

If SQ_TPH_en is set (1b), TPH STag associated with SQ operations is initialized with SQ_TPH_value.
If SQ_TPH_en is clear (0b), this field is ignored.

SQ_Size (4 bits)

This field encodes the maximum size for the WQ. The encoding of the SQ sizes are 4*2SQ_Size in
terms of 32-byte quanta of memory. The following value are allowed for SQ_Size:

Software can only allocate N-1 WQEs on the SQ, where N is a SQ size previously defined. Each WQE
is variable in size and can consume up to 256 bytes of memory. For more information see
Section 11.4.1.5.2. The minimum size for an SQ is four WQEs of the maximum size that is used.

Value Description

0b THP is not used for data reads associated with this QP.

1b TPH is enabled for data reads associated with this QP.

Value Description

0b THP is not used for this resource.

1b TPH is enabled for the SQ of this QP.

Value Description

0001b 256 bytes

0010b 512 bytes

0011b 1024 bytes

0100b 2048 bytes

0101b 4096 bytes

0110b 8192 bytes

0111b 16384 bytes

1000b 32768 bytes

1001b 65536 bytes

1010b 131072 bytes

1011b 262144 bytes

1100b 524288 bytes

1101b 1048576 bytes

Note: All other values are reserved.

613875-009 1749

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

RCV_TPH_en (1 bit)

RQ_TPH_en (1 bit)

RQ_TPH_value (8 bits)

If RQ_TPH_en is set (1b), TPH STag associated with RQ operations is initialized with RQ_TPH_value.
If RQ_TPH_en is clear (0b), this field is ignored.

RQ_Size (4 bits)

This field encodes the maximum size for the WQ. The encoding of the RQ sizes are 4*2RQ_Size in
terms of 32-byte quanta of memory. The following value are allowed for RQ_Size:

The actual number or WQEs that can be posted to the RQ is the size of the WQ divided by the WQE
size determined from RQ_WQE_Size. Software can only submit N-1 WQEs to a WQ without
processing completions for the WQ without exposing the possibility of a WQ overflow, where N is an
RQ size previously defined. WQ overflow results in indeterministic behavior for the affected WQ. The
minimum size for an RQ is four WQEs.

Value Description

0b THP is not used for data placement associated with this QP.

1b TPH is enabled for data placement associated with this QP.

Value Description

0b THP is not used for this resource.

1b TPH is enabled for the RQ of this QP.

Value Description

0001b 256 bytes

0010b 512 bytes

0011b 1024 bytes

0100b 2048 bytes

0101b 4096 bytes

0110b 8192 bytes

0111b 16384 bytes

1000b 32768 bytes

1001b 65536 bytes

1010b 131072 bytes

1011b 262144 bytes

1100b 524288 bytes

1101b 1048576 bytes

Note: All other values are reserved.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1750 613875-009

RQ_WQE_Size (2 bits)

Specifies the number of 32-byte chunks of memory included with each RQ WQE. The maximum
number of additional fragments allowed for an RQ WQE is 13 for a total of 14 fragments and a
maximum WQE size of 256 bytes. Valid values are:

RxCmpQueueNum (19 bits)

This field specifies which of the 512K CQs is used for receive completion notification. The Rx and Tx
completions can be mapped to the same CQ or different queues.

TxCmpQueueNum (19 bits)

This field specifies which of the 512K CQs is used for transmit completion notification. The Rx and
Tx completions can be mapped to the same CQ or different queues.

SQ_Address (64 bits)

If Virtual_WQs bit is clear (0b), this field holds SQ base physical address. It must be aligned to an
address divisible by 256 bytes. If Virtual_WQs bit is set (1b), this field specifies the first HMC PBLE
index of the 1-level page list for the SQ (first first_pm_pbl_index).

RQ_Address (64 bits)

If Virtual_WQs bit is clear (0b), this field holds RQ base physical address. It must be aligned to an
address divisible by 256 bytes. This is the RQ base pointer when this is an RDMA accelerated
connection. If Virtual_WQs bit is set (1b), this field specifies the first HMC PBLE index of the 1-level
page list for the SQ (first first_pm_pbl_index).

QS_Handle (10 bits)

This field specifies Tx-Scheduler queue set handle associated with the TC for this QP. See
Section 8.3.3.4 for more information on scheduler configuration. For VFs, the QS_Handle is checked
to ensure that the VF issuing the CQP command is associated with the QS_Handle.

pd_index (16 bits) and pd_index_high (2 bits)

Protection domain for this context. This specifies which one of the 32 KB UDA protection domains
this connection context belongs too. There are no reserved index values.

QP_Completion_Context (64 bits)

This field is reported in CQEs and also in AEQEs.

Push_Page_Index (10 bits)

This field identifies the push page associated with the QP. For VFs, the push page index is function
relative.

Push_Mode_Enable (1 bit)

This field indicates if push mode is enabled for the QP.

Value Description

00b 32 bytes per WQE (no additional fragments)

01b 64 bytes per WQE (1 or 2 additional fragments)

10b 128 bytes per WQE (3 to 6 additional fragments)

11b 256 bytes per WQE (7 to 13 additional fragments)

613875-009 1751

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

snd_mss (14 bits)

This field specifies a maximum MSS size allowed on that QP. MSS includes all headers and payload
of the Ethernet frame, both generated by hardware and provided by software. If software posts a
SQ WQE that exceeds this value, the frame is dropped, AE_UDA_XMIT_DGRAM_TOO_LONG AE is
reported, and QP transitions to the error state.

Use_Statistics_Instance (1 bit)

This field indicates if the default per Private Memory Function statistics are used, or if one of the
additional RDMA statistics instances are used for this QP.

Statistics_Instance_Index (7 bits)

This field specifies which of the additional RDMA statistics indexes are used if
Use_Statistics_Instance is set (1b) This field is ignored if Use_Statistics_Instance is cleared (0b).

11.8.5 UDA CQ Entry Formats

The UDA CQE is the same as UD. See Section 11.7.1.1.

The UDA CQE is DEPRECATED.

11.8.6 UDA QP Completion Error Codes

UDA QP completion errors are typically reported via AEs with the E810. After fielding the AEs, software
might issue the Flush WQES CQP operation (see Section 11.5.3.17) to complete any pending
operations. Table 11-98 lists the completion codes reported by the E810 in a CQ entry (Table 11-91).
Received packets that fail checksum validation are dropped by the chip and not delivered to RQ.

Value Description

0b The default statistics are used.

1b The statistics instance indicated by the Statistics_Instance_Index field are used.

Table 11-98. UDA QP Error Codes

Major Error
Code

Minor Error
Code Completion Reason Description

0x0001 0x0001 WQE Flushed The WQE has been flushed due to a ModifyQP state transition.

0x0002 0x0001 RQ WQE Too Short The RQ WQE length was shorter than a length of received Ethernet
frame. The frame was truncated, and an error reported.

0x0002 0x0003 SQ WQE Too Long
The SQ WQE length exceeded an MSS configured for the QP. SQ WQE
length should include the size of the payload, hardware generated
Ethernet and IP headers, and extended header provided by software.

0x0002 0x0004 SQ WQE Hdr Too Long The SQ WQE extended header size exceeded the size of the private
header buffer entry.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1752 613875-009

11.8.7 UDA QP Asynchronous Error Codes

UDA uses asynchronous errors to report unrecoverable critical errors; those errors mostly used to
identify invalid use of UDA host interface. UDA uses the asynchronous error notification mechanism
described in section Section 11.8.3.2. UDA shares asynchronous error codes with RDMA (see
Section 11.4.7.

As a rule, once an unrecoverable critical error is detected on QP. QP transitions to the error state, and
suspends all transmit and receive operations. Any incoming packet targeting a QP in an error state is
silently discarded. To release buffers posted to a SQ and a RQ, software must use the Flush WQE CQP
operation described in Section 11.5.3.17.

11.8.8 UDA Descriptor Formats

11.8.8.1 UDA SQ WQE Format - Send

The UDA SQE is the same as UD. See Section 11.7.1.3.3.

The UDA SQ entry below is DEPRECATED.

11.8.8.2 UDA SQ WQE Format - Send with Inline Data

The UDA send with inline data is the same as UD. See Section 11.7.1.3.4.

The UDA SQ entry is DEPRECATED.

11.8.8.3 UDA SQ WQE Format - NOP

The UDA NOP is the same as UD. See Section 11.7.1.3.2.

The UDA NOP entry is DEPRECATED.

11.8.8.4 UDA RQ WQE Format

The UDA RQE is the same as UD. See Section 11.7.1.4.

The UDA RQ entry is DEPRECATED.

613875-009 1753

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

11.9 Protocol Engine Statistics

11.9.1 Summary

Table 11-99 lists the RFCs relevant to the definition of PE statistics.

There are 128 sets of RDMA statistics. Each set can be assigned to an arbitrary/programmable group of
one or more Queue Pairs. Any Queue Pair can be assigned to only one stat set. A typical configuration
assigns one set to each active PCIe PF and VF, with the extra sets available for assignment as requested
by the OS. For example, if 8 PCIe PFs and 32 PCIe VFs are active, then 40 RDMA stat sets are assigned
to these functions, with the rest of the sets remaining for allocation as requested by the OS.

Stats colored Magenta are new for the E810.

The naming convention for the PE Statistics register is as follows:

• Physical function instance starts with GLPES_PF prefix following by the register name.

Table 11-100 lists PE registers by their physical function names. Virtual function register name can be
recovered by substituting prefix.

Table 11-99. Summary of MIBs Supported with E810 Hardware Statistics Counters

RFC Description

1213

Title: Management Information Base for Network Management of TCP/IP-based Internets: MIB-II.
Status: RFC1213 obsoletes RFC1158. RFC1213 is updated by RFC 2011(IP), 2012(TCP), 2013(UDP),
2863(Interfaces). There are MIB groups in RFC1213 that will be implemented by the E810 SNMP agent (such as
the System group), but these do not require E810 hardware accelerations.

2011
Title: SNMPv2 MIB for the Internet Protocol using SMIv2.
Description: Defines objects for managing implementations of IPv4 and ICMP.
Status: Updates RFC1213, Obsoleted by RFC4293.

2012
Title: SNMPv2 MIB for the Transmission Control Protocol using SMIv2.
Description: Defines objects for managing implementations of TCP.
Status: Updates RFC1213, Obsoleted by RFC4022.

2013
Title: SNMPv2 MIB for the User Datagram Protocol using SMIv2.
Description: Defines objects for managing implementations of UDP.
Status: Updates RFC1213, Obsoleted by RFC4113.

4293
Title: MIB for the Internet Protocol (IP).
Description: Defines objects for managing implementations of IPv4 and ICMP.
Status: Obsoletes RFC2011, PROPOSED STANDARD.

4022
Title: MIB for the Transmission Control Protocol (TCP).
Description: Defines objects for managing implementations of TCP.
Status: Obsoletes RFC2012, PROPOSED STANDARD.

4113
Title: MIB for the User Datagram Protocol (UDP).
Description: Defines objects for managing implementations of UDP.
Status: Obsoletes RFC2013, PROPOSED STANDARD.

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1754 613875-009

Table 11-100. PE Statistics

Name Size MIB Description

GLPES_PFRXVLANERR 24b private Ethernet received packets with incorrect VLAN_ID.

GLPES_PFIP4RXOCTS 48b IP IPv4 octets received.

GLPES_PFIP4RXPKTS 48b IP IPv4 packets received.

GLPES_PFIP4RXDISCARD 32b IP IPv4 packets received and discarded.

GLPES_PFIP4RXTRUNC 32b IP IPv4 packets received and truncated due to insufficient buffering space
in UDA RQ.

GLPES_PFIP4RXMCPKTS 48b IP IPv4 multicast packets received.

GLPES_PFIP4RXMCOCTS 48b IP IPv4 multicast octets received.

GLPES_PFIP6RXOCTS 48b IP IPv6 octets received.

GLPES_PFIP6RXPKTS 48b IP IPv6 packets received.

GLPES_PFIP6RXDISCARD 32b IP IPv6 packets received and discarded.

GLPES_PFIP6RXTRUNC 32b IP IPv6 packets received and truncated due to insufficient buffering space
in UDA RQ.

GLPES_PFIP6RXMCPKTS 48b IP IPv6 multicast packets received.

GLPES_PFIP6RXMCOCTS 48b IP IPv6 multicast octets received.

GLPES_PFIP4TXOCTS 48b IP IPv4 octets supplied by the PE to the lower layers for transmission.

GLPES_PFIP4TXPKTS 48b IP IPv4 packets supplied by the PE to the lower layers for transmission.

GLPES_PFIP4TXMCPKTS 48b IP IPv4 multicast packets transmitted.

GLPES_PFIP4TXMCOCTS 48b IP IPv4 multicast octets transmitted.

GLPES_PFIP6TXOCTS 48b IP IPv6 octets supplied by the PE to the lower layers for transmission.

GLPES_PFIP6TXPKTS 48b IP IPv6 packets supplied by the PE to the lower layers for transmission.

GLPES_PFIP6TXMCPKTS 48b IP IPv6 multicast packets transmitted.

GLPES_PFIP6TXMCOCTS 48b IP IPv6 multicast octets transmitted.

GLPES_PFIP4TXNOROUTE 24b IP IPv4 datagrams discarded due to routing problem (no hit in ARP table).

GLPES_PFIP6TXNOROUTE 24b IP IPv6 datagrams discarded due to routing problem (no hit in ARP table).

GLPES_PFTCPRXSEGS 48b TCP TCP segments received.

GLPES_PFTCPRXOPTERR 24b Intel TCP segments received with unsupported TCP options or TCP option
length errors.

GLPES_PFTCPRXPROTOERR 24b Intel TCP segments received that are dropped by TRX due to TCP protocol
errors.

GLPES_PFTCPTXSEG 48b TCP TCP segments transmitted.

GLPES_PFTCPRTXSEG 32b TCP Total number of TCP segments retransmitted.

GLPES_PFUDPRXPKTS 48b UDP UDP segments received without errors.

GLPES_PFUDPTXPKTS 48b UDP UDP segments transmitted without errors.

GLPES_PFRDMARXWRS 48b Microsoft RDMAP total RDMA write messages received.

GLPES_PFRDMARXRDS 48b Microsoft RDMAP total RDMA read request messages received.

GLPES_PFRDMARXSNDS 48b Microsoft RDMAP total RDMA send-type messages received.

GLPES_PFRDMATXWRS 48b Microsoft RDMAP total RDMA write messages sent.

GLPES_PFRDMATXRDS 48b Microsoft RDMAP total RDMA read request messages sent.

613875-009 1755

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

Note: A simple, conservative estimate for octet counter wrap times at 40 Gb/s:

• 32-bit counter wraps in 0.859 s.

• 36-bit counter wraps in 13.744 s.

• 40-bit counter wraps in 3.665 m.

• 48-bit counter wraps in 15.64 h.

• 56-bit counter wraps in 166.8 d.

There is a set of PE statistics instantiated only once. Table 11-101 lists these statistics, which are all
defined by Intel and not part of a MIB.

GLPES_PFRDMATXSNDS 48b Microsoft RDMAP total RDMA send-type messages sent.

GLPES_PFRDMAVBND 48b Microsoft RDMA verbs total bind operations carried out.

GLPES_PFRDMAVINV 48b Microsoft RDMA verbs total invalidate operations carried out.

GLPES_PFRXNPECNMARKEDPKTS 56b Packets with ECN bits indicating congestion.

GLPES_PFRXRPCNPHANDLED 32b Counts the number of Congestion Notification Packets that have been
handled by the reaction point.

GLPES_PFRXRPCNPIGNORED 24b Counts the number of Congestion Notification Packets that have been
ignored by the reaction point.

GLPES_PFTXNPCNPSENT 24b Counts the number of Congestion Notification Packets that have been
sent by the reaction point.

Table 11-101. PE Intel-Specific Statistics Instantiated Once

Name Size Description

GLPES_RDMARXUNALIGN 32b RDMA stat: TCP segments that probably have unaligned FPDUs.

GLPES_RDMARXMULTFPDUS 56b RDMA stat: TCP segments that probably have multiple FPDUs.

GLPES_RDMARXOOONOMARK 32b RDMA stat: FPDUs received out-of-order, with no MPA marker.

GLPES_RDMARXOOODDPLO 56b RDMA stat: Number of out-of-order placed DDP segments.

GLPES_TCPRXPUREACKS 56b TCP stat: Number of pure ACKs received.

GLPES_TCPRXONEHOLE 56b TCP stat: Increments when an accelerated connection opens a first TCP hole.

GLPES_TCPRXTWOHOLE 56b TCP stat: Increments when an accelerated connection opens a second TCP hole.

GLPES_TCPRXTHREEHOLE 56b TCP stat: Increments when an accelerated connection opens a third TCP hole.

GLPES_TCPRXFOURHOLE 56b TCP stat: Increments when an accelerated connection opens a fourth TCP hole.

GLPES_TCPTXRETRANSFAST 56b TCP stat: Number of TCP re-transmits.

GLPES_TCPTXTOUTSFAST 56b TCP stat: Number of TCP retransmission timeouts on connections attempting fast
re-transmit.

GLPES_TCPTXTOUTS 56b TCP stat: Number of TCP retransmission timeouts on connections that are not
currently attempting fast re-transmit.

Table 11-100. PE Statistics [continued]

Name Size MIB Description

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1756 613875-009

11.10 SR-IOV Protocol Engine Functionality

The E810 PE features are supported in virtualized operating systems that support SR-IOV direct
assignment and IOMMUs. The E810 also supports para-virtualized drivers in virtualized operating
system environments. The goal for the E810 PE programming model for VFs is to preserve as much of
the non-virtualized programming model as possible to maximize the existing software investment. HMC
resource profiles provide resource distribution/partitioning required to support this independent
programming model in the VF. Backing pages for VF HMC pages for most HMC objects and page
descriptor pages are allocated from the PF driver to provide improved security and stability. Backing
pages for VF HMC PBL objects are allocated in the guest operating systems address space, the doorbell
page from the VF BAR is mapped to guest userspace addresses and CQP operations are issued directly
from the guest. The differences are in the programming model for VFs and show up in two areas:

• HMC objects — A HMC PCI function needs to be allocated for the VF and a few HMC objects are
owned by the PF instead of the VF (specifically multicast groups and PE quad hash objects).
Additionally, most HMC objects are allocated and managed by the PF driver. The VF driver uses the
VF-to-PF mailbox or operating system-specific back channel mechanism to coordinate this activity.

• Interaction with the LAN portion of the driver.

To enable a VF driver to take advantage of PE functionality, an HMC PCI function must be allocated.
There are 32 HMC VF PCI functions available in the E810. Firmware allocates HMC PCI functions on an
as-needed basis between the PFs on a given adapter. This allocation takes place when the VF is
allocated by the PF driver to a given guest operating system. In the case of multicast group HMC
objects, these objects are always owned by PFs and require the VF driver to coordinate access to them
by using VF-to-PF communication mechanisms. The difference in interaction with the LAN portion of the
driver is operating system specific due to the different approaches that are taken on each vendor.

A sample initialization flow is as follows on top of the usual LAN VF initialization of interrupts, and so on:

1. When the PF driver created the PF CQP instance, it selected one of the SR-IOV HMC resource
profiles to enable RDMA for VFs.

2. The PF driver (typically in the hypervisor or privileged host VM) allocates an HMC function on behalf
of the VF using the PF CQP instance. See Section 11.5.3.10 for the WQE format.

3. The VF driver in the guest creates a new CQP instance. See Section 11.5.2.1.

4. The VF driver (or optionally the PF driver on the VF drivers behalf) issues a query FPM values
operation. See Section 11.5.3.15.

5. The VF driver (or optionally the PF driver on the VF drivers behalf) issues a commit FPM values
operation. See Section 11.5.3.16.

6. The PF driver allocates backing pages and page descriptors for all static HMC resources required for
the VF and programs the SDs for the HMC function assigned to the VF using Update PE SDs
operations. See Section 11.5.3.14. Note that backing pages are not allocated for PBLE HMC objects
in the model, but page descriptors are. Also note that direct backing pages are not supported for VF
PBLE HMC objects.

7. The VF driver (or optionally the PF driver on the VF drivers behalf) issues a static HMC pages
allocated operation. See Section 11.5.3.14.

8. The PF driver (via communication from the VF driver) allocates backing pages and page descriptors
for the initial set of HMC resources required by the VF driver. This step involves issuing one or more
Update PE SD operations.

9. The VF driver uses its CQP instance to create CQ0, the CEQ, and AEQ for the VF.

613875-009 1757

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

10. During runtime, the VF driver signals the PF driver to allocate and initialize more HMC backing
pages and/or PDs on its behalf. When PBLEs are needed during memory registration in the VF, the
VF driver issues manage VF PBLE backing pages operations. See Section 11.5.3.12.

11.11 NVM RDMA Register Initialization

Table 11-102 describes the RDMA registers that are initialized via NVM settings.

Table 11-102. NVM Initial Values for RDMA Registers

Register Field Initial Value

GLPE_PEPM_CTRL

PEPM_PUSH_MARGIN 42

PEPM_HALT 0

PEPM_ENABLE 1

GLPE_TSCD_PEPM MDQ_CREDITS 42

GLPE_PUSH_PEPM MDQ_CREDITS 42

Table 11-103. Tx-Pipe Monitors Configuration in All Ports Setups

Control Register

Negotiated Speed (Gb/s)

1 to 5 Port Configuration 6, 7, or 8 Port
Configuration1

1. If there are 6, 7, or 8 ports, the settings for 10 Gb/s and 25 Gb/s are changed to the values in the last two columns.

100 50 25 102

2. The 10G pipe monitor setup values apply to link speed 5G, 2.5G, 1G and 100M as well.

25 102

U
P
P
E
R

P
I
P
E

Per Port
Header
Buffer
Upper
Pipe

Monitors3

3. Programmed by EMP.

PRTDCB_TCUPM_REG_PE_HB_DTHR[0..7].PORTOFFTH_L 150 150 150 113 145 75

PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR[0..7].PORTOFFTH_H 300 300 300 226 290 150

PRTDCB_TCUPM_WAIT_PE_HB_DTHR[0..31].PORTOFFTH 150 150 150 113 145 75

Protocol
Engine

Pipe
Monitor4

4. Programmed by CQP in the Protocol Engine.

GLPE_PEPM_THRESH_l[0..511].PEPM_PSQ_THRESH 22 9 8 4 5 4

GLPE_PEPM_THRESH_l[0..511].PEPM_MDQ_THRESH 492 420 336 124 288 124

Intel® Ethernet Controller E810 Datasheet
Protocol Engine

1758 613875-009

NOTE: This page intentionally left blank.

613875-009 1759

Intel® Ethernet Controller E810 Datasheet
System Manageability

Chapter 12 System Manageability

Network management is an important requirement in today's networked computer environment.
Software-based management applications provide the ability to administer systems while the operating
system is functioning in a normal power state (not in a pre-boot state or powered-down state). The
Intel® Out of Band Management fills the management void that exists when the operating system is not
running or fully functional. This is accomplished by providing mechanisms by which manageability
network traffic can be routed to and from a Management Controller (MC).

This section describes the supported management interfaces and hardware configurations for platform
system management. It describes the interfaces to an external MC, the partitioning of platform
manageability among system components, and the functionality provided by the E810 in each platform
configuration.

12.1 Features

Table 12-1 lists the manageability features in the LAN controller.

Table 12-1. System Manageability Features

Description

Sideband Interfaces for connection to an external BMC:
• SMBus operating at up to 400 Kb/s, using only MCTP messages.
• DMTF-compliant NC-SI Interface 1.1 at 100 Mb/s.
• PCIe (using MCTP VDMs).

Sophisticated filters to select received packet flows for delivery or mirroring to the BMC. Each of the following filters is instantiated
per-Ethernet port:
• 4 MAC filters.
• 8 VLAN filters.
• 4 EtherType filters.
• 4 IPv4 and 4 IPv6 filters.
• 16 UDP/TCP port filters.
• 1 Flexible Total Cost of Ownership (TCO) filter.
• Address Resolution Protocol (ARP) filtering.
• Neighbor discovery filtering.
• Remote Management Control Protocol (RMCP) filtering.
• Internet Control Message Protocol (ICMP) filtering.

Ability to internally switch packets for communication between an OS and BMC.

Supported Protocols:
• DSP2018 1.1.0 - PLDM for Redfish Device Enablement
• DSP0222 1.1.0 - NC-SI

Including ability to internally switch packets for communication between an OS and BMC.
• DSP0261 1.2.0 - NC-SI over MCTP
• DSP0236 1.3.0, DSP0238 1.0.1, DSP0237 1.1.0, DSP0239 1.4.0- MCTP over PCIe VDM and over SMBus
• DSP0240 1.0.0 - PLDM Base
• DSP0248 1.1.0, DSP0249 1.0.0- PLDM Monitoring and Control
• DSP0267 1.0.1 - PLDM Firmware Update

Intel® Ethernet Controller E810 Datasheet
System Manageability

1760 613875-009

12.2 Pass-Through Functionality

Pass-Through (PT) is the term used when referring to the process of sending and receiving Ethernet
traffic over the sideband interface. The E810 has the ability to route Ethernet traffic to the host
operating system as well as the ability to send Ethernet traffic over the sideband interface to an
external MC. See Figure 12-1.

The sideband interface provides a mechanism by which the E810 can be shared between the host and
the MC. By providing this sideband interface, the MC can communicate with the LAN without requiring a
dedicated Ethernet controller. The E810 supports three sideband interfaces:

• SMBus (MCTP)

• NC-SI

• PCIe (together with MCTP) - when the system is up.

Notes:

• The usable bandwidth for either direction is up to 400 Kb/s when using SMBus and 100 Mb/s for the
NC-SI interface. When working over PCIe, the bandwidth is limited only by the PCIe bandwidth, and
the E810 processing capabilities and can sustain any network bandwidth. The E810 should support
MCTP over PCIe pass-through traffic at a rate of up to 1 Gb/s. The maximum packet size supported
for traffic received from the LAN to the MC is 1518 bytes and an additional STag, or VLAN tags. For
traffic from the MC to the LAN, the maximum supported packet size is 1536 bytes including all tags.

• In MCTP mode, the PCIe and SMBus interface can receive MCTP commands in parallel. For example,
the MCTP enumeration process can be done both over SMBus and over PCIe. However, only one of
the interfaces can receive NC-SI commands or pass-through traffic.

Figure 12-1. Sideband Interface

MC NIC

Host

Host
Interface

Sideband

Interface
Port 3

Port 0

LAN
Interface

613875-009 1761

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.2.1 Supported Topologies

The E810 can support up to two connections to management controllers in some topologies. The
following connections are available:

• Connection via NC-SI over RBT (RMII) (See Section 12.6).

• Connection via NC-SI over MCTP. This connection can be over SMBus, PCIe or both. This connection
can be used either for pass-through or for control only (See Section 12.7).

• Two connections — A connection via NC-SI over RBT for pass-through traffic and a connection via
MCTP used only for control traffic (See Section 12.7).

The channel used is for pass-through is defined in the Redirection Sideband Interface field, and the
channel used for control is defined in the Control Interface field, both in the Common Manageability
Parameters NVM word (see Section 6.3.65.2) and are common to all the ports in the device.

12.2.2 Pass-Through Packet Routing

When an Ethernet packet reaches the E810, it is examined and compared to a number of configurable
filters. These filters are configurable by the MC and include, but are not limited to, filtering on:

• MAC Address

• IP Address

• UDP/IP ports

• VLAN tags

• EtherType

If the incoming packet matches any of the configured filters, it is passed to the MC. Otherwise, it is not
passed.

The packet filtering process is described in Section 12.4.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1762 613875-009

12.3 Components of the Sideband Interface

There are two components to a sideband interface:

• Physical layer

• Logical layer

12.3.1 Physical Layer

This is the electrical connection between the E810 and the MC.

12.3.1.1 SMBus

The SMBus physical layer is defined by the SMBus specification. The interface is made up of two
connections: data and clock. Refer to the SMBus specification for details.

The SMBus can run at two speeds: 100 KHz (standard SMBus) or 400 KHz (I2C fast mode). The speed
used while the E810 is the primary of the bus is selected by the SMBus Connection Speed field in the
SMBus Notification Timeout and Flags NVM word. When acting as a secondary, the E810 can receive
transaction with a clock running at up to 400 KHz.

12.3.1.1.1 PEC Support

SMBus transactions can be protected by using Packet Error Code (PEC). Packet error checking, when
applicable, is implemented by appending a PEC byte at the end of each message transfer. The PEC byte
is a CRC8 calculation on all the message bytes.

PEC is added in transmit and expected in receive for the following SMBus packets:

• ARP packets

• MCTP over SMBus transactions

For ARA cycles, a PEC is not expected.

Table 12-2 lists the behavior of the E810 in each PEC configured mode for transactions directly handled
by hardware after receiving packets with or without PEC.

Table 12-2. SMBus PEC Modes

SMBus transaction
(relative to the E810)

E810 PEC
Mode

Target PEC Mode1

1. (A) - Accept transaction; (R) - Reject transaction.

PEC Enabled PEC Disabled

Primary Write2

2. Used in MCTP over SMBus (transmitted transactions).

Enabled (A) Target ACKs the PEC byte. (A) Target NACKs the PEC byte.

Disabled (A) Target receives stop before
expected PEC byte. (A) PEC byte is not expected.

Secondary Read3

3. Used in MCTP over SMBus (received transactions).

Enabled (A) Target sends the PEC byte. PEC
byte is ACKed by the secondary.

(A) Target does not send PEC byte and
generates stop afterwards.

Disabled (R) Target sends the PEC byte. PEC
byte is NACKed by the secondary

(A) Target does not send PEC byte and
generates stop afterwards.

613875-009 1763

Intel® Ethernet Controller E810 Datasheet
System Manageability

Note: In both SMBus ARP and MCTP, the specification indicates that PEC must be used. However, if
PEC is not used by the primary, the transaction is still accepted and processed by the E810.

The PEC behavior is controlled by the SMBus Transaction PEC bit in the SMBus Notification Timeout and
Flags NVM word. If this bit is set, PEC is added for primary SMBus write transactions. A PEC is added to
secondary read transactions and can be received in secondary write transaction. If this bit is cleared,
PEC is not added to primary write or secondary read transactions, a secondary write transaction with
PEC is dropped. This bit should always be set.

12.3.1.2 NC-SI over RBT

The E810 uses the DMTF standard RBT sideband interface as defined in DMTF DSP0222. This interface
consists of seven lines for transmission and reception of Ethernet packets and two optional lines for
arbitration among more than one physical network controller.

The RBT physical layer of NC-SI is very similar to the RMII interface, although not an exact duplicate.
Refer to the NC-SI specification for details of the differences.

12.3.1.2.1 Electrical Characteristics

The E810 complies with the electrical characteristics defined in the NC-SI 1.0.1 specification.

The E810’s NC-SI behavior is configured at power-up in the following manner:

• The Multi-Drop NC-SI NVM bit (Section 6.3.65.3) defines the NC-SI topology (point-to-point or
multi-drop; the default is point-to-point).

The E810 dynamically drives its NC-SI output signals (NC-SI_DV and NC-SI_RX) as required by the
sideband protocol:

• At power-up, the E810 floats the NC-SI outputs.

• If the E810 operates in point-to-point mode, it starts driving the NC-SI outputs some time following
power-up.

• If the E810 operates in a multi-drop mode, it drives the NC-SI outputs as configured by the BMC.

12.3.1.3 PCIe Vendor-Defined Messages (VDMs)

The E810 uses VDMs over PCIe defined in the DMTF MCTP specification to convey pass-through traffic
or NC-SI control traffic. See Section 3.1 for details of the PCIe interface.

12.3.2 Logical Layer

12.3.2.1 SMBus

12.3.2.1.1 SMBus Transactions

This section gives a brief overview of the SMBus protocol. Table 12-3 shows an example for a format of
a typical SMBus transaction.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1764 613875-009

The top row of the table identifies the bit length of the field in a decimal bit count. The middle row
(bordered) identifies the name of the fields used in the transaction. The last row appears only with
some transactions, and lists the value expected for the corresponding field. This value can be either
hexadecimal or binary.

The SMBus controller is a primary for some transactions and a secondary for others. The differences are
identified in this document.

Shorthand field names are listed in Table 12-4 and are fully defined in the SMBus specification.

12.3.2.1.2 SMBus Addressing

In MCTP mode, a single SMBus channel is exposed.

SMBus addresses (enabled from the NVM) can be re-assigned using the SMBus ARP protocol.

In addition to the SMBus address values, all parameters of the SMBus (SMBus channel selection,
address mode, and address enable) can be set only through NVM configuration. Note that the NVM is
read at the E810’s power up and resets.

12.3.2.1.3 SMBus ARP Functionality

The E810 supports the SMBus ARP protocol as defined in the SMBus 2.0 specification. The E810 is a
persistent secondary address device so its SMBus address is valid after power-up and loaded from the
NVM. The E810 supports all SMBus ARP commands defined in the SMBus specification both general and
directed.

SMBus ARP capability can be disabled through the NVM.

Table 12-3. Typical SMBus Transaction

1 7 1 1 8 1 8 1 1

S Secondary
Address Wr A Command A PEC A P

1100 001 0 0 0000 0010 0 [Data Dependent] 0

Table 12-4. Shorthand Field Names

Field Name Definition

S SMBus START Symbol

P SMBus STOP Symbol

PEC Packet Error Code

A ACK (Acknowledge)

N NACK (Not Acknowledge)

Rd Read Operation (Read Value = 1b)

Wr Write Operation (Write Value = 0b)

613875-009 1765

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.3.2.1.3.1 SMBus ARP Flow

SMBus ARP flow is based on the status of two flags:

• Address Valid (AV) — This flag is set when the E810 has a valid SMBus address.

• Address Resolved (AR) — This flag is set when the E810 SMBus address is resolved (SMBus
address was assigned by the SMBus ARP process).

These flags are internal E810 flags and are not exposed to external SMBus devices.

Since the E810 is a Persistent SMBus Address (PSA) device, the AV flag is always set, while the AR flag
is cleared after power up until the SMBus ARP process completes. Since AV is always set, the E810
always has a valid SMBus address.

When the SMBus primary needs to start an SMBus ARP process, it resets (in terms of ARP functionality)
all devices on SMBus by issuing either Prepare to ARP or Reset Device commands. When the E810
accepts one of these commands, it clears its AR flag (if set from previous SMBus ARP process), but not
its AV flag (the current SMBus address remains valid until the end of the SMBus ARP process).

Clearing the AR flag means that the E810 responds to SMBus ARP transactions that are issued by the
primary. The SMBus primary issues a Get UDID command (general or directed) to identify the devices
on the SMBus. The E810 always responds to the Directed command and to the General command only
if its AR flag is not set.

After the Get UDID, the primary assigns the E810 SMBus address by issuing an Assign Address
command. The E810 checks whether the UDID matches its own UDID and if it matches, it switches its
SMBus address to the address assigned by the command (byte 17). After accepting the Assign Address
command, the AR flag is set and from this point (as long as the AR flag is set), the E810 does not
respond to the Get UDID General command. Note that all other commands are processed even if the AR
flag is set. The E810 stores the SMBus address that was assigned in the SMBus ARP process in the
NVM, so at the next power up, it returns to its assigned SMBus address.

Figure 12-2 shows the E810 SMBus ARP flow.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1766 613875-009

Figure 12-2. SMBus ARP Flow

Power-Up reset

Set AV flag; Clear AR flag
Load SMB address from

EPROM

SMB packet
received

NO

SMB ARP
address
match

Yes

Prepare to
ARP ?

ACK the comamd and
clear AR flag YES

Yes

 Reset
device

ACK the comamd and
clear AR flag YES

NO

Assign
Address

command

NO

UDID match NACK packet

ACK packet
Set slave address

Set AR flag.

YES NO

YES

YES AR flag set Return UDIDNO

NO

Illegal command
handling

NO

Process regular
command NO

NACK packetYES

YES Return UDID

NO

Get UDID
command
general

Get UDID
command
directed

613875-009 1767

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.3.2.1.3.2 SMBus ARP UDID Content

The UDID provides a mechanism to isolate each device for the purpose of address assignment. Each
device has a unique identifier. The 128-bit number is comprised of the following fields:

Where:

Device Capabilities: Dynamic and Persistent Address, PEC Support bit:

Version/Revision: UDID Version 1, Silicon Revision:

Table 12-5. UDID

1 Byte 1 Byte 2 Bytes 2 Bytes 2 Bytes 2 Bytes 2 Bytes 4 Bytes

Device
Capabilities

Version/
Revision Vendor ID Device ID Interface Subsystem

Vendor ID
Subsystem
Device ID

Vendor
Specific ID

See notes
that follow

See notes
that follow 0x8086 0x1590 0x0004/

0x0024 0x0000 0x0000 See notes
that follow

MSB LSB

 Vendor ID: The device manufacturer’s ID as assigned by the SBS Implementers’ Forum or
the PCI SIG.

Constant value: 0x8086

 Device ID: The device ID as assigned by the device manufacturer (identified by the Vendor
ID field).

Constant value: 0x1590

 Interface: Identifies the protocol layer interfaces supported over the SMBus connection by
the device.

Bits 3:0 = 0x4 indicates SMBus Version 2.0
Bit 5 (ASF bit) = 1 in MCTP mode.

 Subsystem Fields: These fields are not supported and return zeros.

7 6 5 4 3 2 1 0

Address Type Reserved (0) Reserved (0) Reserved (0) Reserved (0) Reserved (0) PEC
Supported

0b 1b 0b 0b 0b 0b 0b 0b/1b1

1. The value is set according to the SMBus Transaction PEC bit in the NVM.

MSB LSB

7 6 5 4 3 2 1 0

Reserved (0) Reserved (0) UDID Version Silicon Revision ID

0b 0b 001b See the following table

MSB LSB

Intel® Ethernet Controller E810 Datasheet
System Manageability

1768 613875-009

Silicon Revision ID:

Vendor Specific ID: Four LSB bytes of the device Ethernet MAC Address of the relevant port. The port
Ethernet address is taken from the PRTGL_SAL registers of the relevant ports. Note that in the E810
there are up to eight MAC Addresses (one for each port).

12.3.2.2 NC-SI

The DMTF defines the protocol layer for the NC-SI interface. NC-SI compliant devices are required to
implement a minimum set of commands. The specification also provides a mechanism for vendors to
add additional capabilities through the use of OEM commands. Intel OEM NC-SI commands for the E810
are discussed in Section 12.6.4. For information on base NC-SI commands, see the NC-SI specification.

NC-SI traffic can run on top of three different Physical layers:

1. NC-SI physical layer as described in Section 12.3.1.2.

2. MCTP over PCIe VDM. This protocol enables control and pass-through traffic over PCIe of a NIC or a
LOM device. The NC-SI over MCTP protocol is slightly different than the standard NC-SI, as it
includes additional NC-SI commands. This mode is usually paired with an MCTP over SMBus, where
this mode is used in S0 states and the SMBus interface is used in Sx state. The MCTP protocol and
the differences from standard NC-SI is described in Section 12.7.

3. MCTP over SMBus. As previously described, this layer is paired with the MCTP over PCIe to support
Sx modes.

The E810 exposes one NC-SI package with eight channels, one per port. The E810 implements a type C
NC-SI interface (single package, common bus buffers and shared Rx-Queue) as described in Section
5.2 of the NC-SI specification.

12.3.2.2.1 Package ID Setting

The Package ID can be set either from the Package ID field in the NC-SI Configuration 1 NVM word (see
Section 6.3.66.4) or from an SDP pin. If set from SDP, the package ID is (0b, SDP value, 0b).

The mode used is set by the Read NCSI Package ID from SDP field in the NC-SI Configuration 2 NVM
word (Section 6.3.66.5). The encoding is as follows:

Silicon Version Revision ID

A0/A1 in CAM1/CAM2 SKUs. 000b

B0 in CAM1/CAM2 SKUs.
A0 in XXVAM2 SKU.

001b

C0 010b

1 Byte 1 Byte 1 Byte 1 Byte

MAC Address, Byte 3 MAC Address, Byte 2 MAC Address, Byte 1 MAC Address, Byte 0

MSB LSB

00b = The Package ID is read from the Package ID field in the NC-SI Configuration 1 NVM word
(Section 6.3.66.4) // Regular Card

01b = The the Package ID is (Package ID[2], SDP#1 value, SDP#0 value) // OCP, 2 SDPs.

613875-009 1769

Intel® Ethernet Controller E810 Datasheet
System Manageability

Note: When the package ID is set from the SDP pins, the used SDP should be set as an input in the
relevant GLGEN_GPIO_CTL register. The SDPs to use are defined in the PackageID SDP field
in the NC-SI Configuration 2 NVM word (Section 6.3.66.5).

12.3.2.2.2 Channel ID Mapping

The mapping of the channels to physical ports is according to the NC-SI Channel to Port Mapping NVM
word (Section 6.3.66.15) if the Valid bit is set. If this bit is not set, the following algorithm should be
used:

Channel_ID = 0
NC-SI_channel[3:0] = -1 // ports not associated with channels yet.
For func = 0 to 7 { // loop on all functions
 Port_ID = PFGEN_PORTNUM[func] // Port associated with function.
 If (PRTGEN_STATUS.PORT_VALID[Port_ID] && NC-SI_channel[Port_ID] == -1 && PHY module is present).
 {
 // Port is valid and port is not already associated with a channel
 NC-SI_channel[Port_ID] = Channel_ID; // assign channel
 PRT2MDEF[Port_ID] = Channel_ID;
 Channel_ID++; // go to next channel
 }
 }

This algorithm maps channel numbers that match the order of the PCI function numbers.

If firmware detects a change in the number of ports enabled, it:

• Waits until the Veto bit of all ports is cleared.

• Updates the number of exposed channel.

• Moves the package to “Initialization Required” state.

The BMC then re-enumerates the package and discovers the new number of available channels.

10b = The package ID is (Package ID[2], SDP#1 value, Package ID[0]) // OCP single SDP

11b = Reserved.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1770 613875-009

12.4 Packet Filtering

Since both the host operating system and an MC use the E810 to send and receive Ethernet traffic,
there needs to be a mechanism by which incoming Ethernet packets can be identified as those that
should be sent to the MC rather than the host operating system.

A high-level description of the host and MC filtering flow can be found in Section 7.8.2.

There are two different types of filtering available. The first is filtering based upon the MAC Address.
With this filtering, the BMC has at least one dedicated MAC Address and incoming Ethernet traffic with
the matching MAC Address(es) are passed to the MC. This is the simplest filtering mechanism to use
and it enables the MC to receive all types traffic (including, but not limited to, IPMI, NFS, HTTP, and so
on).

The other type available uses a highly-configurable mechanism by which packets can be filtered using a
wide range of parameters. Using this method, the MC can share a MAC Address (and IP Address, if
desired) with the host operating system and receive only specific Ethernet traffic. This method is useful
if the MC is only interested in specific traffic, such as IPMI packets.

12.4.1 Manageability Receive Filtering

This section describes the manageability receive packet filtering flow. Packet reception by the E810 can
generate one of the following results:

• Discarded

• Sent to host memory

• Sent to the MC

• Sent to both the MC and host memory

The decisions regarding forwarding of packets to the host and to the MC are separate and are
configured through two sets of registers. However, the MC might define some types of traffic as
exclusive. This traffic is forwarded only to the MC, even if it passes the filtering process of the host.
These types of traffic are defined using the PRT_MNG_MNGONLY register.

An example of packets that might be necessary to send exclusively to the MC might be specific
TCP/UDP ports of a shared MAC Address or a MAC Address dedicated to the MC. If the MC configures
the manageability filters to send these ports to the MC, it should configure the settings to not send
them to the host; otherwise, these ports are received and handled by the host operating system.

The MC controls the types of packets that it receives by programming receive manageability filters. The
following filters are accessible to the MC:

Table 12-6. Filters Accessible to MC

Filters Functionality When Reset

Filters Enable General configuration of manageability filters. LAN_PWR_GOOD

Manageability Only Enables routing of packets exclusively to manageability. LAN_PWR_GOOD

Manageability Decision Filters [7:0] Configuration of manageability decision filters. LAN_PWR_GOOD

MAC Address [3:0] 4 unicast MAC manageability addresses. LAN_PWR_GOOD

VLAN Filters [7:0] 8 VLAN tag values. LAN_PWR_GOOD

UDP/TCP Port Filters [15:0] 16 destination port values. LAN_PWR_GOOD

613875-009 1771

Intel® Ethernet Controller E810 Datasheet
System Manageability

All filtering capabilities are available on the NC-SI interface. Part of the filters are programmed via
standard NC-SI commands and part are programmed via the Intel OEM commands described in
Section 12.6.4.

All filters are reset only on internal power-on-reset. Register filters that enable filters or functionality
are also reset by firmware at internal firmware reset in NC-SI mode. These registers can be loaded from
the NVM following a reset in SMBus mode. See Section 6.3.10 through Section 6.3.14 for descriptions
of their location in the NVM map.

The high-level structure of manageability filtering is done using two or three steps.

1. The packet is routed by the switch as described in Section 7.8.7. If the switch determines the
packet should be routed to the manageability VSIs, the next steps are taken.

2. The packet is parsed and fields in the header are compared to programmed filters.

3. A set of decision filters are applied to the result of the first step.

The following sections describe Step 2 and Step 3 previously listed.

Some general rules apply:

• Fragmented packets are passed to manageability but not parsed beyond the IP header.

• Packets with L2 errors (CRC, alignment, and so on) are not forwarded to the MC.

• Packets longer than 2 KB are filtered out.

• All the filters refers to the outer header of the packet and not to any tunneled header.

The following sections describe the manageability filtering, followed by the final filtering rules.

The filtering rules are created by programming the decision filters as described in Section 12.4.4.

12.4.2 L2 Filters

12.4.2.1 MAC and VLAN Filters

The manageability MAC filters allow a comparison of the destination MAC Address to one of four filters
defined in the PRT_MNG_MMAH and PRT_MNG_MMAL registers.

The VLAN filters allow a comparison of the 12-bit VLAN tag to one of eight filters defined in the
PRT_MNG_MAVTV registers. The VLAN tag compared is the innermost VLAN in the external L2 header.

Flexible 144 bytes TCO Filter Length and values for one flex TCO filter. LAN_PWR_GOOD

IPv4 and IPv6 Address Filters [3:0] IP Address for manageability filtering. LAN_PWR_GOOD

Special filters modifier Used to define some special filtering options like 24-bit filtering of
IPv6 Addresses and TCP/UDP selection of ASF ports. LAN_PWR_GOOD

Table 12-6. Filters Accessible to MC [continued]

Filters Functionality When Reset

Intel® Ethernet Controller E810 Datasheet
System Manageability

1772 613875-009

12.4.2.2 EtherType Filters

Manageability L2 EtherType filters enable filtering of received packets based on the Layer 2 EtherType
field. The L2 type field of incoming packets is compared against the EtherType filters programmed in
the manageability EtherType filter (PRT_MNG_METF; up to four filters). The result is incorporated into
decision filters.

Each manageability EtherType filter can be configured as pass (positive) or reject (negative) using a
polarity bit. For the reverse polarity mode to be effective and block certain type of packets, the
EtherType filter should be part of all the enabled decision filters.

An example for using L2 EtherType filters is to determine the destination of 802.1X control packets. The
802.1X protocol is executed at different times in either the management controller or by the host. L2
EtherType filters are used to route these packets to the proper agent.

In addition to the flexible EtherType filters, the E810 supports two fixed EtherType filters used to block
NC-SI control traffic (0x88F8) and flow control traffic (0x8808) from reaching the manageability
interface. The NC-SI EtherType is used for communication between the MC on the NC-SI link and the
E810. Packets coming from the network are not expected to carry this EtherType, and such packets are
blocked to prevent attacks on the MC. Flow control packets should be consumed by the MAC, and as
such are not expected to be forwarded to the management interface.

Note: EtherType filters should not be configured with IPv4 or IPv6 EtherType values.

12.4.3 L3/L4 Filtering

The manageability filtering stage combines checks done at previous stages with additional L3/L4 checks
to make a decision about whether to route a packet to the MC. The following sections describe the
manageability filtering done at layers L3/L4 and final filtering rules.

12.4.3.1 ARP Filtering

The E810 supports filtering of ARP request packets (initiated externally) and ARP responses (to
requests initiated by the MC).

To limit the reception of ARP packets to the ARP packets dedicated to this station (ARP target IP =
MC IP), the ARP request/response filter can be bound to a specific IP Address by setting both the ARP
Request/Response and the IP AND bits in an MDEF filter. Note that the IP bit is also set if there is a
match on the target IP (the TPA field in the ARP packet) of an ARP request or an ARP response.

Note: If the OR section of the MDEF is cleared and one of the IPv4 Address are set, ARP packets
matching the IP Address pass the filter. If these packets should be dropped, an OR EtherType
filter with a value of 0x0800 (IPv4) should be added.

See Appendix A.5.3.8 for the format of ARP packets.

12.4.3.2 Neighbor Discovery Filtering and MLD

The E810 supports filtering of the following ICMPv6 packets.

Neighbor discovery packets:

• 0x86 (134d) — Router Advertisement

• 0x87 (135d) — Neighbor Solicitation

613875-009 1773

Intel® Ethernet Controller E810 Datasheet
System Manageability

• 0x88 (136d) — Neighbor Advertisement

• 0x89 (137d) — Redirect

MLD packets:

• 0x82 (130d) — MLD Query

• 0x83 (131d) — MLDv1 Report

• 0x84 (132d) — MLD Done

• 0x8F (143d) — MLDv2 Report

The neighbor discovery packets have dedicated enables for each type in the decision filters. For MLD, a
single enable controls the forwarding of all the MLD packets. This means that either all the MLD packets
types are selected for reception, or none of them.

See Appendix A.5.3.5 for the format of ICMPv6 packets.

12.4.3.3 RMCP Filtering

The E810 supports filtering by fixed destination port numbers: port 0x26F and port 0x298. These ports
are IANA reserved for RMCP.

UDP or TCP protocols can be included in the comparison using the PORT_26F_UDP, PORT_26F_TCP,
PORT_298_UDP, and PORT_298_TCP fields in the PRT_MNG_MSFM register.

In SMBus mode, there are filters that can be enabled for these ports. When using NC-SI, they are not
specifically available. However, the general filtering mechanism can be utilized to filter incoming RMCP
traffic.

12.4.3.4 ICMP Filtering

The E810 supports filtering by ICMPv4. This filter matches if the IP Protocol field equals to 1b.

See Appendix A.5.3.4 for the format of ICMP packets.

12.4.3.5 Flexible Port Filtering

The E810 implements 16 flex source/destination port filters. The E810 directs packets whose L4
destination or source port matches to the MC. The MC must ensure that only valid entries are enabled
in the decision filters.

For each flex port filter, filtering can be enabled for UDP, TCP or both. It can be enabled either on source
or destination port.

12.4.3.6 IP Address Filtering

The E810 supports filtering by destination IP Address using IPv4 and IPv6 Address filters. These are
dedicated to manageability. The E810 provides four IPv6 Address filters and four IPv4 Address filters.

For each IPv6 filter, the matching PRT_MNG_MSFM.IPV6_n_MASK bit defines if all the IP Address should
be compared to the PRT_MNG_MIPAF6 register or only the 24 LS bits should be compared to the 24 LS
bits of the PRT_MNG_MIPAF6 register.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1774 613875-009

The IPv4 match also rises for ARP packets for which the target IP matches the IP Address in the
PRT_MNG_MIPAF4 register.

12.4.3.7 Checksum Filtering

The E810 might be instructed to direct packets to the MC only if they pass L3/L4 checksum (if they
exist) in addition to matching other filters previously described.

To enable the XSUM filtering when using NC-SI, use the Enable Checksum Offloading command. See
Section 12.6.4.13.

Note: Checking the checksum of some complex IPv6 packets with routing extensions is not
supported by the E810. Therefore, such packets are passed to the BMC even if their
checksum is wrong and checksum offload is enabled. The BMC should check the checksum of
such packets itself.

12.4.4 Flexible 144-Byte Filter

The E810 provides one flex TCO filter. This filter looks for a pattern match within the first 144 bytes of
the packet.

The flex filter programming should ignore the presence of these fields.

If tags unknown to the programming instance (BMC) are expected in the packet (for example, if the
device is removing STag before forwarding the packets to the BMC), the filter should be adapted
accordingly by skipping/comparing the removed bytes in the filter.

Notes:

• The flex filter comparison should be disabled in the MDEF registers while the flex filter is being
updated.

• The flexible filter is not applied to transmit packets and a transmit packet is considered as if it did
not pass the filter.

The association of filters to ports is described in Table 12-7 according to the mode of operation, as
defined by the GLGEN_MAC_LINK_TOPO register. For example, in a 4 ports mode, the filter to program
for port 2 is PRT_MNG_FTFT_*_1_0.

Table 12-7. Number of Ports to Filter Mapping

Port Number/Mode 1/2 Ports Mode 4 Ports Mode 8 Ports Mode

0
PRT_MNG_FTFT_*_0_0

and
PRT_MNG_FTFT_*_1_01

PRT_MNG_FTFT_*_0_0 PRT_MNG_FTFT_*_0_0

1
PRT_MNG_FTFT_*_2_0

and
PRT_MNG_FTFT_*_3_01

PRT_MNG_FTFT_*_2_0 PRT_MNG_FTFT_*_2_0

613875-009 1775

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.4.4.1 Flexible Filter Structure

The filter is composed of the following fields:

• Flexible filter length — This field indicates the number of bytes in the packet header that should
be inspected. The field also indicates the minimal length of packets inspected by the filter. A packet
below that length is not inspected. Valid values for this field are: 8*n, where n=1….

• Data — This is a set of up to 144 bytes comprised of values that header bytes of packets are tested
against.

• Mask — This is a set of bit masks - one bit per byte of data in the packet that indicates if it is tested
against its corresponding byte in the filter. Part of the bytes in the filter cannot be used for the
filtering, so the mask is used to indicate which of the bytes are used for the filter.

12.4.4.2 TCO Filter Programming

Programming each filter is done using the following commands (NC-SI or SMBus) in a sequential
manner:

1. Filter Mask and Length — This command configures the following fields:

a. Mask — A set of 16 bytes containing the 128 bits of the mask. Bit 0 of the first byte corresponds
to the first byte on the wire.

b. Length — A 1-byte field indicating the length.

2. Filter Data — The filter data is divided into groups of bytes as follows:

Each group of bytes must be configured using a separate command, where the group number is
given as a parameter. The command has the following parameters:

a. Group number — A 1-byte field indicating the current group addressed.

2 PRT_MNG_FTFT_*_1_0 PRT_MNG_FTFT_*_1_0

3 PRT_MNG_FTFT_*_3_0 PRT_MNG_FTFT_*_3_0

4 PRT_MNG_FTFT_*_0_1

5 PRT_MNG_FTFT_*_2_1

6 PRT_MNG_FTFT_*_1_1

7 PRT_MNG_FTFT_*_3_1

1. The two registers should have the same value.

Group Test Bytes

0x0 0-29

0x1 30-59

0x2 60-89

0x3 90-119

0x4 120-127

Table 12-7. Number of Ports to Filter Mapping [continued]

Port Number/Mode 1/2 Ports Mode 4 Ports Mode 8 Ports Mode

Intel® Ethernet Controller E810 Datasheet
System Manageability

1776 613875-009

b. Data bytes — Up to 30 bytes of test-bytes for the current group.

12.4.4.2.1 Flexible TCO Filter Configuration in NVM (Global MNG Offset
0x05)

This section describes the NVM module used to store the flex filter initial data in SMBus mode.

This module is a TLV in the PFA with a type of 7.

12.4.4.2.1.1 Section Header (Offset 0x00)

12.4.4.2.1.2 Flexible Filter Control (Offset 0x01)

12.4.4.2.1.3 Flexible Filter Length (Offset 0x02)

12.4.4.2.1.4 Flexible Filter Enable Mask (Offset 0x03-0x0A)

12.4.4.2.1.5 Flexible Filter Data - (Offset 0x0B-0x4A)

Bits Name Default Description

15:0 Block Length 0xC Section length in words (including CRC word and length word).

Bits Name Default Description

15 Last Filter

14:8 Reserved Reserved.

7 Apply Filter to LAN 7

6 Apply Filter to LAN 6

5 Apply Filter to LAN 5

4 Apply Filter to LAN 4

3 Apply Filter to LAN 3

2 Apply Filter to LAN 2

1 Apply Filter to LAN 1

0 Apply Filter to LAN 0

Bits Name Default Description

15:7 Flexible Filter Length (bytes)

6:0 Reserved Reserved.

Bits Name Default Description

15:0 Flexible Filter Enable Mask

Bits Name Default Description

15:0 Flexible Filter Data

613875-009 1777

Intel® Ethernet Controller E810 Datasheet
System Manageability

Note: This section loads all of the flexible filters. The control + mask + filter data are repeatable as
the number of filters. Section length in offset 0 is for all filters.

12.4.4.2.1.6 Section Footer (Offset Block Length)

12.4.5 Configuring Manageability Filters

There are a number of pre-defined filters that are available for the MC to enable, such as ARPs and IPMI
ports 0x298 and 0x26F. These are generally enabled by setting the appropriate bit within the
PRT_MNG_MANC register using specific commands.

For more advanced filtering needs, the MC has the ability to configure a number of configurable filters.
It is a two-step process to use these filters. They must first be configured and then enabled.

12.4.5.1 Manageability Decision Filters

Manageability Decision Filters (MDEF) are a set of eight filters, each with the same structure. The
filtering rule for each decision filter is programmed by the MC and defines which of the L2, VLAN,
EtherType, and L2/L3 filters participate in decision making. Any packet that passes at least one rule is
directed to manageability and possibly to the host.

The inputs to each decision filter are:

• Packet passed a valid management L2 exact address filter.

• Packet is a broadcast packet.

• Packet has a VLAN header and it passed a valid manageability VLAN filter.

• Packet matched one of the valid IPv4 or IPv6 manageability address filters.

• Packet is a multicast packet.

• Packet passed ARP filtering (request or response).

• Packet passed neighbor solicitation filtering.

• Packet passed MLD filtering.

• Packet passed 0x298/0x26F port filter.

• Packet passed a valid flex port filter.

• Packet passed a valid flex TCO filter.

• Packet is an ICMPv4 packet.

• Packet passed or failed an L2 EtherType filter.

• Packet passed or failed Flow Control or NC-SI L2 EtherType Discard filter.

The structure of each decision filter is shown in Figure 12-3. A boxed number indicates that the input is
conditioned by a mask bit defined in the MDEF register and MDEF_EXT register for this rule. Decision
filter rules are as follows:

Bits Name Default Description

15:8 CRC 8 CRC8 of the previous section.

7:0 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1778 613875-009

• At least one bit must be set in one of the two registers. If all bits are cleared (MDEF/MDEF_EXT =
0x0000), the decision filter is disabled and ignored.

• All enabled AND filters must match for the decision filter to match. An AND filter not enabled in the
MDEF/MDEF_EXT registers is ignored. If an AND filter is preceded by a OR filter, at least one of the
enabled OR inputs must match for the filter to pass.

• If no OR filter is enabled in the register, the OR filters are ignored in the decision (the filter might
still match).

• If one or more OR filters are enabled in the register, at least one of the enabled OR filters must
match for the decision filter to match.

Figure 12-3. Manageability Decision Filters

AN
D

L2 unicast address 3

0.4Broadcast

VLAN 0

IPv4 address 0

L2 unicast address 3 0.24

0.25Broadcast

0.26Multicast

0.28

ARP Request

0.30Port 0x298

0.31Port 0x26F

1.8Flex Port 0

1.23Flex Port 15

1.24Flex TCO

0.29,
1.25- 1.27

Neighbor Discovery
(134/135/136/137)

0.27

ARP Response

L2 EtherType 3

L2 EtherType 0

1.4

1.7

OR

L2 EtherType 0

L2 EtherType 3

L2 unicast address 0 0.21

IPv4 address 3

IPv6 address 0

IPv6 address 3

VLAN 7

L2 unicast address 0

0.12

0.5

OR0.16

0.13

0.20

0.17

1.3

1.0

0.0

0.3

AND

MANC[1]

NC-SI L2 EtherType

MANC[0]

Flow Control L2 EtherType

ICMP 1.28

MLD 1.29

613875-009 1779

Intel® Ethernet Controller E810 Datasheet
System Manageability

A decision filter (for any of the eight filters) defines which of the previously described inputs are
enabled as part of a filtering rule. The MC programs two 32-bit registers per rule (MDEF[7:0] and
MDEF_EXT[7:0]) with the settings as described in Section 13.2.2.29.19 and Section 13.2.2.29.21. A
set bit enables its corresponding filter to participate in the filtering decision.

In addition to the controls previously described, the PRT_MNG_MDEF_EXT.APPLY_TO_HOST_TRAFFIC
and PRT_MNG_MDEF_EXT.APPLY_TO_NETWORK_TRAFFIC bits define which traffic is compared to this
filter. At least one of these bits must be set for the filter to be valid.

If the PRT_MNG_MDEF_EXT.APPLY_TO_HOST_TRAFFIC bit is set, the traffic from the host is a candidate
for this filter. If the PRT_MNG_MDEF_EXT.apply_to_network_traffic bit is set, the traffic from the
network is a candidate for this filter. If both bits are set, this filter is applied to all traffic.

12.4.5.2 Exclusive Traffic

The decisions regarding forwarding of packets to the host for LAN traffic or to the LAN for host traffic
are independent from the management decision filters. However, the MC might define some types of
traffic as exclusive. The behavior for such traffic is defined by the using the bits corresponding to the
decision filter in the PRT_MNG_MNGONLY register (one bit per each of the eight decision rules) and the
PRT_MNG_MDEF_EXT.APPLY_TO_HOST_TRAFFIC and
PRT_MNG_MDEF_EXT.APPLY_TO_NETWORK_TRAFFIC bits.

Table 12-8 lists the behavior in each case. If one or more filters match the traffic and at least one of the
filters is set as exclusive, the traffic is treated as exclusive.

Any traffic matching any of the configurable filters (see Section 12.4.5.1) can be used as filters to pass
traffic to the host.

Table 12-8. Exclusive Traffic Behavior

Traffic Source
Filter Matches

Filter Does Not Match
PRT_MNG_MNGONLY = 0 PRT_MNG_MNGONLY = 1

From Network
Traffic is forwarded to manageability.
Traffic is forwarded to the host
according to host filtering.

Traffic is forwarded only to
manageability.

Traffic is forwarded to the host
according to host filtering.

From Host Traffic is forwarded to manageability
and to the LAN.

Traffic is forwarded only to
manageability. Traffic is forwarded to the LAN.

Table 12-9. PRT_MNG_MNGONLY Register Description and Usage

Bits Description Default

0 Decision Filter 0 Determines if packets that have passed decision filter 0 are sent exclusively to the manageability path.

1 Decision Filter 1 Determines if packets that have passed decision filter 1 are sent exclusively to the manageability path.

2 Decision Filter 2 Determines if packets that have passed decision filter 2 are sent exclusively to the manageability path.

3 Decision Filter 3 Determines if packets that have passed decision filter 3 are sent exclusively to the manageability path.

4 Decision Filter 4 Determines if packets that have passed decision filter 4 are sent exclusively to the manageability path.

5 Unicast and
Mixed

NC-SI mode: Determines if unicast and mixed packets are sent exclusively to the manageability path.
SMBus mode: Determines if packets that have passed decision filter 5 are sent exclusively to the

manageability path.

6 Global Multicast
NC-SI mode: Determines if multicast packets are sent exclusively to the manageability path.
SMBus mode: Determines if packets that have passed decision filter 6 are sent exclusively to the

manageability path.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1780 613875-009

PRT_MNG_MNGONLY is configurable when using NC-SI using the Set Intel Filters — Manageability Only
command (see Section 12.6.4.5.2).

All manageability filters are controlled by the MC only and not by the LAN software device driver.

12.4.5.3 Global Controls

On top of the PRT_MNG_MDEF filters, the PRT_MNG_MANC registers contain some global controls
applied to all the packets in order to be a candidate for manageability filtering:

• Receive enable bits:

— The RCV_TCO_EN field controls the reception of manageability traffic. It should be set only if
one of the following bits is also set.

— The EN_BMC2OS bit controls the reception of manageability traffic from the host.

— The EN_BMC2NET bit controls the reception of manageability traffic from the network.

• VLAN filtering — To support the NC-SI VLAN modes, the following controls are provided:

— The FIXED_NET_TYPE field controls if only VLAN tagged or VLAN untagged traffic is received. If
this bit is cleared, both types are received. If it is set, only the type described by the NET_TYPE
field is accepted.

— If set, the NET_TYPE field indicates that only VLAN tagged traffic is received, if cleared only
packets without VLAN is accepted. This field is validated by the FIXED_NET_TYPE field.

Both fields relate to the inner VLAN.

Table 12-10 lists the relationship between the previously mentioned bits and the forwarding decisions:

7 Broadcast
NC-SI mode: Determines if broadcast packets are sent exclusively to the manageability path.
SMBus mode: Determines if ARP packets are sent exclusively to the manageability path.

31:8 Reserved Reserved.

Table 12-10. PRT_MNG_MANC Bits Impact

CASE\
PRT_MNG_MANC

Bits
RCV_TCO_EN=0b

FIXED_NET_TYPE=1b
and NET_TYPE!=

What's in the Packet

EN_BMC2OS=0b
(Assume

EN_BMC2NET=1b)

EN_BMC2NET=0b
(Assume

EN_BMC2HOST=1b)

Packet sent from host and hits
MDEF filters.
(host-to-MC traffic)

Packet is not sent to
the MC.

Packet is not sent to the
MC.

Packet is not sent to
the MC.

Packet is sent to the
MC.

Packet sent from host and
matches one of the EMP VSI.
(host-to-EMP traffic).

Packet is sent to the
EMP.

Packet is sent to the
EMP.

Packet is sent to the
EMP.

Packet is sent to the
EMP.

Packet received from LAN and
hits MDEF filters.
(LAN-to-MC traffic)

Packet is not sent to
the MC.

Packet is not sent to the
MC.

Packet is sent to the
MC.

Packet is not sent to
the MC.

Packet received from LAN and
matches on of the EMP VSI.
(LAN-to-EMP traffic)

Packet is sent to the
EMP.

Packet is sent to the
EMP.

Packet is sent to the
EMP.

Packet is sent to the
EMP.

Packet sent from EMP and
matches one of the host VSIs.
(EMP-to-host traffic)

Packet is sent to the
host (and optionally
to the LAN).

Packet is sent to the
host (and optionally to
the LAN).

Packet is sent to the
host (and optionally to
the LAN).

Packet is sent to the
host (and optionally to
the LAN).

Table 12-9. PRT_MNG_MNGONLY Register Description and Usage [continued]

Bits Description Default

613875-009 1781

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.4.6 Filtering Programming Interfaces

The E810 provides multiple options to program the forwarding filters, depending on the interface used
and the level of flexibility needed. The Table 12-11 lists the different options and points to the
description of the relevant commands.

12.4.6.1 Shared MAC and Shared IP Support

The E810 operates in systems where the same MAC and IP are shared between a platform's host
operating system and its MC. To support such systems, the E810 supports additional shared MAC
filtering options on top of what was supported in previous products. This section describes these options
and the NC-SI commands used to program them.

Note: All filtering capabilities are exposed via the regular NC-SI packet reduction and packet
addition commands and via the SMBus Set Filtering command. The interface described in this
section is a more abstract NC-SI interface.

Packet sent from the EMP and
does not match one of the
host VSIs.
(EMP-to-LAN traffic)

Packet is sent to the
LAN.

Packet is sent to the
LAN.

Packet is sent to the
LAN.

Packet is sent to the
LAN.

Packet sent from the MC and
matches one of the host VSIs.
(MC-to-host traffic)

Packet is sent to the
host (and optionally
to the LAN).

Packet is sent to the
host (and optionally to
the LAN).

Packet is sent to the
LAN.

Packet is sent to the
host (and optionally to
the LAN).

Packet sent from the MC and
does not match one of the
host VSIs.
(MC-to-LAN traffic)

Packet is sent to the
LAN.

Packet is sent to the
LAN.

Packet is sent to the
LAN.

Packet is not sent to
the LAN (optionally
sent to host).

Table 12-11. Filtering Programming Interfaces

Interface Flexible/Abstract Description

NC-SI
(over RMII or
over MCTP)

Abstract
(dedicated MAC Address)

The regular NC-SI commands can be used to enable forwarding based on a dedicated
MAC Address. The list of supported commands can be found in Section 12.6.2.1.
When using these commands, one of the two other modes can be used to add finer
grain filtering.

Abstract
(Shared MAC and IP)

The Intel OEM commands described in Section 12.4.6.1 and in Section 12.6.4.14 can
be used to define which part of the shared MAC or shared IP traffic should be
forwarded. When using these commands, the flexible filtering interface should not be
used. This mode is activated using the Set Shared Mode command
(Section 12.6.4.14.12.1)

Flexible

This interface described in most of the sub-sections of Section 12.6.4. It uses the
packet reduction commands to reduce the forwarding scope of the filters set by the
regular NC-SI commands and the packet addition commands to add new packet types
to the forwarding rules.

Table 12-10. PRT_MNG_MANC Bits Impact [continued]

CASE\
PRT_MNG_MANC

Bits
RCV_TCO_EN=0b

FIXED_NET_TYPE=1b
and NET_TYPE!=

What's in the Packet

EN_BMC2OS=0b
(Assume

EN_BMC2NET=1b)

EN_BMC2NET=0b
(Assume

EN_BMC2HOST=1b)

Intel® Ethernet Controller E810 Datasheet
System Manageability

1782 613875-009

12.4.6.1.1 Sharing an IP and MAC Address

NC-SI over MCTP is used in desktop and mobile platforms. These platforms are typically used in
enterprise environments outside of a data center. IP subnets in these environments are commonly
designed such that more than 50% of their available addresses are assigned.

Hence, assigning a second IP Address to an MC would generally necessitate a subnet redesign. Instead,
a single IP Address is typically shared between the host operating system and an MC in these platforms.

Because it is possible to bind multiple IP Addresses to a single MAC Address, the E810 needs to know
the IP Address shared by an MC to deliver packets to it. An MC uses the Set IP Address command to
communicate its IP Address to the E810. The Set IP Address command is defined in
Section 12.6.4.14.1.

To notify the E810 that the MC intends to use a shared MAC, the Set Shared Mode command
(Section 12.6.4.14.12.1) should be given before programming any filter using the regular NC-SI
commands (Set MAC Address or Set VLAN) or the Intel OEM commands (Section 12.6.4.14).

12.4.6.1.1.1 TCP/UDP Ports Owned by an MC

A small subset of the TCP and UDP ports might be dedicated to an MC. The remaining ports are
assigned to the host operating system. Hence, port-based filtering and the commands to configure it
are required. For example, port-based filtering would be used to route WS-management packets to an
MC.

The E810 needs to know the ports owned by an MC to deliver packets to it. An MC uses the Set Port
command to communicate its ports to the E810. The Set Port command is defined in
Section 12.6.4.14.3. The E810 supports 10 port filters.

The Set Binding command is used to define the combination of MAC, VLAN, IP and ports that should be
met to forward packets to the MC (see Section 12.6.4.14.10 for more details).

12.4.6.1.1.2 Sharing Network Infrastructure Packets

In addition to management traffic, an MC needs to monitor network infrastructure traffic along with the
host. For each flow, it is possible to define if it should include host traffic only, both host and network, or
only network.

12.4.6.1.1.3 ARP Filters Enhancement

ARP request message filtering is controlled by the Enable Broadcast Filter command. However, as
currently defined, this command causes either all or no ARP requests to go to an MC. For MCTP over
SMBus, attempting to forward all ARP requests within a subnet to an MC can easily overwhelm the
available bandwidth. Therefore, an option to have the E810 forward only ARP requests that contain a
Target IP Address value that matches the IP Address used by an MC. An amendment to the Enable
Broadcast Filter command is defined in the sections that follow to address this requirement.

613875-009 1783

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.4.7 Possible Configurations

This section describes ways of using management filters. Actual usage might vary.

12.4.7.1 Dedicated MAC Packet Filtering

1. Select one of the eight rules for dedicated MAC filtering.

2. Load the host MAC Address to one of the management MAC Address filters and set the appropriate
bit in field 3:0 of the MDEF register.

3. Set other bits to qualify which packets are allowed to pass through. For example:

• Set Bit 5 in the MDEF register to qualify with the first manageability VLAN.

• Set relevant Bits 13 to 20 in the MDEF register to qualify with a match to one of the IP
Addresses.

• Set any L3/L4 bits (Bits 27 to 31 in the MDEF register and Bits 16 to 23 in MDEF_EXT) to qualify
with any of a set of L3/L4 filters.

12.4.7.2 Broadcast Packet Filtering

1. Select one of the eight rules for broadcast filtering.

2. Set Bit 25 in the MDEF register of the decision rule to enforce broadcast filtering.

3. Set other bits to qualify which broadcast packets are allowed to pass through. For example:

• Set Bit 5 in the MDEF register to qualify with the first manageability VLAN.

• Set relevant Bits 13 to 20 in the MDEF register to qualify with a match to one of the IP
Addresses.

• Set any L3/L4 bits (Bits 27 to 31 in the MDEF register and Bits 16 to 23 in MDEF_EXT) to qualify
with any of a set of L3/L4 filters.

12.4.7.3 VLAN Packet Filtering

1. Select one of the eight rules for VLAN filtering.

2. Set Bits 5 to 12 in the MDEF register to qualify with the relevant manageability VLANs.

3. Set other bits to qualify which VLAN packets are allowed to pass through. For example:

• Set any L3/L4 bits (Bits 27 to 31 in the MDEF register and Bits 16 to 23 in MDEF_EXT) to qualify
with any of a set of L3/L4 filters.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1784 613875-009

12.4.7.4 IPv6 Filtering

IPv6 filtering is done using the following IPv6-specific filters:

• IP Unicast Filtering — Requires filtering for link local address and a global address. Filtering setup
might depend on whether or not the MAC Address is shared with the host or dedicated to
manageability:

— Dedicated MAC Address (for example, dynamic address allocation with DHCP does not support
multiple IP Addresses for one MAC Address). In this case, filtering can be done at L2 using two
dedicated unicast MAC filters.

— Shared MAC Address (for example, static address allocation sharing addresses with host). In
this case, filtering needs to be done at L3, requiring two IPv6 Address filters, one per address.

• A Neighbor Discovery Filter — The E810 supports IPv6 neighbor discovery protocol. Since the
protocol relies on multicast packets, the E810 supports filtering of these packets. IPv6 multicast
addresses are translated into corresponding Ethernet multicast addresses in the form of 33-33-xx-
xx-xx-xx, where the last 32 bits of the address are taken from the last 32 bits of the IPv6 multicast
address. As a result, two direct MAC filters can be used to filter IPv6 solicited-node multicast
packets as well as IPv6 all node multicast packets.

12.4.7.5 Receive Filtering with Shared IP

When using the legacy SMBus interface or the MCTP interface, it is possible to share the host MAC and
IP Address with an MC. This functionality is also available when using base NC-SI using Intel OEM
commands.

When an MC shares the MAC and IP Address with the host, receive filtering is based on identifying
specific flows through port allocation. The following setting might be used when using the legacy SMBus
interface:

1. Select one of the eight rules.

2. Set a manageability dedicated MAC filter to the host MAC Address and set the matching bit (0-3) in
the MDEF register.

3. If VLAN is used for management, load one or more management VLAN filters and set the matching
bit (5-12) in the MDEF register.

ARP filter/neighbor discovery filter is enabled when an MC is responsible for handling the ARP protocol.
Set Bit 27 or Bit 28 in the MDEF register for this functionality.

In NC-SI over MCTP, dedicated commands are used to enable shared IP filtering.

12.4.8 Determining Manageability MAC Address

If an MC needs to use a dedicated MAC Address or configure the automatic ARP response mechanism
(only available in SMBus mode), it might be beneficial for an MC to be able to determine the MAC
Address used by the host.

Both the NC-SI and SMBus interfaces provide an Intel OEM command to read the system MAC Address.

A possible use for this is that the MAC Address programmed at manufacturing time does not increment
by one each time, but rather by two. In this way, an MC can read the system MAC Address and add one
to it and be guaranteed of a unique MAC Address.

Note: Determining the IP Address being used by the host is beyond the scope of this document.

613875-009 1785

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.5 OS-to-BMC Traffic

12.5.1 Overview

Traditionally, the communication between a host and a local MC is not handled through the network
interface and requires a dedicated interface, such as an IPMI KCS interface. The E810 enables the host
and the local MC communication via the regular pass-through interface, and thus enable management
of a local console using the same interface used to manage any MC in the network.

When this flow is used, the host sends packets to an MC through the network interface. The E810
examines these packets and then decides if they should be forwarded to an MC. On the inverse path,
when an MC sends a packet on the pass-through interface, the E810 checks if it should be forwarded to
the network, the host, or both. Figure 12-4 describes the flow for OS-to-BMC traffic for the NC-SI over
RBT case. OS2BMC is also available when operating over MCTP.

The OS-to-BMC flow can be enabled using the OS2BMC Enable field for the relevant port in the
OS-to-BMC configuration structure of the NVM.

Figure 12-4. OS-to-BMC Flow

Network
Controller

Port NPort 0

External
Network

NC-SI
Channel 0

NC-SI
Channel N

MC
MNG/host

mux
MNG/host

mux

Port 0
Driver

Port N
 Driver

Networking stack

Aplication

...

...

Intel® Ethernet Controller E810 Datasheet
System Manageability

1786 613875-009

The OS-to-BMC flow is enabled only for ports enabled by the NC-SI Enable Channel command or via the
OS2BMC Enable field for the relevant port in the OS-to-BMC configuration structure of the NVM.

OS-to-BMC traffic must comply with NC-SI specifications and is therefore limited to maximum sized
frames of 1536 bytes (in both directions).

12.5.2 Filtering

12.5.2.1 OS-to-BMC Filtering

12.5.2.2 BMC-to-OS Filtering

The flow used to filter packets from the BMC to the host is similar to the filtering of receive traffic.

Note: Traffic sent from the MC does not cause a PME event, even if it matches one of the wake-up
filters set by the port.

12.5.3 Blocking Network-to-BMC Flow

In some systems the MC might have its own private connection to the network and might use a E810
port only for the OS-to-BMC traffic. In this case, the BMC-to-network flow should be blocked while
enabling the OS-to-BMC and OS-to-network flows.

This can be done by clearing the PRT_MNG_MANC.EN_BMC2NET bit for the relevant port. The MC can
control this functionality using the Enable Network-to-BMC flow and Disable Network-to-BMC flow NC-SI
OEM commands. This can also be controlled using the Network to BMC disable field in the NVM OS2BMC
Configuration Structure.

Figure 12-5. OS-to-BMC and VM-to-VM Filtering

VT switch

MNG switch

DMA Tx DMA Rx

MNG block

network

613875-009 1787

Intel® Ethernet Controller E810 Datasheet
System Manageability

Note: The NC-SI channel should not be enabled for receive or transmit before at least one of the
PRT_MNG_MANC.EN_BMC2NET or PRT_MNG_MANC.EN_BMC2OS fields is set, unless only
used for AEN transmissions. In this case, the channel might be enabled for receive, but all
receive filters should be cleared.

12.5.4 OS-to-BMC and Flow Control

The traffic between the host and manageability uses the same buffers as any loopback traffic. Thus, it
flows through the transmit buffer and then through the receive buffer. If the transmit buffer is flow
controlled, then the host-to-MC traffic is also stopped. If the receive buffer is full, the traffic is dropped
or the transmit is stopped according to the flow control policy of this traffic class.

Packets received by manageability (either from the host or from the network) might be dropped if the
manageability internal buffers are full.

12.5.5 Statistics

Packets sent from the operating system to the MC should be counted by all statistical counters as
packets sent by the operating system. If they are sent to both the network and to the MC, they are
counted once.

Packets sent from the MC to the host are counted as packets received by the host. If they are sent to
the host and to the network, they are counted both as received packets and as packet transmitted to
the network.

See Section 9.6.5 for details of the statistics hierarchy.

12.5.6 OS-to-BMC Enablement

The E810 supports the unified network software model for OS-to-BMC traffic, where the OS-to-BMC
traffic is shared with the regular traffic. In this model, there is no need for a special configuration of the
operating networking stack or the BMC stack, but if the link is down, the OS-to-BMC communication is
stopped.

To enable OS-to-BMC, either:

• Enable OS2BMC in the port traffic type field in the Traffic Type Parameters NVM word for the
relevant port.

• Send an Enable Network-to-BMC command.

Note: When OS2BMC is enabled, the operating system must avoid sending packets longer than 1.5
KB to the MC. Such packets are dropped.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1788 613875-009

12.5.7 SMBus Troubleshooting

This section outlines the most common issues found while working with PT using the SMBus sideband
interface.

12.5.7.1 TCO Alert Line Stays Asserted After a Power Cycle

After the E810 resets, all its ports indicate a status change. If the MC only reads status from one port
(secondary address), the other one continues to assert the TCO alert line.

Ideally, the MC should use the ARA transaction to determine which secondary asserted the TCO alert.
Many customers only want to use one port for manageability, thus using ARA might not be optimal.

An alternative to using ARA is to configure part of the ports to not report status and to set its SMBus
timeout period. In this case, the SMBus timeout period determines how long a port asserts the TCO
alert line awaiting a status read from a MC; by default this value is zero (indicates an infinite timeout).

The SMBus configuration section of the NVM has a SMBus Notification Timeout (ms) field that can be set
to a recommended value of 0xFF (for this issue). Note that this timeout value is for all secondary
addresses. Along with setting the SMBus Notification Timeout to 0xFF, it is recommended that the other
ports be configured in the NVM to disable status alerting. This is accomplished by having the Enable
Status Reporting bit set to 0b for the desired ports in the LAN configuration section of the NVM.

The third solution for this issue is to have the MC hard-code the secondary addresses to always read
from all ports. As with the previous solution, it is recommend that the other ports have status reporting
disabled.

12.5.7.2 When SMBus Commands are Always NACK'd

There are several reasons why all commands sent to the E810 from a MC could be NACK'd. The
following are most common:

• Invalid NVM Image — The image itself might be invalid or it could be a valid image and is not a
PT image. As such, SMBus connectivity is disabled.

• The MC is not using the correct SMBus address — Many MC vendors hard-code the SMBus
address(es) into their firmware. If the incorrect values are hard-coded, the E810 does not respond.

— The SMBus address(es) can be dynamically set using the SMBus ARP mechanism.

• The MC is using the incorrect SMBus interface — The NVM might be configured to use one
physical SMBus port. However, the MC is physically connected to a different one.

• Bus Interference — The bus connecting the MC and the E810 might be unstable.

12.5.7.3 SMBus Clock Speed is 16.6666 KHz

This can happen when the SMBus connecting the MC and the E810 is also tied into another device (such
as an ICH) that has a maximum clock speed of 16.6666 KHz. The solution is to not connect the SMBus
between the E810 and the MC to this device.

613875-009 1789

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.5.7.4 A Network-Based Host Application is Not Receiving Any
Network Packets

Reports have been received about an application not receiving any network packets. The application in
question was NFS under Linux. The problem was that the application was using the RMPC/RMCP+ IANA
reserved port 0x26F (623) and the system was also configured for a shared MAC and IP Address with
the operating system and the MC.

The management control to host configuration, in this situation, was setup not to send RMCP traffic to
the operating system (this is typically the correct configuration). This means that no traffic send to port
623 was being routed.

The solution in this case is to configure the problematic application NOT to use the reserved port 0x26F.

12.5.7.5 Unable to Transmit Packets from the MC

If the MC has been transmitting and receiving data without issue for a period of time and then begins to
receive NACKs from the E810 when it attempts to write a packet, the problem is most likely due to the
fact that the buffers internal to the E810 are full of data that has been received from the network but
has yet to be read by the MC.

Being an embedded device, the E810 has limited buffers that are shared for receiving and transmitting
data. If a MC does not keep the incoming data read, the E810 can be filled up. This prevents the MC
form transmitting more data, resulting in NACKs.

If this situation occurs, the recommended solution is to have the MC issue a Receive Enable command
to disable more incoming data, read all the data from the E810, and then use the Receive Enable
command to enable incoming data.

12.5.7.6 SMBus Fragment Size

The SMBus specification indicates a maximum SMBus transaction size of 32 bytes. Most of the data
passed between the E810 and the MC over the SMBus is RMCP/RMCP+ traffic, which by its very nature
(UDP traffic) is significantly larger than 32 bytes in length. Multiple SMBus transactions might therefore
be required to move data from the E810 to the MC or to send a data from the MC to the E810.

Recognizing this bottleneck, the E810 handles up to 240 bytes of data in a single transaction. This is a
configurable setting in the NVM. The default value in the NVM images is 32, per the SMBus
specification. If performance is an issue, increase this size.

During initialization, firmware within the E810 allocates buffers based upon the SMBus fragment size
setting within the NVM. E810 firmware has a finite amount of RAM for its use: the larger the SMBus
fragment size, the fewer buffers it can allocate. Because this is true, MC implementations must take
care to send data over the SMBus efficiently.

For example, E810 firmware has 3 KB of RAM it can use for buffering SMBus fragments. If the SMBus
fragment size is 32 bytes, the firmware could allocate 96 buffers of size 32 bytes each. As a result, the
MC could then send a large packet of data (such as KVM) that is 800 bytes in size in 25 fragments of
size 32 bytes apiece. However, this might not be the most efficient way because the MC must break the
800 bytes of data into 25 fragments and send each one at a time.

If the SMBus fragment size is changed to 240 bytes, E810 firmware can create 12 buffers of 240 bytes
each to receive SMBus fragments. The MC can now send that same 800 bytes of KVM data in only four
fragments, which is much more efficient.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1790 613875-009

The problem of changing the SMBus fragment size in the NVM is if the MC does not also reflect this
change. If a programmer changes the SMBus fragment size in the E810 to 240 bytes and then wants to
send 800 bytes of KVM data, the MC can still only send the data in 32 byte fragments. As a result,
firmware runs out of memory. This is because firmware created the 12 buffers of 240 bytes each for
fragments; however, the MC is only sending fragments of size 32 bytes. This results in a memory waste
of 208 bytes per fragment. Then when the MC attempts to send more than 12 fragments in a single
transaction, the E810 NACKs the SMBus transaction due to not enough memory to store the KVM data.

In summary, if a programmer increases the size of the SMBus fragment size in the NVM (recommended
for efficiency purposes) take care to ensure that the MC implementation reflects this change and uses
that fragment size to its fullest when sending SMBus fragments.

12.5.7.7 Losing Link

Normal behavior for the Ethernet controller when the system powers down or performs a reset is for
the link to temporarily go down and then back up again to re-negotiate the link speed. This behavior
can have adverse affects on manageability.

For example, if there is an active FTP or Serial over LAN (SoL) session to the MC, this connection can be
lost. To avoid this possible situation, the MC can use the Management Control command (detailed in
Section 12.6.4.10) to ensure the link stays active at all times. This command is available when using
the NC-SI sideband interface as well.

Care should be taken with this command, if the software device driver negotiates the maximum link
speed, the link speed remains the same when the system powers down or resets. This can have
undesirable power consumption consequences. Currently, when using NC-SI, the MC can re-negotiate
the link speed. That functionality is not available when using the SMBus interface.

12.5.7.8 Enable Checksum Filtering

If checksum filtering is enabled, the MC does not need to perform the task of checking this checksum
for incoming packets. Only packets that have a valid checksum is passed to the MC. All others are
silently discarded.

This is a way to offload some work from the MC.

12.5.7.9 Still Having Problems?

If problems still exist, contact your field representative. Be prepared to provide the following:

• A SMBus trace if possible.

• A dump of the NVM image. This should be taken from the actual E810, rather than the NVM image
provided by Intel. Parts of the NVM image are changed after writing (such as the physical NVM
size).

613875-009 1791

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6 Network Controller Sideband Interface
(NC-SI) PT Interface

The NC-SI is a DMTF industry standard protocol for the sideband interface. NC-SI uses a modified
version of the industry standard RMII interface for the physical layer (RBT) as well as defining a new
logical layer.

The NC-SI specification can be found at:

http://www.dmtf.org/

12.6.1 Overview

12.6.1.1 Terminology

The terminology in this section is taken from the NC-SI specification.

Table 12-12. NC-SI Terminology

Term Definition

Channel The control logic and data paths supporting NC-SI pass-through operation on a single
network interface (port). A network controller that has multiple network interface ports
can support an equivalent number of NC-SI channels.

Channel Arbitration Refers to operations where more than one of the network controller channels can be
enabled to transmit pass-through packets to the BMC at the same time, where
arbitration of access to the RXD, CRS_DV, and RX_ER signal lines is accomplished either
by software of hardware means.

Control Traffic/Messages/Packets Command, response, and notification packets transmitted between BMC and the E810
for the purpose of managing NC-SI.

External Network Interface The interface of the network controller that provides connectivity to the external
network infrastructure (port).

Frame vs. Packet Frame is used in reference to Ethernet, whereas packet is used everywhere else.

Integrated Controller The term integrated controller refers to a network controller device that supports two or
more channels for NC-SI that share a common NC-SI physical interface. For example, a
network controller that has two or more physical network ports and a single NC-SI bus
connection.

Interface This refers to the entire physical interface, such as both the transmit and receive
interface between the management controller and the network controller.

Internal Host Interface The interface of the network controller that provides connectivity to the host OS running
on the platform.

Logically Enabled/Disabled NC Refers to the state of the network controller wherein pass-through traffic is able/unable
to flow through the sideband interface to and from the management controller, as a
result of issuing Enable/Disable Channel command.

Management Controller (MC or BMC) An intelligent entity comprising of hardware/firmware/software, that resides within a
platform and is responsible for some or all management functions associated with the
platform (BMC, service processor, and so on).

Multi-Drop Multi-drop commonly refers to the case where multiple physical communication devices
share an electrically common bus, and a single device acts as the primary of the bus
and communicates with multiple secondary or target devices. In NC-SI, a management
controller serves the role as the primary, and the network controllers are the target
devices.

NC Rx Defined as the direction of ingress traffic on the external network controller interface.

http://www.dmtf.org/

Intel® Ethernet Controller E810 Datasheet
System Manageability

1792 613875-009

12.6.1.2 System Topology

In NC-SI, each physical endpoint (NC package) can have several logical secondaries (NC channels). NC-
SI defines that one MC and up to four network controller packages can be connected to the same NC-SI
link.

Figure 12-6 shows an example topology for a single MC (also know as BMC) and a single NC package.
In this example, the NC package has two NC channels.

NC Tx Defined as the direction of egress traffic on the external network controller interface.

NC-SI Rx Defined as the direction of ingress traffic on the sideband enhanced NC-SI interface with
respect to the network controller.

NC-SI Tx Defined as the direction of egress traffic on the sideband enhanced NC-SI Interface with
respect to the network controller.

Network Controller (NC) The component within a system that is responsible for providing connectivity to the
external Ethernet network world.

Network Controller Sideband Interface The interface of the network controller that provides connectivity to a management
controller. It can be shorten to sideband interface as appropriate in the context.

Package One or more NC-SI channels in a network controller that share a common set of
electrical buffers and common buffer control for the NC-SI bus. Typically, there will be a
single, logical NC-SI package for a single physical network controller package (chip or
module). However, the specification allows a single physical chip or module to hold
multiple NC-SI logical packages.

Pass-Through Traffic/Messages/Packets Non-control packets passed between the external network and the BMC through the
E810.

Point-to-Point Point-to-point commonly refers to the case where only two physical communication
devices are interconnected via a physical communication medium. The devices might be
in a primary/secondary relationship, or could be peers. In NC-SI, point-to-point
operation refers to the situation where only a single management controller and single
network controller package are used on the bus in a primary/secondary relationship
where the management controller is the primary.

Remote Media The capability to allow remote media devices to appear as if they were attached locally
to the host.

Figure 12-6. Single NC Package, Two NC Channels

Table 12-12. NC-SI Terminology [continued]

Term Definition

NC Package
Package ID = 0x0

NC Channel

Internal
ChannelID=0x0

NC Channel

Internal
ChannelID=0x1

Management Controller
(MC)

LAN0 LAN1

NC-SI Link

613875-009 1793

Intel® Ethernet Controller E810 Datasheet
System Manageability

Figure 12-7 shows an example topology for a single MC and two NC packages. In this example, one NC
package has two NC channels and the other has only one NC channel. Scenarios in which the NC-SI
lines are shared by multiple NCs (Figure 12-7) mandate an arbitration mechanism.

The arbitration mechanism is described in Section 12.6.9.1.

Note: Channel numbers should match PCI function numbers. If more than one function is defined
on a port, the function with the lowest value associated with this port is used. See
Section 12.3.2.2.2 for details.

12.6.1.3 Data Transport

Since NC-SI is based upon the RMII transport layer, data is transferred in the form of Ethernet frames.

NC-SI defines two types of transmitted frames:

• Control frames:

— Configures and controls the interface.

— Identified by a unique EtherType in their L2 header.

• Pass-through frames:

— Actual LAN pass-through frames transferred from/to the MC.

— Identified as not being a control frame.

— Attributed to a specific NC channel by their source MAC Address (as configured in the NC by the
MC).

Figure 12-7. Two NC Packages (Left: with Two NC Channels, Right: with One NC Channel)

NC Package
Package ID = 0x0

NC Channel

Internal
ChannelID=0x0

NC Channel

Internal
ChannelID=0x1

Management Controller
(MC)

LAN0 LAN1

NC Package
Package ID = 0x1

NC Channel

Internal
ChannelID=0x0

LAN

NC-SI Link

Intel® Ethernet Controller E810 Datasheet
System Manageability

1794 613875-009

12.6.1.3.1 Control Frames

NC-SI control frames are identified by a unique NC-SI EtherType (0x88F8).

Control frames are used in a single-threaded operation, meaning commands are generated only by the
MC and can only be sent one at a time. Each command from the MC is followed by a single response
from the NC (command-response flow), after which the MC is allowed to send a new command.

The only exception to the command-response flow is the Asynchronous Event Notification (AEN). These
control frames are sent unsolicited from the NC to the MC.

AEN functionality by the NC must be disabled by default, until activated by the MC using the AEN Enable
commands.

To be considered a valid command, a control frame must:

• Comply with the NC-SI header format.

• Be targeted to a valid channel in the package via the Package ID and Channel ID fields. For
example, to target a NC channel with package ID of 0x2 and internal channel ID of 0x5, the MC
must set the channel ID inside the control frame to 0x45. The channel ID is composed of three bits
of package ID and five bits of internal channel ID.

• Contain a correct payload checksum (if used).

• Meet any other condition defined by NC-SI.

There are also commands (such as select package) targeted to the package as a whole. These
commands must use an internal channel ID of 0x1F.

For details, refer to the NC-SI specification.

12.6.1.3.2 NC-SI Frames Receive Flow

Figure 12-8 shows the flow for frames received on the NC from the MC.

Figure 12-8. NC-SI Frames Receive Flow for the NC

NC-SI frame
received from MC

EtherType ==
NC-SI EtherType?Process as NC-SI Control Frame Yes

Source MAC address ==
previously configured MAC

address?

No

Send to LAN with matching
configured MAC address Yes

No

Drop frame (belongs to a
different Package)

613875-009 1795

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.2 NC-SI Standard Support

12.6.2.1 Supported Features

The E810 supports all the mandatory features of the NC-SI specification. Table 12-13 lists the support
for standard NC-SI commands.

The E810 supports NC-SI 1.1.0.

Table 12-13. NC-SI Commands Support

Command Support over RMII Supported over
MCTP with Pass-Through

Supported over MCTP
without Pass-Through

Clear Initial State Yes Yes Yes

Get Version ID Yes Yes Yes

Get Parameters Yes Yes Yes

Get Controller Packet Statistics Yes (partially) Yes (partially) Yes (partially)

Get Link Status Yes Yes Yes

Enable Channel Yes Yes Yes

Disable Channel Yes Yes Yes

Reset Channel Yes Yes Yes

Enable VLAN Yes1,2 Yes1 No3

Disable VLAN Yes Yes No3

Enable Broadcast Filter Yes Yes No3

Disable Broadcast Filter Yes Yes No3

Set MAC Address Yes Yes No3

Get NC-SI Statistics Yes Yes Yes

Set NC-SI Flow Control Yes No No3

Set Link Command Yes Yes Yes

Enable Global Multicast Filter Yes Yes No3

Disable Global Multicast Filter Yes Yes No3

Get Capabilities Yes Yes Yes4

Set VLAN Filters Yes Yes No3

AEN Enable Yes Yes Yes

Get NC-SI Pass-Through Statistics Yes (partially) Yes (partially) No3

Select Package Yes Yes Yes

Deselect Package Yes Yes Yes

Enable Channel Network Tx Yes Yes No

Disable Channel Network Tx Yes Yes No

Get Package Status5 Yes No No

Get Package UUID5 Yes Yes Yes

PLDM Request5 No No No

OEM Command6 Yes Yes Yes

Intel® Ethernet Controller E810 Datasheet
System Manageability

1796 613875-009

Table 12-14 lists optional features supported and the level of support for partially supported
commands.

Get Supported Media No Yes Yes

Transport Specific AEN Enable No Yes Yes

Get MC MAC Address7 Yes Yes Yes

1. In cases that one of the LAN devices is assigned for the sole use of the manageability and its LAN PCIe function is disabled, using
the NC-SI Set Link command while advertising multiple speeds and enabling auto-negotiation, results in the lowest possible speed
chosen. To enable link of higher a speed, the MC should not advertise speeds that are below the desired link speed. When doing
it, changing the power state of the LAN device has no effect and the link speed is not re-negotiated.

2. The E810 does not support filtering of User Priority/CFI bits of VLAN.
3. In MCTP without PT mode, only control commands are supported and not PT traffic. Thus many of the regular NC-SI commands

are not supported or are supported in a limited manner, only to enable control and status reporting for the device.
4. When PT is disabled, the Get Capabilities command does not expose all the filtering capabilities of the device.
5. Only relevant in NC-SI 1.1.
6. See Section 12.6.3.2 for details.
7. 7.This command is defined in DSP0222 NC-SI 1.2 draft.

Table 12-14. Optional NC-SI Features Support

Feature Implement Details

AENs Yes

The following AENs are supported:
• Link Change AEN
• Configuration Required AEN
• Driver Status Change AEN
• Medium Change AEN (over MCTP)
• Initialization error AEN (Intel OEM AEN)

The Driver state AEN might be emitted up to one minute after actual driver change if
the driver was taken down unexpectedly.

Get Controller Packet
Statistics command Yes (partially)

Supports the following counters1: 0-8, 11-16, 21-362.
The statistics are not cleared between reads.
Note: The packets counted by counter #35 (1523-9022 byte frames transmitted)

are up to 9522 bytes and not 9022 as requested in the specification.
If a core reset occurs between reads of statistics, the Counters Cleared From Last
Read flags are set in the response.

Get NC-SI Statistics Yes
Supports all the counters3.
Note: If a core reset occurs between reads of statistics, the reported statistics

might be wrong.

Get NC-SI Pass-Through
Statistics Yes (partially) Supports the following counters: 1, 6, and 7.

VLAN Modes Yes (partially) Supports only modes 1 and 3.

Buffering Capabilities Yes 8 Kb

MAC Address Filters Yes Supports two MAC Addresses per port.

Channel Count Yes Supports eight channels.

VLAN Filters Yes
Supports eight VLAN filters per port.
Filtering ignores the CFI bit and the 802.1P priority bits.

Broadcast Filters Yes

Support the following filters:
• ARP
• DHCP
• Net BIOS

Table 12-13. NC-SI Commands Support [continued]

Command Support over RMII Supported over
MCTP with Pass-Through

Supported over MCTP
without Pass-Through

613875-009 1797

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.2.1.1 Error Conditions

If the device is not able to respond to a command within the 150 ms limit (three 50 ms retries), it
responds with a response code of command unavailable (0x02) and a reason code of package not ready
(0x04).

12.6.2.2 AEN Handling

Asynchronous events might occur when the device is not allowed to send them via the AEN Enable
command. The following rules define the behavior of the E810 in these cases:

1. While the device is disabled, for each type of AEN only the last event is kept.

2. Outstanding AENs that occurred while a package was deselected are transmitted when a package is
selected.

3. On a transition from channel disabled to channel enabled, all outstanding events are erased to
prevent stale event notifications.

4. If the AEN becomes outdated before being sent (for example a link down, link up sequence
occurring before the AEN is sent), no AEN is sent.

12.6.2.2.1 Driver Status Change AEN Generation

The Host NC Driver Status changes, and the Driver Status Change AEN is emitted in the following
conditions:

• Driver is Active — When a “Driver Version” AQ command is received from the PF associated with
this channel.

• Driver is Not Active — When a “Queue Shutdown” AQ command is received from the admit queue
of the PF associated with this channel.

Multicast Filters Yes

Supports the following filters:
• IPv6 neighbor advertisement
• IPv6 router advertisement
• DHCPv6 relay and server multicast

In NC-SI 1.1 mode, the following filters are also supported:
• DHCPv6 multicasts from server to clients listening on well-known UDP ports
• IPv6 MLD
• IPv6 Neighbor Solicitation

Hardware Arbitration Yes Supports NC-SI hardware arbitration.

1. TCTL.EN should be set to 1b to activate Tx-related counters, and RCTL.RXEN, PRT_MNG_MANC.RCV_EN or WUC.APME should be
set to enable Rx-related counters.

2. As described in the Get Controller Packet Statistics Counter Numbers table in NC-SI specification.
3. The E810 does not increment the NC-SI control packets dropped counter when packets with checksum errors are dropped. In this

case, only the NC-SI command checksum errors counter is updated.

Table 12-14. Optional NC-SI Features Support [continued]

Feature Implement Details

Intel® Ethernet Controller E810 Datasheet
System Manageability

1798 613875-009

12.6.2.3 NC-SI 1.1 New Features

The following features are available when NC-SI version is set to 1.1 in the NC-SI version flag in the
NVM NC-SI Configuration 1 word:

• Broadcast and multicast packet reception is enabled by default at initial state after channel is
enabled.

• The Get Package UUID command and Get Package Status command are supported. The UUID
reported is the same as described in Section 12.7.7.1.3.

• New format for the Set Link and Get Link commands including support for new speeds.

The following filters are added to the Enable Global Multicast Filter command:

— DHCPv6 multicast packets from server to clients listening on well-known UDP ports.

— IPv6 MLD.

— IPv6 Neighbor Solicitation.

• New format for the Capabilities Flags word in Get Capabilities response packet.

12.6.3 External Link Control via NC-SI

12.6.3.1 NC-SI Link State Control

In NC-SI mode, the device might dynamically change the PHY power mode according to the NC-SI
channel state, assuming no other functionality requires the PHY to be active (host or wake-up).

The following algorithm is used to define if PHY activity is required:

• At initialization time, the PHY is required to be active only if the EMP_LINK_ON bit in Common
Firmware Parameters 2 NVM word is set.

• Once a channel is enabled via a Enable Channel NC-SI command or the Enable Channel Network Tx
command, the PHY is powered up.

• If the channel is disabled via a Disable Channel command with the ALD bit set, the PHY is disabled.

• If the channel is disabled via a Reset Channel command, the PHY power state is set back to the
initial value as define by the EMP_LINK_ON bit.

Note: Before transitioning to D3, it is the responsibility of the software device driver to request the
PHY to be active for wake-up activities.

12.6.3.2 Set Link Error Codes

The following rules are used to define the error code returned for a Set Link command in case an invalid
configuration is requested:

1. Host Driver Check: If a host device driver is present, return a Command Fail Response (0x1) with a
Set Link Host OS/Driver Conflict Reason (0x0901).

2. Speed Present Check: If no speed is selected, return a General Reason Code for a failed command
(0x1) with Parameter Is Invalid, Unsupported, or Out-of-Range Reason (0x2).

613875-009 1799

Intel® Ethernet Controller E810 Datasheet
System Manageability

3. Parameter Validity:

a. Auto-Negotiation Parameter Validation: If auto-negotiation is requested and none of the selected
parameters are valid for the device, return a General Reason Code for a failed command (0x1)
with a Parameter Is Invalid, Unsupported, or Out-of-Range Reason (0x2).

Note: This means, for example, a command requesting 10 GbE on a 1 GbE device succeeds
provided that the command requests at least one other supported speed.

Note: The setting of auto-negotiation Enabled field is ignored. For speed and connection
types that accept only force mode, force mode is used, and for modes that support
only AN, the AN is used to enforce a speed by negotiating only this speed. There are
no modes supported by the E810 that supports both AN and force modes.

The same goes for an unsupported duplex setting (a device with no HD support
accepts a command with both FD and HD set), and also for HD being requested with
speeds of 1 GbE and higher as long as a speed below 1 GbE is also requested (and is
supported in HD). The device simply ignores the unsupported parameters.

b. Force Mode Parameter Validation:

• If more than one link speed is being forced, then return a General Reason Code for a failed
command (0x1) and a Command Specific Reason with a Set Link Speed Conflict Error
(0x0905).

• If more than one duplex setting is being forced, then return a General Reason Code for a
failed command (0x1) with Parameter Is Invalid, Unsupported, or Out-of-Range Reason
(0x2).

• If 1 GbE and above is requested with HD, then return a General Reason Code for a failed
command (0x1) and a Command Specific Reason with Set Link Parameter Conflict Reason
(0x0903).

4. Media Type Compatibility Check: If current media type is not compatible for the requested link
parameters, return a General Reason Code for a failed command (0x1) and a Command Specific
Reason with Set Link Media Conflict Error (0x0902).

5. Power State Compatibility Check: If current power state does not allow for the requested link
parameters, return a General Reason Code for a failed command (0x1) and a Command Specific
Reason with Set Link Power Mode Conflict Reason (0x0904).

6. If for some reason the hardware cannot perform the flow required for the command, return a
General Reason Code for a failed command (0x1) and a Command Specific Response with Link
Command Failed-Hardware Access Error (0x0906).

12.6.3.3 MC External Link Control

The MC can use the NC-SI Set Link command to control the external interface link settings. This
command enables the MC to set the auto-negotiation, link speed, duplex, and other parameters.

This command is only available when the host operating system is not present. Indicating the host
operating system status can be obtained via the Get Link Status command and/or Host OS Status
Change AEN command.

Recommendation:

• Unless explicitly needed, it is not recommended to use this feature. The NC-SI Set Link command
does not expose all the possible link settings and/or features. This might cause issues under
different scenarios. Even if you decide to use this feature, use it only if the link is down (trust the
E810 until proven otherwise).

Intel® Ethernet Controller E810 Datasheet
System Manageability

1800 613875-009

• It is recommended that the MC first query the link status using the Get Link Status command. The
MC should then use this data as a basis and change only the needed parameters when issuing the
Set Link command.

For details, refer to the NC-SI specification.

12.6.3.3.1 Set Link while LAN PCIe Functionality is Disabled

In cases where the E810 is used solely for manageability and its LAN PCIe function is disabled, using
the NC-SI Set Link command while advertising multiple speeds and enabling auto-negotiation results in
the lowest possible speed chosen.

To enable a higher link speed, the MC should not advertise speeds that are below the desired link
speed, as the lowest advertised link speed is chosen.

When the E810 is only used for manageability and the link speed advertisement is configured by the
MC, changes in the power state of the LAN device is not effected and the link speed is not renegotiated
by the LAN device.

12.6.4 NC-SI Mode - Intel-Specific Commands

In addition to regular NC-SI commands, the following Intel vendor-specific commands are supported.
The purpose of these commands is to provide a means for the MC to access some of the Intel-specific
features present in the E810.

12.6.4.1 Overview

The following features are available via the NC-SI OEM-specific commands:

• Receive filters

• Packet addition decision filters 0x0…0x4

• Packet reduction decision filters 0x5…0x7

• PRT_MNG_MNGONLY register — Controls the forwarding of manageability packets to the host.

• Flex 128 filters

• Flex TCP/UDP port filters 0x0...0x2

• IPv4/IPv6 filters

• Get system MAC Address — This command enables the MC to retrieve the system MAC Address
used by the MC. This MAC Address can be used for a shared MAC Address mode.

• Keep PHY link up (Veto bit) enable/disable — This feature enables the MC to block PHY reset, which
might cause session loss.

• TCO reset — Enables the MC to reset the E810.

• Checksum offloading — Offloads IP/UDP/TCP checksum checking from the MC.

• OS2BMC control commands

• Firmware version commands

• Shared MAC and shared IP commands

• Temperature reporting

613875-009 1801

Intel® Ethernet Controller E810 Datasheet
System Manageability

These commands are designed to be compliant with their corresponding SMBus commands (if existing).
All of the commands are based on a single DMTF defined NC-SI command, known as OEM Command
(Section 12.6.4.1.1).

12.6.4.1.1 OEM Command (0x50)

The OEM command can be used by the MC to request the sideband interface to provide vendor-specific
information. The Vendor Enterprise Number (VEN) is the unique MIB/SNMP private enterprise number
assigned by IANA per organization. Vendors are free to define their own internal data structures in the
vendor data fields.

12.6.4.1.2 OEM Response (0xD0)

Notes:

• Responses have no command-specific reason code, unless otherwise specified within the command.

• The commands/responses described as follows include only the part up to the data. The padding
and checksum are implied.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20... Intel Command Number Optional Data

... ...

... Optional Data Padding to 32 bits (0x00)

... Checksum

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 Intel Command Number Optional Return Data

... ...

... Optional Return Data Padding to 32 bits (0x00)

... Checksum

Intel® Ethernet Controller E810 Datasheet
System Manageability

1802 613875-009

12.6.4.2 OEM Commands Summary

Table 12-16 provides a summary of OEM commands.

Note: All the commands are supported over both RMII NC-SI and MCTP.

Table 12-15. OEM-Specific Command Response Reason Codes

Response Code Reason Code

Value Description Value Description

0x1 Command Failed

0x5081 Invalid Intel command number.

0x5082 Invalid Intel command parameter number.

0x5085 Internal network controller error.

0x5086 Invalid vendor enterprise code.

0x05089 Information not available.

0x508D Returned when one of the shared IP commands is received with an out of range
resource (IP, port, binding) index.

0x508E Returned when a request to disable a port or an IP Address used in a active binding is
received.

0x5090 Returned when a binding of a non enabled resource (MAC, VLAN, IP Address, port) is
required.

0x5091 Returned when the Set Port command is received with an unsupported protocol.

0x5092 Not in shared mode. Returned when shared mode commands are used while not in
shared MAC/IP mode.

0x50A0 Driver Conflict. Returned when the Driver status is preventing the command execution.

0x008E Returned when a request to disable a VLAN or a MAC Address used in a active binding
is received.

Table 12-16. OEM Commands Summary

Intel
Command Parameter Command Name

Supported in
MCTP

without PT

Section
Reference

0x00 0x00 Set IP Filters Control No 12.6.4.3.1

0x01 0x00 Get IP Filters Control No 12.6.4.4.1

0x02

0x0F Set Manageability Only

No

12.6.4.5.2

0x10 Set Flex Filter Mask and Length 12.6.4.5.3

0x11 Set Flex Filter Data 12.6.4.5.4

0x63 Set Flex TCP/UDP Port Filter 12.6.4.5.6

0x64 Set Flex IPv4 Address Filter 12.6.4.5.7

0x65 Set Flex IPv6 Address Filter 12.6.4.5.8

0x67 Set EtherType Filter 12.6.4.5.9

0x68 Set Packet Addition Extended Decision Filter 12.6.4.5.10

0x69 Set Special Filter Modifiers 12.6.4.5.11

613875-009 1803

Intel® Ethernet Controller E810 Datasheet
System Manageability

0x03

0x0F Get Manageability Only

No

12.6.4.6.2

0x10 Get Flex Filter Mask and Length 12.6.4.6.3

0x11 Get Flex Filter Data 12.6.4.6.4

0x63 Get Flex TCP/UDP Port Filter 12.6.4.6.6

0x64 Get Flex IPv4 Address Filter 12.6.4.6.7

0x65 Get Flex IPv6 Address Filter 12.6.4.6.8

0x67 Get EtherType Filter 12.6.4.6.9

0x68 Get Packet Addition Extended Decision Filter 12.6.4.6.10

0x69 Get Special Filter Modifiers 12.6.4.6.11

0x04

0x10 Set Extended Unicast Packet Reduction

No

12.6.4.7.2

0x11 Set Extended Multicast Packet Reduction 12.6.4.7.3

0x12 Set Extended Broadcast Packet Reduction 12.6.4.7.4

0x05

0x10 Get Extended Unicast Packet Reduction

No

12.6.4.8.1

0x11 Get Extended Multicast Packet Reduction 12.6.4.8.2

0x12 Get Extended Broadcast Packet Reduction 12.6.4.8.3

0x06 N/A Get System MAC Address Yes 12.6.4.9.1

0x20 N/A Set Intel Management Control No 12.6.4.10.1

0x21 N/A Get Intel Management Control No 12.6.4.11.1

0x22 N/A Perform Intel TCO Reset Yes 12.6.4.12.1

0x23 N/A Enable IP/UDP/TCP Checksum Offloading No 12.6.4.13.1

0x24 N/A Disable IP/UDP/TCP Checksum Offloading No 12.6.4.13.2

0x25

0x0 Set IP Address

No

12.6.4.14.1

0x1 Get IP Address 12.6.4.14.2

0x2 Set Port 12.6.4.14.3

0x3 Get Port 12.6.4.14.4

0x4 Enable Unicast Infrastructure Filter 12.6.4.14.5

0x5 Get Shared IP Capabilities 12.6.4.14.6

0x6 Shared IP Enable Broadcast Filtering 12.6.4.14.7

0x7 Shared IP Enable Global Multicast Filtering 12.6.4.14.8

0x8 Get Shared IP Parameters 12.6.4.14.9

0x9 Set Binding 12.6.4.14.10

0xA Get Binding 12.6.4.14.11

0xB Set Shared Mode 12.6.4.14.12

0x26 N/A Config LLDP FW Agent Yes 12.6.4.15.1

Table 12-16. OEM Commands Summary [continued]

Intel
Command Parameter Command Name

Supported in
MCTP

without PT

Section
Reference

Intel® Ethernet Controller E810 Datasheet
System Manageability

1804 613875-009

12.6.4.3 Set Intel Filters Control Commands

This command controls different aspects of the Intel filters.

12.6.4.3.1 Set IP Filters Control Command (Intel Command 0x00,
Parameter 0x00)

Where IP Filters Control has the following format.

Note: This command is kept for compatibility with other projects and has no effect in the E810.

0x40

0x01 Enable OS2BMC Flow

No

12.6.4.16.1

0x02 Enable Network-to-BMC Flow 12.6.4.16.2

0x03 Enable Both Network-to-BMC and Host-to-BMC Flows 12.6.4.16.3

0x04 Set BMC IP Address 12.6.4.16.4

0x41 N/A Get OS2BMC Parameters No 12.6.4.16.5

0x48 0x1 Get Controller Information Yes 12.6.4.17.1

0x4B
N/A Get ASIC Temperature Yes 12.6.4.18.1

0x2 Get SFF Module Temperature Yes 12.6.4.19.1

0x062 N/A Get Status Yes 12.6.4.20

0x082 N/A Initialization Error AEN Yes 12.6.4.21

0x083 N/A SyncE Status Change Event Yes 12.6.4.22

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x00 0x00 IP Filters Control (3-2)

24...25 IP Filters Control (1-0)

Bit # Name Default Description

0 IPv4/IPv6 Mode 1b 0b = IPv6 — There are zero IPv4 filters and four IPv6 filters.
1b = IPv4 — There are four IPv4 filters and four IPv6 filters.

1...31 Reserved

Table 12-16. OEM Commands Summary [continued]

Intel
Command Parameter Command Name

Supported in
MCTP

without PT

Section
Reference

613875-009 1805

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.3.1.1 Set IP Filters Control Response

12.6.4.4 Get Intel Filters Control Commands

12.6.4.4.1 Get IP Filters Control Command (Intel Command 0x01,
Parameter 0x00)

This command controls different aspects of the Intel filters.

12.6.4.4.1.1 Get IP Filters Control Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x00 0x00

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x01 0x00

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x01 0x00 IP Filters Control (3-2)

28...29 IP Filters Control (1-0)

Intel® Ethernet Controller E810 Datasheet
System Manageability

1806 613875-009

Note: This command is kept for compatibility with other projects and returns always 0x1 in the
E810.

12.6.4.5 Set Intel Filters Formats

12.6.4.5.1 Set Intel Filters Command (Intel Command 0x02)

12.6.4.5.1.1 Set Intel Filters Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x02 Parameter Number Filters Data (optional)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 Filter Control Index Return Data (optional)

613875-009 1807

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.5.2 Set Manageability Only Command (Intel Command 0x02,
Parameter 0x0F)

This command sets the PRT_MNG_MNGONLY register. The PRT_MNG_MNGONLY register controls
whether pass-through packets destined to the MC are not forwarded to the Host operating system. The
PRT_MNG_MNGONLY register is listed in Table 12-9.

12.6.4.5.2.1 Set Manageability Only Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x02 0x0F Manageability Only (3-2)

24...25 Manageability Only (1-0)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x0F

Intel® Ethernet Controller E810 Datasheet
System Manageability

1808 613875-009

12.6.4.5.3 Set Flex Filter Mask and Length Command (Intel Command
0x02, Parameter 0x10)

The following command sets the Intel flex filters mask and length.

12.6.4.5.3.1 Set Flex Filter Mask and Length Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x02 0x10 Mask Byte 1 Mask Byte 2

24...27

28...31

32...35

36...37 Mask Byte 15 Mask Byte 16 Reserved

38 Length

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x10

613875-009 1809

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.5.4 Set Flex Filter Data Command (Intel Command 0x02,
Parameter 0x11)

The Filter Data Group parameter defines which bytes of the Flex filter are set by this command:

Note: Using this command to configure the filters data must be done after the flex filter mask
command is issued and the mask is set.

12.6.4.5.4.1 Set Flex Filter Data Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20... 0x02 0x11 Filter Data Group Filter Data 1

... Filter Data N

Table 12-17. Filter Data Group

Code Bytes Programmed Filter Data Length

0x0 Bytes 0–29 1–30

0x1 Bytes 30–59 1–30

0x2 Bytes 60–89 1–30

0x3 Bytes 90–119 1–30

0x4 Bytes 120–127 1–8

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x11

Intel® Ethernet Controller E810 Datasheet
System Manageability

1810 613875-009

12.6.4.5.5 Set Packet Addition Decision Filter Command (Intel
Command 0x02, Parameter 0x61)

This command is no longer supported. Use the Set Packet Addition Extended Decision Filter Command
(Intel Command 0x02, Parameter 0x68 instead (see Section 12.6.4.5.10).

12.6.4.5.6 Set Flex TCP/UDP Port Filter Command (Intel Command
0x02, Parameter 0x63)

Port Filter Index range: 0x0...0xA. When NC-SI 1.1 is supported, the range is 0x0...0x9.

Port Flags are as follows:

If flags are not present (payload length = 9), the match is done on TCP and UDP destination ports
(legacy behavior).

If the Port Filter Index is larger than 10, a command failed Response Code is returned with Invalid Intel
Parameter Number reason (0x5082).

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x02 0x63 Port Filter Index TCP/UDP Port MSB

24...25 TCP/UDP Port LSB Port Flags

Bit 0:
Bit 1:
Bit 2:
Bit 7:3:

Match UDP ports
Match TCP ports
Match destination port (0) or source port (1)
Reserved

613875-009 1811

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.5.6.1 Set Flex TCP/UDP Port Filter Response

12.6.4.5.7 Set Flex IPv4 Address Filter Command (Intel Command
0x02, Parameter 0x64)

IP Filter Index range: 0x0...0x3.

12.6.4.5.7.1 Set Flex IPv4 Address Filter Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x63

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x02 0x64 IP Filter Index IPv4 Address (3)

24...26 IPv4 Address (2-0)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x64

Intel® Ethernet Controller E810 Datasheet
System Manageability

1812 613875-009

If the IP Filter Index is larger than 3, a command failed Response Code is returned with Invalid Intel
Parameter Number reason (0x5082).

12.6.4.5.8 Set Flex IPv6 Address Filter Command (Intel Command
0x02, Parameter 0x65)

12.6.4.5.8.1 Set Flex IPv6 Address Filter Response

If the IP Filter Index is larger the 3, a command failed Response Code is returned with Invalid Intel
Parameter Number reason (0x5082).

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x02 0x65 IP Filter Index IPv6 Address
(MSB, byte 15)

24...27

28...31

32...35

36...38 IPv6 Address
(LSB, byte 0)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x65

613875-009 1813

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.5.9 Set EtherType Filter Command (Intel Command 0x02,
Parameter 0x67)

Where the EtherType Filter has the format as described in Section 13.2.2.29.9.

12.6.4.5.9.1 Set EtherType Filter Response

If the EtherType Filter Index is different than 2 or 3, a command failed Response Code is returned with
Invalid Intel Parameter Number reason (0x5082).

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x02 0x67 EtherType Filter Index EtherType Filter MSB

24...26 EtherType Filter LSB

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x67

Intel® Ethernet Controller E810 Datasheet
System Manageability

1814 613875-009

12.6.4.5.10 Set Packet Addition Extended Decision Filter Command
(Intel Command 0x02, Parameter 0x68)

See Figure 12-3 on page 1778 for a description of the decision filters structure.

The command must overwrite any previously-stored value. The value set is not checked.

Extended Decision Filter Index range: 0...4

Filter 0: See Table 12-18.

Filter 1: See Table 12-19.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x02 0x68 Extended Decision Filter
Index

Extended Decision Filter 1
MSB

24...27 Extended Decision Filter 1
LSB

Extended Decision Filter 0
MSB

28...30 Extended Decision Filter 0
LSB

Table 12-18. Extended Decision Filter 0 Values

Bit # Name Description

3:0 Unicast (AND) If set, packets must match unicast filter 0 to 3, respectively.

4 Broadcast (AND) If set, packets must match the broadcast filter.

12:5 VLAN (AND) If set, packets must match VLAN filter 0 to 7, respectively.

16:13 IPv4 Address (AND) If set, packets must match IPv4 filter 0 to 3, respectively.

20:17 IPv6 Address (AND) If set, packets must match IPv4 filter 0 to 3, respectively.

24:21 Unicast (OR) If set, packets can pass if match unicast filter 0 to 3, respectively or a different OR
filter.

25 Broadcast (OR) If set, packets can pass if match the broadcast filter or a different OR filter.

26 Multicast (AND) If set, packets must match the multicast filter.

27 ARP Request (OR) If set, packets can pass if match the ARP request filter or a different OR filter.

28 ARP Response (OR) If set, packets can pass if match the ARP response filter or a different OR filter.

29 Neighbor Discovery - 134 (OR) If set, packets can pass if match the neighbor discovery filter(type134 - router
advertisement) or a different OR filter.

30 Port 0x298 (OR) If set, packets can pass if match a fixed TCP/UDP port 0x298 filter or a different OR
filter.

31 Port 0x26F (OR) If set, packets can pass if match a fixed TCP/UDP port 0x26F filter or a different OR
filter.

613875-009 1815

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.5.10.1 Set Packet Addition Extended Decision Filter Response

If the Extended Decision Filter Index is larger than 5, a command failed Response Code is returned with
Invalid Intel Parameter Number reason (0x5082).

Table 12-19. Extended Decision Filter 1 Values

Bit # Name Description

3:0 EtherType 0 -3 (AND) If set, packets must match the EtherType filter 0 to 3, respectively.

7:4 EtherType 0 -3 (OR) If set, packets must match the EtherType filter 0 to 3, respectively or a different OR
filter.

18:8 Flex port 10:0 (OR) If set, packets can pass if match the TCP/UDP Port filter 10:0.

19 DHCPv6 (OR) If set, packets can pass if match the DHCPv6 port (0x0223).

20 DHCP Client (OR) If set, packets can pass if match the DHCP Server port (0x0043).

21 DHCP Server (OR) If set, packets can pass if match the DHCP Client port (0x0044).

22 NetBIOS Name Service (OR) If set, packets can pass if match the NetBIOS Name Service port (0x0089).

23 NetBIOS Datagram Service (OR) If set, packets can pass if match the NetBIOS Datagram Service port (0x008A).

24 Flex TCO (OR) If set, packets can pass if match the Flex 128 TCO filter.

25 Neighbor Discovery - 135 (OR) If set, packets must also match the neighbor discovery filter (type135 - Neighbor
Solicitation). or a different OR filter.

26 Neighbor Discovery - 136 (OR) If set, packets must also match the neighbor discovery filter (type136 - Neighbor
Advertisement) or a different OR filter.

27 Neighbor Discovery - 137 (OR) If set, packets must also match the neighbor discovery filter (type137 - Redirect) or
a different OR filter.

28 ICMPv4 (OR) Controls the inclusion of ICMPv4 filtering in the manageability filter decision (OR
section).

29 MLD If set, packets must also match one of the MLD ICMPv6 types or a different OR filter.

31:30 Reserved Reserved.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x68

Intel® Ethernet Controller E810 Datasheet
System Manageability

1816 613875-009

12.6.4.5.11 Set Special Filter Modifiers Command (Intel Command 0x02,
Parameter 0x69)

Where the special modifier filter has the format as described in Section 13.2.2.29.17. The value set is
not checked.

12.6.4.5.11.1 Set Special Filter Modifiers Response

12.6.4.6 Get Intel Filters Formats

12.6.4.6.1 Get Intel Filters Command (Intel Command 0x03)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x02 0x69 Special Modifier Register MSB

24...27 Special Modifier Register LSB Padding

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x02 0x69

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x03 Parameter Number

613875-009 1817

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.6.1.1 Get Intel Filters Response

12.6.4.6.2 Get Manageability Only Command (Intel Command 0x03,
Parameter 0x0F)

This command retrieves the PRT_MNG_MNGONLY register. The PRT_MNG_MNGONLY register controls
whether pass-through packets destined to the MC are also be forwarded to the host operating system.

12.6.4.6.2.1 Get Manageability Only Response

The PRT_MNG_MNGONLY register structure is listed in Table 12-9 on page 1779.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x03 Parameter Number Return Data (optional)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x03 0x0F

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x03 0x0F Manageability to Host (3-2)

28...29 Manageability to Host (1-0)

Intel® Ethernet Controller E810 Datasheet
System Manageability

1818 613875-009

12.6.4.6.3 Get Flex Filter Mask and Length Command (Intel Command
0x03, Parameter 0x10)

The following command retrieves the Intel flex filters mask and length. See Section 12.4.3.6 for details
of the values returned by this command.

12.6.4.6.3.1 Get Flex Filter Mask and Length Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x03 0x10

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x03 0x10 Mask Byte 1 Mask Byte 2

28...31

32...35

36...39

40...43 ... Mask Byte 16 Reserved

44 Flexible Filter Length

613875-009 1819

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.6.4 Get Flex Filter Data Command (Intel Command 0x03,
Parameter 0x11)

The following command retrieves the Intel flex filters data.

The Filter Data Group parameter defines which bytes of the flex filter are returned by this command.

12.6.4.6.4.1 Get Flex Filter Data Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...22 0x03 0x11 Filter Data Group 0...4

Table 12-20. Filter Data Group

Code Bytes Returned

0x0 Bytes 0–29

0x1 Bytes 30–59

0x2 Bytes 60–89

0x3 Bytes 90–119

0x4 Bytes 120–127

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24... 0x03 0x11 Filter Group Number Filter Data 1

... Filter Data N

Intel® Ethernet Controller E810 Datasheet
System Manageability

1820 613875-009

12.6.4.6.5 Get Packet Addition Decision Filter Command (Intel
Command 0x03, Parameter 0x61)

This command is no longer supported. Use the Get Packet Addition Extended Decision Filter Command
(Intel Command 0x02, Parameter 0x68 instead (see Section 12.6.4.6.10).

12.6.4.6.6 Get Flex TCP/UDP Port Filter Command (Intel Command
0x03, Parameter 0x63)

TCP/UDP Filter Index range: 0x0...0x2.

12.6.4.6.6.1 Get Flex TCP/UDP Port Filter Response

TCP/UDP Filter Index range: 0x0...0x2.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...22 0x03 0x63 TCP/UDP Filter Index

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x03 0x63 TCP/UDP Filter Index TCP/UDP Port (1)

28...29 TCP/UDP Port (0) Port Flags

613875-009 1821

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.6.7 Get IPv4 Address Filter Command (Intel Command 0x03,
Parameter 0x64)

Note: The filters index range can vary according to the IPv4/IPv6 mode setting in the Filters Control
command.

IPv4 Mode: IPv4 Filter Index range: 0x0...0x3.

IPv6 Mode: This command should not be used in IPv6 mode.

12.6.4.6.7.1 Get IPv4 Address Filter Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...22 0x03 0x64 IPv4 Filter Index

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x03 0x64 IPv4 Filter Index IPv4 Address (3)

28...30 IPv4 Address (2-0)

Intel® Ethernet Controller E810 Datasheet
System Manageability

1822 613875-009

12.6.4.6.8 Get IPv6 Address Filter Command (Intel Command 0x03,
Parameter 0x65)

Note: The filter index range can vary according to the IPv4/IPv6 mode setting in the Filters Control
command.

IPv4 Mode: Filter index range: 0x0...0x2.

IPv6 Mode: Filter index range: 0x0...0x3.

12.6.4.6.8.1 Get IPv6 Address Filter Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...22 0x03 0x65 IPv6 Filter Index

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x03 0x65 IPv6 Filter Index IPv6 Address
(MSB, Byte 16)

28...31

32...35

36...39

40...42 IPv6 Address
(LSB, Byte 0)

613875-009 1823

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.6.9 Get EtherType Filter Command (Intel Command 0x03,
Parameter 0x67)

Valid indices: 0...3

12.6.4.6.9.1 Get EtherType Filter Response

If the EtherType Filter Index is larger than 3, a command failed Response Code is returned with Invalid
Intel Parameter Number reason (0x5082).

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...22 0x03 0x67 EtherType Filter Index

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x03 0x67 EtherType Filter Index EtherType Filter MSB

28...30 EtherType Filter LSB

Intel® Ethernet Controller E810 Datasheet
System Manageability

1824 613875-009

12.6.4.6.10 Get Packet Addition Extended Decision Filter Command
(Intel Command 0x03, Parameter 0x68)

This command enables the MC to retrieve the extended decision filter.

12.6.4.6.10.1 Get Packet Addition Extended Decision Filter Response

Where Decision Filter 0 and Decision Filter 1 have the structure as detailed in the respective Set
commands.

If the extended Decision Filter Index is larger than 4, a command failed Response Code is returned with
Invalid Intel Parameter Number reason (0x5082).

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...22 0x03 0x68 Extended Decision Filter
Index

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x03 0x68 Decision Filter Index Decision Filter 1 MSB

28...31 Decision Filter 1 LSB Decision Filter 0 MSB

32...34 Decision Filter 0 LSB

613875-009 1825

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.6.11 Get Special Filter Modifiers Command (Intel Command 0x03,
Parameter 0x69)

Where the special modifier filter has the format as described in Section 13.2.2.29.17.

12.6.4.6.11.1 Get Special Filter Modifiers Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x03 0x69 Padding

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x03 0x69 Special Modifier Register MSB

28...31 Special Modifier Register LSB Padding

Intel® Ethernet Controller E810 Datasheet
System Manageability

1826 613875-009

12.6.4.7 Set Intel Packet Reduction Filters Formats

The non-extended commands are obsolete. The extended commands (Section 12.6.4.7.2 to
Section 12.6.4.7.4) should be used instead.

12.6.4.7.1 Set Intel Packet Reduction Filters Command (Intel
Command 0x04)

Note: It is advised that the MC only use the extended packet reduction commands.

The Packet Reduction Data field has the following structure:

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x04 Packet Reduction Index Packet Reduction Data

Table 12-21. Packet Reduction Field Description

Bits Name Description

12:0 Reserved Reserved.

16:13 IPv4 Address (AND) If set, packets must match IPv4 filter 0 to 3, respectively.

20:17 IPv6 Address (AND) If set, packets must match IPv4 filter 0 to 3, respectively.

27:21 Reserved Reserved.

28 ARP Response (OR) If set, packets can pass if match the ARP response filter or a different OR filter.

29 Reserved Reserved.

30 Port 0x298 If set, packets can pass if match a fixed TCP/UDP port 0x298 filter.

31 Port 0x26F If set, packets can pass if match a fixed TCP/UDP port 0x26F filter.

Table 12-22. Extended Packet Reduction Field Description

Bits Name Description

3:0 EtherType 0-3 (AND) If set, packets must match the EtherType filter 0 to 3, respectively.

7:4 EtherType 0-3 (OR) If set, packets can pass if match the EtherType filter 0 to 3, respectively.

8:18 Flex port 10:0 (OR) If set, packets can pass if match the TCP/UDP Port filter 10:0.

23:19 Reserved Reserved.

24 Flex TCO (OR) If set, packets can pass if match the Flex 128 TCO filter.

27:25 Reserved Reserved.

28 ICMPv4 Is set, ICMPv4 packets can pass.

31:29 Reserved Reserved.

613875-009 1827

Intel® Ethernet Controller E810 Datasheet
System Manageability

The filtering is divided into two decisions:

• Bit 20:13 in Table 12-21 and Bits 3:2 in Table 12-22 work in an AND manner; it must be true for a
packet to pass (if was set).

• Bits 28 in Table 12-21 and Bits 24:10 in Table 12-22 work in an OR manner; at least one of them
must be true for a packet to pass (if any were set).

12.6.4.7.1.1 Set Intel Packet Reduction Filters Response

12.6.4.7.2 Set Extended Unicast Packet Reduction Command (Intel
Command 0x04, Parameter 0x10)

The command overwrites any previously-stored value.

Note: See Table 12-21 and Table 12-22 for description of the Unicast Extended Packet Reduction
format.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x04 Packet Reduction Index

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x04 0x10 Extended Unicast
Reduction Filter MSB ...

24...27 ... Extended Unicast
Reduction Filter LSB

Unicast Reduction Filter
MSB ...

28...29 ... Unicast Reduction Filter
LSB

Intel® Ethernet Controller E810 Datasheet
System Manageability

1828 613875-009

12.6.4.7.2.1 Set Extended Unicast Packet Reduction Response

12.6.4.7.3 Set Extended Multicast Packet Reduction Command (Intel
Command 0x04, Parameter 0x11)

The command overwrites any previously-stored value.

Note: See Table 12-21 and Table 12-22 for description of the Multicast Extended Packet Reduction
format.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x04 0x10

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x04 0x11 Extended Multicast
Reduction Filter MSB

...

24...27 ... Extended Multicast
Reduction Filter LSB

Multicast Reduction Filter
MSB

...

28...29 ... Multicast Reduction Filter
LSB

613875-009 1829

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.7.3.1 Set Extended Multicast Packet Reduction Response

12.6.4.7.4 Set Extended Broadcast Packet Reduction Command (Intel
Command 0x04, Parameter 0x12)

The command overwrites any previously-stored value.

Note: See Table 12-21 and Table 12-22 for description of the Broadcast Extended Packet Reduction
format.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x04 0x11

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x04 0x12 Extended Broadcast
Reduction Filter MSB ...

24...27 ... Extended Broadcast
Reduction Filter LSB

Broadcast Reduction Filter
MSB ...

28...29 ... Broadcast Reduction Filter
LSB

Intel® Ethernet Controller E810 Datasheet
System Manageability

1830 613875-009

12.6.4.7.4.1 Set Extended Broadcast Packet Reduction Response

12.6.4.8 Get Intel Packet Reduction Filters Formats

The non-extended commands are obsolete. Use the extended commands (Section 12.6.4.8.1 to
Section 12.6.4.8.3) instead.

12.6.4.8.1 Get Extended Unicast Packet Reduction Command (Intel
Command 0x05, Parameter 0x10)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x04 0x12

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x05 0x10

613875-009 1831

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.8.1.1 Get Extended Unicast Packet Reduction Response

12.6.4.8.2 Get Extended Multicast Packet Reduction Command (Intel
Command 0x05, Parameter 0x11)

12.6.4.8.2.1 Get Extended Multicast Packet Reduction Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x05 0x00 Extended Unicast Packet Reduction (3-2)

28...31 Extended Unicast Packet Reduction (1-0) Unicast Packet Reduction (3-2)

32...33 Unicast Packet Reduction (1-0)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x05 0x11

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x05 0x11 Extended Multicast Packet Reduction (3-2)

28...31 Extended Multicast Packet Reduction (1-0) Multicast Packet Reduction (3-2)

32...33 Multicast Packet Reduction (1-0)

Intel® Ethernet Controller E810 Datasheet
System Manageability

1832 613875-009

12.6.4.8.3 Get Extended Broadcast Packet Reduction Command (Intel
Command 0x05, Parameter 0x12)

12.6.4.8.3.1 Get Extended Broadcast Packet Reduction Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x05 0x12

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x05 0x12 Extended Broadcast Packet Reduction (3-2)

28...31 Extended Broadcast Packet Reduction (1-0) Broadcast Packet Reduction (3-2)

32...33 Broadcast Packet Reduction (1-0)

613875-009 1833

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.9 System MAC Address

12.6.4.9.1 Get System MAC Address Command (Intel Command 0x06)

To support a system configuration that requires the NC to hold the MAC Address for the MC (such as
shared MAC Address mode), the following command is provided to enable the MC to query the NC for a
valid MAC Address.

The NC must return the system MAC Addresses. The MC should use the returned MAC Address as a
shared MAC Address by setting it using the Set MAC Address command as defined in NC-SI 1.0.

When a single function is defined on the port, it returns the LAN MAC Address of this function as read
from the PF allocations NVM section or from the Alternate RAM, or as set by the Manage MAC Address
Write AQ command. When more than one function is defined on the port, it returns the address of the
lowest defined function on this port.

It is also recommended that the MC use packet reduction and the Manageability-to-Host command to
set the proper filtering method.

12.6.4.9.1.1 Get System MAC Address Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20 0x06

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x06 MAC Address

28...30 MAC Address

Intel® Ethernet Controller E810 Datasheet
System Manageability

1834 613875-009

12.6.4.10 Set Intel Management Control Formats

12.6.4.10.1 Set Intel Management Control Command (Intel Command
0x20)

Where Intel Management Control 1 is as follows:

Caution: The System Firmware Update Control option in the command should be supported only
over MCTP over SMBus.

Notes:

• The Intel Management Control 1 is also reflected in the Get Intel Management Control Response. In
this case, the value of “No change” has no meaning, and the current setting should be reflected.

• If the parameter that the BMC sets is not supported by the device, the device returns Response
Code 0x1 (Command Failed) with Reason Code 0x5082 (Invalid Intel command parameter
number). The setting of the System Firmware Update Control field should be kept across EMP reset,
so it should be kept in the Alternate RAM.

• The policy set by this command is applicable for any firmware update channel, either from host or
via PLDM firmware update.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...22 0x20 0x00 Intel Management
Control 1

Bits Default Description

0 0b Enable Critical Session Mode (Keep PHY Link Up and Veto Bit)
0b = Disabled
1b = Enabled

When critical session mode is enabled, the following behaviors are disabled:
• The PHY is not reset on PE_RST# and PCIe resets (in-band and link drop). Other reset events are not

affected — Internal_Power_On_Reset, device disable, Force TCO, and PHY reset by software. In any case,
CORER events are not blocked.

• The PHY does not change its power state. As a result link speed does not change.
• The device does not initiate configuration of the PHY to avoid losing link.

7:1 0x0 Reserved.

613875-009 1835

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.10.1.1 Set Intel Management Control Response

12.6.4.11 Get Intel Management Control Formats

12.6.4.11.1 Get Intel Management Control Command (Intel Command
0x21)

12.6.4.11.1.1 Get Intel Management Control Response

Where Intel Management Control 1 is as described in Section 12.6.4.10.1.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x20 0x00

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x21 0x00

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...26 0x21 0x00 Intel Management
Control 1

Intel® Ethernet Controller E810 Datasheet
System Manageability

1836 613875-009

12.6.4.12 TCO Reset

Depending on the bit set in the TCO Mode field, this command causes the E810 to perform either:

1. TCO Reset

• If Force TCO Reset is enabled in the NVM (see Section 6.3.65.2), the TCO Reset command
clears the data path (Rx/Tx) of the E810 to enable the MC to transmit/receive packets through
the E810.

• If the MC has detected that the operating system is hung and has blocked the Rx/Tx path, the
Force TCO Reset clears the data-path (Rx/Tx) of the NC to enable the MC to transmit/receive
packets through the NC.

• After successfully performing the command, the NC considers the Force TCO command as an
indication that the operating system is hung and clears the internal driver-up indication. If TCO
reset is disabled in the NVM, Force TCO Reset does not reset the data path and notifies the MC
on successful completion.

2. TCO Isolate

• If TCO Isolate is enabled in the NVM (see Section 6.3.65.3), the TCO Isolate command disables
PCIe write operations to the LAN port.

• If TCO Isolate is disabled in NVM, the E810 does not execute the command, but sends a
response to the MC with successful completion.

• Once TCO isolate is set, the driver is supposed to be disabled, and it is reported as such to the
MC.

3. Firmware Reset

• This command causes re-initialization of all the manageability functions and re-loads of
manageability-related NVM words (such as firmware patch code).

• When the MC loads a new management related NVM image (like a firmware patch), the
Firmware Reset command loads the management related NVM information without the need to
power down the system.

• This command is issued to the package and affects all channels. After the firmware reset, the
Firmware Semaphore register (FWSM) is re-initialized.

• Applying this command resets the entire device and also has an effect on TCO reset.

Notes: TCO isolate affects only the channel (port) that the command was issued to. Force TCO resets
the entire device (all channels in the package).

Following a firmware reset, the MC needs to re-initialize all ports. A firmware reset causes a
global reset of the entire device (GLOBR).

Only one of the fields should be set in a given command. Setting more than one field might
yield unexpected results.

613875-009 1837

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.12.1 Perform Intel TCO Reset Command (Intel Command 0x22)

Where TCO Mode is:

Note: For compatibility, the TCO Reset command without the TCO Mode parameter is accepted (TCO
reset is done).

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x22 TCO Mode

Field Bits Description

DO_TCO_RST 0 Do TCO Reset
0b = Do nothing.
1b = Perform TCO reset.

DO_TCO_ISOLATE1

1. TCO isolate host write operation enabled in NVM.

1 Do TCO Isolate
0b = Enable PCIe write access to LAN port.
1b = Isolate Host PCIe write operation to the port.

Notes:
• Should be used for debug only.
• The TCO Isolate do not impact MCTP traffic.
• When isolate is set, the OS2BMC flow is also disabled.

RESET_MGMT 2 Reset Manageability
Reload manageability NVM words.

0b = Do nothing.
1b = Issue firmware reset to manageability.

Setting this bit generates a one-time firmware reset. Following the reset, management-related
data from NVM is loaded.
Note: A reset of the internal firmware causes a reset of the entire device.

Reserved 7:3 Reserved. Set to 0x00.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1838 613875-009

12.6.4.12.1.1 Perform Intel TCO Reset Response

12.6.4.13 Checksum Offloading

This command enables the checksum offloading filters in the NC.

When enabled, these filters block any packets that did not pass IP, UDP or TCP checksum from being
forwarded to the MC.

12.6.4.13.1 Enable IP/UDP/TCP Checksum Offloading Command (Intel
Command 0x23)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24 0x22

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20 0x23

613875-009 1839

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.13.1.1 Enable IP/UDP/TCP Checksum Offloading Response

12.6.4.13.2 Disable IP/UDP/TCP Checksum Offloading Command (Intel
Command 0x24)

12.6.4.13.2.1 Disable IP/UDP/TCP Checksum Offloading Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24 0x23

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20 0x24

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24 0x24

Intel® Ethernet Controller E810 Datasheet
System Manageability

1840 613875-009

12.6.4.14 Shared MAC and Shared IP Support

To meet the requirements introduced by sharing IP Addresses, modifications and additions to the NC-SI
command set are required. These changes include the new commands in this section and the
modifications described in Section 12.4.6.

Note: All indexes in this command set start at one to match the NC-SI methodology.

12.6.4.14.1 Set IP Address Command (Intel Command 0x25, Parameter
0x0)

The Set IP Address command is used by the MC to communicate its IP Address to a NC.

If at least one IP Address filter is enabled, only unicast packets that match one of the enabled filters are
forwarded through the NC-SI interface. Otherwise, the IP Address is ignored in the unicast filtering
process.

This command does not impact the forwarding results. It is used as a preliminary stage to the Set
Binding command.

Where:

• Management Controller IP Address — An IP Address that is used by the MC.

— If the IP Version bit of the Set IP Flags field is 0b (IPv4), this is a 4-byte unicast IPv4 Address in
network byte order. In this case, the address occupies bytes 24-27 of the packet, and bytes
28-39 are ignored.

— If the IP Version bit of the Set IP Flags field is 1b (IPv6), this is a 16-byte unicast IPv6 Address
in network byte order. In this case, the address occupies the full field (bytes 24-39 of the
packet).

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0x0 Reserved

24...27

Management Controller IP Address
28...31

32...35

36...39

40...43 Reserved IP Address Number Set IP Flags

44...47 Checksum

613875-009 1841

Intel® Ethernet Controller E810 Datasheet
System Manageability

• IP Address Number — Indicates which IP Address filter is configured by the command. The value
can relate to one of three pools of filters according to Table 12-23:

Note: The values shown in the allowed values column refer to the Get Shared IP Capabilities
Response (Section 12.6.4.14.6.1).

• Set IP Flags — The bits in this field are listed in Table 12-24:

12.6.4.14.1.1 Set IP Address Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Set IP
Address command and send a response using the following format.

Table 12-23. IP Filter Pools

Set IP Flag.IP Version Set IP Flag.Mixed Index Pool to Use Allowed Values

0 0 IPv4 1 to the number of IPv4 only addresses.

1 0 IPv6 1 to the number of IPv6 only addresses.

X (0/1) 1 Mixed 1 to the number of mixed IP Addresses.

Table 12-24. Set IP Flag Field

Bits Field Description

0 Enable 0b = Disable the filter.
1b = Enable the filter.

1 IP Version 0b = IPv4
1b = IPv6

2 Mixed Index 0b = Index relates to the IPv4 or IPv6 only IP filter sets according to the IP Version field.
1b = Index relates to the mixed IP filter set.

3 MAC-based IP This flags define if the IPv6 Address is derived from a MAC Address and thus only the 24 LSB
should be used for the comparison. This flag is relevant only if the IP Version = IPv6 (1b).

0b = Filter according to the full 128 bits of IPv6 Address.
1b = Filter according to the 24 LS bits of the IPv6 Address.

7:4 Reserved Reserved.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x0 Reserved

28...31 Checksum

Intel® Ethernet Controller E810 Datasheet
System Manageability

1842 613875-009

12.6.4.14.2 Get IP Address Command (Intel Command 0x25, Parameter
0x1)

An MC uses the Get IP Address command to determine the IP Address programmed in one of the IP
Address filters in a NC.

Where:

• IP Address Number — Defines the index of the IP Address in the pool defined by the IP filter pool.
The allowed values are listed in Table 12-23.

• IP Filter Pool:

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0x1 Reserved

24...27 Reserved IP Address Number IP Filter Pool

28...31 Checksum

0x0 =
0x1 =
0x2 =
0x3-0xFF =

Mixed IP filters
IPv4 filters
IPv6 filters
Reserved

613875-009 1843

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.14.2.1 Get IP Address Response

The NC, in the absence of a checksum error or identifier mismatch, must always accept the Get IP
Address command and send a response using the following format.

Where:

• Management Controller IP Address — An IP Address that is used by the MC.

— If the IP Version bit of the Get IP Flags field is 0b (IPv4), this is a 4-byte unicast IPv4 Address
in network byte order. In this case, the address occupies bytes 28-31 of the packet, and bytes
32-43 are ignored.

— If the IP Version bit of the Flags field is 1b (IPv6), this is a 16-byte unicast IPv6 Address in
network byte order. In this case, the address occupies the full field (bytes 28-43 of the packet).

• IP Address Number — Indicates which IP Address filter is described in the response. Should be
equal to the IP Address Number in the command.

• Get IP Flags — The bits in this field are listed in Table 12-25:

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x1 IP Address Number Get IP Flags

28...31

Management Controller IP Address
32...35

36...39

40...43

44...47 Checksum

Table 12-25. Get IP Flag Field

Bits Field Description

0 Enable 0b = Filter is disabled.
1b = Filter is enabled.

1 IP Version 0b = IPv4
1b = IPv6

2 Mixed Index 0b = Index relates to the IPv4 or IPv6 only IP filter sets according to the IP Version field.
1b = Index relates to the mixed IP filter set.

3 MAC-based IP This flags define if the IPv6 Address is derived from a MAC Address and thus only the 24 LSB
should be used for the comparison. This flag is relevant only if the IP Version = IPv6 (1b).

0b = Filter according to the full 128 bits of IPv6 Address.
1b = Filter according to the 24 LS bits of the IPv6 Address.

7:4 Reserved Reserved.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1844 613875-009

12.6.4.14.3 Set Port Command (Intel Command 0x25, Parameter 0x2)

An MC uses the Set Port command to communicate one of its TCP or UDP ports to a NC.

This command does not impact the forwarding results. It is used as a preliminary stage to the Set
Binding command.

If the Ignore Protocol flag is cleared, the protocol should also match the Protocol field. Otherwise, the
Protocol field is ignored.

Where:

• Protocol — The value to match in the IPv4 header Protocol field or IPv6 header Next Header field.
These values are defined by IANA. Allowed values are 0x6 (TCP) and 0x11 (UDP).

• Port — The value to match in the Destination Port or Source Port field of the TCP or UDP header.
The legal port range for both TCP and UDP is 0-65,535. The compared field is defined by the Port
Type flag.

• Port Index — Indicates which port filter is configured by the command. Allowed values are 1 to n,
where n is the number of port filters supported by the Network Controller.

• Set Port Flags — The bits in this field are listed in Table 12-26.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0x2 Set Port Flags Reserved

24...27 Port Index Protocol Port

28...31 Checksum

Table 12-26. Set Port Flags Field Descriptions

Bits Field Description

0 Enable 0b = Disable the filter.
1b = Enable the filter.

1 Ignore Protocol 0b = Filter by port and protocol.
1b = Filter by port only.

2 Port Type 0b = Compare destination port.
1b = Compare source port.

7:3 Reserved Reserved.

613875-009 1845

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.14.3.1 Set Port Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Set Port
command and send a response using the following format.

12.6.4.14.4 Get Port Command (Intel Command 0x25, Parameter 0x3)

An MC uses the Get Port command to determine the TCP or UDP port programmed in one of the port
filters in a NC.

Table 12-27 lists the fields in the Get Port command.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x2 Reserved

28...31 Checksum

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0x3 Reserved

24...27 Reserved Port Index Reserved

28...31 Checksum

Table 12-27. Get Port Command Field Descriptions

Field Field Description Value Description

Port Index Indicates which port filter is requested by the
command.

1 to n, where n is the number of port filters supported
by the NC.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1846 613875-009

12.6.4.14.4.1 Get Port Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Get Port
command and send a response using the following format.

Where:

• Protocol — The value compared in the IPv4 header Protocol field or IPv6 header Next Header field.
Possible values are 0x6 (TCP) and 0x11 (UDP).

• Port — The value compared in the Destination Port or Source Port field of the TCP or UDP header.

• Port Index — Indicates which port filter is reported by the response. Should match the Port Index
in the command.

• Get Port Flags – The bits in this field are listed in Table 12-28.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x3 Get Port Flags Reserved

28...31 Port Index Protocol Port

32...35 Checksum

Table 12-28. Get Port Flags Field Descriptions

Bits Field Description

0 Enable 0b = Filter is disabled.
1b = Filter is enabled.

1 Ignore Protocol 0b = Filter by port and protocol.
1b = Filter by port only.

2 Port Type 0b = Compare destination port.
1b = Compare source port.

7:3 Reserved Reserved.

613875-009 1847

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.14.5 Enable Unicast Infrastructure Filter Command (Intel
Command 0x25, Parameter 0x4)

A MC uses the Enable Unicast Infrastructure Filter command to configure a NC to forward copies of
network infrastructure packets to it.

Network infrastructure packets contain messages that are necessary for operating the network
infrastructure layers (such as DHCP, ARP, and DNS messages). This is required when the MC shares an
IP Address with the host. In this case, both the host and the MC need to process the messages. As a
result, the NC must forward the packets to both the MC and the host.

This command should be applied only after a MAC Address is added using the Set MAC Address NC-SI
command.

All the IP Addresses added through the Set IP command before this command is given are considered
as IP Addresses of the MC for the purpose of this command.

If a Set IP command is received after this command was received, the list of IP Address is not updated,
and this command should be given again.

Table 12-29 lists the sub fields of the Unicast Infrastructure Filter Settings field.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x4 Reserved

28...31 Unicast Infrastructure Filter Settings

32...35 Checksum

36...39 Padding

Table 12-29. Unicast Infrastructure Packet Filter Settings Field

Bits Field Description

0 ARP Response Packets
Received From Wire

ARP Response Packets Received From Wire
0b = Forward this packet type to the host only
1b = Forward this packet type to both the host and the MC.

For the purposes of this filter, an ARP response packet is defined to be any packet that
meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x0806 (ARP).
• The ARP Opcode field is set to 0x0002 (response).
• The ARP Target Protocol Address field contains the IP Address assigned to the MC.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1848 613875-009

1 ICMPv4 Request Packets
Received From Wire

ICMPv4 Request Packets Received From Wire
0b = Forward this packet type to the host only.
1b = Forward this packet type to both the host and the MC.

For the purposes of this filter, an ICMP request packet is defined to be any packet that
meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x0800 (IPv4).
• The IP Destination Address field contains the IPv4 Address assigned to the MC.
• The IP Protocol field contains 1 (ICMP).

2 ICMPv6 Request Packets
Received From Wire

ICMPv6 Request Packets Received From Wire
0b = Forward this packet type to the host only.
1b = Forward this packet type to both the host and the MC.

For the purposes of this filter, an ICMPv6 request packet is defined to be any packet that
meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x86DD (IPv6).
• The IP Destination Address field contains the IPv6 Address assigned to the MC.
• The IP Next Header field contains 58 (ICMPv6).

Note: This filter is not supported by the E810.

3 DHCP Server Unicast Packets
Received From Wire

DHCP Server Unicast Packets Received From Wire
0b = Forward this packet type to the host only.
1b = Forward this packet type to both the host and the MC.

For the purposes of this filter, a DHCP server unicast packet is defined to be any packet
that meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x0800 (IPv4).
• The IP Destination Address field contains either 255.255.255.255 (the local

broadcast address) or the IPv4 Address assigned to the MC.
• The IP Protocol field contains 17 (UDP).
• The UDP Destination Port field contains 68 (bootstrap protocol client).

4 DNS Server Packets
Received From Wire

DNS Server Packets Received From Wire
0b = Forward this packet type to the host only.
1b = Forward this packet type to both the host and the MC.

For the purposes of this filter, a DNS server unicast packet is defined to be any packet
that meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x0800 (IPv4).
• The IP Destination Address field contains the IPv4 Address assigned to the MC.
• The IP Protocol field contains 17 (UDP).
• The UDP Source Port field contains 53 (domain name server).

5 DHCP Client Packets
Transmitted By Host

DHCP Client Packets Transmitted By Host
0b = Forward this packet type to the wire only.
1b = Forward this packet type to both the wire and the MC.

For the purposes of this filter, a DHCP client unicast packet is defined to be any packet
that meets all of the following requirements:
• The Ethernet Source Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x0800 (IPv4).
• The IP Protocol field contains 17 (UDP).
• The UDP Destination Port field contains 67 (bootstrap protocol server).

Table 12-29. Unicast Infrastructure Packet Filter Settings Field [continued]

Bits Field Description

613875-009 1849

Intel® Ethernet Controller E810 Datasheet
System Manageability

6 DHCPv6 Server Unicast
Packets Received From Wire

DHCPv6 Server Unicast Packets Received From Wire
0b = Forward this packet type to the host only.
1b = Forward this packet type to both the host and MC.

For the purposes of this filter, a DHCPv6 server unicast packet is defined to be any packet
that meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x86DD (IPv6).
• The IPv6 Destination Address field contains the IPv6 Address assigned to the MC.
• The IP Protocol field contains 17 (UDP).
• The UDP Destination Port field contains 546 (DHCPv6 protocol client).

7 RMCP Primary Port - UDP RMCP Primary Port - UDP
0b = Forward this packet type to the host.
1b = Forward this packet type to the MC only.

For the purposes of this filter, a RMCP primary UDP packet is defined to be any packet
that meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x86DD (IPv6) 0r 0x0800 (IPv4).
• The IP Destination Address field contains the one of the IP Addresses assigned to the

MC.
• The IP Protocol field contains 17 (UDP).
• The UDP Destination Port field contains 623 [aux bus shunt (primary RMCP port)].

8 RMCP Primary Port - TCP RMCP Primary Port - TCP
0b = Forward this packet type to the host.
1b = Forward this packet type to the MC only.

For the purposes of this filter, a RMCP primary TCP packet is defined to be any packet that
meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x86DD (IPv6) 0r 0x0800 (IPv4).
• The IP Destination Address field contains the one of the IP Addresses assigned to the

MC.
• The IP Protocol field contains 6 (TCP).
• The UDP Destination Port field contains 623 [aux bus shunt (primary RMCP port)].

9 RMCP Secondary Port - UDP RMCP Secondary Port - UDP
0b = Forward this packet type to the host
1b = Forward this packet type to the MC only.

For the purposes of this filter, a RMCP secondary UDP packet is defined to be any packet
that meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x86DD (IPv6) 0r 0x0800 (IPv4).
• The IP Destination Address field contains the one of the IP Addresses assigned to the

MC.
• The IP Protocol field contains 17 (UDP).
• The UDP Destination Port field contains 664 [secure aux bus (secondary RMCP port)].

10 RMCP Secondary Port - TCP RMCP Secondary Port - TCP
0b = Forward this packet type to the host.
1b = Forward this packet type to the MC only.

For the purposes of this filter, a RMCP secondary TCP packet is defined to be any packet
that meets all of the following requirements:
• The Ethernet Destination Address field contains the MAC Address assigned to the MC.
• The Ethernet Type field contains 0x86DD (IPv6) 0r 0x0800 (IPv4).
• The IP Destination Address field contains the one of the IP Addresses assigned to the

MC.
• The IP Protocol field contains 6 (TCP).
• The UDP Destination Port field contains 664 [secure aux bus (secondary RMCP port)].

31:11 Reserved Reserved.

Table 12-29. Unicast Infrastructure Packet Filter Settings Field [continued]

Bits Field Description

Intel® Ethernet Controller E810 Datasheet
System Manageability

1850 613875-009

12.6.4.14.5.1 Enable Unicast Infrastructure Filter Response

The NC, in the absence of a checksum error or identifier mismatch, must always accept the Enable
Unicast Infrastructure Filter command and send a response using the following format.

Note: Currently, no command-specific reason codes are identified for this response.

12.6.4.14.6 Get Shared IP Capabilities Command (Intel Command 0x25,
Parameter 0x5)

An MC uses the Get Shared IP Capabilities command to determine the level of support of shared IP of
the device.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x4 Reserved

28...31 Checksum

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0x5 Reserved

24...27 Checksum

613875-009 1851

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.14.6.1 Get Shared IP Capabilities Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Get Shared
IP Capabilities command, and send a response using the following format.

Note: Currently, no command-specific reason codes are identified for this response.

Where:

• Number of Mixed IP Addresses — The number of supported IP filters that can be used for IPv4
or IPv6. The E810 does not support mixed IP Address filters.

• Number of IPv4-only Addresses — The number of supported IP filters that can be used for IPv4
only. The E810 supports three IPv4 Address filters.

• Number of IPv6-only Addresses — The number of supported IP filters that can be used for IPv6
only. The E810 supports four IPv6 Address filters.

• Number of Ports — The number of supported port filters.

• Number of Bindings — Defines the number of IP Addresses that can be bound with different
ports.

• Unicast Infrastructure Filter Capabilities — Defines the optional unicast infrastructure filter
capabilities that the channel supports. The bit definitions for this field correspond directly with the
bit definitions for the Unicast Infrastructure Filter Settings field defined for the Unicast
Infrastructure Filter command listed in Table 12-29. A bit set to 1b indicates that the channel
supports the filter associated with that bit position. Otherwise, the channel does not support that
filter. The E810 supports all filters but ICMPv6 filtering, so the returned value is 0x7FB.

• Filtering Capabilities — The bits in this field are listed in Table 12-30.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x5 Number of Mixed IP
Addresses

Number of IPv4-only
Addresses

28...31 Number of IPv6-only
Addresses Number of Ports Numbers of Bindings Filtering Capabilities

32...35 Unicast Infrastructure Filter Capabilities

36...39 Checksum

Intel® Ethernet Controller E810 Datasheet
System Manageability

1852 613875-009

12.6.4.14.7 Shared IP Enable Broadcast Filtering Command (Intel
Command 0x25, Parameter 0x6)

The Shared IP Enable Broadcast Filtering command is defined to enable the MC to limit the flow of ARP
requests to those that contain a target IP Address value that matches the MC IP Address.

This command should be used instead of the regular NC-SI Enable Broadcast Filtering command.

Note: Receiving a standard NC-SI Enable Broadcast Filtering command enables the matching bits in
this command. Receiving a standard NC-SI Disable Broadcast Filter Command clears the
settings in this command.

The content of the Shared IP Broadcast Packet Filter Settings field is listed in Table 12-31. Bit 4 has
been added to the standard Enable Broadcast Filtering command limit ARP broadcast packets to the MC
IP Address.

Table 12-30. Filtering Capabilities Field Descriptions

Bits Field Description

0 IPv4 Support 0b = IPv4 filtering is not supported.
1b = IPv4 filtering is supported.

1 IPv6 Support 0b = IPv6 filtering is not supported.
1b = IPv6 filtering is supported.

2 Protocol Filtering Support 0b = Filtering by protocol is not supported.
1b = Filtering by protocol is supported.

3 Source Port Filtering Support 0b = Port filtering is supported only for destination port.
1b = Port filtering is supported for destination port or source port.

7:4 Reserved Reserved.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x6 Reserved

28...31 Shared IP Broadcast Packet Filter Settings

32...35 Checksum

36...39 Padding

613875-009 1853

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.14.7.1 Shared IP Enable Broadcast Filtering Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Shared IP
Enable Broadcast Filtering command, and send a response using the following format.

Note: Currently, no command-specific reason codes are identified for this response.

Table 12-31. Shared IP Broadcast Packet Filter Settings Field

Bits Field Description Value Description

3:0 As defined in DSP0222. As defined in DSP0222 in 8.4.33 Enable Broadcast Filter Command (0x10) - Table 68.

4 Limit ARP Broadcast
Packets to Management
Controller IP Address.

When Bit 0 is set, it limits the flow of ARP packets to the MC as follows:
0b = Forward all ARP broadcast packets to the MC.
1b = Forward only ARP broadcast packets that are targeted at IP Addresses bound to the

MC.
All the IPs set by the Set IP command before this command is given are included in
forwarding.
This field is optional. If unsupported, the behavior for ARP packets is set according to Bit 1 in
this structure. The value must be set to 0b if unsupported.

31:5 Reserved Reserved.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x6 Reserved

28...31 Checksum

Intel® Ethernet Controller E810 Datasheet
System Manageability

1854 613875-009

12.6.4.14.8 Shared IP Enable Global Multicast Filtering Command (Intel
Command 0x25, Parameter 0x7)

The Shared IP Enable Global Multicast Filtering command is defined to enable the MC to enable the
forwarding of IEEE 802.1X Extensible Authentication Protocol over LAN (EAPOL) frames to the MC IP
Address. IEEE 802.1X defines methods for port-based network access control.

This command should be used instead of the regular NC-SI Enable Global Multicast Filtering command.

Note: Receiving a standard NC-SI Enable Global Multicast Filtering command enables the matching
bits in this command. Receiving a standard NC-SI Disable Global Multicast Filter command
clears the settings in this command.

The content of the Shared IP Multicast Packet Filter Settings field is listed in Table 12-32. Bit 3 has been
added to the standard Enable Broadcast Filtering command limit ARP broadcast packets to MC IP
Address.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x7 Reserved

28...31 Shared IP Multicast Packet Filter Settings

32...35 Checksum

36...39 Padding

Table 12-32. Shared IP Multicast Packet Filter Settings Field

Bits Field Description Value Description

2:0 As defined in DSP0222. As defined in DSP0222 in 8.4.37 Enable Global Multicast Filter Command (0x12) - Table 74.

3 IEEE 802.1X EAPOL This field is optional. If unsupported, multicast 802.1X packets are blocked when multicast
filtering is enabled, unless they are matched by an address filter configured using the Set
MAC Address command. The value must be set to 0b if unsupported.

0b = Filter out this packet type.
1b = Forward this packet type to the MC.

For the purposes of this filter, a IEEE 802.1X multicast packet is defined to be any packet
that meets all of the following requirements:
• The Destination MAC Address field is set to the layer 2 multicast address

01:80:c2:00:00:03.
• The EtherType field is set to 0x888E (802.1X PAE).

31:4 Reserved Reserved.

613875-009 1855

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.14.8.1 Shared IP Enable Global Multicast Filtering Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Shared IP
Enable Global Multicast Filtering command, and send a response using the following format.

Note: Currently, no command-specific reason codes are identified for this response.

12.6.4.14.9 Get Shared IP Parameters Command (Intel Command 0x25,
Parameter 0x8)

The Get Shared IP Parameters command can be used by the MC to request that the channel send the
MC a copy of part of the currently-stored parameter settings that have been put into effect by the MC
related to shared IP filtering.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x7 Reserved

28...31 Checksum

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0x8 Reserved

24...27 Checksum

Intel® Ethernet Controller E810 Datasheet
System Manageability

1856 613875-009

12.6.4.14.9.1 Get Shared IP Parameters Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Get Shared
IP Parameters command, and send a response using the following format.

Note: Currently, no command-specific reason codes are identified for this response.

Where:

• Number of IP Addresses — The number of supported IP filters including all the types of IP
Addresses (IPv4 only, IPv6 only and mixed).

• IP Address Flags — The enable/disable state for each supported IP Address. See Table 12-33.

Note: IP Address flags are organized in the following order: IPv4 Addresses first, followed by
IPv6 Addresses, followed by mixed addresses, with the number of each corresponding to
those reported through the Get Shared IP Capabilities command.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x8 Reserved

28...31 Number of IP Addresses IP Address Flags

32...35 Number of Ports Port Flags

36...39 Unicast Infrastructure Filter Settings

40...43 Broadcast Filtering Settings

44...47 Multicast Filtering Settings

48...51 Checksum

Table 12-33. IP Address Flags Field

Bits Field Description Value Description

0 IP Address 1 Status 0b = Default or unsupported or disabled.
1b = Enabled.

1 IP Address 2 Status or Reserved 0b = Default or unsupported or disabled.
1b = Enabled.

2 IP Address 3 Status or Reserved 0b = Default or unsupported or disabled.
1b = Enabled.

...

23 IP Address 24 Status or Reserved 0b = Default or unsupported or disabled.
1b = Enabled.

613875-009 1857

Intel® Ethernet Controller E810 Datasheet
System Manageability

For example, if the interface reports four IPv4 filters, two IPv6 filters, and two mixed
filters, IP Addresses 1 through 4 are those currently configured through the interface’s
IPv4 filters, IP Addresses 5 and 6 are those configured through the IPv6 filters, and 7 and
8 are those configured through the mixed filters.

The actual settings of each enabled IP Address can be found using the Get IP Address
command

• Number of Ports — The number of supported port filters.

• Port Flags — The enable/disable state for each supported ports. See Table 12-34.

Note: The actual settings of each enabled port can be found using the Get Port command.

• Unicast Infrastructure Filter Settings — Defines the optional unicast infrastructure filter
capabilities settings. The bit definitions for this field correspond directly with the bit definitions for
the Unicast Infrastructure Filter Settings field defined for the Unicast Infrastructure Filter command
in Table 12-29. A bit set to 1b indicates that the filter associated with that bit position is enabled.
Otherwise, the filter is not enabled.

• Broadcast Filter Settings — Defines the optional broadcast filter settings. The bit definitions for
this field correspond directly with the bit definitions for the Broadcast Filter Settings field defined for
the Shared IP Broadcast Filtering command in Table 12-31. A bit set to 1b indicates that the filter
associated with that bit position is enabled. Otherwise, the filter is not enabled.

• Multicast Filter Settings — Defines the optional multicast filter capabilities settings. The bit
definitions for this field correspond directly with the bit definitions for the Multicast Filter Settings
field defined for the Shared IP Global Multicast Filtering command in Table 12-32. A bit set to 1b
indicates that the filter associated with that bit position is enabled. Otherwise, the filter is not
enabled.

Table 12-34. Port Flags Field

Bits Field Description Value Description

0 Port 1 Status 0b = Default or unsupported or disabled.
1b = Enabled.

1 Port 2 Status or Reserved 0b = Default or unsupported or disabled.
1b = Enabled.

2 Port 3 Status or Reserved 0b = Default or unsupported or disabled.
1b = Enabled.

...

23 Port 24 Status or Reserved 0b = Default or unsupported or disabled.
1b = Enabled.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1858 613875-009

12.6.4.14.10 Set Binding Command (Intel Command 0x25, Parameter
0x9)

The Set Binding command is used by the MC to define which combination of MAC Addresses, VLAN tags,
IP Addresses and TCP/UDP ports should be forwarded to the MC.

Once a Set Binding command is activated, all the previous forwarding rules based on the Set MAC
Address or Set VLAN Filter commands are disabled and should be re-enabled using the Set Binding
command. Subsequent Set MAC Address or Set VLAN Filter commands are used to enable MAC or VLAN
addresses for the Set Binding command, but does not impact the forwarding rules.

Table 12-35 lists the fields in the Set Binding Flags field.

Where:

• Binding Index — Indicates which binding is configured by the command. The value should be
smaller than the number of supported bindings as reported in the Get Shared IP Capabilities
response in the Number of Bindings field.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0x9 Binding Index Set Binding Flags

24...27 Enabled MAC Addresses

28...31 Enabled VLAN

32...35 Enabled IP Addresses

36...39 Enabled Ports (MSB)

40...43 Enabled Ports (LSB)

44...47 Checksum

Table 12-35. Set Binding Flags Field Descriptions

Bits Field Description Value Description

0 Enable 0b = Disable the binding.
1b = Enable the binding.

1 Exclusive to MC 0b = Traffic matching this filter is sent to the MC and to the host.
1b = Traffic matching this filter is sent to the MC only.

2 Apply to Network1

1. At least one of the apply to network/host flags should be set for enabled bindings. Clearing both of them is equivalent to disabling
the filter.

0b = Do not compare traffic received from the network when checking this binding.
1b = Compare traffic received from the network when checking this binding.

3 Apply to Host 0b = Do not compare traffic received from the host when checking this binding.
1b = Compare traffic received from the host when checking this binding.

7:4 Reserved Reserved.

613875-009 1859

Intel® Ethernet Controller E810 Datasheet
System Manageability

• Enabled MAC Addresses — The MAC Addresses participating in this binding. The numbering of
the MAC Addresses is similar to the one used in the Mac Address Flags in the Get Parameters
response. Namely, MAC Addresses are returned in the following order: unicast filtered addresses
first, followed by multicast filtered addresses, followed by mixed filtered addresses, with the
number of each corresponding to those reported through the Get Capabilities command. A MAC
Address can be added to a binding only if previously enabled through a Set MAC Address NC-SI
command

• Enabled VLAN — The VLAN IDs participating in this binding. The numbering of the VLAN IDs. A
VLAN tag can be added to a binding only if previously enabled through a Set VLAN Filter NC-SI
command.

• Enabled IP Addresses — The IP Addresses participating in this binding. The numbering of the IP
Addresses is similar to the one used in Section 12.6.4.14.9. An IP Address can be added to a
binding only if previously enabled through a Set IP Address Intel OEM command.

• Enabled Ports — The ports participating in this binding. A port can be added to a binding only if
previously enabled through a Set Port Intel OEM command.

12.6.4.14.10.1 Set Binding Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Set Binding

command and send a response using the following format.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0x9 Reserved

28...31 Checksum

Intel® Ethernet Controller E810 Datasheet
System Manageability

1860 613875-009

12.6.4.14.11 Get Binding Command (Intel Command 0x25, Parameter
0xA)

The Get Binding command to is used by the MC to determine the current programming of one of the
bindings in a NC.

Where:

• Binding Number — Indicates which binding is requested by the command. The value should be
smaller than the number of supported bindings as reported in the Get Shared IP Capabilities
Response in the Number of Bindings field.

12.6.4.14.11.1 Get Binding Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Get Binding
command, and send a response using the following format.

The fields in the Get Binding response are equivalent to their counterparts in the Set Binding command.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0xA Binding Number Reserved

24...27 Checksum

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0xA Binding Number Get Binding Flags

28...31 Enabled MAC Addresses

32...35 Enabled VLAN

36...39 Enabled IP Addresses

40...43 Enabled Ports (MSB)

44...47 Enabled Ports (LSB)

48...51 Checksum

613875-009 1861

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.14.12 Set Shared Mode Command (Intel Command 0x25,
Parameter 0xB)

An MC uses the Set Shared Mode command to indicate to the NIC that it intends to operate in shared
MAC/ IP mode or in dedicated MAC mode.

If used, this command should be sent before any of the regular or OEM NC-SI commands used to set
forwarding filters. When this command is received, all the filters are cleared.

This command is needed only when the Intel OEM commands with command ID 0x25 are used to
configure the shared behavior. If other commands are used, users should ensure the correct
configuration of the filters.

When shared mode is activated, the Set MAC and Set VLAN NC-SI commands do not impact the receive
filtering until a Set Binding or Enable Unicast Infrastructure Filter command is received.

Any other command from this section (Section 12.6.4.14) received before shared mode is set fails with
a “Not in Shared Mode” (0x5092) reason.

Where:

• Shared Mode:

0x0: Dedicated MAC mode.
0x1: Shared MAC/IP mode.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x25 0xB Shared Mode Reserved

24...27 Checksum

Intel® Ethernet Controller E810 Datasheet
System Manageability

1862 613875-009

12.6.4.14.12.1 Set Shared Mode Response

The NC must, in the absence of a checksum error or identifier mismatch, always accept the Set Shared
Mode command, and send a response using the following format.

12.6.4.15 LLDP Firmware Agent Configuration

12.6.4.15.1 Config LLDP FW Agent Command (Intel Command 0x26)

This command is a channel command only. The command configures the current and persistent settings
of the FW LLDP agent and returns the configurations.

Where:

• Command — The values for this field are listed in Table 12-36.

• Flags — The bits in this field are listed in Table 12-37.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x25 0xB Shared Mode Reserved

28...31 Checksum

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x26 Reserved Command Flags

24...27 Checksum (3..2) Checksum (1..0)

28...31

Padding
32...35

36...39

40...43

44...45 Padding

613875-009 1863

Intel® Ethernet Controller E810 Datasheet
System Manageability

The use of this command with any command value other than 0x00 (Read Only) is permitted only in
PXE mode - after power-up/reboot and before the base driver exists PXE mode (prior to the host
operating system driver being loaded).

12.6.4.15.1.1 Config LLDP FW Agent Response

The package, in the absence of a checksum error or identifier mismatch, always accepts the Config
LLDP FW Agent command and sends a response.

Table 12-36. Command Field Values

Value Name Description

0x00 Read Only Do not change any LLDP settings. Just read settings and return them in response.

0x01 Stop FW LLDP Agent FW LLDP agent stops handling LLDP packets. LLDP packets are forwarded to the
host.

0x02 Start FW LLDP Agent FW LLDP agent handles LLDP packets. LLDP packets are not forwarded to the host.

0x03 Restore to Default Restores the FW LLDP agent to the image's default setting.
Note: Persistent flag must be set for this command.

0x04 - 0xFF Reserved Reserved. Values should not be used.

Table 12-37. Flags Field Descriptions

Bits Field Description

0 Persistent 0b = Setting made by command is not configured to persist over EMPR or power cycle.
1b = Setting made by command is configured to persist over EMPR or power cycle.
Note: To align this command behavior with the X710/XXV710/XL710, the persistent setting

also defines the current support of the FW LLDP Agent. When LLDP Start set with
persistent then FW LLDP agent can be enabled or disabled in the persistent matter.
When LLDP Stop is set with persistent then FW LLDP agent can't be enabled in a
non-persistent matter.

7:1 Reserved Reserved.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x26 Reserved FW LLDP Agent Settings Reserved

28...31

Padding

32...35

36...39

40...43

44...47

48...51

Intel® Ethernet Controller E810 Datasheet
System Manageability

1864 613875-009

Where:

• FW LLDP Agent Settings — The bits in this field are listed in Table 12-37.

An Invalid Parameter error is returned when attempting to start in non-persistent when the current
persistent (support) setting is FW LLDP Agent disabled.

If a command is called with any command value other than 0x00 (Read Only) when NIC is not in PXE
mode, the command fails with Response Code 0x0001 (Command Failed) and Reason Code 0x50A0
(Driver Conflict).

12.6.4.16 OS2BMC Configuration

These commands control enabling of the OS2BMC flow.

12.6.4.16.1 Enable OS2BMC Flow Command (Intel Command 0x40,
Parameter 0x01)

Table 12-38. FW LLDP Agent Settings Field Descriptions

Bits Field Description

0 Current LLDP Setting Returns the current state of the FW LLDP Agent.
0b = FW LLDP Agent disabled.
1b = FW LLDP Agent enabled.

1 Persistent LLDP Setting Returns the state of the FW LLDP Agent after an EMPR.
0b = FW LLDP Agent disabled.
1b = FW LLDP Agent enabled.

Note: This field also defines the current support of the FW LLDP Agent. While the
value of this bit is 0b, the FW LLDP agent cannot be enabled.

2 Factory Default LLDP Setting Returns the factory default setting of the FW LLDP Agent.
0b = FW LLDP Agent disabled.
1b = FW LLDP Agent enabled.

7:3 Reserved Reserved.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x40 0x01

613875-009 1865

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.16.1.1 Enable OS2BMC Flow Response

12.6.4.16.2 Enable Network-to-BMC Flow Command (Intel Command
0x40, Parameter 0x02)

12.6.4.16.2.1 Enable Network-to-BMC Flow Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x40 0x01

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x40 0x02

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x40 0x02

Intel® Ethernet Controller E810 Datasheet
System Manageability

1866 613875-009

12.6.4.16.3 Enable Both Enable Both Network-to-BMC and Host-to-BMC
Flows Command (Intel Command 0x40, Parameter 0x03)

12.6.4.16.3.1 Enable Both Network-to-BMC and Host-to-BMC Flows Response

12.6.4.16.4 Set BMC IP Address Command (Intel Command 0x40,
Parameter 0x04)

This command is supported by the E810 for legacy support proposes, but no action is taken upon
reception. The IP Address is not stored, and when a Get OS2BMC Parameters command is received, the
IP Valid flag is cleared.

The IP Type entry indicates whether the IP Address is an IPv4 or an IPv6 Address:

0 = IPv4
1 = IPv6
2 = No IP Address — The command should not include an IP Address.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...21 0x40 0x03

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x40 0x03

613875-009 1867

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.16.4.1 Set BMC IP Address Response

12.6.4.16.5 Get OS2BMC Parameters Command (Intel Command 0x41)

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x40 0x04 IP Type
IPv6 Address (MSB, byte
15)/IPv4 Address (MSB,

byte 3)

24...27 IPv6 Address (byte 14)/
IPv4 Address (byte 2)

IPv6 Address (byte 13)/
IPv4 Address (byte 1)

IPv6 Address (byte 12)/
IPv4 Address (LSB, byte 0)

IPv6 Address (byte 11)/
Reserved

28...31

32...35

36...38 IPv6 Address (LSB, byte
0)/Reserved

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...25 0x40 0x04

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20 0x41

Intel® Ethernet Controller E810 Datasheet
System Manageability

1868 613875-009

12.6.4.16.5.1 Get OS2BMC Parameters Response

Where the Status byte partition is as follows:

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x41 Status
IPv6 Address (MSB, byte
15)/IPv4 Address (MSB,

byte 3)

IPv6 Address (byte 14)/
IPv4 Address (byte 2)

28...31 IPv6 Address (byte 13)/
IPv4 Address (byte 1)

IPv6 Address (byte 12)/
IPv4 Address
(LSB, byte 0)

IPv6 Address (byte 11)/
Reserved ...

32...35

36...39

40...41 ... IPv6 Address (LSB, byte
0)/Reserved

Table 12-39. Status Byte Description

Bits Content

0 Relevant only if the IP Address Valid bit is set.
0b = IPv4
1b = IPv6

1 IP Address Valid
Never valid for the E810.

1:0 Reserved.

2 Network to BMC Status
0b = Network-to-BMC flow is disabled.
1b = Network-to-BMC flow is enabled.

3 OS2BMC Status
0b = OS2BMC flow is disabled.
1b = OS2BMC flow is enabled.

7:4 Reserved.

613875-009 1869

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.17 Diagnostic Commands

12.6.4.17.1 Get Controller Information Command (Intel Command 0x48,
Parameter 0x1)

This command gathers the controller identification information and return it back to the MC.

12.6.4.17.1.1 Get Controller Information Response

The possible inventory items are described as follows. Note that not all the inventory items would be
present in all the implementations of this command.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x48 0x1

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x48 0x1 Reserved Number of Inventory
Entries

28...31 Controller Info Item 1 ID Controller Info Item 1
Length Controller Info Item 1 Data

... ...

... Controller Info Item 2 ID Controller Info Item 2
Length Controller Info Item 2 Data

... ...

... Controller Info Item n ID Controller Info Item n
Length Controller Info Item n Data

... ...

Intel® Ethernet Controller E810 Datasheet
System Manageability

1870 613875-009

12.6.4.18 ASIC Temperature Value

12.6.4.18.1 Get ASIC Temperature Command (Intel Command 0x4B)

This is a per spec implementation of NC-SI 1.2 Get ASIC Temperature command.

Table 12-40. Controller Information Items

ID Length
(in Bytes) Data Notes

0x00 3 Device ID (2 bytes) + RevID This is the hardware default value (no value programmed via the
NVM).

0x0B 2 NVM Image Version

0x0C 4 EMP ROM Internal Version

0x0D 4 EMP Flash Internal version Same version as in Get Version admin command.

0x0E 2 PXE Firmware Version
MajorVersion.MinorVersion.Build.

0x10 2 uEFI Firmware Version

0x20 ≤ 32 Serial Number
VPD-RO keyword “SN” or, if not available, the first entry of
PFPM_SAL/H fields under PF MAC Address section encoded to
hexadecimal upper-case ASCII string.

≤ 32 Part Number VPD-RO keyword “PN” or, if not available, the “PBA Block”.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header (0x50)
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x4B Padding

24...27 Checksum (3..2) Checksum (1..0)

28...31

Padding
32...35

36...39

40...43

44...45 Padding

613875-009 1871

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.18.1.1 Get ASIC Temperature Response

Where:

• Maximum Temperature Value — This value is the maximum T-Diode temperature limit in °C at
which the E810 can operate at full load for its rated service lifetime. The value should be de-rated
to take measurement tolerance into account. The value is reported as a hexadecimal integer
number. The value to report for the E810 is: 102 - 0x66 (105 - Thermal sensor accuracy of +/-3).

• Current Temperature Value — This value is the current real-time temperature of the chip in °C.
The value is reported as a hexadecimal integer number.

12.6.4.19 SFF Module Temperature

12.6.4.19.1 Get SFF Module Temperature Command (Intel Command
0x4B, Parameter 0x02)

The Get SFF Module Temperature Sensor Command allows the Management controller to query for the
real-time temperature value and thresholds of the optical transceiver attached to the channel.

Implementations that do not support either fixed optics or an SFF-like cage that supports pluggable
transceivers that can provide temperature information, such as a BASE-T Ethernet adapter, should not
implement this command.

The channel must, in the absence of a checksum error or identifier mismatch, always accept the Get
SFF Module Temperature command and send a response.

The Get SFF Module Temperature Response frame contains the current temperature of the attached
module and the high side temperature thresholds.

Definitions and interpretation of the data fields in the response are defined in the relevant SFF or MSA
specification (for example, SFF-8472, SFF-8436, SFF-8636, and so on). 16-bit values are encoded as
one contiguous entity with the most significant bit in Bit 15 (or 31) and least significant bit in Bit 0 (or
16) in the response packet.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header (0xD0)
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x4B Reserved Maximum Temperature Current Temperature

28...31 Checksum (3..2) Checksum (1..0)

32...35

Padding36...39

40...43

44...45 Padding

Intel® Ethernet Controller E810 Datasheet
System Manageability

1872 613875-009

The command should complete successfully and Intel OEM reason code - Information not available -
must be used if the transceiver is not present, does not provide temperature data, or if the command is
issued before the transceiver has achieved power up state (reference: SFF-8472 address 0xA2 Byte
110 Bit 0; SFF-8436 address lower 0xA0 Byte 2 Bit 0; SFF-8636 page 0x0 Byte 2 Bit 0).

Devices supporting SFF-8472 diagnostics are identified by a non-zero value at address 94 on I2C
address 0xA0. For the devices supporting SFF-8636/8436, it is assumed that on customer transceivers,
the temperature data is always available.

12.6.4.19.1.1 Get SFF Module Temperature Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header (0x50)
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x4B 0x2 Padding

24...27 Checksum (3..2) Checksum (1..0)

28...31

Padding
32...35

36...39

40...43

44...45 Padding

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header (0xD0)
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x4B 0x2 Reserved

28...31 Temp High Alarm Threshold Temp High Warning Threshold

32...35 Temperature Value Padding

613875-009 1873

Intel® Ethernet Controller E810 Datasheet
System Manageability

Temperature/Threshold Fields

For SFP+ modules - SFF-8472 specification references:

• Temp High Alarm Threshold — The contents of address 0xA2 offset 0-1.

• Temp High Warning Threshold — The contents of address 0xA2 offset 4-5.

• Temperature Value — The contents of address 0xA2 offset 96-97.

For QSFP+ modules - SFF-8636/8436 specification references:

• Temp High Alarm Threshold — The contents of upper page 0x03 bytes 128-129.

• Temp High Warning Threshold — The contents of upper page 0x03 bytes 132-133.

• Temperature Value — The contents of lower page 0x00 bytes 22-23.

In case QSFP transceiver does not support optional page 0x03 (“Flat Memory”), Threshold values
should be set to 0xFFFF, which indicates an “unknown” threshold. Flat Memory transceivers can be
identified by Bit 2 (Flat_mem) under the Status field at Byte 2 of page 0x00.

According to SFF-8636, the Warning Threshold is optional, but since there is no indication about it,
it is reported as is and it is up to the BMC whether to use this information and how to interpret it.

12.6.4.20 Get Status (Intel Command 0x62)

If no bits are set, the firmware returns a response without a TLV attached.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header (0x50)
4...7

8...11

12...15

16...19 Manufacturer ID (Intel 0x157)

20...23 0x62 TLVs to Report Info Types to Report

24...27 Checksum

Table 12-41. TLVs to Report Field

Bit(s) Description

0 If set to 1b, NC responds with a Common Health Status TLV. See the detailed description in Table 12-42.

1 If set to 1b, NC responds with a SyncE PHY/DPLL Status TLV.

2 If set to 1b, NC responds with a GNSS/GPS Status TLV.

3:15 Reserved.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1874 613875-009

If no bits are set, the firmware returns a response without a TLV attached.

Table 12-42. Values of Info Type Field

Bit(s) Description

0
Error
Indicates that the data bytes contains error information.

1
Configuration
Indicates that the data bytes contain configuration parameters. The parameters are user-selected/ configured.1

1. Not in use for the Health status TLV.

2
Status
Indicates that the data bytes contain status parameters. The parameters are valuing that NC changes
autonomously,. They contain information about the state of NC.1

3
Measurement
Indicates that data bytes contain real-time measurements, which is data that is changing very frequently (for
examples, frequencies).1

4
Warning
Indicates that the data bytes contain warning information.

5:255 Reserved.

Table 12-43. Info Types to Report Field

Bit(s) Description

0 If set to 1b, NC responds with Error Info.

1 If set to 1b, NC responds with Status Info.

2 If set to 1b, NC responds with Configuration Info.

3 If set to 1b, NC responds with Measurement Info.

4:7 Reserved.

613875-009 1875

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.4.20.1 Get Status Response

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI Header (0xD0)
4...7

8...11

12...15

16...19 Response Code Reason Code

20...23 Manufacturer ID (Intel 0x157)

24...27 0x62 System Status Number of TLVs Completion Flags

28...31 Typ1 #1 Length #1 Value #1

32...35 Value #1 (continued)

36...39 Typ1 #2 Length #2 Value #2

40...43 Value #2 (continued)

44...47 Padding

48...51 Checksum

Table 12-44. System Status Field

Bit(s) Description

0
Green
No errors, no warnings.

1
Yellow
Warnings, recoverable/minor failures.

2
Red
Fatal/significant errors/failures.

3:7 Reserved.

Table 12-45. Completion Flags Field

Bit(s) Description Values

0
Error completion flag. 0b = All last requested error data was sent.

1b = Not enough space to report all data.

1
Status completion flag. 0b = All last requested status data was sent.

1b = Not enough space to report all data.

2
Measurement completion flag. 0b = All last requested measurement data was sent.

1b = Not enough space to report all data.

3
Configuration completion flag. 0b = All last requested configuration data was sent.

1b = Not enough space to report all data.

4:7 Reserved.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1876 613875-009

12.6.4.21 Initialization Error AEN (Intel AEN 0x82)

Note: This AEN was previously called “NVM error AEN”.

The following is the AEN that might be sent by the NC following a detection of an error as part of the
firmware initialization (reflected by a non-null error in GL_MNG_FWSM). NC is required to store this
AEN internally until a connection to the MC is established so the report can be issued in all cases.

This AEN must be enabled using the NC-SI AEN Enable command, using Bit 18 (0x40000) of the AEN
enable mask.

12.6.4.22 SyncE Status Change Event (Intel OEM NC-SI AEN 0x83)

The AEN might be sent by the NC following the detection of one or both of the following states:

• Notify Entering Holdover State

• Notify LOL/LOC Events

This AEN must be enabled using the NC-SI AEN Enable command, using Bit 19 (0x80000) of the AEN
enable mask.

Firmware polls DPLL every 500 ms and sends the relevant event when the above events occurred.

Since AEN can be enabled on the channel level only, any channel where this AEN is enabled sends it
when the one or both described above statuses were detected.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI AEN Header
4...7

8...11

12...15

16...19 Reserved

20...23 Reserved 0x82

24

Index of firmware module
in which the error was
found. The encoding is as
defined in
GL_MNG_FWSM.EXT_ERR_
IND field.

613875-009 1877

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.5 Basic NC-SI Workflows

12.6.5.1 Package States

A NC package can be in one of the following two states:

• Selected — The package is allowed to use the NC-SI lines, meaning the NC package might send
data to the MC.

• Deselected — The package is not allowed to use the NC-SI lines, meaning, the NC package cannot
send data to the MC.

The MC must select no more than one NC package at any given time. Package selection can be
accomplished in one of two methods:

• Select Package command — This command explicitly selects the NC package.

• Any other command targeted to a channel in the package also implicitly selects that NC package.

Package de-select can be accomplished only by issuing the Deselect Package command. The MC should
always issue the Select Package command as the first command to the package before issuing channel-
specific commands. For further details on package selection, refer to the NC-SI specification.

Bits

Bytes 31:24 23:16 15:8 7:0

0...3

NC-SI AEN Header
4...7

8...11

12...15

16...19 Reserved 0x83

20...23 Reserved Notification Source Notification Type

24...27 Checksum

Table 12-46. Notification Source Field

Bit(s) Description

0:1

Event source
00b = DPLL 0
01b = DPLL 1
All other values are reserved.

2:7 Reserved.

Table 12-47. Notification Type Field

Bit(s) Description

0 Notify Entering Holdover State

1 Notify LOL/LOC Events

2:7 Reserved.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1878 613875-009

12.6.5.2 Channel States

A NC channel can be in one of the following states:

• Initial State — The channel only accepts the Clear Initial State command (the package also
accepts the Select Package and Deselect Package commands).

• Active State — This is the normal operational mode. All commands are accepted.

For normal operation mode, the MC should always send the Clear Initial State command as the first
command to the channel.

12.6.5.3 Discovery

After interface power-up, the MC should perform a discovery process to discover the NCs that are
connected to it. This process should include an algorithm similar to the following:

For package_id = 0x0 to MAX_PACKAGE_ID:

1. Issue a Select Package command to package ID package_id.

If a response was received:

a. For internal_channel_id = 0x0 to MAX_INTERNAL_CHANNEL_ID.

b. Issue a Clear Initial State command for package_id | internal_channel_id (the combination of
package_id and internal_channel_id to create the channel ID).

If a response was received:

1. Consider internal_channel_id as a valid channel for the package_id package.

2. The MC can now optionally discover channel capabilities and version ID for the channel.

Else, if a response was not received:

1. Issue a Clear Initial State command three times.

c. Issue a Deselect Package command to the package (and continue to the next package).

Else, if a response was not received:

a. Issue a Select Packet command three times.

12.6.5.4 Configurations

This section details different configurations that should be performed by the MC.

It is good practice that the MC not consider any configuration valid unless the MC has explicitly
configured it after every reset (entry into the initial state). As a result, it is recommended that the MC
reconfigure everything at power-up and channel/package resets.

12.6.5.4.1 NC Capabilities Advertisement

NC-SI defines the Get Capabilities command. It is recommended that the MC use this command and
verify that the capabilities match its requirements before performing any configurations. For example,
the MC should verify that the NC supports a specific AEN before enabling it.

613875-009 1879

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.5.4.2 Receive Filtering

To receive traffic, the BMC must configure the NC with receive filtering rules. These rules are checked
on every packet received on the LAN interface (such as from the network). Only if the rules matched,
will the packet be forwarded to the BMC.

12.6.5.4.2.1 MAC Address Filtering

NC-SI defines three types of MAC Address filters: unicast, multicast, and broadcast. To be received (not
dropped) a packet must match at least one of these filters. The MC should set one MAC Address using
the Set MAC Address command and enable broadcast and global multicast filtering.

Unicast/Exact Match (Set MAC Address command)

This filter filters on specific 48-bit MAC Addresses. The MC must configure this filter with a
dedicated MAC Address.

The NC might expose three types of unicast/exact match filters (such as MAC filters that match on
the entire 48 bits of the MAC Address): unicast, multicast, and mixed. The E810 exposes two mixed
filters, which might be used both for unicast and multicast filtering. The MC should use one mixed
filter for its MAC Address.

For further details, refer to the Set MAC Address command in the NC-SI specification.

Broadcast (Enable/Disable Broadcast Filter command)

NC-SI defines a broadcast filtering mechanism that has the following states:

• Enabled — All broadcast traffic is blocked (not forwarded) to the BMC, except for specific filters
(such as ARP request, DHCP, and NetBIOS).

• Disabled — All broadcast traffic is forwarded to the BMC, with no exceptions.

For further details, refer to the Enable/Disable Broadcast Filter command in the NC-SI specification.

Global Multicast (Enable/Disable Global Multicast Filter command)

NC-SI defines a multicast filtering mechanism which has the following states:

• Enabled — All multicast traffic is blocked (not forwarded) to the BMC.

• Disabled — All multicast traffic is forwarded to the BMC, with no exceptions.

The recommended operational mode is Enabled, with specific filters set. Not all multicast filtering
modes are necessarily supported. For further details, refer to the Enable/Disable Global Multicast
Filter command in the NC-SI specification.

12.6.5.4.3 VLAN

NC-SI defines the following VLAN work modes:

Mode Command and Name Description

Disabled Disable VLAN Command In this mode, no VLAN frames are received.

Enabled #1 Enable VLAN command with VLAN only In this mode, only packets that matched a VLAN filter are
forwarded to the MC.

Enabled #2 Enable VLAN command with VLAN only + non-VLAN In this mode, packets from mode 1 + non-VLAN packets are
forwarded.

Enabled #3 Enable VLAN command with Any-VLAN + non-VLAN In this mode, packets are forwarded regardless of their VLAN
state.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1880 613875-009

For further details, refer to the Enable VLAN command in the NC-SI specification.

The E810 only supports modes #1 and #3. Recommendation:

1. Modes:

• If VLAN is not required, use the disabled mode.

• If VLAN is required, use the enabled #1 mode.

2. If enabling VLAN, the MC should also set the active VLAN ID filters using the NC-SI Set VLAN Filter
command prior to setting the VLAN mode.

12.6.5.5 PT Traffic States

The MC has independent, separate controls for enablement states of the receive (from LAN) and of the
transmit (to LAN) PT paths.

12.6.5.6 Channel Enable

This mode controls the state of the receive path:

• Disabled — The channel does not pass any traffic from the network to the MC.

• Enabled — The channel passes any traffic from the network (that matched the configured filters)
to the MC.

This state also affects AENs: AENs is only sent in the enabled state. The default state is disabled.

It is recommended that the MC complete all filtering configuration before enabling the channel.

12.6.5.7 Network Transmit Enable

This mode controls the state of the transmit path:

• Disabled — The channel does not pass any traffic from the MC to the network.

• Enabled — The channel passes any traffic from the MC (that matched the source MAC Address
filters) to the network.

The default state is disabled.

The NC filters PT packets according to their source MAC Address. The NC tries to match that source
MAC Address to one of the MAC Addresses configured by the Set MAC Address command. As a result,
the MC should enable network transmit only after configuring the MAC Address.

It is recommended that the MC complete all filtering configuration (especially MAC Addresses) before
enabling the network transmit.

This feature can be used for fail-over scenarios. See Section 12.6.9.3.

613875-009 1881

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.6 Asynchronous Event Notifications (AENs)

AENs are unsolicited messages sent from the NC to the MC to report status changes (such as link
change, operating system state change, and so on).

Recommendations:

• The MC firmware designer should use AENs. To do so, the designer must take into account the
possibility that a NC-SI response frame (such as a frame with the NC-SI EtherType), arrives
out-of-context (not immediately after a command, but rather after an out-of-context AEN).

• To enable AENs, the MC should first query which AENs are supported, using the Get Capabilities
command, then enable desired AEN(s) using the Enable AEN command, and only then enable
the channel using the Enable Channel command.

12.6.7 Querying Active Parameters

The MC can use the Get Parameters command to query the current status of the operational
parameters.

12.6.8 Resets

In NC-SI there are two types of resets defined:

• Synchronous entry into the initial state.

• Asynchronous entry into the initial state.

Recommendations:

• It is very important that the MC firmware designer keep in mind that following any type of
reset, all configurations are considered as lost and thus the MC must reconfigure both the
synchronous and asynchronous entries.

• As an asynchronous entry into the initial state might not be reported and/or explicitly noticed,
the MC should periodically poll the NC with NC-SI commands (such as Get Version ID, Get
Parameters, and so on) to verify that the channel is not in the initial state. Should the NC
channel respond to the command with a Clear Initial State Command Expected reason code,
the MC should consider the channel (and most probably the entire NC package) as if it
underwent a (possibly unexpected) reset event. Thus, the MC should reconfigure the NC. See
the NC-SI specification section on Detecting Pass-through Traffic Interruption.

• The Intel-recommended polling interval is 2-3 seconds.

For exact details on the resets, refer to NC-SI specification.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1882 613875-009

12.6.9 Advanced Workflows

12.6.9.1 Multi-NC Arbitration

As described in Section 12.6.1.2, in a multi-NC environment, there is a need to arbitrate the NC-SI
lines. Figure 12-9 shows the system topology of such an environment.

In Figure 12-9, the NC-SI Rx lines are shared between the NCs. To enable sharing of the NC-SI Rx lines,
NC-SI has defined an arbitration scheme.

The arbitration scheme mandates that only one NC package can use the NC-SI Rx lines at any given
time. The NC package that is allowed to use these lines is defined as selected. All the other NC
packages are deselected.

NC-SI has defined two mechanisms for the arbitration scheme:

• Package selection by the MC — In this mechanism, the MC is responsible for arbitrating between
the packages by issuing NC-SI commands (Select/Deselect Package). The MC is responsible for
having only one package selected at any given time.

• Hardware arbitration — In this mechanism, two additional pins on each NC package are used to
synchronize the NC package. Each NC package has an ARB_IN and ARB_OUT line and these lines
are used to transfer tokens. A NC package that has a token is considered selected.

Note: Hardware arbitration is enabled by the NC-SI HW Arbitration Enable configuration bit in the
NC-SI Configuration 1 NVM word.

For details, refer to the NC-SI specification.

Figure 12-9. Multi-NC Environment

NC Package1
Channel1: 0x0
Channel2: 0x1

NC Package2
Channel1: 0x0

MC

NC-SI TX lines

HW-Arbitration lines

NC-SI RX lines

613875-009 1883

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.6.9.2 Package Selection Sequence Example

Following is an example work flow for a MC and occurs after the discovery, initialization, and
configuration.

Assuming the MC needs to share the NC-SI bus between packages, the MC should:

1. Define a time-slot for each device.

2. Discover, initialize, and configure all the NC packages and channels.

3. Issue a Deselect Package command to all the channels.

4. Set active_package to 0x0 (or the lowest existing package ID).

5. At the beginning of each time slot the MC should:

a. Issue a Deselect Package command to the active_package. The MC must then wait for a response
and then an additional timeout for the package to become deselected (200 μs). See the NC-SI
specification Table 10 “parameter NC Deselect to Hi-Z Interval”.

b. Find the next available package (typically active_package = active_package + 1).

c. Issue a Select Package command to active_package.

12.6.9.3 Multiple Channels (Fail-Over)

To support a fail-over scenario, it is required from the MC to operate two or more channels. These
channels might or might not be in the same package.

The key element of a fault-tolerance fail-over scenario is having two (or more) channels identifying to
the switch with the same MAC Address, but only one of them being active at any given time (such as
switching the MAC Address between channels). To accomplish this, NC-SI provides the following
commands:

• Enable Network Tx command — This command enables shutting off the network transmit path of a
specific channel. This enables the MC to configure all the participating channels with the same MAC
Address but only enable one of them.

• Link Status Change AEN or Get Link Status command.

12.6.9.3.1 Fail-Over Algorithm Example

The following is a sample workflow for a fail-over scenario for the E810 (one package and four
channels):

1. The MC initializes and configures all channels after power-up. However, the MC uses the same MAC
Address for all of the channels.

2. The MC queries the link status of all the participating channels. The MC should continuously monitor
the link status of these channels. This can be accomplished by listening to AENs (if used) and/or
periodically polling using the Get Link Status command.

3. The MC then only enables channel 0 for network transmission.

4. The MC then issues a gratuitous ARP (or any other packet with its source MAC Address) to the
network. This packet informs the switch that this specific MAC Address is registered to channel 0's
specific LAN port.

5. The MC begins normal workflow.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1884 613875-009

6. Should the MC receive an indication (AEN or polling) that the link status for the active channel
(channel 0) has changed, the MC should:

a. Disable channel 0 for network transmission.

b. Check if a different channel is available (link is up).

If found:

1. Enable network Tx for that specific channel.

2. Issue a gratuitous ARP (or any other packet with its source MAC Address) to the network.
This packet informs the switch that this specific MAC Address is registered to channel 0's
specific LAN port.

3. Resume normal workflow.

If not found:

1. Report the error and continue polling until a valid channel is found.

The previous algorithm can be generalized such that the start-up and normal workflow are the same. In
addition, the MC might need to use a specific channel (such as channel 0). In this case, the MC should
switch the network transmit to that specific channel as soon as that channel becomes valid (link is up).

Recommendations:

• Wait for a link-down-tolerance timeout before a channel is considered invalid. For example, a
link re-negotiation might take a few seconds (normally 2 to 3 or might be up to 9). Thus, the
link must be re-established after a short time.

• Typically, this timeout is recommended to be three seconds.

• Even when enabling and using AENs, periodically poll the link status, as dropped AENs might
not be detected.

12.6.9.4 Statistics

The MC might use the statistics commands as defined in NC-SI. These counters are intended for debug
purposes and are not all supported.

The statistics are divided into three commands:

• Controller Statistics — These are statistics on the network interface (to the host operating
system and the PT traffic). See the NC-SI specification for details.

• NC-SI Statistics — These are statistics on the NC-SI control frames (such as commands,
responses, AENs, and so on). See the NC-SI specification for details.

• NC-SI PT Statistics — These are statistics on the NC-SI PT frames. See the NC-SI specification for
details.

613875-009 1885

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.7 Management Component Transport Protocol
(MCTP)

12.7.1 MCTP Overview

MCTP defines a communication model intended to facilitate communication between:

• MCs and other MCs.

• MCs and management devices.

The communication model includes a message format, transport description, message exchange
patterns, and configuration and initialization messages.

The basic MCTP specification is described in DMTF’s DSP0236 document.

MCTP is designed so that it can potentially be used on many bus types. The protocol is intended to be
used for intercommunication between elements of platform management subsystems used in computer
systems, and is suitable for use in mobile, desktop, workstation, and server platforms.

Currently, specifications exists for MCTP over PCIe (DMTF’s DSP0238) and over SMBus (DMTF’s
DSP0237). A specification for MCTP over USB is also planned.

MCs such as a Baseboard Management Controller (BMC) can use this protocol for communication
between one another, as well as for accessing management devices within the platform.

12.7.1.1 MCTP Usage Model

The E810 supports MCTP protocol over the PCIe and SMBus buses. The E810 can connect through MCTP
to a MC or the ME engine in the chipset, as described in Figure 12-10.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1886 613875-009

12.7.1.2 Detecting an MC EID and Physical Address

To enable transactions between the MC and the NIC, the bus physical address (SMBus or PCIe) and the
EID of the partner need to be discovered. NICs do not try to discover the MC, and assume the MC
initiates the connection. If the NIC is in an NC-SI initial state, the EID and the physical address of the
MC are extracted from the Clear Initial State command parameters or any other NC-SI command
received later with a channel ID of the E810. Subsequent pass-through traffic is received from or sent
to this address only.

If the EID or the physical address of the NIC changes, it indicates the changes to bus owner so that the
routing tables can be updated. There is no attempt to directly send an indication to the MC about the
change.

See more details in next section.

Figure 12-10. E810 MCTP Connections

PCIe bus

SMBus

Ethernet
Controller

External
Network

MCTP over SMBusMC/ME

Operating
System

MCTP VDM over PCIe
OS Traffic

613875-009 1887

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.7.1.3 Bus Transition

The following section defines the transition flow between PCIe and SMBus as the bus on which MCTP
flows. Figure 12-11 describes the flow to transition between PCIe and SMBus. The following parameters
are used to define the flow:

• NIC EID on PCIe

• NIC EID on SMBus

• NIC PCIe Target ID

• Bus Owner EID on PCIe

• Bus Owner EID on SMBus

• Bus Owner PCIe Target ID

• Bus Owner SMBus Address

• MC EID on PCIe

• MC EID on SMBus

• MC PCIe Target ID

• MC SMBus Address

• NIC SMBus Address

All of these variables are initialized to zero at power-on, apart from the SMBus address of the endpoint
(NIC), which might be initialized from an NVM value.

Figure 12-11. MCTP Bus Transition State Machine

PCIe

Stat
e M

ac
hin

e

SMBus

Stat
e M

ac
hin

e

Init

SMBus ARP / Get SMB Addr
SMBus Address in NVM

Reset

Discovered
SMB

Discovered
PCI-E

All functions are not in D0
Stop PT

Any NC-SI over PCIe Command /
Capture PCIe BMC EID

Active PT = PCIe

Un-
discovered

SMB “Set End Point ID” /
Capture Bus owner EID

Enable NC-SI over SMBus reception

Un-discovered

Reset

PCI-E “Set End Point ID” /
Capture PCIe Bus Owner EID

Enable NCSI over PCI-E reception

Any NC-SI over SMBus Command /
Capture SMBus BMC EID

Active PT = SMBus

Any NC-SI command
 over PCIe /

Capture PCIe BMC EID

Any NC-SI command over SMBus /
Capture BMC EID

Reset

Init

Function moved to D0
/Send “Discovery Notify”

On PCIe

PCIe “prepare for
End point discovery” /
If (Active PT==PCIe)

Stop PT

Function
 moved out of D0

All PCIe functions are
 not in D0

SMB “Set End Point ID” /
Capture Bus owner EID

PCIe Address change
or the active function

 changed to non-D0 state /
Send “Discovery Notify”

on PCI-E with new address
If (Active PT==PCIe and
 all functions not in D0)

Stop PT

PCIe “Set End Point ID” /
Capture Bus owner EID

Intel® Ethernet Controller E810 Datasheet
System Manageability

1888 613875-009

12.7.1.3.1 Initial Assignment Flow

1. At power on, the NIC or MC MCTP channel is connected to the SMBus, is not assigned an EID, and is
in an undiscovered state.

2. The bus owner might preform an SMBus ARP cycle to assign an SMBus address to the NIC or to the
MC. Otherwise, a fixed address might be used. It is assumed that the SMBus address does not
change after initialization time.

3. The bus owner performs an EID assignment using a Set Endpoint ID MCTP command. The NIC or
the MC captures the SMBus address of the bus owner from the SMBus Source Secondary Address
field, the bus owner EID from the Source Endpoint ID field and the NIC/MC EID from the
Destination Endpoint ID field in the MCTP header as described in Section 10.3 of DSP0236. The
NIC/MC is now in a discovered state.

4. The MC might detect the NIC EID using one of the two following modes:

• Static configuration of the NIC SMBus address in the MC database and Get Routing Table Entries
command to find the EID matching the SMBus address.

• Get all endpoints through a Get Routing Table Entries command and find endpoints supporting
NC-SI using the Get Message Type Support command for each endpoint.

5. Once the NIC is found, the MC might send a Clear Initial State command to the NIC to start the
NC-SI configuration. The NIC captures the MC SMBus address and MC EID from any NC-SI
command received.

6. After the NC-SI channels are enabled, traffic might be sent using the MC and NIC addresses
previously discovered.

7. The MC might also send a Get UUID command to get a unique identifier of the NIC that might be
used later for re-connection upon topology changes.

12.7.1.3.2 SMBus-to-PCIe Transition

1. If the NIC or the MC detects that the PCIe bus is available by detecting a function that moved to D0
state, it might request a transition using a Discovery Notify MCTP command on the PCIe bus. This
command should be sent with a route to root-complex addressing as described in DSP0238,
Section 6.8. The source EID should be the EID previously assigned on the SMBus.

2. If the NIC or the MC detects that the PCIe bus is available by detecting a non-zero bus number as
reflected in the PF_FUNC_RID.BUS_NUMBER field, it might request a transition using a Discovery
Notify MCTP command on the PCIe bus. This command should be sent with a route to root-complex
addressing as described in DSP0238, Section 6.8. The source EID should be the EID previously
assigned on the SMBus.

3. After receiving the Discovery Notify MCTP command on the PCIe bus, the bus owner sends a Set
Endpoint ID MCTP command on the PCIe bus and updates the routing table. The bus owner might
choose to wait for the Discovery Notify MCTP command of both the MC and the NIC to do the
transition. The bus owner should try to keep the EID previously assigned on the SMBus as the EID
on PCIe bus.

4. After receiving the Set Endpoint ID MCTP command, the NIC waits for an NC-SI command from the
MC indicating it is ready to transition the connection to PCIe. After receiving such a command, the
NIC transitions its PT traffic to the PCIe bus using the newly received addresses.

613875-009 1889

Intel® Ethernet Controller E810 Datasheet
System Manageability

5. The MC on its side, needs to discover the PCIe address of the NIC. This can be done using the
Resolve Endpoint ID command if only the physical address changed or using the Resolve Endpoint
UUID command also if both EID and physical address changed. It can then send an NC-SI
command to the NIC to initiate the transition. The MC should not send any pass-through packets
from the moment it sent the first NC-SI command on the PCIe and the moment a response is
received for this command.

6. The transition of NC-SI traffic (pass-through or commands/responses) from SMBus to PCIe should
be done on a packet boundary and should not interrupt a packet fragmentation or reassembly.

12.7.1.3.3 PCIe Target ID Change

The target ID of one of the endpoints might change due to a new enumeration of the PCIe bus. In this
case the following flow should be used:

The target ID of one of the endpoints might change, either due to a new enumeration of the PCIe bus or
due to the disabling of one of the functions in the device (move to a non D0 state). In this case, the
following flow should be used:

1. The endpoint should send a Discovery Notify MCTP command on the PCIe bus using the new
Requester ID.

2. After receiving the Discovery Notify MCTP command with the new Requester ID, the bus owner
sends a Set Endpoint ID MCTP command on the PCIe bus and updates the routing table. The bus
owner should try to keep the EID previously assigned on the SMBus as the EID on the previous
Requester ID.

3. The bus owner sends an Routing Information Update command to all supporting endpoints that
might then update the parameters of their counterpart they use.

12.7.1.3.4 PCIe-to-SMBus Transition

1. If the NIC or the MC detects that the PCIe bus is not available by detecting a transition of all
functions to a non D0 state, it stops using the PCIe for pass-through traffic or NC-SI traffic.

2. If the NIC or the MC detects that the PCIe bus is not available by detecting a transition to Dr state,
it stops using the PCIe for pass-through traffic or NC-SI traffic.

3. Upon detection of the unavailability of the PCIe bus, the MC transitions the NC-SI channel to the
MCTP over SMBus as previously described.

Note: The transition of NC-SI traffic (pass-through or commands/responses) from PCIe to SMBus
might done at any stage and might interrupt a packet fragmentation or reassembly, as it is
assumed that such a transition occurs only when the PCIe bus is not available anymore.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1890 613875-009

12.7.2 MCTP over PCIe

12.7.2.1 Message Format

The message format used for NC-SI over MCTP over PCIe is as follows:

12.7.2.2 PCIe Discovery Process

The E810 follows the discovery process described in the MCTP PCIe VDM Transport Binding Specification
(DSP0238) Section 5.9, with additional logic to support Intel platforms that use the upper bits of the
Destination Endpoint ID field for the PCIe bus segmentation.

After receiving an endpoint discovery message (while in undiscovered stage), the E810 exposes the
endpoint on the selected function as previously described.

If the selected function moves to D3 after the endpoint was discovered, or if the bus number of the
E810 changes due to a re-enumeration of the bus, the E810 sends a discovery notify message to
indicate to the MC that it should do a re-enumeration of the device to discover the new endpoint.

PCIe TLP Header

MCTP Header

NC-SI Header and Payload

Table 12-48. NC-SI/Ethernet over MCTP over PCIe Message Format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

FMT
011

Type
10r2r1r01

1. r2r1r0 =
 000b: Route to Root Complex
 010b: Route by ID
 011b: Broadcast from Root Complex

R TC
000 R

A
tt
r2

2. TD = 0, EP = 0, TH = 0, Attr[2:0] = 0 for sent packets and is ignored for received packets.

R
T
H
2

T
D
2

E
P
2

Attr
[1:0]

2
AT
00

Length
00_000x_xxxx

PCI Requester ID
PCI Tag Field

Message Code
Vendor Defined = 0111_1111bR Pad

Len
MCTP VDM

Code - 0000b

PCI Target ID (For Route by ID messages,
otherwise = Reserved) Vendor ID = 0x1AB4 (DMTF)

MCTP
Reserved

Header
Version = 1 Destination Endpoint ID Source Endpoint ID

S
O
M

E
O
M

SEQ# T
O Tag

I
C

Message Type =
0x02/0x03 NC-SI Command/Pass-Through Data

.....

NC-SI Command/Pass-Through Data

613875-009 1891

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.7.2.3 MCTP over PCIe Special Features

The E810 supports the following optional features of MCTP when running over PCIe:

• Rate limiting

• ACLs

12.7.2.3.1 MCTP Uplink Rate Limiting

As the PCIe link can carry a traffic bandwidth much higher than what the MC can sustain, to avoid drop
of packets, the E810 allows rate limiting of the MCTP pass-through traffic. The E810 supports rate
limiting between 1 Mb/s and 1 Gb/s. The following parameters define the behavior of the rate limiter:

• Max Rate Limit — Fixed from NVM via the MCTP rate in the MCTP rate limiter config 1 word.

• Max Burst Size — Fixed from NVM via the MCTP max credits field in the in the MCTP rate limiter
config 2 word). To limit the max burst to one VDM, set this parameter to 5.

• Decision Point — Fixed from NVM via the decision point field in the in the MCTP rate limiter config
2 word).

This feature can be controlled dynamically by the DSP0236 Update Rate Limit command.

12.7.2.3.2 Service Provider MCTP Endpoint ACLs

The E810 supports a set of ACLs that allows reception of sensitive commands only from a specific bus
number (in the Requester ID). The device and function part of the Requester ID are ignored for this
purpose.

If ACLs are enabled (by clearing the Disable ACLs NVM bit) the following flow is used decide which
packets are accepted.

Commands can be divided to three types:

• ACL programming commands: Such commands can be received only from the address that sent the
Prepare For Endpoint Discovery command via broadcast routing.

• Sensitive commands including all the NC-SI commands and PT traffic. These commands can be
received only from requesters whose bus number is set in the ACL list. If an MCTP packet is
dropped, the SPMEACLD counter is increased. This counter can be read by the MCTP bus owner
using the Get ACL Violation Counters command.

• Regular MCTP commands are received from any requester. However, the Set EID command is
processed only if received from the address that sent the Prepare For Endpoint Discovery command
via broadcast routing.

The E810 supports four ACL entries.

Note: This feature is disabled by default in NVM, as it requires a system infrastructure supporting
the feature.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1892 613875-009

12.7.3 MCTP over SMBus

The message format used for NC-SI over MCTP over SMBus is as follows:

12.7.3.1 SMBus Discovery Process

The E810 follows the discovery process described in Section 6.5 of the MCTP SMBus/I2C Transport
Binding Specification (DSP0237). It indicates support for ASF in the SMBus getUID command (see
Section 12.3.2.1.3.2). It responds to any SMBus command using the MCTP command code. This
ensures that the bus owner knows the E810 supports MCTP.

Note: MCTP commands over SMBus are received from any primary address and are answered to the
sender. There is no capturing of the bus owner address from any specific command.

12.7.3.2 MCTP over SMBus Special Features

The E810 supports the following optional features of MCTP when running over SMBus:

• Fairness arbitration

12.7.3.2.1 Fairness Arbitration

When sending MCTP messages over SMBus and when fairness arbitration is enabled (see
Section 6.3.66.3), the E810 should adhere to the fairness arbitration as defined in Section 5.13 of
DSP0237 when sending MCTP messages.

SMBus Header/PEC

MCTP Header

NC-SI Header and Payload

Table 12-49. NC-SI/Ethernet over MCTP over SMBus Message Format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Destination Secondary
Address 0 Command Code = MCTP = 0Fh Byte Count Source Secondary Address 1

MCTP
Reserved

Header
Version = 1 Destination Endpoint ID Source Endpoint ID

S
O
M

E
O
M

SEQ# T
O Tag

I
C
1

1. IC = 0 for pass-through sent packets, or as defined by firmware for other packets. Packet received with IC = 1 handling can be
defined per message type.

Message Type =
0x02/0x03 NC-SI Command/Pass-Through Data

.....

NC-SI Command/Pass-Through Data

PEC

613875-009 1893

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.7.4 NC-SI over MCTP

MCTP is a transport layer protocol that does not include the functionality required to control the PT
traffic required for an MC connection to the network. This functionality is provided by encapsulating
NC-SI traffic as defined in DMTF's DSP0222 document.

The details of NC-SI over MCTP protocol are defined in the DMTF's DSP0261 - NC-SI Over MCTP
Specification.

An NC-SI over MCTP implementation guide can be found in the DMTF's DSP0219 white paper. The
NC-SI over MCTP specification defines two types of MCTP message types: NC-SI (0x2) and Ethernet
(0x3). The E810 supports both messages. When used only for control, only the NC-SI (0x2) message
type is supported.

In addition to the previous message types supported by the E810, the PCIe-based VDM message type is
also supported over PCIe to support ACL commands.

Enabling NC-SI over MCTP for pass through traffic is done by setting the Redirection Sideband Interface
field in the Common Manageability Parameters NVM word to “MCTP over PCI and SMBus”.

Enabling NC-SI over MCTP for control traffic is done by setting the Control Interface field in the
Common Manageability Parameters NVM word to “MCTP over SMBus/PCI” and by setting the NC-SI bit
in Common Manageability Parameters 2 NVM word.

The E810 support for NC-SI over MCTP is similar to the support for NC-SI over RBT with the following
exceptions:

• A set of new NC-SI OEM commands used to expose the NC-SI over MCTP capabilities.

• The format of the packets is modified to account for the new transport layer as described in the
sections that follow.

12.7.4.1 NC-SI to MCTP Mapping

The eight network ports of the E810 (mapped to eight NC-SI channels) are mapped to a single MCTP
endpoint on SMBus and to another endpoint over PCIe.

The PCIe endpoint is mapped to a PCIe Requester ID according to the following flow:

1. If the Bus Master Enable bit of at least one of the functions is set, the endpoint is mapped to the
first available function.

2. If the Bus Master Enable bits of all functions are cleared, the MCTP endpoint on PCIe is not exposed,
and the MCTP traffic is routed through the SMBus endpoint.

The secondary address used for the SMBus endpoint is the secondary address of the first port.

Section 12.7.1.2 describes the transition between the two buses.

Both endpoints (SMBus and PCIe) might be active concurrently. However, pass-through traffic can be
transferred only through one of them. If the PCIe endpoint is active, it is used for pass-through traffic.
Otherwise, the SMBus endpoint is used. The Set EID command can be used to force the transition for
the PCIe endpoint to the SMBus endpoint if the bus owner determines the PCIe channel is not
functional.

For each channel (SMBus or PCIe), the E810 should expect MCTP commands from two sources: the bus
owner and the MC. In addition, it should expect pass-through traffic through one interface only. Thus, it
should be able to process up to five interleaved commands/data:

• An MCTP control/OEM command from the PCIe bus owner (single packet message).

Intel® Ethernet Controller E810 Datasheet
System Manageability

1894 613875-009

• An MCTP control/OEM command from the SMBus bus owner (single packet message).

• An MCTP control/OEM command from the MC over SMBus (single packet message).

• An MCTP control/OEM command from the MC over PCIe (single packet message).

• An NC-SI command or Ethernet packet from the MC over the active channel.

A single source should not interleave packets it sends.

The topology used for MCTP connection is shown in Figure 12-12.

12.7.4.2 NC-SI Packets Format

NC-SI over MCTP defines two different message type for pass-through and for control packets.

Packets with a message type equal to the Control Packets Message Type field (default = 0x02) in the
NVM are NC-SI control packets (commands, responses, and AENs) and packets with a message type
equal to the Pass-Through Packets Message Type field (default = 0x03) in the NVM are NC-SI
pass-through packets.

Figure 12-12. MCTP Endpoints Topology

Port 0 Port n

NC-SI Channel NC-SI Channel

NC-SI Package

MCTP Endpoint – PCIe

MCTP Endpoint – SMBusSMBus I/F

Function 0 Function 1

PCIe Bus I/F

...

613875-009 1895

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.7.4.2.1 Control Packets

The format used for control packets (commands, responses, and AENs) is as follows:

Note: The MAC Header and MAC FCS present when working over NC-SI are not part of the packet in
MCTP mode.

SMBus/PCIe Header

MCTP Header

NC-SI Header

NC-SI Data

Table 12-50. NC-SI over MCTP over PCIe/SMBus Message Format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SMBus or PCIe Header

MCTP
Reserved

Header
Version = 1 Destination Endpoint ID Source Endpoint ID

S
O
M

E
O
M

SEQ#

T
O
=
1

Tag

I
C
=
0

Message Type = Control
Packets Message Type

(0x02)
MC ID = 0x00 Header Revision Reserved

IID Command Channel ID1

1. The channel ID is defined as described in Section 12.3.2.2

Reserved Payload
Length[11:8]

Payload Length[7:0] Reserved

Reserved

Reserved Command Data

....

Command Data Checksum

Checksum

Intel® Ethernet Controller E810 Datasheet
System Manageability

1896 613875-009

12.7.4.2.2 Pass-Through Packets

The format used for pass-through packets are as follows. This format is the same for either packets
received from the network or packets received from the host.

The CRC is never included in the packet. In receive, the CRC is checked and removed by the E810. In
transmit, the CRC is added by the E810.

12.7.5 PLDM over MCTP

Enabling PLDM over MCTP for control traffic is done by setting the Control Interface field in the Common
Manageability Parameters NVM word to “MCTP over SMBus/PCI”, and by setting the PLDM bit in
Common Manageability Parameters 2 NVM word.

12.7.6 OEM Commands

Enabling OEM commands over MCTP for control traffic is done by setting the Control Interface field in
the Common Manageability Parameters NVM word to “MCTP over SMBus/PCI”, and by setting the OEM
Commands bit in Common Manageability Parameters 2 NVM word.

12.7.7 MCTP Programming

The MCTP programming model is based on:

• A set of MCTP commands used for the discovery process and for the link management. The list of
supported commands is described in section Section 12.7.7.1.

Table 12-51. Ethernet over MCTP over PCIe/SMBus Message Format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SMBus or PCIe Header

MCTP
Reserved

Header
Version = 1 Destination Endpoint ID Source Endpoint ID

S
O
M

E
O
M

SEQ#

T
O
=
1

Tag

I
C
=
0

Message Type = Pass-
Through Packets Control

Type
DA

DA SA

SA

SA EtherType Ethernet Packet

Ethernet packet

....

....

613875-009 1897

Intel® Ethernet Controller E810 Datasheet
System Manageability

• A subset of the NC-SI commands used in the regular NC-SI interface, including all the OEM
commands as described in Section 12.6.2 (NC-SI programming I/F). The specific commands
supported are listed in Table 12-13 and Table 12-16.

Note: For all MCTP commands (both native MCTP commands and NC-SI over MCTP), the response
uses the Msg tag received in the request with TO bit cleared.

12.7.7.1 MCTP Commands Support

Table 12-52 lists the MCTP commands supported by the E810.

Table 12-52. MCTP Commands Support

Command Name Command
Code General Description

E810
Support

as
Initiator

E810
Support

as
Responder

Section
Reference

Reserved 0x00 Reserved. –-- –-- ---

Set Endpoint ID 0x01 Assigns an EID to the endpoint at the given physical
address. N/A Yes 12.7.7.1.1

Get Endpoint ID 0x02

Returns the EID presently assigned to an endpoint.
Also returns information about what type the
endpoint is and its level of use of static EIDs. See
Section 12.7.7.1.2 for details.

No Yes 12.7.7.1.2

Get Endpoint UUID 0x03 Retrieves a per-device unique UUID associated with
the endpoint. See Section 12.7.7.1.3 for details. No Yes 12.7.7.1.3

Get MCTP Version
Support 0x04

Lists which versions of the MCTP control protocol
are supported on an endpoint. See
Section 12.7.7.1.4 for details.

No Yes 12.7.7.1.4

Get Message Type
Support 0x05 Lists the message types that an endpoint supports.

See Section 12.7.7.1.5 for details. No Yes 12.7.7.1.5

Get Vendor Defined
Message Support 0x06

Used to discover an MCTP endpoint’s vendor
specific MCTP extensions and capabilities. See
Section 12.7.7.1.6 for details.

No Yes 12.7.7.1.6

Resolve Endpoint ID 0x07 Used to get the physical address associated with a
given EID. Yes N/A ---

Allocate Endpoint
IDs 0x08 Used by the bus owner to allocate a pool of EIDs to

an MCTP bridge. N/A N/A ---

Routing Information
Update 0x09

Used by the bus owner to extend or update the
routing information that is maintained by an MCTP
bridge.

N/A N/A ---

Get Routing Table
Entries 0x0A Used to request an MCTP bridge to return data

corresponding to its present routing table entries. No N/A ---

Prepare for
Endpoint Discovery 0x0B

Used to direct endpoints to clear their discovered
flags to enable them to respond to the Endpoint
Discovery command.

N/A Yes1 ---

Endpoint Discovery 0x0C
Used to discover MCTP-capable devices on a bus,
provided that another discovery mechanism is not
defined for the particular physical medium.

No Yes1 ---

Discovery Notify 0x0D Used to notify the bus owner that an MCTP device
has become available on the bus. Yes1 N/A ---

Get Network ID 0x0E Used to get the MCTP network ID No No ---

Query Hop 0x0F

Used to discover what bridges, if any, are in the
path to a given target endpoint and what
transmission unit sizes the bridges pass for a given
message type when routing to the target endpoint.

No No ---

Intel® Ethernet Controller E810 Datasheet
System Manageability

1898 613875-009

12.7.7.1.1 Set Endpoint ID (0x01)

The E810 supports the Set EID and Force EID operations defined in the Set Endpoint ID command.
When operating over PCIe, the Set Discovered Flag operation is also supported. As endpoints in the
E810 can be set only through their own interface, Set EID and Force EID are equivalent. The Reset EID
operation is not supported by the E810.

The Set Endpoint ID response of the E810 is described in Table 12-53.

12.7.7.1.2 Get Endpoint ID (0x02)

The Get Endpoint ID response of the E810 is listed in Table 12-54.

Query Rate Limit 0x11 Used to discover the data rate limit settings of the
given target for incoming messages. No Yes 12.7.7.1.7

Request Tx Rate
Limit 0x12 Used to request the allowed transmit data rate limit

for the given endpoint for outgoing messages. No Yes 12.7.7.1.8

Update Rate Limit 0x13
Used to update the receiving side on change to the
transmit data rate that was not requested by the
receiver.

No Yes 12.7.7.1.9

Query Supported
Interfaces 0x14 Used to discover the existing device MCTP

interfaces. No Yes 12.7.7.1.10

1. These commands are supported only for MCTP over PCIe.

Table 12-53. Set Endpoint ID Response

Byte Description Value

1 Completion Code 0x00

2 Completion Status

[7:6] = 00b - Reserved.
[5:4] = 00b - EID assignment accepted.
[3:2] = 00b - Reserved.
[1:0] = 00b - Device does not use an EID pool.

3 EID Setting If the EID setting was accepted, this value matches the EID passed in the request. Otherwise,
this value returns the present EID setting.

4 EID Pool Size Always return a zero.

Table 12-54. Get Endpoint ID Response

Byte Description Value

1 Completion Code

2 Endpoint ID
0x00 = EID not yet assigned..
Otherwise = Returns EID assigned using Set Endpoint ID command

3 Endpoint Type 0x00 (Dynamic EID, Simple Endpoint).

4 Medium Specific
0x00 = PCIe
0x01 = SMBus — Fairness arbitration protocol supported.

Table 12-52. MCTP Commands Support [continued]

Command Name Command
Code General Description

E810
Support

as
Initiator

E810
Support

as
Responder

Section
Reference

613875-009 1899

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.7.7.1.3 Get Endpoint UUID (0x03)

The UUID returned is calculated according to the following function:

12.7.7.1.4 Get MCTP Version Support (0x04)

Table 12-55 lists the returned value according to the requested message type. The list of supported
message types is based on the protocols enabled in the NVM and should be the same as the list
reported in the Get Message Type Support command in Section 12.7.7.1.5.

• Time Low =

• Time Mid =

• Time High and Version =

• Clock Sec and Reserved =

• Node =

Read from MCTP UUID — Time Low LSB/MSB NVM words of Sideband
Configuration Structure.

Read from MCTP UUID — Time Mid NVM word of Sideband Configuration
Structure.

Read from MCTP UUID — Time High and Version NVM word of Sideband
Configuration Structure.

Read from MCTP UUID — Clock Seq NVM word of Sideband Configuration
Structure.

MAC Address as taken from the GLPCI_SERL and GLPCI_SERH registers.

Table 12-55. Get MCTP Version Support Returned Value

Byte Description

Message type

0xFF
(Base)

0x00
(Control
Protocol

Message)

0x01
(PLDM

0x02
(NC-SI
over

MCTP)1

1. If NC-SI is supported in the current configuration over this medium.

0x03
(Ethernet)2

2. If NC-SI pass-through is supported in the current configuration over this medium.

0x5 SPDM1
0x7E

(PCIe-
Based VDM
Messages)3

3. If OEM messages are supported in the current configuration over this medium.

All Other or
Unsupported

Messages

1 Completion
Code 0x0 0x80

2
Version
Number
entry count

4 4 1 2 2 1 2 0

6:3
Version
Number
entry

0xF1F0FF00
(1.0)

0xF1F0FF00
(1.0)

0xF1F0F000
(1.0.0)

0xF1F0F000
(1.0.0)

0xF1F0F000
(1.0.0)

0xF1F1F100
(1.1.1)

0xF1F0FF00
(1.0) 0

10:7
Version
Number
entry 2

0xF1F1F000
(1.1.0)

0xF1F1F000
(1.1.0)

0xF1F1F000
(1.1.0)

0xF1F1F000
(1.1.0)

0xF1F1F000
(1.1.0)

14:11
Version
Number
entry 3

0xF1F2F000
(1.2.0)

0xF1F2F000
(1.2.0)

0xF1F2F000
(1.2.0)

0xF1F2F000
(1.2.0)

19:15 0xF1F3F000
(1.3.0)

0xF1F3F000
(1.3.0)

Intel® Ethernet Controller E810 Datasheet
System Manageability

1900 613875-009

12.7.7.1.5 Get Message Type Support (0x05)

The Get Message Type Support response of the E810 is listed in Table 12-56.

12.7.7.1.6 Get Vendor-Defined Message Support (0x06)

The Get Vendor Defined Message Support response of the E810 is listed in Table 12-57 if Vendor ID Set
Selector equals 0x00.

12.7.7.1.7 Query Rate Limit (0x11)

When receiving a Query Rate Limit command over PCIe, the device should respond with the following
parameters:

Table 12-56. Get Message Type Support Response

Bytes Description Value

1 Completion Code 0x00

2 MCTP Message Type Count 0x01/0x02/0x03/0x04 — The E810 supports up to four additional message types,
depending on the mode of operation and the bus used.

3:5 List of Message Type
Numbers

0x01 (PLDM over MCTP) — If PLDM is supported.

0x02 (NC-SI over MCTP) — If NC-SI is supported.

0x03 (Ethernet) — If NC-SI and pass-through are supported.

0x05 (SPDM) — Always supported.

0x7E (PCIe based VDM messages) — Over PCIe. Over SMBus also if OEM commands are
supported.

Table 12-57. Get Vendor-Defined Message Support Response

Byte Description Value

1 Completion Code 0x00

2 Vendor ID Set Selector 0xFF = No more capability sets.

3:5 Vendor ID 0x008086 (PCI ID Indicator + Intel Vendor ID)

6:7 Version 0x0100 (Version 1.0)

Table 12-58. Query Rate Limit Response

Offset Description Value

2:5 Receive information — Receive buffer size in bytes. Size of MCTP to manageability buffer in bytes (+ headers).

6:9 Receive Information — Maximum receive data rate limit in
packets.

0x1DCD65 — Reflects a rate of 1 Gb/s in 64-bytes
packets.

10:13 Transmit Rate limiter capabilities — Maximum supported
rate limit.

0x1DCD65 — Reflects a rate of 1 Gb/s in 64-bytes
packets.

14:17 Transmit Rate limiter capabilities — Minimum supported
rate limit.

0x7A1 — Reflects a rate of 1 Mb/s in 64-bytes packets.
Note: This should cover all products.

18:20 Transmit Rate limiter capabilities — Maximum supported
burst size.

Size of manageability to MCTP buffer in 64-bytes packets
(+ headers).

21:23 Present Transmit Rate Limit Burst Setting According to current setting. Initial value based on NVM
configuration.

613875-009 1901

Intel® Ethernet Controller E810 Datasheet
System Manageability

Note: When received over SMBus, Bit 28.0 should be set to zero, and Bits 6:9 should also be set to
zero. Other fields are don’t care.

12.7.7.1.8 Request Tx Rate Limit (0x12)

12.7.7.1.8.1 Request Tx Rate Limit Response

When receiving a Request Tx Rate Limit command from the MC over PCIe, the device should set its rate
limit according to the requested values. If received over SMBus, an ERROR_INVALID_DATA is returned.

The setting of the rate limit is done as described in Section 3.5.4.5 “MCTP over PCIe Rate Limiter
Configuration” of hardware/firmware interface document.

12.7.7.1.8.2 Request Tx Rate Limit Send

The device currently does not require a rate limit from the MC, assuming the supported bandwidth of
1 Gb/s is large enough to absorb any MC traffic.

12.7.7.1.9 Update Rate Limit (0x13)

The device never sends this command and completes it without error, but ignores it when received.

12.7.7.1.10 Query Supported Interfaces (0x14)

The Query Supported Interfaces command allows the MC or the bus owner to detect the available
interfaces.

When receiving a Query Supported Interfaces command over PCIe or SMBus, the device should
respond with the following parameters.

24:27 Present Setting — EID Maximal Transmit data rate limit. According to current setting. Initial value based on NVM
configuration.

28.1

Transmit Rate limiting operation capability
0b = Transmit Rate limiting on this EID is applied to

requested and non requested messages together.
1b = Transmit Rate limiting on this EID is applied only to

non-requested messages

1

28.0 Rate limiting Support on EID 1

Table 12-59. Query Supported Interfaces Response

Offset Description Value

2 Supported Interfaces Count 1 or 2 according to the available interfaces.

3 First interface Type
0x01 if SMBus speed is 100 KHz.
0x04 if SMBus speed is 400 KHz.
0x05 if SMBus speed is 1 MHz.

4 First interface EID The EID assigned to the device over SMBus.

Table 12-58. Query Rate Limit Response [continued]

Offset Description Value

Intel® Ethernet Controller E810 Datasheet
System Manageability

1902 613875-009

Note: Bytes 3:4 are returned if SMBus is available. Bytes 5:6 are returned if PCIe is available.

12.7.8 SPDM over MCTP

The Security Protocol and Data Model (SPDM) specification defines messages, data objects, and
sequences for performing message exchanges between devices over a variety of transport and physical
media. The description of message exchanges includes authentication of hardware identities,
measurement for firmware identities and session key exchange protocols to enable confidentiality and
integrity protected data communication. The SPDM enables efficient access to low-level security
capabilities and operations. Other mechanisms, including non-PMCI- and DMTF defined mechanisms,
can use the SPDM.

SPDM is defined under DMTF DSP0274, DSP0275.

SPDM requires dedicated SPDM hardware Root of Trust (RoT), which consists of a Unique Device Secret
(UDS) and which is used to create a unique DeviceID Key pair at boot time.

True Random Number Generator (TRNG) used to create nonce to prevent anti-replay in SPDM
messages.

SPDM messages are transmitted and received over MCTP protocol and encapsulated into MCTP payload.
SPDM message type is 0x5.

The E810 does not support RoT or TNRG, but performs secure boot and takes measurements and
exposes those in PCIe registers.

The E810 supports SPDM protocol encapsulated into MCTP over PCIe VDM and SMBus.

Both endpoints (SMBus and PCIe) might be active concurrently. The Set EID command can be used to
force the transition for the PCIe endpoint to the SMBus endpoint if the bus owner determines the PCIe
channel is not functional. For each channel (SMBus or PCIe), the E810 should expect MCTP commands
with SPDM messages encapsulated from the MC only.

5 Second interface Type
0x0A for PCIe 2.1 device.
0x0B for PCIe 3.0 device.
0x0C for PCIe 4.0 device.

6 Second interface EID The EID assigned to the device over PCIe.

Table 12-59. Query Supported Interfaces Response [continued]

Offset Description Value

613875-009 1903

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.7.8.1 SPDM Messages Support

Table 12-60 lists the MCTP commands supported by the E810.

Table 12-60. MCTP Commands Support

Message
Code

Response
Code Message Name Response Name Description E810

Support

0x81 0x01 GET DIGESTS DIGESTS Retrieves the certificate chain digests. No

0x82 0x02 GET CERTIFICATE CERTIFICATE Retrieves the certificate chains. No

0x83 0x03 CHALLENGE CHALLENGE AUTH Authenticates a Responder through the
challenge-response protocol.

No

0x84 0x04 GET VERSION VERSION Get supported SPDM version. Yes

0xE0 0x60 GET MEASUREMENTS MEASUREMENTS Retrieves measurements in the form of
measurements blocks.

Yes

0xE1 0x61 GET CAPABILITIES CAPABILITIES Retrieve the SPDM capabilities of an
endpoint.

Yes

0xE3 0x63 NEGOTIATE
ALGORITHMS

ALGORITHMS Negotiates cryptographic algorithms. Yes

0xE4 0x64 KEY EXCHANGE KEY EXCHANGE
RESPONCE

Key exchange handshake initiation request
and response.

No

0xE5 0x65 FINISH FINISH RESPONCE Complete message of the key handshake
between Requester and Responder.

No

0xE6 0x66 PSK EXCHANGE PSK EXCHANGE
RESPONCE

Pre-Shared Key (PSK) key exchange scheme
handshake initiation request and response.

No

0xE7 0x67 PSK FINISH PSK FINISH
RESPONCE

Complete message of the Pre-Shared Key
handshake between Requester and
Responder.

No

0xE8 0x68 HEARTBEAT HEARTBEAT ACK Keep alive request and acknowledge. No

0xE9 0x69 KEY UPDATE KEY UPDATE ACK Request and acknowledge for the session
keys update.

No

0xEA 0x6A GET ENCAPSULATED
REQUEST

ENCAPSULATED
REQUEST

Requester to Responder request and
response.

No

0xEB 0x6B DELIVER
ENCAPSULATED
RESPONSE

ENCAPSULATED
RESPONSE ACK

Responder to Requester encapsulated
message and acknowledge. This is a
Responder answer to the GET
ENCAPSULATED REQUEST from Responder.

No

0xEC 0x6C END SESSION END SESSION ACK Session termination request and
acknowledge.

No

0xFE 0x7E VENDOR DEFINED
REQUEST

VENDOR DEFINED
RESPONSE

Vendor defined unique request and response. No

0xFF N/A RESPONSE IF READY N/A Asks for the response to the original request
upon receipt of “Response Not Ready” error
code.

No

N/A 0x7F N/A ERROR Error message. Yes

Intel® Ethernet Controller E810 Datasheet
System Manageability

1904 613875-009

12.7.8.2 Generic SPDM Message Field Definitions

12.7.8.3 SPDM over MCTP over PCIe/SMBus Message Format

The format used for SPDM packets (commands and responses) is as follows:

Table 12-61. Generic SPDM Message Field Definitions

Byte Bits Length
(Bits) Field Description Notes

0

7:4 4 SPDM Major Version The major version of the SPDM Specification.
An endpoint cannot not communicate by using an
incompatible SPDM version value.

Supported Major
version is 1.

3:0 4 SPDM Minor Version The minor version of the SPDM Specification.
A specification with a given minor version extends a
specification with a lower minor version as long as
they share the major version.

Supported Minor
version is 1.

1 7:0 8 Request Response
Code

The request message code or response code.
0x00 - 0x7F represent response codes.
0x80 - 0xFF represent request codes.

In request messages, this field is considered the
request code. In response messages, this field is
considered the response code.

See Table 12-60

2 7:0 8 Param1 The first one-byte parameter.
The contents of the parameter is specific to the
Request Response Code.

3 7:0 8 Param2 The second one-byte parameter.
The contents of the parameter is specific to the
Request Response Code.

4 Variable SPDM Message
Payload

Zero or more bytes that are specific to the Request
Response Code.

SMBus/PCIe Header

MCTP Header

NC-SI Header

NC-SI Data

Table 12-62. NC-SI over MCTP over PCIe/SMBus Message Format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SMBus or PCIe Header

MCTP
Reserved

Header
Version = 1 Destination Endpoint ID Source Endpoint ID

S
O
M

E
O
M

SEQ#

T
O
=
1

Tag

I
C
=
0

Message Type = SPDM
Message Type (0x05) SPDM Version Request/Response Code Param1

Param2 SPDM Message Data (Variable Length). May span one or more MCTP packets.

....

613875-009 1905

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8 PLDM Support

The E810 supports PLDM over MCTP protocol. Within PLDM, the following data types are supported:

• 0x0 - PLDM Messaging Control and Discovery

• 0x2 - PLDM Monitoring and Control

• 0x5 - PLDM Firmware Update

• 0x6 - PLDM Redfish to the Endpoint (RDE)

This section does not include details of the PLDM specification itself. Rather, this section contains
information on the parts of PLDM to implement and the actual data needed to fill the PLDM responses.
Following is a list of relevant specifications:

• DSP2040: Platform Level Data Model (PLDM) Base Specification

• DSP0241: Platform Level Data Model (PLDM) over MCTP Binding Specification

• DSP0245: Platform Level Data Model (PLDM) IDs and Codes Specification

• DSP0248: Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification

• DSP0249: Platform Level Data Model (PLDM) State Set Specification

• DSP0267: Platform Level Data Model (PLDM) Firmware update

• oDSP0218: Platform Level Data Model (PLDM) for Redfish Device Enablement

12.8.1 PLDM Base Implementation

PLDM is supported over PCIe or over SMBus. The packet format is described in Table 12-63:

The description of the PCIe header and MCTP header field is as defined in the specification. The values
of the PLDM fields are described in Table 12-64.

Table 12-63. PLDM over MCTP over PCIe/SMBus Message Format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SMBus or PCIe Header

MCTP
Reserved

Header
Version = 1 Destination Endpoint ID Source Endpoint ID

S
O
M

E
O
M

SEQ#

T
O
=
1

Tag

I
C
=
0

Platform Level Data
Model (PLDM) (0x01)

R
Q D

R
S
V
D

Instance ID Hdr
Ver PLDM Type PLDM Command Code

PLDM Completion Code1

1. In response only. This byte is not present in commands.

PLDM Payload

....

Command Data

Intel® Ethernet Controller E810 Datasheet
System Manageability

1906 613875-009

12.8.1.1 Reset Conditions

The PLDM state is reset when the MCTP layer below it is reset. In the case of PCIe VDM, this is EMPR
and PERST reset events.

12.8.1.2 PLDM Control Commands

The following messages (as defined in the DSP0240 PLDM Base Specification) should be supported. For
these messages, the PLDM type is zero.

Table 12-64. PLDM Fields

Field Size
(Bits) Description

IC 1 Integrity Check - Always zero.
Appears only in first packet of message.

Message Type 7 1 = PLDM
Appears only in first packet of message.

RQ, D 2 Request, Datagram
D, RQ

00b – For PLDM response messages.
01b – For PLDM request messages.
10b – Reserved.
11b – For Unacknowledged PLDM request messages or asynchronous notifications.

Instance ID 5 Identifier of a command. Should be used in the response also.
Note: The PLDM specification requires the device (terminus) to send commands to

generate events, so the device should generate and track instance IDs for the
events it sends to the Event Receiver.

Hdr Ver 2 Header Version - Should be 0.

PLDM Type 6 0 for PLDM control messages.
2 for Platform Monitoring and Control messages.
5 for PLDM Firmware Update messages.

PLDM Command Code 8 Command code.

PLDM Completion Code 8 Response code - Appears only in response.
Should be according to the Table 4. “Generic PLDM Completion Codes
(PLDM_BASE_CODES)” in the DSP0240 PLDM Base Specification or specific codes written
in each command.

Table 12-65. PLDM Control Commands

Command Command
Code Description Section

Reference

SetTID 0x01 Sets the TID used in Platform Monitoring and Control messages. ---

GetTID 0x02 Gets the TID currently stored in the device. ---

GetPLDMVersion 0x03 Return supported versions for different PLDM types. 12.8.1.2.1

GetPLDMTypes 0x04 Return supported PLDM types. 12.8.1.2.2

GetPLDMCommands 0x05 Return supported PLDM commands per type. 12.8.1.2.3

613875-009 1907

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.1.2.1 GetPLDMVersion (0x03)

The GetPLDMVersion command returns the supported versions of PLDM types.

The command and response are described in Table 12-66.

The command is supported for PLDM type 0 (PLDM Messaging Control and Discovery), type 2 (PLDM for
Platform Monitoring and Control), type 5 (PLDM Firmware Update), and type 6 (PLDM for RDE).

Table 12-66. GetPLDMVersion Command and Response

Byte Type Request Data

0:3 uint32 DataTransferHandle – ignored by the device

4 enum8 TransferOperationFlag
This field is an operation flag that indicates whether this is the start of the transfer.
Possible values:

{
GetNextPart = 0x00,
GetFirstPart = 0x01
}

Accepted only if GetFirstPart.

5 uint8 PLDMType
This field identifies the PLDM Type whose version information is being requested.

Byte Type Response Data

0 enum8 CompletionCode
Possible values:

{
PLDM_BASE_CODES,
INVALID_DATA_TRANSFER_HANDLE = 0x80,
INVALID_TRANSFER_OPERATION_FLAG = 0x81,
INVALID_PLDM_TYPE_IN_REQUEST_DATA = 0x83
}

1:4 uint32 NextDataTransferHandle = 0x00
Not used as always returning a single message.

5 enum8 TransferFlag
Return StartAndEnd = 0x05.

4 - Portion of PLDMVersionData
For Type = 0 – PLDM Messaging Control and Discovery – return 0xF1F0F000 (1.0.0)
For Type = 2 – PLDM for Platform Monitoring and Control – return 0xF1F2F000 (1.2.0)
For Type = 5 – PLDM for Firmware update – return 0xF1F0F000 (1.0.0)
For Type = 6 – Platform Level Data Model (PLDM) for Redfish Device Enablement – return

0xF1F1F000 (1.1.0)

Intel® Ethernet Controller E810 Datasheet
System Manageability

1908 613875-009

12.8.1.2.2 GetPLDMType (0x04)

The GetPLDMType command returns the supported PLDM types.

The command and response are described in Table 12-67.

Table 12-67. GetPLDMType Command and Response

Byte Type Request Data

- - None.

Byte Type Response Data

0 enum8 CompletionCode
Possible values:

{PLDM_BASE_CODES}

1:8 bitfield8[8] PLDMType
Each bit represents whether a given PLDM Type is supported:

0b = PLDM Type is not supported.
1b = PLDM Type is supported.

For bitfield8[N], where N = 0 to 7:
[7] = PLDM Type N*8+7 supported.
[..] = …
[1] = PLDM Type N*8+1 supported.
[0] = PLDM Type N*8+0 supported.

Return 0x65 (types 0, 2, 5, and 6).
Note: Type should be reported as supported only if enabled in NVM.

613875-009 1909

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.1.2.3 GetPLDMCommand (0x05)

The GetPLDMCommand command returns the supported command of PLDM per type.

The command and response are described in Table 12-68.

Table 12-68. GetPLDMCommand Command and Response

Byte Type Request Data

0 uint8 PLDMType
This field identifies the PLDM Type for which command support information is being requested.
Supported for types 0, 2, 5., and 6 Otherwise, returns an INVALID_PLDM_TYPE_IN_REQUEST_DATA.

1:4 ver32 Version
This field identifies the version for the specified PLDM Type.
Supported values are:

For Type = 0: 0xF1F0F000 (1.0.0)
For Type = 2: 0xF1F2F000 (1.2.0)
For Type = 5: 0xF1F0F000 (1.0.0)
For Type = 6: 0xF1F1F000 (1.1.0)

Otherwise returns an INVALID_PLDM_VERSION_IN_REQUEST_DATA.

Byte Type Response Data

0 enum8 CompletionCode
Possible values:

{
PLDM_BASE_CODES,
INVALID_PLDM_TYPE_IN_REQUEST_DATA = 0x83,
INVALID_PLDM_VERSION_IN_REQUEST_DATA = 0x84
}

1:8 bitfield8[32] PLDMCommands (up to 256 commands supported for the specified PLDM Type)
Each bit represents whether a given PLDM command is supported:

0b = PLDM command is not supported.
1b = PLDM command is supported.

For bitfield8[N], where N = 0 to 31:
[7] = PLDM Command N*8+7 Supported.
[..] = …
[1] = PLDM Command N*8+1 Supported.
[0] = PLDM Command N*8 Supported.

For type 0, return 0x3E (commands 1,2,3,4,5) as described in this section.
For type 2, return 0x00003_0000_0000_0003_000F_0038 (according to the supported commands in
Section 12.8.4 (SetTID & GetTID are not included).
For type 5, return 0x0000_0000_0000_0000_3C19_0006 (according to the supported commands in
Section 12.8.4.
For type 6, return 0x0003_0000_007B_0FFE (according to the supported commands in
Section 12.8.6.2).
Note: The commands reported must be according to the firmware’s actual support for the

commands where NC is the responder.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1910 613875-009

12.8.2 PLDM Monitoring and Control Support

12.8.2.1 PLDM Monitoring and Control Supported Commands

The following messages, as defined in DSP0248, should be supported. For these messages, the PLDM
type is two.

Table 12-69. PLDM Monitoring and Control Commands

Command Code Command Supported? Section
Reference

0x01 SetTID (see DSP0240) Yes ---

0x02 GetTID (see DSP0240) Yes ---

0x03 GetTerminusUID Yes 12.8.2.1.1

0x04 SetEventReceiver Yes 12.8.2.1.2

0x05 GetEventReceiver Yes 12.8.2.1.3

0x0A PlatformEventMessage Yes 12.8.2.1.4

0x0B PollForPlatformEventMessage Yes 12.8.2.1.5

0x0C EventMessageSupported Yes 12.8.2.1.6

0x0D EventMessageBufferSize Yes 12.8.2.1.7

0x10 SetNumericSensorEnable Yes 12.8.2.1.8

0x11 GetSensorReading Yes 12.8.2.1.9

0x12 GetSensorThresholds Yes 12.8.2.1.10

0x13 SetSensorThresholds Yes 12.8.2.1.11

0x14 RestoreSensorThresholds No ---

0x15 GetSensorHysteresis Yes 12.8.2.1.12

0x16 SetSensorHysteresis No ---

0x17 InitNumericSensor No ---

0x20 SetStateSensorEnables Yes 12.8.2.1.13

0x21 GetStateSensorReadings Yes 12.8.2.1.14

0x22 InitStateSensor No ---

0x30 SetNumericEffecterEnable No ---

0x31 SetNumericEffecterValue No ---

0x32 GetNumericEffecterValue No ---

0x38 SetStateEffecterEnables No ---

0x39 SetStateEffecterStates No ---

0x3A GetStateEffecterStates No ---

0x40 GetPLDMEventLogInfo No ---

0x41 EnablePLDMEventLogging No ---

0x42 ClearPLDMEventLog No ---

0x43 GetPLDMEventLogTimestamp No ---

0x44 SetPLDMEventLogTimestamp No ---

613875-009 1911

Intel® Ethernet Controller E810 Datasheet
System Manageability

0x45 ReadPLDMEventLog No ---

0x46 GetPLDMEventLogPolicyInfo No ---

0x47 SetPLDMEventLogPolicy No ---

0x48 FindPLDMEventLogEntry No ---

0x50 GetPDRRepositoryInfo Yes 12.8.2.1.15

0x51 GetPDR Yes 12.8.2.1.16

0x52 FindPDR No ---

0x53 GetPDRRepositorySignature Yes 12.8.2.1.17

0x58 RunInitAgent No ---

Table 12-69. PLDM Monitoring and Control Commands [continued]

Command Code Command Supported? Section
Reference

Intel® Ethernet Controller E810 Datasheet
System Manageability

1912 613875-009

12.8.2.1.1 GetTerminusUID (0x3)

The GetTerminusUID command returns a UUID of the device. The command and response are
described in Table 12-70.

UUID format is described in Table 12-71.

The UUID Value content should be the same as returned as part of the Get Endpoint UUID MCTP
command.

Table 12-70. GetTerminusUID Command and Response

Type Request Data

--- None.

Type Response Data

enum8 completionCode
Value:

{PLDM_BASE_CODES}

UUID UUID Value

Table 12-71. UUID Format

Field UUID Byte MSB

time low

1 MSB

2

3

4

time mid
5 MSB

6

time high and version
7 MSB

8

clock seq high and reserved 9

clock seq low 10

Node

11

12

13

14

15

16

613875-009 1913

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.2.1.2 SetEventReceiver (0x4)

The SetEventReceiver command is used to indicate to the device what the address of the Event
Receiver is (usually the BMC). The command and response are described in Table 12-72.

When this command is received and acknowledged, if the eventReceiverAddressInfo changed from
what is currently registered in the firmware, the device should find the B,D,F (Bus, Device, Function) of
the event receiver as follows:

If the source EID in the packet is the same as the eventReceiverAddressInfo, use the requester ID
in the TLP as the B,D,F of the receiver.

Otherwise, send a Resolve Endpoint ID MCTP command to get the B,D,F of the Event Receiver. If
the command fails four times, events are not sent.

Table 12-72. SetEventReceiver Command and Response

Type Request Data

enum8 eventMessageGlobalEnable
This value is used to enable or disable event message generation from the terminus. See DSP0248 for details.

0 = Disable
1 = Enable Async — Allows the device to work in event mode (send PlatformEventMessage command).
2 = Enable Polling — Allows the device to work in polling mode (react to PollForPlatformEventMessage

commands).

enum8 transportProtocolType
Only value supported if eventMessageGlobalEnable = enable, is 0x00 (MCTP), ignored otherwise.
The command is rejected and an INVALID_PROTOCOL_TYPE completionCode returned if the
transportProtocolType is incorrect.

uint8 eventReceiverAddressInfo
Reflects the EID of the event receiver, and should be used to create events messages.
Valid only if eventMessageGlobalEnable is set to enable (1b).

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES,
INVALID_PROTOCOL_TYPE = 0x80
}

Intel® Ethernet Controller E810 Datasheet
System Manageability

1914 613875-009

12.8.2.1.3 GetEventReceiver (0x5)

The GetEventReceiver command is used to read from the device the address of the Event Receiver it is
connected to. The command and response are described in Table 12-73.

12.8.2.1.4 PlatformEventMessage (0xA)

The PlatformEventMessage command is a command generated by the device to notify the event
receiver of new events. The device should implement a timeout and retry mechanism to ensure that the
command is acknowledged by the event receiver.

The retry parameters as defined in Table 5 - Timing Specifications for PLDM Messages of DSP0240
should be set to PN1=2 (2 retries) and PT2 (Time-out waiting for a response)=2 seconds.

The destination EID and B,D,F of the command are received through the SetEventReceiver command
and Resolve Endpoint ID MCTP command.

The following rules define when to send the message for each sensor:

• For Thermal Sensor and Thermal Trip events the message should be generated every time any of
the thresholds is crossed in any direction.

• For Link State sensor events, the message should be generated every time the link state changes.

• For Link Speed sensor events, the message should be generated every time there is a link up event.

• For Health state sensor events, the message should be generated every time there is a change in
the health state.

• For power consumption, there is no need to generate messages.

• For configuration change events the message should be generated every time the configuration
change state changes (e.g., when PDR changed).

• For presence sensors, the message should be generated every time a cable presence status
changes.

The command and response are described in Table 12-74:

Table 12-73. GetEventReceiver Command and Response

Type Request Data

--- None.

Type Response Data

enum8 completionCode
Value:

{PLDM_BASE_CODES}

enum8 transportProtocolType
Return 0x00 (MCTP)

uint8 eventReceiverAddress
Returns the last value that was set using the SetEventReceiver command, or zero if no such command was
received.

613875-009 1915

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.2.1.5 PollForPlatformEventMessage (0xB)

This command enables the Event Receiver to poll for events from a PLDM terminus and acknowledge
the receipt of the event message. The SetEventReceiver command enables polling of event messages if
the PLDM terminus supports this command.

Table 12-74. PlatformEventMessage Command and Response

Type Request Data

uint8 formatVersion
0x01

uint8 TID
Terminus ID for the terminus that originated the event message as received from the SetTID command.

enum8 eventClass
Value (one of the following):

0x00 = sensorEvent — One of the sensors had a status change.
0x02 = redfishTaskExecutedEvent — A long running task spawned by an RDE Operation task has completed

execution.
0x03 = redfishMessageEvent — A Redfish event has occurred.
0x04 = pldmPDRRepositoryChgEvent — A change has been made to the repository.

var eventData
Event data based on the eventClass (see Section 12.8.2.2)

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES,
UNSUPPORTED_EVENT_FORMAT_VERSION = 0x81
}

enum8 Status - can be ignored.

Table 12-75. PollForPlatformEventMessage Command and Response

Type Request Data

uint8 formatVersion
Version of the event format (the format and definition of the following bytes):

0x01 for this specification.

enum8 TransferOperationFlag
The operation flag that indicates whether this is the start of the transfer.
Possible values:

0x00 = GetNextPart
0x01 = GetFirstPart
0x02 = AcknowledgementOnly

uint32 dataTransferHandle
A handle that is used to identify a package data transfer. This handle is ignored by the responder when the
TransferOperationFlag is set to GetFirstPart.
If TransferOperationFlag is set to GetNextPart, dataTransferHandle should be equal to the
nextDataTransferHandle reported in the previous transfer response, otherwise return an ERROR_INVALID_DATA
completion code.

uint16 eventIDToAcknowledge
An event previously received that should be acknowledged.
The MC uses the null value 0x0000 when requesting the first entry from the terminus' event queue.
The MC uses the sentinel 0xFFFF when in the middle of a multi-part event transfer.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1916 613875-009

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES,
UNSUPPORTED_EVENT_FORMAT_VERSION = 0x81,
EVENT_ID_NOT_VALID = 0x82
}

uint8 TID

uint16 eventID
The Event ID for the returned event in this response. The device assigns the Event ID to an event so the
requester can send the acknowledgment on the subsequence invocation of this command. A value is 0x0000 is
returned if the terminus internal event queue is empty. If TransferOperationFlag in the request message was set
to AcknowledgementOnly and the event queue is non-empty, the terminus supplies sentinel value 0xFFFF for this
field.
eventID value generated by firmware is increased for each new event (starting from 1).

All of the following fields are returned only if eventID is different than 0x0000 or 0xFFFF.

uint32 nextDataTransferHandle
A handle that is used to identify the next portion of the transfer.

enum8 TransferFlag
The transfer flag that indicates what part of the transfer this response represents.
Possible values:

0x1 = Start
0x2 = Middle
0x4 = End
0x5 = StartAndEnd

uint8 eventClass
Values:

pldmPDRRepositoryChgEvent —A change has been made to the repository.
redfishTaskExecuteEvent — A long running task spawned by an RDE Operation has completed execution.
redfishMessageEvent — A Redfish event has occurred.
sensorEvent — Events related to PLDM numeric and state sensors.

uint32 eventDataSize
Size in byes of eventData.

var eventData
Event data based on the eventClass.

uint32 eventDataIntegrityChecksum
32-bit CRC for the entirety of event data (all parts concatenated together, excluding this checksum). This field is
omitted for non-final chunks of multi-part event messages (TransferFlag ≠ End or StartAndEnd) in the transfer.
The DataIntegrityChecksum is not split across multiple chunks. If appending the DataIntegrityChecksum would
cause this request message to exceed the negotiated maximum transfer chunk size, the DataIntegrityChecksum
is sent as the only data in another chunk.
For this command, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8

+ x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) is used for the integrity checksum
computation. The CRC computation involves processing a byte at a time with the least significant bit first.

Table 12-75. PollForPlatformEventMessage Command and Response [continued]

613875-009 1917

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.2.1.6 EventMessageSupported (0xC)

Table 12-76. EventMessageSupported Command and Response

Type Request Data

uint8 formatVersion
Version of the event format (the format and definition of the following bytes):

0x01 for this specification version

Type Response Data

enum8 completionCode
Value:

{
PLDM_BASE_CODES,
UNSUPPORTED_EVENT_FORMAT_VERSION = 0x81
}

enum8 synchronyConfiguration
This value indicates the messaging style most recently configured via the SetEventReceiver command:
Value:

{
NOT_CONFIGURED = 0x00, // SetEventReceiver command not received
ASYNCHRONOUS_MESSAGING = 0x01, // Asynchronous messaging
SYNCHRONOUS_MESSAGING = 0x02// Poll-based messaging
ASYNCHRONOUS_WITH_HEARTBEAT = 0x03 // Asynchronous messaging, heartbeat
}

bitfield8 synchronyConfigurationSupported
This value indicates the event messaging styles supported by the terminus. For each bit, a value of 1b indicates
that the mode is supported.

[7:4] - Reserved for future use
[3] - Asynchronous messaging with heartbeat
[2] - Synchronous (poll-based) messaging
[1] - Asynchronous messaging, no heartbeat
[0] - Reserved. Mus be 0b.

The returned value is 0x6 (Synchronous and Asynchronous support without heartbeat).

uint8 numberEventClassReturned
The count of eventClass enumerated bytes returned in this response.

Returns 5 - supported events listed below.

uint8 eventClass [0]
0x00 = sensorEvent

uint8 eventClass [1]
0x02 = redfishTaskExcuteEvent

uint8 eventClass [2]
0x03 = redfishMessageEvent

uint8 eventClass [3]
0x04 = pldmPDRRepositoryChgEven

uint8 eventClass [4]
0x05 = pldmMessagePollEvent

Intel® Ethernet Controller E810 Datasheet
System Manageability

1918 613875-009

12.8.2.1.7 EventMessageBufferSize (0xD)

The size used to report events should be min (eventReceiverMaxBufferSize, terminusMaxBufferSize)
This command is medium dependent and different values can be received over PCIe and SMBus.

An INVALID_DATA error is reported if eventReceiverMaxBufferSize value is smaller than 14 bytes.

12.8.2.1.8 SetNumericSensorEnable (0x10)

The SetNumericSensorEnable command is supported for the Temperature & Link Speed sensors and is
used to enable or disable generation of events from these sensors. The command and response are
described in Table 12-78.

The default at init time should be to have all sensors enabled.

Table 12-77. EventMessageBufferSize Command and Response

Type Request Data

uint16 eventReceiverMaxBufferSize
This is the maximum buffer to hold an event message transferred from the terminus to the event receiver.
Minimum value allowed is 14 bytes.

Type Response Data

enum8 completionCode
Value:

{PLDM_BASE_CODES}

uint16 terminusMaxBufferSize
Return 2048 (2K buffers).

Table 12-78. SetNumericSensorEnable Command and Response

Type Request Data

uint16 sensorID
Only accepted values are the sensor IDs of Thermal sensors and Link Speed sensors. Otherwise, an
INVALID_SENSOR_ID error code is returned.

enum8 sensorOperationalState
The desired state of the sensor value: {enabled, disabled, unavailable} Defines if the sensor is enabled, disabled
or unavailable. Default is enabled.

enum8 sensorEventMessageEnable
This value is used to enable or disable event message generation from the sensor.
Possible values:

{
noChange,
disableEvents,
enableEvents,
enableOpEventsOnly,
enableStateEventsOnly
}

The relevant values are:
0x0 = noChange
0x1 = disableEvents
0x2 = enableEvents
0x3 = enableOpEventsOnly

For other values, return an EVENT_GENERATION_NOT_SUPPORTED error.

613875-009 1919

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.2.1.9 GetSensorReading (0x11)

The GetSensorReading command is supported for the Temperature, Link speed, and power
consumption sensors, and is used to read the current value of the sensor.

The default at init time should be to have all sensors enabled.

Note: Firmware updates sensor states and responds immediately when processing a
GetSensorReading command. Hence, in case this command is received before next firmware
polling and sensor states are updated, PlatformEventMessage is sent for this particular event.

In rare cases in which old events are still in the internal queue when the GetSensorReading command is
received (i.e., retransmission due to transmit failure), BMC will get the stalled events.

The command and response are described in Table 12-79.

Type Response Data

enum8 completionCode
Value:

{
PLDM_BASE_CODES,
INVALID_SENSOR_ID = 0x80,
INVALID_SENSOR_OPERATIONAL_STATE = 0x81,
EVENT_GENERATION_NOT_SUPPORTED = 0x82 // an attempt was made to enable or disable event generation
for a sensor that does not support event message generation
}

Table 12-79. GetSensorReading Command and Response

Type Request Data

uint16 sensorID
Only accepted values are the IDs of Temperature, Link Speed, and Power Consumption sensors. Otherwise, an
INVALID_SENSOR_ID error code is returned.

bool8 rearmEventState
Ignored. All sensors are auto-rearm.

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES,
INVALID_SENSOR_ID = 0x80,
EARM_UNAVAILABLE_IN_PRESENT_STATE = 0x81
}

enum8 sensorDataSize
The bit width and format of reading and threshold values that the sensor returns UINT8 (0x0) for thermal sensor
and uint32 (0x4) for link speed.

Table 12-78. SetNumericSensorEnable Command and Response [continued]

Intel® Ethernet Controller E810 Datasheet
System Manageability

1920 613875-009

enum8 sensorOperationalState
The state of the sensor itself
Possible values:

{
enabled,
disabled,
unavailable,
statusUnknown,
failed,
initializing,
shuttingDown,
inTest
}

Relevant values are:
enabled Enabled and operating. The sensor is able to return valid presentState, previousState,

presentReading, and eventState values. This state can be set through the SetNumericSensorEnable
command.

disabled The sensor is disabled from returning presentReading and event state values. This state is settable
through the SetNumericSensorEnable command.

unavailable The sensor should be ignored due to the configuration of the platform or monitored entity. For
example, the sensor is for monitoring a processor temperature, but the processor is not installed.
This state is settable through the SetNumericSensorEnable command.

failed The sensor has failed. The sensor implementation has determined that it can not return correct
values for one or more of its presentState or eventState values.

enum8 sensorEventMessageEnable
Possible values:

{
noEventGeneration,
eventsDisabled,
eventsEnabled,
opEventsOnlyEnabled,
stateEventsOnlyEnabled
}

as set in the SetNumericSensorEnable command

enum8 presentState
The most recently assessed state value monitored by the sensor.
If the sensorOperationalState is set to enabled the sensor must return a value other than “Unknown” for the
presentState.
If the sensorOperationalState is not set to enabled, the sensor returns “Unknown” for the presentState. See
Section 12.8.3.2 for the reported state per sensor.

enum8 previousState
The state that the presentState was entered from. See Section 12.8.3.2 for the reported state per sensor.
If the sensorOperationalState is not set to enabled, the sensor returns “Unknown” for the previousState.

enum8 eventState
Same as presentState for all sensors but the thermal sensor (assume no hysteresis).
For Thermal sensor return the value of the last crossed threshold including thresholds considerations as described
in Section 17.9 of DSP0248.

uint8 | uint32 presentReading
The present value indicated by the sensor
See Section 12.8.3.2 for the reported value per sensor.

Table 12-79. GetSensorReading Command and Response [continued]

613875-009 1921

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.2.1.10 GetSensorThresholds (0x12)

The GetSensorThresholds command is supported for the Temperature sensors and is used to read the
current values of the sensor thresholds. The command and response are described in Table 12-80.

Table 12-80. GetSensorThresholds Command and Response

Type Request Data

uint16 sensorID
Only accepted values are the Temperature Sensor IDs. Otherwise, an INVALID_SENSOR_ID error code is
returned.

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES,
NVALID_SENSOR_ID = 0x80
}

enum8 sensorDataSize
uint8 (0x0)

uint8 upperThresholdWarning
According to the value set in the SetSensorThresholds command.
Default is according to the Normal Value.Reported Thermal Sensor WarningHigh field in NVM if Thermal Sensor
Thresholds.upperWarning supported is set, zero otherwise.

uint8 upperThresholdCritical
According to the value set in the SetSensorThresholds command.
Default is according to the Warning Value.Reported Thermal Sensor CriticalHigh field in NVM if Thermal Sensor
Thresholds.upperCritical supported is set, zero otherwise.

uint8 upperThresholdFatal
According to the value set in the SetSensorThresholds command.
Default is according to the Critical Value.Reported Thermal Sensor FatalHigh field in NVM if Thermal Sensor
Thresholds.upperFatal supported is set, zero otherwise.

uint8 lowerThresholdWarning
Value: 0

uint8 lowerThresholdCritical
Value: 0

uint8 lowerThresholdFatal
Value: 0

Intel® Ethernet Controller E810 Datasheet
System Manageability

1922 613875-009

12.8.2.1.11 SetSensorThresholds (0x13)

The SetSensorThresholds command is supported for the Temperature sensors and is used to set the
values of the sensor thresholds. The command and response are described in Table 12-81.

Note: This command does modify the thermal thresholds used for the Plug, yet the command
passes successfully if Plug is present.

Table 12-81. SetSensorThresholds Command and Response

Type Request Data

uint16 sensorID
Only accepted values are the Temperature Sensor IDs. Otherwise, an INVALID_SENSOR_ID error code is
returned.

enum8 sensorDataSize
If the value is different than uint8 (0x0), return an ERROR_INVALID_DATA error code is returned

For sensorDataSize = uint8 or sint8

uint8 | sint8 upperThresholdWarning

uint8 | sint8 upperThresholdCritical

uint8 | sint8 upperThresholdFatal

uint8 | sint8 lowerThresholdWarning
Ignored.

uint8 | sint8 lowerThresholdCritical
Ignored.

uint8 | sint8 lowerThresholdFatal
Ignored.

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES,
INVALID_SENSOR_ID = 0x80
}

613875-009 1923

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.2.1.12 GetSensorHysteresis (0x15)

The GetSensorHysteresis command is supported for the Temperature sensors and is used to read the
values of the sensor hysteresis. For other sensors, an INVALID_SENSOR_ID is returned. The command
and response are described in Table 12-82.

12.8.2.1.13 SetStateSensorEnables (0x20)

The SetStateSensorEnables command is supported for the link state, health state, presence,
configuration change, thermal Trip, and power consumption sensors and is used to enable or disable
generation of events from these sensors. The command and response are described in Table 12-83.

Table 12-82. GetSensorHysteresis Command and Response

Type Request Data

uint16 sensorID
Accepted values are the Temperature Sensor IDs. Otherwise, an INVALID_SENSOR_ID error code is returned.

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES
INVALID_SENSOR_ID = 0x80
}

enum8 sensorDataSize
The bit width of the hysteresis value that is being returned.
Value:

0 (uint8)

uint8 | sint8 hysteresisValue
Read from Hysteresis field in Thermal Sensor Tolerance & Hysteresis NVM word for the relevant sensor.

Table 12-83. SetStateSensorEnables Command and Response

Type Request Data

uint16 sensorID
Accepted values the sensor IDs of the supported sensors described above. Otherwise, an INVALID_SENSOR_ID
error code is returned.

uint8 compositeSensorCount
Number of OpFields present.
If the value is higher than the number of sensors within the composite sensor, an ERROR_INVALID_DATA error
code is returned.
If the value is lower than the number of sensors within the composite sensor, return info for the first
compositeSensorCount sensors
The accessed sensors are 0-compositeSensorCount-1

compositeSensorCount instances of OpFields:

enum8 sensorOperationalState
The desired state of the sensor. Defines if the sensor is enabled, disabled or unavailable.
Possible values:

{
enabled,
disabled,
unavailable
}

Default is enabled.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1924 613875-009

12.8.2.1.14 GetStateSensorReadings (0x21)

The GetStateSensorReadings command is supported for all the state sensors (Composite network
controller sensor, Composite NIC sensor, Port link sensor, Cable Presence Sensor, Plug Composite
Sensor) and is used to read the current state of the sensors. The command and response are described
in Table 12-84.

enum8 EventMessageEnable
This value is used to enable or disable event message generation from the sensor.
Possible values:

{
noChange,
disableEvents,
enableEvents,
enableOpEventsOnly,
enableStateEventsOnly
}

The relevant values are:
0x0 = noChange
0x1 = disableEvents
0x2 = enableEvents
0x4 = enableStateEventsOnly — For health state, thermal trip, configuration, configuration changed, present

and link state sensors
0x0 = noChange — For power sensor.

For other values, return an EVENT_GENERATION_NOT_SUPPORTED error.
enableEvents and enableStateEventsOnly are treated the same.

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES
INVALID_SENSOR_ID = 0x80,
EVENT_GENERATION_NOT_SUPPORTED = 0x82
}

Table 12-84. GetStateSensorReadings Command and Response

Type Request Data

uint16 sensorID
Accepted values are all state sensors IDs. Otherwise, an INVALID_SENSOR_ID error code is returned.

bitfield8 sensorRearm
Ignored. All sensors are auto-rearm.

uint8 Reserved
Value = 0x00

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES,
INVALID_SENSOR_ID = 0x80
}

Table 12-83. SetStateSensorEnables Command and Response [continued]

613875-009 1925

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.2.1.15 GetPDRRepositoryInfo (0x50)

The GetPDRRepositoryInfo is used to provide a generic description of the PDRs in the device. The
command and response are described in Table 12-85.

uint8 compositeSensorCount
Return the number of sensors within the composite sensor.

Repeated once per sensor within the composite sensor.

enum8 sensorOperationalState
The state of the sensor itself as set using the SetStateSensorEnables command.

enum8 presentState
This field is used to return a state value from a PLDM State Set that is associated with the sensor.
The value reflects the most recently assessed state. See Section 12.8.3.2 for the state events reported.

enum8 previousState
The state that the presentState was entered from. See Section 12.8.3.2 for the reported state per sensor.
If the sensorOperationalState is not set to enabled, the sensor returns “Unknown” for the previousState.

enum8 eventState
same as presentState.

Table 12-85. GetPDRRepositoryInfo Command and Response

Type Request Data

--- None.

Type Response Data

enum8 completionCode
Value:

{PLDM_BASE_CODES}

enum8 repositoryState
Possible values:

{
available, // Record data can be read from the repository.
updateInProgress, // Record data is unavailable because an update is in progress.
failed // Record data is unavailable because of a detected failure condition.
}

Should be available (0x0) in regular cases.
If a configuration change was detected (cable plug, link configuration change), might return updateInProgress
(0x1).

timestamp104 updateTime
This time stamp identifies when the standard PDR Repository data was originally created, or the time of the most
recent update if the data has been updated after it was created. This time does not include changes of PDRs that
have a PDR Type of “OEM”.
Returns the time in internal clock of the firmware of the last PDR update.

timestamp104 OEMUpdateTime
This time stamp identifies when OEM PDRs in the PDR Repository were originally created, or the time of the most
recent update if the data has been updated after it was created.
Currently no OEM PDRs are defined, so return 0.

uint32 recordCount
Total number of PDRs in this repository.

Table 12-84. GetStateSensorReadings Command and Response [continued]

Intel® Ethernet Controller E810 Datasheet
System Manageability

1926 613875-009

12.8.2.1.16 GetPDR (0x51)

The GetPDRRepositoryInfo is used to access the PDRs in the device. The command and response are
described in Table 12-86.

The PDR data structures used to fill the recordData in this command are described in Section 12.8.3.3.

uint32 repositorySize
Size of the PDR Repository in bytes. This value provides information that can be used for helping estimate buffer
size requirements when accessing PDRs.
This size covers only the cumulative sizes of the PDR record fields. This size does not include the size for any
internal header structures that are used for maintaining the PDRs. This number does not report and may not
directly correlate to the amount of internal storage used for PDRs because. For example, an implementation might
elect to internally compress or use other encodings of the PDR data.
An implementation is allowed to round this number up to the nearest kilobyte (1024 bytes). Return the size of the
entire PDR data structure rounded up to 1K.

uint32 largestRecordSize
Size of the largest record in the PDR Repository in bytes. This value provides information that can be used for
helping estimate buffer size requirements when accessing PDRs.
An implementation is allowed to round this number of up to the nearest 64-byte increment. Return largest PDR
size in bytes rounded up to 128 bytes.

uint8 dataTransferHandleTimeout
The minimum interval, in seconds, that a dataTransferHandle value remains valid after it was delivered in the
response of a GetPDR or FindPDR command.
Special values:

0x00 = No timeout
0x01 = Default minimum timeout
0xFF = Timeout >254 seconds.
Any timeout values that are less than the specified default minimum timeout are illegal.

Return 0x01 (default timeout of 30 seconds).

Table 12-86. GetPDR Command and Response

Type Request Data

uint32 recordHandle
See Section 12.8.3.3 for details of the PDR to return for each handle. A value of 0x0000_0000 returns the NIC
association PDR (1100).

uint32 dataTransferHandle
Reflects the offset in bytes of the data within the PDR.
Special value: {use 0x0000_0000 if the transferOperationFlag is GetFirstPart}

enum8 transferOperationFlag
Indicates whether this request is for the first portion of the PDR.
Possible values:

{
GetNextPart = 0x00,
GetFirstPart = 0x01
}

uint16 requestCount
The maximum number of record bytes requested to be returned in the response to this instance of the GetPDR
command.
Note: The responder may return fewer bytes than were requested.

uint16 recordChangeNumber
If the transferOperationFlag field is set to GetFirstPart, set this value to 0x0000.
If the transferOperationFlag field is set to GetNextPart, set this to the recordChangeNumber value that was
returned in the header data from the first part of the PDR

Table 12-85. GetPDRRepositoryInfo Command and Response [continued]

613875-009 1927

Intel® Ethernet Controller E810 Datasheet
System Manageability

Type Response Data

enum8 completionCode
Possible values:

{
PLDM_BASE_CODES,
INVALID_DATA_TRANSFER_HANDLE = 0x80,
INVALID_TRANSFER_OPERATION_FLAG = 0x81,
INVALID_RECORD_HANDLE = 0x82,
INVALID_RECORD_CHANGE_NUMBER = 0x83,
TRANSFER_TIMEOUT = 0x84,
REPOSITORY_UPDATE_IN_PROGRESS = 0x85
}

uint32 nextRecordHandle
The next record handle is based on Table 12-94, where the handles are returned in ascending values.
Note: When RDE is enabled, an additional list of PRDs is added, as described in Section 12.8.3.3.7.
Special value:

0x0000_0000 = No more PDRs following this one.

uint32 nextDataTransferHandle
A handle that identifies the next portion of the PDR data to be transferred, if any portions are remaining. Reflects
the offset in bytes of the next data within the PDR
Special value:

Returns 0x0000_0000 if there is no remaining data.

enum8 transferFlag
Indicates what portion of the PDR is being transferred
Possible values:

{
Start = 0x00,
Middle = 0x01,
End = 0x04,
StartAndEnd = 0x05
}

Set according to the requestCount.value.

uint16 responseCount
The number of recordData bytes returned in this response.
Special value:

Returns 0x0000 if the requestCount was 0x0000.

(var) recordData
PDR data bytes.
This field is absent if responseCount=0x0000.
The number of PDR data bytes returned in this field must match responseCount.

If transferFlag = End

uint8 ransferCRC
A CRC-8 for the overall PDR.
This is provided to help verify data integrity for a PDR when it is transferred using a multi-part transfer. The CRC
is calculated over the entire PDR data using the polynomial x8 + x2 + x1 + 1 (This is the same polynomial used in
the MCTP over SMBus/I2C transport binding specification).
The CRC is calculated from most-significant bit to least-significant bit on bytes in the order that they are received.
This field is only present when transferFlag=End.

Table 12-86. GetPDR Command and Response [continued]

Intel® Ethernet Controller E810 Datasheet
System Manageability

1928 613875-009

12.8.2.1.17 GetPDRRepositorySignature (0x53)

The PDR Repository Signature is a value that represents the entire collection of terminus Platform
Device Records (PDRs). This is different than the GetPDRRepositoryInfo command because only an
opaque 32-bit value is returned. The purpose of the PDR Repository Signature is to provide the
management controller the capability to determine if a terminus PDR repository has changed during
state transitions such as power cycles.

12.8.2.2 PLDM Monitoring and Control Events

The following events can be generated by the E810:

• sensorEvent — See DSP0248 for more details. This event is sent to BMC upon a change in the
state of one of the sensors.

• redfishTaskExecuteEvent — See DSP0248 for more details. This event is sent to BMC upon long
running task completion

• redfishMessageEvent — See DSP0248 for more details. This event is sent to BMC in case a
Redfish message should be sent.

• pldmPDRRepositoryChgEvent — This message is sent in case of a change in the PDR structure.

This event reports PDR change in runtime. This Event is to signal the PLDM Event Receiver that
there is a change in the terminus PDR repository. The device returns the PDR Types or the PDR
Record Handles for the PDRs to be retrieved from the terminus. This allows a simple method for a
terminus to indicate which portion of its “virtual” PDR Repository needs to be refreshed. The PLDM
terminus client (or event receiver) will need to comprehend additions, deletions and modifications
of the PDRs as it updates the system primary PDR repository. See Table 12-88 and Table 12-89 for
the event format.

• pldmMessagePollEvent — This event is returned in asynchronous mode only when the reported
event cannot fit into a single PLDM message.

Table 12-88 through Table 12-93 describe the various events formats:

Table 12-87. GetPDRRepositorySignature Command and Response

Type Request Data

- -

Type Response Data

enum8 completionCode
Value:

{PLDM_BASE_CODES}

uint32 pdrRepositorySignature
This is a 32-bit value and remains persistent unless a change is detected in any record of the PDR repository. This
field should be computed once (during device boot) as low 32 bits of SHA256 of PDRs

613875-009 1929

Intel® Ethernet Controller E810 Datasheet
System Manageability

Table 12-88. PDR Repository Change Event Data

Type Request Data

enum8 eventDataFormat
Possible values:

{
refreshEntireRepository,
formatIsPDRTypes,
formatIsPDRHandles
}

This field indicates if the changedRecords are of “PDR Types” or “PDR Record Handles”. The device signals to the
event receiver to re-enumerate the entire device PDR repository by supplying the value refreshEntireRepository.
To signal that only certain types of PDRs should be refreshed, the device supplies the value formatIsPDRTypes
and provides one change record below for each type of PDR to be refreshed.

uint8 numberOfChangeRecords
The number of changeRecords (NR) following this field. If the eventDataFormat is refreshEntireRepository, this
value is zero.

var changeRecord [0]
See Table 12-89 for details. This field is not present if the numberOfChangeRecords is zero (0).

var changeRecord [1]

... ...

var changeRecord [NR - 1]

Table 12-89. pldmPDRRepositoryChgEvent changeRecord Format

Type Request Data

enum8 eventDataOperation
Possible values:

{
refreshAllRecords,
recordsDeleted,
recordsAdded,
recordsModified
}

For each pldmPDRRepositoryChgEvent record, there can only be a single operation. This simplifies the parsing for
both the terminus and the event receiver. The order the event records are provided is “RefreshAll”, “Deleted”,
“Added”, “Modified”.
The value refreshAllRecords is only supplied when eventDataFormat was set to formatIsPDRTypes. In this case,
the entries below represent a series of PDR types to be refreshed.

uint8 numberOfChangeEntries
The number of change entries (NE) following this field.

uint32 changeEntry [0]
This value is either a “PDR Type” enumeration or a “PDR Record Handle” as enumerated by the eventDataFormat
field in the pldmPDRRepositoryChgEvent event message.
There can be multiple PDR Types (such as Numeric Sensor, State Sensor, and Entity Association Sensor) to be
retrieved due to a “hot plug” event for the terminus. All the changed PDR Types can be returned in a single event
message. The client (or event receiver) can use the FindPDR command to gather the PDR record.
Alternatively, the terminus can provide a list of PDR Record Handles, which the MC can use as input to the GetPDR
command.

uint32 changeEntry [1]

... ...

uint32 changeEntry [NE - 1]

Intel® Ethernet Controller E810 Datasheet
System Manageability

1930 613875-009

Table 12-90. redfishTaskExecutedEvent Class eventData Format

Type Request Data

uint32 resourceID
ResourceID associated with the Task that has completed execution as received in RDeOperationInit RDE
command.

uint16 operationID
Operation associated with the Task that has completed execution as received in RDeOperationInit RDE command.

Table 12-91. redfishMessageEvent Class eventData Format

Type Request Data

uint8 eventCount
The number of Redfish Events (N) encoded in the eventData field below.

uint16 eventDataLength
Length in bytes of the eventData field below, which comprises the encoding of one or more Redfish Events
contained within this PLDM event. This value must not exceed the negotiated event message size.

uint32 resourceID [0]
An opaque handle referencing the particular collection of schema-based Redfish data associated with the first
Redfish Event encoded in the eventData field below.

enum8 eventSeverity [0]
The severity of the first Redfish Event in the Redfish EventRecords array encoded in eventData below.
Values:

0 = OK
1 = Warning
2 = Critical

uint32 resourceID [N - 1]
An opaque handle referencing the particular collection of schema-based Redfish data associated with the last
Redfish Event encoded in the eventData field below.

enum8 eventSeverity [N - 1]
The severity of the last Redfish Event in the Redfish EventRecords array encoded in eventData below.
Values:

0 = OK
1 = Warning
2 = Critical

bejEncoding eventData
BEJ encoded Event payload data. The bejEncoding PLDM type is defined in DSP0218.

Table 12-92. pldmMessagePollEvent

Type Request Data

uint8 formatVersion
Version of the event format (the format and definition of the following bytes):

0x01 for this specification.

uint16 eventID
Identifier for the event that requires multi-part transfer.

uint32 dataTransferHandle
A handle that is used to identify the event data to be received via the PollForPlatformEventMessage command.

613875-009 1931

Intel® Ethernet Controller E810 Datasheet
System Manageability

The internal BEJ Event payload data is based on the Event schema.

The OriginOfCondition field in the Redfish event schema contains a link reference to a Redfish resource
associated with a Redfish event.

Table 12-93. redfishMessageEvent

Type Request Data

uint8 eventCount
The number of Redfish Events N encoded in the eventData field below.

uint16 eventDataLength
Length in bytes of the eventData field below, which comprises the encoding of one or more Redfish Events
contained within this PLDM event. This value must not exceed the negotiated event message size.

uint32 resourceID[0]
An opaque handle referencing the particular collection of schema-based Redfish data associated with the first
Redfish Event encoded in the eventData field below.

enum8 eventSeverity[0]
The eventServerity allows a client to indicate severity to logs or other mechanism.
Values:

0 = OK
1 = Warning
2 = Critical

Each Registry Message contains severity field.

... ...

uint32 resourceID [N - 1]
An opaque handle referencing the particular collection of schema-based Redfish data associated with the last
Redfish Event encoded in the eventData field below.

enum8 eventSeverity [N - 1]
The severity of the last Redfish Event in the Redfish EventRecords array encoded in eventData below.
Values:

0 = OK
1 = Warning
2 = Critical

bejEncoding eventData
BEJ encoded Event payload data. The bejEncoding PLDM type is defined in DSP0218.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1932 613875-009

12.8.2.3 PDR Dynamic Changes Flow

In the DSP2054 PLDM model, PDRs can change dynamically due to changes in the NIC configuration.
The following events might cause a change in the PDR structure:

QSFP/SFP module plug/unplug events might cause a change in the PDR content.

In addition, transition from breakout to non-breakout cable configuration and vice versa changes the
PRD structure, but it is not a dynamic flow. See section Section 12.8.2.3.1 on the events that indicate
these events.

Once a topology change impacting the PDR structure is detected, the following logical flow should be
applied:

1. For each record that changed, increase the recordChangeNumber.

2. Update the updateTime used in the GetPDRRepositoryInfo answer to reflect the current time (using
the free running timer of the firmware).

3. Change the state of the Configuration Change sensor in the NIC composite sensor to Configuration
Change Detected.

12.8.2.3.1 PDR Change Events

12.8.2.3.1.1 QSFP/SFP Plug Events

A module plug event creates a “Media Inserted” event within the firmware. The parts of the PDR that
can be impacted by this event are: Plug Thermal Sensor, Power Consumption, and Port Speed. These
must be populated with values relevant to the module.

If the inserted module does not support thermal reading, the thermal sensor behaves as if no module is
inserted (see Section 12.8.2.3.1.2).

12.8.2.3.1.2 QSFP/SFP Unplug Events

A module unplug event creates a “Media Removed” event within the firmware.

When a pluggable module is not present, a query of the module’s numeric sensors (power and
temperature) via GetSensorReading is replied with sensorOperationalState value of Unavailable. A
query of the module’s Health State or Thermal Trip State sensors via GetStateSensorReading is replied
with sensorOperationalState value of Unavailable, and presentState and previousState values of
Unknown. The Presence State sensor presentState returns 0x2 (not-present).

The following PDRs values are updated upon module removal:

• Plug Thermal Sensor PDR:

— All values in PDR from unitModifier onwards must be 0.

• Pluggable Module Power Consumption PDR:

— Maxreadable must be 0.

— NominalValue must be 0.

• Port (link) Speed PDR:

— Maxreadable must be 0.

— NominalValue must be 0.

613875-009 1933

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.2.3.1.3 Transition Between Breakout to Non-Breakout Cable
Configurations

These transitions are initiated by the user after a media-conflict event notification. In this case, a
reboot of the system is required, causing a PERST# event that in turn causes a re-read of the topology
and a “Port Mode Change” event. Once a “Port Mode Change” event is received, the Link Association
PDR should be updated accordingly

12.8.3 PLDM Monitoring and Control Generic Structures

12.8.3.1 Sensors Numbering

DSP2054 defines a set of IDs for each type of sensor, as in Table 12-94:

Table 12-94. Sensors and Handles Numbering

Item Max
Count

Supported
Number

Base
Container

ID

Max
Container

ID

Base
Handle

Max
Handle

Base
Sensor

ID

Max
Sensor

ID

Base
Instance

Type
ID

NIC 1 1 100 1100 1 68

Card
Composite
State
Sensor

1 1 1101 1101 5 5 1 68

Connectors 8 4 1040 + i*8 1047 + i*8 1110 + i*8 1117 + i*8 1+ i*8 185

NIC Temp
Sensors 10 3 1130 + i*5 1139 + i*5 20 + i*5 29 + i*5 1+ i*5 68

Network
Controllers 1 + i 1 1000 + i 1000 + i 1150 + i 1150 + i 1 + i 144

Network
Controller
State

1 1 1170 + i 1170 + i 60 + i 60 + i 1 144

Ports of
Network
Controller

8 8 1200 + i*8 1207 + i*8 1 300

Link Speed
of Network
Controller

10 8 1300 + i*8 1307 + i*8 100 + i*8 107 + i*8 1 300

Link State
of Network
Controller

10 8 1400 + i*8 1407 + i*8 200 + i*8 207 + i*8 1 300

Temp
Sensor per
Network
Controller

10 3 1500 + i*10 1509 + i*10 300 + i*10 309 + i*10 1 144

Plugs 8 8 1010 + i*8 1017 + i*8 1600 + i*8 1607 + i*8 1

206/
207/
211/
212

Plug Power
Sensor 8 8 1700 + i*8 1707 + i*8 400 + i*8 407 + i*8 1

206/
207/
211/
212

Intel® Ethernet Controller E810 Datasheet
System Manageability

1934 613875-009

Where:

These are max values. Device with fewer than eight ports, for example, have less than max value in
many fields.

This maps to the following PDR/Sensor Diagram:

Plug Temp
Sensor 10 4 1800 + i*8 1807 + i*8 500 + i*8 507 + i*8 1

206/
207/
211/
212

Plug
Composite
Sensor

8 8
(1 per plug) 2000 + i*8 2007 + i*8 700 + i*8 707 + i*8 1

206/
207/
211/
212

Cable 8 1 187

Comm.
Channel 8 8 1060 + i*8 1067 + i*8 2100 + i*8 2107 + i*8 1 + i*8 6

Calculated

Model Constant

User Parameter

Item The Name of the References Items

i The offset value as read from the SDP indicated by the Instance ID SDP NVM field.
If Instance ID from SDP is not set, i = 0.

Max Count Max number of elements of this type allowed by the PLDM model.

Supported Number The largest number of instances expected by this feature.

Base Container ID / Max Container ID The first and last ID of the device as referenced in PDRs Base Handle.

Max Handle The first and last ID of the PDRs describing the instances.

Base Sensor ID / Max Sensor-ID: The first and last sensor ID of this sensor type

Base Instance The first instance of this type as listed in the containing PDR.

Table 12-94. Sensors and Handles Numbering [continued]

Item Max
Count

Supported
Number

Base
Container

ID

Max
Container

ID

Base
Handle

Max
Handle

Base
Sensor

ID

Max
Sensor

ID

Base
Instance

Type
ID

613875-009 1935

Intel® Ethernet Controller E810 Datasheet
System Manageability

Note: The PDRs with a red border are dynamic and can change due to module plug events or
breakout cables insertion events.

Figure 12-13. PDR/Sensor Diagram

Connector [1119, 1049]

Plug [1609]

Connector [1111, 1040]

Plug [1601]

Plug [1601,1011]

Cable

Cable

Controller [1151,1001]

Port [1200]

Port [1201]

Port [1202]

Port [1203]

NIC [1100,100]

Network Controller
[1150]

Plug [1600,1010]

Cable

Cable

Logical association [PDR
handle, container ID]

Physical association {PDR
handle, container ID]

Sensor Association
[PDR handle, Sensor ID]

Composite NIC sensor
[1101, 5]

Health, Configuration,
Configuration Change,

Thermal Trip

NIC

NIC Thermal Sensor
[1130,20]

NIC
NIC Thermal Sensor

[1131, 21]

NIC

Controller Thermal Sensor
[1408, 308]

Network
Controller

Port link State sensor
 [1400, 200]

Controller

Port link speed sensor
[1300,100]

Controller

Plug Composite Sensor
[2000, 700]

Health, Presence,
Thermal Trip

Plug

Plug Thermal Sensor
[1801]

Plug
Plug Thermal Sensor

[1800,500]

Plug

Plug Power Sensor
[1700, 400]

Plug

Composite network
controller sensor

 [1170, 60]
Health, Configuration,
Configuration Change,
Thermal Trip, Firmware

Version
NIC

Terminus Locator
[10]

Terminus Locator
[PDR Handle]

Controller [1150,1000]

Port [1200]

Port [1201]

Port [1202]

Port [1203]

Port [1200 – 1208]

Network Controller
[1151]

Connector [1111]

Connector [1110]

Connector [1119]

Connector [1118]

Terminus Locator
[11]

Communication Channel [2109]
Communication Channel [2108]

Communication Channel [2101]
Communication Channel [2100]

Communication Channel [2109, 1069]

Plug

Cable

Port
Port

Communication Channel [2108, 1068]

Plug

Cable

Port

Communication Channel [2101, 1061]

Plug

Cable

Communication Channel [2100, 1060]

Plug

Cable

Port

Controller Thermal Sensor
[1400, 300]

Network
Controller

Connector [1110, 1040]

Plug [1600]

Plug [1609,1019]

Cable

Cable

Plug [1608,1018]

Cable

Cable

Connector [1118, 1049]

Plug [1608]

Intel® Ethernet Controller E810 Datasheet
System Manageability

1936 613875-009

12.8.3.2 Sensors

The following sensors are maintained in the device to be reported via the PLDM commands described in
Section 12.8.2.1.

• Numeric Sensors:

— Temperature Sensors

— NIC/Controller/Plug

— Link Speed Sensors

— Plug power consumption Sensors

• Composite State Sensors:

— NIC: {Health, Configuration, Configuration Change, Thermal Trip}

— Controller: {Health, Configuration, Configuration Change, Thermal Trip}

— Plug: {Health, Presence, Thermal Trip}

— Regular State Sensors: Link state

The numbering of the sensors is according to Section 12.8.3.1.

12.8.3.2.1 Numeric Sensors

12.8.3.2.1.1 Temperature Sensor Data Structure

There are three types of possible thermal sensors:

• Internal (on-die) thermal sensors

• External (on board) thermal sensors

• Plug (SFP/QSFP) thermal sensors

The identification of the type is set according to the following Topology Netlist fields:

• Sensor Location at word 9 (Port Affinity High) of the Node Thermal Configuration Section of the
Temperature Sensor node.

• Node Part Number at word 3 (Part Number and Node Options) of the Node Header Section of the
Temperature Sensor node.

Sensor Type Sensor Location Node Part Number

Internal 0x01 0x36 = Embedded in Internal PHY

External (PHY)

0x02 - 0x07

Embedded in external PHY, e.g.
0x31 = C827
0x32 = X557 (not supported)
0x33 = 88E1543
0x34 = 88E1512
0x35 = 88E1514

Plug SFP (SFF-8472 compliant) 0x10 0x44 = Embedded in SFP plug

Plug QSFP (SFF-8636/8436 compliant) 0x11 0x45 = Embedded in QSFP plug

613875-009 1937

Intel® Ethernet Controller E810 Datasheet
System Manageability

Notes:

• Firmware uses of Sensor Location to determine Sensor Type. Part Numbers is informative only, as
the list may dynamically grow further.

• Temperature Sensors should be implemented only if the Expose Thermal Sensors bit in the PLDM
control word is set. The number of thermal sensors exposed from each type is derived from the
network topology. The current temperature for each sensor can be read through the GET_TEMP
DNL script.

12.8.3.2.1.2 Link Speed Data Structure

Type Request Data

uint16 sensorID = According to Section 12.8.3.1 (20 + n, 300 +n, 500 for plug, NIC, Controllers sensors respectively).

enum8 sensorEventClass = numericSensorState (0x2) or sensorOpState (0x0)
If the Sensor has a sensorEventMessageEnable value of enableOpEventsOnly, return a sensorOpState.
If the Sensor has a sensorEventMessageEnable value of enableEvents, return a numericSensorState.
Otherwise, events are not generated.

enum8 presentState
The eventState value from the state change that triggered the event message.
If temperature is >= Fatal Threshold, Return UpperFatal (0xA)
If temperature is >= Critical Threshold return UpperCritical (0x9).
If temperature is >= Warning Threshold return UpperWarning (0x8)
Otherwise, return Normal (0x1).
Thresholds are set by the SetSensorThresholds command.

enum8 previousState
The eventState value for the state from which the present state was entered.
Return the state that was reported in previous events.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

enum8 sensorDataSize = 0x1 (sint8) - returned only if sensorEventClass = numericSensorState (0x2).

sint8 presentReading
Temperature. The resolution is according to the resolution defined in the Thermal Sensor PDR
(Section 12.8.3.3.6.1) - returned only if sensorEventClass = numericSensorState (0x2).

Type Request Data

uint16 sensorID = 99 + Port#

enum8 sensorEventClass = numericSensorState (0x2) or sensorOpState (0x0)
If the Sensor has a sensorEventMessageEnable value of enableOpEventsOnly, return a sensorOpState.
If the Sensor has a sensorEventMessageEnable value of enableEvents, return a numericSensorState.
Otherwise, events are not generated.

enum8 presentState
Return Normal (0x1).

enum8 previousState
Return Normal (0x1).

enum8 sensorDataSize = uint32 (0x4) - returned only if sensorEventClass = numericSensorState (0x2).

uint8 presentReading
Link Speed in Megabits per second - returned only if sensorEventClass = numericSensorState (0x2).

Intel® Ethernet Controller E810 Datasheet
System Manageability

1938 613875-009

12.8.3.2.1.3 Plug Power Data Structure

12.8.3.2.2 NIC Composite State Sensors

The NIC Composite State Sensors are exposed only if PLDM Offset is zero (Instance ID SDP is not
present or set to 0) and Expose NIC Composite State Sensor bit is set in PLDM Control NVM word.

12.8.3.2.2.1 NIC Health State Data Structure

Type Request Data

uint16 sensorID = 250 + Plug#

enum8 sensorEventClass = numericSensorState (0x2) or sensorOpState (0x0)
If the Sensor has a sensorEventMessageEnable value of enableOpEventsOnly, return a sensorOpState.
If the Sensor has a sensorEventMessageEnable value of enableEvents, return a numericSensorState.
Otherwise, events are not generated.

enum8 presentState
Return Normal (0x1).

enum8 previousState
Return Normal (0x1).

enum8 sensorDataSize = uint32 (0x4) - returned only if sensorEventClass = numericSensorState (0x2).

uint8 presentReading
Plug nominal power as read from addresses below in the module EEPROM through I2C read. The reported value is
translated to 0.1 Watts units.
SFPx - SFF-8472 v12.2 - 0xA0 - byte 64 in Table 8-3.
QSFPx - SFF-8636 v2.7 - 0xA0 - byte 129 in Table 6-16.
Returned only if sensorEventClass = numericSensorState (0x2).
The value is returned from the sff_get_pwr (activity ID = 0x0027) DNL script.

Type Request Data

uint16 sensorID = 5

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x0 (offset in NIC composite state structure)

enum8 presentState
Note: All thermal sensing events here relate to the all the registered sensors. The state reflects the worst state

of all sensors.
The eventState value from the state change that triggered the event message.

Return 0x1 (Normal) if all NVM checks are OK and thermal sensor value is below the warning threshold.
Return 0x5 - Upper Non-Critical, if the thermal sensor value is above the warning threshold and below the

Critical Threshold.
Return 0x7 - Upper Critical, if the thermal sensor value is above the critical threshold and below the Fatal

Threshold.
Return 0x9 - Upper Fatal, if the thermal sensor value is above the fatal threshold
Return 0x0 (Unknown) otherwise.

Note: Changes to the Health sensor are coordinated with thermal events. So events will occur according to the
thermal Sensor hysteresis rules.

613875-009 1939

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.2.2.2 NIC Configuration Data Structure

12.8.3.2.2.3 NIC Changed Configuration State Data Structure

12.8.3.2.2.4 NIC Thermal Trip State Data Structure

Type Request Data

uint16 sensorID = 5

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x1 (offset in NIC composite state structure)

enum8 presentState
The eventState value from the state change that triggered the event message. One of the following:

1 = Valid Configuration
2 = Invalid Configuration
TBD - For now Invalid configuration means the firmware failed to find all the needed TLVs in the PFA or other
associated errors.

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

Type Request Data

uint16 sensorID = 5

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x2 (offset in NIC composite state structure)

enum8 presentState
The eventState value from the state change that triggered the event message. One of the following:

1 = Normal. Initial State.
2 = Configuration Change Detected. If a change in the PDR structure was detected. Move back to Normal after

State is read.

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

Type Request Data

uint16 sensorID = 5

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x3 (offset in NIC composite state structure)

enum8 presentState
Note: All thermal sensing events here relate to the all the registered sensors. The state reflects the worst state

of all sensors.
The eventState value from the state change that triggered the event message.

Return 0x1 (Normalalways).
Note: If auto shutdown will be implemented, will also support Thermal trip state (0x2).

Intel® Ethernet Controller E810 Datasheet
System Manageability

1940 613875-009

12.8.3.2.3 Controller Composite State Sensors

12.8.3.2.3.1 Controller Health State Data Structure

12.8.3.2.3.2 Controller Configuration Data Structure

Type Request Data

uint16 sensorID = 60 + PLDM_offset

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x0 (offset in Controller composite state structure)

enum8 presentState
Note: All thermal sensing events here relate to the controller internal TS.
The eventState value from the state change that triggered the event message.

Return 0x1 (Normal) if all NVM checks are OK and thermal sensor value is below the warning threshold.
Return 0x5 - Upper Non-Critical, if the thermal sensor value is above the warning threshold and below the

Critical Threshold.
Return 0x7 - Upper Critical, if the thermal sensor value is above the critical threshold and below the Fatal

Threshold.
Return 0x9 - Upper Fatal, if the thermal sensor value is above the fatal threshold.
Return 0x0 (Unknown) otherwise.

Note: Changes to the Health sensor are coordinated with thermal events. So events will occur according to the
Thermal Sensor hysteresis rules.

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

Type Request Data

uint16 sensorID = 60 + PLDM_offset

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x1 (offset in Controller composite state structure)

enum8 presentState
The eventState value from the state change that triggered the event message. One of the following:

1 = Valid Configuration
2 = Invalid Configuration

Invalid configuration means the firmware failed to find all the needed TLVs in the PFA or other associated errors.

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

613875-009 1941

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.2.3.3 Controller Configuration Change Data Structure

12.8.3.2.3.4 Controller Thermal Trip State Data Structure

12.8.3.2.3.5 Firmware Version State Data Structure

Type Request Data

uint16 sensorID = 60 + PLDM_offset

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x2 (offset in Controller composite state structure)

enum8 presentState
The eventState value from the state change that triggered the event message. One of the following:

1 = Normal. Initial State.
2 = Configuration Change Detected. Returned if a change in the one of the channels associations was detected,

or an NVM update occurred. Move back to Normal after State is read.
An NVM update is detected by a Shadow RAM dump command

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

Type Request Data

uint16 sensorID = 60 + PLDM_offset

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x3 (offset in Controller composite state structure)

enum8 presentState
Note: All thermal sensing events here relate to the controller internal TS.
The eventState value from the state change that triggered the event message.

Return 0x1 (Normal).

Type Request Data

uint16 sensorID = 60 + PLDM_offset

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x4 (offset in Controller composite state structure)

enum8 presentState
1 = Normal. Returned if there is no pending FW upgrade.
2 = Version change detected - Compatible. Returned if there is a new non-activated firmware pending.

enum8 previousState
The eventState value for the state from which the present state was entered. Use the same logic as for the
present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which might be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

Intel® Ethernet Controller E810 Datasheet
System Manageability

1942 613875-009

12.8.3.2.4 Plug Composite State Sensors

12.8.3.2.4.1 Plug Health State Data Structure

12.8.3.2.4.2 Plug Presence State Data Structure

Type Request Data

uint16 sensorID = 699 + PLDM_Offset*8 + Plug# (1-8)

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x0 (offset in Plug composite state structure)

enum8 presentState
The eventState value from the state change that triggered the event message.

Return 0x1 (Normal) if thermal sensor value is below the warning threshold.
Return 0x5 - Upper Non-Critical, if the thermal sensor value is above the warning threshold and below the

Critical Threshold.
Return 0x7 - Upper Critical, if the thermal sensor value is above the critical threshold and below the Fatal

Threshold.
Return 0x9 Upper Fatal, if the thermal sensor value is above the fatal threshold
Return 0x0 (Unknown) otherwise

Note: Changes to the Health sensor are coordinated with thermal events. So events will occur according to the
thermal Sensor hysteresis rules.

TBD how to fix - For now equivalent to the crossed threshold of the plug thermal sensor.

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

Type Request Data

uint16 sensorID = 699 + PLDM_Offset*8 + Plug# (1-8)

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x1 (offset in Plug composite state structure)

enum8 presentState
The eventState value from the state change that triggered the event message.

Return 0x1 (Present) if a the plug is connected.
Return 0x2 (Not Present) if the plug is not connected TBD if should be plug or cable presence.

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

613875-009 1943

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.2.4.3 Plug Thermal Trip State Data Structure

12.8.3.2.5 Simple Sensors

12.8.3.2.5.1 Port Link Sensor

Type Request Data

uint16 sensorID = 699 + PLDM_Offset*8 + Plug# (1-8)

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x2 (offset in Plug composite state structure)

enum8 presentState
Note: All thermal sensing events here relate to the plug internal TS.
The eventState value from the state change that triggered the event message.

Return 0x1 (Normal).

enum8 previousState
The eventState value for the state from which the present state was entered.
Use the same logic as for the present state, only for the previous state.
Special value:

This value must be set to the same value as presentState if the previousState is unknown (which may be the
case for events that are generated on the first status assessment that occurs after a sensor has been initialized).

Type Request Data

uint16 sensorID = 199 + port# + PLDM_Offset*8

enum8 sensorEventClass = stateSensorState (0x1)

uint8 sensorOffset = 0x0 (not part of a composite)

enum8 presentState
The eventState value from the state change that triggered the event message.

Return 0x1 (Connected) if a link is present.
Return 0x2 (Not Connected) if a link is not present.

enum8 PreviousState
The eventState value for the state from which the present state was entered
Use the same logic as for the present state, only for the previous state.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1944 613875-009

12.8.3.3 PDRs

The PDRs are numbered according to Section 12.8.3.1, “Sensors Numbering”. The link list used to
create the Next Handle Record, which should be created based on the exposed PDRs.

12.8.3.3.1 Terminus Locator PDR

Type PDR Fields

uint32 recordHandle = 0x0000_0010 + PLDM_Offset

uint8 PDRHeaderVersion = 0x01

uint8 PDRType = 0x1 (Terminus Locator PDR)

uint16 recordChangeNumber = 0x0 (no changes expected in Terminus Locator PDR)

uint16 dataLength = 0x9

uint16 PLDMTerminusHandle = 0x0001 + PLDM_Offset

enum8 Validity = 0x1 (valid)

uint8 TID = PLDM Terminus ID as received by SetTID command (default is 0).

uint16 containerID = 0x0 (system)

enum8 terminusLocatorType = 0x1 (MCTP_EID)

enum8 terminusLocatorValueSize = 0x1 (one uint8)

terminusLocatorValue for terminusLocatorType = MCTP_EID:

uint8 EID = The MCTP EID that is assigned to the device for the relevant medium.

613875-009 1945

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.2 Physical Association PDRs

The PDRs are exposed in a high-level representation for the association PDRs.

12.8.3.3.2.1 NIC Association PDR

A single NIC association PDR exists. The number of connectors exposed is based on the specific card
configuration and is derived from the link topology (OCP 3.0 supports 1 or 2 connectors, but other cards
might support more). The example below shows two connectors.

NIC Entity Association PDR

Container ID 100

Container Entity

Entity Type 68 Add-in Card

Entity Instance Number 1

Container Entity Container ID 0

Association Type Physical to Physical containment

Contained Entity - Network Controller

Entity Type 144 Network Controller

Entity Instance Number 1 + PLDM_Offset

Container Entity Container ID 100

Contained Entity - Connector

Entity Type 185 Connector

Entity Instance Number 1 + PLDM_Offset*8

Container Entity Container ID 100

Contained Entity - Connector

Entity Type 185 Connector

Entity Instance Number 2 + PLDM_Offset*8

Container Entity Container ID 100

Intel® Ethernet Controller E810 Datasheet
System Manageability

1946 613875-009

12.8.3.3.2.2 Controller Association PDR

The controller includes all its ports. There can be up to eight ports for the E810. The actual number is
derived from the link topology. The example below assumes two ports.

12.8.3.3.2.3 Connector Association PDR

A connector association PDR exists per cage of the device, as reflected from the topology file.

This PDR always exists only if a module is plugged. In case of module plug-in or plug-out event, the
presence state event changes its state.

Network Controller Association PDR

Container ID 1000 + PLDM_Offset

Container Entity

Entity Type 144 Network Controller

Entity Instance Number 1 + PLDM_Offset

Container Entity Container ID 100 NIC

Association Type Physical to Physical containment

Contained Entity - Connector

Entity Type 6 Communication Port

Entity Instance Number 1

Container Entity Container ID 1000 + PLDM_Offset

Contained Entity - Connector

Entity Type 6 Communication Port

Entity Instance Number 2

Container Entity Container ID 1000 + PLDM_Offset

Connector #n Entity Association PDR (n = 1... number of cages)

Container ID 1039 + n + PLDM_Offset*8

Container Entity

Entity Type 185 Connector

Entity Instance Number n + PLDM_Offset*8

Container Entity Container ID 100 NIC

Association Type Physical to Physical containment

Contained Entity - Plug

Entity Type 206 (SFP28 Module)
207 (SFP+ Module)

211 (QSFP28 Module)
212 (QSFP+ Module)

Plug

Entity Instance Number 1

Container Entity Container ID 1039 + n + PLDM_Offset*8

613875-009 1947

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.2.4 Pluggable Module Association PDR

A plug association PDR exists per cable per cage of the device, as reflected from the topology file. In
case of breakout cables, multiple cables may be associated with the same plug.

This PDR exists only if a module is plugged in and a cable is plugged in it. In case of cable plug-in or
plug-out event, a PDR change should be triggered through the NIC configuration change event.

Plug #n Entity Association PDR

Container ID 1009 + n + PLDM_Offset*8

Container Entity

Entity Type 206 (SFP28 Module)
207 (SFP+ Module)

211 (QSFP28 Module)
212 (QSFP+ Module)

Plug

Entity Instance Number 1

Container Entity Container ID 1039 + n + PLDM_Offset*8

Association Type Physical to Physical containment

Contained Entity - Cable #1

Entity Type 187 Cable

Entity Instance Number 1

Container Entity Container ID 1009 + n + PLDM_Offset

Contained Entity - Cable #2 - Breakout Only

Entity Type 187 Cable

Entity Instance Number 2

Container Entity Container ID 1009 + n + PLDM_Offset

Contained Entity - Cable #3 - Breakout Only

Entity Type 187 Cable

Entity Instance Number 3

Container Entity Container ID 1009 + n + PLDM_Offset

Contained Entity - Cable #4 - Breakout Only

Entity Type 187 Cable

Entity Instance Number 4

Container Entity Container ID 1009 + n + PLDM_Offset

Intel® Ethernet Controller E810 Datasheet
System Manageability

1948 613875-009

12.8.3.3.3 Logical Association PDRs

The PDRs are exposed in a high-level representation for the association PDRs.

12.8.3.3.3.1 Communication Channel Entity Association PDR

This PDR describes a link. It defines a channel that associates a logical port (MAC) with a pluggable
module, and a specific cable in the module.

This PDR exists only if a module is plugged in and a cable is plugged into it, and the MAC is associated
with a specific cable. In case of cable plug-in or plug-out event, a PDR change should be triggered
through the NIC configuration change event.

Channel #1 Entity Association

Container ID 1059 + Channel# + PLDM_Offset*8

Container Entity

Entity Type 6 Communication Channel

Entity Instance Number 1 + PLDM_Offset

Container Entity Container ID 100 NIC

Association Type Logical to Physical containment

Contained Entity - Ethernet Port

Entity Type 300 Ethernet Port

Entity Instance Number Port#

Container Entity Container ID 1000 + PLDM_Offset

Contained Entity - Cable

Entity Type 187 Cable

Entity Instance Number Cable#
(is 1 for non-breakout modules)

Number of the cable within the plug

Container Entity Container ID 1009 + Module# + PLDM_Offset*8

613875-009 1949

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.4 Composite State Sensor PDRs

12.8.3.3.4.1 NIC Composite State Sensor PDR

12.8.3.3.4.2 Controller Composite State Sensor PDR

NIC Composite State Sensor

Entity Type 68 Add-in Card

Entity Instance Number 1

Container Entity Container ID 0

Terminus Handle 0

Sensor ID 5

Composite Sensor Count 4

Sensor Type 1 Health State

Possible States 1=Normal, 3=Critical, 5=Upper_Non_Critical, 7=Upper Critical

Sensor Type 15 Configuration

Possible States 1=Valid Configuration, 2=Invalid Configuration

Sensor Type 16 Configuration Change

Possible States 1=Normal, 2=Change in Configuration

Sensor Type 21 Thermal Trip

Possible States 1=Normal, 2=Thermal Trip

Network Controller Composite State Sensor

Entity Type 68 Add-in Card

Entity Instance Number 1 + PLDM_Offset

Container Entity Container ID 100

Terminus Handle 0

Sensor ID 50

Composite Sensor Count 5

Sensor Type 1 Health State

Possible States 1=Normal, 3=Critical, 5=Upper_Non_Critical, 7=Upper Critical

Sensor Type 15 Configuration

Possible States 1=Valid Configuration, 2=Invalid Configuration

Sensor Type 16 Configuration Change

Possible States 1=Normal, 2=Change in Configuration

Sensor Type 21 Thermal Trip

Possible States 1=Normal

Sensor Type Version

Possible State 1=Normal, 2=Version Change Detected

Intel® Ethernet Controller E810 Datasheet
System Manageability

1950 613875-009

12.8.3.3.4.3 Plug Composite State Sensor PDR

12.8.3.3.5 Simple State Sensors PDRs

12.8.3.3.5.1 Port Link State PDR

Plug #n Composite State Sensor

Entity Type 189 Port

Entity Instance Number 1

Container Entity Container ID 1039 + Module# + PLDM_Offset*8

Terminus Handle 0

Sensor ID 499 + n

Composite Sensor Count 3

Sensor Type 1 Health State

Possible States 0=Unknown, 1=Normal, 3=Critical, 4=Fatal, 5=Upper_Non_Critical

Sensor Type 13 Presence

Possible States 1=Present, 2=Not_Present

Sensor Type 21 Thermal Trip

Possible States 0=Unknown, 1=Normal, 2=Over-Temp Shutdown

Port #n Link State Sensor

Entity Type 6 Communication Channel

Entity Instance Number Port Number The ordering number of the port reported in
controller association PDR (Section 12.8.3.3.2.2)

Container Entity Container ID 1000

Terminus Handle 0

Sensor ID 699 + n

Composite Sensor Count 1

Sensor Type 33 Link State

Possible States 1=Connected, 2=Disconnected

613875-009 1951

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.6 Numeric Sensors PDRs

12.8.3.3.6.1 Thermal Sensors PDR

The parameters of the PDR for each sensor can be extracted through the GETNODEATTR DNL script on
the Node Thermal Configuration Section.

Type PDR Fields

uint32 recordHandle
According to Section 12.8.3.1, “Sensors Numbering” (thermal sensors).

uint8 PDRHeaderVersion = 0x01

uint8 PDRType = 0x2 (Numeric Sensor PDR)

uint16 recordChangeNumber
According to Section 12.8.2.3, “PDR Dynamic Changes Flow”.

uint16 dataLength = 0x43 (67)

uint16 PLDMTerminusHandle = 0x0001 + PLDM_Offset

uint16 sensorID
According to Section 12.8.3.1, “Sensors Numbering” (thermal sensors).

uint16 entityType
For Controller Sensor = 0x90 (Physical | Network Controller (144))
For NIC Sensor = 0x44 (Physical | Add on card (68))
For Plug Sensor:

206 (SFP28 Module)
207 (SFP+ Module)
211 (QSFP28 Module)
212 (QSFP+ Module)

uint16 entityInstanceNumber
For NIC Sensor: 1
For Controller Sensor: 1 + PLDM_Offset
For Plug Sensor: 1

uint16 containerID
According to the container of the thermal Sensor in Section 12.8.3.1, “Sensors Numbering”.

enum8 sensorInit = noInit (0x0)
The Initialization Agent does not take any steps to initialize, enable or disable this particular sensor.

bool8 sensorAuxiliaryNamesPDR = FALSE
Sensor does not have an associated Sensor Auxiliary Names PDR.

enum8 baseUnit = 0x2 (Degrees C).

sint8 unitModifier = 0x0 (No modifier)

enum8 rateUnit = None (0x0)

uint8 baseOEMUnitHandle = 0x0 (N/A)

enum8 auxUnit = None (0x0)

sint8 auxUnitModifier = 0x0

enum8 auxrateUnit = None (0x0)

enum8 Rel = 0x0 (N/A)

uint8 auxOEMUnitHandle = 0x0 (N/A)

bool8 isLinear = TRUE

enum8 sensorDataSize = 0x0 (uint8)

Intel® Ethernet Controller E810 Datasheet
System Manageability

1952 613875-009

real32 resolution
As read from resolution Low/Resolution High fields in Node Thermal Configuration.

real32 Offset
As read from Offset Low/Offset High fields in Node Thermal Configuration Section.
A constant value that is added in as part of the conversion process of converting a raw sensor reading to Units.

uint16 Accuracy
As read from accuracy field in Node Thermal Configuration Section.

uint8 plusTolerance
As read from Tolerance in Node Thermal Configuration Section.

uint8 minusTolerance
As read from Tolerance in Node Thermal Configuration Section.

uint8 Hysteresis
As read from Thermal Sensor Hysteresis in Node Thermal Configuration Section.

birfield8 supportedThresholds
Return 0x3 for Plug thermal sensor (upperThresholdCritical and upperThresholdWarning). Otherwise, return 0x7
(upperThresholdFatal, upperThresholdCritical, upperThresholdWarning).

birfield8 thresholdAndHysteresisVolatility
Return 0x3 (PLDM subsystem power up, Initialization Agent controller restart/update).

real32 stateTransitionInterval
Return the internal firmware sensors polling interval (in real32). Current value is 1 second (0x3F800000).

real32 updateInterval
Return the internal firmware sensors polling interval (in real32) - current value is 1 second (0x3F800000).

uint8 maxReadable
As read from maxReadable in Node Thermal Configuration Section.

uint8 minReadable
As read from minReadable in Node Thermal Configuration Section.

enum8 rangeFieldFormat = 0x3 (sint16)

birfield8 rangeFieldSupport
Return 0x2A (normalMax, criticalHigh, fatalHigh supported).

sint16 nominalValue = Return 0x0

sint16 normalMax
As read from normalMax field in Node Thermal Configuration Section. Value is in degrees C, should be adapted
according to the resolution field.

sint16 normalMin = Return 0x0

sint16 warningHigh
As read from warningHigh field in Node Thermal Configuration Section or from module. Value is in °, should be
adapted according to the resolution field.

sint16 warningLow = Return 0x0

sint16 criticalHigh
As read from criticalHigh field in Node Thermal Configuration Section or from module. Value is in °C, should be
adapted according to the resolution field.

sint16 criticalLow = Return 0x0

sint16 fatalHigh
As read from fatalHigh field in Node Thermal Configuration Section. or from module. Value is in °C, should be
adapted according to the resolution field.
Note: This threshold is not relevant for SFF Module's thermal sensor.

sint16 fatalLow = Return 0x0

Type PDR Fields

613875-009 1953

Intel® Ethernet Controller E810 Datasheet
System Manageability

Note: The Plug's values are read from the module itself, where the high thresholds used are
mapped as follows:

12.8.3.3.6.2 Pluggable Module Power Sensors PDR

SFF8636/SFF8472 PLDM (DSP0248) Description

Warning Warning The reading is outside of normal expected operating range but the
monitored entity is expected to continue to operate normally.

Alarm Critical The reading is outside of supported operating range. Monitored entities
might operate abnormally, have transient failures, or propagate errors to
other entities under this condition. Prolonged operation under this
condition might result in degraded lifetime for the monitored entity.

N/A Fatal The reading is outside of rated operating range. Monitored entities might
experience permanent failures or cause permanent failures to other
entities under this condition.

Type PDR Fields

uint32 recordHandle = 1699 + plug number (1..n) + PLDM_Offset*8

uint8 PDRHeaderVersion = 0x01

uint8 PDRType = 0x2 (Numeric Sensor PDR)

uint16 recordChangeNumber
According to Section 12.8.2.3, “PDR Dynamic Changes Flow”.

uint16 dataLength = 0x47 (71)

uint16 PLDMTerminusHandle = 0x0001 + PLDM_Offset

uint16 sensorID = 249 + plug number (1..n)

uint16 entityType = 206 (SFP28 Module) / 207 (SFP+ Module) / 211 (QSFP28 Module) / 212 (QSFP+ Module)

uint16 entityInstanceNumber = 1

uint16 containerID = 1039 + Cage# + PLDM_Offset*8 (Connector)

enum8 sensorInit = noInit (0x0)
The Initialization Agent does not take any steps to initialize, enable or disable this particular sensor.

bool8 sensorAuxiliaryNamesPDR = FALSE
Sensor does not have an associated Sensor Auxiliary Names PDR

enum8 baseUnit = 0x7 (Watts)
The reported value is a the max power for the class.

sint8 unitModifier = -1
Tenth of watts.

enum8 rateUnit = 0x0 (None)

uint8 baseOEMUnitHandle = 0x0 (N/A)

enum8 auxUnit = None (0x0)

sint8 auxUnitModifier = 0x0

enum8 auxrateUnit = None (0x0)

enum8 Rel = 0x0 (N/A)

uint8 auxOEMUnitHandle = 0x0x (N/A)

bool8 isLinear = TRUE

enum8 sensorDataSize = 0x4 (uint32).

Intel® Ethernet Controller E810 Datasheet
System Manageability

1954 613875-009

12.8.3.3.6.3 Link Speed Sensors PDR

real32 Resolution = 0x0

real32 Offset = 0x0

uint16 Accuracy = 0x0

uint8 plusTolerance = 0x0

uint8 minusTolerance = 0x0

uint32 Hysteresis = 0x0 (sensor does not use hysteresis)

birfield8 supportedThresholds = 0x0 (no threshold is supported)

birfield8 thresholdAndHysteresisVolatility = 00000b (non-volatile)

real32 stateTransitionInterval = 0x3DCCCCCD (100 ms - an upper limit on the firmware reaction time)
How long the sensor device takes to do an enabledState change (worst case), in seconds.

real32 updateInterval = 0 (static value)

uint32 maxReadable = Actual power of plugged device == nominalValue == value reported by sensor.

uint32 minReadable = 0x0

enum8 rangeFieldFormat = 0x1 (uint8)

birfield8 rangeFieldSupport = 0x1 (nominalValue field supported)

uint8 nominalValue
Actual power of plugged device.

uint8 normalMax = 0x0

uint8 normalMin = 0x0

uint8 warningHigh = 0x0

uint8 warningLow = 0x0

uint8 criticalHigh = 0x0

uint8 criticalLow = 0x0

uint8 fatalHigh = 0x0

uint8 fatalLow = 0x0

Type PDR Fields

uint32 recordHandle = 1299 + port number (1..n) + PLDM_Offset*8

uint8 PDRHeaderVersion = 0x01

uint8 PDRType = 0x2 (Numeric Sensor PDR)

uint16 recordChangeNumber
According to Section 12.8.2.3, “PDR Dynamic Changes Flow”.

uint16 dataLength = 0x47 (71)

uint16 PLDMTerminusHandle = 0x0001 + PLDM Offset

uint16 sensorID = 99 + port number (1..n) + PLDM Offset*8

uint16 entityType = 0x06 (Physical | Port (6))

Type PDR Fields

613875-009 1955

Intel® Ethernet Controller E810 Datasheet
System Manageability

uint16 entityInstanceNumber
Port number (the ordering number of the port reported in controller association PDR - Section 12.8.3.3.2.2,
“Controller Association PDR” this link refers to).

uint16 containerID = 1000 + PLDM Offset

enum8 sensorInit = noInit (0x0)
The Initialization Agent does not take any steps to initialize, enable or disable this particular sensor.

bool8 sensorAuxiliaryNamesPDR = FALSE
Sensor does not have an associated Sensor Auxiliary Names PDR.

enum8 baseUnit = 0x3C (Bits)

sint8 unitModifier = 0x6 // mbps

enum8 rateUnit = 0x3 (per Second)

uint8 baseOEMUnitHandle = 0x0 (N/A)

enum8 auxUnit = None (0x0)

sint8 auxUnitModifier = 0x0

enum8 auxrateUnit = None (0x0)

enum8 Rel = 0x0 (N/A)

uint8 auxOEMUnitHandle = 0x0x (N/A)

bool8 isLinear = TRUE

enum8 sensorDataSize = 0x4 (uint32).
Note: unit16 is currently enough to support 40G. Using uint32 to also cover 100G.

real32 Resolution = 0x0

real32 Offset = 0x0

uint16 Accuracy = 0x0

uint8 plusTolerance = 0x0

uint8 minusTolerance = 0x0

uint32 Hysteresis = 0x0 (sensor does not use hysteresis)

birfield8 supportedThresholds = 0x0 (no threshold is supported)

birfield8 thresholdAndHysteresisVolatility = 00000b (non-volatile)

real32 stateTransitionInterval = 0x3DCCCCCD (100 ms - an upper limit on the Firmware reaction time)
How long the sensor device takes to do an enabledState change (worst case), in seconds.

real32 updateInterval = 0x3D4CCCCD (50 ms - upper limit on the time from interrupt to event message)

uint32 maxReadable
The maximum speed supported by the media in Mb/s

100G = 100,000
50G = 50,000
25G = 25,000
10G = 10,000
1G = 1,000
100 = 100

uint32 minReadable = 0x0 (returned when link is down)

enum8 rangeFieldFormat = 0x4 (uint32)

birfield8 rangeFieldSupport = 0x1 (nominalValue field supported)

Type PDR Fields

Intel® Ethernet Controller E810 Datasheet
System Manageability

1956 613875-009

12.8.3.3.7 Redfish PDRs

12.8.3.3.7.1 Summary

Table 12-95 defines the PDRs that corresponding to the supported Schemas.

uint32 nominalValue
The maximum speed supported by the media (in real32)

100G = 100,000
50G = 50,000
25G = 25,000
10G = 10,000
1G = 1,000

uint32 normalMax = 0x0

uint32 normalMin = 0x0

Table 12-95. PDRs Corresponding to Supported Schemas

Name Type Handle ResourceID Container Profile Section
Reference

NetworkAdapter Resource 4001 1
11 NetworkAdapters ACD 12.8.3.3.8.1

NetworkInterface Resource 4005 5 NetworkInterfaces ACD 12.8.3.3.8.2

Ports Resource 4010 10 1 ACD 12.8.3.3.8.3

NetworkDeviceFunctions Resource 4020 20 1 ACD 12.8.3.3.8.4

Port Resource 4100 100-107
110-117 10 ACD 12.8.3.3.8.5

NetworkDeviceFunction Resource 4200 200-207
210-217 20 ACD 12.8.3.3.8.6

PCIeDevice Resource 4003 3 System ACD 12.8.3.3.8.7

PCIeFunctions Resource 4030 30 3 ACD 12.8.3.3.8.8

PCIeFunction Resource 4300 300-307 30 ACD 12.8.3.3.8.9

NetworkAdapterMetrics Resource 4600 600 1 ACD 12.8.3.3.8.10

PortMetrics Resource 4700 700-707 100-107 ACD 12.8.3.3.8.11

NetworkDeviceFunctionMetrics Resource 4800 800-807 200-207 ACD 12.8.3.3.8.12

EthernetInterfaceCollection Resource 4040 40 System Other 12.8.3.3.9.1

EthernetInterface Resource 4400 400-407
410-417 40 Other 12.8.3.3.9.2

NetworkAdapter.ResetSetingsTo
Default Action Action 3001 2001 - Other 12.8.3.3.10.1

Port.Reset Action 3002 - - ACD 12.8.3.3.10.2

Type PDR Fields

613875-009 1957

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.8 ACD Profile PDRs and Links

Note: The recordHandle field is part of the common PDR header and not part of the Redfish
Resource PDR content. The recordHandle field appears in the following content tables as its
value is different for each Redfish Resource PDR.

Figure 12-14. ACD Profile PDRs and Links

PCIFunctions [4030]

ContainingResourceID = 3

ResourceID [30]

NetworkDeviceFunction [4200]

ContainingResourceID = 20

ResourceID [200]

AdditionalResourceID [201..207]

AdditionalResourceID [210..217]

Port [4100]

ContainingResourceID = 10

ResourceID [100]

AdditionalResourceID [101 .. 107]

AdditionalResourceID [110 .. 117]

Ports [4010]

ContainingResourceID = 01

ResourceID [10]

NetworkAdapter [4001]

ContainingResourceID = EXTERNAL

ResourceID [01]

@Link to
PCIeFunction @Link to

Port

ProposedContainingResourceName
= NetworkAdapters

EthernetInterface [4400]

ContainingResourceID = EXTERNAL

ResourceID [400]

AdditionalResourceID [401..407]

AdditionalResourceID [410..417]

PCIeDevice [4003]

ContainingResourceID = EXTERNAL

ResourceID [03]

NetworkDeviceFunctions [4020]

ContainingResourceID = 01

ResourceID [20]

ProposedContainingResourceName
= PCIeDevices

NetworkInterface [4005]

ContainingResourceID = EXTERNAL

ResourceID [05]

@Link to NetworkAdapter

@Link to Ports

@Link to NetworkDeviceFunctions

ProposedContainingResourceName
= NetworkInterfaces

NetworkAdapterMatrics [4600]

ContainingResourceID = 01

ResourceID [600]

PortMetrics [4700..4707]

ContainingResourceID = 100.107

ResourceID [700.707]

NetworkDeviceFunctionMetrics
[4800..4807]

ContainingResourceID = 200..207

ResourceID [800..807]

PCIFunction [4300]

ContainingResourceID = 30

ResourceID [300]

AdditionalResourceID [301..307]

@Link to PCIeDevice

@Link to Port
@Link to NetworkDeviceFunction

ProposedContainingResourceName
= EthernetInterfaces

Intel® Ethernet Controller E810 Datasheet
System Manageability

1958 613875-009

12.8.3.3.8.1 NetworkAdapter PDR

12.8.3.3.8.2 NetworkInterface PDR

Type Description Value

uint32 recordHandle 4001

uint32 ResourceID 1

bitfield8 ResourceFlags 1 (is_device_root)

uint32 ContainingResourceID 0 (External)

uint16 ProposedContainingResourceLengthBytes 50

strUTF-8 ProposedContainingResourceName “NetworkAdapterCollection.NetworkAdapterCollection\0”

uint16 SubURILengthBytes

strUTF-8 SubURI Null

uint16 AdditionalResourceIDCount 1

uint32 AdditionalResourceID[0] 11

uint16 AdditionalResourceSubURILengthBytes[0] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI “Setting”

ver32 MajorSchemaVersion 0xF1F7F000

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 31

strUTF-8 MajorSchemaName “NetworkAdapter. NetworkAdapter\0”

uint16 OEMCount 0

Type Description Value

uint32 recordHandle 4005

uint32 ResourceID 5

bitfield8 ResourceFlags 1 (is_device_root)

uint32 ContainingResourceID 0 (External)

uint16 ProposedContainingResourceLengthBytes 54

strUTF-8 ProposedContainingResourceName “NetworkInterfaceCollection.NetworkInterfac eCollection\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI Null

uint16 AdditionalResourceIDCount 0

ver32 MajorSchemaVersion 0xF1F2F000

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 34

strUTF-8 MajorSchemaName “NetworkInterface NetworkInterface\0”

uint16 OEMCount 0

613875-009 1959

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.8.3 Ports PDR

12.8.3.3.8.4 NetworkDeviceFunctions PDR

Type Description Value

uint32 recordHandle 4010

uint32 ResourceID 10

uint16 AdditionalResourceIDCount 0

bitfield8 ResourceFlags 4 (is_collection)

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “Ports”

uint32 ContainingResourceID 1

ver32 MajorSchemaVersion 0xFFFFFFFF

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 30

strUTF-8 MajorSchemaName “PortCollection.PortCollection\0”

uint16 OEMCount 0

Type Description Value

uint32 recordHandle 4020

uint32 ResourceID 20

bitfield8 ResourceFlags 4 (is_collection)

uint32 ContainingResourceID 1

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “NetworkDeviceFunctions”

uint16 AdditionalResourceIDCount 0

ver32 MajorSchemaVersion 0xFFFFFFFF

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 64

strUTF-8 MajorSchemaName “NetworkDeviceFunctionCollection.NetworkDeviceFunctionCollection\0”

uint16 OEMCount 0

Intel® Ethernet Controller E810 Datasheet
System Manageability

1960 613875-009

12.8.3.3.8.5 Port PDR

Type Description Value

uint32 recordHandle 4100

uint32 ResourceID 100 + Ports[0]

bitfield8 ResourceFlags 2 (is_contained_in_collection)

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “0”

uint16 AdditionalResourceIDCount 2*PortCount - 1

uint32 AdditionalResourceID [0] 100 + Ports[1]

uint16 AdditionalResourceSubURILengthBytes[0] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[0] “1”

uint32

uint32 AdditionalResourceID [PortCount - 2] 100 + Ports[PortCount - 1]

uint16 AdditionalResourceSubURILengthBytes[PortCount - 2] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[PortCount - 2] “n”

uint32 AdditionalResourceID[PortCount -1] 110 + Ports[0]

uint16 AdditionalResouceSubURILengthBytes[PortCount -1] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubUri[PortCount -1] “0/Settings”

uint32

uint32 AdditionalResourceID [2*PortCount - 2] 110 + Ports[PFCount-1]

uint16 AdditionalResourceSubURILengthBytes[2*PortCount - 2] Length in bytes of SubURI

strUTF-9 AdditionalResourceSubURI[2*pORTcOUNT -2] “”n”/Settings”

ver32 MajorSchemaVersion 0xF1F6F000

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

unit8 MajorSchemaNameLength 10

strUTF-8 MajorSchemaName “Port.Port\0”

uint16 OEMCount 0

613875-009 1961

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.8.6 NetworkDeviceFunction PDR

Type Description Value

uint32 recordHandle 4200

uint32 ResourceID 200 +PFs[0]

bitfield8 ResourceFlags 2 (is_contained_in_collection)

uint32 ContainingResourceID 20

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “0”

uint16 AdditionalResourceIDCount 2*ExposedPFs-1

uint32 AdditionalResourceID [0] 200 + PFs[1]

uint16 AdditionalResourceSubURILengthBytes[0] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[0] “1”

uint32

uint32 AdditionalResourceID [ExposedPFs - 2] 200 + PFs[ExposedPFs - 1]

uint16 AdditionalResourceSubURILengthBytes[ExposedPFs - 2] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[ExposedPFs - 2] “n”

uint32 AdditionalResourceID [ExposedPFs - 1] 210 + PFs[0]

uint16 AdditionalResourceSubURILengthBytes[ExposedPFs - 1] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[ExposedPFs - 1] “0/Settings”

uint32

uint32 AdditionalResourceID [2*ExposedPFs - 2] 210 + PFs[ExposedPFs-1]

uint16 AdditionalResourceSubURILengthBytes[2*ExposedPFs - 2] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[2*ExposedPFs - 2] “”n”/Settings”

ver32 MajorSchemaVersion 0xF1F6F000

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

unit8 MajorSchemaNameLength 44

strUTF-8 MajorSchemaName “NetworkDeviceFunction.NetworkDeviceFunction\0”

uint16 OEMCount 0

Intel® Ethernet Controller E810 Datasheet
System Manageability

1962 613875-009

12.8.3.3.8.7 PCIeDevice PDR

12.8.3.3.8.8 PCIeFunctions PDR

Type Description Value

uint32 recordHandle 4003

uint32 ResourceID 3

bitfield8 ResourceFlags 1 (is_device_root)

uint32 ContainingResourceID 0 (External)

uint16 ProposedContainingResourceLengthBytes 42

strUTF-8 ProposedContainingResourceName “PCIeDeviceCollection.PCIeDeviceCollection\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI Null

uint16 AdditionalResourceIDCount 0

ver32 MajorSchemaVersion 0xF1F4F000

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary

uint8 MajorSchemaNameLength 22

strUTF-8 MajorSchemaName “PCIeDevice.PCIeDevice\0”

uint16 OEMCount 0

Type Description Value

uint32 recordHandle 4030

uint32 ResourceID 30

bitfield8 ResourceFlags 4 (is_collection)

uint32 ContainingResourceID 3

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “PCIeFunctions”

uint16 AdditionalResourceIDCount 0

ver32 MajorSchemaVersion 0xFFFFFFFF

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 46

strUTF-8 MajorSchemaName “PCIeFunctionCollection.PCIeFunctionCollection\0”

uint16 OEMCount 0

613875-009 1963

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.8.9 PCIeFunction PDR

Type Description Value

uint32 recordHandle 4300

uint32 ResourceID 300 +PFs[0]

bitfield8 ResourceFlags 2 (is_contained_in_collection)

uint32 ContainingResourceID 30

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “/0”

uint16 AdditionalResourceIDCount PFCount - 1

uint32 AdditionalResourceID [0] 300 +PFs[1]

uint16 AdditionalResourceSubURILengthBytes[0] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[0] “/1”

uint32

uint32 AdditionalResourceID [PortCount - 2] 300 + PFs[PFCount - 1]

uint16 AdditionalResourceSubURILengthBytes[PortCount - 2] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[PortCount - 2] “/”n””

ver32 MajorSchemaVersion 0xF1F2F100

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 26

strUTF-8 MajorSchemaName “PCIeFunction.PCIeFunction\0”

uint16 OEMCount 0

Intel® Ethernet Controller E810 Datasheet
System Manageability

1964 613875-009

12.8.3.3.8.10 NetworkAdapterMetrics PDR

12.8.3.3.8.11 PortMetrics PDR

Note: There is a PortMetrics PDR per Port.

Type Description Value

uint32 recordHandle 4600

uint32 ResourceID 600

bitfield8 ResourceFlags 2 (is_contained_in_collection)

uint32 ContainingResourceID 1

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “Metrics”

uint16 AdditionalResourceIDCount 0

ver32 MajorSchemaVersion 0xF1F0F000

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 44

strUTF-8 MajorSchemaName “NetworkAdapterMetrics.NetworkAdapterMetrics \0”

uint16 OEMCount 0

Type Description Value

uint32 recordHandle 4700 + Port#

uint32 ResourceID 700 + Port#

bitfield8 ResourceFlags 2 (is_contained_in_collection)

uint32 ContainingResourceID 100 + Port#

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “Metrics”

uint16 AdditionalResourceIDCount 0

ver32 MajorSchemaVersion 0xF1F2F000

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 24

strUTF-8 MajorSchemaName “PortMetrics.PortMetrics\0”

uint16 OEMCount 0

613875-009 1965

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.8.12 NetworkDeviceFunctionMetrics PDR

Note: There is a NetworkDeviceFunctionMetrics PDR per PF.

12.8.3.3.9 Non-ACD PDRs

There are several schemas that are beyond the ACD profile definition. Figure 12-15 defines those PDRs.

The supported fields are based on the OCP Baseline Hardware Management profile v1_0_0.

Type Description Value

uint32 recordHandle 4800 + Port#

uint32 ResourceID 800 + Port#

bitfield8 ResourceFlags 2 (is_contained_in_collection)

uint32 ContainingResourceID 200 + Port#

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “Metrics”

uint16 AdditionalResourceIDCount 0

ver32 MajorSchemaVersion 0xF1F1F000

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 58

strUTF-8 MajorSchemaName “NetworkDeviceFunctionMetrics.NetworkDeviceFunctionMetrics\0”

uint16 OEMCount 0

Figure 12-15. Non-ACD PDRs

EthernetInterface [2400]

ContainingResourceID = 40

ResourceID [400]

AdditionalResourceID [401]

AdditionalResourceID [407]

EthernetInterfaceCollection [2040]

ContainingResourceID = EXTERNAL

ResourceID [40]

ProposedContainingResourceName
= System

Intel® Ethernet Controller E810 Datasheet
System Manageability

1966 613875-009

12.8.3.3.9.1 EthernetInterfaceCollection PDR

12.8.3.3.9.2 EthernetInterface PDR

Type Description Value

uint32 recordHandle 4040

uint32 ResourceID 40

bitfield8 ResourceFlags 5 (is_device_root | is_collection)

uint32 ContainingResourceID 0 (External)

uint16 ProposedContainingResourceLengthBytes 6

strUTF-8 ProposedContainingResourceName “System\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI Null

uint16 AdditionalResourceIDCount 0

ver32 MajorSchemaVersion 0xFFFFFFFF

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

uint8 MajorSchemaNameLength 28

strUTF-8 MajorSchemaName “EthernetInterfaceCollection. EthernetInterfaceCollection”

uint16 OEMCount 0

Type Description Value

uint32 recordHandle 4400

uint32 ResourceID 400 +Ports[0]

bitfield8 ResourceFlags 2 (is_contained_in_collection)

uint32 ContainingResourceID 40

uint16 ProposedContainingResourceLengthBytes 1

strUTF-8 ProposedContainingResourceName “\0”

uint16 SubURILengthBytes Length in bytes of SubURI

strUTF-8 SubURI “0”

uint16 AdditionalResourceIDCount 2*PortCount-1

uint32 AdditionalResourceID [0] 400 + Ports[1]

uint16 AdditionalResourceSubURILengthBytes[0] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[0] “1”

uint32

uint32 AdditionalResourceID [PortCount - 2] 400 + Ports[PortCount - 1]

uint16 AdditionalResourceSubURILengthBytes[PortCount - 2] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[PortCount - 2] “n”

uint32 AdditionalResourceID [PortCount - 1] 410 + Ports[0]

uint16 AdditionalResourceSubURILengthBytes[PortCount - 1] Length in bytes of SubURI

613875-009 1967

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.3.3.10 RDE Action PDRs

The actions currently supported are the ResetSettingsToDefault action PDR related to NetworkAdapter
resource, and the Reset action PDR related to the Port resource.

See DSP0248 for the PDR definition.

12.8.3.3.10.1 NetworkAdapter.ResetSetingsToDefault Action PDR

12.8.3.3.10.2 Port.Reset Action PDR

strUTF-8 AdditionalResourceSubURI[PortCount - 1] “0/Settings”

uint32

uint32 AdditionalResourceID [2*PortCount - 2] 410 + Ports[PortCount-1]

uint16 AdditionalResourceSubURILengthBytes[PortCount - 2] Length in bytes of SubURI

strUTF-8 AdditionalResourceSubURI[PortCount - 2] “”n”/Settings”

ver32 MajorSchemaVersion 0xF1F4F100

uint16 MajorSchemaDictionaryLengthBytes Actual length of dictionary stored in NVM.

uint32 MajorSchemaDictionarySignature 32-bit CRC of the schema dictionary.

unit8 MajorSchemaNameLength 18

strUTF-8 MajorSchemaName “EthernetInterface.EthernetInterface”

uint16 OEMCount 0

Type Description Value

uint32 recordHandle 3001

... [The rest of Common PDR Header] ...

uint8 ActionPDRIndex 0

uint16 RelatedResourceCount 1

uint32 RelatedResourceID [0] 1

uint8 ActionCount 1

uint8 ActionNameLengthBytes [0] 23

utf8string ActionName [0] “ResetSettingsToDefault\0”

uint8 ActionPathLengthBytes [0] 46

utf8string ActionPath [0] “Actions/NetworkAdapter.ResetSettingsToDefault\0”

Type Description Value

uint32 recordHandle 3002

... [The rest of Common PDR Header] ...

uint8 ActionPDRIndex 0

uint16 RelatedResourceCount Number of ports N

uint32 RelatedResourceID [0] 100 (Port[0]'s Resource ID)

Type Description Value

Intel® Ethernet Controller E810 Datasheet
System Manageability

1968 613875-009

12.8.4 PLDM Firmware Update Commands

The firmware should support the following PLDM commands and responses according to DSP0267.

...

uint32 RelatedResourceID [N-1] 100 + N - 1 (Last Port's Resource ID)

uint8 ActionCount 1

uint8 ActionNameLengthBytes [0] 6

utf8string ActionName [0] “Reset\0”

uint8 ActionPathLengthBytes [0] 19

utf8string ActionPath [0] “Actions/Port.Reset\0”

Table 12-96. PLDM for Firmware Update Command Codes

Command Command Code Command Requestor
(Initiator) Supported Section

Reference

QueryDeviceIdentifiers 0x01 BMC Yes 12.8.4.2.1

GetFirmwareParameters 0x02 BMC Yes 12.8.4.2.2

RequestUpdate 0x10 BMC Yes 12.8.4.2.3

GetPackageData 0x11 Firmware Yes 12.8.4.1.1

GetDeviceMetaData 0x12 BMC No ---

PassComponentTable 0x13 BMC Yes 12.8.4.2.4

UpdateComponent 0x14 BMC Yes 12.8.4.2.5

RequestFirmwareData 0x15 Firmware Yes 12.8.4.1.2

TransferComplete 0x16 Firmware Yes 12.8.4.1.3

VerifyComplete 0x17 Firmware Yes 12.8.4.1.4

ApplyComplete 0x18 Firmware Yes 12.8.4.1.5

GetMetaData 0x19 Firmware No ---

ActivateFirmware 0x1A BMC Yes 12.8.4.2.6

GetStatus 0x1B BMC Yes 12.8.4.2.7

CancelUpdateComponent 0x1C BMC Yes 12.8.4.2.8

CancelUpdate 0x1D BMC Yes 12.8.4.2.9

Type Description Value

613875-009 1969

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.4.1 Firmware-to-BMC Commands

This section describes the commands that are sent by firmware to BMC. Please refer to DSP0267 for full
descriptions of each command and its fields.

Upon error code or timeout, in response firmware should act as follows:

• Implement “6.3.2 Requirements for Requesters” as specified in DSP0240.

— Number of request retries PN1.

— Request-to-response time PT1.

— Time out waiting for a response PT2.

• In addition, firmware should implement the state transition in case of error or timeout, as explained
in “8.2 State machine” in DSP0267.

• In the case of an error that does not allow firmware to continue the update and firmware actions
are not described in “8.2 State machine” in DSP0267, firmware does one of the following:

— Cancel Update (return to IDLE) in case of an error in the following states:

• IDLE

• LEARN

• ACTIVATE

— Cancel Component Update (return to READY XFER):

• READY XFER

• DOWNLOAD

• VERIFY

• APPLY

12.8.4.1.1 GetPackageData (Command Code 0x11)

The package data includes the following fields:

• Byte [0].Bit 0 = PFA Preserve (default mode). Should be set to zero.

• Byte [0].Bit 1 = Reserved (was O-ROM version to be set in VPD).

• Byte [0].Bits [7:2] = Reserved

• TLV as follows:

— Type – 2 bytes:

• CURRENT_GFID – 0x1

— Length – 2 bytes = 36 words

— Value:

• 17:0 = Current GFID

• 35:18 = Original GFID

GFID length and value: Same as in Section 6.3.6.2 and Section 6.3.64.

It is assumed that GFID is unique per OEM thus should not change during the update.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1970 613875-009

Current GFID is the GFID of the currently running image planned to update. Original GFID is the basic
image from which this map is derived.

• A set of TLVs as needed as follows:

— Type – 2 bytes:

• TLV + Offset update - 0x10 // used to update TLVs

— Length – 2 bytes:

• According to size of value (in words)

— Value

• uint16: TLV number

• uint16: offset in words (offset 0 is the beginning of the TLV data)

• uint16: Data length in words

• Variable: Data

• A set of TLVs as needed as follows:

— Type – 2 bytes:

• VPD Key update - 0x11 // Used to update VPD entries

• Length - 2 bytes (According to size of value (in words))

— Value:

• uint16: VPD key (ascii - e.g. V2 = 0x5632 (ascii('V'), ascii('2')))

• uint16: Data length (in bytes) // should match current VPD entry size - error otherwise

Note: If Data Length is odd, add a pad byte at end of data to make the TLV word
aligned.

• Variable: Data

Note: The TLVs can be in any order.

12.8.4.1.2 RequestFirmwareData (Command Code 0x15)

For the FD to retrieve a section of a component image, the FD sends RequestFirmwareData request
message to the UA, specifying its offset and length. The UA sends a response message that includes the
component image portion specified by the offset and length from the request message. See DSP0267,
Chapter 11.6.

Implementation note: Firmware should minimize the number of NVM Update commands by doing 4 KB
updates.

12.8.4.1.3 TransferComplete (Command Code 0x16)

The FD sends TransferComplete command to the UA once the FD has transferred all the data for the
component image or determines the transfer has failed. See DSP0267, Chapter 11.7.

613875-009 1971

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.4.1.4 VerifyComplete (Command Code 0x17)

Firmware performs a validation check against the component image that was received. See DSP0267,
Chapter 11.8.

Firmware performs the same verification check as performed today during the NVM/S-RAM/O-ROM
update using the NVM Update admin commands. See Section 3.4.5.

Firmware should also verify that the parameters received before the download match the downloaded
components.

12.8.4.1.5 ApplyComplete (Command Code 0x18)

As firmware has already completed the component image transfer into the storage location, it should
only return the Activation method:

• [5] AC power cycle = POR

• [4] DC power cycle = PCIe Reset

• [3] System reboot = In-band Reset

• [2] Medium-specific reset = EMPR

• [1] Self-Contained reset = EMPR is performed by firmware upon ActivateFirmware

• [0] Automatic = EMPR is performed by firmware as the Apply completes, or as download completes
if the FD performs an auto-apply

12.8.4.2 BMC-to-Firmware Commands

This section describes the firmware responses for commands that arrived from the BMC.

Refer to DSP0267 for full description of each command and its fields.

12.8.4.2.1 QueryDeviceIdentifiers (Command Code 0x01)

This command is used by the UA to obtain the firmware identifiers for the FD. The FD must provide a
response message to this command in all states, including IDLE. See DSP0267, Chapter 10.1.

Command Parameter Description

ComponentActivationMethodsModification “DC power cycle” or “Self-Contained reset” based on the decision described in
Section 12.8.5.6.

Response Parameter Description

DescriptorCount Should be set to 4.

Descriptors Refer to Section 12.8.5.2.1 for FD InitialDescriptorType, InitialDescriptorLength, InitialDescriptorData.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1972 613875-009

12.8.4.2.2 GetFirmwareParameters (Command Code 0x02)

The UA sends GetFirmwareParameters command to acquire the component details, such as
classification types and corresponding versions of the FD. The FD must provide a response message to
this command in all states, including IDLE. See DSP0267, Chapter 10.2.

Response Parameter Description

CapabilitiesDuringUpdate Set the following bits:
Bit 4 = 0 – No host OS environment restriction for update mode.
Bit 3 = 1 – Firmware Device can support a partial update, whereby a package

that contains a component image set that is a subset of all
components currently residing on the FD, can be transferred.

Bit 2 = 1 – Device host functionality will be reduced, perhaps becoming
inaccessible, during Firmware Update.

Bit 1 = 0 – Device can have component updated again without exiting update
mode and restarting transfer via RequestUpdate command.

Bit 0 = 0 – Device will revert to previous component image upon a failure,
timeout, or cancellation of the transfer.

ComponentCount Set to 3 (NVM, OROM, Netlist).

ActiveComponentImageSetVersionStringType Refer to ComponentImageSetVersionStringType in Section 12.8.5.2.1.

PendingComponentImageSetVersionStringType Same as for active set, but for pending component.

ActiveComponentImageSetVersionString Refer to ComponentImageSetVersionString in Section 12.8.5.2.1.

PendingComponentImageSetVersionString Same format as for active set.

ComponentClassification Refer to ComponentClassification in Section 12.8.5.2.1.

ComponentIdentifier Refer to ComponentIdentifier in Section 12.8.5.2.1.

ComponentClassificationIndex Not used. Set to 0.

ActiveComponentComparisonStamp Refer to ComponentComparisonStamp in Section 12.8.5.2.1.

ActiveComponentVersionStringType Refer to ComponentVersionStringType in Section 12.8.5.2.1.

ActiveComponentReleaseDate Refer to ComponentReleaseDate in Section 12.8.5.2.1.

PendingComponentComparisonStamp Same format as for active component.

PendingComponentVersionStringType Same as for active component.

PendingComponentReleaseDate Same format as for active component.

ComponentActivationMethods “DC power cycle” or “Self-Contained reset”.

CapabilitiesDuringUpdate Bit 0 = 0 – Firmware Device executes an operation during the APPLY state,
which includes migrating the new component image to its final
non-volatile storage destination.

ActiveComponentVersionString Refer to ComponentVersionString in Section 12.8.5.2.1.

PendingComponentVersionString Same as for active component.

613875-009 1973

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.4.2.3 RequestUpdate (Command Code 0x10)

This is the first PLDM command to initiate a firmware update for an FD. The FD must enter update mode
if that command response indicates success. See DSP0267, Chapter 11.1.

Firmware should verify the parameters that have been received and return errors in cases when it does
not match.

Firmware takes OWNERSHIP over NVM. In any case of return to IDLE state due to:

• Timeout

• Reset

• Error

After already being in update mode, firmware should release the OWNERSHIP of the NVM.

12.8.4.2.4 PassComponentTable (Command Code 0x13)

The PassComponentTable command is used to pass component information to the FD after the FD
enters update mode. The PassComponentTable command contains the component information table for
a specific component including ComponentClassificationIndex, ComponentClassification, and version
details.

If the firmware update package contains more than one component, multiple PassComponentTable
commands are required to be sent by the UA (one for each component). The UA must pass the
component table for all applicable components listed in the firmware package header in ascending order
of index. See DSP0267, Chapter 11.4.

Firmware verifies the parameters that have been received and returns an error in case they do not
match.

Command Parameter Description

NumberOfComponents Up to “3”. Should be ≤ ComponentCount in GetFirmwareParameters.

PackageDataLength Should be > 0. See Section 12.8.4.1.1.

Response Parameter Description

FirmwareDeviceMetaDataLength Set to 0, as GetMetaData is not supported.

Command Parameter Description

ComponentClassification Refer to ComponentClassification at in Section 12.8.5.2.1.

ComponentIdentifier Refer to ComponentIdentifier in Section 12.8.5.2.1.

ComponentComparisonStamp Refer to ComponentComparisonStamp in Section 12.8.5.2.1.

ComponentVersionStringType Refer to ComponentVersionStringType in Section 12.8.5.2.1.

ComponentVersionString Refer to ComponentVersionString in Section 12.8.5.2.1.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1974 613875-009

12.8.4.2.5 UpdateComponent (Command Code 0x14)

The UA sends the UpdateComponent command to request updating a specific firmware component. See
DSP0267, Chapter 11.5.

If Bit 0 is set, firmware should allow downgrade only up to security version.

12.8.4.2.6 ActivateFirmware (Command Code 0x1A)

After all firmware components in the FD have been transferred and applied, the UA sends this command
to inform the FD to prepare all successfully-applied components to become active at the next activation.

The UA can also request activation of all components that have an activation method of
“Self-Contained”. See DSP0267, Chapter 11.11.

12.8.4.2.7 GetStatus (Command Code 0x1B)

The UA sends this command to acquire the status of the FD. See DSP0267, Chapter 11.12.

Command Parameter Description

UpdateOptionFlags Bit 0 = Request Force Update of component – Can be used to inform the FD device to perform a
transfer even if the component has a lower or equal component comparison stamp, or version
string, than what is currently installed. The UA sets this bit for any component that has the
force update bit set in the ComponentOptions field of the package header. Additionally, the UA
could set the bit as instructed by commands used to provide the update package to the UA
(these commands are out of scope for this specification).

Command Parameter Description

SelfContainedActivationRequest Self contained activate is not supported.

Response Parameter Description

EstimatedTimeForSelfContainedActivation Should be set to 0 if no self-contained components.

Response Parameter Description

ProgressPercent IDLE – 0%
LEARN COMPONENTS – 0%
READY XFER – 0%
DOWNLOAD – 100% * num_downloaded / total_num_of_comp
VERIFY – 100% * num_verified / total_num_of_comp
APPLY – 100% * num_applied / total_num_of_comp
ACTIVATE – 0%

613875-009 1975

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.4.2.8 CancelUpdateComponent (Command Code 0x1C)

During the firmware component transfer process, the UA can send this command to the FD. The FD,
upon receiving this command, must stop sending RequestFirmwareData commands to the UA, and
cancel the current component update procedure. The FD controller must transition to the READY XFER
state of update mode and be ready to accept another UpdateComponent command. The UA can
attempt to resend the same component image to the UA. See DSP0267, Chapter 11.13.

See DSP0267, Chapter 8.2, “State Machine”.

Even though it is not required by DSP0267, it is expected that firmware get back to normal activity
using the currently active component.

12.8.4.2.9 CancelUpdate (Command Code 0x1D)

This command signals to the FD that it should exit from update mode even if activation is required to
begin operating at the new firmware level. The UA should always attempt to complete the transfer of all
components and use this command only if it determines that there is no other method to continue with
the transfer process. See DSP0267, Chapter 11.14.

See DSP0267, Chapter 8.2, “State Machine”.

Even though it is not required by DSP0267, it is expected that firmware get back to normal activity
using the currently active components.

12.8.5 PLDM Firmware Update Flow

This section describes the implementation of DSP0267 - PLDM firmware update protocol.

12.8.5.1 Update Components

The firmware update over PLDM can be done to the following NVM components:

• NVM

• OROM

• Netlist

12.8.5.2 Firmware Update Package

This section describes the fields of the Firmware Update Package that are relevant for this
implementation.

Note: Support of packages of several devices is done through device ID and already filtered by the
BMC, so the FD receives components that are relevant to its device only.

Response Parameter Description

NonFunctioningComponentIndication Always False meaning that all components will be functional.

NonFunctioningComponentBitmap All zeros.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1976 613875-009

12.8.5.2.1 Package Versions

This section describes the components versions format and identifiers as to be set inside the Firmware
Update package. Only the fields that are relevant to this implementation are covered here.

For firmware usage of the fields below, see Section 12.8.4, “PLDM Firmware Update Commands”.

The following parameters are to be defined on a package level. See the details in Table 12-98 through
Table 12-100.

• Component

— Version

— Classification

— Identifier

— Comparison Stamp

— Release Date

• Component Set

— Version

• Firmware Device

— Type

— Identifier

Table 12-97 describes the Version String and Comparison Stamp for the various components.

Table 12-97. Version Strings and Comparison Stamps

Component Version String Comparison String

NVM
(main firmware and
structures)

18-character ASCII-encoded buffer as CCCCCCCC.SSSSSSSS<nul>,
where CCCCCCCC and SSSSSSSS are the 32-bit
ComponentComparisonStamp and security revision (lad_srev)
respectively, rendered in hex with leading zeros as needed, terminated by
a null byte.

31:25 = DevStarterVersion
Major (0-99)

24:18 = DevStarterVersion
Minor (0-99)

17:0 = EETrackID

OROM
(uEFI and PXE)

18-character ASCII-encoded buffer as CCCCCCCC.SSSSSSSS<nul>,
where CCCCCCCC and SSSSSSSS are the 32-bit
ComponentComparisonStamp and security revision (lad_srev)
respectively, rendered in hex with leading zeros as needed, terminated by
a null byte/

Combo Image Version Low/
High

Topology Netlist
(board description)

Concatenate (BaseReleaseVersion.Major,".", BaseReleaseVersion.Minor,".",
BaseReleaseVersion.Type,".",CustomerNetlistVersion.IANA,
".",CustomerNetlistVersion). The versions are represented as 8 ASCII
characters each with leadings zeros added as needed. The
CustomerNetlistVersion is 2 bytes (4 characters) only. The length of this
version is fixed to 42 (including null padding). See below for comparison
algorithm.

Base release version.Major/
Minor

Component Set The ComponentSetVersionString for OEM Gen images is encoded as a
18-character string of the form A.BB (0xCCCCCCCC)<nul>, where A, BB,
and CCCCCCCC are, respectively, Dev Starter major version, Dev Starter
minor version and the EETrackID ID, terminated by a null byte.
Note: This is the default way the string is created, but it can be

overridden in package.

Package Same as Component Set

613875-009 1977

Intel® Ethernet Controller E810 Datasheet
System Manageability

The comparison algorithm for topology netlist is:

CN = Current Netlist

NN = New Netlist

CV = CustomerNetlistVersion

BRV = BaseReleaseVersion

If (CN.BaseReleaseVersion.Type <> NN.BaseReleaseVersion.Type), then Error (not matching
Netlist).

If (CN.OEM IANA <> NN.OEM IANA) then Error (not matching OEM).

Else according to the following table:

BRV."major.minor" CV Result Notes

CN = NN CN = NN Same version Everything is equal so it is the same version.

CN < NN Don’t care Upgrade If the BRV is higher, allow upgrade regardless of CV setting.

CN = NN CN < NN Upgrade If the BRV is equal, allow upgrade when CV setting is higher
in the New Netlist.

CN > NN Don’t care Downgrade If the BRV is lower, allow downgrade regardless of CV setting.

CN = NN CN > NN Downgrade If the BRV is equal, allow downgrade when CV setting is lower
in the New Netlist.

Table 12-98. Firmware Device

Type Name Format/Value Mandatory

uint16 InitialDescriptorType
Indicates the type of the Initial descriptor. The initial
descriptor for a device must be defined by one of the
following (PCI Vendor ID, IANA Enterprise ID, UUID,
PnP Vendor ID, or ACPI Vendor ID). If the FD uses
Vendor Defined values as part of its implementation of
this specification (for example to provide a vendor
defined error code or component classification), the
initial descriptor must be set to either PCI Vendor ID
or IANA Enterprise ID.

PCI Vendor ID = 0x0000
Length = 2 Bytes

Yes

Variable InitialDescriptorData
Payload containing the identifier value for the initial
descriptor.

0x8086 Yes

uint16 AdditionalDescriptorType0 PCI Device ID Yes

Variable AdditionalDescriptorData0 See Section 14.2.5.2.
Note: All the descriptors field are taken from

the config space of PF0.

Yes

uint16 AdditionalDescriptorType1 PCI Subsystem Vendor ID Yes

Variable AdditionalDescriptorData1 See Section 14.2.5.10. Yes

uint16 AdditionalDescriptorType2 PCI Subsystem ID Yes

Variable AdditionalDescriptorData2 See Section 14.2.5.11. Yes

uint16 AdditionalDescriptorType3 PCI Revision ID No

Variable AdditionalDescriptorData3 See Section 14.2.5.5. No

Intel® Ethernet Controller E810 Datasheet
System Manageability

1978 613875-009

Table 12-99. Component Set

Type Name Format/Value Mandatory

enum8 ComponentImageSetVersionStringType
ASCII, UTF-8/16/16LE/16BE, Unknown

ASCII – 1 Yes

Variable ComponentImageSetVersionString
Up to 255 bytes

See Table 12-97 OEM Gen ComponentSetVersionString.
The ComponentImageSetVersionString is stored in PFV
TLV #0x127.

Yes

Table 12-100. Component

Type Name Format/Value Mandatory

enum8 ComponentVersionStringType
ASCII, UTF-8/16/16LE/16BE, Unknown

ASCII – 1
NVM Length = 18
O-ROM Length = 18
Netlist length = 42

Yes

Variable ComponentVersionString
Up to 255 bytes

See Table 12-97. Yes

uint16 ComponentClassification
0x000A - Firmware,
0x000B - BIOS/FCode,
0x0006- Firmware/BIOS,
0x8000-0xFFFF – Vendor defined

0x000A - Firmware Yes

uint16 ComponentIdentifier
FD vendor selected unique value to distinguish
between component images.

NVM lad_module_id = 0x6
O-ROM lad_module_id = 0x5
Topology Net List Module ID = 0x8

Yes

uint8 ComponentClassificationIndex
Used to distinguish identical components that have the
same classification and identifier which can use the
same component image but the images are stored in
different locations in the FD.

Not used. No

uint32 ComponentComparisonStamp
When ComponentOptions bit 1 is set, this field must
contain a FD vendor selected value to use as a
comparison value in determining if a firmware
component is down-level or up-level. For the same
component identifier, the greater of two component
comparison stamps is considered up-level compared
to the other when performing an unsigned integer
comparison.
FD vendors should choose the value for the
comparison stamp in a manner that permits interim
component versions, such as patch releases. For
example, a value for this field can follow the format of
MajorMinorRevisionPatch where each subfield has a
range of 0x00 to 0xFF.

See Table 12-97. No

ASCII[8] ComponentReleaseDate
Optional. Firmware returns this information upon
GetFirmwareParameters command.
Note: It is not part of Component Image

information that is passed by BMC to FD. If
supported, it is assumed to be part of the
component image.

Not used. No

613875-009 1979

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.5.3 Firmware Flow for Section Update

Table 12-101 includes the commands and the firmware action for each command for any bank update.

Table 12-101. Action Upon Reception of Commands - NVM Section

BMC Command Firmware Device
Command Firmware Device Action Remarks Section

Reference

RequestUpdate Take ownership on NVM.
Respond success or other error
code.
Note: The Firmware holds

ownership of the NVM
for 15 minutes. After
that, the update process
is aborted and NVM
ownership is released.

First PLDM command to initiate a
firmware update for an FD. Same
as Section 9.5.13.5.
From the standard: “The FD
must then enter an update mode
that no longer permits another
update request until the UA
finishes or cancels the firmware
update.”

12.8.4.2.3

GetPackageData 12.8.4.1.1

PassComponentTable Respond success or other error
code.
Perform the following checking:

Check GFID as described in
Section 3.4.5.6.1.
Check security revision as
described in Section 3.4.9.2.
If one of the checks fails, return
error code 0x07.
ComponentComparisonStamp
>=
ActiveComponentComparisonSt
amp as reported by
GetFirmwareParameters. If not,
return error code 0x1- 0x2
accordingly.

Pass component information.
Contains the component
information table for a specific
component including
ComponentClassificationIndex,
ComponentClassification, and
version details.
Number of commands is the
number of components to
update.
Firmware should allow
downgrade only up to security
version.

12.8.4.2.4

UpdateComponent Issue erase command to NVM.
(Address in the NVM of the 1st
bank pointer of the relevant
bank).
Respond success or other error
code.

Request updating a specific
firmware component.
See Section 3.4.10.2.

12.8.4.2.5

RequestFirmwareData Store internally the received data
until 4 KB received, then issue an
update NVM command.
Respond success or other error
code.

See Section 3.4.10.3. 12.8.4.1.2

TransferComplete Verify the image authentication.
The following is according to
Section 3.4.5.6 (OROM)/
Section 3.4.5.6 (NVM), Step 6-
Step 8.

12.8.4.1.3

VerifyComplete Validation checks same as done
by NVM Update admin command.
Verify that
ComponentVersionString,
ComponentComparisonStamp,
ComponentSetVersionString as
defined in (Section 12.8.4.1.1) is
passed before the download
matches the downloaded NVM/
OROM bank, see in
Section 12.8.5.2.1.

12.8.4.1.4

ApplyComplete 12.8.4.1.5

Intel® Ethernet Controller E810 Datasheet
System Manageability

1980 613875-009

12.8.5.4 PLDM Events and Commands

PLDM events are to be answered by firmware during NVM update.

PLDM events have higher priority over PLDM update NVM commands.

PLDM commands are supported regardless of PLDM FWU enable bit in NVM.

12.8.5.5 Reset During Update

The firmware should return to IDLE mode only in POR and EMPR. This is the case now anyway, so no
additional handling is required.

In all other reset cases (CORER, GLOBR), the firmware update continue the update.

12.8.5.6 Activation Methods

The activation and reset after update is done by BMC.

The firmware ApplyComplete command includes the type of reset required.

Option ROM update requires PERST to take effect.

12.8.6 RDE Support

RDE is a protocol defined to allow exposure of devices directly to the Redfish infrastructure.

System-level architecture for RDE is presented in Figure 12-16. The Administrator issues Redfish
commands over HTTP/HTTPS. The Management Controller (MC), which supports Platform Level Data
Model (PLDM) and RDE protocols, converts Redfish commands to the binary form used by the RDE
Device. The RDE-capable device responds to MC over PLDM using BEJ format.

ActivateFirmware Update PFA with the following
fields according to the TLVs in
PackageData.
Respond success or other error
code.

See Section 3.4.5.2.1 – Results
in validate the new bank and
invalidate the old bank.
See Section 9.5.13.6.

12.8.4.2.6

PLDM Bit PLDM FWU Bit PLDM Commands PLDM FWU Commands Legal

Enabled Enabled Supported Supported Yes

Enabled Disabled Supported Not supported Yes

Disabled Disabled Drop Drop Yes

Disabled Enabled Drop Drop No

Table 12-101. Action Upon Reception of Commands - NVM Section [continued]

BMC Command Firmware Device
Command Firmware Device Action Remarks Section

Reference

613875-009 1981

Intel® Ethernet Controller E810 Datasheet
System Manageability

Note: RDE is one of the tools that can change the adapter non-volatile configuration. As there are
already software tools in place managing that configuration (for example, UEFI driver),
conflicts might arise between these settings. The different software and firmware tools do not
attempt to mitigate these conflicts. The system integrator is expected to make sure that
configuration commands (sent via whichever API) do not conflict.

12.8.6.1 Implementation Guidelines

12.8.6.1.1 Presence of Payload in Command/Response

This section defines which actions expect the contains_request_payload flag to be set in the
RDEOperationInit command, which sets the HaveResultPayload flag in the response, and which expects
a valid OperationLocator field as part of the command.

Figure 12-16. RDE Setup

Field Read Update Replace Create Delete Action Head

contains_request_payload MUST NOT MUST MUST CAN MUST NOT MUST NOT MUST NOT

HaveResultPayload MUST MUST NOT MUST NOT MUST NOT MUST NOT MUST NOT MUST NOT

OperationLocator CAN CAN CAN CAN CAN MUST NOT CAN

Administrator ConsoleBMC

NIC

Redfish

RDE, BEJ

Intel® Ethernet Controller E810 Datasheet
System Manageability

1982 613875-009

12.8.6.1.2 UPDATE, REPLACE Operation Guidelines

If an operation of type UPDATE or REPLACE is received with a BEJ payload containing a mix of Unknown
Properties (properties with sequence numbers that do not match the ones in the firmware dictionary),
Read-Only and Read-Write properties, the operation silently ignores all Unknown and Read-Only
properties and behaves as if the payload contained Read-Write properties only.

If the payload of a write operation contains Read-Only and Unknown properties exclusively, the
operation ignores the entire payload, performs no write, and the operation fails with
ERROR_UNSUPPORTED.

If no payload is provided, or is provided but does not contain any properties at all, the operation fails
with ERROR_INVALID_DATA.

12.8.6.1.3 String Handling

Any string received with a null character in the middle of the string is treated as an invalid input.

12.8.6.1.4 Resource Permissions

Each resource has associated permissions, which determine the types of operations permitted to be
performed on that resource. If an RDE operation is invoked with an Operation Type forbidden by that
resource, operation initialization fails with a return code of ERROR_NOT_ALLOWED. See Table 12-105,
“Resources Parameters” on page 1994 for a list of allowed operation per resource. Permissions on a
Property level are not individually supported, and all errors are silently ignored.

12.8.6.1.5 Resources Exposing @Redfish.Settings Attr.

For the NetworkDeviceFunction and EthernetInterface schemas, there are two sets of resources, as
follows:

Into each regular instance of the above resources, the following is inserted:

"@Redfish.Settings" : {
 "@odata.type": "#Settings.v1_3_0.Settings",
 "SupportedApplyTimes": ["OnReset"],
 "SettingsObject": {
 "@odata.id": 112 // bejResourceLink to Settings Resource NetworkPort 3
 }
}

When a write to one of these resources needs to be done, the Settings Resource (110-117, 210-217,
410-417) is accessed. The Regular Resource and all its properties are RO. All changes written to by a
Settings Resource must delay their application until at reset. After successful RDE Operation
completion, the pending setting is stored in non-volatile memory. Any pending changes to the Settings
Resources are applied at next PCI reset or EMP reset (internal firmware reset).

Schema Regular Resource ID (RO) Settings Resource ID (RW)

NetworkDeviceFunction 200-207 210-217

EthernetInterface 400-407 410-417

613875-009 1983

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.2 RDE Commands Summary

All the RDE commands should be implemented according to DSP0218 and follow the limitations/
guidelines as defined in this chapter.

Table 12-102. RDE Commands Summary Table

Command Command Code Command Requirement for
RDE Device

Section
Reference

Discovery and Schema Management Commands

NegotiateRedfishParameters 0x01 Supported 12.8.6.3.1

NegotiateMediumParameters 0x02 Supported 12.8.6.3.2

GetSchemaDictionary 0x03 Supported 12.8.6.3.3

GetSchemaURI 0x04 Supported 12.8.6.3.4

GetResourceETag 0x05 Supported 12.8.6.3.5

GetOEMCount 0x06 Supported 12.8.6.3.6

GetOEMName 0x07 Supported 12.8.6.3.7

GetRegistryCount 0x08 Supported 12.8.6.3.8

GetRegistryDetails 0x09 Supported 12.8.6.3.9

SelectRegistryVersion 0x0A Supported 12.8.6.3.10

GetMessageRegistry 0x0B Supported 12.8.6.3.11

GetSchemaFile 0x0C Not Supported ---

Reserved 0x0D - 0x0F --- ---

RDE Operation and Task Commands

RDEOperationInit 0x10 Supported 12.8.6.3.12

SupplyCustomRequestParameters 0x11 Supported 12.8.6.3.13

RetrieveCustomResponseParameters 0x12 Not Supported 12.8.6.3.14

RDEOperationComplete 0x13 Supported 12.8.6.3.15

RDEOperationStatus 0x14 Supported 12.8.6.3.16

RDEOperationKill 0x15 Supported 12.8.6.3.17

RDEOperationEnumerate 0x16 Supported 12.8.6.3.18

Reserved 0x17 - 0x2F --- ---

Multi-part Transfer Commands

RDEMultipartSend 0x30 Supported 12.8.6.3.19

RDEMultipartReceive 0x31 Supported 12.8.6.3.20

Reserved 0x32 - 0x3F --- ---

Reserved

Reserved 0x40 - 0xFF --- ---

Intel® Ethernet Controller E810 Datasheet
System Manageability

1984 613875-009

12.8.6.3 Command Details

12.8.6.3.1 NegotiateRedfishParameters (0x01)

Type Request Data

uint8 MCConcurrencySupport
Firmware checks that this field is bigger than zero and ignores the value, as the device exposes single concurrent
command support.
If MCConcurrencySupport is equal to zero, return a completion code of ERROR_INVALID_DATA.

bitfield16 MCFeatureSupport
[15:9] = reserved
[8] = BEJ v1.1 encoding and decoding supported; 1b = yes
[7] = events_supported — 1b = yes
[6] = action_supported — 1b = yes
[5] = replace_supported — 1b = yes
[4] = update_supported — 1b = yes
[3] = delete_supported — 1b = yes
[2] = create_supported — 1b = yes
[1] = read_supported — 1b = yes.
[0] = head_supported — 1b = yes

Firmware checks that Bit 8 is set before using bejRegistryItem.

Type Response Data

enum8 CompletionCode
Value:

{PLDM_BASE_CODES}

uint8 DeviceConcurrencySupport
Return 1.

bitfield8 DeviceCapabilitiesFlags
Capabilities for this RDE device.

[7:3] = Reserved
[2] = BEJ v1.1 encoding and decoding supported — 1b = yes
[1] = expand_support — 0b = No support
[0] = atomic_resource_read — 0b = No support

bitfield16 DeviceFeatureSupport
Operations and functionality supported by this RDE device.
For each, 1b indicates supported and 0b indicates not supported.

[15:8] = Reserved
[7] = events_supported — 1b = yes
[6] = action_supported — 1b = yes
[5] = replace_supported — 1b = yes
[4] = update_supported — 1b = yes
[3] = delete_supported — 0b = no
[2] = create_supported — 0b = no
[1] = read_supported — 1b = yes
[0] = head_supported — 1b = yes

uint32 DeviceConfigurationSignature
A signature calculated across all RDE PDRs and dictionaries that the RDE device supports. Use OCS HCU engine
with ALGORITHM_MODE = SHA256.
Take lower 32 bit. Each PDR and dictionary is padded to 512 bits before added to the calculation.

varstring DeviceProviderName
An informal name for the RDE device.
If a VPD Identifier String (tag 0x82) exists, use it as DeviceProviderName. Otherwise, use “Name” property at
NetworkInterface.

613875-009 1985

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.3.2 NegotiateMediumParameters (0x02)

After reception of this command, the device uses a maximal transfer chunk of
Min(DeviceMaximumTransferChunkSizeBytes, MCMaximumTransferChunkSizeBytes) for
MultipartSend/Receive commands.

The default value before reception of this command is 64 bytes (one message per MCTP packet).

If received on multiple media, use the minimum of all media for MultipartReceive response and accept
MultipartSend with the maximum of all media values.

12.8.6.3.3 GetSchemaDictionary (0x03)

Type Request Data

uint32 MCMaximumTransferChunkSizeBytes
An indication of the maximum amount of data the MC can support for a single message transfer.
A value of less than 64 bytes is considered as an error with ERROR_INVALID_DATA completion code, as it does
not support minimal MCTP packet size of 64 bytes.

Type Response Data

enum8 CompletionCode
Value:

{PLDM_BASE_CODES}

uint32 DeviceMaximumTransferChunkSizeBytes
Report 2048 bytes.

Type Request Data

uint32 ResourceID
The ResourceID of any resource in the Redfish Resource PDR from which to retrieve the dictionary. See Table 12-
103 for supported Resource IDs.
If resource is not supported, return a completion code of ERROR_NO_SUCH_RESOURCE.

schemaClass RequestedSchemaClass
The class of schema being requested. See Table 12-103 for supported schema per Resource IDs.
If the a schema of the type requested is not supported, return a completion code of ERROR_UNSUPPORTED
unless the supplied Resource ID does not correspond to a collection, but the RequestedSchemaClass is
COLLECTION_MEMBER_TYPE, in which case, return an ERROR_INVALID_DATA completion code.

Type Response Data

enum8 CompletionCode
Value:

{
PLDM_BASE_CODES,
ERROR_UNSUPPORTED,
ERROR_NO_SUCH_RESOURCE
}

uint8 DictionaryFormat
Return 0x00.

uint32 TransferHandle
In conjunction with a non-failed CompletionCode, the RDE device returns a valid transfer handle as described in
Table 12-103.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1986 613875-009

Table 12-103. Handle per Resource

Schema (*.json) Dictionary Class Supported Resource ID

Event EVENT
0xFFFF FFFF or any of the other

Resource IDs below.redfish-payload-annotations ANNOTATION

redfish-error ERROR

Registry REGISTRY 0xFFFF FFFF

NetworkAdapter MAJOR 1
11

PCIeDevice MAJOR 3

NetworkInterface MAJOR 5

PortCollection
MAJOR 10

COLLECTION_MEMBER_TYPE 10

PCIeFunctionCollection MAJOR 30

NetworkDeviceFunctionCollection MAJOR 20

NetworkDeviceFunction COLLECTION_MEMBER_TYPE 20

Port MAJOR 100-107
110-117

NetworkDeviceFunction MAJOR 200-207
210-217

PCIeFunction MAJOR 300-307

EthernetInterface MAJOR 400-407
410-417

EthernetInterfaceCollection
MAJOR 40

COLLECTION_MEMBER_TYPE 40

NetworkAdapterMetrics MAJOR 600

PortMetrics MAJOR 700-707

NetworkDeviceFunctionMetrics MAJOR 800-807

613875-009 1987

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.3.4 GetSchemaURI (0x04)

Type Request Data

uint32 ResourceID
The ResourceID of any resource in the Redfish Resource PDR from which to retrieve the URI. See Table 12-104 for
supported Resource IDs.
If resource is not supported, return a completion code of ERROR_NO_SUCH_RESOURCE.

schemaClass RequestedSchemaClass
The class of schema being requested.
If the a schema of the type requested is not supported, return a completion code of ERROR_UNSUPPORTED.

uint8 OEMExtensionNumber
No OEM extensions.
Return a completion code of ERROR_INVALID_DATA for any non zero value.

Type Response Data

enum8 CompletionCode
Value:

{
PLDM_BASE_CODES,
ERROR_UNSUPPORTED,
ERROR_NO_SUCH_RESOURCE
}

uint8 StringFragmentCount
Return 1

varstring SchemaURI [0]
URI string fragment for the schema. The reassembled string is the canonical URI for the JSON Schema used by
the RDE Device.

Table 12-104. URI per Resource

Schema Class Resource ID URI

All schemas

EVENT
0xFFFF FFFF
or any of the

other
Resource IDs

below.

https://redfish.dmtf.org/schemas/Event.json

ANNOTATION https://redfish.dmtf.org/schemas/redfish-
payload- annotations.v1_0_2.json

ERROR https://redfish.dmtf.org/schemas/v1/redfish-
error.v1_0_0.json

NetworkAdapter MAJOR 1 https://redfish.dmtf.org/schemas/
NetworkAdapter.v1_5_0.json

NetworkInterface MAJOR 5 https://redfish.dmtf.org/schemas/
NetworkInterface.v1_2_0.json

PCIeDevice MAJOR 3 https://redfish.dmtf.org/schemas/
PCIeDevice.v1_4_0.json (not implemented)

PortCollection
COLLECTION_MEMBER_TYPE

10
https://redfish.dmtf.org/schemas/Port.json

MAJOR https://redfish.dmtf.org/schemas/
PortCollection.json

NetworkDeviceFunctionCollection
COLLECTION_MEMBER_TYPE

20

https://redfish.dmtf.org/schemas/
NetworkDeviceFunction.json

MAJOR https://redfish.dmtf.org/schemas/
NetworkDeviceFunctionCollection.json

https://redfish.dmtf.org/schemas/Event.json
https://redfish.dmtf.org/schemas/redfish-payload- annotations.v1_0_2.json
https://redfish.dmtf.org/schemas/v1/redfish- error.v1_0_0.json
https://redfish.dmtf.org/schemas/ NetworkAdapter.v1_5_0.json
https://redfish.dmtf.org/schemas/ NetworkInterface.v1_2_0.json
https://redfish.dmtf.org/schemas/PCIeDevice.v1_4_0.json
https://redfish.dmtf.org/schemas/PCIeDevice.v1_4_0.json
https://redfish.dmtf.org/schemas/Port.json
https://redfish.dmtf.org/schemas/ PortCollection.json
https://redfish.dmtf.org/schemas/ NetworkDeviceFunction.json
https://redfish.dmtf.org/schemas/ NetworkDeviceFunctionCollection.json

Intel® Ethernet Controller E810 Datasheet
System Manageability

1988 613875-009

12.8.6.3.5 GetResourceETag (0x05)

PCIeFunctionCollection
COLLECTION_MEMBER_TYPE

30

https://redfish.dmtf.org/schemas/
PCIeFunction.json

MAJOR https://redfish.dmtf.org/schemas/
PCIeFunctionCollection.json

Port MAJOR 100-107
110-117

https://redfish.dmtf.org/schemas/
NetworkPort.v1_4_1.json

NetworkDeviceFunction MAJOR 200-207
210-217

https://redfish.dmtf.org/schemas/
NetworkDeviceFunction.v1_6_0.json

PCIeFunction MAJOR 300-307 https://redfish.dmtf.org/schemas/
PCIeFunction.v1_2_3.json

EthernetInterface MAJOR 400-407
410-417

https://redfish.dmtf.org/schemas/
EthernetInterface.v1_5_1.json

EthernetInterfaceCollection
COLLECTION_MEMBER_TYPE

40

https://redfish.dmtf.org/schemas/
EthernetInterface.json

MAJOR https://redfish.dmtf.org/schemas/
EthernetInterfaceCollection.json

NetworkDeviceFunction MAJOR 200-207
210-217

https://redfish.dmtf.org/schemas/
NetworkDeviceFunction.v1_6_0.json

NetworkAdapterMetrics MAJOR 600 http://redfish.dmtf.org/schemas/v1/
NetworkAdapterMetrics.v1_0_0.json

PortMetrics MAJOR 700-707 http://redfish.dmtf.org/schemas/v1/
PortMetrics.v1_2_0.json

NetworkDeviceFunctionMetrics MAJOR 800-807 http://redfish.dmtf.org/schemas/v1/
NetworkDeviceFunctionMetrics.v1_1_0.json

Type Request Data

uint32 ResourceID
The ResourceID of a resource in the Redfish Resource PDR for the instance from which to get an ETag digest, or
0xFFFF FFFF to get a global digest of all resource-based data within the RDE device.
The supported ResourceIDs are listed in Table 12-104.
For non-existent ResourceID, ERROR_NO_SUCH_RESOURCE CompletionCode is returned

Type Response Data

enum8 CompletionCode
Value:

{
PLDM_BASE_CODES,
ERROR_NO_SUCH_RESOURCE
}

varstring ETag
The ETag string data; the string text format is UTF-8.
ETag is calculated as lower 32 bits of SHA256 computed from content using OCS-HCU engine with
ALGORITHM_MODE = SHA256.
This field is omitted if the CompletionCode is not SUCCESS.
Firmware should calculate the data that would have been returned for the READ operation of the ResourceID and
calculate the ETag for it. It should be the same ETAG value as returned as part of a read completion of
ResourceID.
Use the same algorithm as for signature at GetSchemaDictionary.
ETag is calculated only on the data that is immediately contained within the resource.

Table 12-104. URI per Resource [continued]

Schema Class Resource ID URI

https://redfish.dmtf.org/schemas/PCIeFunction.json
https://redfish.dmtf.org/schemas/ PCIeFunctionCollection.json
https://redfish.dmtf.org/schemas/NetworkPort.v1_4_1.json
https://redfish.dmtf.org/schemas/ NetworkDeviceFunction.v1_6_0.json
https://redfish.dmtf.org/schemas/ PCIeFunction.v1_2_3.json
https://redfish.dmtf.org/schemas/ EthernetInterface.v1_5_1.json
https://redfish.dmtf.org/schemas/EthernetInterface.json
https://redfish.dmtf.org/schemas/ EthernetInterfaceCollection.json
https://redfish.dmtf.org/schemas/ NetworkDeviceFunction.v1_6_0.json
http://redfish.dmtf.org/schemas/v1/ NetworkAdapterMetrics.v1_0_0.json
http://redfish.dmtf.org/schemas/v1/ PortMetrics.v1_2_0.json
http://redfish.dmtf.org/schemas/v1/ NetworkDeviceFunctionMetrics.v1_1_0.json

613875-009 1989

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.3.6 GetOEMCount (0x06)

This command enables the MC to retrieve the number of OEM extensions for a schema.

For a non-SUCCESS CompletionCode, only the CompletionCode field of the Response Data is returned.

12.8.6.3.7 GetOEMName (0x07)

This command enables the MC to retrieve information about the name associated with an OEM
extension to a schema (including schemas for which OEM information is available in a Redfish Resource
PDR). The firmware must enumerate OEM extensions in lexicographic order.

Type Request Data

uint32 ResourceID
The ResourceID of the resource in the Redfish Resource PDR from which to retrieve the OEM count. A ResourceID
of 0xFFFF FFFF can be supplied to retrieve OEM counts for schemas common to all RDE Device resources (such as
the event dictionary) without referring to an individual resource.

schemaClass RequestedSchemaClass
The class of schema being requested.
Note: Redfish does not allow OEM extensions to Annotation and Registry schemas.

Type Response Data

enum8 CompletionCode
Value:

{
PLDM_BASE_CODES,
ERROR_NO_SUCH_RESOURCE
}

uint8 OEMCount
The number of OEM extensions associated with the schema. For schema classes that do not support OEM
extensions this value must be zero.

Type Request Data

uint32 ResourceID
The ResourceID of any resource in the Redfish Resource PDR from which to retrieve an OEM name. A ResourceID
of 0xFFFF FFFF can be supplied to retrieve OEM names for extensions to schemas common to all RDE Device
resources (such as the event dictionary) without referring to an individual resource.

schemaClass RequestedSchemaClass
The class of schema being requested.

uint8 OEMIndex
The zero-based index of the OEM extension about which information is to be retrieved. The total number of OEM
extensions supported by an RDE Device for a given schema can be retrieved via the GetOEMCount command; the
index supplied here should be less than that count.

Type Response Data

enum8 CompletionCode
Value:

{
PLDM_BASE_CODES,
ERROR_NO_SUCH_RESOURCE
}

A response code of ERROR_INVALID_DATA is used to indicate when the supplied index does not exist in the
schema or when the schema class does not support OEM schemas.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1990 613875-009

For a non-SUCCESS CompletionCode, only the CompletionCode field of the Response Data is returned.

12.8.6.3.8 GetRegistryCount (0x8)

For a non-SUCCESS CompletionCode, only the CompletionCode field of the Response Data is returned.

12.8.6.3.9 GetRegistryDetails (0x9)

For a non-SUCCESS CompletionCode, only the CompletionCode field of the Response Data is returned.

varstring OEMName
The OEM name associated with the extension.

Type Request Data

--- None.

Type Response Data

enum8 CompletionCode
Value:

{PLDM_BASE_CODES}

uint8 RegistryCount
The number of registries supported by the Device.

Type Request Data

uint8 RegistryIndex
The zero-based index of the message registry about which information is to be retrieved. The total number of
registries supported by an RDE Device can be retrieved via the GetRegistryCount command; the index supplied
here should not exceed that count.

Type Response Data

enum8 CompletionCode
Value:

{PLDM_BASE_CODES}
A response code of ERROR_INVALID_DATA is used when the supplied index does not correspond to a supported
registry.

varstring RegistryPrefix
The Redfish prefix (name without version information) associated with the registry.

varstring RegistryURI
URI at which the registry schema is published.

enum8[2] RegistryLanguage
Language in which the registry is published, as an ISO 639-1 two-letter code.

enum8 VersionCount
The number N of registry versions the RDE Device supports for this registry.

ver32 Version [0]
First (newest) version of the registry supported.

... ...

ver32 Version [N - 1]
Last (oldest) version of the registry supported.

613875-009 1991

Intel® Ethernet Controller E810 Datasheet
System Manageability

The firmware enumerates message registries in lexicographic order and returns message registry
versions in reverse numeric order (most recent versions listed first). The RDE Device truncates the list
and decreases the count as needed to ensure that the response message fits within the negotiated
message size, thereby omitting mention of support for older versions.

Note: Currently, the lexicographic reverse numeric order is not an issue as only a single registry is
supported.

12.8.6.3.10 SelectRegistryVersion (0x0A)

This command enables the MC to specify the version of a supported Redfish message registry that the
RDE device should use. By default, the RDE Device utilizes the latest version of the registry that it
supports.

12.8.6.3.11 GetMessageRegistry (0xB)

This command enables the MC to retrieve the formal JSON registry for a Redfish message registry
supported by the RDE device. After invoking the GetMessageRegistry command, the MC, upon receipt
of a successful completion code and a valid read transfer handle, invokes one or more
RDEMultipartReceive commands to transfer data for the registry from the RDE Device. The MC can only
have one dictionary, schema, or message registry retrieval in process from a given RDE Device at any
time. In the event that the MC begins a dictionary, schema, or message registry retrieval when a
previous retrieval has not yet completed (that is, more chunks of dictionary or schema data remain to
be retrieved), the previous retrieval is implicitly aborted and the RDE Device discards any data
associated with the transfer.

Type Request Data

uint8 RegistryIndex
The zero-based index of the message registry for which the registry is to be selected. The total number of
registries supported by an RDE Device can be retrieved via the GetRegistryCount command; the index supplied
here should be less than that count.

ver32 RegistryVersion
Version of the registry to be used.

Type Response Data

enum8 CompletionCode
Value:

{PLDM_BASE_CODES}
A response code of ERROR_INVALID_DATA is used when the supplied index does not correspond to a supported
registry or the supplied version is not supported.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1992 613875-009

For a non-SUCCESS CompletionCode, only the CompletionCode field of the Response Data is returned.

12.8.6.3.12 RDEOperationInit (0x10)

Type Request Data

uint8 RegistryIndex
The zero-based index of the message registry to be retrieved. The total number of registries supported by an RDE
Device can be retrieved via the GetRegistryCount command; the index supplied here should not exceed that
count.

Type Response Data

enum8 CompletionCode
Value:

{PLDM_BASE_CODES}
A response code of ERROR_INVALID_DATA is used when the supplied index does not correspond to a supported
registry.

uint8 SchemaFormat
Bitwise OR of two values:

Text format:
{RAW_UTF8 = 0; GZIP_UTF8 = 1}

Schema format:
{JSON = 0x10; CSDL = 0x20; YAML = 0x30}

Taken from RDE Dictionaries NVM section.

uint32 TransferHandle
A data transfer handle that the MC uses to retrieve the registry data via one or more RDEMultipartReceive
commands. In conjunction with a non-failed CompletionCode, the RDE Device returns a valid transfer handle.

Type Request Data

uint32 ResourceID
The ResourceID of a resource in the Redfish Resource PDR for the data that is the target of this operation.
The supported ResourceIDs are listed in Table 12-105.

rdeOpID OperationID
Identification number for this Operation. Must be matched by all commands relating to this Operation.

enum8 OperationType
The type of Redfish Operation being performed.
The supported operation types per ResourceID are listed in Table 12-105.

bitfield8 OperationFlags
[7:3] = Reserved
[2] = contains_custom_request_parameters — If 1b, the RDE Device should expect to receive a

SupplyCustomRequestParameters command request before it may trigger the Operation
[1] = contains_request_payload — If 0b, the Operation does not require data to be sent. This bit is expected to be

set only if OperationType is OPERATION_UPDATE or OPERATION_REPLACE.
[0] = locator_valid — If 0b, the Locator in the OperationLocator field is ignored.

uint32 SendDataTransferHandle
Handle to be used with the first MultipartSend command transferring BEJ formatted data for the operation. If no
data is to be sent for this operation, or if the request payload fits entirely within this request message, it
is0x00000000 (see the RequestPayloadLength and RequestPayload fields below).

uint8 OperationLocatorLength
Length in bytes of the OperationLocator for this Operation. This field is zero if the locator_valid bit in the
OperationFlags field above is set to 0b.

613875-009 1993

Intel® Ethernet Controller E810 Datasheet
System Manageability

uint32 RequestPayloadLength
Length in bytes of the request payload in this message. This value is zero under either of the following conditions:
• There is no request payload as indicated by contains_request_payload bit of the OperationFlags parameter

above.
• The entire payload cannot fit within this message, subject to the maximum transfer chunk size as determined

at registration time via the NegotiateMediumParameters command.

bejLocator OperationLocator
BEJ Locator indicating where the new Operation is to take place within the resource specified in ResourceID.
Supported for Read, Update, and Action operations. This field is omitted if the OperationLocatorLength field above
is set to zero.

null or
bejEncoding

RequestPayload
The request payload. The format of this parameter is null (consisting of zero bytes) if the RequestPayloadLength
above is zero. It is bejEncoding otherwise.

Type Response Data

enum8 CompletionCode
Return ERROR NOT READY if Firmware is in the middle of an operation preventing the access. For example:
• Configuration change
• Reset
• Firmware update

Return ERROR_NOT_ALLOWED if operation not allowed for the requested resource (e.g. Update a RO resource).
Return ERROR_NO_SUCH_RESOURCE if resource ID is not advertised by the device.
Return ERROR_CANNOT_CREATE_OPERATION if attempt to create a task while another task is in-flight.
Return ERROR_OPERATION_EXISTS if attempt to re-create the same action with same {ResourceID,
OperationID}.
Return ERROR_INVALID_DATA if OperationID MSB bit is cleared (device owned operation ID).

enum8 OperationStatus
Return OPERATION_NEEDS_INPUT if OperationFlags.contains_custom_request_parameters=1 OR
OperationFlags.contains_request_payload=1 AND SendDataTransferHandle <> 0
Return OPERATION_RUNNING if no input data needed and operation did not complete within T1.
Return OPERATION_HAVE_RESULTS if no input data needed and operation completed within T1, and there are
parameters to return that do not fit within the response.
Return OPERATION_COMPLETED if no input data needed and operation completed within T1, and there are
parameters to return that fit within the response or there are no parameters to return.
Return OPERATION_FAILED in case of error.

uint8 CompletionPercentage
Return 255 if operation is not valid.
Return zero if the Operation has not yet been triggered or if the Operation has failed.
Return 254 otherwise.

uint32 CompletionTimeSeconds
Return 0xFFFF FFFF - no support

bitfield8 OperationExecutionFlags
[7:4] = Reserved
[3] = CacheAllowed — 1b = yes; 0b = no

Set to 0b for Operations other than read, head. Set to 0b unless Operation has finished. See
Section 12.8.6.5.2 for list cacheable parameters. A value of 1b is reported if all the read parameters are
cacheable.

[2] = HaveResultPayload — 1b = yes. 0b= no.
Set to 0b if Operation has not finished. Set to 1b for completed Read operations This bit is set only if
OperationType is OPERATION_GET.

[1] = HaveCustomResponseParameters — 1b = yes. 0b = no
Set to 0b if Operation has not finished or no custom response parameters available even if operation is
finished. Set to 1b for all other cases. Currently not set.

[0] = TaskSpawned — 1b = yes. 0b = no.
Set to 1 for tasks longer than PT1 - Request-to-response time as specified at DSP0240. Firmware can start
the task and start the timer and return the response depending if it succeeded to finish within PT1 or not,
if not it will be a long running task.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1994 613875-009

Note: Firmware should save the {ResourceID, OperationID}, context until RDEOperationComplete.,
as it is used by MC as a handle for all intermediate commands. It should also keep the
SendDataTransferHandle and compare it to the DataTransferHandle received in the
MultipartSend command. It should also keep the returned ResultTransferHandle and compare
it with the value provided in the MultipartReceive.

Note: A payload (either in the command or in the separate data transfer) is expected only for
update and replace operations.

Note: When bit [1] in OperationFlags field is not set, the PayloadLength and RequestTransferHandle
fields must be set to zero. Otherwise, ERROR_CANNOT_CREATE_OPERATION error response
is returned.

uint32 ResultTransferHandle
0x00000000: No data to transfer from endpoint to MC.
0xFFFFFFFF: Operation not complete.
Other: Handle provided by firmware - should not be a direct address in memory.

bitfield8 PermissionFlags
Indicates the access level granted to the resource targeted by the Operation. Should be set to 0x00 by the RDE
device and ignored by the MC if the completion code is not ERROR_NOT_ALLOWED and OperationType is not
either OPERATION_HEAD or OPERATION_READ.

[7: 6] - Reserved for future use
[5] - Head Access — 1b = access allowed
[4] - Delete Access — 1b = access allowed (currently not supported by CVL)
[3] - Create Access — 1b = access allowed (currently not supported by CVL)
[2] - Replace Access — 1b = access allowed
[1] - Update Access — 1b = access allowed
[0] - Read Access — 1b = access allowed

uint32 ResponsePayloadLength
As described in specification. Currently no @Message.ExtendedInfo planned in case of error.

varstring ETag
String data for an ETag digest of the target resource; the string text format is UTF-8. The ETag is skipped (an
empty string returned in this field) for any of the following actions: Action, Delete, Replace, and Update.
The ETag is also skipped (an empty string returned in this field) if execution of the Operation has failed or not yet
finished.
To create ETag, use OCS HCU engine with ALGORITHM_MODE = SHA256 and take lower 32 bits of the result.

null or
bejEncoding

ResponsePayload
The response payload. The format of this parameter shall be null (consisting of zero bytes) if the
ResponsePayloadLength above is zero. It is bejEncoding otherwise.

Table 12-105. Resources Parameters

Schema Resource ID Allowed Operations

NetworkAdapter
1 Read, Head, Update, Replace, Action

11 Read, Head, Update, Replace

NetworkInterface 5 Read, Head, Update, Replace

PCIeDevice 3 Read, Head, Update, Replace (not implemented)

PortCollection 10 Read, Head

NetworkDeviceFunctionCollection 20 Read, Head

Port
100-107 Read, Head, Action, Update, Replace

110-117 Read, Head, Update, Replace

NetworkDeviceFunction 200-207 Read, Head, Update, Replace

PCIFunction 300-307 Read, Head, Update, Replace

613875-009 1995

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.3.13 SupplyCustomRequestParameters (0x11)

EthernetInterface 400-407 Read, Head, Update, Replace

EthernetInterfaceCollection 40 Read, Head

Setting Resources 210-217
410-417 Read, Head, Update, Replace

NetworkAdapterMetrics 600 Read, Head

PortMetrics 700-707 Read, Head

NetworkDeviceFunctionMetrics 800-807 Read, Head

Type Request Data

uint32 ResourceID
The ResourceID of a resource in the Redfish Resource PDR for the data that is the target of this operation. The
supported ResourceIDs are listed in Table 12-105, “Resources Parameters”.

rdeOpID OperationID
The {ResourceID, OperationID} should match the value set in the RDEOperationInit command. Otherwise, an
ERROR_UNEXPECTED error is returned.

uint16 LinkExpand
This value is ignored.

uint16 CollectionSkip
Defines the number of elements to skip in a GET response. Ignored for other actions.
Zero means return all.

uint16 CollectionTop
Defines the maximum number of elements to return in a GET response. Ignored for other actions.
0xFFFF means return all.

uint16 PaginationOffset
This value is ignored. The device does not do pagination.

enum8 ETagOperation
If ETagOperation = ETAG_IF_MATCH = 1, do the action only if the calculated ETag for the resource == ETag [0].
If ETagOperation = ETAG_IF_MATCH and EtagCount <>1, return a ERROR_INVALID_DATA error.
If ETagOperation = ETAG_IF_NONE_MATCH = 2, do the action only if the calculated ETag for the resource <> all
of {ETag [0] … ETag[ETagCount-1].
If ETagOperation = ETAG_IF_NONE_MATCH and EtagCount == 0, return a ERROR_INVALID_DATA error.
If ETagOperation = ETAG_IGNORE = 0 and EtagCount <> 0 return a ERROR_INVALID_DATA error.
If ETagOperation >= 3, return a ERROR_INVALID_DATA error.

uint8 ETagCount
Number of ETags supplied in this message. Should be zero if ETagOperation above is ETAG_IGNORE, and nonzero
otherwise.

varstring ETag [0]
String data for first ETag, if ETagCount > 0. This string is UTF-8 format.
ETag is calculated as lower 32 bits of SHA256 computed from content using OCS-HCU engine.

... Additional ETags

uint8 HeaderCount
The number of custom headers being supplied in this operation.
Currently no support, so must be zero.

varstring HeaderName [0]
The name of the header, including the X- prefix

Table 12-105. Resources Parameters [continued]

Schema Resource ID Allowed Operations

Intel® Ethernet Controller E810 Datasheet
System Manageability

1996 613875-009

varstring HeaderParameter [0]
The parameter or parameters associated with the header. The MC can pre-process these (though any such
preprocessing is outside the scope of this specification) or convey them exactly as received.

... ...

Type Response Data

enum8 CompletionCode
Values:

{
PLDM_BASE_CODES,
ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED,
ERROR_UNSUPPORTED,
ERROR_UNEXPECTED,
ERROR_UNRECOGNIZED_CUSTOM_HEADER,
ERROR_ETAG_MATCH,
ERROR_NO_SUCH_RESOURCE
}

When an unknown ResourceID is supplied, ERROR_NO_SUCH_RESOURCE is returned.
If OperationID references an unknown operation, or OperationID and ResourceID do not both match an existing
operation, ERROR_UNEXPECTED is returned.
If unsupported ETag operation value, return ERROR_UNSUPPORTED/
Response codes ERROR_UNSUPPORTED and ERROR_UNRECOGNIZED_CUSTOM_HEADER are used to indicate that
an unsupported request parameter was sent. These responses represent an Operational failure, not a command
failure.

enum8 OperationStatus
Values:

{
OPERATION_INACTIVE = 0,
OPERATION_NEEDS_INPUT = 1,
OPERATION_TRIGGERED= 2,
OPERATION_RUNNING = 3,
OPERATION_HAVE_RESULTS = 4,
OPERATION_COMPLETED = 5,
OPERATION_FAILED = 6,
OPERATION_ABANDONED = 7
}

uint8 CompletionPercentage
Return 255 if operation is not valid.
Return zero if the Operation has not yet been triggered or if the Operation has failed.
Return 254 otherwise.

uint32 CompletionTimeSeconds
Return 0xFFFF FFFF.

bitfield8 OperationExecutionFlags
See OperationExecutionFlags in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

uint32 ResultTransferHandle
See ResultTransferHandle in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

bitfield8 PermissionFlags
See PermissionFlags in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

uint32 ResponsePayloadLength
See ResponsePayloadLength in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

varstring ETag
See ETag in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

null or
bejEncoding

ResponsePayload
See ResponsePayload in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

613875-009 1997

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.3.14 RetrieveCustomResponseParameters (0x12)

This command is currently not supported, as the NIC does not provide any Custom Response
parameters.

12.8.6.3.15 RDEOperationComplete (0x13)

Type Request Data

uint32 ResourceID
The ResourceID of a resource in the Redfish Resource PDR for the data that is the target of this operation. he
supported ResourceIDs are listed in Table 12-105, “Resources Parameters”.

rdeOpID OperationID
The {ResourceID, OperationID} should match the value set in the RDEOperationInit command. Otherwise, an
ERROR_UNEXPECTED error is returned.

Type Response Data

enum8 CompletionCode
Values:

{
PLDM_BASE_CODES,
ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED,
ERROR_UNEXPECTED,
ERROR_NO_SUCH_RESOURCE
}

When an unknown ResourceID is supplied, ERROR_NO_SUCH_RESOURCE is returned.
If OperationID references an unknown operation, or OperationID and ResourceID do not both match an existing
operation, ERROR_UNEXPECTED is returned.

uint32 DeferralTimeframe
Return 0xFF (unknown).

uint32 NewResourceID
Return 0 - no support for Create command.

uint8 ResponseHeaderCount
Return 0 - no support for custom headers.

varstring HeaderName [0]
N/A

varstring HeaderParameter [0]
N/A

... ...

Type Request Data

uint32 ResourceID
The ResourceID of a resource in the Redfish Resource PDR for the data that is the target of this operation. The
supported ResourceIDs are listed in Table 12-105, “Resources Parameters”.

rdeOpID OperationID
The {ResourceID, OperationID} should match the value set in the RDEOperationInit command. Otherwise, an
ERROR_UNEXPECTED error is returned.

Intel® Ethernet Controller E810 Datasheet
System Manageability

1998 613875-009

12.8.6.3.16 RDEOperationStatus (0x14)

Returns status of the current task.

Type Response Data

enum8 CompletionCode
Values:

{
PLDM_BASE_CODES,
ERROR_UNEXPECTED,
ERROR_NO_SUCH_RESOURCE
}

When an unknown ResourceID is supplied, ERROR_NO_SUCH_RESOURCE is returned.
If OperationID references an unknown operation, or OperationID and ResourceID do not both match an existing
operation, ERROR_UNEXPECTED is returned.

Type Request Data

uint32 ResourceID
The ResourceID of a resource in the Redfish Resource PDR for the data that is the target of this operation. The
supported ResourceIDs are listed in Table 12-105, “Resources Parameters”.

rdeOpID OperationID
The {ResourceID, OperationID} should match the value set in the RDEOperationInit command. Otherwise, an
ERROR_UNEXPECTED error is returned.

Type Response Data

enum8 CompletionCode
Values:

{
PLDM_BASE_CODES,
ERROR_UNSUPPORTED,
ERROR_NO_SUCH_RESOURCE,
ERROR_ETAG_MATCH,
ERROR_UNRECOGNIZED_CUSTOM_HEADER
}

When an unknown ResourceID is supplied ERROR_NO_SUCH_RESOURCE is returned.
If OperationID references an unknown operation, or OperationID and ResourceID do not both match an existing
operation, ERROR_UNEXPECTED is returned.
The completion code for RDEOperationStatus is one of the following:

SUCCESS: A valid active RDE Operation was referenced in the OperationID request field and it is not in the failed
state. The actual current status of the RDE Operation is returned in the OperationStatus field - OR - an inactive
RDE Operation was referenced in the OperationID request field. OperationStatus is OPERATION_INACTIVE in this
case.
ERROR_UNSUPPORTED, ERROR_ETAG_MATCH, ERROR_UNRECOGNIZED_CUSTOM_HEADER: A valid active RDE
Operation was referenced in the OperationID request field, but the Operation failed with the specified status
code. OperationStatus is OPERATION_FAILED in this case. These responses indicate a failure in the RDE
Operation, not a failure in the RDEOperationStatus command.

enum8 OperationStatus
According to state machine

uint8 CompletionPercentage
Return 255 if operation is not valid.
Return zero if the Operation has not yet been triggered or if the Operation has failed.
Return 254 otherwise.

uint32 CompletionTimeSeconds
Return 0xFFFF FFFF.

613875-009 1999

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.3.17 RDEOperationKill (0x15)

bitfield8 OperationExecutionFlags
See OperationExecutionFlags in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

uint32 ResultTransferHandle
See ResultTransferHandle in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

bitfield8 PermissionFlags
See PermissionFlags in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

uint32 ResponsePayloadLength
See ResponsePayloadLength in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

varstring ETag
See ETag in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

null or
bejEncoding

ResponsePayload
See ResponsePayload in Section 12.8.6.3.12, “RDEOperationInit (0x10)”.

Type Request Data

uint32 ResourceID
The ResourceID of a resource in the Redfish Resource PDR for the data that is the target of this operation. The
supported ResourceIDs are listed in Table 12-105, “Resources Parameters”.

rdeOpID OperationID
The {ResourceID, OperationID} should match the value set in the RDEOperationInit command. Otherwise, an
ERROR_UNEXPECTED is returned.

bitfield8 KillFlags
Flags for killing the Operation:

[7:3] = Reserved for future use.
[2] = discard_results — If 1b and the RDE Device is in the HAVE_RESULTS state for this Operation, the results of

the Operation are discarded and the Operation state set to Inactive. The MC does not set the
discard_results bit in conjunction with any other bits in the KillFlags. In the event that the MC violates this
restriction, the RDE Device responds with completion code ERROR_INVALID_DATA and stops processing
the request.

[1] = run_to_completion — If 1b, the Operation should be run to completion but no further response should be
sent to the MC. The MC does no set the run_to_completion bit without also setting the discard_record bit.

[0] = discard_record — If 1b and the kill command returns success, the RDE device discards internal records
associated with this Operation as soon as it is killed; the RDE device should not expect the MC to call
RedfishOperationComplete for this Operation. If the Operation has spawned a Task, the RDE device does
not create an Event when execution is finished.

Intel® Ethernet Controller E810 Datasheet
System Manageability

2000 613875-009

12.8.6.3.18 RDEOperationEnumerate (0x16)

Type Response Data

enum8 CompletionCode
Value:

{
PLDM_BASE_CODES,
ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED,
ERROR_OPERATION_UNKILLABLE,
ERROR_NO_SUCH_RESOURCE,
ERROR_UNEXPECTED
}

When an unknown ResourceID is supplied, ERROR_NO_SUCH_RESOURCE is returned.
If OperationID references an unknown operation, or OperationID and ResourceID do not both match an existing
operation, ERROR_UNEXPECTED is returned.
If KillFlags.run_to_completion is set, but KillFlags.discard_record is cleared, return ERROR_INVALID_DATA.
If both KillFlags.run_to_completion and KillFlags.discard_record are set, according to current state returns the
following response:
• If state is NEED_INPUT, return ERROR_UNEXPECTED.
• If state is HAVE_RESULTS, return ERROR_OPERATION_UNKILLABLE/
• If state is FAILED, return ERROR_OPERATION_FAILED.
• If state is ABANDONED, return ERROR_OPERATION_ ABANDONED.
• If state is other, return SUCCESS.

Type Request Data

N/A This request contains no parameters.

Type Response data.

enum8 CompletionCode
Value:

{PLDM_BASE_CODES}

unit16 OperationCount
0 if no active operation; 1 otherwise

unit32 ResourceID [0]
The resource ID of the active action. Shall be omitted if OperationCount is zero

rdeOpID OperationID [0]
The Operation ID of the active action. Shall be omitted if OperationCount is zero

enum8 OperationType [0]
The type of Operation. Shall be omitted if OperationCount is zero
Values:

{
OPERATION_HEAD = 0,
OPERATION_READ = 1,
OPERATION_UPDATE = 4,
OPERATION_REPLACE = 5,
OPERATION_ACTION = 6
}

This field is omitted if OperationCount above is zero.

613875-009 2001

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.3.19 RDEMultipartSend (0x30)

Type Request Data

uint32 DataTransferHandle
A handle to uniquely identify the chunk of data to be sent. If TransferFlag below is START or START_AND_END,
this must match the SendDataTransferHandle that was supplied by the RDE Device in the response to
RDEOperationInit.
The DataTransferHandle supplied is either the initial handle to begin or restart a transfer, or the
NextDataTransferHandle as specified in the previous chunk.

rdeOpID OperationID
The OperationID received in RDEOperationInit.

enum8 TransferFlag
An indication of current progress within the transfer. The value START_AND_END indicates that the entire transfer
consists of a single chunk.
Values:

{
START = 0,
MIDDLE = 1,
END = 2,
START_AND_END = 3
}

uint32 NextDataTransferHandle
The handle for the next chunk of data for this transfer; zero (0x00000000) if no further data.
The firmware should keep this value internally until the next MultipartSend.

uint32 DataLengthBytes
The length in bytes N of data being sent in this chunk. This value and the Data bytes associated with it must not
cause this request message to exceed the negotiated maximum transfer chunk size.

uint8 Data [0]
The first byte of the current chunk of data.
The Data field is omitted from the request message if the value of DataLengthBytes above is zero

... ...

uint8 Data [N-1]
The last byte of the current chunk of data

uint32 DataIntegrityChecksum
32-bit CRC for the entirety of data (all parts concatenated together).
Is omitted for non-final chunks (TransferFlag ≠ END or START_AND_END) in the transfer.
For this specification, the CRC-32 algorithm with the polynomial:
For this command, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8

+ x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) is used for the integrity checksum
computation. The CRC computation involves processing a byte at a time with the least significant bit first.

Intel® Ethernet Controller E810 Datasheet
System Manageability

2002 613875-009

12.8.6.3.20 RDEMultipartReceive (0x31)

Type Response Data

enum8 CompletionCode
Values:

{
PLDM_BASE_CODES,
ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED,
ERROR_UNEXPECTED,
ERROR_BAD_CHECKSUM
}

If OperationID is non-zero and references an unknown operation ERROR_UNEXPECTED is returned.
If the DataTransferHandle does not correspond to a valid chunk, the RDE Device returns CompletionCode
ERROR_INVALID_DATA.

enum8 TransferOperation
The follow-up action that the RDE device is requesting of the MC:
• XFER_FIRST_PART: Resend the initial chunk (restarting the transmission, such as if the checksum of data

received did not match the DataIntegrityChecksum in the final chunk).
• XFER_NEXT_PART: Send the next chunk of data.
• XFER_ABORT: Stop the transmission and do not retry. In this case, the MC proceeds as if the transmission is

permanently failed.
• XFER_COMPLETE: no further follow-up needed, the transmission completed normally

Values:
{
XFER_FIRST_PART = 0,
XFER_NEXT_PART = 1,
XFER_ABORT = 2,
XFER_COMPLETE = 3
}

Type Request Data

uint32 DataTransferHandle
If TransferOperation below is XFER_FIRST_PART and the OperationID below is zero, this must match the
TransferHandle supplied by the RDE Device in the response to the GetSchemaDictionary, GetMessageRegistry,
and GetSchemaFile commands.
If TransferOperation below is XFER_FIRST_PART and the OperationID below is nonzero, this must match the
SendDataTransferHandle that was supplied by the RDE Device in the response to RDEOperationInit.
If TransferOperation below is XFER_NEXT_PART, this must match the NextDataHandle supplied by the RDE Device
with the previous chunk.
The DataTransferHandle supplied is either the initial handle to begin or restart a transfer or the
NextDataTransferHandle supplied with the previous chunk.

rdeOpID OperationID
The OperationID received in RDEOperationInit.
A value of zero is used for Dictionary transfer (not part of an operation).

613875-009 2003

Intel® Ethernet Controller E810 Datasheet
System Manageability

enum8 TransferOperation
The portion of data requested for the transfer:
• XFER_FIRST_PART: The MC is asking the transfer to begin or to restart from the beginning.
• XFER_NEXT_PART: The MC is asking for the next portion of the transfer.
• XFER_ABORT: The MC is requesting that the transfer be discarded. The RDE device may discard any internal

data structures it is maintaining for the transfer.
Values:

{
XFER_FIRST_PART = 0,
XFER_NEXT_PART = 1,
XFER_ABORT = 2
}

Type Response Data

enum8 CompletionCode
Values:

{
PLDM_BASE_CODES,
ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED,
ERROR_UNEXPECTED,
ERROR_BAD_CHECKSUM
}

If OperationID is non-zero and references an unknown operation, ERROR_UNEXPECTED is returned.
If the DataTransferHandle does not correspond to a valid chunk, the RDE Device returns CompletionCode
ERROR_INVALID_DATA.
If the transfer is aborted, the RDE device acknowledges this status by returning SUCCESS.

enum8 TransferFlag
Values:

{
START = 0,
MIDDLE = 1,
END = 2,
START_AND_END = 3
}

This field is omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted.

uint32 NextDataTransferHandle
The handle for the next chunk of data for this transfer; zero (0x00000000) if no further data. Calculated by
firmware.
This field is omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted.

uint32 DataLengthBytes
The length in bytes N of data being sent in this chunk. This value and the Data bytes associated with it must not
cause this response message to exceed the negotiated maximum transfer chunk size.
This field is omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted.

uint8 Data [0]
The first byte of current chunk of data. The Data field is omitted from the response message if the value of
DataLengthBytes above is zero
This field is omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted.

... ...

uint8 Data [N-1]
The last byte of the current chunk of data.
This field is omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted.

Intel® Ethernet Controller E810 Datasheet
System Manageability

2004 613875-009

12.8.6.4 State Machine

This section describes operating behavior of RDE support from RDE device-centric perspective. States
that are a part of state-machine do not represent state of the RDE device but rather state for operation.

To present operation life cycle mechanisms, eight operational states for RDE device are introduced, as
shown in Table 12-106.

Transitions between particular RDE operational states are shown in Figure 12-17. State machine with all
possible transitions is defined in DSP0218: Platform Level Data Model (PLDM) for Redfish Device
Enablement, Section 9.2.3.2, Table 45.

uint32 DataIntegrityChecksum
32-bit CRC for the entire block of data (all parts concatenated together). Is omitted for non-final chunks
(TransferFlag ≠ END or START_AND_END) in the transfer or for aborted transfers. The recipient ignores this value
except from the final transfer.
For this command, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8

+ x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) is used for the integrity checksum
computation. The CRC computation involves processing a byte at a time with the least significant bit first.
Calculated by FW.

Table 12-106. RDE Device Operational States

State Definition

INACTIVE Default Operation state in which the RDE Device starts after initialization. Device is not processing an
Operation, as it has not received an RDEOperationInit command from the MC.

NEED_INPUT
After receiving the RDEOperationInit command, the RDE Device moves to this state if it is expecting
additional Operation-specific parameters or a payload that was not in-lined in the RDEOperationInit
command.

TRIGGERED Once the RDE Device receives everything it needs to execute an Operation, it begins executing it
immediately.

TASK_RUNNING
If the RDE Device cannot complete the Operation within the time frame needed for the response to the
command that triggered it, the RDE Device spawns a Task in which to execute the Operation
asynchronously.

HAVE_RESULTS

When execution of the Operation produces a response parameters or a response payload that does not fit in
the response message for the command that triggered the Operation (or detected its completion, if a Task
was spawned or if there was a payload but no custom request parameters), the RDE Device remains in this
state until the MC has collected all of these results.

COMPLETED
The RDE Device has completed processing of the Operation and awaits acknowledgment from the MC that it
has received any Operation response data. This acknowledgment is done by the MC issuing the
RDEOperationComplete command.

ABANDONED If MC fails to progress the Operation through this state machine, the RDE Device may abort the Operation
and mark it as abandoned.

FAILED The MC has explicitly killed the Operation or an error prevented execution of the Operation.

613875-009 2005

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.5 Schemas

The following schemas can be found in DSP8010 at https://www.dmtf.org/standards/redfish

This chapter presents the schemas and specifies the relevant properties and where in hardware they
refer.

Properties or options that are not mentioned here can be considered as “not supported”.

Figure 12-17. Operation Life Cycle State Machine (RDE Device Perspective)

0 - Inactive

2 - Triggered

6 - Abandoned 7 - Failed

1 - Need
Input

4- Have
Results
MultipartReceive or
RetrieveCustomRes ponseParameters,
no more results pending

3 - Task
Running

5 - Completed

RDEOperationInit,
noninlined payload

or params

Inputs supplied,
Operation finished,

results availab le

MultipartSend,
last chunk,

no params or params sent Inputs supplied,
Task spawned

(‡)

(†)

RDEOperationComplete

RDEOperationComplete

Any of
{1,2,3,4}

MC fails to
advance

Operation

RDEOperationComplete

MultipartSend or
SupplyCustomRequestParameters;

more input pending

MultipartReceive or
RetrieveCustomResponseParameters;
more results pending

RDEOperationStatus,
noninlined payload
or response params

Inputs supplied,
Operation finished,

no or inlined payload,
no response params

RDEOperationInit,
no or inlined payload,

no params,
result payload or params

RDEOperationInit,
no or inlined payload,

no params,
no or inlined payload,

no params

RDEOperationStatus,
Operation finished,

no or inlined payload,
no response params

(‡): RDEOperationStatus,
Task spawned

RDEOperationStatus,
Operation finished,

no or inlined payload,
no response params

(†): RDEOperationStatus,
Operation finished,
non-inlined payload
or response params

RDEOperationInit,
no or inlined payload,

no params,
Task spawned

Any of
{1,2,3,4}

Error occurs while
executing Operation

Operation finished; previously killed
with run_to_completion

https://www.dmtf.org/standards/redfish

Intel® Ethernet Controller E810 Datasheet
System Manageability

2006 613875-009

12.8.6.5.1 Resources Parameters

CacheAllowed - Relevant for RDEOperationInit for the read, head operations. Referring to RFC 7234, a
value of “yes” is considered equivalent to Cache-Control response header value “public”, and a value of
“no” is considered equivalent to Cache-Control response header value “no-store”. Typically, static data
is allowed to be cached unless, for example, it represents sensitive data such as login credentials; data
that changes over time is generally not marked as cacheable. A table in each schema defines if a
parameter is writable and/or cacheable.

Note: To make it easier to port to other devices, it is recommended to keep the “E810” string as a
variable in firmware.

Schemas that instantiate multiple resources are indexed by last two decimal digits of their ResourceID.
The value of those two digits is Resource Offset, relevant for ID field.

12.8.6.5.2 Common Fields in All Schemas

The following parameters appear in many schemas and get the following values:

Property Source Cacheable Writable Notes

@odata.id Returns bejResourceLink encoded resource ID. Yes No

@odata.type For simple schemas, a string built as:
#Schema_name.vX_Y_Z.Schema_name

For example, for NetworkInterface v1.1.1, the
@odata_type is:
#NetworkInterface.v1_1_1.NetworkInterface

For collection schemas, a string built as:
#Schema_name.Schema_name

For example, for PortCollection, the @odata_type is:
#PortCollection.PortCollection

Yes No

@odata.etag The value as reported in GetResourceETag command
enclosed in quotation marks.

No No This field
contains
common ETag,
which is
calculated
skipping
individual
ETags.

@odata.context N/A Provided
through
GetSchemaURI

Status.health/
Status.healthRollupDescription

As reflected in health sensor of NIC (Card Composite
State Sensor, sensorID = 5).

Normal = “OK”
Upper Non-Critical = “Warning”
Upper Critical = “Critical”
Upper Fatal = “Critical”

If the Card Composite State Sensor (sensorID = 5) is
uninitialized, Network Controller State sensor
(sensorID = 60) is used instead. If this sensor too is
uninitialized, the operation fails.

No/Yes No/No Not applicable
for collections.

Status.health/
Status.healthRollup

Same as “Status.health/
Status.healthRollupDescription” above.

No No Not applicable
for collections.

613875-009 2007

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.5.3 ACD Schemas

12.8.6.5.3.1 Port v1.6.0

Note: Function-to-port mapping is linear. Port 0 represents the port that is mapped to function 0.
The exposed ports are the ones for which PRTGEN_CNF.PORT_DIS is cleared.

Property Source Cacheable Writable Notes

Action

.Reset This action resets this
port.

..target %T<resource-ID>.0

..title #Port.Reset

ActiveWidth N/A Yes No Integer.
Currently not required.

CurrentSpeedGbps Persistent location in NVM:
Set the matching PHY types in TLV 0x134.

No No Integer value in Gb/s.

Ethernet No Yes

.AssociatedMACAddress An array of port associated MAC address.
Contains:
• Factory LAN MAC Address
• Current LAN MAC Address
• Port MAC Address
• PF LAA (MNG) MAC Address Only one

copy of identical
MAC addresses should be present in array/

No No

.EEEEnabled Is EEE enabled.
Persistent location in NVM: EEE Override
Enable field in Link Default Override Mask
PFA TLV.
Currently hard coded to FALSE.

No No Boolean.
Currently there is no
BASE-T E810, so there
is no E810 in which this
field can be set to True.

.FlowControlConfiguration Persistent location in NVM:
Set the Link FC options in TLV 0x134.

No Yes Enum:
None, TX, RX, TX_RX

.FlowControlStatus No No Enum:
None, TX, RX, TX_RX

.LLDPEnabled No Yes Writable only in Setting
Resource.

.LLDPReceive No No

..ChassisID No No

..ChassisSubType No No

..ManagementAddressIPv4 No No

..ManagementAdressIPv6 No No

..ManagementAddressMAC No No

..ManagementAddressMAC No No

..PortId No No

..PortIdSubType No No

.LLDPTransmit No Yes

..ChassisId No Yes

Intel® Ethernet Controller E810 Datasheet
System Manageability

2008 613875-009

..ChassisSubType No Yes

..ManagementAddressIPv4 No Yes

..ManagementAddressIPv6 No Yes

..ManagementAddressMAC No Yes

..ManagementVlanId No Yes

..PortId No Yes

..PortSubType No Yes

.SupportedEthernetCapabilities {None, EEE, WakeOnLAN}.
EEE - either EEE LPI or EEE LLDP enabled,
based on EMP Capability bit, PHY Capability,
NVM EMP settings. WoL - PFPM_APM.APME

Yes No Array of enum:
WakeOnLAN, EEE

.WakeOnLANEnabled WoL Control per port, NVM EMP settings.
Persistent location in NVM: Pointer to
PFPM_APM offset - 0x0002.

No Yes Boolean.
If WoL is not supported,
this property cannot be
set to True.

FibreChannel N/A Fiber channel not
supported.

FunctionMaxBandwidth1 No Yes

.AllocationPercent The bandwidth percentage allocated per
function. 100%.

No Yes Integer

.NetworkDeviceFunction Link to NetworkDeviceFunction belonging to
port that the bandwidth is referring to.

No No Link

FunctionMinBandwidth No Yes

.AllocationPercent The bandwidth allocated per function.
100%.

No Yes Integer

.NetworkDeviceFunction Link to NetworkDeviceFunction belonging to
port that the bandwidth is referring to.

No No Link

GenZ N/A Gen-Z not supported.

Id Resource offset. Yes No

InterfaceEnabled Port enabled or not. No Boolean
Currently, writing to this
property is not allowed
even though it is RW in
DMTF specification.

LinkConfiguration Array of
LinkConfiguration.

.AutoSpeedNegotiationCapable Indicates whether the port has the
capability to auto-negotiate speed.

Yes No Boolean

.AutoSpeedNegotiationEnable Indicates whether the port is configured to
auto-negotiate speed.

No Yes Boolean

.CapableLinkSpeedGbps Set of link speed capabilities of this port. Yes No Array of numbers.

.ConfiguredNetworkLinks N/A Array of values.

..ConfiguredLinkSpeedGbps Persistent location in NVM: Set the
matching PHY types in TLV 0x134

Yes Number (real)

..ConfiguredWidth N/A Yes Integer.
Currently not required.

Property Source Cacheable Writable Notes

613875-009 2009

Intel® Ethernet Controller E810 Datasheet
System Manageability

LinkNetworkTechnology Ethernet No Enum:
Ethernet, InfiniBand,
FibreChannel, GenZ

LinkState No Yes Enum:
Enabled, Disabled

LinkStatus Yes Enum:
LinkUp, Starting,
Training, LinkDown,
NoLink

LinkTransitionIndicator Yes Integer

Links N/A

Location N/A Currently not required.

LocationIndicatorActive N/A Currently not required.

MaxFrameSize PRTMAC_HSEC_CTL_RX_MAX_PACKET_LEN
Bits 14:0

Yes No

MaxSpeedGbps No Integer in Gb/s units.

Metrics Link to associated PortMetrics resource. Yes No

Name Device Name String + “Port Current
Setting” for resources 100-108, Device
Name String + “”Port Pending Setting” for
resources 110-117

Yes No

Oem

PortId The label of this port on the physical
package for this port.
Contains number only aligned to labeling
starting from “1” for first port.

Yes No String
This property will not
have a correct value
when breakout cables
are used.

PortMedium “Optical” when optical module in use.
Otherwise “Electrical”. Null for unpopulated
cage.

No No Enum:
Electrical, Optical

PortProtocol Ethernet Yes No Enum:
PCIe, AHCI, UHCI,
SAS, SATA, USB,
NVMe, FC, iSCSI,
FCoE, FCP, FICON,
NVMeOverFabrics,
SMB, NFSv3, NFSv4,
HTTP, HTTPS, FTP,
SFTP, iWARP, RoCE,
RoCEv2, I2C, TCP,
UDP, TFTP, GenZ,
MultiProtocol,
InfiniBand, Ethernet,
OEM

Currently not required.

PortType Hard-coded BidirectionalPort Yes No Enum:
UpstreamPort,
DownstreamPort,
InterswitchPort,
ManagementPort,
BidirectionalPort,
UnconfiguredPort

SignalDetected N/A No No Boolean
Currently not required.

Property Source Cacheable Writable Notes

Intel® Ethernet Controller E810 Datasheet
System Manageability

2010 613875-009

SFP

FiberConnectionType When non-optic module or no module
present: null
Otherwise: according to Fiber Channel
Transmission Media.

No No Enum:
SingleMode, MultiMode

.Manufacturer SFP manufacturer's name. No No String

.MediumType The medium type connected to this SFP. No No Enum:
Copper, FiberOptic

.PartNumber The part number for this SFP No No String

.SerialNumber The serial number for this SFP No No String

Status No No

..Health As reflected in Plug's health sensor (in
Composite State Sensor):

Normal/Unknown — “OK”
Upper Non-Critical — “Warning”
Upper Critical — “Critical”

SFF threshold passing mapped to Health:
Warning — “Warning”
Alarm — “Critical”
Otherwise — “OK”
If cage is not populated property is null.

No No

..State “Absent” — Cage not populated.
“Enabled” — Otherwise.

No No Enum:
Enabled, Disabled,
StandbyOffline,
StandbySpare, InTest,
Starting, Absent,
UnavailableOffline,
Deferring, Quiesced,
Updating, Qualified

.SupportedSFPTypes Array of SFP device types supported by this
port.

Yes No Array of Enum:
SFP, SFPPlus, SFP28,
cSFP, SFPDD QSFP,
QSFPPlus, QSFP14,
QSFP28, QSFP56,
MiniSASHD

.Type The type of SFP device that is attached to
this port.

No No Enum:
SFP, SFPPlus, SFP28,
cSFP, SFPDD QSFP,
QSFPPlus, QSFP14,
QSFP28, QSFP56,
MiniSASHD

Status

.Health

.HealthRollup

.State

Width N/A Integer.
Currently not required.

@Redfish.Settings

.@odata.type “#Settings.v1_3_3.Settings” Yes No

.SettingObject

Property Source Cacheable Writable Notes

613875-009 2011

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.5.3.2 PortCollection

12.8.6.5.3.3 NetworkInterface v1.2.0

12.8.6.5.3.4 NetworkAdapter v1.7.0

..@odata.id bejResourceLink to Settings Resource
(current ID +10).

.SupportedApplyTimes “OnReset” Yes No

1. Only a signal function can be allocated per port. Thus, that function always has 100% of the port’s bandwidth.

Property Source Cacheable Writable Notes

Name “Ports” Yes No

Members@odata.count Size of Members array. Yes No

Members Resource IDs of all the exposed NetworkPort resources. Yes No 100-107

Property Source Cacheable Writable Notes

Links.NetworkAdapter NetworkAdapter Resource ID. No

Name “E810 Network Interface” Yes No

NetworkDeviceFunctions NetworkDeviceFunctionCollection Yes No

NetworkPorts N/A Yes No Deprecated.

Ports PortCollection Yes No

Status.State “StandbyOffline” - If in D3/DR state for all PFs.
“Starting” - If in D0 state and host driver is not loaded.
“Updating” - If NVM FW update is in progress.
“Enabled” - Otherwise.

No No

ID “%I5” Yes No Deferred binding
flag must be set.

Property Source Cacheable Writable Notes

Actions Yes No Activate the flow of
reset to defaults.
Copies the Factory
defaults back to PFA
and Extended TLV
(MinSrev - DCR111
should be kept from
original PFA).

.#NetworkAdapter.ResetSettingsToDefault Yes No

..target “%T1.0” Yes No

..tittle “#NetworkAdapter.ResetSettingsTo
Default”

Yes No

Assembly N/A Yes No Not supported.

Controllers

.ControllerCapabilities

Property Source Cacheable Writable Notes

Intel® Ethernet Controller E810 Datasheet
System Manageability

2012 613875-009

..DataCenterBridging

..Capable TRUE Yes No

..NPAR N/A

...NparCapable FALSE Yes NO The E810 does not
support NPAR.

..NPIV N/A

..NetworkDeviceFunctionCount Number of enabled PCIe functions. Yes No

..NetworkPortCount Same as
NetworkDeviceFunctionCount.

..VirtualizationOffload

...SRIOV

...SRIOVVEPACapable TRUE Yes No

..VirtualFunction

...DeviceMaxCount 0x100 Yes No Max VFs in controller.

...MinAssignmentGroupSize 0x1 Yes No Min VFs per PF.

...NetworkPortMaxCount 0x100 Yes No Max VFs per port.

.FirmwarePackageVersion OROM version Yes No String.

.Links

..NetworkDeviceFunctions Array of NetworkDeviceFunction
references.

Yes No

...NetworkDeviceFunctions@odata.count Number of NetworkDeviceFunctions
elements.

..NetworkPorts N/A Yes No Deprecated.

..Ports PortCollection Yes No

..PCIeDevices Array of PCIeDevices references. Yes No No implemented.

...PCIeDevices@odata.count Number of PCIeDevices elements

.Location N/A Not exposed.

.PCIeInterface

..LanesInUse Read from PCIe Configuration space
at Link Status Register at
Negotiated Link Width.

Yes No Value is “Null” when
PCIe reset is
asserted.

..MaxLanes 16 = 25x25 mm package
8 = 21x21mm package
Read from GL_UFUSE_SOC[7].

0 = 16
1 = 8

Yes No

..MaxPCIeType Config space of function 0 - Link
capabilities register (0xAC) bits 3:0
- Maximum Link Speed.

Yes No Value is “Null” when
PCIe reset is
asserted.

..PCIeType {enum:”Gen1”,”Gen2”,”Gen3”,”Gen4
”}
Read from PCIe Configuration space
at Link Status Register at Current
Link Speed. The field value
indicates the Gen version.

Yes No Value is “Null” when
PCIe reset is
asserted.

Property Source Cacheable Writable Notes

613875-009 2013

Intel® Ethernet Controller E810 Datasheet
System Manageability

LLDPEnabled No Yes Writable only in
Setting Resource.

Manufacturer “Intel Corp.” Yes No

Model “E810-CAM2”, “E810-CAM1”,
“E810-XXVAM2”

Yes No Read default device
ID from
PFPCI_DEVID.PF_DEV
_ID;
xxAM2 from
GL_UFUSE_SOC[3:2]

Name For Non OCP 3.0 cards:
• “E810 Network Adapter Current

Setting” for resource 1.
• “E810 Network Adapter

Pending Setting” for resource
11.

For OCP 3.0 cards:
• “E810 Network Adapter for OCP

3.0 Current Setting” for
resource 1.

• “E810 Network Adapter for OCP
3.0 Pending Setting” for
resource 11.

Yes No String. Depends on
the 'OCP compliant'
form “OCP NIC
Parameters 2”
section.

NetworkDeviceFunctions NetworkDeviceFunctionCollection Yes No

NetworkPorts NetworkPortCollection Yes No

PartNumber Part Number (PN) is 11 byte value
maintained in VPD.

Yes No

SKU GL_UFUSE_SOC[3:2]:
0 = CAM2
1 = CAM1
2 = XXVAM2

Yes No

SerialNumber Read from GLPCI_SERH/L. Yes No

Status.State “StandbyOffline” - If in D3/DR state
for

all PFs.
“Starting” - If in D0 state and host

driver is not loaded.
“Updating” - If NVM FW update is in

progress.
“Enabled” - Otherwise.

No No Same as in
NetworkInterface
schema.

Idnetifiers N/A

ID “%I1” Yes No Deferred binding flag
must be set.

Metrics Link to associated
NetworkAdapterMetrics resource.

Yes No

@Redfish.Settings

.@odata.type “#Settings.v1_3_1.Settings” Yes No

.SettingObject

..@data.id bejResourceLink to Settings
Resource (current ID + 10).

.SupportedApplyTimes “OnReset” Yes No

Property Source Cacheable Writable Notes

Intel® Ethernet Controller E810 Datasheet
System Manageability

2014 613875-009

12.8.6.5.3.5 NetworkDeviceFunction v1.3.3

Note: Resource IDs 200-207 are RO. All changes are done through resource IDs 210-217. After
reset (PCIR or EMPR), the content of 210-217 is applied and copied to 200-207. The exposed
functions are the ones for which PFPCI_FUNC.FUNC_DIS is cleared.

Property Source Cacheable Writable Notes

AssignablePhysicalNetworkPorts Resource IDs of available ports. Yes No

AssignablePhysicalNetworkPorts@odata.count Number AssignablePhysicalPorts. Yes No

AssignablePhysicalPorts N/A Deprecated

AssignablePhysicalPorts@odata.count N/A Deprecated

BootMode 1 = PXE - If PXE enabled on this
port.
0 = Disabled - Otherwise.
PXE is enabled if NVM Setup Options
PCI Function[n], DBS field, has
value 0x0-0x2 (not Local only)
Persistent location in NVM: PFA

Yes Yes

DeviceEnabled PFPCI_STATUS1.FUNC_VALID
Persistent location in NVM: PFA

Yes Yes This value is
maintained by
ANVM.

Ethernet.MACAddress MAC Address of the port as assigned
by NVM/Alt RAM/LAA.
A write is written in ALT RAM Current
LAN MAC Address (low/ high) entries
and stored in NVM in PF MAC
Addresses TLV in PFA.
Read is from the LAA MAC Address
as set by Manage MAC Address write
AQ command (update LAA address)
or ALT RAM if not set or NVM if Alt
RAM is not valid.

No Yes

Ethernet.MTUSize At init, 9710 (9728-18). May be
modified by RDE.
Persistent location in NVM: PFA TLV
RDE

Yes Yes

Ethernet.MTUSizeMaximum The E810’s Maximum Transmit Unit
Size (MTU).

Yes No Integer

Ethernet.PermanentMACAddress MAC Address of the port as stored in
factory default section in NVM.

Yes No

Ethernet.VLAN N/A

Ethernet.VLANs N/A

MaxVirtualFunctions As reported in Virtual Function
capability (0x0013) in Discover
Function Capabilities
(PF_VT_PFALLOC.LASTVF -
PF_VT_PFALLOC.FIRSTVF + 1 if
PF_VT_PFALLOC.VALID is set, 0
otherwise)
Refer to firmware API
CDB_GetPf2VfMapping usage.

Yes No

Name “NetworkDeviceFunction Current
Settings” for ResourceID 200-207.
“NetworkDeviceFunction Pending
Settings” for ResourceID 210-217.

Yes No

NetDevFuncCapabilities Source: Always [“Ethernet”] Yes No Array of enum.

613875-009 2015

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.5.3.6 NetworkDeviceFunctionCollection

NetDevFuncType 1 “Ethernet” Yes No

Status.State “StandbyOffline” - If in D3/DR state.
“Starting” - If in D0 state and host

driver is not loaded.
“Updating” - If NVM FW update is in

progress.
“Enabled” -

PFPCI_STATUS1.FUNC_
VALID is set

“Disabled” - Otherwise.

No No

VirtualFunctionsEnabled Config space of the function - PCIe
SR-IOV Control Register (0x168) bit
0- VF Enable.

No No

iSCSIBoot N/A Yes No Not supported.

@redfish.Settings Reported only in
resources 200-
207

SettingsObject Points to the next setting =
Resource ID +10

No No

SupportedApplyTimes [“OnReset”] No No

ID Resource Offset Yes No

Links

.PhysicalNetwokPortAssignment Link to associated Port resource. Yes No

Metrics Link to associated
NetworkDeviceFunctionMetrics
resource.

Yes No

PCIeFunction The link to the PCIeFunction
associated with this network device
function.

Yes No

PhysicalNetworkPortAssignment Link to associated Port resource. Yes No

PhysicalPortAssignment N/A Deprecated

Property Source Cacheable Writable Notes

Name NetworkDeviceFunctions Yes No

Members@odata.count Size of Members array. Yes No

Members Resource IDs of all the exposed NetworkDeviceFunction
resources.

Yes No 200-207

Property Source Cacheable Writable Notes

Intel® Ethernet Controller E810 Datasheet
System Manageability

2016 613875-009

12.8.6.5.3.7 PCIeDevice.v1.4.0

Note: This schema is tied to the global schemas using deferred binding.

Property Source Cacheable Writable Notes

AssetTag AssetTag field in NVM RDE PFA TLV.
Persistent location in NVM: PFA

Yes Yes Should be initiated
by a PUT
command- null in
initial image.

DeviceType Config space of function 0 - Header type register
(0xE):
0x0 = 0 (SingleFunction)
0x80 = 1 (MultiFunction) otherwise

Yes No Property is not
present when PCIe
reset is asserted.

FirmwareVersion As reported in Get Version Admin Command. Yes No

Manufacturer “Intel Corp.” Yes No

Model “E810” Yes No

Name “E810 Network Adapter” or
“E810 Network Adapter for OCP 3.0”

Yes No String. Depends on
the 'OCP compliant'
form “OCP NIC
Parameters 2”
section.

PCIeInterface.LanesInUse Config space of function 0 - Link Status Register
(0xB2) bits 9:4 - Negotiated Link Width

No No Value is “Null”
when PCIe reset is
asserted.

PCIeInterface.MaxLanes Maximum Link Width
16 = E810-CAM2/CAM1
8 = E810-XXVAM2

Read from GL_UFUSE_SOC[7].
0 ' 16
1 ' 8

Yes No

PCIeInterface.MaxPCIeType Config space of function 0 - Link Capabilities
Register (0xAC) bits 3:0 - Maximum Link Speed

Yes No Subtract 1 from
read value to get
the enum value.
Value is “Null”
when PCIe reset is
asserted.

PCIeInterface.PCIeType Config space of function 0 - Link Status Register
(0xB2) bits 3:0 - Current Link Speed

No No

PartNumber Part Number (PN) is 11 byte value maintained in
VPD.

Yes No

SKU GL_UFUSE_SOC[3:2]:
0 = CAM2
1 = CAM1
2 - XXVAM2

Yes No

Serial Number Config space of function 0 - Serial Number
Registers (0x154:0x158)

Yes No Serial Number is
calculated from
MAC Address (it is
MAC completed
with 0xFF on 5th
and 6th byte).
Example:
MAC: 00-A0- C9-
23-45-67
SN: 00-A0-C9- FF-
FF-23-45-67

613875-009 2017

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.5.3.8 PCIeFunctionCollection

12.8.6.5.3.9 PCIeFunction.v1.2.3

Note: Only Physical functions are exposed through RDE.

Status.State “StandbyOffline” - If in D3/DR state in all
functions.
“Starting” - If in D0 state and host driver is not
loaded in at least one function and others are in
D3.
“Updating” - If NVM FW update is in progress.
“Enabled” - Otherwise.

No No

PCIeFunctions Link to PCIeFunctionCollection. Yes No

ID

Property Source Cacheable Writable Notes

Name PCIeFunctions Yes No

Members@odata.count Size of Members array. Yes No

Members Resource IDs of all the exposed PCIeFunction resources. Yes No 300-307

Property Source Cacheable Writable Notes

ClassCode “0x020000” (“EthernetController”) Yes No

DeviceClass NetworkController Yes No

DeviceID PFPCI_DEVID.PF_DEV_ID (presented in hexadecimal
format)

Yes No

FunctionID The PCIe Function Number of this PF. Yes No Integer

FunctionType 0 (Physical) Yes No

Name “E810” Yes No

RevisionID GLPCI_DREVID XOR GLPCI_REVID Yes No Value may be
“Null” when
PCIe reset is
asserted.

Status.State “StandbyOffline” - If in D3/DR state.
“Starting” - If in D0 state and host driver is not loaded.
“Updating” - If NVM FW update is in progress.
“Enabled” - Otherwise

Yes No

SubsystemID PFPCI_SUBSYSID.PF_SUBSYS_ID Yes No

SubsystemVendorId GLPCI_SUBVENID (presented in hexadecimal format) Yes No

VendorID GLPCI_VENDORID.VENDORID (presented in hexadecimal
format)

Yes No

ID Resource Offset Yes No

Property Source Cacheable Writable Notes

Intel® Ethernet Controller E810 Datasheet
System Manageability

2018 613875-009

12.8.6.5.3.10 NetworkAdapterMetrics

12.8.6.5.3.11 PortMetrics

Property Source Cacheable Writable Notes

Description “Usage and health statistics for Ethernet adapter%|1” Yes No String

Id “E810 Network Adapter Metrics” Yes No

NCSIRXBytes N/A No No

NCSIRXFrames Number of NC-SI frames received since reset, including both
pass-through and non-pass-through traffic.

PT: Sum of GLV_UPRCL/H, GLV_MPRCL/H and GLV_BPRCTL/H
over VSIs allocated for all ports
Non-PT: FW internal counter.

No No

NCSITXBytes N/A No No

NCSITXFrames Number of NC-SI frames sent since reset, including both pass-
through and non-pass-through traffic.

PT: Sum of GLV_UPTCL/H, GLV_MPTCL/H and GLV_BPTCL/H
over VSIs allocated for all ports.
Non-PT: Firmware internal counter.

No No

Name “E810 Network Adapter Metrics” Yes No

RXBytes GLPRT_GORCL/H over all ports. No No

RXMulticastFrames GLPRT_MPRCL/H over all ports. No No

RXUnicastFrames GLPRT_UPRCL/H over all ports. No No

TXBytes GLPRT_GOTCL/H over all ports. No No

TXMulticastFrames GLPRT_MPTCL/H over all ports. No No

TXUnicastFrames GLPRT_UPTCL/H over all ports. No No

Property Source Cacheable Writable Notes

Description “Usage and health statistics for Ethernet port x”, where
x is Port ID.

Yes No String

Id “Metrics” Yes No

Name “E810 Port Metrics” Yes No

Networking No No

+RDMARXBytes From RDMA General Purpose Registers No No

+RDMARXRequests From RDMA General Purpose Registers No No

+RDMATXBytes From RDMA General Purpose Registers No No

+RDMATXRequests From RDMA General Purpose Registers No No

+RXBroadcastFrame GLPRT_BPRCL/H No No

+RXDiscards GLPRT_RDPC No No

+RXFCSErrors GLPRT_CRCERRS No No

+RXFalseCarrierErrors N/A No No Not Supported

+RXFrameAlignmentErrors N/A No No Not Supported

+RXFrames RXBroadcastFrame + RXMulticastFrames +
RXUnicastFrames

No No

613875-009 2019

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.5.3.12 NetworkDeviceFunctionMetrics

+RXMulticastFrames GLPRT_MPRCL/H No No

+RXOversizeFrames GLPRT_ROC No No

+RXPFCFrames Sum of all the Port's GLPRT_PXONRXCNT and
GLPRT_PXOFFRXCNT counters.

No No

+RXPauseXOFFFrames GLPRT_LXOFFRXCNT No No

+RXPauseXONFrames GLPRT_LXONRXCNT No No

+RXUndersizeFrames GLPRT_RUC No No

+RXUnicastFrames GLPRT_UPRCL/H No No

+TXBroadcastFrames GLPRT_BPTCL/H No No

+TXDiscards N/A No No

+TXFrames TXBroadcastFrame + TXMulticastFrames +
TXUnicastFrames

No No

+TXMulticastFrames GLPRT_MPTCL/H No No

+TXPFCFrames Sum of all the Port's GLPRT_PXONTXCNT and
GLPRT_PXOFFTXCNT counters.

No No

+TXPauseXOFFFrames GLPRT_LXOFFTXCNT No No

+TXPauseXONFrames GLPRT_LXONTXCNT No No

+TXUnicastFrames GLPRT_UPTCL/H No No

RXBytes GLPRT_GORCL/H No No

RXErrors Sum of:
GLPRT_CRCERRS, GLPRT_ILLERRC, GLPRT_MLFC,
GLPRT_MRFC, GLPRT_RLEC, GLPRT_RUC, GLPRT_RFC,
GLPRT_ROC, GLPRT_RJC

No No

TXBytes GLPRT_GOTCL/H No No

TXErrors N/A No No

Transceivers N/A No No

Property Source Cacheable Writable Notes

Description “Usage and health statistics for Device Function x”
where x is the ID of the PF

No No String

Ethernet No No

+NumOffloadedIPv4Conns N/A No No

+NumOffloadedIPv6Conns N/A No No

Id “Metrics” Yes No

Name “Network Device Function Metrics” Yes No String

RXBytes Same as PortMetrics.RXBytes No No

RXFrames Same as PortMetrics.Networking.RXFrames No No

RXMulticastFrames Same as PortMetrics.Networking.RXMulticastFrames No No

RXQueuesEmpty N/A No No

RXQueuesFull N/A No No

Property Source Cacheable Writable Notes

Intel® Ethernet Controller E810 Datasheet
System Manageability

2020 613875-009

12.8.6.5.4 Non-ACD Schemas

12.8.6.5.4.1 EthernetInterface v1.5.1

Note: Resource IDs 400-407 are RO. All changes are done through resource IDs 410-417. After
reset (PCIR or EMPR), the content of 410-417 is applied and copied to 400-407.

RXUnicastFrames Same as PortMetrics.Networking.RXUnicastFrames No No

TXBytes Same as PortMetrics.TXBytes No No

TXFrames Same as PortMetrics.Networking.TXFrames No No

TXMulticastFrames Sane as PortMetrics.Networking.TXMulticastFrames No No

TXQueuesEmpty N/A No No

TXQueuesFull N/A No No

TXUnicastFrames Same as PortMetrics.Networking.TXUnicastFrames No No

Property Source Cacheable Writable Notes

Actons N/A

AutoNeg N/A N/A N/A Not part of OCP
profile - and no
support in link
management.

DHCPv4 N/A

DHCPv6 N/A

FQDN N/A

FullDuplex “True” Yes No Bool

HostName N/A

IPv4Addresses N/A (external)

IPv4StaticAddresses N/A (external)

IPv6AddressPolicyTable N/A (external)

IPv6Addresses N/A (external)

IPv6DefaultGateway N/A (external)

IPv6StaticAddresses N/A (external)

IPv6StaticDefaultGateways N/A (external)

InterfaceEnabled PRTGEN_STATUS.PORT_VALID
Persistent location in NVM: PFA

Yes Yes For enabled port.

LinkStatus Link API: Link_is_up No No {'LinkDown',
'LinkUp', 'NoLink'}

Links

Chassis N/A (external)

Endpoints N/A (analog to PF, not part of
OCPBaselineHardwareManagent profile)

Endpoints@odata.count N/A

HostInterface N/A (external)

Property Source Cacheable Writable Notes

613875-009 2021

Intel® Ethernet Controller E810 Datasheet
System Manageability

Oem N/A

MACAddress MAC Address of the port as assigned by NVM/
Alt RAM/LAA.
A write is written in ALT RAM Current LAN MAC
Address (low/high) entries and stored in NVM in
PF MAC Addresses TLV in PFA.
Read is from the LAA MAC Address as set by
Manage MAC Address write AQ command
(update LAA address) or ALT RAM if not set or
NVM if Alt RAM is not valid.

Yes Yes

MTUSize At init, 9710 (9728-18). May be modified by
RDE.
Persistent location in NVM: PFA TLV RDE

Yes Yes

MaxIPv6StaticAddresses N/A (“null”)

Name “E810 Ethernet Interface Current Settings” for
ResourceID 400-407.
“E810 Ethernet Interface Pending Settings” for
ResourceID 410-417.

Yes No

NameServers N/A, Stack level (DHCP related)

Oem N/A

PermanentMACAddress MAC Address of the port as reflected in NVM
factory default section.

Yes No

SpeedMbps Link API: Link_get_speed
Persistent location in NVM: Per Port - Speeds[n]
(0x004D + 2*n, n=0...7)

No Yes

StatelessAddressAutoConfig N/A (external, IPv4 and IPv6)

StaticNameServers N/A, Stack level (DHCP related)

Status.State “Enabled” No No

UefiDevicePath N/A

VLAN N/A (external)

VLANs N/A (“null”) Yes No

@redfish.Settings.SettingsObject Points to the next setting = Resource ID +10 No No Reported only if a
pending
configuration
exists.

FallbackAddress N/A

@redfish.Settings Reported only in
resources 400-407

SettingsObject Points to the next setting = Resource ID +10 No No

SupportedApplyTimes [“OnReset”] No No

ID Resource Offset Yes No

Property Source Cacheable Writable Notes

Intel® Ethernet Controller E810 Datasheet
System Manageability

2022 613875-009

12.8.6.5.4.2 EthernetInterfaceCollection

12.8.6.5.5 Generic Schemas

12.8.6.5.5.1 Event

Note: The Event schema is used to encode events in BEJ.

Property Source Cacheable Writable Notes

Name “EthernetInterfaces” Yes No

Members@odata.count Size of Members array. Yes No

Members Resource IDs of all the exposed EthernetInterfaces
resources.

Yes No 400-407,
410-417

Property Notes

Actions N/A - Not required.

Context N/A - Not required.

Description N/A - Not required.

Events Array of EventRecords.

.Actions N/A - Not required.

.Context N/A - Not required.

.EventGroupId N/A - Not required. Can be used to group together events with same root cause.

.EventId N/A - Not required.

.EventTimestamp N/A - Not required.

.EventType Deprecated. Enum value “alert”.

.MemberId Event member element ID within the Events array.

.Message N/A - Not required.

.MessageArgs Array of strings containing the arguments needed for the Registry message.

.MessageId The identifier for the message. Must be a string formatted as:
RegistryName.MajorVersion.MinorVersion.MessageKey

See DSP0266 MessageID format section.
Example:

NetworkDevice.1.0.CableInserted
Note: If BEJ 1.1 is supported (by BMC and firmware) this is bejRegistryItem.

.MessageSeverity N/A - Not required.

.Oem N/A - Not required.

.OriginOfCondition Reference to related triggering resource.

.Severity N/A - Not required and deprecated.

.SpecificEventExistsInGroup N/A - Not required.

Events@odata.count Number of events in Event array

ID “1”

Name “Event”

OEM N/A - Not required.

613875-009 2023

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.8.6.5.5.2 NetworkDevice Registry v1.0.1

Note: Registry messages that are not listed below are not required.

12.8.6.5.6 Custom OEM Schema Extensions

Custom OEM extensions to DMTF schemas as well as entirely custom OEM schemas are not described
here.

The presence of OEM RDE extensions in an NVM image, if any, are indicated by the non-default value of
the IANA field. IANA is maintained in PFA OEM section (for more information, see Section 6.3.66.10).

12.8.6.5.7 Profiles

Each profile defines a specific set of supported schemas. The ACD profile is supported, and all the
non-ACD schemas have enable bits inside the NVM.

12.8.6.6 Dictionaries

Dictionaries are stored in signed NVM (not in shadow RAM).

Each of the Major Schema has associated with it an individual Major dictionary. Three additional
dictionaries contain definitions of common properties.

Dictionaries must contain definitions for decoding all BEJ tuples that can be generated by this
implementation of RDE. All properties that may be encountered during an UPDATE or REPLACE request,
but which cannot be ignored, must also have corresponding dictionary definitions. Properties that are
ignored on both reads and writes serve no purpose and should be excluded from dictionaries.

Message Parameters Trigger

CableInserted 1 = The `Id` of the network adapter.
2 = The `Id` of the network port.

Cable inserted into port.
Currently not supported

CableRemoved 1 = The `Id` of the network adapter.
2 = The `Id` of the network port.

Cable removed from port.
Currently not supported

ConnectionDropped 1 = The `Id` of the network adapter.
2 = The `Id` of the network port.
3 = The `Id` of the network function.

Link down.

ConnectionEstablished 1 = The `Id` of the network adapter.
2 = The `Id` of the network port.
3 = The `Id` of the network function.

Link up.

DegradedConnectionEstablished 1 = The `Id` of the network adapter.
2 = The `Id` of the network port.
3 = The `Id` of the network function.

Link established on a lower speed than is
supported by both the device and the Link
Partner.
Currently not supported

LinkFlapDetected 1 = The `Id` of the network adapter.
2 = The `Id` of the network port.
3 = The `Id` of the network function.
4 = The number of times the link has flapped.
5 = The number of minutes over which the link

has flapped.

Network connection has repeatedly been
established and dropped.

Intel® Ethernet Controller E810 Datasheet
System Manageability

2024 613875-009

12.8.6.6.1 Dictionary Storage in NVM

The Dictionaries are stored at a 4K boundary within the NVM signed area and pointed by the RDE
Dictionaries pointer at offset 0x5F in the init module.

The allocated size in NVM map 32K bytes. The format is as follows:

Schema dictionary offset points to following structure:

Dictionaries have a binary format according to DSP0218 standard (Section 7.2.3.2, “Dictionary
binary format”).

Schema URI offset points to following structure:

Schema URI is stored as a string. The varstring assumes an ASCII encoding. The length is derived
from the section length.

12.9 Host Isolate Support

If a MC decides that malicious software prevents its usage of the LAN, it might decide to isolate the NIC
from its driver. This is done using the TCO Reset command (Section 12.6.4.12).

If TCO Isolate is enabled in the NVM (Section 6.3.65.3), the TCO Isolate command disables PCIe write
operations to the LAN port. As the software device driver needs to access the CSR space to provide
descriptors to the NIC, this operation also stops the network traffic including OS2BMC and MC-to-OS
traffic as soon as the existing transmit and receive descriptor queues are exhausted.

MCTP over PCIe VDM are still available in this mode.

Table 12-107. RDE Dictionaries Format in NVM

Word Offset1

1. n = Dictionary index in range from 0 to Number of dictionaries.

Description Remarks

0x0000 Length Total section length.

0x0001 Number of dictionaries 13 - For read-only support.

0x0002 + n*5 Resource ID Low

0x0003 + n*5 Resource ID High

0x0004 + n*5 Schema Class (Bits[7:0]) Bits[15:8] are reserved

0x0005 + n*5 Schema dictionary offset If MSB=1, the resolution of the value is 1 page.
If MSB=0, the resolution of the value is one WORD.0x0006 + n*5 Schema URI offset

Word Offset Description Remarks

0x0000 Section length Words.

0x0001... Dictionary Binary blob.

Word Offset Description Remarks

0x0000 Section length In bytes.

0x0001... URI String.

613875-009 2025

Intel® Ethernet Controller E810 Datasheet
System Manageability

12.10 OCP NIC 3.0 Support

The OCP 3.0 specification defines a list of manageability features that are needed to be compliant with
the specification. The following features are included in the OCP NIC 3.0 support in the E810:

12.10.1 Support for FAN_ON_AUX Pin

Firmware flow at init is:

1. Check that the FAN_ON_AUX valid bit is set. If it is not, skip its initialization.

2. Check that the FAN_ON_AUX SDP is according SDP hardware range. If it is not, report error in
GL_MNG_FWSM.EXT_ERR_IND and skip its initialization (report error, but do not enter error flow).

3. Check that the FAN_ON_AUX SDP is configured as Output,. If it is not, report error in
GL_MNG_FWSM.EXT_ERR_IND and skip its initialization (report error, but do not enter error flow).

4. Configure the FAN_ON_AUX SDP with the FAN_ON_AUX bit value from NVM.

Table 12-108. OCP NIC 3.0 Support

Feature Notes

NC-SI 1.1 See Section 12.6.

MCTP 1.3 See Section 12.8.

MAC Address Provisioning Requires NC-SI 1.2. Assumes current draft. May change.

Temperature Reporting - ASIC See Section 12.7.4.1.

Temperature Reporting - Modules See Section 12.7.4.1.

SFP/QSFP Modules Power Reporting See Section 12.7.4.1.

Board Power Reporting FRU over I2C. Defined at the board level.

Firmware Inventory and Update See Section 12.8.4.

Secure Firmware See Section 3.4.9.

NC-SI Package Addressing See Section 12.3.2.2.1.

FAN_ON_AUX Pin See Section 12.10.1.

Intel® Ethernet Controller E810 Datasheet
System Manageability

2026 613875-009

NOTE: This page intentionally left blank.

613875-009 2027

Intel® Ethernet Controller E810 Datasheet
Programming Interface

Chapter 13 Programming Interface

13.1 Introduction

This section details the programmer visible state inside the E810. In some cases, it describes hardware
structures invisible to software in order to clarify a concept.

The E810 address space is mapped into four regions with PCI Base Address registers described in
Section 14.2.6.1. These regions are listed in Table 13-1.

Rules for unsupported accesses:

• Accesses to non-implemented or disabled regions within a BAR are dropped for write accesses, or
respond with arbitrary data for read accesses. A PCIe error event is not generated and completions
return with successful status.

• Section 3.1.2.2 describes supported PCIe access sizes to each of the BARs and its components.

13.1.1 Access Mechanisms

13.1.1.1 Memory-Mapped Access to Internal Registers and
Memories

The internal registers and memories might be accessed as direct memory-mapped offsets from the
Base Address register (BAR0 or BAR 0/1 see Section 14.2.6.1).

In IOV mode, this area is partially duplicated per VF. All replications contain only the subset of the
register set that is available for VF programming.

13.1.1.2 Memory-Mapped Accesses to Flash

The external Flash can be accessed using direct memory-mapped offsets from the memory base
address register (BAR0 in 32-bit addressing or BAR0/BAR1 in 64-bit addressing; see Section 14.2.6.1).
See Table 13-4 for the location of Flash memory within the memory BAR. Access to Flash memory is
restricted to the first 64 KB when GLPCI_LBARCTRL.FLASH_EXPOSE is set to 0b.

See Section 3.4 for details on accessing the NVM.

Table 13-1. Address Space Regions

Addressable Content Mapping Style Region Size

Memory BAR (Internal registers, memories and Flash) Direct memory-mapped 4 MB - 128 MB

I/O BAR (optional Internal registers) I/O Window mapped 32 bytes1

1. The internal registers can be accessed though I/O space indirectly, as explained in the sections that follow.

MSI-X BAR (optional) Direct memory-mapped 64 KB

Expansion ROM BAR (optional) Direct memory-mapped 64 KB - 8 MB

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2028 613875-009

13.1.1.3 Memory-Mapped Access to MSI-X Tables

The MSI-X tables can be accessed as direct memory-mapped offsets from the base address register
(BAR3 or BAR3/4; see Section 14.2.6.1). See Section 14.3.3 for the appropriate offset for each specific
internal MSI-X register.

In IOV mode, this area is duplicated per VF. It requires a memory space of the maximum between
16 KB and the page size.

13.1.1.4 Memory-Mapped Access to Expansion ROM

The external Flash can also be accessed as a memory-mapped Expansion ROM. Accesses to offsets
starting from the Expansion ROM base address (see Section 14.2.6.2) reference the Flash provided that
access is enabled from NVM, and if the Expansion ROM base address register contains a valid
(non-zero) base memory address.

13.1.1.5 I/O-Mapped Access to Internal Registers

To support pre-boot operation, all internal registers in the regular CSR space can be accessed using I/O
operations. I/O accesses are supported only if an I/O base address is allocated and mapped (BAR2; see
Section 14.2.6.1), and I/O address decoding is enabled in the PCIe configuration.

When an I/O BAR is mapped, the I/O address range allocated opens a 32-byte window in the system
I/O address map. Within this window, two I/O addressable registers are implemented: IOADDR and
IODATA. The IOADDR register is used to specify a reference to an internal register, and then the
IODATA register is used as a window to the register address specified by IOADDR, as listed in Table 13-
2.

13.1.1.5.1 IOADDR (I/O Offset 0x00)

The IOADDR register must always be written as a DWord access. Section 3.1.2.3 describes how other
access sizes are handled.

Note: For software programmers, the IN and OUT instructions must be used to cause I/O cycles to
be used on the PCIe bus. Because writes must be to a 32-bit quantity, the source register of
the OUT instruction must be EAX (the only 32-bit register supported by the OUT command).
For reads, the IN instruction can have any size target register, but it is recommended that the
32-bit EAX register be used.

At hardware reset (LAN_PWR_GOOD) or PCI reset, this register value resets to 0x00000000. Once
written, the value is retained until the next write or reset.

Table 13-2. IOADDR and IODATA in I/O Address Space

Offset Abbreviation Name RW Size

0x00 IOADDR Internal Register Address. Covers the 8 MB CSR space.
0x00000-0x7FFFFF – Internal Registers.
0x3F0000-0xFFFFFFFF – Undefined.

RW 4 bytes

0x04 IODATA Data field for reads or writes to the Internal Register location as identified
by the current value in IOADDR. All 32 bits of this register can be read from
and written to.

RW 4 bytes

0x08-0x1F Reserved Reserved. RO 4 bytes

613875-009 2029

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.1.1.5.2 IODATA (I/O Offset 0x04)

The IODATA register must always be written as a DWord access (assuming the IOADDR register
contains a value for the internal register space). Reads to IODATA returns a DWord of data.
Section 3.1.2.3 describes how other access sizes are handled.

Notes:

• For software programmers, the IN and OUT instructions must be used to cause I/O cycles to be
used on the PCIe bus. Where 32-bit quantities are required on writes, the source register of the
OUT instruction must be EAX (the only 32-bit register supported by the OUT command).

• There are no special software timing requirements on accesses to IOADDR or IODATA. All accesses
are immediate, except when data is not readily available or acceptable. In this case, the E810
delays the results through normal bus methods (for example, split transaction or transaction retry).

• Because a register read or write takes two I/O cycles to complete, software must provide a
guarantee that the two I/O cycles occur as an atomic operation. Otherwise, results can be non-
deterministic from the software viewpoint.

13.1.1.5.3 Undefined I/O Offsets

I/O offsets 0x08 through 0x1F are considered to be reserved offsets with the I/O window. Reads from
these addresses return 0xFFFF.

13.1.1.6 Configuration Access to Internal Registers

To support legacy pre-boot 16-bit operating environments without requiring I/O address space, the
E810 enables accessing CSRs via the configuration address space by mapping IOADDR and IODATA
registers into the configuration address space. If the GLPCI_CAPSUP.CSR_CONF_EN bit is set to 1b,
access to CSRs via configuration address space is enabled.The register mapping in this case is listed in
Table 13-3.

Software writes data to an internal CSR via the configuration space in the following manner:

1. CSR address is written to the IOADDR register, where:

• Bit 31 (IOADDR.Configuration IO Access Enable) of the IOADDR should be set to 1b.

• Bits 30:0 of IOADDR should hold the actual address of the internal register being written to.

2. Data to be written is written into IODATA.

• IODATA is used as a window to the register address specified by IOADDR. As a result, the data
written to IODATA is written into the CSR pointed to by Bits 30:0 of IOADDR.

Table 13-3. IOADDR and IODATA in Configuration Address Space

Configuration
Address Abbreviation Name RW Size

0x98 IOADDR Internal Register Address. Covers the 8 MB CSR space.
0x00000-0x7FFFFF – Internal Registers.
0x3F0000-0xFFFFFFFF – Undefined.

RW 4 bytes

0x9C IODATA Data field for reads or writes to the internal register location as
identified by the current value in IOADDR. All 32 bits of this register
can be read from and written to.

RW 4 bytes

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2030 613875-009

3. IOADDR is cleared (all bits [31:0]) to avoid unintentional CSR read operations (that might cause
clear by read) by other applications scanning the configuration space.

Software reads data from an internal CSR via the configuration space in the following manner:

1. CSR address is written to IOADDR, where:

• Bit 31 (IOADDR.Configuration IO Access Enable) of IOADDR should be set to 1b.

• Bits 30:0 of IOADDR should hold the actual address of the internal register being read.

2. CSR value is read from IODATA.

• IODATA is used as a window to the register address specified by IOADDR. As a result, the data
read from IODATA is the data of the CSR pointed to by Bits 30:0 of IOADDR.

3. IOADDR is cleared (all bits [31:0]) to avoid unintentional CSR read operations (that might cause
clear by read) by other applications scanning the configuration space.

Notes:

• In the event that the GLPCI_CAPSUP.CSR_CONF_EN bit is cleared, accesses to IOADDR and IODATA
via the configuration address space are ignored and have no effect on the register and the CSRs
referenced by IOADDR.

• When functioning in a D3 state, software should not attempt to access CSRs via IOADDR and
IODATA.

• To enable CSR access via configuration space, software should set Bit 31
(IOADDR.Configuration IO Access Enable) of IOADDR to 1b. Software should clear Bit 31 of
IOADDR after completing CSR access to avoid an unintentional clear-by-read operation by another
application scanning the configuration address space. Software should also clear Bits 30:0 of
IOADDR to remove any trace of previous accesses to the configuration space (see previous flows).

• Bit 31 of IOADDR (IOADDR.Configuration IO Access Enable) has no effect when initiating access via
I/O address space.

13.1.2 Memory BAR

13.1.2.1 PF BAR Structure

The memory BAR provides access to internal CSRs, to the protocol engine doorbells, to page separated
doorbells, and to the external Flash (NVM). This section describes where each of these is located within
the BAR space.

The following configuration parameters define the structure of the PF memory BAR 0:

• FLASH_EXPOSE bit from the NVM (or the GLPCI_LBARCTRL.FLASH_EXPOSE CSR bit).

0b = Flash memory is not mapped in the memory BAR.

1b = Flash memory is mapped in the memory BAR. Hardware default; Flash memory is exposed
when during initialization the Flash is found to be blank or in error. The Flash area is
16 MB.

613875-009 2031

Intel® Ethernet Controller E810 Datasheet
Programming Interface

• PE_DB_SIZE field from the NVM (or the GLPCI_LBARCTRL.PE_DB_SIZE CSR field) — Determines
the size of the memory space allocated to protocol engine doorbells.

00b = Memory space is not allocated for PE doorbells.

01b = A 64 KB area is allocated.

10b = A (4 MB + 64 KB) area is allocated.

11b = Reserved.

• GLPCI_LBARCTL.PAGES_SPACE_EN_PF enable bit loaded from NVM:

0b = No region is allocated for SR-IOV mode specific addresses.

1b = A 96 MB region is allocated.

Table 13-4 lists all supported partitions of the memory BAR as a function of the previously-described
parameters. Other combinations of the parameters (not covered in the table) are not supported and
considered reserved for future expansion. The following rules apply:

• CSR space is located from the beginning of the BAR until address (8 MB - 64 KB-1).

• PE space (if it exists) is located from address (8 MB - 64 KB) and extends up to address 8 MB, or up
to address 16 MB (not including).

• The Flash space (if exposed) is always 16 MB and is in the 16 MB - 32 MB area.

• In scalable I/O mode, the range of 32 MB to 128 MB is used to expose resources in individual 4K
pages for user mode access.

The default configuration of the memory BAR (like when the Flash is empty) is defined by hardware
default values of the read-only GLPCI_LBARCTRL CSR. GLPCI_LBARCTRL is loaded from the NVM during
normal operation (such as when Flash contents are valid).

Table 13-4. Structure of the PF Memory BAR

Flash
Exposed

PE_DB
Size SIOV

PE Space Flash Space SIOV Space
BAR
Size

Min Addr Max Addr Min Addr Max Addr Min Addr Max Addr

No

00

0
(no SIOV
mode)

x x

x x

x x

8 MB

01 8 MB-64 KB 8 MB 8 MB

10 8 MB-64 KB 16 MB 16 MB

Yes

00 x x 16 MB 32 MB 32 MB

01 8 MB-64 KB 8 MB 16 MB 32 MB 32 MB

10 8 MB-64 KB 16 MB 16 MB 32 MB 32 MB

No

00

1
(SIOV
mode)

x x

x x

32 MB 128 MB

128 MB

01 8 MB-64 KB 8 MB 128 MB

10 8 MB-64 KB 16 MB 128 MB

Yes

00 x x 16 MB 32 MB 128 MB

01 8 MB-64 KB 8 MB 16 MB 32 MB 128 MB

10 8 MB-64 KB 16 MB 16 MB 32 MB 128 MB

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2032 613875-009

13.1.2.1.1 PF BAR Extension for Scalable I/O Mode

In order to allow allocation of resources to multiple Assignable Interfaces, these resources are mapped
to separate 4K pages.

13.1.2.2 VF BAR Structure

The VF memory BAR provides access to on-die CSRs and (optionally) to Protocol Engine doorbells for
VFs.

The GLPCI_LBARCTRL.VF_PE_DB_SIZE CSR field determines whether the regions allocated to the
Protocol Engine doorbells are provided with a separate region within the BAR:

00b = Memory space is not allocated for PE doorbells.

01b = An 8 KB area is allocated right after the legacy space (0x10000->0x11FFF).

10b = A 64 KB area is allocated (0x10000->0x20000).

11b = Reserved.

Note: Although only 32 VFs supports RDMA, all the VFs requires the same memory space.

Table 13-6 lists all supported partitions of the memory BAR as function of the previously described
parameters.

13.1.3 The MSI-X BAR

The structure of the MSI-X BAR is described in Section 14.3.3 (for a PF) and Section 14.5.3.1 (for a VF).

Table 13-5. Resources per area in PF space

Start Address End Address Content Mapping

32 MByte 35 MByte 768 Mailboxes 4K Page/Queue registers

35 MByte 46 MByte Spare

46 MByte 47 MByte Mapping of MSI-X vectors Contiguous mapping (12K)

47 MByte 48 MByte 256 tail bump registers of Doorbell queues 4K Page/Queue tail bumps

48 MByte 56 MByte 2048 interrupts (0-2047) 4K Page/Interrupt set

56 MByte 64 MByte 2K tail bump registers of Rx-Queues 4K Page/Queue registers

64 MByte 128 MByte 16K tail bump registers of Tx-Queues 4K Page/Queue registers

Table 13-6. Structure of the VF Memory BAR

PAGES_SPACE_EN_VF VF_PE_DB Size BAR Size

0 00b Max (64 KB, Page Size)

0 01b/10b Max (128 KB, Page Size)

1 x Max (256 KB, Page Size)

613875-009 2033

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.1.4 CSR Organization and Mapping

This section describes how CSRs are mapped into the PF and VF memory BAR. This section does not
apply to the following address space:

• The MSI-X BAR (defined per the PCI specifications).

• The memory space allocated to protocol engine doorbells (see Section 13.1.2.1).

13.1.4.1 Mapping by Scope

Registers are associated with a scope. A scope is a set of attributes for a register that define which
functions can access the register and how many instances exist for the register. Table 13-7 lists the
different scopes.

Table 13-7. Scope Mapping

Scope PF/VF Quantity Exposure Comments

GL PF 1 To all PFs.

GLVF PF, VF 1 To all PFs and VFs. Registers are RO.

PRT PF 8 Each PF has access to the registers of the port it is
associated with.

Registers are shared by all PFs
on a port.

PRTVF PF, VF 8 Each PF or VF has access to the registers of the port it
is associated with (for a VF, the port is the port the PF
is associated with).

Registers are RO.
Registers are shared by all PFs
and VFs on a port.

PF PF 8 Each PF has access to its copy only.

VF1 PF, VF 256 Each PF has access to the registers of its VFs only.
Each VF has access to its copy only.

VF16 PF, VF 16 Each PF has access to the registers of its VFs only.
Each VF has access to its copy only.
Available only for the first 16 VFs.

VF128 PF, VF 16 Each PF has access to the registers of its VFs only.
Each VF has access to its copy only.
Available only for the first 128 VFs.

VP PF 256 Each PF has access to the registers of its VFs only. These registers control VF
functionality.

VP16 PF 16 Each PF has access to the registers of its VFs only.
Available only for the first 16 VFs.

These registers control VF
functionality.

VP128 PF 128 Each PF has access to the registers of its VFs only.
Available only for the first 128 VFs.

These registers control VF
functionality.

QRX PF, VF 2048 Each PF has access to the registers allocated to it
(including its VFs).
Each VF has access to the registers allocated to it.

QTX PF, VF 16384 Each PF has access to the registers allocated to it
(including its VFs).
Each VF has access to the registers allocated to it.

DBLQ PF, VF 256 Each PF has access to the registers allocated to it
(including its VFs).
Each VF has access to the registers allocated to it.

CQ PF, VF 512 Each PF has access to the registers allocated to it
(including its VFs).
Each VF has access to the registers allocated to it.

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2034 613875-009

13.1.5 Register Conventions

All registers in the E810 are defined to be 32 bits, and should be accessed as 32-bit DWords. There are
some exceptions to this rule:

• Register pairs where two 32-bit registers make up a larger 64-bit logical unit.

• Accesses to Flash memory (via Expansion ROM space, secondary BAR space, or the I/O space)
might be byte, word or double word accesses. I/O accesses are limited to DWord accesses (see
Section 13.1.1.5).

• Accesses to BAR0 of a VF might be byte, word or DWord accesses. 64-bit (QWord) accesses to this
BAR are completed with a Completer Abort (CA) error.

• Access to the MSI-X BAR of the PFs and the VFs might be DWord or QWord accesses.

Reserved bit positions:

Some registers contain certain bits that are marked as reserved. Writes to a reserved field must set
the field to its initial value unless specified differently in the field description. Reads from registers
containing reserved bits might return indeterminate values in the reserved bit positions unless read
values are explicitly stated. When read, these reserved bits should be ignored by software.

Reserved and/or undefined addresses:

Any register address not explicitly declared in this Datasheet are considered to be reserved, and
should not be written to. Writing to reserved or undefined register addresses might cause
indeterminate behavior. Reads from reserved or undefined configuration register addresses might
return indeterminate values unless read values are explicitly stated for specific addresses.

Initial values:

Most registers define the initial hardware values prior to being programmed. In some cases,
hardware initial values are undefined and is listed as such via the text undefined, unknown, or X.
Such configuration values might need to be set via NVM configuration or via software for proper
operation to occur; this need is dependent on the function of the bit. Other registers might cite a
hardware default that is overridden by a higher-precedence operation. Operations that might
supersede hardware defaults might include a valid NVM load, completion of a hardware operation
(such as hardware auto-negotiation), or writing of a different register whose value is then reflected
in another bit.

For registers that should be accessed as 32-bit DWords, partial writes (less than a 32-bit DWord) does
not take effect (the write is ignored). Partial reads returns all 32 bits of data regardless of the byte
enables.

VSI PF 768 All PFs. Registers are shared by all PFs.

INT PF 2048 Each PF has access to the registers allocated to it.

INTVF PF, VF 512 Each VF has access to the registers allocated to it.1

Each PF has access to the registers of its VFs only.1

1. PE VF registers are a special case of VF registers. PE resources are provided only to a subset of the VFs (total of 32 VFs). However,
all VFs have PE registers mapped in their address space. When a VF accesses a PE register, it is mapped into the internal address
space as described here, followed by another translation into one of the 32 physical PE instances. This later translation is not
described in this section.

Table 13-7. Scope Mapping [continued]

Scope PF/VF Quantity Exposure Comments

613875-009 2035

Intel® Ethernet Controller E810 Datasheet
Programming Interface

Notes:

• Partial reads to clear-on-read registers (ICR) can have unexpected results since all 32 bits are
actually read regardless of the byte enables. Partial reads should not be done.

• All statistics registers are implemented as 32-bit registers. Though some logical statistics registers
represent counters in excess of 32 bits in width, registers must be accessed using 32-bit operations
(for example, independent access to each 32-bit field). When reading 64-bit statistics registers, the
least significant 32-bit register should be read first.

See special notes for VLAN filter table, multicast table arrays, and packet buffer memory that appear in
the specific register definitions.

13.1.5.1 Register Abbreviation Naming Conventions

The register abbreviation naming follows (in most cases) the following rules:

• Abbreviation starts with the register’s scoping. It could be Port registers (PRT), PF registers (PF)
and so on. See Table 13-7 for the complete list of register’s scopes.

• Then it follows by the register’s main block like DCB (for DCB registers), QF (for queue filters) and
so on.

• Then it follows by a few characters that summarize the register’s name.

13.1.6 Register Field Attributes

Table 13-8 lists the access type of registers' bit fields. The access rights of the PFs and the VFs to the
entire registers are defined per PF and VF registers. In some cases, the PFs and VFs might have Read
Only (RO) access rights to registers that can be programmed by the internal logic (either auto-load
from the NVM or programmed by the firmware). Registers defined as RO access override any access
type defined for its fields.

Table 13-8. Register Field Attributes

Type Description

RO Read Only
A register bit field with this attribute can be read. Writes have no effect on the bit field value. Used also for bits of
RO/V type.

RO/V Read Only Variant
A register bit field with this attribute can be read. Writes have no effect on the bit field value. The hardware can
change the value returned. Software should not expect a static value.

ROCV Read Only Clear Value
A register bit field with this attribute can be read. The value returned on the read might be different in each read
(typically a counter), and the value is cleared after the read. A write has no effect.

RSV Reserved
A register bit field with this attribute can be read and returns an indeterministic value. Writes must set the bit field
to its initial value unless specified differently in the field description.

RW Read/Write
A register with this attribute can be read and written. Read return the default value, the last value written, or
updated status from a previous operation. The field description specifies the field's actual behavior.

RW/V Read/Write Variant
Hardware loadable. Software can read from and write to field. Hardware can modify field value. Hardware write
have higher priority compare to software write.

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2036 613875-009

RCW Read Clear/Write
A register bit field with this attribute can be written or read. The value returned on the read might be different
than the value written (typically a counter) and the value is cleared after the read.

RW1C Read/Write 1 to Clear
A register bit field with this attribute can be read and written. Writing an individual bit within the field to a 1b
clears (sets to 0b) the corresponding bit and a write of a 0b has no effect. The value read might return the last
value written or the status of a previous operation. The field description specifies the field's actual read behavior.

RW1S Read/Write 1 to Set
A register bit field with this attribute can be read and written. Writing an individual bit within the field to a 1b sets
(sets to 1b) the corresponding bit and a write of a 0b has no effect. The value read might return the last value
written or the status of a previous operation. The field description specifies the field's actual read behavior.

RWC Read/Write Clear
A register bit field with this attribute can be written or read. The value returned on the read might be different
than the value written (typically a counter), and the value is cleared after a write of any value.

SC Self Clear
A register bit field with this attribute can be written or read. he value returned on the read might be different than
the value written (typically an action request), as the hardware clears the bit when the action is done/activated.

WO Write Only
A register bit field with this attribute can be only written. A read returns a fixed value not reflecting the content of
the register. This is used for keys that should be not be visible to other software agents.

Table 13-8. Register Field Attributes [continued]

Type Description

613875-009 2037

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.2 Device Registers - PF

13.2.1 BAR0 Registers Summary

Table 13-9. PF - General Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00074000 +
0x4*VF, VF=0...255 VFGEN_RSTAT[VF] VF Reset Status 13.2.2.1.1

0x00083048 GL_FWSTS Firmware Status Register 13.2.2.1.2

0x00088000 PFGEN_STATE PF State 13.2.2.1.3

0x000880C8 + 0x4*n,
n=0...6 GLGEN_GPIO_CTL[n] Global GPIO Control 13.2.2.1.4

0x00090000 +
0x4*VF, VF=0...255 VPGEN_VFRTRIG[VF] VF Reset Trigger 13.2.2.1.5

0x00090800 +
0x4*VF, VF=0...255 VPGEN_VFRSTAT[VF] VF Reset Status 13.2.2.1.6

0x00091000 PFGEN_CTRL PFGEN Control 13.2.2.1.7

0x00091080 PFGEN_PFRSTAT PFR STAT 13.2.2.1.8

0x00091180 PFGEN_DRUN PF Driver Unload 13.2.2.1.9

0x00091800 +
0x4*VSI, VSI=0...767 VSIGEN_RTRIG[VSI] VM Reset Trigger 13.2.2.1.10

0x00092800 +
0x4*VSI, VSI=0...767 VSIGEN_RSTAT[VSI] VM Reset Status 13.2.2.1.11

0x00093804 GL_XLR_MARKER_TRIG_VMLR XLR Marker Trigger 13.2.2.1.12

0x000939E8 GLGEN_MARKER_COUNT Global Marker Count 13.2.2.1.13

0x000939EC GLGEN_XLR_TRNS_WAIT_COUNT Global Wait Between Transaction Count 13.2.2.1.14

0x000939F0 GLGEN_XLR_MSK2HLP_RDY Global Wait for HLP After CORER 13.2.2.1.15

0x000939F4 GLGEN_ECC_ERR_RST_MASK_L ECC Error Mask Low 13.2.2.1.16

0x000939F8 GLGEN_ECC_ERR_RST_MASK_H ECC Error Mask High 13.2.2.1.17

0x000939FC GLGEN_ECC_ERR_INT_TOG_MASK_L ECC Error Int Mask Low 13.2.2.1.18

0x00093A00 GLGEN_ECC_ERR_INT_TOG_MASK_H ECC Error Int Mask High 13.2.2.1.19

0x00093A04 + 0x4*n,
n=0...7 GLGEN_VFLRSTAT[n] PFR STAT 13.2.2.1.20

0x000A2000 GL_XLR_MARKER_TRIG_TCVMLR TCVMLR XLR Marker Trigger 13.2.2.1.21

0x000A2004 GL_TCVMLR_QCTL Transmit Scheduler Queue Control 13.2.2.1.22

0x000A2008 GL_TCVMLR_DRAIN_MARKER TCVMLR Drain Marker Control 13.2.2.1.23

0x000A200C GL_TCVMLR_QCNTR TCVMLR Halt Done Down Counter 13.2.2.1.24

0x000A2010 GL_TCVMLR_QCFG TCVMLR Queue Port TC Config Control 13.2.2.1.25

0x000A2014 GL_TCVMLR_QCFG_RD TCVMLR Queue Port TC Config Status 13.2.2.1.26

0x000A2018 GL_TCVMLR_REQ_STAT TCVMLR Req Flow Status Control 13.2.2.1.27

0x000A201C GL_TCVMLR_STAT TCVMLR Req Flow Status Read 13.2.2.1.28

0x000A2024 GL_TCVMLR_ERR_STAT TCVMLR Req Flow Error Status 13.2.2.1.29

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2038 613875-009

0x000A20A8 + 0x4*n,
n=0...31 GL_TCVMLR_DRAIN_DONE_TCLAN[n] TCVMLR Drain Done Count for TCLAN 13.2.2.1.30

0x000A2128 + 0x4*n,
n=0...31 GL_TCVMLR_DRAIN_DONE_TPB[n] TCVMLR Drain Done Count for TPB 13.2.2.1.31

0x000A21A8 GL_TCVMLR_DRAIN_DONE_DEC TCVMLR Drain Done Decrement Control 13.2.2.1.32

0x000A21C0 PRT_TCVMLR_DRAIN_CNTR TCVMLR Drain Done Down Counter 13.2.2.1.33

0x000A21E0 GL_TCVMLR_DRAIN_CNTR_CTL TCVMLR Drain Done Down Counter Control 13.2.2.1.34

0x000B612C GLGEN_STAT Global Status 13.2.2.1.35

0x000B8100 PRTGEN_STATUS General Port Status 13.2.2.1.36

0x000B8120 PRTGEN_CNF General Port Configuration 13.2.2.1.37

0x000B8160 PRTGEN_CNF2 General Port Configuration2 13.2.2.1.38

0x000B8180 GLGEN_RSTCTL Global Reset Control 13.2.2.1.39

0x000B8184 GLGEN_CLKSTAT Global Clock Status 13.2.2.1.40

0x000B8188 GLGEN_RSTAT Global Reset Status 13.2.2.1.41

0x000B8190 GLGEN_RTRIG Global Reset Trigger 13.2.2.1.42

0x000B81E4 GLGEN_ASSERT_HLP Global Switch Mode Reset Control 13.2.2.1.43

0x000B8214 GLVFGEN_TIMER Global Device Timer 13.2.2.1.44

0x000B826C GLGEN_CLKSTAT_SRC Global Clock Status 13.2.2.1.45

0x000B8280 PRTGEN_CNF3 General Port Configuration3 13.2.2.1.46

0x001D2400 PFGEN_PORTNUM LAN Port Number 13.2.2.1.47

0x0020C000 + 0x4*n,
n=0...63 GLGEN_ANA_FLAG_MAP[n] GLGEN_ANA_FLAG_MAP 13.2.2.1.48

0x0020C100 GLGEN_ANA_DEF_PTYPE GLGEN_ANA_DEF_PTYPE 13.2.2.1.49

0x0020C104 GLGEN_ANA_CFG_CTRL GLGEN_ANA_CFG_CTRL 13.2.2.1.50

0x0020C108 GLGEN_ANA_CFG_WRDATA GLGEN_ANA_CFG_WRDATA 13.2.2.1.51

0x0020C10C + 0x4*n,
n=0...15 GLGEN_ANA_CFG_RDDATA[n] GLGEN_ANA_CFG_RDDATA 13.2.2.1.52

0x0020C14C + 0x4*n,
n=0...2 GLGEN_ANA_CFG_LU_KEY[n] GLGEN_ANA_CFG_LU_KEY 13.2.2.1.53

0x0020C158 GLGEN_ANA_CFG_HTBL_LU_RESULT GLGEN_ANA_CFG_HTBL_LU_RESULT 13.2.2.1.54

0x0020C15C GLGEN_ANA_CFG_SPLBUF_LU_RESULT GLGEN_ANA_CFG_SPLBUF_LU_RESULT 13.2.2.1.55

0x0020C160 + 0x4*n,
n=0...15 GLGEN_ANA_P2P[n] GLGEN_ANA_P2P 13.2.2.1.56

0x0020C1A0 + 0x4*n,
n=0...3 GLGEN_ANA_PG0_HASHKEY[n] GLGEN_ANA_PG0_HASHKEY 13.2.2.1.57

0x0020C1B0 + 0x4*n,
n=0...3 GLGEN_ANA_NMPG0_HASHKEY[n] GLGEN_ANA_NMPG0_HASHKEY 13.2.2.1.58

0x0020C1C0 + 0x4*n,
n=0...3 GLGEN_ANA_PG_KEYMASK[n] GLGEN_ANA_PG_KEYMASK 13.2.2.1.59

0x0020C1D0 + 0x4*n,
n=0...3 GLGEN_ANA_NMPG_KEYMASK[n] GLGEN_ANA_NMPG_KEYMASK 13.2.2.1.60

Table 13-9. PF - General Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2039

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0020C1E4 + 0x4*n,
n=0...5 GLGEN_ANA_LAST_PROT_ID[n] GLGEN_ANA_LAST_PROT_ID 13.2.2.1.61

0x0020C1FC GLGEN_ANA_PROFIL_CTRL GLGEN_ANA_PROFIL 13.2.2.1.62

0x0020C200 GLGEN_ANA_OUT_OF_PKT GLGEN_ANA_OUT_OF_PKT 13.2.2.1.63

0x0020C204 GLGEN_ANA_NO_HIT_PG_NM_PG GLGEN_ANA_NO_HIT_PG_NM_PG 13.2.2.1.64

0x0020C208 GLGEN_ANA_ALU_ACCSS_OUT_OF_PKT GLGEN_ANA_ALU_ACCSS_OUT_OF_PKT 13.2.2.1.65

0x0020C210 GLGEN_ANA_INV_NODE_PTYPE GLGEN_ANA_INV_NODE_PTYPE 13.2.2.1.66

0x0020C218 GLGEN_ANA_INV_PTYPE_MARKER GLGEN_ANA_INV_PTYPE_MARKER 13.2.2.1.67

0x0020C21C GLGEN_ANA_ABORT_PTYPE GLGEN_ANA_ABORT_PTYPE 13.2.2.1.68

0x0020C220 GLGEN_ANA_ERR_CTRL GLGEN_ANA_ERR_CTRL 13.2.2.1.69

0x0020D000 + 0x4*n,
n=0...63 GLGEN_ANA_TX_FLAG_MAP[n] GLGEN_ANA_TX_FLAG_MAP 13.2.2.1.70

0x0020D100 GLGEN_ANA_TX_DEF_PTYPE GLGEN_ANA_TX_DEF_PTYPE 13.2.2.1.71

0x0020D104 GLGEN_ANA_TX_CFG_CTRL GLGEN_ANA_TX_CFG_CTRL 13.2.2.1.72

0x0020D108 GLGEN_ANA_TX_CFG_WRDATA GLGEN_ANA_TX_CFG_WRDATA 13.2.2.1.73

0x0020D10C + 0x4*n,
n=0...15 GLGEN_ANA_TX_CFG_RDDATA[n] GLGEN_ANA_TX_CFG_RDDATA 13.2.2.1.74

0x0020D14C + 0x4*n,
n=0...2 GLGEN_ANA_TX_CFG_LU_KEY[n] GLGEN_ANA_TX_CFG_LU_KEY 13.2.2.1.75

0x0020D158 GLGEN_ANA_TX_CFG_HTBL_LU_RESULT GLGEN_ANA_TX_CFG_HTBL_LU_RESULT 13.2.2.1.76

0x0020D15C GLGEN_ANA_TX_CFG_SPLBUF_LU_RESULT GLGEN_ANA_TX_CFG_SPLBUF_LU_RESULT 13.2.2.1.77

0x0020D160 + 0x4*n,
n=0...15 GLGEN_ANA_TX_P2P[n] GLGEN_ANA_TX_P2P 13.2.2.1.78

0x0020D1A0 + 0x4*n,
n=0...3 GLGEN_ANA_TX_PG0_HASHKEY[n] GLGEN_ANA_TX_PG0_HASHKEY 13.2.2.1.79

0x0020D1B0 + 0x4*n,
n=0...3 GLGEN_ANA_TX_NMPG0_HASHKEY[n] GLGEN_ANA_TX_NMPG0_HASHKEY 13.2.2.1.80

0x0020D1C0 + 0x4*n,
n=0...3 GLGEN_ANA_TX_PG_KEYMASK[n] GLGEN_ANA_TX_PG_KEYMASK 13.2.2.1.81

0x0020D1D0 + 0x4*n,
n=0...3 GLGEN_ANA_TX_NMPG_KEYMASK[n] GLGEN_ANA_TX_NMPG_KEYMASK 13.2.2.1.82

0x0020D1FC GLGEN_ANA_TX_PROFIL_CTRL GLGEN_ANA_TX_PROFIL_CTRL 13.2.2.1.83

0x0020D204 GLGEN_ANA_TX_NO_HIT_PG_NM_PG GLGEN_ANA_TX_NO_HIT_PG_NM_PG 13.2.2.1.84

0x0020D208 GLGEN_ANA_TX_ALU_ACCSS_OUT_OF_PKT GLGEN_ANA_TX_ALU_ACCSS_OUT_OF_PKT 13.2.2.1.85

0x0020D210 GLGEN_ANA_TX_INV_NODE_PTYPE GLGEN_ANA_TX_INV_NODE_PTYPE 13.2.2.1.86

0x0020D214 GLGEN_ANA_TX_INV_PROT_ID GLGEN_ANA_TX_INV_PROT_ID 13.2.2.1.87

0x0020D218 GLGEN_ANA_TX_INV_PTYPE_MARKER GLGEN_ANA_TX_INV_PTYPE_MARKER 13.2.2.1.88

0x0020D21C GLGEN_ANA_TX_ABORT_PTYPE GLGEN_ANA_TX_ABORT_PTYPE 13.2.2.1.89

0x0020D220 GLGEN_ANA_TX_ERR_CTRL GLGEN_ANA_TX_ERR_CTRL 13.2.2.1.90

0x0020D4CC GLGEN_ANA_TX_DFD_PACE_OUT GLGEN_ANA_TX_DFD_PACE_OUT 13.2.2.1.91

Table 13-9. PF - General Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2040 613875-009

Table 13-10. PF - Internal Fuses Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x000A400C GL_UFUSE_SOC SKU Fuses 13.2.2.2.1

Table 13-11. PF - PCIe Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x0009D880 PFPCI_SUBSYSID PFPCIe Subsystem ID 13.2.2.3.1

0x0009D980 PFPCI_FUNC PCIe Functions Configuration 13.2.2.3.2

0x0009DA00 PFPCI_STATUS1 PCIe Function Status 1 13.2.2.3.3

0x0009DA80 PFPCI_PM PCIe PM 13.2.2.3.4

0x0009DB00 PFPCI_CLASS PCIe Storage Class 13.2.2.3.5

0x0009DE00 PFPCI_DEVID PCIe PF Device ID 13.2.2.3.6

0x0009DE70 GL_CLKGATE_EVENTS Clock Gating Events 13.2.2.3.7

0x0009DE74 GLPCI_LBARCTRL PCI BAR Control 13.2.2.3.8

0x0009DE7C GLPCI_PWRDATA PCIe Power Data Register 13.2.2.3.9

0x0009DE80 GLPCI_SERL PCIe Serial Number MAC Address Low 13.2.2.3.10

0x0009DE84 GLPCI_SERH PCIe Serial Number MAC Address High 13.2.2.3.11

0x0009DE88 GLPCI_CAPCTRL PCIe Capabilities Control 13.2.2.3.12

0x0009DE8C GLPCI_CAPSUP PCIe Capabilities Support 13.2.2.3.13

0x0009DE90 GLPCI_LINKCAP PCIe Link Capabilities 13.2.2.3.14

0x0009DE94 GLPCI_PMSUP PCIe PM Support 13.2.2.3.15

0x0009DE98 GLPCI_REVID PCIe Revision ID 13.2.2.3.16

0x0009DE9C GLPCI_VFSUP PCIe VF Capabilities Support 13.2.2.3.17

0x0009DEA0 GLPCI_CNF PCIe Global Config 13.2.2.3.18

0x0009DEC8 GLPCI_VENDORID PCIe Vendor ID 13.2.2.3.19

0x0009DEE8 GLPCI_SUBVENID PCIe Subsystem ID 13.2.2.3.20

0x0009DF00 PFPCI_CNF PCIe PF Configuration 13.2.2.3.21

0x0009DF40 PQ_FIFO_STATUS Posted Queue IOSF FIFO Status 13.2.2.3.22

0x0009DF44 GLPCI_PUSH_PE_IF_TO_STATUS Push PE IF Status 13.2.2.3.23

0x0009E000 + 0x4*VF,
VF=0...255 PFPCI_VF_FLUSH_DONE[VF] PCIe VF Flush Done 13.2.2.3.24

0x0009E400 PFPCI_PF_FLUSH_DONE PCIe PF Flush Done 13.2.2.3.25

0x0009E480 PFPCI_VM_FLUSH_DONE PCIe VM Flush Done 13.2.2.3.26

0x0009E500 PF_PCI_CIAD PCIe Configuration Indirect Access Data 13.2.2.3.27

0x0009E580 PF_PCI_CIAA PCIe Configuration Indirect Access Address 13.2.2.3.28

0x0009E600 PFPCI_VMINDEX PCIe VM Pending Index 13.2.2.3.29

0x0009E800 PFPCI_VMPEND PCIe VM Pending Status 13.2.2.3.30

0x0009E880 PF_FUNC_RID Function Requester ID Information Register 13.2.2.3.31

0x0009E900 PFPCI_FACTPS Function Active and Power State 13.2.2.3.32

613875-009 2041

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0009E954 + 0x4*n, n=0...3 GLPCI_GSCL_5_8[n] PCIe Statistic Control Register #5...#8 13.2.2.3.33

0x0009E970 GLPCI_BYTCTH_P PCIe Byte Counter High 13.2.2.3.34

0x0009E994 GLPCI_BYTCTL_P PCIe Byte Counter Low 13.2.2.3.35

0x0009E998 GLPCI_GSCL_2 PCIe Statistic Control Registers #2 13.2.2.3.36

0x0009E99C + 0x4*n, n=0...3 GLPCI_GSCN_0_3[n] PCIe Statistic Counter Registers #0...#3 13.2.2.3.37

0x0009E9AC GLPCI_DREVID PCIe Default Revision ID 13.2.2.3.38

0x0009E9B0 GLPCI_PKTCT_P PCIe Packet Counter 13.2.2.3.39

0x0009E9B4 GLPCI_GSCL_1_P PCIe Statistic Control Register #1 13.2.2.3.40

0x000BE004 GLPCI_CNF2 PCIe Global Config 2 13.2.2.3.41

0x000BE0D4 GLPCI_UPADD PCIe Upper Address 13.2.2.3.42

0x000BFD80 GLPCI_NPQ_CFG PCIe NPQ Config 13.2.2.3.43

0x000BFD90 GLPCI_WATMK_CLNT_PIPEMON PCIe NPQ Watermark of Pipe Monitor 13.2.2.3.44

0x000BFD9C GLPCI_PKTCT_NP_C PCIe Packet Counter 13.2.2.3.45

0x000BFDA0 GLPCI_LATCT_NP_C PCIe Packet Counter 13.2.2.3.46

0x000BFDA4 GLPCI_GSCL_1_NP_C PCIe Statistic Control Register #1 13.2.2.3.47

0x000BFDA8 GLPCI_BYTCTH_NP_C PCIe Byte Counter High 13.2.2.3.48

0x000BFDAC GLPCI_BYTCTL_NP_C PCIe Byte Counter Low 13.2.2.3.49

Table 13-12. PF - MAC Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x001E3180 PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE HSEC CONTROL Receive PFC ENABLE 13.2.2.4.1

0x001E31A0 PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE HSEC CONTROL Transmit
PAUSE_ENABLE 13.2.2.4.2

0x001E31C0 PRTMAC_HSEC_CTL_RX_ENABLE_GCP HSEC CONTROL Receive
ENABLE_GCP 13.2.2.4.3

0x001E3220 PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART1 HSEC CONTROL Receive
PAUSE_DA_UCAST_PART1 13.2.2.4.4

0x001E3240 PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART2 HSEC CONTROL Receive
PAUSE_DA_UCAST_PART2 13.2.2.4.5

0x001E3280 PRTMAC_HSEC_CTL_RX_PAUSE_SA_PART1 HSEC CONTROL Receive
PAUSE_SA_PART1 13.2.2.4.6

0x001E32A0 PRTMAC_HSEC_CTL_RX_PAUSE_SA_PART2 HSEC CONTROL Receive
PAUSE_SA_PART2 13.2.2.4.7

0x001E34C0 PRTMAC_HSEC_CTL_RX_ENABLE_GPP HSEC CONTROL Receive
ENABLE_GPP 13.2.2.4.8

0x001E35C0 PRTMAC_HSEC_CTL_RX_ENABLE_PPP HSEC CONTROL Receive ENABLE_PPP 13.2.2.4.9

0x001E36C0 PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL HSEC CONTROL Receive
FORWARD_CONTROL 13.2.2.4.10

0x001E36E0 +
0x20*n, n=0...8 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA[n] HSEC CONTROL Transmit

PAUSE_QUANTA 13.2.2.4.11

Table 13-11. PF - PCIe Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2042 613875-009

0x001E3800 +
0x20*n, n=0...8 PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER[n] HSEC CONTROL Transmit

PAUSE_REFRESH_TIMER 13.2.2.4.12

0x001E3960 PRTMAC_HSEC_CTL_TX_SA_PART1 HSEC CONTROL Transmit
SA_GPP_PART1 13.2.2.4.13

0x001E3980 PRTMAC_HSEC_CTL_TX_SA_PART2 HSEC CONTROL Transmit
SA_GPP_PART2 13.2.2.4.14

0x001E3C20 PRTMAC_RX_PKT_DRP_CNT MAC Rx Silent Drop Count 13.2.2.4.15

0x001E3C40 PRTMAC_HSEC_CTL_RX_QUANTA_SHIFT MAC Rx Shift FC Quanta 13.2.2.4.16

0x001E3C60 +
0x20*n, n=0...7 PRTMAC_MD_OVRRIDE_ENABLE[n] MAC Rx Metadata Override Enable 13.2.2.4.17

0x001E3D60 +
0x20*n, n=0...7 PRTMAC_MD_OVRRIDE_VAL[n] MAC Rx Metadata Override Value 13.2.2.4.18

0x001E47C0 PRTMAC_LINK_DOWN_COUNTER Link Down Counter 13.2.2.4.19

0x001E4840 PRTMAC_TX_LNK_UP_CNT Link UP Counter Limit 13.2.2.4.20

0x001E48C0 PRTMAC_TX_CNT_MRKR MAC Markers Counter Tx 13.2.2.4.21

0x001E48E0 PRTMAC_RX_CNT_MRKR MAC Markers Counter Rx 13.2.2.4.22

Table 13-13. PF - Power Management Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x000B81BC GLGEN_PME_TO PME_TO Indication 13.2.2.5.1

0x000B81EC GL_PWR_MODE_DIVIDE_S5_H_CTRL Global Power Mode Control S5 13.2.2.5.2

0x000B81F0 GL_PWR_MODE_DIVIDE_S0_CTRL_H_PECLK Global Power Mode Control PE 13.2.2.5.3

0x000B81F4 GL_PWR_MODE_DIVIDE_S0_CTRL_H_UCLK Global Power Mode Control Upper 13.2.2.5.4

0x000B81F8 GL_PWR_MODE_DIVIDE_S0_CTRL_H_RXCTL Global Power Mode Control RXCTL 13.2.2.5.5

0x000B81FC GL_PWR_MODE_DIVIDE_S0_CTRL_H_PSM Global Power Mode Control PSM 13.2.2.5.6

0x000B8200 GL_PWR_MODE_DIVIDE_S0_CTRL_H_LCLK Global Power Mode Control Lower 13.2.2.5.7

0x000B8208 GL_PWR_MODE_DIVIDE_S0_CTRL_H_UANA Global Power Mode Control UANA 13.2.2.5.8

0x000B820C GL_PWR_MODE_CTL Global Power Mode Control 13.2.2.5.9

0x000B8218 GL_PWR_MODE_DIVIDE_CTRL_L_DEFAULT Global Power Mode Control Defaults 13.2.2.5.10

0x000B821C GL_PWR_MODE_DIVIDE_S0_CTRL_M_PECLK Global Power Mode Control PE 13.2.2.5.11

0x000B8220 GL_PWR_MODE_DIVIDE_S0_CTRL_L_PECLK Global Power Mode Control PE 13.2.2.5.12

0x000B8224 GL_PWR_MODE_DIVIDE_S0_CTRL_M_UCLK Global Power Mode Control Upper 13.2.2.5.13

0x000B8228 GL_PWR_MODE_DIVIDE_S0_CTRL_M_RXCTL Global Power Mode Control RXCTL 13.2.2.5.14

0x000B822C GL_PWR_MODE_DIVIDE_S0_CTRL_M_PSM Global Power Mode Control PSM 13.2.2.5.15

0x000B8230 GL_PWR_MODE_DIVIDE_S0_CTRL_M_LCLK Global Power Mode Control Lower 13.2.2.5.16

0x000B8234 GL_PWR_MODE_DIVIDE_S0_CTRL_M_UANA Global Power Mode Control UANA 13.2.2.5.17

0x000B8238 GL_PWR_MODE_DIVIDE_S0_CTRL_L_UCLK Global Power Mode Control Upper 13.2.2.5.18

0x000B823C GL_PWR_MODE_DIVIDE_S0_CTRL_L_RXCTL Global Power Mode Control RXCTL 13.2.2.5.19

0x000B8240 GL_PWR_MODE_DIVIDE_S0_CTRL_L_PSM Global Power Mode Control PSM 13.2.2.5.20

Table 13-12. PF - MAC Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2043

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x000B8244 GL_PWR_MODE_DIVIDE_S0_CTRL_L_LCLK Global Power Mode Control Lower 13.2.2.5.21

0x000B8248 GL_PWR_MODE_DIVIDE_S0_CTRL_L_UANA Global Power Mode Control UANA 13.2.2.5.22

0x000B824C GL_PWR_MODE_DIVIDE_S5_L_CTRL Global Power Mode Control S5 13.2.2.5.23

0x000B8250 GL_PWR_MODE_DIVIDE_S5_M_CTRL Global Power Mode Control S5 13.2.2.5.24

0x000B825C GL_PWR_MODE_DIVIDE_CTRL_H_DEFAULT Global Power Mode Control Defaults 13.2.2.5.25

0x000B8260 GL_PWR_MODE_DIVIDE_CTRL_M_DEFAULT Global Power Mode Control Defaults 13.2.2.5.26

0x000B8270 GL_S5_PWR_MODE_EXIT_CTL Global Power Mode Control 13.2.2.5.27

0x001E4320 PRTPM_EEE_STAT Energy Efficient Ethernet (EEE) Status 13.2.2.5.28

0x001E4360 PRTPM_EEER Energy Efficient Ethernet (EEE) Register 13.2.2.5.29

0x001E4380 PRTPM_EEEC Energy Efficient Ethernet (EEE) Control 13.2.2.5.30

0x001E43A0 PRTPM_RLPIC EEE Rx LPI Count 13.2.2.5.31

0x001E43C0 PRTPM_TLPIC EEE Tx LPI Count 13.2.2.5.32

0x001E43E0 PRTPM_EEETXC EEE Tx Control 13.2.2.5.33

0x001E4400 PRTPM_EEEFWD EEE Tx FW Done 13.2.2.5.34

Table 13-14. PF - Wake-Up Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x0009DB80 PFPM_WUS Wake-Up Status Register 13.2.2.6.1

0x0009DC00 PFPM_WUFC Wake-Up Filter Control Register 13.2.2.6.2

0x0009DC80 PFPM_WUC Wake-Up Control Register 13.2.2.6.3

0x0009DEE4 GLPM_WUMC Wake-Up on MNG Control 13.2.2.6.4

0x000B8080 PFPM_APM APM Control Register 13.2.2.6.5

0x001E3B20 + 0x20*n, n=0...3 PRTPM_SAL[n] MAC Address Low 13.2.2.6.6

0x001E3BA0 + 0x20*n, n=0...3 PRTPM_SAH[n] MAC Address High 13.2.2.6.7

Table 13-15. PF - NVM Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x000824C4 GLNVM_AL_DONE_HLP HLP Auto-Load Done Register 13.2.2.7.1

0x000B6008 GLNVM_ULD Unit Load Status 13.2.2.7.2

0x000B6010 + 0x4*n, n=0...59 GLNVM_PROTCSR[n] Protected CSR List 13.2.2.7.3

0x000B6100 GLNVM_GENS Global NVM General Status Register 13.2.2.7.4

0x000B6108 GLNVM_FLA Flash Access Register 13.2.2.7.5

0x000B6140 GLNVM_ALTIMERS Auto-Load Timers 13.2.2.7.6

0x000B6154 GLNVM_ULT Unit Load Timeout 13.2.2.7.7

Table 13-13. PF - Power Management Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2044 613875-009

Table 13-16. PF - Analyzer Registers (Pre Parser) Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x000492A8 + 0x4*n, n=0...7 GL_SWT_L2TAG0[n] L2 Tag Data Low 13.2.2.8.1

0x000492C8 + 0x4*n, n=0...7 GL_SWT_L2TAG1[n] L2 Tag Data High 13.2.2.8.2

0x000492E8 + 0x4*n, n=0...7 GL_SWT_L2TAGTXIB[n] L2 Tag Tx Insert Bytes 13.2.2.8.3

0x00052000 + 0x4*n, n=0...7 GL_SWT_L2TAGRXEB[n] L2 Tag Rx Extract Bytes 13.2.2.8.4

0x001D2660 + 0x4*n, n=0...7 GL_SWT_L2TAGCTRL[n] L2 Tag Control 13.2.2.8.5

Table 13-17. PF - FlexiPipe Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x0020E000 + 0x4*n, n=0...2 GL_PSTEXT_FORCE_PID[n] Force Profile ID 13.2.2.9.1

0x0020E00C + 0x4*n, n=0...2 GL_PSTEXT_PLVL_SEL[n] Profile Level Selector 13.2.2.9.2

0x0020E018 + 0x4*n, n=0...2 GL_PSTEXT_FORCE_L1CDID[n] L1 Force CDID 13.2.2.9.3

0x0020E024 + 0x4*n, n=0...2 GL_PSTEXT_P2P_L1ADDR[n] L1 P2P Table Configuration Address 13.2.2.9.4

0x0020E030 + 0x4*n, n=0...2 GL_PSTEXT_P2P_L1DATA[n] L1 P2P Table Configuration Data 13.2.2.9.5

0x0020E03C + 0x4*n, n=0...2 GL_PSTEXT_XLT0_L1ADDR[n] XLT0 Table Configuration Address 13.2.2.9.6

0x0020E048 + 0x4*n, n=0...2 GL_PSTEXT_XLT0_L1DATA[n] XLT0 Table Configuration Data 13.2.2.9.7

0x0020E054 + 0x4*n, n=0...2 GL_PSTEXT_CDMD_L1SEL[n] L1 Bidirectional CTL 13.2.2.9.8

0x0020E060 + 0x4*n, n=0...2 GL_PSTEXT_FLGS_L1TBL[n] L1 Flag Select Table 13.2.2.9.9

0x0020E06C + 0x4*n, n=0...2 GL_PSTEXT_FLGS_L1SEL0_1[n] L1 Flag Select Control (0-1) 13.2.2.9.10

0x0020E078 + 0x4*n, n=0...2 GL_PSTEXT_FLGS_L1SEL2_3[n] L1 Flag Select Control (2-3) 13.2.2.9.11

0x0020E084 + 0x4*n, n=0...2 GL_PSTEXT_CTLTBL_L2ADDR[n] L2 Configuration Table Address 13.2.2.9.12

0x0020E090 + 0x4*n, n=0...2 GL_PSTEXT_CTLTBL_L2DATA[n] L2 Configuration Table Data 13.2.2.9.13

0x0020E09C + 0x4*n, n=0...2 GL_PSTEXT_L2PRTMOD[n] XLT1, XLT2 Partition Mode 13.2.2.9.14

0x0020E0C0 + 0x4*n, n=0...2 GL_PSTEXT_XLT1_L2ADDR[n] XLT1 Table Configuration Address 13.2.2.9.15

0x0020E0CC + 0x4*n, n=0...2 GL_PSTEXT_XLT1_L2DATA[n] XLT1 Table Configuration Data 13.2.2.9.16

0x0020E0D8 + 0x4*n, n=0...2 GL_PSTEXT_XLT2_L2ADDR[n] XLT2 Table Configuration Address 13.2.2.9.17

0x0020E0E4 + 0x4*n, n=0...2 GL_PSTEXT_XLT2_L2DATA[n] XLT2 Table Configuration Data 13.2.2.9.18

0x0020E0F0 + 0x4*n, n=0...2 GL_PSTEXT_PID_L2GKTYPE[n] Profile ID Gen Key Type 13.2.2.9.19

0x0020E0FC + 0x4*n, n=0...2 GL_PSTEXT_L2_PMASK0[n] Profile Key Mask (LSB) 13.2.2.9.20

0x0020E108 + 0x4*n, n=0...2 GL_PSTEXT_L2_PMASK1[n] Profile Key Mask (MSB) 13.2.2.9.21

0x0020E114 + 0x4*n, n=0...2 GL_PSTEXT_TCAM_L2ADDR[n] TCAM Configuration (Address) 13.2.2.9.22

0x0020E120 + 0x4*n, n=0...2 GL_PSTEXT_TCAM_L2DATALSB[n] TCAM Configuration LSB (Data) 13.2.2.9.23

0x0020E12C + 0x4*n, n=0...2 GL_PSTEXT_TCAM_L2DATAMSB[n] TCAM Configuration MSB
(Data+Mask) 13.2.2.9.24

0x0020E138 + 0x4*n, n=0...2 GL_PSTEXT_DFLT_L2PRFL[n] L2 Default Profile 13.2.2.9.25

0x0020E144 + 0x4*n, n=0...2 GL_PSTEXT_K2N_L2ADDR[n] K2N Table Configuration Address 13.2.2.9.26

0x0020E150 + 0x4*n, n=0...2 GL_PSTEXT_K2N_L2DATA[n] K2N Table Configuration Data 13.2.2.9.27

0x0020E15C + 0x4*n, n=0...2 GL_PSTEXT_N2N_L2ADDR[n] K2N Table Configuration Address 13.2.2.9.28

613875-009 2045

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0020E168 + 0x4*n, n=0...2 GL_PSTEXT_N2N_L2DATA[n] K2N Table Configuration Data 13.2.2.9.29

0x0020E174 + 0x4*n, n=0...63 GL_PSTEXT_PRFLM_DATA_0[n] Profile Memory Configuration Data 13.2.2.9.30

0x0020E274 + 0x4*n, n=0...63 GL_PSTEXT_PRFLM_DATA_1[n] Profile Memory Configuration Data 13.2.2.9.31

0x0020E374 + 0x4*n, n=0...63 GL_PSTEXT_PRFLM_DATA_2[n] Profile Memory Configuration Data 13.2.2.9.32

0x0020E474 + 0x4*n, n=0...2 GL_PSTEXT_PRFLM_CTRL[n] Profile Memory Configuration Control 13.2.2.9.33

0x0020E480 + 0x4*n, n=0...2 GL_PSTEXT_FL15_BMPLSB[n] PG L2 Flag15 Bitmask (LSB) 13.2.2.9.34

0x0020E48C + 0x4*n, n=0...2 GL_PSTEXT_FL15_BMPMSB[n] PG L2 Flag15 Bitmask (MSB) 13.2.2.9.35

0x0020E498 + 0x4*n, n=0...2 GL_PSTEXT_L2_TMASK0[n] Profile Key Mask (LSB) 13.2.2.9.36

0x0020E4A4 + 0x4*n, n=0...2 GL_PSTEXT_L2_TMASK1[n] Profile Key Mask (MSB) 13.2.2.9.37

0x0020F000 + 0x4*n, n=0...2 GL_PREEXT_FORCE_PID[n] Force Profile ID 13.2.2.9.38

0x0020F00C + 0x4*n, n=0...2 GL_PREEXT_PLVL_SEL[n] Profile Level Selector 13.2.2.9.39

0x0020F018 + 0x4*n, n=0...2 GL_PREEXT_FORCE_L1CDID[n] L1 Force CDID 13.2.2.9.40

0x0020F024 + 0x4*n, n=0...2 GL_PREEXT_P2P_L1ADDR[n] L1 P2P Table Configuration Address 13.2.2.9.41

0x0020F030 + 0x4*n, n=0...2 GL_PREEXT_P2P_L1DATA[n] L1 P2P Table Configuration Data 13.2.2.9.42

0x0020F03C + 0x4*n, n=0...2 GL_PREEXT_XLT0_L1ADDR[n] XLT0 Table Configuration Address 13.2.2.9.43

0x0020F048 + 0x4*n, n=0...2 GL_PREEXT_XLT0_L1DATA[n] XLT0 Table Configuration Data 13.2.2.9.44

0x0020F054 + 0x4*n, n=0...2 GL_PREEXT_CDMD_L1SEL[n] L1 Bidirectional CTL 13.2.2.9.45

0x0020F060 + 0x4*n, n=0...2 GL_PREEXT_FLGS_L1TBL[n] L1 Flag Select Table 13.2.2.9.46

0x0020F06C + 0x4*n, n=0...2 GL_PREEXT_FLGS_L1SEL0_1[n] L1 Flag Select Control (0-1) 13.2.2.9.47

0x0020F078 + 0x4*n, n=0...2 GL_PREEXT_FLGS_L1SEL2_3[n] L1 Flag Select Control (2-3) 13.2.2.9.48

0x0020F084 + 0x4*n, n=0...2 GL_PREEXT_CTLTBL_L2ADDR[n] L2 Configuration Table Address 13.2.2.9.49

0x0020F090 + 0x4*n, n=0...2 GL_PREEXT_CTLTBL_L2DATA[n] L2 Configuration Table Data 13.2.2.9.50

0x0020F09C + 0x4*n, n=0...2 GL_PREEXT_L2PRTMOD[n] XLT1, XLT2 Partition Mode 13.2.2.9.51

0x0020F0A8 + 0x4*n, n=0...2 GL_PREEXT_L2BMP0_3[n] PG L2 CDID Bitmap (LSB) 13.2.2.9.52

0x0020F0B4 + 0x4*n, n=0...2 GL_PREEXT_L2BMP4_7[n] PG L2 CDID Bitmap (MSB) 13.2.2.9.53

0x0020F0C0 + 0x4*n, n=0...2 GL_PREEXT_XLT1_L2ADDR[n] XLT1 Table Configuration Address 13.2.2.9.54

0x0020F0CC + 0x4*n, n=0...2 GL_PREEXT_XLT1_L2DATA[n] XLT1 Table Configuration Data 13.2.2.9.55

0x0020F0D8 + 0x4*n, n=0...2 GL_PREEXT_XLT2_L2ADDR[n] XLT2 Table Configuration Address 13.2.2.9.56

0x0020F0E4 + 0x4*n, n=0...2 GL_PREEXT_XLT2_L2DATA[n] XLT2 Table Configuration Data 13.2.2.9.57

0x0020F0F0 + 0x4*n, n=0...2 GL_PREEXT_PID_L2GKTYPE[n] Profile ID Gen Key Type 13.2.2.9.58

0x0020F0FC + 0x4*n, n=0...2 GL_PREEXT_L2_PMASK0[n] Profile Key Mask (LSB) 13.2.2.9.59

0x0020F108 + 0x4*n, n=0...2 GL_PREEXT_L2_PMASK1[n] Profile Key Mask (MSB) 13.2.2.9.60

0x0020F114 + 0x4*n, n=0...2 GL_PREEXT_TCAM_L2ADDR[n] TCAM Configuration (Address) 13.2.2.9.61

0x0020F120 + 0x4*n, n=0...2 GL_PREEXT_TCAM_L2DATALSB[n] TCAM Configuration LSB (Data) 13.2.2.9.62

0x0020F12C + 0x4*n, n=0...2 GL_PREEXT_TCAM_L2DATAMSB[n] TCAM Configuration MSB
(Data+Mask) 13.2.2.9.63

0x0020F138 + 0x4*n, n=0...2 GL_PREEXT_DFLT_L2PRFL[n] L2 Default Profile 13.2.2.9.64

0x0020F144 + 0x4*n, n=0...2 GL_PREEXT_K2N_L2ADDR[n] K2N Table Configuration Address 13.2.2.9.65

Table 13-17. PF - FlexiPipe Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2046 613875-009

0x0020F150 + 0x4*n, n=0...2 GL_PREEXT_K2N_L2DATA[n] K2N Table Configuration Data 13.2.2.9.66

0x0020F15C + 0x4*n, n=0...2 GL_PREEXT_N2N_L2ADDR[n] K2N Table Configuration Address 13.2.2.9.67

0x0020F168 + 0x4*n, n=0...2 GL_PREEXT_N2N_L2DATA[n] K2N Table Configuration Data 13.2.2.9.68

0x0020F498 + 0x4*n, n=0...2 GL_PREEXT_L2_TMASK0[n] Profile Key Mask (LSB) 13.2.2.9.69

0x0020F4A4 + 0x4*n, n=0...2 GL_PREEXT_L2_TMASK1[n] Profile Key Mask (MSB) 13.2.2.9.70

0x00210000 + 0x4*n, n=0...2 GL_ACLEXT_FORCE_PID[n] Force Profile ID 13.2.2.9.71

0x0021000C + 0x4*n, n=0...2 GL_ACLEXT_PLVL_SEL[n] Profile Level Selector 13.2.2.9.72

0x00210018 + 0x4*n, n=0...2 GL_ACLEXT_FORCE_L1CDID[n] L1 Force CDID 13.2.2.9.73

0x00210024 + 0x4*n, n=0...2 GL_ACLEXT_P2P_L1ADDR[n] L1 P2P Table Configuration Address 13.2.2.9.74

0x00210030 + 0x4*n, n=0...2 GL_ACLEXT_P2P_L1DATA[n] L1 P2P Table Configuration Data 13.2.2.9.75

0x0021003C + 0x4*n, n=0...2 GL_ACLEXT_XLT0_L1ADDR[n] XLT0 Table Configuration Address 13.2.2.9.76

0x00210048 + 0x4*n, n=0...2 GL_ACLEXT_XLT0_L1DATA[n] XLT0 Table Configuration Data 13.2.2.9.77

0x00210054 + 0x4*n, n=0...2 GL_ACLEXT_CDMD_L1SEL[n] L1 Bidirectional CTL 13.2.2.9.78

0x00210060 + 0x4*n, n=0...2 GL_ACLEXT_FLGS_L1TBL[n] L1 Flag Select Table 13.2.2.9.79

0x0021006C + 0x4*n, n=0...2 GL_ACLEXT_FLGS_L1SEL0_1[n] L1 Flag Select Control (0-1) 13.2.2.9.80

0x00210078 + 0x4*n, n=0...2 GL_ACLEXT_FLGS_L1SEL2_3[n] L1 Flag Select Control (2-3) 13.2.2.9.81

0x00210084 + 0x4*n, n=0...2 GL_ACLEXT_CTLTBL_L2ADDR[n] L2 Configuration Table Address 13.2.2.9.82

0x00210090 + 0x4*n, n=0...2 GL_ACLEXT_CTLTBL_L2DATA[n] L2 Configuration Table Data 13.2.2.9.83

0x0021009C + 0x4*n, n=0...2 GL_ACLEXT_L2PRTMOD[n] XLT1, XLT2 Partition Mode 13.2.2.9.84

0x002100A8 + 0x4*n, n=0...2 GL_ACLEXT_L2BMP0_3[n] PG L2 CDID Bitmap (LSB) 13.2.2.9.85

0x002100B4 + 0x4*n, n=0...2 GL_ACLEXT_L2BMP4_7[n] PG L2 CDID Bitmap (MSB) 13.2.2.9.86

0x002100C0 + 0x4*n, n=0...2 GL_ACLEXT_XLT1_L2ADDR[n] XLT1 Table Configuration Address 13.2.2.9.87

0x002100CC + 0x4*n, n=0...2 GL_ACLEXT_XLT1_L2DATA[n] XLT1 Table Configuration Data 13.2.2.9.88

0x002100D8 + 0x4*n, n=0...2 GL_ACLEXT_XLT2_L2ADDR[n] XLT2 Table Configuration Address 13.2.2.9.89

0x002100E4 + 0x4*n, n=0...2 GL_ACLEXT_XLT2_L2DATA[n] XLT2 Table Configuration Data 13.2.2.9.90

0x002100F0 + 0x4*n, n=0...2 GL_ACLEXT_PID_L2GKTYPE[n] Profile ID Gen Key Type 13.2.2.9.91

0x002100FC + 0x4*n, n=0...2 GL_ACLEXT_L2_PMASK0[n] Profile Key Mask (LSB) 13.2.2.9.92

0x00210108 + 0x4*n, n=0...2 GL_ACLEXT_L2_PMASK1[n] Profile Key Mask (MSB) 13.2.2.9.93

0x00210114 + 0x4*n, n=0...2 GL_ACLEXT_TCAM_L2ADDR[n] TCAM Configuration (Address) 13.2.2.9.94

0x00210120 + 0x4*n, n=0...2 GL_ACLEXT_TCAM_L2DATALSB[n] TCAM Configuration LSB (Data) 13.2.2.9.95

0x0021012C + 0x4*n, n=0...2 GL_ACLEXT_TCAM_L2DATAMSB[n] TCAM Configuration MSB (Data) 13.2.2.9.96

0x00210138 + 0x4*n, n=0...2 GL_ACLEXT_DFLT_L2PRFL[n] L2 Default Profile 13.2.2.9.97

0x00210144 + 0x4*n, n=0...2 GL_ACLEXT_K2N_L2ADDR[n] K2N Table Configuration Address 13.2.2.9.98

0x00210150 + 0x4*n, n=0...2 GL_ACLEXT_K2N_L2DATA[n] K2N Table Configuration Data 13.2.2.9.99

0x0021015C + 0x4*n, n=0...2 GL_ACLEXT_N2N_L2ADDR[n] K2N Table Configuration Address 13.2.2.9.100

0x00210168 + 0x4*n, n=0...2 GL_ACLEXT_N2N_L2DATA[n] K2N Table Configuration Data 13.2.2.9.101

0x00210498 + 0x4*n, n=0...2 GL_ACLEXT_L2_TMASK0[n] Profile Key Mask (LSB) 13.2.2.9.102

Table 13-17. PF - FlexiPipe Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2047

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x002104A4 + 0x4*n, n=0...2 GL_ACLEXT_L2_TMASK1[n] Profile Key Mask (MSB) 13.2.2.9.103

0x00393800 + 0x4*n, n=0...2 GL_ACLEXT_DFLT_L2PRFL_ACL[n] L2 Default Profile 13.2.2.9.104

0x00458000 + 0x4*n +
0x100*m, n=0...63, m=0...31 GLFLXP_TX_SCHED_CORRECT[n,m] Tx Scheduling Correction Control 13.2.2.9.105

0x0045A000 + 0x4*n +
0x400*m, n=0...255, m=0...5 GLFLXP_RX_CMD_PROTIDS[n,m] ProtIDs for Creating RRX CMD Offsets 13.2.2.9.106

0x0045C000 + 0x4*n, n=0...255 GLFLXP_PTYPE_TRANSLATION[n] PTYPE_10b to PTYPE_8b Translation 13.2.2.9.107

0x0045C400 + 0x4*n, n=0...255 GLFLXP_RX_CMD_LX_PROT_IDX[n] LX Prot & Index for Rx CMD 13.2.2.9.108

0x0045C800 + 0x4*n, n=0...63 GLFLXP_RXDID_FLX_WRD_0[n] RXDID FlexiWord 0 Control 13.2.2.9.109

0x0045C900 + 0x4*n, n=0...63 GLFLXP_RXDID_FLX_WRD_1[n] RXDID FlexiWord 1 Control 13.2.2.9.110

0x0045CA00 + 0x4*n, n=0...63 GLFLXP_RXDID_FLX_WRD_2[n] RXDID FlexiWord 2 Control 13.2.2.9.111

0x0045CB00 + 0x4*n, n=0...63 GLFLXP_RXDID_FLX_WRD_3[n] RXDID FlexiWord 3 Control 13.2.2.9.112

0x0045CC00 + 0x4*n, n=0...63 GLFLXP_RXDID_FLX_WRD_4[n] RXDID FlexiWord 4 Control 13.2.2.9.113

0x0045CD00 + 0x4*n, n=0...63 GLFLXP_RXDID_FLX_WRD_5[n] RXDID FlexiWord 5 Control 13.2.2.9.114

0x0045D000 + 0x4*n +
0x100*m, n=0...63, m=0...4 GLFLXP_RXDID_FLAGS[n,m] RXDID FlexiFlags Control 13.2.2.9.115

0x0045D600 + 0x4*n, n=0...63 GLFLXP_RXDID_FLAGS1_OVERRIDE[n] RXDID Flags1 Override Control 13.2.2.9.116

0x00480000 + 0x4*QRX,
QRX=0...2047 QRXFLXP_CNTXT[QRX] Queue Context Flex Extension 13.2.2.9.117

Table 13-18. PF - Parser Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00200004 GL_PRS_RX_SIZE_CTRL PRS Balancer Config 13.2.2.10.1

0x0020000C +
0x4*n, n=0...6 GL_PRS_RX_PIPE_INIT0[n] Rx-Query Pipe-Status Init for Word 0-6 13.2.2.10.2

0x00200028 GL_PRS_RX_PIPE_INIT1 Rx-Query Pipe-Status Init for Word 7 13.2.2.10.3

0x0020002C GL_PRS_RX_PIPE_INIT2 Rx-Query Pipe-Status Init for Word 8 13.2.2.10.4

0x002001C0 GL_XLR_MARKER_TRIG_RCU_PRS XLR Marker Trigger 13.2.2.10.5

0x002001C4 +
0x4*n, n=0...3 GL_QH_MARKER_TRIG_RCU_PRS[n] QH Removal Marker Trigger 13.2.2.10.6

0x002001D4 +
0x4*n, n=0...7 GL_COTF_MARKER_TRIG_RCU_PRS[n] COTF Marker Trigger 13.2.2.10.7

0x002001F4 +
0x4*n, n=0...1 GL_XLR_MARKER_STATUS[n] XLR Debug Markers Status 13.2.2.10.8

0x002001FC GL_QH_MARKER_STATUS QH Debug Markers Status 13.2.2.10.9

0x00200200 GL_COTF_MARKER_STATUS COTF Debug Markers Status 13.2.2.10.10

0x00200204 GL_PRS_MARKER_ERROR PRS Markers Error Indication (Marker FIFO Full) 13.2.2.10.11

0x00200208 +
0x4*n, n=0...63 GL_XLR_MARKER_LOG_RCU_PRS[n] PRS Marker FIFO Read Access 13.2.2.10.12

0x00200708 GL_RPRS_ANA_CSR_CTRL Rx ANA CSR Access Control 13.2.2.10.13

0x00202000 GL_TPRS_PM_THR Pipe Monitor Threshold 13.2.2.10.14

Table 13-17. PF - FlexiPipe Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2048 613875-009

0x00202004 GL_TPRS_MNG_PM_THR MNG Pipe Monitor Threshold 13.2.2.10.15

0x00202008 +
0x4*n, n=0...1 GL_TPRS_PM_CNT[n] Pipe Monitor Counters Status 13.2.2.10.16

0x00202014 GL_PRS_TX_SIZE_CTRL Tx-Query Min/Max Size Control 13.2.2.10.17

0x00202018 +
0x4*n, n=0...6 GL_PRS_TX_PIPE_INIT0[n] Tx-Query Pipe-Status Init for Word 0-6 13.2.2.10.18

0x00202034 GL_PRS_TX_PIPE_INIT1 Tx-Query Pipe-Status Init for Word 7 13.2.2.10.19

0x00202038 GL_PRS_TX_PIPE_INIT2 Tx-Query Pipe-Status Init for Word 8 13.2.2.10.20

0x00202100 GL_TPRS_ANA_CSR_CTRL Tx ANA CSR Access Control 13.2.2.10.21

0x005008C0 GL_XLR_MARKER_TRIG_PE XLR Marker Trigger PE 13.2.2.10.22

Table 13-19. PF - Switch Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00040840 + 0x4*n, n=0...31 PRT_TCTUPR[n] Port - TC Transmit UP Replacement 13.2.2.11.1

0x001D2698 GL_SWT_FUNCFILT IPsec Function Limiting 13.2.2.11.2

0x00204000 GL_SWT_LAT_SINGLE Large Action - Single Action Offset 13.2.2.11.3

0x00204004 GL_SWT_LAT_DOUBLE Large Action - Double Action Offset 13.2.2.11.4

0x00204008 GL_SWT_LAT_QUAD Large Action - Quad Action Offset 13.2.2.11.5

0x0020401C EMP_SWT_REPIND Replication Table Control 13.2.2.11.6

0x00204020 EMP_SWT_PRUNIND Prune Table Control 13.2.2.11.7

0x002040A4 GL_OVERRIDEC Unallowed Override Attempt Count 13.2.2.11.8

0x002040AC GL_SWT_MD_PRI Switch Metadata Priority 13.2.2.11.9

0x00204100 PRT_SWT_MSCCNT Storm Control - Multicast Current Count 13.2.2.11.10

0x00204120 PRT_SBPVSI Port - Store Bad Packets VSI 13.2.2.11.11

0x00204140 PRT_SCSTS Storm Control - Status 13.2.2.11.12

0x00204160 PRT_SWT_BSCCNT Storm Control - Broadcast Current Count 13.2.2.11.13

0x00204180 PRT_SWT_BSCTRH Storm Control - Broadcast Threshold 13.2.2.11.14

0x002041C0 PRT_SWT_MSCTRH Storm Control - Multicast Threshold 13.2.2.11.15

0x002041E0 PRT_SWT_SCBI Storm Control - Basic Interval 13.2.2.11.16

0x00204200 PRT_SWT_SCCRL Storm Control - Control Register 13.2.2.11.17

0x00204280 PRT_SWT_MIRIG Mirror - LAN Port Ingress Rule 13.2.2.11.18

0x002042A0 PRT_SWT_MIREG Mirror - LAN Port Egress Rule 13.2.2.11.19

0x00204500 + 0x4*n, n=0...63 GL_SWT_MIRTARVSI[n] Mirror - Target VSI 13.2.2.11.20

0x0020A1A4 + 0x4*n, n=0...255 GLSWID_STAT_BLOCK[n] SWID Stat Block ID 13.2.2.11.21

0x0020A5A4 GLSWT_ACT_RESP_0 Switch Recipes Used 13.2.2.11.22

0x0020A5A8 GLSWT_ACT_RESP_1 Switch Recipes Used 13.2.2.11.23

0x0020A5AC GL_PLG_AVG_CALC_CFG Throughput Counters Config 13.2.2.11.24

Table 13-18. PF - Parser Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2049

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0020A5B0 GL_PLG_AVG_CALC_ST Throughput Counters Status 13.2.2.11.25

0x0020A674 GLSWT_ARB_MODE Hardware Arb Control 13.2.2.11.26

0x00214074 + 0x4*n, n=0...6 GL_PRE_CFG_DATA[n] Recipe Data 13.2.2.11.27

0x00214090 GL_PRE_CFG_CMD Recipe Command 13.2.2.11.28

0x00214094 + 0x4*n, n=0...31 GL_VP_SWITCHID[n] Virtual Port Switch ID 13.2.2.11.29

0x00214114 GL_SWT_SWIDFVIDX SWID Field Vector Index 13.2.2.11.30

0x00216000 + 0x4*n, n=0...5 GL_SWT_FW_STS[n] FW Config Status 13.2.2.11.31

Table 13-20. PF - VSI Context Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00041000 + 0x4*VSI,
VSI=0...767 VSI_TIR_0[VSI] VSI Tag Insert Register - First Tag 13.2.2.12.1

0x00042000 + 0x4*VSI,
VSI=0...767 VSI_TIR_1[VSI] VSI Tag Insert Register - Second Tag 13.2.2.12.2

0x00043000 + 0x4*VSI,
VSI=0...767 VSI_TIR_2[VSI] VSI Tag Insert Register - Third Tag 13.2.2.12.3

0x00044000 + 0x4*VSI,
VSI=0...767 VSI_TAIR[VSI] VSI Tag Alternate Insert Register 13.2.2.12.4

0x00045000 + 0x4*VSI,
VSI=0...767 VSI_TAR[VSI] VSI Tag Accept Register 13.2.2.12.5

0x00046000 + 0x4*VSI,
VSI=0...767 VSI_L2TAGSTXVALID[VSI] VSI L2 Tx Tags Control 13.2.2.12.6

0x00047000 + 0x4*VSI,
VSI=0...767 VSI_TUPR[VSI] VSI Transmit UP Replacement 13.2.2.12.7

0x00048000 + 0x4*VSI,
VSI=0...767 VSI_TUPIOM[VSI] VSI Transmit UP Inner to Outer Mapping 13.2.2.12.8

0x00050000 + 0x4*VSI,
VSI=0...767 VSI_RUPR[VSI] VSI Receive UP Replacement 13.2.2.12.9

0x00051000 + 0x4*VSI,
VSI=0...767 VSI_TSR[VSI] VSI Tag Strip Register 13.2.2.12.10

0x0009C000 + 0x4*VSI,
VSI=0...767 VSI_PASID[VSI] PASID Context 13.2.2.12.11

0x001D0000 + 0x4*VSI,
VSI=0...767 VSI_VSI2F[VSI] VSI to Function Mapping Multicast 13.2.2.12.12

0x00205000 + 0x4*VSI,
VSI=0...767 VSI_RXSWCTRL[VSI] VSI Rx Switch Control 13.2.2.12.13

0x00207000 + 0x4*VSI,
VSI=0...767 VSI_SWT_MIREG[VSI] Mirror - Rx Rules VSIs 13.2.2.12.14

0x00208000 + 0x4*VSI,
VSI=0...767 VSI_SWT_MIRIG[VSI] Mirror - Tx Rules VSIs 13.2.2.12.15

0x00209000 + 0x4*VSI,
VSI=0...767 VSI_SRCSWCTRL[VSI] VSI Source Switch Control 13.2.2.12.16

0x00215000 + 0x4*VSI,
VSI=0...767 VSI_SWITCHID[VSI] Source VSI Switch ID 13.2.2.12.17

Table 13-19. PF - Switch Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2050 613875-009

0x00400000 + 0x1000*n +
0x4*VSI, n=0...12,
VSI=0...767

VSIQF_HKEY[n,VSI] VSI Classification Filter - Hash Key 13.2.2.12.18

0x0040D000 + 0x4*VSI,
VSI=0...767 VSIQF_HASH_CTL[VSI] VSI Classification Filter - Hash Control 13.2.2.12.19

0x00411000 + 0x4*VSI,
VSI=0...767 VSIQF_FD_CTL1[VSI] VSI Classification Filter - FD Control 1 13.2.2.12.20

0x00414000 + 0x4*VSI,
VSI=0...767 VSIQF_PE_CTL1[VSI] VSI Classification Filter - PE Control 1 13.2.2.12.21

0x00420000 + 0x1000*n +
0x4*VSI, n=0...15,
VSI=0...767

VSIQF_HLUT[n,VSI] VSI Classification Filter - Hash LUT 13.2.2.12.22

0x00448000 + 0x1000*n +
0x4*VSI, n=0...3,
VSI=0...767

VSIQF_TC_REGION[n,VSI] VSI Classification Filter - Receive TC Queue Regions 13.2.2.12.23

0x00457000 + 0x4*VSI,
VSI=0...767 VSIQF_FD_DFLT[VSI] VSI Classification Filter - FD Default Action 13.2.2.12.24

0x00462000 + 0x4*VSI,
VSI=0...767 VSIQF_FD_SIZE[VSI] VSI Classification Filter - FD VSI Space Sizes 13.2.2.12.25

0x00464000 + 0x4*VSI,
VSI=0...767 VSIQF_FD_CNT[VSI] VSI Classification Filter - FD VSI Space Counters 13.2.2.12.26

Table 13-21. PF - ACL Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00391000 GL_ACL_ACCESS_CMD Configuration Access Command 13.2.2.13.1

0x00391004 GL_ACL_ACCESS_STATUS Configuration Access Status 13.2.2.13.2

0x00391008 + 0x4*n,
n=0...31 GL_ACL_PROFILE_BWSB_SEL[n] Byte and Word Selection Bases Select per Profile 13.2.2.13.3

0x00391088 + 0x4*n,
n=0...15 GL_ACL_PROFILE_DWSB_SEL[n] DWord Selection Base Select per Profile 13.2.2.13.4

0x003910C8 + 0x4*n,
n=0...7 GL_ACL_PROFILE_PF_CFG[n] Profile Assignment to Scenario 13.2.2.13.5

0x003910E8 + 0x4*n,
n=0...7 GL_ACL_PROFILE_RC_CFG[n] Range Checker Configuration per Profile 13.2.2.13.6

0x00391108 + 0x4*n,
n=0...7 GL_ACL_PROFILE_RCF_MASK[n] Word Selection Base Range Checked Fields Masking

per Profile 13.2.2.13.7

0x00391168 + 0x4*n,
n=0...15 GL_ACL_DEFAULT_ACT[n] Default Action Array 13.2.2.13.8

0x00391800 +
0x4*VSI, VSI=0...767 VSI_ACL_DEF_SEL[VSI] VSI Dependent ACL Configuration 13.2.2.13.9

0x00393810 GL_ACL_CHICKEN_REGISTER GL_ACL_CHICKEN_REGISTER 13.2.2.13.10

0x00393814 GL_ACL_TCAM_KEY_L TCAM Write Key Low 13.2.2.13.11

0x00393818 GL_ACL_TCAM_KEY_H TCAM Write Key High 13.2.2.13.12

0x0039381C GL_ACL_TCAM_KEY_INV_L TCAM Write Key Invert Low 13.2.2.13.13

0x00393820 GL_ACL_TCAM_KEY_INV_H TCAM Write Key Invert High 13.2.2.13.14

Table 13-20. PF - VSI Context Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2051

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x00393824 + 0x4*n,
n=0...1 GL_ACL_ACTMEM_ACT[n] Action Write Data 13.2.2.13.15

0x0039382C + 0x4*n,
n=0...15 GL_ACL_SCENARIO_CFG_L[n] Scenario Configuration Write Data Low Part 13.2.2.13.16

0x0039386C + 0x4*n,
n=0...15 GL_ACL_SCENARIO_CFG_H[n] Scenario Configuration Write Data High Part 13.2.2.13.17

0x003938AC + 0x4*n,
n=0...19 GL_ACL_SCENARIO_ACT_CFG[n] Scenario Action RAM Configuration Write Data 13.2.2.13.18

Table 13-22. PF - Rx Filters Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x000AA078 + 0x4*n,
n=0...1 GLQF_PETABLE_CLR[n] Global Classification Filter - PE Table Clear 13.2.2.14.1

0x0020E514 GLQF_PE_FVE PF Classification Filter - PE Field Vector Bitmap Enable 13.2.2.14.2

0x0040E000 + 0x4*n
+ 0x200*m, n=0...127,
m=0...5

GLQF_HINSET[n,m] Global Classification Filter - Hash Input Set 13.2.2.14.3

0x0040F000 + 0x4*n +
0x200*m, n=0...127,
m=0...5

GLQF_HSYMM[n,m] Global Classification Filter - Symmetric Hash 13.2.2.14.4

0x0040FC00 + 0x4*n,
n=0...31 GLQF_HMASK[n] Global Classification Filter - Hash Mask 13.2.2.14.5

0x00410000 + 0x4*n,
n=0...127 GLQF_HMASK_SEL[n] Global Classification Filter - Hash Mask Select 13.2.2.14.6

0x00410400 + 0x4*n,
n=0...127 GLQF_FDMASK_SEL[n] Global Classification Filter - FD Mask Select 13.2.2.14.7

0x00410800 + 0x4*n,
n=0...31 GLQF_FDMASK[n] Global Classification Filter - FD Mask 13.2.2.14.8

0x00412000 + 0x4*n
+ 0x200*m, n=0...127,
m=0...5

GLQF_FDINSET[n,m] Global Classification Filter - FD Input Set 13.2.2.14.9

0x00413000 + 0x4*n
+ 0x200*m, n=0...127,
m=0...5

GLQF_FDSWAP[n,m] Global Classification Filter - FD SWAP 13.2.2.14.10

0x00415000 + 0x4*n
+ 0x80*m, n=0...31,
m=0...5

GLQF_PEINSET[n,m] Global Classification Filter - PE Input Set 13.2.2.14.11

0x00415400 + 0x4*n,
n=0...15 GLQF_PEMASK[n] Global Classification Filter - PE Mask 13.2.2.14.12

0x00415500 + 0x4*n,
n=0...31 GLQF_PEMASK_SEL[n] Global Classification Filter - PE Mask Select 13.2.2.14.13

0x00430000 + 0x40*n,
n=0...511 PFQF_HLUT[n] PF Classification Filter - Hash LUT 13.2.2.14.14

0x00438000 + 0x4*n
+ 0x200*m, n=0...127,
m=0...15

GLQF_HLUT[n,m] Global Classification Filter - Hash LUT 13.2.2.14.15

0x0043A000 PFQF_FD_ENA PF Classification Filter - FD Enable 13.2.2.14.16

0x0043A080 PFQF_PE_FILTERING_ENA PF Classification Filter - PE Enable 13.2.2.14.17

Table 13-21. PF - ACL Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2052 613875-009

0x0044D000 + 0x4*n
+ 0x200*m, n=0...127,
m=0...3

GLQF_PROF2TC[n,m] Global Classification Filter - Packet Profile to Hash TC
Region Mapping 13.2.2.14.18

0x00450000 + 0x4*n,
n=0...2047 GLQF_APBVT[n] Global Classification Filter Accelerated Port Bit Vector 13.2.2.14.19

0x00452000 + 0x4*n,
n=0...3 GLQF_FDEVICTENA[n] Global Classification Filter - FD Profile Evict Enable 13.2.2.14.20

0x00452080 PFQF_PE_TC_CTL PF Classification Filter - QH TC Enable 13.2.2.14.21

0x00455200 + 0x4*n,
n=0...31 GLQF_PE_CTL2[n] Global Classification Filter - PE Control 2 13.2.2.14.22

0x00455400 + 0x4*n,
n=0...15 GLQF_HLUT_SIZE[n] Global Classification Filter - Hash LUT Size 13.2.2.14.23

0x00455480 PFQF_HLUT_SIZE PF Classification Filter - Hash LUT Size 13.2.2.14.24

0x00455500 GLQF_PE_APBVT_CNT Global PE APBVT LAN Packet Counter 13.2.2.14.25

0x00455800 + 0x4*VF,
VF=0...255 VPQF_PE_FILTERING_ENA[VF] VF Classification Filter - PE Enable 13.2.2.14.26

0x00456000 + 0x4*n,
n=0...12 GLQF_HKEY[n] Global Classification Filter - Hash Key 13.2.2.14.27

0x00460000 GLQF_FD_CTL Global Classification Filter Control 13.2.2.14.28

0x00460010 GLQF_FD_SIZE Global Classification Filter - FD Space Size 13.2.2.14.29

0x00460018 GLQF_FD_CNT Global Classification Filter - FD Space Counters 13.2.2.14.30

0x00460100 PFQF_FD_SIZE PF Classification Filter - FD Space Sizes 13.2.2.14.31

0x00460180 PFQF_FD_CNT Global Classification Filter - FD PF Space Counter 13.2.2.14.32

0x00460200 PFQF_FD_SUBTRACT Global Classification Filter - FD PF Space Counter 13.2.2.14.33

0x00470000 PFQF_PE_CTL1 PF Classification Filter - PE Control 13.2.2.14.34

0x00470040 PFQF_PE_CTL2 PF Classification Filter - PE Control 13.2.2.14.35

0x00470100 PFQF_PE_FLHD PF Free List Head Array 13.2.2.14.36

0x00470200 PFQF_PECNT_0 PF Classification Filter PE Filter Counter 0 13.2.2.14.37

0x00470300 PFQF_PECNT_1 PF Classification Filter PE Filter Counter 1 13.2.2.14.38

0x00470400 PFQF_PE_ST_CTL PF Control Register for the Statistic Counter 13.2.2.14.39

0x00470480 PFQF_PE_CLSN0 PF PE Classification Filter Collision Counter 0 13.2.2.14.40

0x00470500 PFQF_PE_CLSN1 PF PE Classification Filter Collision Counter 1 13.2.2.14.41

0x00471040 GLQF_PE_OSR_STS Global PE Classification Filter Outstanding Request
Counter 13.2.2.14.42

0x00471080 GLQF_PE_CMD QH ADD/REM Commands Status 13.2.2.14.43

0x004710C0 GLQF_PE_CTL Global Classification Filter Control 13.2.2.14.44

0x00472000 + 0x4*VF,
VF=0...255 VPQF_PE_FLHD[VF] VF Free List Head Array 13.2.2.14.45

0x00472800 + 0x4*VF,
VF=0...255 VPQF_PECNT_0[VF] VF Classification Filter PE Filter Counter 0 13.2.2.14.46

0x00473000 + 0x4*VF,
VF=0...255 VPQF_PECNT_1[VF] VF Classification Filter PE Filter Counter 1 13.2.2.14.47

Table 13-22. PF - Rx Filters Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2053

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x00474000 + 0x4*VF,
VF=0...255 VPQF_PE_CTL1[VF] VF Classification Filter - PE Control 13.2.2.14.48

0x00474800 + 0x4*VF,
VF=0...255 VPQF_PE_CTL2[VF] PF Classification Filter - PE Control 13.2.2.14.49

Table 13-23. PF - Interrupt Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00088080 PFINT_GPIO_ENA PF General Purpose IO Interrupt Enablement 13.2.2.15.1

0x000880C0 EMPINT_GPIO_ENA EMP General Purpose IO Interrupt Enablement 13.2.2.15.2

0x0009D000 + 0x4*VF,
VF=0...255 VPINT_ALLOC_PCI[VF] VF Vector Allocation 13.2.2.15.3

0x0009D800 PFINT_ALLOC_PCI PF Vector Allocation - PCI 13.2.2.15.4

0x00140000 + 0x4*DBQM,
DBQM=0...16383 QINT_TQCTL[DBQM] Transmit Queue Interrupt Cause Control 13.2.2.15.5

0x00150000 + 0x4*QRX,
QRX=0...2047 QINT_RQCTL[QRX] Receive Queue Interrupt Cause Control 13.2.2.15.6

0x00154000 + 0x2000*n
+ 0x4*INT, n=0...2,
INT=0...2047

GLINT_ITR[n,INT] Global Interrupt Throttling 13.2.2.15.7

0x0015A000 + 0x4*INT,
INT=0...2047 GLINT_RATE[INT] Global Interrupt Rate Limit 13.2.2.15.8

0x0015C000 + 0x4*INT,
INT=0...2047 GLINT_CEQCTL[INT] Global PE Completion Event Queue Interrupt Cause

Control 13.2.2.15.9

0x00160000 + 0x4*INT,
INT=0...2047 GLINT_DYN_CTL[INT] Global Interrupt Dynamic Control 13.2.2.15.10

0x00162000 + 0x4*INT,
INT=0...2047 GLINT_VECT2FUNC[INT] Global Interrupt Vector 2 Function Allocation 13.2.2.15.11

0x0016A000 + 0x4*VSI,
VSI=0...767 VPINT_MBX_CTL[VSI] VF Mailbox Queue Mapping to Interrupt Control 13.2.2.15.12

0x0016B000 + 0x4*VP128,
VP128=0...127 VPINT_MBX_CPM_CTL[VP128] VF Mailbox Queue Mapping to Interrupt Control 13.2.2.15.13

0x0016B200 + 0x4*VP16,
VP16=0...15 VPINT_MBX_HLP_CTL[VP16] VF HLP Mailbox Queue Mapping to Interrupt Control 13.2.2.15.14

0x0016B240 + 0x4*VP16,
VP16=0...15 VPINT_MBX_PSM_CTL[VP16] VF PSM Mailbox Queue Mapping to Interrupt Control 13.2.2.15.15

0x0016B280 PFINT_MBX_CTL PF Mailbox Queue Mapping to Interrupt Control 13.2.2.15.16

0x0016B2C0 PF0INT_MBX_CPM_CTL PF0 CPM Mailbox Queue Mapping to Interrupt
Control 13.2.2.15.17

0x0016B2C4 PF0INT_MBX_HLP_CTL PF0 HLP Mailbox Queue Mapping to Interrupt
Control 13.2.2.15.18

0x0016B2C8 PF0INT_MBX_PSM_CTL PF0 PSM Mailbox Queue Mapping to Interrupt
Control 13.2.2.15.19

0x0016B2CC PF0INT_SB_CPM_CTL PF0 CPM SB Queue Mapping to Interrupt Control 13.2.2.15.20

0x0016B400 + 0x4*VP128,
VP128=0...127 VPINT_SB_CPM_CTL[VP128] VF CPM SB Queue Mapping to Interrupt Control 13.2.2.15.21

Table 13-22. PF - Rx Filters Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2054 613875-009

0x0016B600 PFINT_SB_CTL PF SB Queue Mapping to Interrupt Control 13.2.2.15.22

0x0016B640 PF0INT_SB_HLP_CTL PF0 HLPSB Queue Mapping to Interrupt Control 13.2.2.15.23

0x0016B800 + 0x4*VF,
VF=0...255 VPINT_AEQCTL[VF] VF PE Asynchronous Event Queue Interrupt Cause

Control 13.2.2.15.24

0x0016C800 PFINT_FW_CTL PF Firmware Admin Queue Mapping to Interrupt
Control 13.2.2.15.25

0x0016C840 GLINT_FW_TOOL_CTL Global Tools Firmware Admin Queue Mapping to
Interrupt Control 13.2.2.15.26

0x0016C844 PF0INT_FW_HLP_CTL PF0 HLP Firmware Admin Queue Mapping to
Interrupt Control 13.2.2.15.27

0x0016C848 PF0INT_FW_PSM_CTL PF0 PSM Firmware Admin Queue Mapping to
Interrupt Control 13.2.2.15.28

0x0016C900 PFINT_OICR_ENA PF Interrupt Other Cause Enablement 13.2.2.15.29

0x0016C980 PFINT_TSYN_MSK Global Interrupt TimeSync PHY Mask 13.2.2.15.30

0x0016CA00 PFINT_OICR PF Interrupt Other Cause 13.2.2.15.31

0x0016CA80 PFINT_OICR_CTL PF Interrupt Other Cause Control 13.2.2.15.32

0x0016CB00 PFINT_AEQCTL PF PE Asynchronous Event Queue Interrupt Cause
Control 13.2.2.15.33

0x0016CC40 PF0INT_OICR_CPM PF0 Interrupt Other Cause CPM 13.2.2.15.34

0x0016CC44 PF0INT_OICR_PSM PF0 Interrupt Other Cause PSM 13.2.2.15.35

0x0016CC48 PF0INT_OICR_CTL_CPM PF0 Interrupt Other Cause CPM Control 13.2.2.15.36

0x0016CC4C PF0INT_OICR_ENA_HLP PF0 Interrupt Other Cause HLP Enablement 13.2.2.15.37

0x0016CC50 GLINT_TSYN_PHY Global Interrupt TimeSync PHY Indication 13.2.2.15.38

0x0016CC54 GLINT_CTL Global Interrupt Control 13.2.2.15.39

0x0016CC58 PF0INT_OICR_ENA_PSM PF0 Interrupt Other Cause PSM Enablement 13.2.2.15.40

0x0016CC5C PF0INT_OICR_CTL_HLP PF0 Interrupt Other Cause HLP Control 13.2.2.15.41

0x0016CC60 PF0INT_OICR_ENA_CPM PF0 Interrupt Other Cause CPM Enablement 13.2.2.15.42

0x0016CC64 PF0INT_OICR_CTL_PSM PF0 Interrupt Other Cause PSM Control 13.2.2.15.43

0x0016CC68 PF0INT_OICR_HLP PF0 Interrupt Other Cause HLP 13.2.2.15.44

0x0016CCC0 + 0x4*n,
n=0...1 GLINT_TSYN_PFMSTR[n] Global Interrupt TimeSync Primary Select 13.2.2.15.45

0x001D1000 + 0x4*VF,
VF=0...255 VPINT_ALLOC[VF] VF Vector Allocation 13.2.2.15.46

0x001D2600 PFINT_ALLOC PF Vector Allocation 13.2.2.15.47

Table 13-23. PF - Interrupt Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2055

Intel® Ethernet Controller E810 Datasheet
Programming Interface

Table 13-24. PF - Virtualization PF Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x0009DD80 PF_VT_PFALLOC_HIF PF Resources Allocation 13.2.2.16.1

0x0009E680 PF_VIRT_VSTATUS PF Virtualization Status Register 13.2.2.16.2

0x000BE080 PF_VT_PFALLOC_PCIE PF Resources Allocation 13.2.2.16.3

0x001D2480 PF_VT_PFALLOC PF Resources Allocation 13.2.2.16.4

Table 13-25. PF - DCB Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00040940 PRTDCB_TDPUC DCB TDPU Control 13.2.2.17.1

0x00040960 PRTDCB_RUP_TDPU DCB Receive UP in TDPU 13.2.2.17.2

0x00040980 PRTDCB_TX_DSCP2UP_CTL Tx DCB DSCP to User Priority Control 13.2.2.17.3

0x000409A0 + 0x20*n,
n=0...7 PRTDCB_TX_DSCP2UP_IPV4_LUT[n] Tx DCB DSCP to User Priority LUT for IPv4

Packets 13.2.2.17.4

0x00040AA0 + 0x20*n,
n=0...7 PRTDCB_TX_DSCP2UP_IPV6_LUT[n] Tx DCB DSCP to User Priority LUT for IPv6

Packets 13.2.2.17.5

0x00049018 + 0x4*n,
n=0...63 GL_DCB_TDSCP2TC_BLOCK_IPV4[n] Transit DCSP to TC Enforcement - IPv4 13.2.2.17.6

0x00049118 + 0x4*n,
n=0...63 GL_DCB_TDSCP2TC_BLOCK_IPV6[n] Transit DCSP to TC Enforcement - IPv6 13.2.2.17.7

0x00049218 GL_DCB_TDSCP2TC_BLOCK_DIS Transit DCSP to TC Enable 13.2.2.17.8

0x00083000 PRTDCB_GENC Port DCB General Control 13.2.2.17.9

0x00083020 PRTDCB_GENS Port DCB General Status 13.2.2.17.10

0x00083044 GLDCB_GENC Global DCB General Control 13.2.2.17.11

0x000991C0 TPB_PRTDCB_TCB_DWRR_CREDITS DCB Transmit Port DWRR Status 13.2.2.17.12

0x00099220 TPB_PRTDCB_TCB_DWRR_QUANTA DCB Transmit Port DWRR Quanta/Weights 13.2.2.17.13

0x00099260 TPB_PRTDCB_TCB_DWRR_SAT DCB Transmit Port DWRR Saturation Value 13.2.2.17.14

0x000992A0 TPB_PRTTCB_BULK_DWRR_REG_CREDITS DCB Transmit Regular Bulk DWRR Status 13.2.2.17.15

0x000992C0 TPB_PRTTCB_BULK_DWRR_WB_CREDITS DCB Transmit Wait Bulk DWRR Status 13.2.2.17.16

0x00099300 TPB_PRTTCB_LL_DWRR_REG_CREDITS DCB Transmit Regular Low Latency DWRR
Status 13.2.2.17.17

0x00099320 TPB_PRTTCB_LL_DWRR_WB_CREDITS DCB Transmit Wait Low Latency DWRR
Status 13.2.2.17.18

0x00099340 TPB_BULK_DWRR_REG_QUANTA DCB Transmit Regular Bulk DWRR Quanta/
Weights 13.2.2.17.19

0x00099344 TPB_BULK_DWRR_WB_QUANTA DCB Transmit Wait Bulk DWRR Quanta/
Weights 13.2.2.17.20

0x00099348 TPB_LL_DWRR_REG_QUANTA DCB Transmit Regular Low Latency DWRR
Quanta/Weights 13.2.2.17.21

0x0009934C TPB_LL_DWRR_WB_QUANTA DCB Transmit Wait Low Latency DWRR
Quanta/Weights 13.2.2.17.22

0x00099350 TPB_BULK_DWRR_REG_SAT DCB Transmit Regular Bulk DWRR
Saturation Value 13.2.2.17.23

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2056 613875-009

0x00099354 TPB_BULK_DWRR_WB_SAT DCB Transmit Wait Bulk DWRR Saturation
Value 13.2.2.17.24

0x00099358 TPB_LL_DWRR_REG_SAT DCB Transmit Regular Low Latency DWRR
Saturation Value 13.2.2.17.25

0x0009935C TPB_LL_DWRR_WB_SAT DCB Transmit Wait Low Latency DWRR
Saturation Value 13.2.2.17.26

0x00099360 + 0x4*n,
n=0...31 TPB_WB_RL_TC_CFG[n] DCB Transmit Rate Limiter Control per TC 13.2.2.17.27

0x000993E0 + 0x4*n,
n=0...31 TPB_WB_RL_TC_STAT[n] DCB Transmit Rate Limiter Status per TC 13.2.2.17.28

0x00099460 GLTPB_WB_RL TC Rate Limiters Config 13.2.2.17.29

0x00099464 GLDCB_TPB_TCLL_CFG TPB TC LL Config 13.2.2.17.30

0x00099468 GLDCB_TPB_IMM_TLPM TPB TLPM TC Immediate FC Enable 13.2.2.17.31

0x0009946C GLDCB_TPB_IMM_TPB TPB TC Immediate FC Enable 13.2.2.17.32

0x0009949C GLDCB_TFPFCI Ignore FC per TC List 13.2.2.17.33

0x00099644 TPB_PRTTCB_CREDIT_EXP TCB Arbiter Credit Expansion 13.2.2.17.34

0x00099664 TPB_GLTCB_CREDIT_EXP_CTL TCB Arbiter Credit Expansion Control 13.2.2.17.35

0x0009966C TPB_GLDCB_TCB_WB_SP Global Wait Buffer Strict Priority Enable 13.2.2.17.36

0x000A0000 PRTDCB_TLPM_REG_DM DCB Transmit Data Pipe Port Monitor
Status 13.2.2.17.37

0x000A0020 PRTDCB_TLPM_REG_DTHR DCB Transmit Data Pipe Port Monitor
Threshold 13.2.2.17.38

0x000A0040 PRTDCB_TLPM_WAIT_PFC_DM DCB Transmit Data Pipe Port Waiting
Monitor Status 13.2.2.17.39

0x000A0060 PRTDCB_TLPM_WAIT_PFC_DTHR DCB Transmit Data Pipe Port Waiting
Monitor Threshold 13.2.2.17.40

0x000A0080 + 0x4*n,
n=0...31 TCDCB_TLPM_WAIT_DM[n] DCB Transmit Data Pipe TC Waiting

Monitor Status 13.2.2.17.41

0x000A0100 + 0x4*n,
n=0...31 TCDCB_TLPM_WAIT_DTHR[n] DCB Transmit Data Pipe TC Waiting

Monitor Threshold 13.2.2.17.42

0x000A0180 GLDCB_TLPM_PCI_DM DCB PCIe Tx Data Count 13.2.2.17.43

0x000A0184 GLDCB_TLPM_PCI_DTHR DCB PCIe Tx Data Threshold 13.2.2.17.44

0x000A018C GLDCB_TLPM_IMM_TCUPM DCB TC Immediate FC Enable 13.2.2.17.45

0x000A0190 GLDCB_TLPM_IMM_TCB DCB TC Immediate FC Mode 13.2.2.17.46

0x000A0194 GLDCB_TLPM_TC2PFC DCB TLPM TC PFC Mapping 13.2.2.17.47

0x000AC040 GLRPB_TC2PFC DCB TC to PFC Mapping 13.2.2.17.48

0x000AE000 PRTDCB_TCB_DWRR_CREDITS DCB Transmit Port DWRR Status 13.2.2.17.49

0x000AE020 PRTDCB_TCB_DWRR_QUANTA DCB Transmit Port DWRR Quanta/Weights 13.2.2.17.50

0x000AE040 PRTDCB_TCB_DWRR_SAT DCB Transmit Port DWRR Saturation Value 13.2.2.17.51

0x000AE060 PRTTCB_BULK_DWRR_REG_CREDITS DCB Transmit Regular Bulk DWRR Status 13.2.2.17.52

0x000AE080 PRTTCB_BULK_DWRR_WB_CREDITS DCB Transmit Wait Bulk DWRR Status 13.2.2.17.53

0x000AE0A0 PRTTCB_LL_DWRR_REG_CREDITS DCB Transmit Regular Low Latency DWRR
Status 13.2.2.17.54

Table 13-25. PF - DCB Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2057

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x000AE0C0 PRTTCB_LL_DWRR_WB_CREDITS DCB Transmit Wait Low Latency DWRR
Status 13.2.2.17.55

0x000AE0E0 GLTCB_BULK_DWRR_REG_QUANTA DCB Transmit Regular Bulk DWRR Quanta/
Weights 13.2.2.17.56

0x000AE0E4 GLTCB_BULK_DWRR_WB_QUANTA DCB Transmit Wait Bulk DWRR Quanta/
Weights 13.2.2.17.57

0x000AE0E8 GLTCB_LL_DWRR_REG_QUANTA DCB Transmit Regular Low Latency DWRR
Quanta/Weights 13.2.2.17.58

0x000AE0EC GLTCB_LL_DWRR_WB_QUANTA DCB Transmit Wait Low Latency DWRR
Quanta/Weights 13.2.2.17.59

0x000AE0F0 GLTCB_BULK_DWRR_REG_SAT DCB Transmit Regular Bulk DWRR
Saturation Value 13.2.2.17.60

0x000AE0F4 GLTCB_BULK_DWRR_WB_SAT DCB Transmit Wait Bulk DWRR Saturation
Value 13.2.2.17.61

0x000AE0F8 GLTCB_LL_DWRR_REG_SAT DCB Transmit Regular Low Latency DWRR
Saturation Value 13.2.2.17.62

0x000AE0FC GLTCB_LL_DWRR_WB_SAT DCB Transmit Wait Low Latency DWRR
Saturation Value 13.2.2.17.63

0x000AE100 PRTTCB_CREDIT_EXP TCB Arbiter Credit Expansion 13.2.2.17.64

0x000AE120 GLTCB_CREDIT_EXP_CTL TCB Arbiter Credit Expansion Control 13.2.2.17.65

0x000AE12C GLDCB_TCB_MNG_SP Global MNG LL Strict Priority Enable 13.2.2.17.66

0x000AE134 GLDCB_TCB_TCLL_CFG TC Low Latency Config 13.2.2.17.67

0x000AE138 + 0x4*n,
n=0...31 TCTCB_WB_RL_TC_CFG[n] DCB Transmit Rate Limiter Control per TC 13.2.2.17.68

0x000AE1B8 + 0x4*n,
n=0...31 TCTCB_WB_RL_TC_STAT[n] DCB Transmit Rate Limiter Status per TC 13.2.2.17.69

0x000AE238 GLTCB_WB_RL TC Rate Limiters Config 13.2.2.17.70

0x000AE310 GLDCB_TCB_WB_SP Global Wait Buffer Strict Priority Enable 13.2.2.17.71

0x000BC34C GLDCB_TCUPM_TC2PFC DCB TC to PFC Mapping 13.2.2.17.72

0x000BC360 PRTDCB_TCUPM_REG_CM DCB Transmit Command Pipe Port Monitor
Status 13.2.2.17.73

0x000BC380 PRTDCB_TCUPM_REG_CTHR DCB Transmit Command Pipe Port Monitor
Threshold 13.2.2.17.74

0x000BC3A0 PRTDCB_TCUPM_REG_DM DCB Transmit Data Pipe Port Monitor
Status 13.2.2.17.75

0x000BC3C0 PRTDCB_TCUPM_NO_EXCEED_DM DCB Transmit Data non-Exceed Pipe
Monitor Status 13.2.2.17.76

0x000BC3E0 PRTDCB_TCUPM_REG_DTHR DCB Transmit Data Pipe Port Monitor
Threshold 13.2.2.17.77

0x000BC400 PRTDCB_TCUPM_REG_PE_HB_DM DCB Transmit Data Pipe Port Monitor
Status 13.2.2.17.78

0x000BC420 PRTDCB_TCUPM_REG_PE_HB_DTHR DCB Transmit Data Pipe Port Monitor
Threshold 13.2.2.17.79

0x000BC440 PRTDCB_TCUPM_WAIT_PFC_CM DCB Transmit Command Pipe Port Waiting
Monitor Status 13.2.2.17.80

Table 13-25. PF - DCB Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2058 613875-009

0x000BC460 PRTDCB_TCUPM_WAIT_PFC_CTHR DCB Transmit Command Pipe Port Waiting
Monitor Threshold 13.2.2.17.81

0x000BC480 PRTDCB_TCUPM_WAIT_PFC_DM DCB Transmit Data Pipe Port Waiting
Monitor Status 13.2.2.17.82

0x000BC4A0 PRTDCB_TCUPM_WAIT_PFC_DTHR DCB Transmit Data Pipe Port Waiting
Monitor Threshold 13.2.2.17.83

0x000BC4C0 PRTDCB_TCUPM_WAIT_PFC_PE_HB_DM DCB Transmit Data Pipe Port Waiting
Monitor Status 13.2.2.17.84

0x000BC4E0 PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR DCB Transmit Data Pipe Port Waiting
Monitor Threshold 13.2.2.17.85

0x000BC520 + 0x4*n,
n=0...31 TCDCB_TCUPM_WAIT_CM[n] DCB Transmit Command Pipe TC Waiting

Monitor Status 13.2.2.17.86

0x000BC5A0 + 0x4*n,
n=0...31 TCDCB_TCUPM_WAIT_CTHR[n] DCB Transmit Command Pipe TC Waiting

Monitor Threshold 13.2.2.17.87

0x000BC620 + 0x4*n,
n=0...31 TCDCB_TCUPM_WAIT_DM[n] DCB Transmit Data Pipe TC Waiting

Monitor Status 13.2.2.17.88

0x000BC6A0 + 0x4*n,
n=0...31 TCDCB_TCUPM_WAIT_DTHR[n] DCB Transmit Data Pipe TC Waiting

Monitor Threshold 13.2.2.17.89

0x000BC720 + 0x4*n,
n=0...31 TCDCB_TCUPM_WAIT_PE_HB_DM[n] DCB Transmit Data Pipe TC Waiting

Monitor Status 13.2.2.17.90

0x000BC7A0 + 0x4*n,
n=0...31 TCDCB_TCUPM_WAIT_PE_HB_DTHR[n] DCB Transmit Data Pipe TC Waiting

Monitor Threshold 13.2.2.17.91

0x000BC824 GLDCB_TCUPM_IMM_EN DCB TC Immediate FC Mode 13.2.2.17.92

0x000BC828 GLDCB_TCUPM_LEGACY_TC DCB TC Legacy Queues Mapping 13.2.2.17.93

0x000BC830 GLDCB_TCUPM_NO_EXCEED_DIS DCB Transmit Data non-Exceed Monitor
Enable 13.2.2.17.94

0x000BC834 GLDCB_TCUPM_WB_DIS DCB Transmit Wait Port Data Monitor
Enable 13.2.2.17.95

0x001220C0 PRTDCB_RPRRC DCB Receive Port Round Robin Control 13.2.2.17.96

0x001220E0 PRTDCB_RPRRS DCB Receive Port Round Robin Status 13.2.2.17.97

0x00122100 GLDCB_RTC2PFC_RCB QRX 13.2.2.17.98

0x00122140 + 0x4*n,
n=0...31 GLDCB_RETSTCC[n] DCB Receive ETS per TC Control 13.2.2.17.99

0x001221C0 + 0x4*n,
n=0...31 GLDCB_RETSTCS[n] DCB Receive ETS per TC Status 13.2.2.17.100

0x001222A0 PRTDCB_RETSC DCB Receive ETS Control 13.2.2.17.101

0x001D2640 PRTDCB_RUP2TC DCB Receive UP to TC Mapping 13.2.2.17.102

0x001D2694 GLDCB_TC2PFC DCB TC to PFC Mapping 13.2.2.17.103

0x001D26C0 PRTDCB_TUP2TC DCB Transmit UP to TC Mapping 13.2.2.17.104

0x001E4560 PRTDCB_TFCS Transmit Flow Control Status 13.2.2.17.105

0x001E4580 + 0x20*n,
n=0...3 PRTDCB_FCTTVN[n] Flow Control Transmit Timer Value n 13.2.2.17.106

0x001E4600 PRTDCB_FCRTV Flow Control Refresh Threshold Value 13.2.2.17.107

0x001E4640 PRTDCB_FCCFG Flow Control Configuration 13.2.2.17.108

Table 13-25. PF - DCB Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2059

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x001E4660 + 0x20*n,
n=0...7 PRTDCB_TPFCTS[n] DCB Transmit PFC Timer Status 13.2.2.17.109

0x002000B0 + 0x4*n,
n=0...31 GLDCB_PRS_RETSTCC[n] DCB Receive ETS per TC Control 13.2.2.17.110

0x00200160 GLDCB_PRS_RSPMC DCB Receive Shared Pipe Monitor Control 13.2.2.17.111

0x00200180 PRTDCB_PRS_RPRRC DCB Receive Port Round Robin Control 13.2.2.17.112

0x002001A0 PRTDCB_PRS_RETSC DCB Receive ETS Control 13.2.2.17.113

0x0020A040 + 0x4*n,
n=0...31 GLDCB_SWT_RETSTCC[n] DCB Receive ETS per TC Control 13.2.2.17.114

0x0020A140 PRTDCB_SWT_RETSC DCB Receive ETS Control 13.2.2.17.115

Table 13-26. PF - Receive Packet Buffer Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x000AC000 + 0x4*n, n=0...15 GLRPB_DHW[n] RPB Dedicated Pool High Watermark 13.2.2.18.1

0x000AC044 + 0x4*n, n=0...15 GLRPB_DLW[n] RPB Dedicated Pool Low Watermark 13.2.2.18.2

0x000AC084 + 0x4*n, n=0...15 GLRPB_DPS[n] RPB Dedicated Pool Size 13.2.2.18.3

0x000AC0C4 + 0x4*n, n=0...7 GLRPB_SPS[n] RPB Shared Pool Size 13.2.2.18.4

0x000AC120 + 0x4*n, n=0...7 GLRPB_SHW[n] RPB Shared Pool High Watermark 13.2.2.18.5

0x000AC140 + 0x4*n, n=0...7 GLRPB_SLW[n] RPB Shared Pool Low Watermark 13.2.2.18.6

0x000AC2A4 + 0x4*n, n=0...31 GLRPB_TC_CFG[n] TC Pool Config 13.2.2.18.7

0x000AC324 GLRPB_DSI_EN DSI Traffic Enable 13.2.2.18.8

0x000AC330 + 0x4*n, n=0...31 GLRPB_TCHW[n] RPB TC High Watermark 13.2.2.18.9

0x000AC3B0 + 0x4*n, n=0...31 GLRPB_TCLW[n] RPB TC Low Watermark 13.2.2.18.10

Table 13-27. PF - Transmit Scheduler Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x0051E228 GLPE_TSCD_PEPM TSCD PEPM 13.2.2.19.1

0x0051E24C + 0x4*n, n=0...3 GLPE_TSCD_FLR[n] Transmit Scheduler FLR 13.2.2.19.2

0x0051E2FC GLPE_TSCD_NUM_PQS Transmit Scheduler Number of PQs 13.2.2.19.3

Table 13-25. PF - DCB Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2060 613875-009

Table 13-28. PF - Host Memory Cache Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x000AA074 GLFOC_CACHESIZE FOC Cache Attributes 13.2.2.20.1

0x00100000 PFHMC_SDCMD_FPMAT Private Memory Space Segment Descriptor
Command 13.2.2.20.2

0x00100100 PFHMC_SDDATALOW_FPMAT Private Memory Space Segment Descriptor Data
Low 13.2.2.20.3

0x00100200 PFHMC_SDDATAHIGH_FPMAT Private Memory Space Segment Descriptor Data
High 13.2.2.20.4

0x00100300 PFHMC_PDINV_FPMAT Private Memory Space Page Descriptor Invalidate 13.2.2.20.5

0x00100400 PFHMC_ERRORINFO_FPMAT Host Memory Cache Error Information Register 13.2.2.20.6

0x00100500 PFHMC_ERRORDATA_FPMAT Host Memory Cache Error Data Register 13.2.2.20.7

0x00100800 + 0x4*n,
n=0...7 GLHMC_SDPART_FPMAT[n] Private Memory Segment Table Partitioning

Registers 13.2.2.20.8

0x00100880 + 0x4*n,
n=0...7 GLHMC_PFPESDPART_FPMAT[n] Private Memory Segment Table Partitioning

Registers 13.2.2.20.9

0x0010202C GLHMC_PEHTEOBJSZ_FPMAT Private Memory PE Hash Table Entry Object Size 13.2.2.20.10

0x00102030 GLHMC_PEHTMAX_FPMAT Private Memory Protocol Engine Hash Entry Max 13.2.2.20.11

0x00102074 GLHMC_FWSDDATALOW_FPMAT Private Memory Space Segment Descriptor Data
Low 13.2.2.20.12

0x00102078 GLHMC_FWSDDATAHIGH_FPMAT Private Memory Space Segment Descriptor Data
High 13.2.2.20.13

0x0010207C GLHMC_FWPDINV_FPMAT Private Memory Space Page Descriptor Invalidate 13.2.2.20.14

0x00104600 + 0x4*n,
n=0...7 GLHMC_PEHTEBASE_FPMAT[n] FPM PE Hash Table Entry Base 13.2.2.20.15

0x00104700 + 0x4*n,
n=0...7 GLHMC_PEHTCNT_FPMAT[n] FPM PE Hash Table Object Count 13.2.2.20.16

0x00108100 + 0x4*n,
n=0...31 GLHMC_VFSDDATALOW_FPMAT[n] Private Memory Space VF Segment Descriptor

Data Low 13.2.2.20.17

0x00108200 + 0x4*n,
n=0...31 GLHMC_VFSDDATAHIGH_FPMAT[n] Private Memory Space VF Segment Descriptor

Data High 13.2.2.20.18

0x00108300 + 0x4*n,
n=0...31 GLHMC_VFPDINV_FPMAT[n] Private Memory Space Page Descriptor Invalidate 13.2.2.20.19

0x00108800 + 0x4*n,
n=0...31 GLHMC_VFSDPART_FPMAT[n] Private Memory Segment Table Partitioning

Registers 13.2.2.20.20

0x0010C600 + 0x4*n,
n=0...31 GLHMC_VFPEHTEBASE_FPMAT[n] FPM PE Hash Table Entry Base 13.2.2.20.21

0x0010C700 + 0x4*n,
n=0...31 GLHMC_VFPEHTCNT_FPMAT[n] FPM PE Hash Table Object Count 13.2.2.20.22

0x00110088 GLPDOC_CACHESIZE_FPMAT PDOC Cache Attributes 13.2.2.20.23

0x00502E00 + 0x4*n,
n=0...31 GLHMC_VFDBCQPART[n] Private Memory CQ Doorbell Partition Registers 13.2.2.20.24

0x00502F00 + 0x4*n,
n=0...31 GLHMC_VFCEQPART[n] Private Memory CEQ Partitioning Registers 13.2.2.20.25

0x00503180 + 0x4*n,
n=0...7 GLHMC_DBCQPART[n] Private Memory CQ Doorbell Partition Registers 13.2.2.20.26

0x005031C0 + 0x4*n,
n=0...7 GLHMC_CEQPART[n] Private Memory CEQ Partitioning Registers 13.2.2.20.27

613875-009 2061

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x005044C0 + 0x4*n,
n=0...7 GLHMC_DBQPPART[n] Private Memory QP Doorbell Partition Registers 13.2.2.20.28

0x00504520 + 0x4*n,
n=0...31 GLHMC_VFDBQPPART[n] Private Memory VF QP Doorbell Partition Registers 13.2.2.20.29

0x005140A8 GLPEOC0_CACHESIZE PEOC0 Cache Attributes 13.2.2.20.30

0x005160A8 GLPEOC1_CACHESIZE PEOC1 Cache Attributes 13.2.2.20.31

0x00518074 GLPBLOC0_CACHESIZE PBLOC0 Cache Attributes 13.2.2.20.32

0x0051A074 GLPBLOC1_CACHESIZE PBLOC1 Cache Attributes 13.2.2.20.33

0x0051C06C GLMDOC_CACHESIZE MDOC Cache Attributes 13.2.2.20.34

0x00520000 PFHMC_SDCMD Private Memory Space Segment Descriptor
Command 13.2.2.20.35

0x00520100 PFHMC_SDDATALOW Private Memory Space Segment Descriptor Data
Low 13.2.2.20.36

0x00520200 PFHMC_SDDATAHIGH Private Memory Space Segment Descriptor Data
High 13.2.2.20.37

0x00520300 PFHMC_PDINV Private Memory Space Page Descriptor Invalidate 13.2.2.20.38

0x00520400 PFHMC_ERRORINFO Host Memory Cache Error Information Register 13.2.2.20.39

0x00520500 PFHMC_ERRORDATA Host Memory Cache Error Data Register 13.2.2.20.40

0x00520800 + 0x4*n,
n=0...7 GLHMC_SDPART[n] Private Memory Segment Table Partitioning

Registers 13.2.2.20.41

0x00520880 + 0x4*n,
n=0...7 GLHMC_PFPESDPART[n] Private Memory Segment Table Partitioning

Registers 13.2.2.20.42

0x00522004 GLHMC_PEHDROBJSZ Private Memory Protocol Engine Header Max 13.2.2.20.43

0x00522008 GLHMC_PEHDRMAX FPM PE Header Object Count 13.2.2.20.44

0x0052200C GLHMC_PEMDOBJSZ Private Memory PE Metadata Object Size 13.2.2.20.45

0x00522010 GLHMC_PEMDMAX Private Memory Protocol Engine Metadata Max 13.2.2.20.46

0x00522014 GLHMC_PEOOISCOBJSZ Private Memory PE Out of Order Send Completion
Object Size 13.2.2.20.47

0x00522018 GLHMC_PEOOISCMAX Private Memory Protocol Engine Out of Order
Send Completion Max 13.2.2.20.48

0x0052201C GLHMC_PEQPOBJSZ Private Memory PE QP Object Size 13.2.2.20.49

0x00522020 GLHMC_PECQOBJSZ Private Memory PE CQ Object Size 13.2.2.20.50

0x0052202C GLHMC_PEHTEOBJSZ Private Memory PE Hash Table Entry Object Size 13.2.2.20.51

0x00522030 GLHMC_PEHTMAX Private Memory Protocol Engine Hash Entry Max 13.2.2.20.52

0x00522034 GLHMC_PEARPOBJSZ Private Memory PE ARP Table Entry Object Size 13.2.2.20.53

0x00522038 GLHMC_PEARPMAX Private Memory Protocol Engine ARP Table Entry
Max 13.2.2.20.54

0x0052203C GLHMC_PEMROBJSZ Private Memory PE Memory Region Table Entry
Object Size 13.2.2.20.55

0x00522040 GLHMC_PEMRMAX Private Memory Protocol Engine Memory
Registration Max 13.2.2.20.56

0x00522044 GLHMC_PEXFOBJSZ Private Memory PE Xmit FIFO Object Size 13.2.2.20.57

Table 13-28. PF - Host Memory Cache Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2062 613875-009

0x00522048 GLHMC_PEXFMAX Private Memory Protocol Engine Transmit FIFO
Entry Max 13.2.2.20.58

0x0052204C GLHMC_PEXFFLMAX Private Memory Protocol Engine Transmit FIFO
Free List Max 13.2.2.20.59

0x00522050 GLHMC_PEQ1OBJSZ Private Memory PE IRRQ Object Size 13.2.2.20.60

0x00522054 GLHMC_PEQ1MAX Private Memory Protocol Engine Q1 Max 13.2.2.20.61

0x00522058 GLHMC_PEQ1FLMAX Private Memory Protocol Engine Q1 Free List Max 13.2.2.20.62

0x0052205C GLHMC_FSIMCOBJSZ Private Memory FSI Multicast Group Object Size 13.2.2.20.63

0x00522060 GLHMC_FSIMCMAX Private Memory FSI Multicast Group Max 13.2.2.20.64

0x00522064 GLHMC_FSIAVOBJSZ Private Memory FSI Address Vector Object Size 13.2.2.20.65

0x00522068 GLHMC_FSIAVMAX Private Memory FSI Address Vector Max 13.2.2.20.66

0x0052206C GLHMC_PEPBLMAX Private Memory Protocol Engine Physical Buffer
List Max 13.2.2.20.67

0x00522074 GLHMC_FWSDDATALOW Private Memory Space Segment Descriptor Data
Low 13.2.2.20.68

0x00522078 GLHMC_FWSDDATAHIGH Private Memory Space Segment Descriptor Data
High 13.2.2.20.69

0x0052207C GLHMC_FWPDINV Private Memory Space Page Descriptor Invalidate 13.2.2.20.70

0x00522080 GLHMC_PETIMEROBJSZ Private Memory PE Timer Object Size 13.2.2.20.71

0x00522084 GLHMC_PETIMERMAX Private Memory PE Timer Object Max 13.2.2.20.72

0x00522098 GLHMC_PERRFOBJSZ Private Memory Protocol Engine Read Response
Entry Object Size 13.2.2.20.73

0x0052209C GLHMC_PERRFMAX Private Memory Protocol Engine Read Response
FIFO Entry Max 13.2.2.20.74

0x005220A0 GLHMC_PERRFFLMAX Private Memory Protocol Engine Read Response
FIFO Free List Max 13.2.2.20.75

0x005220A4 GLHMC_PEOOISCFFLMAX Private Memory Protocol Engine Out of Order
Send Completion (OOISC) FIFO Free List Max 13.2.2.20.76

0x005220EC GLHMC_DBQPMAX Private Memory Protocol Engine Queue Pair Max 13.2.2.20.77

0x005220F0 GLHMC_DBCQMAX Private Memory Protocol Engine Completion
Queue Max 13.2.2.20.78

0x00524000 + 0x4*n,
n=0...7 GLHMC_PEQPBASE[n] FPM PE QP Base 13.2.2.20.79

0x00524100 + 0x4*n,
n=0...7 GLHMC_PEQPCNT[n] FPM PE QP Object Count 13.2.2.20.80

0x00524200 + 0x4*n,
n=0...7 GLHMC_PECQBASE[n] FPM PE CQ Base 13.2.2.20.81

0x00524300 + 0x4*n,
n=0...7 GLHMC_PECQCNT[n] FPM PE CQ Object Count 13.2.2.20.82

0x00524600 + 0x4*n,
n=0...7 GLHMC_PEHTEBASE[n] FPM PE Hash Table Entry Base 13.2.2.20.83

0x00524700 + 0x4*n,
n=0...7 GLHMC_PEHTCNT[n] FPM PE Hash Table Object Count 13.2.2.20.84

0x00524800 + 0x4*n,
n=0...7 GLHMC_PEARPBASE[n] FPM PE ARP Table Base 13.2.2.20.85

Table 13-28. PF - Host Memory Cache Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2063

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x00524900 + 0x4*n,
n=0...7 GLHMC_PEARPCNT[n] FPM PE ARP Table Object Count 13.2.2.20.86

0x00524A00 + 0x4*n,
n=0...7 GLHMC_APBVTINUSEBASE[n] FPM PE APBVT In-Use Base 13.2.2.20.87

0x00524C00 + 0x4*n,
n=0...7 GLHMC_PEMRBASE[n] FPM PE MRT Base 13.2.2.20.88

0x00524D00 + 0x4*n,
n=0...7 GLHMC_PEMRCNT[n] FPM PE Memory Region Table Object Count 13.2.2.20.89

0x00524E00 + 0x4*n,
n=0...7 GLHMC_PEXFBASE[n] FPM PE Xmit FIFO Base 13.2.2.20.90

0x00524F00 + 0x4*n,
n=0...7 GLHMC_PEXFCNT[n] FPM PE Xmit FIFO Object Count 13.2.2.20.91

0x00525000 + 0x4*n,
n=0...7 GLHMC_PEXFFLBASE[n] FPM PE Xmit FIFO Free List Base 13.2.2.20.92

0x00525200 + 0x4*n,
n=0...7 GLHMC_PEQ1BASE[n] FPM PE IRRQ Base 13.2.2.20.93

0x00525300 + 0x4*n,
n=0...7 GLHMC_PEQ1CNT[n] FPM PE IRRQ Object Count 13.2.2.20.94

0x00525400 + 0x4*n,
n=0...7 GLHMC_PEQ1FLBASE[n] FPM PE IRRQ Free List Base 13.2.2.20.95

0x00525600 + 0x4*n,
n=0...7 GLHMC_FSIAVBASE[n] FPM FSI Address Vector Base 13.2.2.20.96

0x00525700 + 0x4*n,
n=0...7 GLHMC_FSIAVCNT[n] FPM FSI Address Vector Object Count 13.2.2.20.97

0x00525800 + 0x4*n,
n=0...7 GLHMC_PEPBLBASE[n] FPM PE Physical Buffer List Base 13.2.2.20.98

0x00525900 + 0x4*n,
n=0...7 GLHMC_PEPBLCNT[n] FPM PE PBL Object Count 13.2.2.20.99

0x00525A00 + 0x4*n,
n=0...7 GLHMC_PETIMERBASE[n] FPM PE Timer Base 13.2.2.20.100

0x00525B00 + 0x4*n,
n=0...7 GLHMC_PETIMERCNT[n] FPM PE Timer Object Count 13.2.2.20.101

0x00526000 + 0x4*n,
n=0...7 GLHMC_FSIMCBASE[n] FPM FSI Multicast Group Base 13.2.2.20.102

0x00526100 + 0x4*n,
n=0...7 GLHMC_FSIMCCNT[n] FPM FSI Multicast Group Object Count 13.2.2.20.103

0x00526200 + 0x4*n,
n=0...7 GLHMC_PEHDRBASE[n] FPM PE Header Base 13.2.2.20.104

0x00526300 + 0x4*n,
n=0...7 GLHMC_PEHDRCNT[n] FPM PE Header Object Count 13.2.2.20.105

0x00526400 + 0x4*n,
n=0...7 GLHMC_PEMDBASE[n] FPM PE Metadata Base 13.2.2.20.106

0x00526500 + 0x4*n,
n=0...7 GLHMC_PEMDCNT[n] FPM PE Metadata Object Count 13.2.2.20.107

0x00526600 + 0x4*n,
n=0...7 GLHMC_PEOOISCBASE[n] FPM PE Out of Order Send Completion Base 13.2.2.20.108

0x00526700 + 0x4*n,
n=0...7 GLHMC_PEOOISCCNT[n] FPM PE Out of Order Send Completion Object

Count 13.2.2.20.109

Table 13-28. PF - Host Memory Cache Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2064 613875-009

0x00526800 + 0x4*n,
n=0...7 GLHMC_PERRFBASE[n] FPM PE Read Response Base 13.2.2.20.110

0x00526900 + 0x4*n,
n=0...7 GLHMC_PERRFCNT[n] FPM PE Read Response Object Count 13.2.2.20.111

0x00526A00 + 0x4*n,
n=0...7 GLHMC_PERRFFLBASE[n] FPM PE Read Response FIFO Free List Base 13.2.2.20.112

0x00526B00 + 0x4*n,
n=0...7 GLHMC_PERRFFLCNT_PMAT[n] FPM PE Read Response FIFO Free List Object

Count 13.2.2.20.113

0x00526C00 + 0x4*n,
n=0...7 GLHMC_PEOOISCFFLBASE[n] FPM PE Out of Order Send Completion (OOISC)

FIFO Free List Base 13.2.2.20.114

0x00526D00 + 0x4*n,
n=0...7 GLHMC_PEOOISCFFLCNT_PMAT[n] FPM PE Out of Order Send Completion (OOISC)

FIFO Free List Object Count 13.2.2.20.115

0x00528100 + 0x4*n,
n=0...31 GLHMC_VFSDDATALOW[n] Private Memory Space VF Segment Descriptor

Data Low 13.2.2.20.116

0x00528200 + 0x4*n,
n=0...31 GLHMC_VFSDDATAHIGH[n] Private Memory Space VF Segment Descriptor

Data High 13.2.2.20.117

0x00528300 + 0x4*n,
n=0...31 GLHMC_VFPDINV[n] Private Memory Space Page Descriptor Invalidate 13.2.2.20.118

0x00528800 + 0x4*n,
n=0...31 GLHMC_VFSDPART[n] Private Memory Segment Table Partitioning

Registers 13.2.2.20.119

0x0052C000 + 0x4*n,
n=0...31 GLHMC_VFPEQPBASE[n] FPM PE QP Base 13.2.2.20.120

0x0052C100 + 0x4*n,
n=0...31 GLHMC_VFPEQPCNT[n] FPM PE QP Object Count 13.2.2.20.121

0x0052C200 + 0x4*n,
n=0...31 GLHMC_VFPECQBASE[n] FPM PE CQ Base 13.2.2.20.122

0x0052C300 + 0x4*n,
n=0...31 GLHMC_VFPECQCNT[n] FPM PE CQ Object Count 13.2.2.20.123

0x0052C600 + 0x4*n,
n=0...31 GLHMC_VFPEHTEBASE[n] FPM PE Hash Table Entry Base 13.2.2.20.124

0x0052C700 + 0x4*n,
n=0...31 GLHMC_VFPEHTCNT[n] FPM PE Hash Table Object Count 13.2.2.20.125

0x0052C800 + 0x4*n,
n=0...31 GLHMC_VFPEARPBASE[n] FPM PE ARP Table Base 13.2.2.20.126

0x0052C900 + 0x4*n,
n=0...31 GLHMC_VFPEARPCNT[n] FPM PE ARP Table Object Count 13.2.2.20.127

0x0052CA00 + 0x4*n,
n=0...31 GLHMC_VFAPBVTINUSEBASE[n] FPM PE APBVT In-Use Base 13.2.2.20.128

0x0052CC00 + 0x4*n,
n=0...31 GLHMC_VFPEMRBASE[n] FPM PE MRT Base 13.2.2.20.129

0x0052CD00 + 0x4*n,
n=0...31 GLHMC_VFPEMRCNT[n] FPM PE Memory Region Table Object Count 13.2.2.20.130

0x0052CE00 + 0x4*n,
n=0...31 GLHMC_VFPEXFBASE[n] FPM PE Xmit FIFO Base 13.2.2.20.131

0x0052CF00 + 0x4*n,
n=0...31 GLHMC_VFPEXFCNT[n] FPM PE Xmit FIFO Object Count 13.2.2.20.132

0x0052D000 + 0x4*n,
n=0...31 GLHMC_VFPEXFFLBASE[n] FPM PE Xmit FIFO Free List Base 13.2.2.20.133

Table 13-28. PF - Host Memory Cache Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2065

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0052D200 + 0x4*n,
n=0...31 GLHMC_VFPEQ1BASE[n] FPM PE IRRQ Base 13.2.2.20.134

0x0052D300 + 0x4*n,
n=0...31 GLHMC_VFPEQ1CNT[n] FPM PE IRRQ Object Count 13.2.2.20.135

0x0052D400 + 0x4*n,
n=0...31 GLHMC_VFPEQ1FLBASE[n] FPM PE IRRQ Free List Base 13.2.2.20.136

0x0052D600 + 0x4*n,
n=0...31 GLHMC_VFFSIAVBASE[n] FPM FSI Address Vector Base 13.2.2.20.137

0x0052D700 + 0x4*n,
n=0...31 GLHMC_VFFSIAVCNT[n] FPM FSI Address Vector Object Count 13.2.2.20.138

0x0052D800 + 0x4*n,
n=0...31 GLHMC_VFPEPBLBASE[n] FPM PE Physical Buffer List Base 13.2.2.20.139

0x0052D900 + 0x4*n,
n=0...31 GLHMC_VFPEPBLCNT[n] FPM PE PBL Object Count 13.2.2.20.140

0x0052DA00 + 0x4*n,
n=0...31 GLHMC_VFPETIMERBASE[n] FPM PE Timer Base 13.2.2.20.141

0x0052DB00 + 0x4*n,
n=0...31 GLHMC_VFPETIMERCNT[n] FPM PE Timer Object Count 13.2.2.20.142

0x0052E000 + 0x4*n,
n=0...31 GLHMC_VFFSIMCBASE[n] FPM FSI Multicast Group Base 13.2.2.20.143

0x0052E100 + 0x4*n,
n=0...31 GLHMC_VFFSIMCCNT[n] FPM FSI Multicast Group Object Count 13.2.2.20.144

0x0052E200 + 0x4*n,
n=0...31 GLHMC_VFPEHDRBASE[n] FPM PE Header Base 13.2.2.20.145

0x0052E300 + 0x4*n,
n=0...31 GLHMC_VFPEHDRCNT[n] FPM PE Header Object Count 13.2.2.20.146

0x0052E400 + 0x4*n,
n=0...31 GLHMC_VFPEMDBASE[n] FPM PE Metadata Base 13.2.2.20.147

0x0052E500 + 0x4*n,
n=0...31 GLHMC_VFPEMDCNT[n] FPM PE Metadata Object Count 13.2.2.20.148

0x0052E600 + 0x4*n,
n=0...31 GLHMC_VFPEOOISCBASE[n] FPM PE Out of Order Send Completion Base 13.2.2.20.149

0x0052E700 + 0x4*n,
n=0...31 GLHMC_VFPEOOISCCNT[n] FPM PE Out of Order Send Completion Object

Count 13.2.2.20.150

0x0052E800 + 0x4*n,
n=0...31 GLHMC_VFPERRFBASE[n] FPM PE Read Response Base 13.2.2.20.151

0x0052E900 + 0x4*n,
n=0...31 GLHMC_VFPERRFCNT[n] FPM PE Read Response Object Count 13.2.2.20.152

0x0052EA00 + 0x4*n,
n=0...31 GLHMC_VFPERRFFLBASE[n] FPM PE Read Response FIFO Free List Base 13.2.2.20.153

0x0052EC00 + 0x4*n,
n=0...31 GLHMC_VFPEOOISCFFLBASE[n] FPM PE Out of Order Send Completion (OOISC)

FIFO Free List Base 13.2.2.20.154

0x00530048 GLPDOC_CACHESIZE PDOC Cache Attributes 13.2.2.20.155

Table 13-28. PF - Host Memory Cache Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2066 613875-009

Table 13-29. PF - Context Manager Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x005046B4 GLCM_PE_CACHESIZE CMPE Cache Attributes 13.2.2.21.1

Table 13-30. PF - Control Queues Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00080000 PF_FW_ATQBAL PF Firmware Admin Transmit Queue Base
Address Low 13.2.2.22.1

0x00080040 GL_FW_TOOL_ATQBAL Global Tools Firmware Admin Transmit
Queue Base Address Low 13.2.2.22.2

0x00080044 PF0_FW_PSM_ATQBAL PF0 PSM Firmware Admin Transmit Queue
Base Address Low 13.2.2.22.3

0x00080048 PF0_FW_HLP_ATQBAL PF0 HLP Firmware Admin Transmit Queue
Base Address Low 13.2.2.22.4

0x00080080 PF_FW_ARQBAL PF Firmware Admin Receive Queue Base
Address Low 13.2.2.22.5

0x000800C0 GL_FW_TOOL_ARQBAL Global Tools Firmware Admin Receive Queue
Base Address Low 13.2.2.22.6

0x000800C4 PF0_FW_PSM_ARQBAL PF0 PSM Firmware Admin Receive Queue
Base Address Low 13.2.2.22.7

0x000800C8 PF0_FW_HLP_ARQBAL PF0 HLP Firmware Admin Receive Queue
Base Address Low 13.2.2.22.8

0x00080100 PF_FW_ATQBAH PF Firmware Admin Transmit Queue Base
Address High 13.2.2.22.9

0x00080140 GL_FW_TOOL_ATQBAH Global Tools Firmware Admin Transmit
Queue Base Address High 13.2.2.22.10

0x00080144 PF0_FW_PSM_ATQBAH PF0 PSM Firmware Admin Transmit Queue
Base Address High 13.2.2.22.11

0x00080148 PF0_FW_HLP_ATQBAH PF0 HLP Firmware Admin Transmit Queue
Base Address High 13.2.2.22.12

0x00080180 PF_FW_ARQBAH PF Firmware Admin Receive Queue Base
Address High 13.2.2.22.13

0x000801C0 GL_FW_TOOL_ARQBAH Global Tools Firmware Admin Receive Queue
Base Address High 13.2.2.22.14

0x000801C4 PF0_FW_PSM_ARQBAH PF0 PSM Firmware Admin Receive Queue
Base Address High 13.2.2.22.15

0x000801C8 PF0_FW_HLP_ARQBAH PF0 HLP Firmware Admin Receive Queue
Base Address High 13.2.2.22.16

0x00080200 PF_FW_ATQLEN PF Firmware Admin Transmit Queue Length 13.2.2.22.17

0x00080240 GL_FW_TOOL_ATQLEN Global Tools Firmware Admin Transmit
Queue Length 13.2.2.22.18

0x00080244 PF0_FW_PSM_ATQLEN PF0 PSM Firmware Admin Transmit Queue
Length 13.2.2.22.19

0x00080248 PF0_FW_HLP_ATQLEN PF0 HLP Firmware Admin Transmit Queue
Length 13.2.2.22.20

0x00080280 PF_FW_ARQLEN PF Firmware Admin Receive Queue Length 13.2.2.22.21

0x000802C0 GL_FW_TOOL_ARQLEN Global Tools Firmware Admin Receive Queue
Length 13.2.2.22.22

613875-009 2067

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x000802C4 PF0_FW_PSM_ARQLEN PF0 PSM Firmware Admin Receive Queue
Length 13.2.2.22.23

0x000802C8 PF0_FW_HLP_ARQLEN PF0 HLP Firmware Admin Receive Queue
Length 13.2.2.22.24

0x00080300 PF_FW_ATQH PF Firmware Admin Transmit Head 13.2.2.22.25

0x00080340 GL_FW_TOOL_ATQH Global Tools Firmware Admin Transmit Head 13.2.2.22.26

0x00080344 PF0_FW_PSM_ATQH PF0 PSM Firmware Admin Transmit Head 13.2.2.22.27

0x00080348 PF0_FW_HLP_ATQH PF0 HLP Firmware Admin Transmit Head 13.2.2.22.28

0x00080380 PF_FW_ARQH PF Firmware Admin Receive Queue Head 13.2.2.22.29

0x000803C0 GL_FW_TOOL_ARQH Global Tools Firmware Admin Receive Queue
Head 13.2.2.22.30

0x000803C4 PF0_FW_PSM_ARQH PF0 PSM Firmware Admin Receive Queue
Head 13.2.2.22.31

0x000803C8 PF0_FW_HLP_ARQH PF0 HLP Firmware Admin Receive Queue
Head 13.2.2.22.32

0x00080400 PF_FW_ATQT PF Firmware Admin Transmit Tail 13.2.2.22.33

0x00080440 GL_FW_TOOL_ATQT Global Tools Firmware Admin Transmit Tail 13.2.2.22.34

0x00080444 PF0_FW_PSM_ATQT PF0 PSM Firmware Admin Transmit Tail 13.2.2.22.35

0x00080448 PF0_FW_HLP_ATQT PF0 HLP Firmware Admin Transmit Tail 13.2.2.22.36

0x00080480 PF_FW_ARQT PF Firmware Admin Receive Queue Tail 13.2.2.22.37

0x000804C0 GL_FW_TOOL_ARQT Global Tools Firmware Admin Receive Queue
Tail 13.2.2.22.38

0x000804C4 PF0_FW_PSM_ARQT PF0 PSM Firmware Admin Receive Queue
Tail 13.2.2.22.39

0x000804C8 PF0_FW_HLP_ARQT PF0 HLP Firmware Admin Receive Queue Tail 13.2.2.22.40

0x00081000 + 0x4*n,
n=0...1023 GL_HIBA[n] Tools Mailbox HOST Interface Buffer Area 13.2.2.22.41

0x00082000 + 0x4*n,
n=0...15 GL_HIDA[n] Tools Mailbox HOST Interface Descriptor

Area 13.2.2.22.42

0x00082040 GL_HICR Tools Mailbox HOST Interface Control
Register 13.2.2.22.43

0x00082044 GL_HICR_EN Tools Mailbox HOST Interface Enable
Register 13.2.2.22.44

0x00220000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ATQBAL[VSI] VSI Mailbox Transmit Queue Base Address

Low 13.2.2.22.45

0x00221000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ATQBAH[VSI] VSI Mailbox Transmit Queue Base Address

High 13.2.2.22.46

0x00222000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ATQLEN[VSI] VSI Mailbox Transmit Queue Length 13.2.2.22.47

0x00223000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ATQH[VSI] VSI Mailbox Transmit Head 13.2.2.22.48

0x00224000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ATQT[VSI] VSI Mailbox Transmit Tail 13.2.2.22.49

0x00225000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ARQBAL[VSI] VSI Mailbox Receive Queue Base Address

Low 13.2.2.22.50

Table 13-30. PF - Control Queues Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2068 613875-009

0x00226000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ARQBAH[VSI] VSI Mailbox Receive Queue Base Address

High 13.2.2.22.51

0x00227000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ARQLEN[VSI] VSI Mailbox Receive Queue Length 13.2.2.22.52

0x00228000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ARQH[VSI] VSI Mailbox Receive Head 13.2.2.22.53

0x00229000 + 0x4*VSI,
VSI=0...767 VSI_MBX_ARQT[VSI] VSI Mailbox Receive Tail 13.2.2.22.54

0x0022A000 + 0x4*VF,
VF=0...255 VF_MBX_ATQBAL[VF] VF Mailbox Transmit Queue Base Address

Low 13.2.2.22.55

0x0022A400 + 0x4*VF,
VF=0...255 VF_MBX_ATQBAH[VF] VF Mailbox Transmit Queue Base Address

High 13.2.2.22.56

0x0022A800 + 0x4*VF,
VF=0...255 VF_MBX_ATQLEN[VF] VF Mailbox Transmit Queue Length 13.2.2.22.57

0x0022AC00 + 0x4*VF,
VF=0...255 VF_MBX_ATQH[VF] VF Mailbox Transmit Head 13.2.2.22.58

0x0022B000 + 0x4*VF,
VF=0...255 VF_MBX_ATQT[VF] VF Mailbox Transmit Tail 13.2.2.22.59

0x0022B400 + 0x4*VF,
VF=0...255 VF_MBX_ARQBAL[VF] VF Mailbox Receive Queue Base Address

Low 13.2.2.22.60

0x0022B800 + 0x4*VF,
VF=0...255 VF_MBX_ARQBAH[VF] VF Mailbox Receive Queue Base Address

High 13.2.2.22.61

0x0022BC00 + 0x4*VF,
VF=0...255 VF_MBX_ARQLEN[VF] VF Mailbox Receive Queue Length 13.2.2.22.62

0x0022C000 + 0x4*VF,
VF=0...255 VF_MBX_ARQH[VF] VF Mailbox Receive Head 13.2.2.22.63

0x0022C400 + 0x4*VF,
VF=0...255 VF_MBX_ARQT[VF] VF Mailbox Receive Tail 13.2.2.22.64

0x0022C800 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ATQBAL[VF128] VF CPM Mailbox Transmit Queue Base

Address Low 13.2.2.22.65

0x0022CA00 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ATQBAH[VF128] VF CPM Mailbox Transmit Queue Base

Address High 13.2.2.22.66

0x0022CC00 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ATQLEN[VF128] VF CPM Mailbox Transmit Queue Length 13.2.2.22.67

0x0022CE00 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ATQH[VF128] VF CPM Mailbox Transmit Head 13.2.2.22.68

0x0022D000 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ATQT[VF128] VF CPM Mailbox Transmit Tail 13.2.2.22.69

0x0022D200 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ARQBAL[VF128] VF CPM Mailbox Receive Queue Base

Address Low 13.2.2.22.70

0x0022D400 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ARQBAH[VF128] VF CPM Mailbox Receive Queue Base

Address High 13.2.2.22.71

0x0022D600 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ARQLEN[VF128] VF CPM Mailbox Receive Queue Length 13.2.2.22.72

0x0022D800 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ARQH[VF128] VF CPM Mailbox Receive Head 13.2.2.22.73

0x0022DA00 + 0x4*VF128,
VF128=0...127 VF_MBX_CPM_ARQT[VF128] VF CPM Mailbox Receive Tail 13.2.2.22.74

Table 13-30. PF - Control Queues Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2069

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0022DC00 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ATQBAL[VF16] VF HLP Mailbox Transmit Queue Base

Address Low 13.2.2.22.75

0x0022DC40 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ATQBAH[VF16] VF HLP Mailbox Transmit Queue Base

Address High 13.2.2.22.76

0x0022DC80 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ATQLEN[VF16] VF HLP Mailbox Transmit Queue Length 13.2.2.22.77

0x0022DCC0 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ATQH[VF16] VF HLP Mailbox Transmit Head 13.2.2.22.78

0x0022DD00 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ATQT[VF16] VF HLP Mailbox Transmit Tail 13.2.2.22.79

0x0022DD40 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ARQBAL[VF16] VF HLP Mailbox Receive Queue Base

Address Low 13.2.2.22.80

0x0022DD80 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ARQBAH[VF16] VF HLP Mailbox Receive Queue Base

Address High 13.2.2.22.81

0x0022DDC0 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ARQLEN[VF16] VF HLP Mailbox Receive Queue Length 13.2.2.22.82

0x0022DE00 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ARQH[VF16] VF HLP Mailbox Receive Head 13.2.2.22.83

0x0022DE40 + 0x4*VF16,
VF16=0...15 VF_MBX_HLP_ARQT[VF16] VF HLP Mailbox Receive Tail 13.2.2.22.84

0x0022DE80 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ATQBAL[VF16] VF PSM Mailbox Transmit Queue Base

Address Low 13.2.2.22.85

0x0022DEC0 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ATQBAH[VF16] VF PSM Mailbox Transmit Queue Base

Address High 13.2.2.22.86

0x0022DF00 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ATQLEN[VF16] VF PSM Mailbox Transmit Queue Length 13.2.2.22.87

0x0022DF40 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ATQH[VF16] VF PSM Mailbox Transmit Head 13.2.2.22.88

0x0022DF80 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ATQT[VF16] VF PSM Mailbox Transmit Tail 13.2.2.22.89

0x0022DFC0 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ARQBAL[VF16] VF PSM Mailbox Receive Queue Base

Address Low 13.2.2.22.90

0x0022E000 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ARQBAH[VF16] VF PSM Mailbox Receive Queue Base

Address High 13.2.2.22.91

0x0022E040 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ARQLEN[VF16] VF PSM Mailbox Receive Queue Length 13.2.2.22.92

0x0022E080 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ARQH[VF16] VF PSM Mailbox Receive Head 13.2.2.22.93

0x0022E0C0 + 0x4*VF16,
VF16=0...15 VF_MBX_PSM_ARQT[VF16] VF PSM Mailbox Receive Tail 13.2.2.22.94

0x0022E100 PF_MBX_ATQBAL PF Mailbox Transmit Queue Base Address
Low 13.2.2.22.95

0x0022E180 PF_MBX_ATQBAH PF Mailbox Transmit Queue Base Address
High 13.2.2.22.96

0x0022E200 PF_MBX_ATQLEN PF Mailbox Transmit Queue Length 13.2.2.22.97

0x0022E280 PF_MBX_ATQH PF Mailbox Transmit Head 13.2.2.22.98

0x0022E300 PF_MBX_ATQT PF Mailbox Transmit Tail 13.2.2.22.99

Table 13-30. PF - Control Queues Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2070 613875-009

0x0022E380 PF_MBX_ARQBAL PF Mailbox Receive Queue Base Address
Low 13.2.2.22.100

0x0022E400 PF_MBX_ARQBAH PF Mailbox Receive Queue Base Address
High 13.2.2.22.101

0x0022E480 PF_MBX_ARQLEN PF Mailbox Receive Queue Length 13.2.2.22.102

0x0022E500 PF_MBX_ARQH PF Mailbox Receive Head 13.2.2.22.103

0x0022E580 PF_MBX_ARQT PF Mailbox Receive Tail 13.2.2.22.104

0x0022E5C0 PF0_MBX_CPM_ATQBAL PF0 CPM Mailbox Transmit Queue Base
Address Low 13.2.2.22.105

0x0022E5C4 PF0_MBX_CPM_ATQBAH PF0 CPM Mailbox Transmit Queue Base
Address High 13.2.2.22.106

0x0022E5C8 PF0_MBX_CPM_ATQLEN PF0 CPM Mailbox Transmit Queue Length 13.2.2.22.107

0x0022E5CC PF0_MBX_CPM_ATQH PF0 CPM Mailbox Transmit Head 13.2.2.22.108

0x0022E5D0 PF0_MBX_CPM_ATQT PF0 CPM Mailbox Transmit Tail 13.2.2.22.109

0x0022E5D4 PF0_MBX_CPM_ARQBAL PF0 CPM Mailbox Receive Queue Base
Address Low 13.2.2.22.110

0x0022E5D8 PF0_MBX_CPM_ARQBAH PF0 CPM Mailbox Receive Queue Base
Address High 13.2.2.22.111

0x0022E5DC PF0_MBX_CPM_ARQLEN PF0 CPM Mailbox Receive Queue Length 13.2.2.22.112

0x0022E5E0 PF0_MBX_CPM_ARQH PF0 CPM Mailbox Receive Head 13.2.2.22.113

0x0022E5E4 PF0_MBX_CPM_ARQT PF0 CPM Mailbox Receive Tail 13.2.2.22.114

0x0022E5E8 PF0_MBX_HLP_ATQBAL PF0 HLP Mailbox Transmit Queue Base
Address Low 13.2.2.22.115

0x0022E5EC PF0_MBX_HLP_ATQBAH PF0 HLP Mailbox Transmit Queue Base
Address High 13.2.2.22.116

0x0022E5F0 PF0_MBX_HLP_ATQLEN PF0 HLP Mailbox Transmit Queue Length 13.2.2.22.117

0x0022E5F4 PF0_MBX_HLP_ATQH PF0 HLP Mailbox Transmit Head 13.2.2.22.118

0x0022E5F8 PF0_MBX_HLP_ATQT PF0 HLP Mailbox Transmit Tail 13.2.2.22.119

0x0022E5FC PF0_MBX_HLP_ARQBAL PF0 HLP Mailbox Receive Queue Base
Address Low 13.2.2.22.120

0x0022E600 PF0_MBX_HLP_ARQBAH PF0 HLP Mailbox Receive Queue Base
Address High 13.2.2.22.121

0x0022E604 PF0_MBX_HLP_ARQLEN PF0 HLP Mailbox Receive Queue Length 13.2.2.22.122

0x0022E608 PF0_MBX_HLP_ARQH PF0 HLP Mailbox Receive Head 13.2.2.22.123

0x0022E60C PF0_MBX_HLP_ARQT PF0 HLP Mailbox Receive Tail 13.2.2.22.124

0x0022E610 PF0_MBX_PSM_ATQBAL PF0 PSM Mailbox Transmit Queue Base
Address Low 13.2.2.22.125

0x0022E614 PF0_MBX_PSM_ATQBAH PF0 PSM Mailbox Transmit Queue Base
Address High 13.2.2.22.126

0x0022E618 PF0_MBX_PSM_ATQLEN PF0 PSM Mailbox Transmit Queue Length 13.2.2.22.127

0x0022E61C PF0_MBX_PSM_ATQH PF0 PSM Mailbox Transmit Head 13.2.2.22.128

0x0022E620 PF0_MBX_PSM_ATQT PF0 PSM Mailbox Transmit Tail 13.2.2.22.129

Table 13-30. PF - Control Queues Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2071

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0022E624 PF0_MBX_PSM_ARQBAL PF0 PSM Mailbox Receive Queue Base
Address Low 13.2.2.22.130

0x0022E628 PF0_MBX_PSM_ARQBAH PF0 PSM Mailbox Receive Queue Base
Address High 13.2.2.22.131

0x0022E62C PF0_MBX_PSM_ARQLEN PF0 PSM Mailbox Receive Queue Length 13.2.2.22.132

0x0022E630 PF0_MBX_PSM_ARQH PF0 PSM Mailbox Receive Head 13.2.2.22.133

0x0022E634 PF0_MBX_PSM_ARQT PF0 PSM Mailbox Receive Tail 13.2.2.22.134

0x0022E638 PF0_SB_CPM_ATQBAL PF0 CPM Sideband Transmit Queue Base
Address Low 13.2.2.22.135

0x0022E63C PF0_SB_CPM_ATQBAH PF0 CPM Sideband Transmit Queue Base
Address High 13.2.2.22.136

0x0022E640 PF0_SB_CPM_ATQLEN PF0 CPM Sideband Transmit Queue Length 13.2.2.22.137

0x0022E644 PF0_SB_CPM_ATQH PF0 CPM Sideband Transmit Head 13.2.2.22.138

0x0022E648 PF0_SB_CPM_ATQT PF0 CPM Sideband Transmit Tail 13.2.2.22.139

0x0022E64C PF0_SB_CPM_ARQBAL PF0 CPM Sideband Receive Queue Base
Address Low 13.2.2.22.140

0x0022E650 PF0_SB_CPM_ARQBAH PF0 CPM Sideband Receive Queue Base
Address High 13.2.2.22.141

0x0022E654 PF0_SB_CPM_ARQLEN PF0 CPM Sideband Receive Queue Length 13.2.2.22.142

0x0022E658 PF0_SB_CPM_ARQH PF0 CPM Sideband Receive Head 13.2.2.22.143

0x0022E65C PF0_SB_CPM_ARQT PF0 CPM Sideband Receive Tail 13.2.2.22.144

0x0022E800 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ATQBAL[VF128] VF CPM Sideband Transmit Queue Base

Address Low 13.2.2.22.145

0x0022EA00 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ATQBAH[VF128] VF CPM Sideband Transmit Queue Base

Address High 13.2.2.22.146

0x0022EC00 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ATQLEN[VF128] VF CPM Sideband Transmit Queue Length 13.2.2.22.147

0x0022EE00 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ATQH[VF128] VF CPM Sideband Transmit Head 13.2.2.22.148

0x0022F000 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ATQT[VF128] VF CPM Sideband Transmit Tail 13.2.2.22.149

0x0022F200 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ARQBAL[VF128] VF CPM Sideband Receive Queue Base

Address Low 13.2.2.22.150

0x0022F400 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ARQBAH[VF128] VF CPM Sideband Receive Queue Base

Address High 13.2.2.22.151

0x0022F600 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ARQLEN[VF128] VF CPM Sideband Receive Queue Length 13.2.2.22.152

0x0022F800 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ARQH[VF128] VF CPM Sideband Receive Head 13.2.2.22.153

0x0022FA00 + 0x4*VF128,
VF128=0...127 VF_SB_CPM_ARQT[VF128] VF CPM Sideband Receive Tail 13.2.2.22.154

0x0022FC00 PF_SB_ATQBAL PF Sideband Transmit Queue Base Address
Low 13.2.2.22.155

0x0022FC80 PF_SB_ATQBAH PF Sideband Transmit Queue Base Address
High 13.2.2.22.156

0x0022FD00 PF_SB_ATQLEN PF Sideband Transmit Queue Length 13.2.2.22.157

Table 13-30. PF - Control Queues Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2072 613875-009

0x0022FD80 PF_SB_ATQH PF Sideband Transmit Head 13.2.2.22.158

0x0022FE00 PF_SB_ATQT PF Sideband Transmit Tail 13.2.2.22.159

0x0022FE80 PF_SB_ARQBAL PF Sideband Receive Queue Base Address
Low 13.2.2.22.160

0x0022FF00 PF_SB_ARQBAH PF Sideband Receive Queue Base Address
High 13.2.2.22.161

0x0022FF80 PF_SB_ARQLEN PF Sideband Receive Queue Length 13.2.2.22.162

0x00230000 PF_SB_ARQH PF Sideband Receive Head 13.2.2.22.163

0x00230080 PF_SB_ARQT PF Sideband Receive Tail 13.2.2.22.164

0x002300C0 PF0_SB_HLP_ATQBAL PF0 HLP Sideband Transmit Queue Base
Address Low 13.2.2.22.165

0x002300C4 PF0_SB_HLP_ATQBAH PF0 HLP Sideband Transmit Queue Base
Address High 13.2.2.22.166

0x002300C8 PF0_SB_HLP_ATQLEN PF0 HLP Sideband Transmit Queue Length 13.2.2.22.167

0x002300CC PF0_SB_HLP_ATQH PF0 HLP Sideband Transmit Head 13.2.2.22.168

0x002300D0 PF0_SB_HLP_ATQT PF0 HLP Sideband Transmit Tail 13.2.2.22.169

0x002300D4 PF0_SB_HLP_ARQBAL PF0 HLP Sideband Receive Queue Base
Address Low 13.2.2.22.170

0x002300D8 PF0_SB_HLP_ARQBAH PF0 HLP Sideband Receive Queue Base
Address High 13.2.2.22.171

0x002300DC PF0_SB_HLP_ARQLEN PF0 HLP Sideband Receive Queue Length 13.2.2.22.172

0x002300E0 PF0_SB_HLP_ARQH PF0 HLP Sideband Receive Head 13.2.2.22.173

0x002300E4 PF0_SB_HLP_ARQT PF0 HLP Sideband Receive Tail 13.2.2.22.174

0x002300E8 PF0_SB_HLP_REM_DEV_CTL PF SB HLP Remote Device Control Register 13.2.2.22.175

0x002300EC VF_SB_CPM_REM_DEV_CTL VF SB CPM Remote Device Control Register 13.2.2.22.176

0x002300F0 PF_SB_REM_DEV_CTL PF SB Remote Device Control Register 13.2.2.22.177

0x002300F4 PF0_SB_CPM_REM_DEV_CTL PF SB CPM Remote Device Control Register 13.2.2.22.178

0x002300F8 + 0x4*n,
n=0...7 SB_REM_DEV_DEST[n] SB Remote Device Destination Register 13.2.2.22.179

0x00230800 + 0x4*VSI,
VSI=0...767 VP_MBX_PF_VF_CTRL[VSI] PF VF Control Register 13.2.2.22.180

0x00231800 + 0x4*VP128,
VP128=0...127 VP_MBX_CPM_PF_VF_CTRL[VP128] PF VF Control Register 13.2.2.22.181

0x00231A00 + 0x4*VP16,
VP16=0...15 VP_MBX_HLP_PF_VF_CTRL[VP16] PF VF Control Register 13.2.2.22.182

0x00231A40 + 0x4*VP16,
VP16=0...15 VP_MBX_PSM_PF_VF_CTRL[VP16] PF VF Control Register 13.2.2.22.183

0x00231C00 + 0x4*VP128,
VP128=0...127 VP_SB_CPM_PF_VF_CTRL[VP128] PF VF Control Register 13.2.2.22.184

0x00231EC0 GL_MBX_PASID PF VF Control Register 13.2.2.22.185

Table 13-30. PF - Control Queues Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2073

Intel® Ethernet Controller E810 Datasheet
Programming Interface

Table 13-31. PF - Statistics Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00099094 + 0x4*n,
n=0...63 TPB_PRTTPB_STAT_TC_BYTES_SENT[n] PORT TC Transmit Byte Count 13.2.2.23.1

0x00099470 + 0x4*n,
n=0...7 TPB_PRTTPB_STAT_PKT_SENT[n] PORT Transmit Packet Count 13.2.2.23.2

0x000AC260 PRTRPB_RDPC Port (Line) Receive Drop Counter 13.2.2.23.3

0x000AC280 PRTRPB_LDPC Port (LB) Receive Drop Counter 13.2.2.23.4

0x00294C04 + 0x4*n,
n=0...767 GLV_RDPC[n] VSI Received Discard Packet Count 13.2.2.23.5

0x00295804 + 0x4*n,
n=0...767 GLV_REPC[n] Per VSI Error Drops 13.2.2.23.6

0x00300000 + 0x8*n,
n=0...767 GLV_GOTCL[n] VSI Good Octets Transmit Count Low 13.2.2.23.7

0x00300004 + 0x8*n,
n=0...767 GLV_GOTCH[n] VSI Good Octets Transmit Count High 13.2.2.23.8

0x00302000 + 0x8*n,
n=0...31 GLSW_GOTCL[n] Switch Good Octets Transmit Count Low 13.2.2.23.9

0x00302004 + 0x8*n,
n=0...31 GLSW_GOTCH[n] Switch Good Octets Transmit Count

High 13.2.2.23.10

0x00304000 + 0x8*n,
n=0...127 GL_STAT_SWR_GOTCL[n] VEB VLAN Transmit Byte Count Low 13.2.2.23.11

0x00304004 + 0x8*n,
n=0...127 GL_STAT_SWR_GOTCH[n] VEB VLAN Transmit Byte Count High 13.2.2.23.12

0x00306000 + 0x8*n +
0x40*m, n=0...7, m=0...31 GLVEBUP_TBCL[n,m] VEB UP Transmit Byte Count Low 13.2.2.23.13

0x00306004 + 0x8*n +
0x40*m, n=0...7, m=0...31 GLVEBUP_TBCH[n,m] VEB UP Transmit Byte Count High 13.2.2.23.14

0x00308000 + 0x8*n +
0x40*m, n=0...7, m=0...31 GLVEBUP_TPCL[n,m] VEB UP Transmit Packet Count Low 13.2.2.23.15

0x00308004 + 0x8*n +
0x40*m, n=0...7, m=0...31 GLVEBUP_TPCH[n,m] VEB UP Transmit Packet Count High 13.2.2.23.16

0x0030A000 + 0x8*n,
n=0...767 GLV_UPTCL[n] VSI Unicast Packets Transmit Count Low 13.2.2.23.17

0x0030A004 + 0x8*n,
n=0...767 GLV_UPTCH[n] VSI Unicast Packets Transmit Count

High 13.2.2.23.18

0x0030C000 + 0x8*n,
n=0...767 GLV_MPTCL[n] VSI Multicast Packets Transmit Count

Low 13.2.2.23.19

0x0030C004 + 0x8*n,
n=0...767 GLV_MPTCH[n] VSI Multicast Packets Transmit Count

High 13.2.2.23.20

0x0030E000 + 0x8*n,
n=0...767 GLV_BPTCL[n] VSI Broadcast Packets Transmit Count

Low 13.2.2.23.21

0x0030E004 + 0x8*n,
n=0...767 GLV_BPTCH[n] VSI Broadcast Packets Transmit Count

High 13.2.2.23.22

0x00310000 + 0x8*n,
n=0...31 GLSW_UPTCL[n] Switch Unicast Packets Transmit Count

Low 13.2.2.23.23

0x00310004 + 0x8*n,
n=0...31 GLSW_UPTCH[n] Switch Unicast Packets Transmit Count

High 13.2.2.23.24

0x00310100 + 0x8*n,
n=0...31 GLSW_MPTCL[n] Switch Multicast Packets Transmit Count

Low 13.2.2.23.25

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2074 613875-009

0x00310104 + 0x8*n,
n=0...31 GLSW_MPTCH[n] Switch Multicast Packets Transmit Count

High 13.2.2.23.26

0x00310200 + 0x8*n,
n=0...31 GLSW_BPTCL[n] Switch Broadcast Packets Transmit

Count Low 13.2.2.23.27

0x00310204 + 0x8*n,
n=0...31 GLSW_BPTCH[n] Switch Broadcast Packets Transmit

Count High 13.2.2.23.28

0x00312000 + 0x4*VSI,
VSI=0...767 GLV_TEPC[VSI] VSI Transmit Error Packet Count 13.2.2.23.29

0x00340000 + 0x4*n,
n=0...7 GLPRT_STDC[n] Port Storm Control Discarded Count 13.2.2.23.30

0x00341000 + 0x8*n,
n=0...31 GLSW_GORCL[n] Switch Good Octets Received Count Low 13.2.2.23.31

0x00341004 + 0x8*n,
n=0...31 GLSW_GORCH[n] Switch Good Octets Received Count

High 13.2.2.23.32

0x00342000 + 0x8*n,
n=0...127 GL_STAT_SWR_GORCL[n] VEB VLAN Receive Byte Count Low 13.2.2.23.33

0x00342004 + 0x8*n,
n=0...127 GL_STAT_SWR_GORCH[n] VEB VLAN Receive Byte Count High 13.2.2.23.34

0x00343000 + 0x8*n +
0x40*m, n=0...7, m=0...31 GLVEBUP_RBCL[n,m] VEB UP Receive Byte Count Low 13.2.2.23.35

0x00343004 + 0x8*n +
0x40*m, n=0...7, m=0...31 GLVEBUP_RBCH[n,m] VEB UP Receive Byte Count High 13.2.2.23.36

0x00344000 + 0x8*n +
0x40*m, n=0...7, m=0...31 GLVEBUP_RPCL[n,m] VEB UP Receive Packet Count Low 13.2.2.23.37

0x00344004 + 0x8*n +
0x40*m, n=0...7, m=0...31 GLVEBUP_RPCH[n,m] VEB UP Receive Packet Count High 13.2.2.23.38

0x00346000 + 0x8*n,
n=0...31 GLSW_UPRCL[n] Switch Unicast Packets Received Count

Low 13.2.2.23.39

0x00346004 + 0x8*n,
n=0...31 GLSW_UPRCH[n] Switch Unicast Packets Received Count

High 13.2.2.23.40

0x00346100 + 0x8*n,
n=0...31 GLSW_MPRCL[n] Switch Multicast Packets Received

Count Low 13.2.2.23.41

0x00346104 + 0x8*n,
n=0...31 GLSW_MPRCH[n] Switch Multicast Packets Received

Count High 13.2.2.23.42

0x00346200 + 0x8*n,
n=0...31 GLSW_BPRCL[n] Switch Broadcast Packets Received

Count Low 13.2.2.23.43

0x00346204 + 0x8*n,
n=0...31 GLSW_BPRCH[n] Switch Broadcast Packets Received

Count High 13.2.2.23.44

0x00347000 + 0x8*n,
n=0...127 GL_STAT_SWR_UPCL[n] VEB VLAN Unicast Packet Count Low 13.2.2.23.45

0x00347004 + 0x8*n,
n=0...127 GL_STAT_SWR_UPCH[n] VEB VLAN Unicast Packet Count High 13.2.2.23.46

0x00347400 + 0x8*n,
n=0...127 GL_STAT_SWR_MPCL[n] VEB VLAN Multicast Packet Count Low 13.2.2.23.47

0x00347404 + 0x8*n,
n=0...127 GL_STAT_SWR_MPCH[n] VEB VLAN Multicast Packet Count High 13.2.2.23.48

0x00347800 + 0x8*n,
n=0...127 GL_STAT_SWR_BPCL[n] VEB VLAN Broadcast Packet Count Low 13.2.2.23.49

Table 13-31. PF - Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2075

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x00347804 + 0x8*n,
n=0...127 GL_STAT_SWR_BPCH[n] VEB VLAN Broadcast Packet Count High 13.2.2.23.50

0x00380000 + 0x8*n,
n=0...7 GLPRT_GORCL[n] Port Good Octets Received Count Low 13.2.2.23.51

0x00380004 + 0x8*n,
n=0...7 GLPRT_GORCH[n] Port Good Octets Received Count High 13.2.2.23.52

0x00380040 + 0x8*n,
n=0...7 GLPRT_MLFC[n] Port MAC Local Fault Count 13.2.2.23.53

0x00380044 + 0x8*n,
n=0...7 GLPRT_MLFC_H[n] Port MAC Local Fault Count 13.2.2.23.54

0x00380080 + 0x8*n,
n=0...7 GLPRT_MRFC[n] Port MAC Remote Fault Count 13.2.2.23.55

0x00380084 + 0x8*n,
n=0...7 GLPRT_MRFC_H[n] Port MAC Remote Fault Count 13.2.2.23.56

0x00380100 + 0x8*n,
n=0...7 GLPRT_CRCERRS[n] Port CRC Error Count 13.2.2.23.57

0x00380104 + 0x8*n,
n=0...7 GLPRT_CRCERRS_H[n] Port CRC Error Count 13.2.2.23.58

0x00380140 + 0x8*n,
n=0...7 GLPRT_RLEC[n] Receive Length Error Count 13.2.2.23.59

0x00380144 + 0x8*n,
n=0...7 GLPRT_RLEC_H[n] Receive Length Error Count 13.2.2.23.60

0x003801C0 + 0x8*n,
n=0...7 GLPRT_ILLERRC[n] Port Illegal Byte Error Count 13.2.2.23.61

0x003801C4 + 0x8*n,
n=0...7 GLPRT_ILLERRC_H[n] Port Illegal Byte Error Count 13.2.2.23.62

0x00380200 + 0x8*n,
n=0...7 GLPRT_RUC[n] Receive Undersize Count 13.2.2.23.63

0x00380204 + 0x8*n,
n=0...7 GLPRT_RUC_H[n] Receive Undersize Count 13.2.2.23.64

0x00380240 + 0x8*n,
n=0...7 GLPRT_ROC[n] Receive Oversize Count 13.2.2.23.65

0x00380244 + 0x8*n,
n=0...7 GLPRT_ROC_H[n] Receive Oversize Count 13.2.2.23.66

0x00380280 + 0x8*n,
n=0...7 GLPRT_LXONRXC[n] Port Link XON Received Count 13.2.2.23.67

0x00380284 + 0x8*n,
n=0...7 GLPRT_LXONRXC_H[n] Port Link XON Received Count 13.2.2.23.68

0x003802C0 + 0x8*n,
n=0...7 GLPRT_LXOFFRXC[n] Port Link XOFF Received Count 13.2.2.23.69

0x003802C4 + 0x8*n,
n=0...7 GLPRT_LXOFFRXC_H[n] Port Link XOFF Received Count 13.2.2.23.70

0x00380300 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_PXONRXC[n,m] Priority XON Received Count 13.2.2.23.71

0x00380304 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_PXONRXC_H[n,m] Priority XON Received Count 13.2.2.23.72

0x00380500 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_PXOFFRXC[n,m] Priority XOFF Received Count 13.2.2.23.73

Table 13-31. PF - Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2076 613875-009

0x00380504 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_PXOFFRXC_H[n,m] Priority XOFF Received Count 13.2.2.23.74

0x00380700 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_RXON2OFFCNT[n,m] Priority XON to XOFF Count 13.2.2.23.75

0x00380704 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_RXON2OFFCNT_H[n,m] Priority XON to XOFF Count 13.2.2.23.76

0x00380900 + 0x8*n,
n=0...7 GLPRT_PRC64L[n] Packets Received [64 Bytes] Count Low 13.2.2.23.77

0x00380904 + 0x8*n,
n=0...7 GLPRT_PRC64H[n] Packets Received [64 Bytes] Count High 13.2.2.23.78

0x00380940 + 0x8*n,
n=0...7 GLPRT_PRC127L[n] Packets Received [65-127 Bytes] Count

Low 13.2.2.23.79

0x00380944 + 0x8*n,
n=0...7 GLPRT_PRC127H[n] Packets Received [65-127 Bytes] Count

High 13.2.2.23.80

0x00380980 + 0x8*n,
n=0...7 GLPRT_PRC255L[n] Packets Received [128-255 Bytes]

Count Low 13.2.2.23.81

0x00380984 + 0x8*n,
n=0...7 GLPRT_PRC255H[n] Packets Received [128-255 Bytes]

Count High 13.2.2.23.82

0x003809C0 + 0x8*n,
n=0...7 GLPRT_PRC511L[n] Packets Received [256-511 Bytes]

Count Low 13.2.2.23.83

0x003809C4 + 0x8*n,
n=0...7 GLPRT_PRC511H[n] Packets Received [256-511 Bytes]

Count High 13.2.2.23.84

0x00380A00 + 0x8*n,
n=0...7 GLPRT_PRC1023L[n] Packets Received [512-1023 Bytes]

Count Low 13.2.2.23.85

0x00380A04 + 0x8*n,
n=0...7 GLPRT_PRC1023H[n] Packets Received [512-1023 Bytes]

Count High 13.2.2.23.86

0x00380A40 + 0x8*n,
n=0...7 GLPRT_PRC1522L[n] Packets Received [1024-1522 Bytes]

Count Low 13.2.2.23.87

0x00380A44 + 0x8*n,
n=0...7 GLPRT_PRC1522H[n] Packets Received [1024-1522 Bytes]

Count High 13.2.2.23.88

0x00380A80 + 0x8*n,
n=0...7 GLPRT_PRC9522L[n] Packets Received [1523-9522 Bytes]

Count Low 13.2.2.23.89

0x00380A84 + 0x8*n,
n=0...7 GLPRT_PRC9522H[n] Packets Received [1523-9522 Bytes]

Count High 13.2.2.23.90

0x00380AC0 + 0x8*n,
n=0...7 GLPRT_RFC[n] Receive Fragment Count 13.2.2.23.91

0x00380AC4 + 0x8*n,
n=0...7 GLPRT_RFC_H[n] Receive Fragment Count 13.2.2.23.92

0x00380B00 + 0x8*n,
n=0...7 GLPRT_RJC[n] Receive Jabber Count 13.2.2.23.93

0x00380B04 + 0x8*n,
n=0...7 GLPRT_RJC_H[n] Receive Jabber Count 13.2.2.23.94

0x00380B40 + 0x8*n,
n=0...7 GLPRT_GOTCL[n] Port Good Octets Transmit Count Low 13.2.2.23.95

0x00380B44 + 0x8*n,
n=0...7 GLPRT_GOTCH[n] Port Good Octets Transmit Count High 13.2.2.23.96

0x00380B80 + 0x8*n,
n=0...7 GLPRT_PTC64L[n] Packets Transmitted [64 Bytes] Count

Low 13.2.2.23.97

Table 13-31. PF - Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2077

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x00380B84 + 0x8*n,
n=0...7 GLPRT_PTC64H[n] Packets Transmitted [64 Bytes] Count

High 13.2.2.23.98

0x00380BC0 + 0x8*n,
n=0...7 GLPRT_PTC127L[n] Packets Transmitted [65-127 Bytes]

Count Low 13.2.2.23.99

0x00380BC4 + 0x8*n,
n=0...7 GLPRT_PTC127H[n] Packets Transmitted [65-127 Bytes]

Count High 13.2.2.23.100

0x00380C00 + 0x8*n,
n=0...7 GLPRT_PTC255L[n] Packets Transmitted [128-255 Bytes]

Count Low 13.2.2.23.101

0x00380C04 + 0x8*n,
n=0...7 GLPRT_PTC255H[n] Packets Transmitted [128-255 Bytes]

Count High 13.2.2.23.102

0x00380C40 + 0x8*n,
n=0...7 GLPRT_PTC511L[n] Packets Transmitted [256-511 Bytes]

Count Low 13.2.2.23.103

0x00380C44 + 0x8*n,
n=0...7 GLPRT_PTC511H[n] Packets Transmitted [256-511 Bytes]

Count High 13.2.2.23.104

0x00380C80 + 0x8*n,
n=0...7 GLPRT_PTC1023L[n] Packets Transmitted [512-1023 Bytes]

Count Low 13.2.2.23.105

0x00380C84 + 0x8*n,
n=0...7 GLPRT_PTC1023H[n] Packets Transmitted [512-1023 Bytes]

Count High 13.2.2.23.106

0x00380CC0 + 0x8*n,
n=0...7 GLPRT_PTC1522L[n] Packets Transmitted [1024-1522 Bytes]

Count Low 13.2.2.23.107

0x00380CC4 + 0x8*n,
n=0...7 GLPRT_PTC1522H[n] Packets Transmitted [1024-1522 Bytes]

Count High 13.2.2.23.108

0x00380D00 + 0x8*n,
n=0...7 GLPRT_PTC9522L[n] Packets Transmitted [1523-9522 Bytes]

Count Low 13.2.2.23.109

0x00380D04 + 0x8*n,
n=0...7 GLPRT_PTC9522H[n] Packets Transmitted [1523-9522 Bytes]

Count High 13.2.2.23.110

0x00380D40 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_PXONTXC[n,m] Priority XON Transmitted Count 13.2.2.23.111

0x00380D44 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_PXONTXC_H[n,m] Priority XON Transmitted Count 13.2.2.23.112

0x00380F40 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_PXOFFTXC[n,m] Priority XOFF Transmitted Count 13.2.2.23.113

0x00380F44 + 0x8*n +
0x40*m, n=0...7, m=0...7 GLPRT_PXOFFTXC_H[n,m] Priority XOFF Transmitted Count 13.2.2.23.114

0x00381140 + 0x8*n,
n=0...7 GLPRT_LXONTXC[n] Port Link XON Transmitted Count 13.2.2.23.115

0x00381144 + 0x8*n,
n=0...7 GLPRT_LXONTXC_H[n] Port Link XON Transmitted Count 13.2.2.23.116

0x00381180 + 0x8*n,
n=0...7 GLPRT_LXOFFTXC[n] Port Link XOFF Transmitted Count 13.2.2.23.117

0x00381184 + 0x8*n,
n=0...7 GLPRT_LXOFFTXC_H[n] Port Link XOFF Transmitted Count 13.2.2.23.118

0x003811C0 + 0x8*n,
n=0...7 GLPRT_UPTCL[n] Port Unicast Packets Transmit Count

Low 13.2.2.23.119

0x003811C4 + 0x8*n,
n=0...7 GLPRT_UPTCH[n] Port Unicast Packets Transmit Count

High 13.2.2.23.120

0x00381200 + 0x8*n,
n=0...7 GLPRT_MPTCL[n] Port Multicast Packets Transmit Count

Low 13.2.2.23.121

Table 13-31. PF - Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2078 613875-009

0x00381204 + 0x8*n,
n=0...7 GLPRT_MPTCH[n] Port Multicast Packets Transmit Count

High 13.2.2.23.122

0x00381240 + 0x8*n,
n=0...7 GLPRT_BPTCL[n] Port Broadcast Packets Transmit Count

Low 13.2.2.23.123

0x00381244 + 0x8*n,
n=0...7 GLPRT_BPTCH[n] Port Broadcast Packets Transmit Count

High 13.2.2.23.124

0x00381280 + 0x8*n,
n=0...7 GLPRT_TDOLD[n] Transmit Discard on Link Down 13.2.2.23.125

0x00381284 + 0x8*n,
n=0...7 GLPRT_TDOLD_H[n] Transmit Discard On Link Down 13.2.2.23.126

0x00381300 + 0x8*n,
n=0...7 GLPRT_UPRCL[n] Port Unicast Packets Received Count

Low 13.2.2.23.127

0x00381304 + 0x8*n,
n=0...7 GLPRT_UPRCH[n] Port Unicast Packets Received Count

High 13.2.2.23.128

0x00381340 + 0x8*n,
n=0...7 GLPRT_MPRCL[n] Port Multicast Packets Received Count

Low 13.2.2.23.129

0x00381344 + 0x8*n,
n=0...7 GLPRT_MPRCH[n] Port Multicast Packets Received Count

High 13.2.2.23.130

0x00381380 + 0x8*n,
n=0...7 GLPRT_BPRCL[n] Port Broadcast Packets Received Count

Low 13.2.2.23.131

0x00381384 + 0x8*n,
n=0...7 GLPRT_BPRCH[n] Port Broadcast Packets Received Count

High 13.2.2.23.132

0x00388000 + 0x8*n,
n=0...511 GLSTAT_ACL_CNT_0_L[n] ACL Counter Bank 0 LSBs 13.2.2.23.133

0x00388004 + 0x8*n,
n=0...511 GLSTAT_ACL_CNT_0_H[n] ACL Counter Bank 0 MSBs 13.2.2.23.134

0x00389000 + 0x8*n,
n=0...511 GLSTAT_ACL_CNT_1_L[n] ACL Counter Bank 1 LSBs 13.2.2.23.135

0x00389004 + 0x8*n,
n=0...511 GLSTAT_ACL_CNT_1_H[n] ACL Counter Bank 1 MSBs 13.2.2.23.136

0x0038A000 + 0x8*n,
n=0...511 GLSTAT_ACL_CNT_2_L[n] ACL Counter Bank 2 LSBs 13.2.2.23.137

0x0038A004 + 0x8*n,
n=0...511 GLSTAT_ACL_CNT_2_H[n] ACL Counter Bank 2 MSBs 13.2.2.23.138

0x0038B000 + 0x8*n,
n=0...511 GLSTAT_ACL_CNT_3_L[n] ACL Counter Bank 3 LSBs 13.2.2.23.139

0x0038B004 + 0x8*n,
n=0...511 GLSTAT_ACL_CNT_3_H[n] ACL Counter Bank 3 MSBs 13.2.2.23.140

0x003A0000 + 0x8*n,
n=0...4095 GLSTAT_FD_CNT0L[n] Global Packet Byte Statistic Counter

Bank 0 Low 13.2.2.23.141

0x003A0004 + 0x8*n,
n=0...4095 GLSTAT_FD_CNT0H[n] Global Packet Byte Statistic Counter

Bank 0 High 13.2.2.23.142

0x003A8000 + 0x8*n,
n=0...4095 GLSTAT_FD_CNT1L[n] Global Packet Byte Statistic Counter

Bank 1 Low 13.2.2.23.143

0x003A8004 + 0x8*n,
n=0...4095 GLSTAT_FD_CNT1H[n] Global Packet Byte Statistic Counter

Bank 1 High 13.2.2.23.144

0x003B0000 + 0x8*n,
n=0...767 GLV_GORCL[n] VSI Good Octets Received Count Low 13.2.2.23.145

Table 13-31. PF - Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2079

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x003B0004 + 0x8*n,
n=0...767 GLV_GORCH[n] VSI Good Octets Received Count High 13.2.2.23.146

0x003B2000 + 0x8*n,
n=0...767 GLV_UPRCL[n] VSI Unicast Packets Received Count

Low 13.2.2.23.147

0x003B2004 + 0x8*n,
n=0...767 GLV_UPRCH[n] VSI Unicast Packets Received Count

High 13.2.2.23.148

0x003B4000 + 0x8*n,
n=0...767 GLV_MPRCL[n] VSI Multicast Packets Received Count

Low 13.2.2.23.149

0x003B4004 + 0x8*n,
n=0...767 GLV_MPRCH[n] VSI Multicast Packets Received Count

High 13.2.2.23.150

0x003B6000 + 0x8*n,
n=0...767 GLV_BPRCL[n] VSI Broadcast Packets Received Count

Low 13.2.2.23.151

0x003B6004 + 0x8*n,
n=0...767 GLV_BPRCH[n] VSI Broadcast Packets Received Count

High 13.2.2.23.152

Table 13-32. PF - Protocol Engine Statistics Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00540000 +
0x4*n, n=0...127 GLPES_PFRXVLANERR[n] Protocol Engine Statistics Received VLAN_ID

Errors 13.2.2.24.1

0x00540400 +
0x8*n, n=0...127 GLPES_PFIP4RXOCTSLO[n] Protocol Engine Statistics IPv4 Received Octets

Low 13.2.2.24.2

0x00540404 +
0x8*n, n=0...127 GLPES_PFIP4RXOCTSHI[n] Protocol Engine Statistics IPv4 Received Octets

High 13.2.2.24.3

0x00540C00 +
0x8*n, n=0...127 GLPES_PFIP4RXPKTSLO[n] Protocol Engine Statistics IPv4 Received Packets

Low 13.2.2.24.4

0x00540C04 +
0x8*n, n=0...127 GLPES_PFIP4RXPKTSHI[n] Protocol Engine Statistics IPv4 Received Packets

High 13.2.2.24.5

0x00541400 +
0x4*n, n=0...127 GLPES_PFIP4RXDISCARD[n] Protocol Engine Statistics IPv4 Discards 13.2.2.24.6

0x00541800 +
0x4*n, n=0...127 GLPES_PFIP4RXTRUNC[n] Protocol Engine Statistics IPv4 Truncated

Packets 13.2.2.24.7

0x00541C00 +
0x8*n, n=0...127 GLPES_PFIP4RXFRAGSLO[n] Protocol Engine Statistics IPv4 Received

Fragments Low 13.2.2.24.8

0x00541C04 +
0x8*n, n=0...127 GLPES_PFIP4RXFRAGSHI[n] Protocol Engine Statistics IPv4 Received

Fragments High 13.2.2.24.9

0x00542400 +
0x8*n, n=0...127 GLPES_PFIP4RXMCOCTSLO[n] Protocol Engine Statistics IPv4 Received

Multicast Octets Low 13.2.2.24.10

0x00542404 +
0x8*n, n=0...127 GLPES_PFIP4RXMCOCTSHI[n] Protocol Engine Statistics IPv4 Received

Multicast Octets High 13.2.2.24.11

0x00542C00 +
0x8*n, n=0...127 GLPES_PFIP4RXMCPKTSLO[n] Protocol Engine Statistics IPv4 Received

Multicast Packets Low 13.2.2.24.12

0x00542C04 +
0x8*n, n=0...127 GLPES_PFIP4RXMCPKTSHI[n] Protocol Engine Statistics IPv4 Received

Multicast Packets High 13.2.2.24.13

0x00543400 +
0x8*n, n=0...127 GLPES_PFIP6RXOCTSLO[n] Protocol Engine Statistics IPv6 Received Octets

Low 13.2.2.24.14

0x00543404 +
0x8*n, n=0...127 GLPES_PFIP6RXOCTSHI[n] Protocol Engine Statistics IPv6 Received Octets

High 13.2.2.24.15

Table 13-31. PF - Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2080 613875-009

0x00543C00 +
0x8*n, n=0...127 GLPES_PFIP6RXPKTSLO[n] Protocol Engine Statistics IPv6 Received Packets

Low 13.2.2.24.16

0x00543C04 +
0x8*n, n=0...127 GLPES_PFIP6RXPKTSHI[n] Protocol Engine Statistics IPv6 Received Packets

High 13.2.2.24.17

0x00544400 +
0x4*n, n=0...127 GLPES_PFIP6RXDISCARD[n] Protocol Engine Statistics IPv6 Discards 13.2.2.24.18

0x00544800 +
0x4*n, n=0...127 GLPES_PFIP6RXTRUNC[n] Protocol Engine Statistics IPv6 Truncated

Packets 13.2.2.24.19

0x00544C00 +
0x8*n, n=0...127 GLPES_PFIP6RXFRAGSLO[n] Protocol Engine Statistics IPv6 Received

Fragments Low 13.2.2.24.20

0x00544C04 +
0x8*n, n=0...127 GLPES_PFIP6RXFRAGSHI[n] Protocol Engine Statistics IPv6 Received

Fragments High 13.2.2.24.21

0x00545400 +
0x8*n, n=0...127 GLPES_PFIP6RXMCOCTSLO[n] Protocol Engine Statistics IPv6 Received

Multicast Octets Low 13.2.2.24.22

0x00545404 +
0x8*n, n=0...127 GLPES_PFIP6RXMCOCTSHI[n] Protocol Engine Statistics IPv6 Received

Multicast Octets High 13.2.2.24.23

0x00545C00 +
0x8*n, n=0...127 GLPES_PFIP6RXMCPKTSLO[n] Protocol Engine Statistics IPv6 Received

Multicast Packets Low 13.2.2.24.24

0x00545C04 +
0x8*n, n=0...127 GLPES_PFIP6RXMCPKTSHI[n] Protocol Engine Statistics IPv6 Received

Multicast Packets High 13.2.2.24.25

0x00546400 +
0x8*n, n=0...127 GLPES_PFIP4TXOCTSLO[n] Protocol Engine Statistics IPv4 Transmitted

Octets Low 13.2.2.24.26

0x00546404 +
0x8*n, n=0...127 GLPES_PFIP4TXOCTSHI[n] Protocol Engine Statistics IPv4 Transmitted

Octets High 13.2.2.24.27

0x00546C00 +
0x8*n, n=0...127 GLPES_PFIP4TXPKTSLO[n] Protocol Engine Statistics IPv4 Transmitted

Packets Low 13.2.2.24.28

0x00546C04 +
0x8*n, n=0...127 GLPES_PFIP4TXPKTSHI[n] Protocol Engine Statistics IPv4 Transmitted

Packets High 13.2.2.24.29

0x00547400 +
0x8*n, n=0...127 GLPES_PFIP4TXFRAGSLO[n] Protocol Engine Statistics IPv4 Transmitted

Fragments Low 13.2.2.24.30

0x00547404 +
0x8*n, n=0...127 GLPES_PFIP4TXFRAGSHI[n] Protocol Engine Statistics IPv4 Transmitted

Fragments High 13.2.2.24.31

0x00547C00 +
0x8*n, n=0...127 GLPES_PFIP4TXMCOCTSLO[n] Protocol Engine Statistics IPv4 Transmitted

Multicast Octets Low 13.2.2.24.32

0x00547C04 +
0x8*n, n=0...127 GLPES_PFIP4TXMCOCTSHI[n] Protocol Engine Statistics IPv4 Transmitted

Multicast Octets High 13.2.2.24.33

0x00548400 +
0x8*n, n=0...127 GLPES_PFIP4TXMCPKTSLO[n] Protocol Engine Statistics IPv4 Transmitted

Multicast Packets Low 13.2.2.24.34

0x00548404 +
0x8*n, n=0...127 GLPES_PFIP4TXMCPKTSHI[n] Protocol Engine Statistics IPv4 Transmitted

Multicast Packets High 13.2.2.24.35

0x00548C00 +
0x8*n, n=0...127 GLPES_PFIP6TXOCTSLO[n] Protocol Engine Statistics IPv6 Transmitted

Octets Low 13.2.2.24.36

0x00548C04 +
0x8*n, n=0...127 GLPES_PFIP6TXOCTSHI[n] Protocol Engine Statistics IPv6 Transmitted

Octets High 13.2.2.24.37

0x00549400 +
0x8*n, n=0...127 GLPES_PFIP6TXPKTSLO[n] Protocol Engine Statistics IPv6 Transmitted

Packets Low 13.2.2.24.38

0x00549404 +
0x8*n, n=0...127 GLPES_PFIP6TXPKTSHI[n] Protocol Engine Statistics IPv6 Transmitted

Packets High 13.2.2.24.39

Table 13-32. PF - Protocol Engine Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2081

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x00549C00 +
0x8*n, n=0...127 GLPES_PFIP6TXFRAGSLO[n] Protocol Engine Statistics IPv6 Transmitted

Fragments Low 13.2.2.24.40

0x00549C04 +
0x8*n, n=0...127 GLPES_PFIP6TXFRAGSHI[n] Protocol Engine Statistics IPv6 Transmitted

Fragments High 13.2.2.24.41

0x0054A400 +
0x8*n, n=0...127 GLPES_PFIP6TXMCOCTSLO[n] Protocol Engine Statistics IPv6 Transmitted

Multicast Octets Low 13.2.2.24.42

0x0054A404 +
0x8*n, n=0...127 GLPES_PFIP6TXMCOCTSHI[n] Protocol Engine Statistics IPv6 Transmitted

Multicast Octets High 13.2.2.24.43

0x0054AC00 +
0x8*n, n=0...127 GLPES_PFIP6TXMCPKTSLO[n] Protocol Engine Statistics IPv6 Transmitted

Multicast Packets Low 13.2.2.24.44

0x0054AC04 +
0x8*n, n=0...127 GLPES_PFIP6TXMCPKTSHI[n] Protocol Engine Statistics IPv6 Transmitted

Multicast Packets High 13.2.2.24.45

0x0054B400 +
0x4*n, n=0...127 GLPES_PFIP4TXNOROUTE[n] Protocol Engine Statistics IPv4 Discarded No

Route Packets 13.2.2.24.46

0x0054B800 +
0x4*n, n=0...127 GLPES_PFIP6TXNOROUTE[n] Protocol Engine Statistics IPv6 Discarded No

Route Packets 13.2.2.24.47

0x0054BC00 +
0x8*n, n=0...127 GLPES_PFTCPRXSEGSLO[n] Protocol Engine Statistics TCP Received

Segments Low 13.2.2.24.48

0x0054BC04 +
0x8*n, n=0...127 GLPES_PFTCPRXSEGSHI[n] Protocol Engine Statistics TCP Received

Segments High 13.2.2.24.49

0x0054C400 +
0x4*n, n=0...127 GLPES_PFTCPRXOPTERR[n] Protocol Engine Statistics TCP Received

Segments with Unsupported Options 13.2.2.24.50

0x0054C800 +
0x4*n, n=0...127 GLPES_PFTCPRXPROTOERR[n] Protocol Engine Statistics TCP Dropped

Segments due to Protocol Errors 13.2.2.24.51

0x0054CC00 +
0x8*n, n=0...127 GLPES_PFTCPTXSEGLO[n] Protocol Engine Statistics TCP Transmitted

Segments Low 13.2.2.24.52

0x0054CC04 +
0x8*n, n=0...127 GLPES_PFTCPTXSEGHI[n] Protocol Engine Statistics TCP Transmitted

Segments High 13.2.2.24.53

0x0054D400 +
0x8*n, n=0...127 GLPES_PFUDPRXPKTSLO[n] Protocol Engine Statistics UDP Received Packets

Low 13.2.2.24.54

0x0054D404 +
0x8*n, n=0...127 GLPES_PFUDPRXPKTSHI[n] Protocol Engine Statistics UDP Received Packets

High 13.2.2.24.55

0x0054DC00 +
0x8*n, n=0...127 GLPES_PFUDPTXPKTSLO[n] Protocol Engine Statistics UDP Transmitted

Packets Low 13.2.2.24.56

0x0054DC04 +
0x8*n, n=0...127 GLPES_PFUDPTXPKTSHI[n] Protocol Engine Statistics UDP Transmitted

Packets High 13.2.2.24.57

0x0054E400 +
0x8*n, n=0...127 GLPES_PFRDMARXWRSLO[n] Protocol Engine Statistics RDMA Received Write

Messages Low 13.2.2.24.58

0x0054E404 +
0x8*n, n=0...127 GLPES_PFRDMARXWRSHI[n] Protocol Engine Statistics RDMA Received Write

Messages High 13.2.2.24.59

0x0054EC00 +
0x8*n, n=0...127 GLPES_PFRDMARXRDSLO[n] Protocol Engine Statistics RDMA Received Read

Request Messages Low 13.2.2.24.60

0x0054EC04 +
0x8*n, n=0...127 GLPES_PFRDMARXRDSHI[n] Protocol Engine Statistics RDMA Received Read

Request Messages High 13.2.2.24.61

0x0054F400 +
0x8*n, n=0...127 GLPES_PFRDMARXSNDSLO[n] Protocol Engine Statistics RDMA Received Send

Messages Low 13.2.2.24.62

0x0054F404 +
0x8*n, n=0...127 GLPES_PFRDMARXSNDSHI[n] Protocol Engine Statistics RDMA Received Send

Messages High 13.2.2.24.63

Table 13-32. PF - Protocol Engine Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2082 613875-009

0x0054FC00 +
0x8*n, n=0...127 GLPES_PFRDMATXWRSLO[n] Protocol Engine Statistics RDMA Transmitted

Write Messages Low 13.2.2.24.64

0x0054FC04 +
0x8*n, n=0...127 GLPES_PFRDMATXWRSHI[n] Protocol Engine Statistics RDMA Transmitted

Write Messages High 13.2.2.24.65

0x00550400 +
0x8*n, n=0...127 GLPES_PFRDMATXRDSLO[n] Protocol Engine Statistics RDMA Transmitted

Read Request Messages Low 13.2.2.24.66

0x00550404 +
0x8*n, n=0...127 GLPES_PFRDMATXRDSHI[n] Protocol Engine Statistics RDMA Transmitted

Read Request Messages High 13.2.2.24.67

0x00550C00 +
0x8*n, n=0...127 GLPES_PFRDMATXSNDSLO[n] Protocol Engine Statistics RDMA Transmitted

Send Messages Low 13.2.2.24.68

0x00550C04 +
0x8*n, n=0...127 GLPES_PFRDMATXSNDSHI[n] Protocol Engine Statistics RDMA Transmitted

Send Messages High 13.2.2.24.69

0x00551400 +
0x8*n, n=0...127 GLPES_PFRDMAVBNDLO[n] Protocol Engine Statistics RDMA Verbs Bind

Operations Low 13.2.2.24.70

0x00551404 +
0x8*n, n=0...127 GLPES_PFRDMAVBNDHI[n] Protocol Engine Statistics RDMA Verbs Bind

Operations High 13.2.2.24.71

0x00551C00 +
0x8*n, n=0...127 GLPES_PFRDMAVINVLO[n] Protocol Engine Statistics RDMA Verbs

Invalidate Operations Low 13.2.2.24.72

0x00551C04 +
0x8*n, n=0...127 GLPES_PFRDMAVINVHI[n] Protocol Engine Statistics RDMA Verbs

Invalidate Operations High 13.2.2.24.73

0x00552400 +
0x4*n, n=0...127 GLPES_PFTCPRTXSEG[n] Protocol Engine Statistics TCP Retransmitted

Segments 13.2.2.24.74

0x00552800 +
0x4*n, n=0...127 GLPES_PFRXRPCNPIGNORED[n] Protocol Engine Statistics Congestion

Notification Packets Ignored 13.2.2.24.75

0x00552C00 +
0x4*n, n=0...127 GLPES_PFRXRPCNPHANDLED[n] Protocol Engine Statistics Congestion

Notification Packets Handled 13.2.2.24.76

0x00553000 +
0x8*n, n=0...127 GLPES_PFRXNPECNMARKEDPKTSLO[n] Protocol Engine Statistics with ECN Bits

Indicating Congestion Low 13.2.2.24.77

0x00553004 +
0x8*n, n=0...127 GLPES_PFRXNPECNMARKEDPKTSHI[n] Protocol Engine Statistics with ECN Bits

Indicating Congestion High 13.2.2.24.78

0x00553800 +
0x4*n, n=0...127 GLPES_PFTXNPCNPSENT[n] Protocol Engine Congestion Indication Sent

Count 13.2.2.24.79

0x0055E000 GLPES_RDMARXUNALIGN Protocol Engine Statistics RDMA Received
Unaligned FPDUs 13.2.2.24.80

0x0055E004 GLPES_RDMARXOOONOMARK Protocol Engine Statistics RDMA Received Out of
Order No Markers FPDUs 13.2.2.24.81

0x0055E008 GLPES_RDMARXMULTFPDUSLO Protocol Engine Statistics RDMA Received
Multiple FPDUs Low 13.2.2.24.82

0x0055E00C GLPES_RDMARXMULTFPDUSHI Protocol Engine Statistics RDMA Received
Multiple FPDUs High 13.2.2.24.83

0x0055E010 GLPES_RDMARXOOODDPLO Protocol Engine Statistics RDMA Out of Order
Placed DDP Segments Low 13.2.2.24.84

0x0055E014 GLPES_RDMARXOOODDPHI Protocol Engine Statistics RDMA Out of Order
Placed DDP Segments High 13.2.2.24.85

0x0055E018 GLPES_TCPRXPUREACKSLO Protocol Engine Statistics TCP Received Pure
Acks Low 13.2.2.24.86

0x0055E01C GLPES_TCPRXPUREACKHI Protocol Engine Statistics TCP Received Pure
Acks High 13.2.2.24.87

Table 13-32. PF - Protocol Engine Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2083

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0055E020 GLPES_TCPRXONEHOLELO Protocol Engine Statistics TCP Receive First Hole
Low 13.2.2.24.88

0x0055E024 GLPES_TCPRXONEHOLEHI Protocol Engine Statistics TCP Received First
Hole High 13.2.2.24.89

0x0055E028 GLPES_TCPRXTWOHOLELO Protocol Engine Statistics TCP Receive Second
Hole Low 13.2.2.24.90

0x0055E02C GLPES_TCPRXTWOHOLEHI Protocol Engine Statistics TCP Received Second
Hole High 13.2.2.24.91

0x0055E030 GLPES_TCPRXTHREEHOLELO Protocol Engine Statistics TCP Receive Third
Hole Low 13.2.2.24.92

0x0055E034 GLPES_TCPRXTHREEHOLEHI Protocol Engine Statistics TCP Received Third
Hole High 13.2.2.24.93

0x0055E038 GLPES_TCPRXFOURHOLELO Protocol Engine Statistics TCP Receive Fourth
Hole Low 13.2.2.24.94

0x0055E03C GLPES_TCPRXFOURHOLEHI Protocol Engine Statistics TCP Receive Fourth
Hole High 13.2.2.24.95

0x0055E040 GLPES_TCPTXRETRANSFASTLO Protocol Engine Statistics TCP Fast
Retransmissions Low 13.2.2.24.96

0x0055E044 GLPES_TCPTXRETRANSFASTHI Protocol Engine Statistics TCP Fast
Retransmissions High 13.2.2.24.97

0x0055E048 GLPES_TCPTXTOUTSFASTLO Protocol Engine Statistics TCP Fast
Retransmission Timeouts Low 13.2.2.24.98

0x0055E04C GLPES_TCPTXTOUTSFASTHI Protocol Engine Statistics TCP Fast
Retransmissions Timeouts High 13.2.2.24.99

0x0055E050 GLPES_TCPTXTOUTSLO Protocol Engine Statistics TCP Retransmission
Timeouts Low 13.2.2.24.100

0x0055E054 GLPES_TCPTXTOUTSHI Protocol Engine Statistics TCP Retransmissions
Timeouts High 13.2.2.24.101

Table 13-33. PF - Comm Transmit Queues Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x000E0000 + 0x4*DBQM,
DBQM=0...16383 QTX_COMM_HEAD[DBQM] Global Transmit Queue Head 13.2.2.25.1

0x000F0000 + 0x4*CQ,
CQ=0...511 GLCOMM_CQ_CTL[CQ] Transmit Comm Scheduler Completion Queue

Control 13.2.2.25.2

0x000F0800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX0[CQ] Tx Completion Queue Context Register 0 13.2.2.25.3

0x000F1000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX1[CQ] Tx Completion Queue Context Register 1 13.2.2.25.4

0x000F1800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX2[CQ] Tx Completion Queue Context Register 2 13.2.2.25.5

0x000F2000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX3[CQ] Tx Completion Queue Context Register 3 13.2.2.25.6

0x000F2800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX4[CQ] Tx Completion Queue Context Register 4 13.2.2.25.7

0x000F3000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX5[CQ] Tx Completion Queue Context Register 5 13.2.2.25.8

Table 13-32. PF - Protocol Engine Statistics Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2084 613875-009

0x000F3800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX6[CQ] Tx Completion Queue Context Register 6 13.2.2.25.9

0x000F4000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX7[CQ] Tx Completion Queue Context Register 7 13.2.2.25.10

0x000F4800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX8[CQ] Tx Completion Queue Context Register 8 13.2.2.25.11

0x000F5000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX9[CQ] Tx Completion Queue Context Register 9 13.2.2.25.12

0x000F5800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX10[CQ] Tx Completion Queue Context Register 10 13.2.2.25.13

0x000F6000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX11[CQ] Tx Completion Queue Context Register 11 13.2.2.25.14

0x000F6800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX12[CQ] Tx Completion Queue Context Register 12 13.2.2.25.15

0x000F7000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX13[CQ] Tx Completion Queue Context Register 13 13.2.2.25.16

0x000F7800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX14[CQ] Tx Completion Queue Context Register 14 13.2.2.25.17

0x000F8000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX15[CQ] Tx Completion Queue Context Register 15 13.2.2.25.18

0x000F8800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX16[CQ] Tx Completion Queue Context Register 16 13.2.2.25.19

0x000F9000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX17[CQ] Tx Completion Queue Context Register 17 13.2.2.25.20

0x000F9800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX18[CQ] Tx Completion Queue Context Register 18 13.2.2.25.21

0x000FA000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX19[CQ] Tx Completion Queue Context Register 19 13.2.2.25.22

0x000FA800 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX20[CQ] Tx Completion Queue Context Register 20 13.2.2.25.23

0x000FB000 + 0x4*CQ,
CQ=0...511 GLTCLAN_CQ_CNTX21[CQ] Tx Completion Queue Context Register 21 13.2.2.25.24

0x000FC064 GLCOMM_MIN_MAX_PKT Global Transmit Comm Min/Max Packet 13.2.2.25.25

0x000FC0B8 GLLAN_TCLAN_CACHE_CTL Transmit Comm Scheduler Tx LAN Cache
Control 13.2.2.25.26

0x002C0000 + 0x4*DBQM,
DBQM=0...16383 QTX_COMM_DBELL[DBQM] Transmit Comm Scheduler Queue Doorbell 13.2.2.25.27

0x002D0000 + 0x400*n +
0x4*DBLQ, n=0...4,
DBLQ=0...255

QTX_COMM_DBLQ_CNTX[n,DBLQ] Transmit Comm Scheduler Queue Context 13.2.2.25.28

0x002D1400 + 0x4*DBLQ,
DBLQ=0...255 QTX_COMM_DBLQ_DBELL[DBLQ] Transmit Comm Scheduler Queue Doorbell 13.2.2.25.29

0x002D2D40 + 0x4*n,
n=0...9 GLCOMM_QTX_CNTX_DATA[n] Transmit Comm Scheduler Queue Context

Data 13.2.2.25.30

0x002D2D68 + 0x4*n,
n=0...15 GLCOMM_QUANTA_PROF[n] Global Transmit Comm Scheduler Quanta

Profile 13.2.2.25.31

0x002D2DA8 + 0x4*n,
n=0...7 GLCOMM_PKT_SHAPER_PROF[n] Global Transmit Comm Scheduler Quanta

Profile 13.2.2.25.32

Table 13-33. PF - Comm Transmit Queues Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2085

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x002D2DC8 GLCOMM_QTX_CNTX_CTL Transmit Comm Scheduler Queue Context
Control 13.2.2.25.33

0x002D2DCC GLCOMM_QTX_CNTX_STAT Transmit Comm Scheduler Queue Context
Status 13.2.2.25.34

Table 13-34. PF - LAN Transmit/Receive Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00040BA0 PRT_TDPUL2TAGSEN L2 Tag - Enable 13.2.2.26.1

0x00049240 + 0x4*n,
n=0...20 GL_HLP_PRT_IPG_PREAMBLE_SIZE[n] Transmit DCSP to TC Enforcement - IPv4 13.2.2.26.2

0x00049294 + 0x4*n,
n=0...3 GL_TDPU_PSM_DEFAULT_RECIPE[n] Transmit TDPU Scheduler 4 Adjustment

Default Recipe 13.2.2.26.3

0x00049308 GLLAN_TSOMSK_F Global TSO TCP Mask First 13.2.2.26.4

0x0004930C GLLAN_TSOMSK_M Global TSO TCP Mask Middle 13.2.2.26.5

0x00049310 GLLAN_TSOMSK_L Global TSO TCP Mask Last 13.2.2.26.6

0x00060000 + 0x800*n +
0x4*VF, n=0...15,
VF=0...255

VPLAN_RX_QTABLE[n,VF] VF PF Rx-Queue Mapping Table 13.2.2.26.7

0x00070000 + 0x800*n +
0x4*VF, n=0...3, VF=0...255 VPLAN_DB_QTABLE[n,VF] VF PF DB Queue Mapping Table 13.2.2.26.8

0x00072000 + 0x4*VF,
VF=0...255 VPLAN_RX_QBASE[VF] VF PF Rx-Queue Range 13.2.2.26.9

0x00073000 + 0x4*VF,
VF=0...255 VPLAN_RXQ_MAPENA[VF] VF LAN RXQ Enablement 13.2.2.26.10

0x00073800 + 0x4*VF,
VF=0...255 VPLAN_TXQ_MAPENA[VF] VF LAN TXQ Enablement 13.2.2.26.11

0x00074C00 + 0x40*n +
0x4*VP16, n=0...15,
VP16=0...15

VPDSI_RX_QTABLE[n,VP16] VF PF Rx-Queue Mapping Table 13.2.2.26.12

0x00075680 PFLAN_DB_QALLOC PF Doorbell Queue Allocation 13.2.2.26.13

0x00075700 PFLAN_CP_QALLOC PF Completion Queue Allocation 13.2.2.26.14

0x00120000 + 0x4*QRX,
QRX=0...2047 QRX_CTRL[QRX] Global Receive Queue Control 13.2.2.26.15

0x001C0000 + 0x800*n +
0x4*VF, n=0...15,
VF=0...255

VPLAN_TX_QTABLE[n,VF] VF PF Tx-Queue Mapping Table 13.2.2.26.16

0x001D1800 + 0x4*VF,
VF=0...255 VPLAN_TX_QBASE[VF] VF PF Tx-Queue Range 13.2.2.26.17

0x001D2000 + 0x40*n +
0x4*VP16, n=0...15,
VP16=0...15

VPDSI_TX_QTABLE[n,VP16] VF PF Tx-Queue Mapping Table 13.2.2.26.18

0x001D2500 PFLAN_RX_QALLOC PF Queue Allocation 13.2.2.26.19

0x001D2580 PFLAN_TX_QALLOC PF Queue Allocation 13.2.2.26.20

0x00280000 + 0x2000*n +
0x4*QRX, n=0...7,
QRX=0...2047

QRX_CONTEXT[n,QRX] Global Receive Queue Context 13.2.2.26.21

Table 13-33. PF - Comm Transmit Queues Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2086 613875-009

0x00290000 + 0x4*QRX,
QRX=0...2047 QRX_TAIL[QRX] Receive Queue Tail Update 13.2.2.26.22

0x00292000 + 0x4*QRX,
QRX=0...2047 QRX_ITR[QRX] Global Receive Queue ITR Expire 13.2.2.26.23

0x002941F8 GLLAN_RCTL_0 Global RLAN Control 0 13.2.2.26.24

0x002941FC GLLAN_RCTL_1 Global RLAN Control 1 13.2.2.26.25

0x0029420C + 0x4*n,
n=0...7 GLLAN_PF_RECIPE[n] Global PF LAN Recipe 13.2.2.26.26

0x002D2C00 + 0x4*VP16,
VP16=0...15 VPLAN_DSI_VF_MODE[VP16] VF LAN TXQ Enablement 13.2.2.26.27

0x00440000 + 0x1000*n +
0x4*VSI, n=0...7,
VSI=0...767

VSILAN_QTABLE[n,VSI] VSI Receive Queue Mapping Table 13.2.2.26.28

0x0044c000 + 0x4*VSI,
VSI=0...767 VSILAN_QBASE[VSI] VSI Queue Control 13.2.2.26.29

Table 13-35. PF - TimeSync (IEEE 1588) Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00088808 + 0x4*n, n=0...1 GLTSYN_ENA[n] Global TimeSync Enable 13.2.2.27.1

0x00088810 GLTSYN_CMD Global Primary TimeSync Command 13.2.2.27.2

0x00088814 GLTSYN_CMD_SYNC Global Primary TimeSync Command SYNC Control 13.2.2.27.3

0x00088818 GLTSYN_SYNC_DLAY Global TimeSync Sync Delay 13.2.2.27.4

0x0008881C GLTSYN_HH_DLAY Global HH Sync Delay 13.2.2.27.5

0x00088880 PFTSYN_SEM Global TimeSync Semaphore 13.2.2.27.6

0x000888C0 + 0x4*n, n=0...1 GLTSYN_STAT[n] Global TimeSync Status 0 13.2.2.27.7

0x000888C8 + 0x4*n, n=0...1 GLTSYN_TIME_0[n] Global TimeSync Time Zero 13.2.2.27.8

0x000888D0 + 0x4*n, n=0...1 GLTSYN_TIME_L[n] Global TimeSync Time Low 13.2.2.27.9

0x000888D8 + 0x4*n, n=0...1 GLTSYN_TIME_H[n] Global TimeSync Time High 13.2.2.27.10

0x000888E0 + 0x4*n, n=0...1 GLTSYN_SHTIME_0[n] Global TimeSync Shadow Time Zero 13.2.2.27.11

0x000888E8 + 0x4*n, n=0...1 GLTSYN_SHTIME_L[n] Global TimeSync Shadow Time Low 13.2.2.27.12

0x000888F0 + 0x4*n, n=0...1 GLTSYN_SHTIME_H[n] Global TimeSync Shadow Time High 13.2.2.27.13

0x000888F8 + 0x4*n, n=0...1 GLTSYN_HHTIME_L[n] Global TimeSync HH Time Low 13.2.2.27.14

0x00088900 + 0x4*n, n=0...1 GLTSYN_HHTIME_H[n] Global TimeSync HH Time High 13.2.2.27.15

0x00088908 + 0x4*n, n=0...1 GLTSYN_SHADJ_L[n] Global TimeSync Shadow Adjust Low 13.2.2.27.16

0x00088910 + 0x4*n, n=0...1 GLTSYN_SHADJ_H[n] Global TimeSync Shadow Adjust High 13.2.2.27.17

0x00088918 + 0x4*n, n=0...1 GLTSYN_INCVAL_L[n] Global TimeSync Increment Value Low 13.2.2.27.18

0x00088920 + 0x4*n, n=0...1 GLTSYN_INCVAL_H[n] Global TimeSync Increment Value High 13.2.2.27.19

0x00088928 + 0x4*n, n=0...1 GLTSYN_TGT_L_0[n] Global TimeSync Target Time Low 13.2.2.27.20

0x00088930 + 0x4*n, n=0...1 GLTSYN_TGT_H_0[n] Global TimeSync Target Time High 13.2.2.27.21

0x00088938 + 0x4*n, n=0...1 GLTSYN_TGT_L_1[n] Global TimeSync Target Time Low 13.2.2.27.22

Table 13-34. PF - LAN Transmit/Receive Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2087

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x00088940 + 0x4*n, n=0...1 GLTSYN_TGT_H_1[n] Global TimeSync Target Time High 13.2.2.27.23

0x00088948 + 0x4*n, n=0...1 GLTSYN_TGT_L_2[n] Global TimeSync Target Time Low 13.2.2.27.24

0x00088950 + 0x4*n, n=0...1 GLTSYN_TGT_H_2[n] Global TimeSync Target Time High 13.2.2.27.25

0x00088958 + 0x4*n, n=0...1 GLTSYN_TGT_L_3[n] Global TimeSync Target Time Low 13.2.2.27.26

0x00088960 + 0x4*n, n=0...1 GLTSYN_TGT_H_3[n] Global TimeSync Target Time High 13.2.2.27.27

0x00088968 + 0x4*n, n=0...1 GLTSYN_EVNT_L_0[n] Global TimeSync Event Time Low 13.2.2.27.28

0x00088970 + 0x4*n, n=0...1 GLTSYN_EVNT_H_0[n] Global TimeSync Event Time High 13.2.2.27.29

0x00088978 + 0x4*n, n=0...1 GLTSYN_EVNT_L_1[n] Global TimeSync Event Time Low 13.2.2.27.30

0x00088980 + 0x4*n, n=0...1 GLTSYN_EVNT_H_1[n] Global TimeSync Event Time High 13.2.2.27.31

0x00088988 + 0x4*n, n=0...1 GLTSYN_EVNT_L_2[n] Global TimeSync Event Time Low 13.2.2.27.32

0x00088990 + 0x4*n, n=0...1 GLTSYN_EVNT_H_2[n] Global TimeSync Event Time High 13.2.2.27.33

0x00088998 + 0x4*n, n=0...1 GLTSYN_AUX_OUT_0[n] Global TimeSync AUX Output Control 13.2.2.27.34

0x000889A0 + 0x4*n, n=0...1 GLTSYN_AUX_OUT_1[n] Global TimeSync AUX Output Control 13.2.2.27.35

0x000889A8 + 0x4*n, n=0...1 GLTSYN_AUX_OUT_2[n] Global TimeSync AUX Output Control 13.2.2.27.36

0x000889B0 + 0x4*n, n=0...1 GLTSYN_AUX_OUT_3[n] Global TimeSync AUX Output Control 13.2.2.27.37

0x000889B8 + 0x4*n, n=0...1 GLTSYN_CLKO_0[n] Global TimeSync Clock Out Duration 13.2.2.27.38

0x000889C0 + 0x4*n, n=0...1 GLTSYN_CLKO_1[n] Global TimeSync Clock Out Duration 13.2.2.27.39

0x000889C8 + 0x4*n, n=0...1 GLTSYN_CLKO_2[n] Global TimeSync Clock Out Duration 13.2.2.27.40

0x000889D0 + 0x4*n, n=0...1 GLTSYN_CLKO_3[n] Global TimeSync Clock Out Duration 13.2.2.27.41

0x000889D8 + 0x4*n, n=0...1 GLTSYN_AUX_IN_0[n] Global TimeSync AUX Input Control 13.2.2.27.42

0x000889E0 + 0x4*n, n=0...1 GLTSYN_AUX_IN_1[n] Global TimeSync AUX Input Control 13.2.2.27.43

0x000889E8 + 0x4*n, n=0...1 GLTSYN_AUX_IN_2[n] Global TimeSync AUX Input Control 13.2.2.27.44

0x000A41D4 GLHH_ART_CTL Global Hammock Harbor Timer Control 13.2.2.27.45

0x000A41D8 GLHH_ART_TIME_H Global Hammock Harbor ART Time High 13.2.2.27.46

0x000A41DC GLHH_ART_TIME_L Global Hammock Harbor ART Time Low 13.2.2.27.47

0x000A41E0 GLHH_ART_DATA Global Hammock Harbor Sync-Start DATA 13.2.2.27.48

0x000A4200 PFHH_SEM Global Hammock Harbor Semaphore 13.2.2.27.49

Table 13-36. PF - Protocol Engine Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00500000 + 0x4*VF,
VF=0...255 VFPE_CQPDB[VF] Protocol Engine VF CQP Doorbell 13.2.2.28.1

0x00500400 + 0x4*VF,
VF=0...255 VFPE_CQPTAIL[VF] Protocol Engine VF CQP Tail 13.2.2.28.2

0x00500800 PFPE_CQPDB Protocol Engine CQP Doorbell 13.2.2.28.3

0x00500880 PFPE_CQPTAIL Protocol Engine CQP Tail 13.2.2.28.4

0x00502000 + 0x4*VF,
VF=0...255 VFPE_CQARM[VF] Protocol Engine VF CQ Arm 13.2.2.28.5

Table 13-35. PF - TimeSync (IEEE 1588) Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2088 613875-009

0x00502400 + 0x4*VF,
VF=0...255 VFPE_CQACK[VF] Protocol Engine VF CQ Ack 13.2.2.28.6

0x00502800 + 0x4*VF,
VF=0...255 VFPE_AEQALLOC[VF] Protocol Engine VF AEQ Allocate 13.2.2.28.7

0x00502C00 PFPE_CQARM Protocol Engine CQ Arm 13.2.2.28.8

0x00502C80 PFPE_CQACK Protocol Engine CQ Ack 13.2.2.28.9

0x00502D00 PFPE_AEQALLOC Protocol Engine AEQ Allocate 13.2.2.28.10

0x00503000 + 0x4*n,
n=0...31 GLPE_VFCQEDROPCNT[n] Protocol Engine CQE Drop Count 13.2.2.28.11

0x00503080 + 0x4*n,
n=0...31 GLPE_VFCEQEDROPCNT[n] Protocol Engine CEQE Drop Count 13.2.2.28.12

0x00503100 + 0x4*n,
n=0...31 GLPE_VFAEQEDROPCNT[n] Protocol Engine AEQE Drop Count 13.2.2.28.13

0x00503200 + 0x4*n,
n=0...7 GLPE_PFCQEDROPCNT[n] Protocol Engine CQE Drop Count 13.2.2.28.14

0x00503220 + 0x4*n,
n=0...7 GLPE_PFCEQEDROPCNT[n] Protocol Engine CEQE Drop Count 13.2.2.28.15

0x00503240 + 0x4*n,
n=0...7 GLPE_PFAEQEDROPCNT[n] Protocol Engine AEQE Drop Count 13.2.2.28.16

0x00503300 GLPE_CQM_FUNC_INVALIDATE Protocol Engine CQM Func Invalidate Register 13.2.2.28.17

0x00504000 + 0x4*VF,
VF=0...255 VFPE_WQEALLOC[VF] Protocol Engine VF WQE Allocate Register 13.2.2.28.18

0x00504400 PFPE_WQEALLOC Protocol Engine WQE Allocate Register 13.2.2.28.19

0x00508000 + 0x4*VF,
VF=0...255 VFPE_CCQPSTATUS[VF] Protocol Engine VF Create CQP Status 13.2.2.28.20

0x00508400 + 0x4*VF,
VF=0...255 VFPE_CCQPLOW[VF] Protocol Engine VF Create CQP Low 13.2.2.28.21

0x00508800 + 0x4*VF,
VF=0...255 VFPE_CCQPHIGH[VF] Protocol Engine VF Create CQP High 13.2.2.28.22

0x00508C00 + 0x4*VF,
VF=0...255 VFPE_IPCONFIG0[VF] Protocol Engine VF IP Config 0 13.2.2.28.23

0x00509000 + 0x4*VF,
VF=0...255 VFPE_CQPERRCODES[VF] Protocol Engine VF CQP Error Codes 13.2.2.28.24

0x00509400 + 0x4*VF,
VF=0...255 VFPE_TCPNOWTIMER[VF] Protocol Engine VF TCP Now Timer 13.2.2.28.25

0x00509800 + 0x4*VF,
VF=0...255 VFPE_MRTEIDXMASK[VF] Protocol Engine VF MRTE Index Mask 13.2.2.28.26

0x0050A000 PFPE_CCQPSTATUS Protocol Engine Create CQP Status 13.2.2.28.27

0x0050A080 PFPE_CCQPLOW Protocol Engine Create CQP Low 13.2.2.28.28

0x0050A100 PFPE_CCQPHIGH Protocol Engine Create CQP High 13.2.2.28.29

0x0050A180 PFPE_IPCONFIG0 Protocol Engine IP Config 0 13.2.2.28.30

0x0050A200 PFPE_CQPERRCODES Protocol Engine CQP Error Codes 13.2.2.28.31

0x0050A280 PFPE_TCPNOWTIMER Protocol Engine TCP Now Timer 13.2.2.28.32

0x0050A300 PFPE_MRTEIDXMASK Protocol Engine MRTE Index Mask 13.2.2.28.33

Table 13-36. PF - Protocol Engine Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2089

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0050B300 + 0x4*n,
n=0...31 GLPE_VFTCPNOW50USCNT[n] Protocol Engine TCP Now 50us Count 13.2.2.28.34

0x0050B400 + 0x4*n,
n=0...31 GLPE_VFFLMXMITALLOCERR[n] Protocol Engine FLM XMIT Allocate Error 13.2.2.28.35

0x0050B480 + 0x4*n,
n=0...31 GLPE_VFFLMQ1ALLOCERR[n] Protocol Engine FLM Q1 Allocate Error 13.2.2.28.36

0x0050B500 + 0x4*n,
n=0...31 GLPE_VFFLMRRFALLOCERR[n] Protocol Engine FLM Read Response Allocate Error 13.2.2.28.37

0x0050B580 + 0x4*n,
n=0...31 GLPE_VFFLMOOISCALLOCERR[n] Protocol Engine FLM Out of Order Send Completion

(OOISC) Allocate Error 13.2.2.28.38

0x0050B8C0 + 0x4*n,
n=0...7 GLPE_PFTCPNOW50USCNT[n] Protocol Engine TCP Now 50us Count 13.2.2.28.39

0x0050B900 + 0x4*n,
n=0...7 GLPE_PFFLMXMITALLOCERR[n] Protocol Engine FLM XMIT Allocate Error 13.2.2.28.40

0x0050B920 + 0x4*n,
n=0...7 GLPE_PFFLMQ1ALLOCERR[n] Protocol Engine FLM Q1 Allocate Error 13.2.2.28.41

0x0050B940 + 0x4*n,
n=0...7 GLPE_PFFLMRRFALLOCERR[n] Protocol Engine FLM Read Response Allocate Error 13.2.2.28.42

0x0050B960 + 0x4*n,
n=0...7 GLPE_PFFLMOOISCALLOCERR[n] Protocol Engine FLM Out of Order Send Completion

(OOISC) Allocate Error 13.2.2.28.43

0x0050BA5C GLPE_CPUSTATUS0 Protocol Engine CPU Status 0 13.2.2.28.44

0x0050BA60 GLPE_CPUSTATUS1 Protocol Engine CPU Status 1 13.2.2.28.45

0x0050BA64 GLPE_CPUSTATUS2 Protocol Engine CPU Status 2 13.2.2.28.46

0x0050C000 GLPE_PEPM_CTRL PEPM Control 13.2.2.28.47

0x0050C004 GLPE_PEPM_DEALLOC PEPM Dealloc 13.2.2.28.48

0x0050C020 GLPE_PEPM_PSQ_COUNT PEPM PSQ Count 13.2.2.28.49

0x0050C040 + 0x4*n,
n=0...511 PRT_PEPM_COUNT[n] PEPM PSQ/MDQ Count 13.2.2.28.50

0x0050C840 + 0x4*n,
n=0...511 GLPE_PEPM_THRESH[n] PEPM PQ Threshold 13.2.2.28.51

0x0053241C GLPE_PUSH_PEPM Push PEPM 13.2.2.28.52

0x00534000 GLPE_CRITERR Critical Error Status and Control 13.2.2.28.53

0x00536000 + 0x4*n,
n=0...511 GLPE_MDQ_BASE[n] MDQ Base 13.2.2.28.54

0x00536800 + 0x4*n,
n=0...511 GLPE_MDQ_SIZE[n] MDQ Size 13.2.2.28.55

0x00537000 + 0x4*n,
n=0...511 GLPE_MDQ_PTR[n] MDQ Pointer 13.2.2.28.56

Table 13-36. PF - Protocol Engine Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2090 613875-009

Table 13-37. PF - Manageability Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x0008309C GL_MNG_FW_RAM_STAT MNG FW RAM Status Registers 13.2.2.29.1

0x00083100 GL_FWRESETCNT Firmware Reset Count 13.2.2.29.2

0x00083120 + 0x4*n, n=0...7 GL_MNG_SHA_EXTEND[n] SHA Extend Value 13.2.2.29.3

0x00083148 GL_MNG_SHA_EXTEND_STATUS SHA Extend Value Status 13.2.2.29.4

0x00083160 + 0x4*n, n=0...7 GL_MNG_SHA_EXTEND_ROM[n] SHA ROM Extend Value 13.2.2.29.5

0x000B6130 GL_MNG_HWARB_CTRL Hardware Arbitration Control 13.2.2.29.6

0x000B6134 GL_MNG_FWSM Firmware Semaphore 13.2.2.29.7

0x000B6180 + 0x4*n, n=0...9 GENERAL_MNG_FW_DBG_CSR[n] General FW Debug Registers 13.2.2.29.8

0x00214120 + 0x20*n, n=0...3 PRT_MNG_METF[n] Management Ethernet Type Filters 13.2.2.29.9

0x002141A0 + 0x20*n, n=0...3 PRT_MNG_MIPAF4[n] Manageability IPv4 Address Filter 13.2.2.29.10

0x00214220 + 0x20*n, n=0...3 PRT_MNG_MMAH[n] Manageability MAC Address High 13.2.2.29.11

0x002142A0 + 0x20*n, n=0...3 PRT_MNG_MMAL[n] Manageability MAC Address Low 13.2.2.29.12

0x00214320 + 0x20*n, n=0...15 PRT_MNG_MFUTP[n] Management Flex UDP/TCP Ports 13.2.2.29.13

0x00214520 + 0x20*n, n=0...15 PRT_MNG_MIPAF6[n] Manageability IPv6 Address Filter 13.2.2.29.14

0x00214720 PRT_MNG_MANC Management Control Register 13.2.2.29.15

0x00214740 PRT_MNG_MNGONLY Management Only Traffic Register 13.2.2.29.16

0x00214760 PRT_MNG_MSFM Manageability Special Filters Modifiers 13.2.2.29.17

0x00214780 + 0x20*n, n=0...7 PRT_MNG_MAVTV[n] Management VLAN TAG Value 13.2.2.29.18

0x00214880 + 0x20*n, n=0...7 PRT_MNG_MDEF[n] Manageability Decision Filters1 13.2.2.29.19

0x00214980 + 0x20*n, n=0...3 PRT_MNG_MDEFVSI[n] Management Decision Filters VSI 13.2.2.29.20

0x00214A00 + 0x20*n, n=0...7 PRT_MNG_MDEF_EXT[n] Manageability Decision Filters 13.2.2.29.21

0x00216018 + 0x4*n, n=0...31 GL_SWT_PRT2MDEF[n] Port to MDEF Set Mapping 13.2.2.29.22

Table 13-38. PF - Malicious Prevention Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00040000 + 0x4*VF,
VF=0...255 VP_MDET_TX_TDPU[VF] Malicious VF Driver Detected on Tx TDPU 13.2.2.30.1

0x00040800 PF_MDET_TX_TDPU Malicious PF Driver Detected on Tx TDPU 13.2.2.30.2

0x000FB800 + 0x4*VF,
VF=0...255 VP_MDET_TX_TCLAN[VF] Malicious VF Driver Detected on Tx TCLAN 13.2.2.30.3

0x000FC000 PF_MDET_TX_TCLAN Malicious PF Driver Detected on Tx TCLAN 13.2.2.30.4

0x000FC068 GL_MDET_TX_TCLAN Malicious Driver Tx Event Details 13.2.2.30.5

0x000FC348 + 0x4*n,
n=0...767 VM_MDET_TX_TCLAN[n] Malicious PF Driver Detected on Tx TCLAN 13.2.2.30.6

0x00294200 GLRLAN_MDET RLAN Malicious Events 13.2.2.30.7

0x0029422C GL_MDCK_RX Malicious Driver Rx Checks Enabled 13.2.2.30.8

0x00294280 PF_MDET_RX Malicious PF Driver Detected on Rx 13.2.2.30.9

613875-009 2091

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x00294400 + 0x4*VF,
VF=0...255 VP_MDET_RX[VF] Malicious VF Driver Detected on Rx 13.2.2.30.10

0x00294C00 GL_MDET_RX Malicious Driver Rx Event Details 13.2.2.30.11

0x002D2000 + 0x4*VF,
VF=0...255 VP_MDET_TX_PQM[VF] Malicious VF Driver Detected on Tx PQM 13.2.2.30.12

0x002D2C80 PF_MDET_TX_PQM Malicious PF Driver Detected on Tx PQM 13.2.2.30.13

0x002D2DF4 GL_MDCK_CFG1_TX_PQM Malicious Driver Tx Command Checks PQM Configuration 1 13.2.2.30.14

0x002D2DFC GL_MDCK_EN_TX_PQM Malicious Driver Tx Command Checks Enable PQM 13.2.2.30.15

0x002D2E00 GL_MDET_TX_PQM Malicious Driver Tx Event Details PQM 13.2.2.30.16

Table 13-39. PF - Rx QoS Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00122120 PRTDCB_RRDMAPMS DCB Receive RDMA Pipe Monitor Status 13.2.2.31.1

0x00122240 PRTDCB_RPPMC DCB Receive per Port Pipe Monitor Control 13.2.2.31.2

0x00122260 GLDCB_RPCC DCB Receive Pacing Control 13.2.2.31.3

0x00122280 PRTDCB_RLANPMS DCB Receive LAN Pipe Monitor Status 13.2.2.31.4

0x001222C0 + 0x4*n, n=0...31 GLDCB_RTCTQ[n] DCB Receive per TC PFC Timer Queue 13.2.2.31.5

0x00122340 + 0x4*n, n=0...31 GLDCB_RTCTS[n] DCB Receive per TC PFC Timer Status 13.2.2.31.6

0x001223C0 GLDCB_RSPMS DCB Receive Shared Pipe Monitor Status 13.2.2.31.7

0x001223C4 GLDCB_RSPMC DCB Receive Shared Pipe Monitor Control 13.2.2.31.8

0x001223C8 GLDCB_RMPMC DCB Receive Manageability Pipe Monitor Control 13.2.2.31.9

0x001223CC GLDCB_RMPMS DCB Receive Manageability Pipe Monitor Status 13.2.2.31.10

0x001223D0 GLDCB_RTCTI DCB Receive per TC PFC Timer Indication 13.2.2.31.11

0x001223D4 + 0x4*n, n=0...7 GLRCB_CFG_COTF_CNT[n] RCB Configuration Change on the Fly Counter 13.2.2.31.12

0x001223F4 GLRCB_CFG_COTF_ST RCB Configuration Change on the Fly Status 13.2.2.31.13

0x00200308 + 0x4*n, n=0...15 GLRPRS_PMCFG_DPS[n] Rx PM Dedicated Pool Size 13.2.2.31.14

0x00200388 + 0x4*n, n=0...15 GLRPRS_PMCFG_DHW[n] Rx PM Dedicated Pool High Watermark 13.2.2.31.15

0x002003C8 + 0x4*n, n=0...15 GLRPRS_PMCFG_DLW[n] Rx PM Dedicated Pool Low Watermark 13.2.2.31.16

0x00200408 + 0x4*n, n=0...7 GLRPRS_PMCFG_SPS[n] Rx PM Shared Pool Size 13.2.2.31.17

0x00200448 + 0x4*n, n=0...7 GLRPRS_PMCFG_SHW[n] Rx PM Shared Pool High Watermark 13.2.2.31.18

0x00200468 + 0x4*n, n=0...7 GLRPRS_PMCFG_SLW[n] Rx PM Shared Pool Low Watermark 13.2.2.31.19

0x00200488 + 0x4*n, n=0...31 GLRPRS_PMCFG_TC_CFG[n] TC Pool Config 13.2.2.31.20

0x00200588 + 0x4*n, n=0...31 GLRPRS_PMCFG_TCHW[n] Rx PM TC High Watermark 13.2.2.31.21

0x00200608 + 0x4*n, n=0...31 GLRPRS_PMCFG_TCLW[n] Rx PM TC Low Watermark 13.2.2.31.22

0x00204900 + 0x4*n, n=0...31 GLSWT_PMCFG_TC_CFG[n] TC Pool Config 13.2.2.31.23

Table 13-38. PF - Malicious Prevention Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2092 613875-009

Table 13-40. PF - 4 KB Page Mappings

Offset/Alias Offset Abbreviation Name Section
Reference

0x02000000 +
0x1000*VSI, VSI=0...767 VSI_MBX_ATQBAL[VSI] VSI Mailbox Transmit Queue Base Address

Low 13.2.2.22.45

0x02000004 +
0x1000*VSI, VSI=0...767 VSI_MBX_ATQBAH[VSI] VSI Mailbox Transmit Queue Base Address

High 13.2.2.22.46

0x02000008 +
0x1000*VSI, VSI=0...767 VSI_MBX_ATQLEN[VSI] VSI Mailbox Transmit Queue Length 13.2.2.22.47

0x0200000C +
0x1000*VSI, VSI=0...767 VSI_MBX_ATQH[VSI] VSI Mailbox Transmit Head 13.2.2.22.48

0x02000010 +
0x1000*VSI, VSI=0...767 VSI_MBX_ATQT[VSI] VSI Mailbox Transmit Tail 13.2.2.22.49

0x02000014 +
0x1000*VSI, VSI=0...767 VSI_MBX_ARQBAL[VSI] VSI Mailbox Receive Queue Base Address

Low 13.2.2.22.50

0x02000018 +
0x1000*VSI, VSI=0...767 VSI_MBX_ARQBAH[VSI] VSI Mailbox Receive Queue Base Address

High 13.2.2.22.51

0x0200001C +
0x1000*VSI, VSI=0...767 VSI_MBX_ARQLEN[VSI] VSI Mailbox Receive Queue Length 13.2.2.22.52

0x02000020 +
0x1000*VSI, VSI=0...767 VSI_MBX_ARQH[VSI] VSI Mailbox Receive Head 13.2.2.22.53

0x02000024 +
0x1000*VSI, VSI=0...767 VSI_MBX_ARQT[VSI] VSI Mailbox Receive Tail 13.2.2.22.54

0x02D00000 PF0_FW_HLP_ATQBAL_PAGE PF0 HLP Firmware Admin Transmit Queue
Base Address Low 13.2.2.22.4

0x02D00010 PF0_MBX_HLP_ATQBAL_PAGE PF0 HLP Mailbox Transmit Queue Base
Address Low 13.2.2.22.115

0x02D00020 PF0_SB_HLP_ATQBAL_PAGE PF0 HLP Sideband Transmit Queue Base
Address Low 13.2.2.22.165

0x02D00080 PF0_FW_HLP_ARQBAL_PAGE PF0 HLP Firmware Admin Receive Queue
Base Address Low 13.2.2.22.8

0x02D00090 PF0_MBX_HLP_ARQBAL_PAGE PF0 HLP Mailbox Receive Queue Base
Address Low 13.2.2.22.120

0x02D000A0 PF0_SB_HLP_ARQBAL_PAGE PF0 HLP Sideband Receive Queue Base
Address Low 13.2.2.22.170

0x02D00100 PF0_FW_HLP_ATQBAH_PAGE PF0 HLP Firmware Admin Transmit Queue
Base Address High 13.2.2.22.12

0x02D00110 PF0_MBX_HLP_ATQBAH_PAGE PF0 HLP Mailbox Transmit Queue Base
Address High 13.2.2.22.116

0x02D00120 PF0_SB_HLP_ATQBAH_PAGE PF0 HLP Sideband Transmit Queue Base
Address High 13.2.2.22.166

0x02D00180 PF0_FW_HLP_ARQBAH_PAGE PF0 HLP Firmware Admin Receive Queue
Base Address High 13.2.2.22.16

0x02D00190 PF0_MBX_HLP_ARQBAH_PAGE PF0 HLP Mailbox Receive Queue Base
Address High 13.2.2.22.121

0x02D001A0 PF0_SB_HLP_ARQBAH_PAGE PF0 HLP Sideband Receive Queue Base
Address High 13.2.2.22.171

0x02D00200 PF0_FW_HLP_ATQLEN_PAGE PF0 HLP Firmware Admin Transmit Queue
Length 13.2.2.22.20

0x02D00210 PF0_MBX_HLP_ATQLEN_PAGE PF0 HLP Mailbox Transmit Queue Length 13.2.2.22.117

0x02D00220 PF0_SB_HLP_ATQLEN_PAGE PF0 HLP Sideband Transmit Queue Length 13.2.2.22.167

613875-009 2093

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x02D00280 PF0_FW_HLP_ARQLEN_PAGE PF0 HLP Firmware Admin Receive Queue
Length 13.2.2.22.24

0x02D00290 PF0_MBX_HLP_ARQLEN_PAGE PF0 HLP Mailbox Receive Queue Length 13.2.2.22.122

0x02D002A0 PF0_SB_HLP_ARQLEN_PAGE PF0 HLP Sideband Receive Queue Length 13.2.2.22.172

0x02D00300 PF0_FW_HLP_ATQH_PAGE PF0 HLP Firmware Admin Transmit Head 13.2.2.22.28

0x02D00310 PF0_MBX_HLP_ATQH_PAGE PF0 HLP Mailbox Transmit Head 13.2.2.22.118

0x02D00320 PF0_SB_HLP_ATQH_PAGE PF0 HLP Sideband Transmit Head 13.2.2.22.168

0x02D00380 PF0_FW_HLP_ARQH_PAGE PF0 HLP Firmware Admin Receive Queue
Head 13.2.2.22.32

0x02D00390 PF0_MBX_HLP_ARQH_PAGE PF0 HLP Mailbox Receive Head 13.2.2.22.123

0x02D003A0 PF0_SB_HLP_ARQH_PAGE PF0 HLP Sideband Receive Head 13.2.2.22.173

0x02D00400 PF0_FW_HLP_ATQT_PAGE PF0 HLP Firmware Admin Transmit Tail 13.2.2.22.36

0x02D00410 PF0_MBX_HLP_ATQT_PAGE PF0 HLP Mailbox Transmit Tail 13.2.2.22.119

0x02D00420 PF0_SB_HLP_ATQT_PAGE PF0 HLP Sideband Transmit Tail 13.2.2.22.169

0x02D00480 PF0_FW_HLP_ARQT_PAGE PF0 HLP Firmware Admin Receive Queue
Tail 13.2.2.22.40

0x02D00490 PF0_MBX_HLP_ARQT_PAGE PF0 HLP Mailbox Receive Tail 13.2.2.22.124

0x02D004A0 PF0_SB_HLP_ARQT_PAGE PF0 HLP Sideband Receive Tail 13.2.2.22.174

0x02D004B0 GLNVM_AL_DONE_HLP_PAGE HLP Auto-Load Done Register 13.2.2.7.1

0x02D01000 PF0INT_OICR_HLP_PAGE PF0 Interrupt Other Cause HLP 13.2.2.15.44

0x02D01100 PF0INT_OICR_ENA_HLP_PAGE PF0 Interrupt Other Cause HLP
Enablement 13.2.2.15.37

0x02D02000 PF0INT_OICR_PSM_PAGE PF0 Interrupt Other Cause PSM 13.2.2.15.35

0x02D02100 PF0INT_OICR_ENA_PSM_PAGE PF0 Interrupt Other Cause PSM
Enablement 13.2.2.15.40

0x02D03000 PF0INT_OICR_CPM_PAGE PF0 Interrupt Other Cause CPM 13.2.2.15.34

0x02D03100 PF0INT_OICR_ENA_CPM_PAGE PF0 Interrupt Other Cause CPM
Enablement 13.2.2.15.42

0x02D40000 PF0_FW_PSM_ATQBAL_PAGE PF0 PSM Firmware Admin Transmit Queue
Base Address Low 13.2.2.22.3

0x02D40010 PF0_MBX_PSM_ATQBAL_PAGE PF0 PSM Mailbox Transmit Queue Base
Address Low 13.2.2.22.125

0x02D40080 PF0_FW_PSM_ARQBAL_PAGE PF0 PSM Firmware Admin Receive Queue
Base Address Low 13.2.2.22.7

0x02D40090 PF0_MBX_PSM_ARQBAL_PAGE PF0 PSM Mailbox Receive Queue Base
Address Low 13.2.2.22.130

0x02D40100 PF0_FW_PSM_ATQBAH_PAGE PF0 PSM Firmware Admin Transmit Queue
Base Address High 13.2.2.22.11

0x02D40110 PF0_MBX_PSM_ATQBAH_PAGE PF0 PSM Mailbox Transmit Queue Base
Address High 13.2.2.22.126

0x02D40180 PF0_FW_PSM_ARQBAH_PAGE PF0 PSM Firmware Admin Receive Queue
Base Address High 13.2.2.22.15

0x02D40190 PF0_MBX_PSM_ARQBAH_PAGE PF0 PSM Mailbox Receive Queue Base
Address High 13.2.2.22.131

Table 13-40. PF - 4 KB Page Mappings [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2094 613875-009

0x02D40200 PF0_FW_PSM_ATQLEN_PAGE PF0 PSM Firmware Admin Transmit Queue
Length 13.2.2.22.19

0x02D40210 PF0_MBX_PSM_ATQLEN_PAGE PF0 PSM Mailbox Transmit Queue Length 13.2.2.22.127

0x02D40280 PF0_FW_PSM_ARQLEN_PAGE PF0 PSM Firmware Admin Receive Queue
Length 13.2.2.22.23

0x02D40290 PF0_MBX_PSM_ARQLEN_PAGE PF0 PSM Mailbox Receive Queue Length 13.2.2.22.132

0x02D40300 PF0_FW_PSM_ATQH_PAGE PF0 PSM Firmware Admin Transmit Head 13.2.2.22.27

0x02D40310 PF0_MBX_PSM_ATQH_PAGE PF0 PSM Mailbox Transmit Head 13.2.2.22.128

0x02D40380 PF0_FW_PSM_ARQH_PAGE PF0 PSM Firmware Admin Receive Queue
Head 13.2.2.22.31

0x02D40390 PF0_MBX_PSM_ARQH_PAGE PF0 PSM Mailbox Receive Head 13.2.2.22.133

0x02D40400 PF0_FW_PSM_ATQT_PAGE PF0 PSM Firmware Admin Transmit Tail 13.2.2.22.35

0x02D40410 PF0_MBX_PSM_ATQT_PAGE PF0 PSM Mailbox Transmit Tail 13.2.2.22.129

0x02D40480 PF0_FW_PSM_ARQT_PAGE PF0 PSM Firmware Admin Receive Queue
Tail 13.2.2.22.39

0x02D40490 PF0_MBX_PSM_ARQT_PAGE PF0 PSM Mailbox Receive Tail 13.2.2.22.134

0x02D80010 PF0_MBX_CPM_ATQBAL_PAGE PF0 CPM Mailbox Transmit Queue Base
Address Low 13.2.2.22.105

0x02D80020 PF0_SB_CPM_ATQBAL_PAGE PF0 CPM Sideband Transmit Queue Base
Address Low 13.2.2.22.135

0x02D80090 PF0_MBX_CPM_ARQBAL_PAGE PF0 CPM Mailbox Receive Queue Base
Address Low 13.2.2.22.110

0x02D800A0 PF0_SB_CPM_ARQBAL_PAGE PF0 CPM Sideband Receive Queue Base
Address Low 13.2.2.22.140

0x02D80110 PF0_MBX_CPM_ATQBAH_PAGE PF0 CPM Mailbox Transmit Queue Base
Address High 13.2.2.22.106

0x02D80120 PF0_SB_CPM_ATQBAH_PAGE PF0 CPM Sideband Transmit Queue Base
Address High 13.2.2.22.136

0x02D80190 PF0_MBX_CPM_ARQBAH_PAGE PF0 CPM Mailbox Receive Queue Base
Address High 13.2.2.22.111

0x02D801A0 PF0_SB_CPM_ARQBAH_PAGE PF0 CPM Sideband Receive Queue Base
Address High 13.2.2.22.141

0x02D80210 PF0_MBX_CPM_ATQLEN_PAGE PF0 CPM Mailbox Transmit Queue Length 13.2.2.22.107

0x02D80220 PF0_SB_CPM_ATQLEN_PAGE PF0 CPM Sideband Transmit Queue Length 13.2.2.22.137

0x02D80290 PF0_MBX_CPM_ARQLEN_PAGE PF0 CPM Mailbox Receive Queue Length 13.2.2.22.112

0x02D802A0 PF0_SB_CPM_ARQLEN_PAGE PF0 CPM Sideband Receive Queue Length 13.2.2.22.142

0x02D80310 PF0_MBX_CPM_ATQH_PAGE PF0 CPM Mailbox Transmit Head 13.2.2.22.108

0x02D80320 PF0_SB_CPM_ATQH_PAGE PF0 CPM Sideband Transmit Head 13.2.2.22.138

0x02D80390 PF0_MBX_CPM_ARQH_PAGE PF0 CPM Mailbox Receive Head 13.2.2.22.113

0x02D803A0 PF0_SB_CPM_ARQH_PAGE PF0 CPM Sideband Receive Head 13.2.2.22.143

0x02D80410 PF0_MBX_CPM_ATQT_PAGE PF0 CPM Mailbox Transmit Tail 13.2.2.22.109

0x02D80420 PF0_SB_CPM_ATQT_PAGE PF0 CPM Sideband Transmit Tail 13.2.2.22.139

0x02D80490 PF0_MBX_CPM_ARQT_PAGE PF0 CPM Mailbox Receive Tail 13.2.2.22.114

Table 13-40. PF - 4 KB Page Mappings [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2095

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x02D804A0 PF0_SB_CPM_ARQT_PAGE PF0 CPM Sideband Receive Tail 13.2.2.22.144

0x02F00000 +
0x1000*DBLQ,
DBLQ=0...255

QTX_COMM_DBLQ_DBELL_PAGE[DBLQ] Transmit Comm Scheduler Queue Doorbell 13.2.2.25.29

0x03000000 +
0x1000*n, n=0...2047 PF0INT_DYN_CTL[n] PF0 Interrupt Dynamic Control 13.2.2.15.10

0x03000004 +
0x1000*n, n=0...2047 PF0INT_ITR_0[n] PF Interrupt Throttling 0 13.2.2.15.7

0x03000008 +
0x1000*n, n=0...2047 PF0INT_ITR_1[n] PF Interrupt Throttling 1 13.2.2.15.7

0x0300000C +
0x1000*n, n=0...2047 PF0INT_ITR_2[n] PF Interrupt Throttling 2 13.2.2.15.7

0x03800000 +
0x1000*QRX,
QRX=0...2047

QRX_TAIL_PAGE[QRX] Receive Queue Tail Update 13.2.2.26.22

0x04000000 +
0x1000*DBQM,
DBQM=0...16383

QTX_COMM_DBELL_PAGE[DBQM] Transmit Comm Scheduler Queue Doorbell 13.2.2.25.27

Table 13-40. PF - 4 KB Page Mappings [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2096 613875-009

13.2.2 Detailed Register Descriptions - PF BAR0

13.2.2.1 PF - General Registers

This category contains registers for general device control and status.

13.2.2.1.1 VF Reset Status - VFGEN_RSTAT[VF] (0x00074000 +
0x4*VF, VF=0...255; RW)

13.2.2.1.2 Firmware Status Register - GL_FWSTS (0x00083048; RO)

This register reports the status of the EMP.

Field Bit(s) Init. Type CFG Policy Description

VFR_STATE 1:0 00b RW UNDEFINED VFR State
Defines the VFR reset progress as follows:

00b = VFR in progress.
01b = VFR completed.
All other values are reserved.

This field is used to communicate the reset progress to the VF with no
impact on hardware functionality.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FWS0B 7:0 0x0 RO N/A Firmware Status 0 Byte
This byte is RO through the host interface.

FWROWD 8 0b RW1C DYNAMIC Firmware Reset on Watchdog Indication
Set when a firmware reset is asserted due to watchdog expiration.
Cleared when the host writes a 1b to it.
Writing a 0b to this bit does not change its value.
Note: This bit is also set after LAN_PWR_GOOD and is RO through the

AUX interface.

FWRI 9 1b RW1C DYNAMIC Firmware Reset Indication
Set when a firmware reset is asserted. Cleared when the host writes a 1b
to it.
Writing a 0b to this bit does not change its value.
Note: This bit is also set after LAN_PWR_GOOD and is RO through the

AUX interface.

RESERVED 15:10 0x0 RSV N/A Reserved.

FWS1B 23:16 0x0 RO N/A Firmware Status 1 Byte
This byte is RO through the host interface.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2097

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.3 PF State - PFGEN_STATE (0x00088000; RW)

This register defines to software the main characteristics of the PF. It does not have any direct impact
on device functionality.

13.2.2.1.4 Global GPIO Control - GLGEN_GPIO_CTL[n] (0x000880C8 +
0x4*n, n=0...6; RW)

These registers control the mode of operation of the following I/O signals:

• Registers 0...3 control SDP_TIMESYNC[0:3], respectively.

• Registers 4 controls the TIME_SYNC (in) signal.

• Registers 5 controls the 1PPS (out) signal.

• Register 6 control the CLK_SYNCE (out) signal.

This register is initialized only at LAN Power Good, preserving the GPIO states across software and PCIe
resets.

Field Bit(s) Init. Type CFG Policy Description

PFPEEN 0 0b RW UNDEFINED PF PE Enable
0b = Protocol engine services should not be used for this function.
1b = Protocol engine services can be used for this function.

RESERVED 1 0b RSV N/A Reserved.

PFLINKEN 2 0b RW UNDEFINED PF Link Enable
0b = The PF driver is disabled. The software device driver must at

minimum report it does not have link.
1b = The PF driver is enabled.

PFSCEN 3 0b RW UNDEFINED PF iSCSI Enable
0b = iSCSI should not be used for this function.
1b = iSCSI can be used for this function.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IN_VALUE 0 0b RO N/A In Value
Reflect the state of the GPIO (valid for both cases: input and output
signal).

IN_TRANSIT 1 0b RCW UNDEFINED In Transition
This bit is set to one following any transition on the GPIO. Writing “1” to
this bit clears it.

OUT_VALUE 2 0b RW UNDEFINED Out Value
Defines the output level driven on this GPIO. It is meaningful only when
the PIN_DIR is configured as output.

NO_P_UP 3 1b RW UNDEFINED No Pull-Up
Defines if GPIO pin has an internal pull-up.

0b = Pull-up
1b = No pull-up

PIN_DIR 4 0b RW UNDEFINED Pin Direction
Controls whether this GPIOn pin is configured as an input or output.

0b = Input
1b = Output

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2098 613875-009

13.2.2.1.5 VF Reset Trigger - VPGEN_VFRTRIG[VF] (0x00090000 +
0x4*VF, VF=0...255; RW)

This register affects the VF but exposed only to the parent PF.

TRI_CTL 5 0b RW UNDEFINED Tristate Control
Meaningful only for the single-ended GPIOs when configured as output
and driven to high.

0b = The pin is tri-stated.
1b = The pin is driven to high.

RESERVED 7:6 00b RSV N/A Reserved.

PIN_FUNC 11:8 0x0 RW UNDEFINED Pin Function
This field controls the functionality of this GPIOn pin.

0x0 = SDP (software definable input or output).
0x1 = Input Event sampled by EVENT register 0 and AUX_IN 0 of

primary timer 0.
0x2 = Input Event sampled by EVENT register 1 and AUX_IN 1 of

primary timer 0.
0x3 = Input Event sampled by EVENT register 2 and AUX_IN 2 of

primary timer 0.
0x4 = Input Event sampled by EVENT register 0 and AUX_IN 0 of

primary timer 1.
0x5 = Input Event sampled by EVENT register 1 and AUX_IN 1 of

primary timer 1.
0x6 = Input Event sampled by EVENT register 2 and AUX_IN 2 of

primary timer 1.
0x8 = Output signal initiated by TGT register 0 and AUX_OUT 0 of

primary timer 0.
0x9 = Output signal initiated by TGT register 1 and AUX_OUT 1 of

primary timer 0.
0xA = Output signal initiated by TGT register 2 and AUX_OUT 2 of

primary timer 0.
0xB = Output signal initiated by TGT register 3 and AUX_OUT 3 of

primary timer 0.
0xC = Output signal initiated by TGT register 0 and AUX_OUT 0 of

primary timer 1.
0xD = Output signal initiated by TGT register 1 and AUX_OUT 1 of

primary timer 1.
0xE = Output signal initiated by TGT register 2 and AUX_OUT 2 of

primary timer 1.
0xF = Output signal initiated by TGT register 3 and AUX_OUT 3 of

primary timer 1.

INT_MODE 13:12 00b RW UNDEFINED Interrupt Mode
This field selects the interrupt mode for this GPIOn.

00b = No interrupt.
01b = Interrupt on rising edge.
10b = Interrupt on falling edge.
11b = Interrupt on any transition.

RESERVED 31:14 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VFSWR 0 0b RW UNDEFINED VF Software Reset
VF software reset is done by the PF setting the VFSWR bit. At reset
completion, the PF clears this bit.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2099

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.6 VF Reset Status - VPGEN_VFRSTAT[VF] (0x00090800 +
0x4*VF, VF=0...255; RO)

This register affects the VF but exposed only to the parent PF.

13.2.2.1.7 PFGEN Control - PFGEN_CTRL (0x00091000; RW)

Note: PF reset.

13.2.2.1.8 PFR STAT - PFGEN_PFRSTAT (0x00091080; RO)

Note: PF reset.

13.2.2.1.9 PF Driver Unload - PFGEN_DRUN (0x00091180; RW)

Field Bit(s) Init. Type CFG Policy Description

VFRD 0 1b RO N/A VF Reset Done
VF Software Reset Done indication. This flag is cleared when the VFSWR
bit is set in the VPGEN_VFRTRIG register.
It is set back to 1b when the hardware completes its hardware data path
cleanup for the VF, or the VFSWR bit is cleared in the VPGEN_VFRTRIG
register.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PFSWR 0 0b RO UNDEFINED PF Software Reset
Set on reset event from IOSF block and when software sets the bit.
Cleared only by firmware writing 0 to it (also cleared on core reset).

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PFRD 0 1b RO UNDEFINED PF Reset Done
PFRD is cleared when GL_XLR_MARKER_TRIG _VMLR sets the relevant
PF reset.
Set when hardware cleanup is done.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DRVUNLD 0 0b RW UNDEFINED Driver Unload
The PF sets this bit to indicate its driver is unloading.

RESERVED 31:1 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2100 613875-009

13.2.2.1.10 VM Reset Trigger - VSIGEN_RTRIG[VSI] (0x00091800 +
0x4*VSI, VSI=0...767; RW)

13.2.2.1.11 VM Reset Status - VSIGEN_RSTAT[VSI] (0x00092800 +
0x4*VSI, VSI=0...767; RO)

13.2.2.1.12 XLR Marker Trigger - GL_XLR_MARKER_TRIG_VMLR
(0x00093804; RW)

Field definitions are the same as those defined in Section 13.2.2.10.5.

13.2.2.1.13 Global Marker Count - GLGEN_MARKER_COUNT
(0x000939E8; RW)

13.2.2.1.14 Global Wait Between Transaction Count -
GLGEN_XLR_TRNS_WAIT_COUNT (0x000939EC; RO)

Field Bit(s) Init. Type CFG Policy Description

VMSWR 0 0b RW UNDEFINED VM Software Reset
Initiated by setting the VMR bit. At completion of the reset flow, the PF
software clears this bit.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VMRD 0 1b RO N/A VM Reset Done
Cleared when VMSWR bit is set in the VSIGEN_VMRTRIG register.
Set when hardware cleanup for the VM is completed or when the VMSWR
bit is cleared in the VSIGEN_VMRTRIG register.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MARKER_COUNT 7:0 0x0 RW UNDEFINED Marker Count
Specifies the value of markers to count for specific client to
decide on XLR completion. Valid when MARKER_COUNT_EN is
set.

RESERVED 30:8 0x0 RSV N/A Reserved.

MARKER_COUNT_EN 31 0b RW UNDEFINED Marker Count Enable
Specifies if the client marker count value is valid and should
override the one chosen from the system state configured.

Field Bit(s) Init. Type CFG Policy Description

W_BTWN_TRNS_COUNT 4:0 0x8 RW UNDEFINED Wait Between Transaction Count
Number of cycles to wait between two consequent
transactions.

RESERVED 7:5 000b RSV N/A Reserved.

W_PEND_TRNS_COUNT 15:8 0x20 RW UNDEFINED Wait Pending Transactions Count
Number of cycles to wait between two pending transactions.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2101

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.15 Global Wait for HLP After CORER -
GLGEN_XLR_MSK2HLP_RDY (0x000939F0; RW)

13.2.2.1.16 ECC Error Mask Low - GLGEN_ECC_ERR_RST_MASK_L
(0x000939F4; RW)

Field Bit(s) Init. Type CFG Policy Description

GLGEN_XLR_MSK2HLP_RDY 0 1b RW UNDEFINED XLR Mask 2 HLP Ready
Bit should be set on core reset and can be cleared
by software writing into it.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CLIENT_NUM 31:0 0xFFFFFFFF RW N/A Client Number
Defines on which source blocks the reset indication is set. Each bit
represents masking to a different client according to the following
mapping:
MSB:mbx_unc_ecc_err,

tclan_unc_ecc_err,
pqm_unc_ecc_err,
psm_unc_ecc_err,
fpmat_unc_ecc_err,
stat_mac_ecc_int,
stat_tdpu_ecc_int,
pe_unc_ecc_err,
foc_unc_ecc_err,
int_unc_ecc_err,
rlan_unc_ecc_err,
tdpu_unc_ecc_err,
rdpu_unc_ecc_err,
tcb_unc_ecc_err,
rcb_unc_ecc_err,
rcupst_unc_ecc_err,
rcuswr_unc_ecc_err,
rcurprs_unc_ecc_err,
rcutprs_unc_ecc_err,
rcukgg_unc_ecc_err,
rcukggext_unc_ecc_err,
rcuaclext_unc_ecc_err,
rcupstext_unc_ecc_err,
tpb_unc_ecc_err,
mac_unc_ecc_err,
rpb_unc_ecc_err,
pprs_unc_ecc_err_0,
pprs_unc_ecc_err_1,
pprs_unc_ecc_err_2,
pprs_unc_ecc_err_3,
pcie_unc_ecc_err,

LSB: mng_unc_ecc_err

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2102 613875-009

13.2.2.1.17 ECC Error Mask High - GLGEN_ECC_ERR_RST_MASK_H
(0x000939F8; RW)

Field Bit(s) Init. Type CFG Policy Description

CLIENT_NUM 6:0 0x7F RW N/A Client Number
Defines on which source blocks the reset indication is set. Each bit
represents masking to a different client according to the following
mapping:
MSB:stat_rcuacl_ecc_int,

stat_rcuswr_ecc_int,
stat_rcupst_ecc_int,
rcuacl_unc_ecc_err,
fds_ecc_int,
csr_ecc_int,

LSB: tcvmlr_unc_ecc_err

RESERVED 31:7 0x0 RSV N/A Reserved.

613875-009 2103

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.18 ECC Error Int Mask Low -
GLGEN_ECC_ERR_INT_TOG_MASK_L (0x000939FC; RW)

Field Bit(s) Init. Type CFG Policy Description

CLIENT_NUM 31:0 0xFFFFFFFF RW N/A Client Number
Defines on which source blocks the interrupt indication is toggled.
Each bit represents masking to a different client according to the
following mapping:
MSB:mbx_unc_ecc_err,

tclan_unc_ecc_err,
pqm_unc_ecc_err,
psm_unc_ecc_err,
fpmat_unc_ecc_err,
stat_mac_ecc_int,
stat_tdpu_ecc_int,
pe_unc_ecc_err,
foc_unc_ecc_err,
int_unc_ecc_err,
rlan_unc_ecc_err,
tdpu_unc_ecc_err,
rdpu_unc_ecc_err,
tcb_unc_ecc_err,
rcb_unc_ecc_err,
rcupst_unc_ecc_err,
rcuswr_unc_ecc_err,
rcurprs_unc_ecc_err,
rcutprs_unc_ecc_err,
rcukgg_unc_ecc_err,
rcukggext_unc_ecc_err,
rcuaclext_unc_ecc_err,
rcupstext_unc_ecc_err,
tpb_unc_ecc_err,
mac_unc_ecc_err,
rpb_unc_ecc_err,
pprs_unc_ecc_err_0,
pprs_unc_ecc_err_1,
pprs_unc_ecc_err_2,
pprs_unc_ecc_err_3,
pcie_unc_ecc_err,

LSB: mng_unc_ecc_err

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2104 613875-009

13.2.2.1.19 ECC Error Int Mask High -
GLGEN_ECC_ERR_INT_TOG_MASK_H (0x00093A00; RW)

13.2.2.1.20 PFR STAT - GLGEN_VFLRSTAT[n] (0x00093A04 + 0x4*n,
n=0...7; RW1C)

Note: PF reset.

13.2.2.1.21 TCVMLR XLR Marker Trigger -
GL_XLR_MARKER_TRIG_TCVMLR (0x000A2000; RO)

This register is used to initiate XLR marker reset flow. When the register is written, TCVMLR starts drain
marker flow.

Field definitions are the same as those defined in Section 13.2.2.10.5.

13.2.2.1.22 Transmit Scheduler Queue Control - GL_TCVMLR_QCTL
(0x000A2004; RO)

This register is used to initiate queue halt/marker flow. Flow state can be polled using REQ_STAT and
STAT registers.

Field Bit(s) Init. Type CFG Policy Description

CLIENT_NUM 6:0 0x7F RW N/A Client Number
Defines on which source blocks the interrupt indication is toggled. Each
bit represents masking to a different client according to the following
mapping:
MSB:stat_rcuacl_ecc_int,

stat_rcuswr_ecc_int,
stat_rcupst_ecc_int,
rcuacl_unc_ecc_err,
fds_ecc_int,
csr_ecc_int,

LSB: tcvmlr_unc_ecc_err

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VFLRS 31:0 0x0 RW1C UNDEFINED VFLRS Flags
PFRD is cleaned when GL_XLR_MARKER_TRIG _VMLR set the relevant PF
reset.
Cleared when hardware cleanup is done.

Field Bit(s) Init. Type CFG Policy Description

QID 13:0 0x0 RW UNDEFINED Queue ID
Queue ID to perform action on: 0-16383

OP 14 0b RW UNDEFINED Operation
0b = Halt only. Queue halt request is made to PQM.
1b = Marker only. Only a TC drain marker is sent for the queue.

RESERVED 31:15 0x0 RSV N/A Reserved.

613875-009 2105

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.23 TCVMLR Drain Marker Control -
GL_TCVMLR_DRAIN_MARKER (0x000A2008; RO)

This register is used to initiate a TC drain marker to be sent to the pipe.

13.2.2.1.24 TCVMLR Halt Done Down Counter - GL_TCVMLR_QCNTR
(0x000A200C; RO)

This register is used to set the number of queue halts that need to complete their flow before hardware
initiates interrupt.

13.2.2.1.25 TCVMLR Queue Port TC Config Control - GL_TCVMLR_QCFG
(0x000A2010; RO)

This register is used to configure or request to read port and TC number per queue. They must be
configured before hardware can operate correctly.

Field Bit(s) Init. Type CFG Policy Description

PORT 2:0 000b RW UNDEFINED Port
Port number to send marker to.

TC 7:3 0x0 RW UNDEFINED TC
TC number to send marker to.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CNTR 14:0 0x0 RW UNDEFINED Counter
Number of queue halts that need to complete their flow before hardware
initiates interrupt.
Value is decremented after each halt done, and interrupt is initiated
when value reaches 0. If value is already 0 on halt done, no interrupt is
initiated.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QID 13:0 0x0 RW UNDEFINED Queue ID

OP 14 0b RW UNDEFINED Operation
0b = Read configuration. Only QID needs to be valid.
1b = Write configuration. All fields must be valid.

PORT 17:15 000b RW UNDEFINED Port
Port associated with the queue. Valid only on write operation.

TC 22:18 0x0 RW UNDEFINED TC
TC associated with the queue. Valid only on write operation.

RESERVED 31:23 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2106 613875-009

13.2.2.1.26 TCVMLR Queue Port TC Config Status -
GL_TCVMLR_QCFG_RD (0x000A2014; RO)

13.2.2.1.27 TCVMLR Req Flow Status Control - GL_TCVMLR_REQ_STAT
(0x000A2018; RO)

This register is used to request or set status of the different disable/reset flows.

13.2.2.1.28 TCVMLR Req Flow Status Read - GL_TCVMLR_STAT
(0x000A201C; RO)

Field Bit(s) Init. Type CFG Policy Description

QID 13:0 0x0 RO N/A Queue ID

PORT 16:14 000b RO N/A Port
Port associated with the queue.

TC 21:17 0x0 RO N/A TC
TC associated with the queue.

RESERVED 31:22 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ENT_TYPE 2:0 000b RW UNDEFINED Entity Type
000b = VF
001b = VM
010b = PF
011b = Queue
All other values are reserved.

ENT_ID 16:3 0x0 RW UNDEFINED Entity ID
• VF/VM/PF = Function number
• Queue = Queue ID

OP 17 0b RW UNDEFINED Operation
0b = Read status. WRITE_STATUS does not need to be valid.
1b = Write status.

WRITE_STATUS 20:18 000b RW UNDEFINED Write Status
Status to be written (as specified in the GL_TCVMLR_STAT register).

RESERVED 31:21 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ENT_TYPE 2:0 000b RO N/A Entity Type
000b = VF
001b = VM
010b = PF
011b = Queue
All other values are reserved.

ENT_ID 16:3 0x0 RO N/A Entity ID
• VF/VM/PF = Function number
• Queue = Queue ID

613875-009 2107

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.29 TCVMLR Req Flow Error Status - GL_TCVMLR_ERR_STAT
(0x000A2024; RO)

Error indication register. Saves data for last error made by firmware (initiating new flow for request
already in progress).

STATUS 19:17 000b RO N/A Status
Status to write for specified reset entity.
Reset status:

000b = Normal. No request is pending.
001b = Halt scheduling request pending. Firmware triggered queue halt

request and flow is yet served by hardware (relevant only for Q
entity).

010b = Drain marker request pending. Firmware triggered drain marker
request and flow is yet served by hardware.

011b = Done:
• For Q marker flow status is set to done when queues markers
 exit the pipe (pipe is drained).
• For Q halt flow status is set to done when halt request was
 completed.
• For VF/VM/PF flow status is set to done when marker request
 exits TCVMLR block.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ERROR 0 0b RW UNDEFINED Error
When high, indicates a firmware error was made.
Firmware error is when a new reset flow is initiated for a reset in
progress.

FW_REQ 1 0b RW UNDEFINED Firmware Request
Indicates what type of firmware request caused the error.

0b = Firmware tried to initiate queue halt flow.
1b = Firmware tried to initiate marker flow.

STAT 4:2 000b RW UNDEFINED Status
Reset status at time of firmware request.

000b = Normal. No request is pending.
001b = Halt scheduling request pending. Firmware triggered queue halt

request and flow is yet served by hardware (relevant only for Q
entity).

010b = Drain marker request pending. Firmware triggered drain marker
request and flow is yet served by hardware.

011b = Done. Flow triggered by firmware is done and no request is
pending (indicates Q halt done or marker done according to the
last flow that was initiated).

ENT_TYPE 7:5 000b RW UNDEFINED Entity Type
000b = VF
001b = VM
010b = PF
011b = Queue
100b = TC drain marker
All other values are reserved.

ENT_ID 21:8 0x0 RW UNDEFINED Entity ID
• VF/VM/PF = Function number
• Queue = Queue ID
• TC drain marker = 3b Port number follow by 5b TC number:

 {PORT, TC}

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2108 613875-009

13.2.2.1.30 TCVMLR Drain Done Count for TCLAN -
GL_TCVMLR_DRAIN_DONE_TCLAN[n] (0x000A20A8 +
0x4*n, n=0...31; RO)

Register per TC that shows amount of drain marker requests that are done on the TCLAN interface.
Lowest instance address corresponds to TC 0, highest to TC 31.

13.2.2.1.31 TCVMLR Drain Done Count for TPB -
GL_TCVMLR_DRAIN_DONE_TPB[n] (0x000A2128 + 0x4*n,
n=0...31; RO)

Register per TC that shows amount of drain marker requests that are done on the TPB interface. Lowest
instance address corresponds to TC 0, highest to TC 31.

13.2.2.1.32 TCVMLR Drain Done Decrement Control -
GL_TCVMLR_DRAIN_DONE_DEC (0x000A21A8; RO)

This register is used to decrement the per-TC drain done registers.

RESERVED 31:22 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

COUNT 7:0 0x0 RO N/A Count
Number of drain markers done for a specific TC on TCLAN interface.
Can decrement value using GL_TCVMLR_DRAIN_DONE_DEC.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

COUNT 7:0 0x0 RO N/A Count
Number of drain markers done for a specific TC on TPB interface.
Can decrement value using GL_TCVMLR_DRAIN_DONE_DEC.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TARGET 0 0b RW UNDEFINED Target
0b = TCLAN register.
1b = TPB register.

INDEX 5:1 0x0 RW UNDEFINED Index
TC index to decrement from (0-31). Value needs to be calculated based
on port/TC number and MAC topology.

VALUE 13:6 0x0 RW UNDEFINED Value
Value to decrement from counter. Needs to be less than or equal to
counter value to work correctly.

RESERVED 31:14 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2109

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.33 TCVMLR Drain Done Down Counter -
PRT_TCVMLR_DRAIN_CNTR (0x000A21C0; RO)

Status register showing the number of TC drain markers per port that need to complete their flow
before hardware initiates interrupt.

13.2.2.1.34 TCVMLR Drain Done Down Counter Control -
GL_TCVMLR_DRAIN_CNTR_CTL (0x000A21E0; RO)

This register is used to increment or decrement the per-port TC drain done down counters, which
generate an interrupt upon reaching zero.

13.2.2.1.35 Global Status - GLGEN_STAT (0x000B612C; RO)

13.2.2.1.36 General Port Status - PRTGEN_STATUS (0x000B8100; RO)

This register contains general port status information.

Field Bit(s) Init. Type CFG Policy Description

CNTR 13:0 0x0 RO N/A Counter
Number of TC drain markers that need to complete their flow time 2 (x2)
before hardware initiates interrupt.
Value is decremented after each marker done from both TPB and TCLAN
interfaces.
An Interrupt is initiated when value reaches 0. If value is already 0 on
marker done, no interrupt is initiated.

RESERVED 31:14 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

OP 0 0b RW UNDEFINED Operation
0b = Decrement value of counter of specified port.
1b = Increment value of counter of specified port.

PORT 3:1 000b RW UNDEFINED Port
Port number of the counter to increment/decrement.

VALUE 17:4 0x0 RW UNDEFINED Value
Number of TC drain markers that need to complete their flow time 2 (x2)
before hardware initiates interrupt.
This value is incremented/decremented from counter.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 31:0 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORT_VALID 0 0b RO N/A Port Valid
Denotes if the respective Ethernet port is enabled.

0b = Port is disabled.
1b = Port is enabled.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2110 613875-009

13.2.2.1.37 General Port Configuration - PRTGEN_CNF (0x000B8120;
RO)

This register contains configuration per Ethernet port loaded from NVM.

13.2.2.1.38 General Port Configuration2 - PRTGEN_CNF2 (0x000B8160;
RO)

This register contains configuration per Ethernet port loaded from NVM.

PORT_ACTIVE 1 0b RO N/A Port Active
Denotes if the respective Ethernet port is active.

0b = Port is inactive and its respective PHY is in power down.
1b = Port is active and its respective PHY is powered up.

PORT_ACTIVE is 1b when:
PORT_VALID = 1b AND
If (device is in D0 state) then port should be active:
 If the software device driver activated the link
(ACTIVATE_PORT_LINK = 1b) or link is used for manageability.
Else, when device is in Dr state, the port should be active+
 If link is used for manageability or WoL.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORT_DIS 0 1b RW UNDEFINED Port Disable
Defines if the Ethernet port is enabled from the NVM.

0b = Enabled
1b = Disabled

Exception: Port 0 is always enabled and cannot be disabled from
the NVM.

ALLOW_PORT_DIS 1 0b RW UNDEFINED Allow Port Disable
0b = Asserting DEV_DIS_N has no effect on this port.
1b = Asserting DEV_DIS_N disables this port.

EMP_PORT_DIS 2 0b RW UNDEFINED EMP Port Disable
Set by the EMP to disable the Ethernet port.
The NVM value for this bit should always be 0b (enabled). NVM
should use the PORT_DIS bit to disable a port.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ACTIVATE_PORT_LINK 0 0b RW UNDEFINED Activate Port Link
When this field is set to 0b, the port's link is powered down.
This field can be used by an application to disable the link
until the software device driver is loaded and enables the link.
Notes:

1. The PCIe functions associated with the port are not
affected by the link loss.

2. Deactivating the link, using this configuration, is ignored
when the interface is used for manageability.

To implement this, hardware masks this configuration when
the relevant port’s PRTPM_GC.EMP_LINK_ON is set to 1b.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2111

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.39 Global Reset Control - GLGEN_RSTCTL (0x000B8180; RO)

13.2.2.1.40 Global Clock Status - GLGEN_CLKSTAT (0x000B8184; RO)

This register holds internal clock speeds.

Field Bit(s) Init. Type CFG Policy Description

GRSTDEL 5:0 0x8 RW UNDEFINED Global Reset Delay
Global/Core and EMP resets delay defined in 100 ms units. Setting
GRSTDEL to zero bypasses the delay counter.

RESERVED 7:6 00b RSV N/A Reserved.

ECC_RST_ENA 8 0b RW UNDEFINED ECC Reset Enable
Graceful CORER reset on ECC in any memory other than the EMP
memories.

0b = A detected ECC error on these memories generates only an
interrupt to the PFs.

1b = A detected ECC error generated a graceful CORER.
An ECC_ERR reset event is carried out by firmware.
CAR creates an interrupt to firmware with reset type CORER.
Firmware triggers reset using the immediate reset triggers.

RESERVED 29:9 0x0 RSV N/A Reserved.

ECC_RT_EN 30 0b RW UNDEFINED ECC Reset Enable
ECC reset flow. Set to 1b to enable legacy flow.

FLR_RT_EN 31 0b RW UNDEFINED FLR Reset Enable
FLR reset flow. Set to 1b to enable legacy flow.

Field Bit(s) Init. Type CFG Policy Description

U_CLK_SPEED 2:0 000b RO N/A Upper Clock Speed
Debug feature. Represents the current speed of the upper clock
(core_clk) as follows:

00b = 390.625 MHz.
01b = 195.3125 MHz.
10b = 97.65625 MHz
11b = Reserved

L_CLK_SPEED 5:3 000b RO N/A Lower Clock Speed
Debug feature. Represents the current speed of the Rx clock for
MAC 0.
Speeds are represented as follows:
Three bits per port (synchronized to the equivalent MAC clock):

000b = 100 Mb/s
001b = 1 GbE
010b = 10 GbE
011b = 40 GbE
All other values are reserved.

PSM_CLK_SPEED 8:6 000b RO N/A PSM Clock Speed
Debug feature. Represents the current speed of the Rx clock for
MAC 1.
Speeds are represented as follows:
Three bits per port (synchronized to the equivalent MAC clock):

000b = 100 Mb/s
001b = 1 GbE
010b = 10 GbE
011b = 40 GbE
All other values are reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2112 613875-009

13.2.2.1.41 Global Reset Status - GLGEN_RSTAT (0x000B8188; RO)

RXCTL_CLK_SPEED 11:9 000b RO N/A RXCTL Clock Speed
Debug feature. Represents the current speed of the Rx clock for
MAC 2.
Speeds are represented as follows:
Three bits per port (synchronized to the equivalent MAC clock):

000b = 100 Mb/s
001b = 1 GbE
010b = 10 GbE
011b = 40 GbE
All other values are reserved.

UANA_CLK_SPEED 14:12 000b RO N/A UANA Clock Speed
Debug feature. Represents the current speed of the Rx clock for
MAC 3.
Speeds are represented as follows:
Three bits per port (synchronized to the equivalent MAC clock):

000b = 100 Mb/s
001b = 1 GbE
010b = 10 GbE
011b = 40 GbE
All other values are reserved.

RESERVED 17:15 000b RSV N/A Reserved.

PE_CLK_SPEED 20:18 000b RO N/A PE Clock Speed

RESERVED 31:21 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DEVSTATE 1:0 00b RO N/A Device State
Device can be at one of the following states:

00b = Device active.
01b = Reset requested.
10b = Reset in progress.
11b = Reserved.

RESET_TYPE 3:2 00b RO N/A Reset Type
Reflects one of the following resets that are/were in progress:

00b = POR
01b = CORER
10b = GLOBR
11b = EMPR

CORERCNT 5:4 00b RO N/A Core Reset Count
Counts the number of initiated core resets since POR. The counter
wraps around from 11b to 00b.
Note: The counters count only the graceful resets asserted by the

GLGEN_RTRIG register. It does not count resets initiated by
the GLGEN_IMRTRIG register intended for internal use of
the EMP.

GLOBRCNT 7:6 00b RO N/A Global Reset Count
Counts the number of initiated global resets since POR. The counter
wraps around from 11b to 00b.
Note: The counters count only the graceful resets asserted by the

GLGEN_RTRIG register. It does not count resets initiated by
the GLGEN_IMRTRIG register intended for internal use of
the EMP.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2113

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.42 Global Reset Trigger - GLGEN_RTRIG (0x000B8190; RW)

13.2.2.1.43 Global Switch Mode Reset Control - GLGEN_ASSERT_HLP
(0x000B81E4; RW)

EMPRCNT 9:8 00b RO N/A EMP Reset Count
Counts the number of initiated EMP resets since POR. The counter
wraps around from 11b to 00b.
Note: The counters count only the graceful resets asserted by the

GLGEN_RTRIG register. It does not count resets initiated by
the GLGEN_IMRTRIG register intended for internal use of
the EMP.

TIME_TO_RST 15:10 0x0 RO N/A Time to Reset
The reset time is a down counter, loaded from
GLGEN_RSTCTL.GRSTDEL following a GLOBR or CORER or EMPR.
When TIME_TO_RST reaches a zero value the actual reset is
initiated.
This register is valid only in hardware-controlled resets (i.e.,
FW_RST_CONTROL_EN=0 or resets triggered by firmware AUX).

RTRIG_FLR 16 0b RO N/A Reset Trigger FLR
Reset request cause is due to FLR reset.
Can only be asserted when switch mode is set.

RTRIG_ECC 17 0b RO N/A Reset Trigger ECC
Reset request cause is due to memories ECC-ERR.
Set when GLGEN_RSTCTL_ECC_RST_ENA and memories
uncorrectable error event accrued.

RTRIG_FW_AUX 18 0b RO N/A Reset Trigger Firmware AUX
Reset was triggered from firmware AUX register (for debug).
This bit is hot ONLY - from AUX trigger until reset occurs.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CORER 0 0b RW UNDEFINED Core Reset
Setting this bit triggers a graceful core reset flow.

GLOBR 1 0b RW UNDEFINED Global Reset
Setting this bit triggers a graceful global reset flow.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CORE_ON_RST 0 0b RW UNDEFINED Core on Reset
When set, indicates the device to assert HLP core reset on the next
assertion of CORER.
Asserts (hlpswitch_rst_b)

FULL_ON_RST 1 0b RW UNDEFINED Full on Reset
When set, indicates the device to assert HLP full reset on the next
assertion of CORER.
Asserts (hlpswitch_ports_rst_b)

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2114 613875-009

13.2.2.1.44 Global Device Timer - GLVFGEN_TIMER (0x000B8214; RW)

13.2.2.1.45 Global Clock Status - GLGEN_CLKSTAT_SRC (0x000B826C;
RO)

Field Bit(s) Init. Type CFG Policy Description

GTIME 31:0 0x0 RW UNDEFINED GTIME
A free-running timer fed by a 1 μs clock.

Field Bit(s) Init. Type CFG Policy Description

U_CLK_SRC 1:0 00b RO N/A Upper Clock Source
Represents the current source of the respective core clock
(core_clk) as follows:

00b = 367 MHz
01b = 416 MHz
10b = 446 MHz
11b = 396 MHz

L_CLK_SRC 3:2 00b RO N/A Lower Clock Source
Represents the current source of the respective core clock
(core_clk) as follows:

00b = 367 MHz
01b = 416 MHz
10b = 446 MHz
11b = 396 MHz

PSM_CLK_SRC 5:4 00b RO N/A PSM Clock Source
Represents the current source of the respective core clock
(core_clk) as follows:

00b = 367 MHz
01b = 416 MHz
10b = 446 MHz
11b = 396 MHz

RXCTL_CLK_SRC 7:6 00b RO N/A RXCTL Clock Source
Represents the current source of the respective core clock
(core_clk) as follows:

00b = 367 MHz
01b = 416 MHz
10b = 446 MHz
11b = 396 MHz

UANA_CLK_SRC 11:8 0x0 RO N/A UANA Clock Source
Represents the current source of the respective core clock
(core_clk) as follows:

0x0 = 367 MHz
0x1 = 416 MHz
0x2 = 446 MHz
0x3 = 396 MHz
0x4 = 625 MHz

RESERVED 31:12 0x0 RSV N/A Reserved.

613875-009 2115

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.46 General Port Configuration3 - PRTGEN_CNF3 (0x000B8280;
RO)

This register contains configuration per Ethernet port loaded from NVM.

13.2.2.1.47 LAN Port Number - PFGEN_PORTNUM (0x001D2400; RO)

13.2.2.1.48 GLGEN_ANA_FLAG_MAP - GLGEN_ANA_FLAG_MAP[n]
(0x0020C000 + 0x4*n, n=0...63; RW)

Flags mapping register.

13.2.2.1.49 GLGEN_ANA_DEF_PTYPE - GLGEN_ANA_DEF_PTYPE
(0x0020C100; RW)

Default PTYPE (when there is no match in PTYPE TCAM and node PTYPE is invalid).

Field Bit(s) Init. Type CFG Policy Description

PORT_STAGERING_EN 0 0b RW UNDEFINED Port Staggering Enable
The purpose of this bit is to allow firmware to stagger the
enable of the PHY ports to prevent IR drop.
On power-up reset, firmware staggers the enable of the ports
that should be active during Sx mode. When moving to s0, it
staggers all active ports.
When going down to Sx, ports are down by hardware without
staggering.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORT NUM 2:0 000b RW UNDEFINED Port Number
Indicates the LAN port connected to this function.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLAG_EN 0 0b RW UNDEFINED Flag Enable
When set, Analyzer flag[N] should be exposed on flag EXT_FLAG_ID
on the Analyzer outputs.

EXT_FLAG_ID 6:1 0x0 RW UNDEFINED External Flag ID
CSR “i” maps the “i” external flag to EXT_FLAG_ID internal flag.
Valid when FLAG_EN bit is set.

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DEF_PTYPE 9:0 0x0 RW UNDEFINED Default PTYPE
Analyzer default PTYPE value.

RESERVED 31:10 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2116 613875-009

13.2.2.1.50 GLGEN_ANA_CFG_CTRL - GLGEN_ANA_CFG_CTRL
(0x0020C104; RW)

Table’s configuration control register.

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 17:0 0x0 RW UNDEFINED Line Index
Target memory line.

TABLE_ID 25:18 0x0 RW UNDEFINED Table ID
Target table:

0x00 = TCAM key
0x01 = Xlate table (ALU)
0x02 = PG spill buffer action
0x03 = PG spill buffer key
0x04 = PG mem0 - holds all PG arches that sit at addr%8
0x05 = PG mem1 - holds all PG arches that sit at addr%8 + 1
0x06 = PG mem2 - holds all PG arches that sit at addr%8 + 2
0x07 = PG mem3 - holds all PG arches that sit at addr%8 + 3
0x08 = PG mem4 - holds all PG arches that sit at addr%8 + 4
0x09 = PG mem5 - holds all PG arches that sit at addr%8 + 5
0x0A = PG mem6 - holds all PG arches that sit at addr%8 + 6
0x0B = PG mem7 - holds all PG arches that sit at addr%8 + 7
0x0C = Protocol group memory
0x0D = TCAM action RAM
0x0E = Instruction memory
0x0F = Node cntx ID
0x10 = Marker group memory
0x11 = PTYPE TCAM key
0x12 = PTYPE TCAM action RAM
0x13 = No match PG spill buffer action
0x14 = No match PG spill buffer key
0x15 = No match PG mem0 - holds all PG arches that sit at addr%4
0x16 = No match PG mem1 - holds all PG arches that sit at addr%4

+ 1
0x17 = No match PG mem2 - holds all PG arches that sit at addr%4

+ 2
0x18 = No match PG mem3 - holds all PG arches that sit at addr%4

+ 3
0x19 = Profiles table
0x1A = Profile entity mapping table

RESERVED 28:26 0x0 RW N/A Reserved.

OPERATION_ID 31:29 000b RW UNDEFINED Operation ID
000b = WR
001b = RD
010b = Lookup for hit index (PG and no match PG)
011b = Lookup for free index (in PG and no match PG)
All other values are reserved.

To lookup PG, need to select the first memory of PG.
To lookup NM PG, need to select the first memory of NM PG.

613875-009 2117

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.51 GLGEN_ANA_CFG_WRDATA - GLGEN_ANA_CFG_WRDATA
(0x0020C108; RW)

Table’s configuration write data register.

13.2.2.1.52 GLGEN_ANA_CFG_RDDATA - GLGEN_ANA_CFG_RDDATA[n]
(0x0020C10C + 0x4*n, n=0...15; RO)

Table’s configuration read data registers.

13.2.2.1.53 GLGEN_ANA_CFG_LU_KEY - GLGEN_ANA_CFG_LU_KEY[n]
(0x0020C14C + 0x4*n, n=0...2; RW)

Key to lookup CSR.

13.2.2.1.54 GLGEN_ANA_CFG_HTBL_LU_RESULT -
GLGEN_ANA_CFG_HTBL_LU_RESULT (0x0020C158; RO)

Lookup result from hash table.

Field Bit(s) Init. Type CFG Policy Description

WR_DATA 31:0 0x0 RW UNDEFINED Write Data
32-bit write data.

Field Bit(s) Init. Type CFG Policy Description

RD_DATA 31:0 0x0 RO N/A Read Data
32-bit read data.

Field Bit(s) Init. Type CFG Policy Description

LU_KEY 31:0 0x0 RW UNDEFINED Lookup Key
KEY that is looked up when the lookup operations are selected.

Field Bit(s) Init. Type CFG Policy Description

HIT 0 0b RO N/A Hit
For “look up for hit index” operation, this bit indicates if key is found in
PG/NMPG tables.
For “lookup for free index” operation, this bit indicates if there is a free
entry in PG/NMPG tables.

PG_MEM_IDX 3:1 000b RO N/A PG Memory Index
For “look up for hit index” operation, this field indicates in which PG/
NMPG memory the search key is found.
For “lookup for free index” operation, this field indicates in which PG/
NMPG memory the free entry is found.

ADDR 12:4 0x0 RO N/A Address
For “look up for hit index” operation, this field indicates the memory
address of the search key.
For “lookup for free index” operation, this field indicates the memory
address of the free entry.

RESERVED 31:13 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2118 613875-009

13.2.2.1.55 GLGEN_ANA_CFG_SPLBUF_LU_RESULT -
GLGEN_ANA_CFG_SPLBUF_LU_RESULT (0x0020C15C; RO)

Lookup result for spill buffer.

13.2.2.1.56 GLGEN_ANA_P2P - GLGEN_ANA_P2P[n] (0x0020C160 +
0x4*n, n=0...15; RW)

Profile-to-profile mapping table.

13.2.2.1.57 GLGEN_ANA_PG0_HASHKEY -
GLGEN_ANA_PG0_HASHKEY[n] (0x0020C1A0 + 0x4*n,
n=0...3; RW)

Main parse graph unit0 hash key registers.

13.2.2.1.58 GLGEN_ANA_NMPG0_HASHKEY -
GLGEN_ANA_NMPG0_HASHKEY[n] (0x0020C1B0 + 0x4*n,
n=0...3; RW)

“No match” parse graph unit0 hash key registers.

Field Bit(s) Init. Type CFG Policy Description

HIT 0 0b RO N/A Hit
For “look up for hit index” operation, this bit indicates if key is found in
PG/NMPG spill buffer.
For “lookup for free index” operation, this bit indicates if there is a free
entry in PG/NMPG spill buffer.

RESERVED 3:1 000b RSV N/A Reserved.

ADDR 12:4 0x0 RO N/A Address
For “look up for hit index” operation, this field indicates the spill buffer
address of the search key.
For “lookup for free index” operation, this field indicates the spill buffer
address of the free entry.

RESERVED 31:13 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 31:0 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HASH_KEY 31:0 0x0 RW UNDEFINED Hash Key
Bits [32*(N+1)-1:32*N] of the hash key of the first part of the primary
parse graph.

Field Bit(s) Init. Type CFG Policy Description

HASH_KEY 31:0 0x0 RW UNDEFINED Hash Key
Bits [32*(N+1)-1:32*N] of the hash key of the first part of the “no
match” parse graph.

613875-009 2119

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.59 GLGEN_ANA_PG_KEYMASK - GLGEN_ANA_PG_KEYMASK[n]
(0x0020C1C0 + 0x4*n, n=0...3; RW)

Main parse graph key mask registers.

13.2.2.1.60 GLGEN_ANA_NMPG_KEYMASK -
GLGEN_ANA_NMPG_KEYMASK[n] (0x0020C1D0 + 0x4*n,
n=0...3; RW)

“No match” parse graph key mask registers.

13.2.2.1.61 GLGEN_ANA_LAST_PROT_ID -
GLGEN_ANA_LAST_PROT_ID[n] (0x0020C1E4 + 0x4*n,
n=0...5; RW)

CSR for last override feature.

13.2.2.1.62 GLGEN_ANA_PROFIL - GLGEN_ANA_PROFIL_CTRL
(0x0020C1FC; RW)

Number of profiles control register.

Field Bit(s) Init. Type CFG Policy Description

HASH_KEY 31:0 0x0 RW UNDEFINED Hash Key
Bits [32*(N+1)-1:32*N] of the key mask vector of the primary parse
graph.
When mask=1, the corresponding bit in the key is cleared. Effective key
= key & ~mask.

Field Bit(s) Init. Type CFG Policy Description

HASH_KEY 31:0 0x0 RW UNDEFINED Hash Key
Bits [32*(N+1)-1:32*N] of the key mask vector of the “no match” parse
graph.
When mask=1, the corresponding bit in the key is cleared. Effective key
= key & ~mask.

Field Bit(s) Init. Type CFG Policy Description

EN 0 0b RW UNDEFINED Enable
Enable this protocol to be “last” protocol.

PROT ID 8:1 0x0 RW UNDEFINED Protocol ID

RESERVED 31:9 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PROFILE_SELECT_MDID 4:0 0x0 RW UNDEFINED Profile Select MDID
Used for extracting the “profile select entity” from input
interfaces.
This field describes the MDID from which the profile
select entity is extracted.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2120 613875-009

13.2.2.1.63 GLGEN_ANA_OUT_OF_PKT - GLGEN_ANA_OUT_OF_PKT
(0x0020C200; RW)

“Header of out packet” error control register.

13.2.2.1.64 GLGEN_ANA_NO_HIT_PG_NM_PG -
GLGEN_ANA_NO_HIT_PG_NM_PG (0x0020C204; RW)

PROFILE_SELECT_MDSTART 8:5 0x0 RW UNDEFINED Profile Select MDID Start
The MDstart and MDlen fields define the “profile select
entity” location in the MDID as follows:

profile select entity = MDID[MDstart + MDlen -1 :
MDID_start]

PROFILE_SELECT_MD_LEN 13:9 0x0 RW UNDEFINED Profile Select MDID Length

NUM_CTRL_DOMAIN 15:14 00b RW UNDEFINED Number of Control Domains
Defines the control domain key width in the PTYPE
marker vector.

00b = 1 control domain (80 markers. No control
domain bitmap.)

01b = 2 control domains (78 markers + 2b one-hot
control domain bitmap).

10b = 4 control domains (76 markers + 4b one-hot
control domain bitmap).

11b = 8 control domains (72 markers + 8b one-hot
control domain bitmap).

DEF_PROF_ID 19:16 0x0 RW UNDEFINED Default Profile ID
This profile is considered when the SEL_DEF_PROF_ID
is set.

SEL_DEF_PROF_ID 20 0b RW UNDEFINED Select Default Profile ID
Select bit of the default Profile ID.

RESERVED 31:21 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

NPC 7:0 0xBF RW UNDEFINED NPC
Error exception handling PC.
Activated when NHO is advanced to a point outside packet after all
headers are stored in buffer.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

NPC 7:0 0xBF RW UNDEFINED NPC
Error exception handling PC.
Activated when there is no hit either in PG or in no match PG.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2121

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.65 GLGEN_ANA_ALU_ACCSS_OUT_OF_PKT -
GLGEN_ANA_ALU_ACCSS_OUT_OF_PKT (0x0020C208; RW)

13.2.2.1.66 GLGEN_ANA_INV_NODE_PTYPE -
GLGEN_ANA_INV_NODE_PTYPE (0x0020C210; RW)

13.2.2.1.67 GLGEN_ANA_INV_PTYPE_MARKER -
GLGEN_ANA_INV_PTYPE_MARKER (0x0020C218; RW)

13.2.2.1.68 GLGEN_ANA_ABORT_PTYPE - GLGEN_ANA_ABORT_PTYPE
(0x0020C21C; RW)

Field Bit(s) Init. Type CFG Policy Description

NPC 7:0 0xBF RW UNDEFINED NPC
Error exception handling PC.
Activated when ALU tries to access outside the last byte valid of the 256
bits of data available, or when PG does the same violation to build its
key.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

INV_NODE_PTYPE 10:0 0x0 RW UNDEFINED Invalid Node PTYPE
Invalid node PTYPE number.

RESERVED 31:11 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

INV_PTYPE_MARKER 6:0 0x7F RW UNDEFINED Invalid PTYPE Marker
Invalid PTYPE marker number.

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ABORT 9:0 0xFF RW UNDEFINED Abort
Abort PTYPE number reflected on output interface when malicious packet
is detected.

RESERVED 31:10 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2122 613875-009

13.2.2.1.69 GLGEN_ANA_ERR_CTRL - GLGEN_ANA_ERR_CTRL
(0x0020C220; RW)

Errors mask register.

13.2.2.1.70 GLGEN_ANA_TX_FLAG_MAP -
GLGEN_ANA_TX_FLAG_MAP[n] (0x0020D000 + 0x4*n,
n=0...63; RW)

Flags mapping register.

13.2.2.1.71 GLGEN_ANA_TX_DEF_PTYPE - GLGEN_ANA_TX_DEF_PTYPE
(0x0020D100; RW)

Default PTYPE (when there is no match in PTYPE TCAM and node PTYPE is invalid).

Field Bit(s) Init. Type CFG Policy Description

ERR_MASK_EN 31:0 0xFFFFFFBF RW UNDEFINED Error Mask Enable
Per error type enable bit.
When bit is cleared, error detection logic is not activated and
error is not reported.

Bit 0 = TCAM validity checks (for example: version field in
ipv6 != 6).

Bit 1 = HO is bigger pocket size.
Bit 2 = There is no match in parse graph.
Bit 3 = Illegal progress in parse graph (illegal leaf node).
Bit 4 = HO is bigger than 504B (max header size).
Bit 5 = Analyzer spent too many rounds on packet (number of

cycles > fixed configured value).
Bit 6 = Analyzer spent too many rounds on packet (number of

cycles > packet cycles for performance).
Bit 7 = ALU validity checks.
Bit 8 = Packet has than 16 packet protocols
Bit 9 = total_ip field not coherent to pkt_len field from

interface.
Bit 10 = ALU access outside the packet.
Bit 11 = No hit in PG and no match PG.

Field Bit(s) Init. Type CFG Policy Description

FLAG_EN 0 0b RW UNDEFINED Flag Enable
When set, Analyzer flag[N] should be exposed on flag EXT_FLAG_ID
on the Analyzer outputs.

EXT_FLAG_ID 6:1 0x0 RW UNDEFINED External Flag ID
CSR “i” maps the “i” external flag to EXT_FLAG_ID internal flag.
Valid when FLAG_EN bit is set.

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DEF_PTYPE 9:0 0x0 RW UNDEFINED Default PTYPE
Analyzer default PTYPE value.

RESERVED 31:10 0x0 RSV N/A Reserved.

613875-009 2123

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.72 GLGEN_ANA_TX_CFG_CTRL - GLGEN_ANA_TX_CFG_CTRL
(0x0020D104; RW)

Table’s configuration control register.

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 17:0 0c0 RW UNDEFINED Line Index
Target memory line.

TABLE_ID 25:18 0x0 RW UNDEFINED Table ID
Target table:

0x00 = TCAM key
0x01 = Xlate table (ALU)
0x02 = PG spill buffer action
0x03 = PG spill buffer key
0x04 = PG mem0 - Holds all PG arches that sit at addr%8
0x05 = PG mem1 - Holds all PG arches that sit at addr%8 + 1
0x06 = PG mem2 - Holds all PG arches that sit at addr%8 + 2
0x07 = PG mem3 - Holds all PG arches that sit at addr%8 + 3
0x08 = PG mem4 - Holds all PG arches that sit at addr%8 + 4
0x09 = PG mem5 - Holds all PG arches that sit at addr%8 + 5
0x0A = PG mem6 - Holds all PG arches that sit at addr%8 + 6
0x0B = PG mem7 - Holds all PG arches that sit at addr%8 + 7
0x0C = Protocol group memory
0x0D = TCAM action RAM
0x0E = Instruction memory
0x0F = Node cntx ID
0x10 = marker group memory
0x11 = PTYPE TCAM key
0x12 = PTYPE TCAM action RAM
0x13 = no match PG spill buffer action
0x14 = no match PG spill buffer key
0x15 = no match PG mem0- Holds all PG arches that sit at addr%4
0x16 = no match PG mem1 - Holds all PG arches that sit at addr%4

+ 1
0x17 = no match PG mem2 - Holds all PG arches that sit at addr%4

+ 2
0x18 = no match PG mem3 - Holds all PG arches that sit at addr%4

+ 3
0x19 = profiles table
0x1A = profile entity mapping table

RESERVED 28:26 000b RSV N/A Reserved.

OPERATION _ID 31:29 000b RW UNDEFINED Operation ID
000b = WR
001b = RD
010b = Lookup for hit index (PG and no match PG)
011b = Lookup for free index (in PG and no match PG)
All other values are reserved.

To lookup PG, need to select the first memory of PG.
To lookup NM PG, need to select the first memory of NM PG.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2124 613875-009

13.2.2.1.73 GLGEN_ANA_TX_CFG_WRDATA -
GLGEN_ANA_TX_CFG_WRDATA (0x0020D108; RW)

Table’s configuration write data register.

13.2.2.1.74 GLGEN_ANA_TX_CFG_RDDATA -
GLGEN_ANA_TX_CFG_RDDATA[n] (0x0020D10C + 0x4*n,
n=0...15; RO)

Table’s configuration read data registers.

13.2.2.1.75 GLGEN_ANA_TX_CFG_LU_KEY -
GLGEN_ANA_TX_CFG_LU_KEY[n] (0x0020D14C + 0x4*n,
n=0...2; RW)

Key to lookup CSR.

13.2.2.1.76 GLGEN_ANA_TX_CFG_HTBL_LU_RESULT -
GLGEN_ANA_TX_CFG_HTBL_LU_RESULT (0x0020D158; RO)

Lookup result from hash table.

Field Bit(s) Init. Type CFG Policy Description

WR_DATA 31:0 0x0 RW UNDEFINED Write Data
32-bit write data.

Field Bit(s) Init. Type CFG Policy Description

RD_DATA 31:0 0x0 RO N/A Read Data
32-bit read data.

Field Bit(s) Init. Type CFG Policy Description

LU_KEY 31:0 0x0 RW UNDEFINED Lookup Key
KEY that is looked up when the lookup operations are selected.

Field Bit(s) Init. Type CFG Policy Description

HIT 0 0b RO N/A Hit
For “look up for hit index” operation, this bit indicates if key is found in
PG/NMPG tables.
For “lookup for free index” operation, this bit indicates if there is a free
entry in PG/NMPG tables.

PG_MEM_IDX 3:1 000b RO N/A PG Memory Index
For “look up for hit index” operation, this field indicates in which PG/
NMPG memory the search key is found.
For “lookup for free index” operation, this field indicates in which PG/
NMPG memory the free entry is found.

ADDR 12:4 0x0 RO N/A Address
For “look up for hit index” operation, this field indicates the memory
address of the search key.
For “lookup for free index” operation, this field indicates the memory
address of the free entry.

RESERVED 31:13 0x0 RSV N/A Reserved.

613875-009 2125

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.77 GLGEN_ANA_TX_CFG_SPLBUF_LU_RESULT -
GLGEN_ANA_TX_CFG_SPLBUF_LU_RESULT (0x0020D15C;
RO)

Lookup result for spill buffer.

13.2.2.1.78 GLGEN_ANA_TX_P2P - GLGEN_ANA_TX_P2P[n]
(0x0020D160 + 0x4*n, n=0...15; RW)

Profile-to-profile mapping table.

13.2.2.1.79 GLGEN_ANA_TX_PG0_HASHKEY -
GLGEN_ANA_TX_PG0_HASHKEY[n] (0x0020D1A0 + 0x4*n,
n=0...3; RW)

Main parse graph unit0 hash key registers.

13.2.2.1.80 GLGEN_ANA_TX_NMPG0_HASHKEY -
GLGEN_ANA_TX_NMPG0_HASHKEY[n] (0x0020D1B0 +
0x4*n, n=0...3; RW)

“No match” parse graph unit0 hash key registers.

Field Bit(s) Init. Type CFG Policy Description

HIT 0 0b RO N/A Hit
For “look up for hit index” operation, this bit indicates if key is found in
PG/NMPG spill buffer.
For “lookup for free index” operation, this bit indicates if there is a free
entry in PG/NMPG spill buffer.

RESERVED 3:1 000b RSV N/A Reserved.

ADDR 12:4 0x0 RO N/A Address
For “look up for hit index” operation, this field indicates the spill buffer
address of the search key.
For “lookup for free index” operation, this field indicates the spill buffer
address of the free entry.

RESERVED 31:13 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 31:0 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HASH_KEY 31:0 0x0 RW UNDEFINED Hash Key
Bits [32*(N+1)-1:32*N] of the hash key of the first part of the primary
parse graph.

Field Bit(s) Init. Type CFG Policy Description

HASH_KEY 31:0 0x0 RW UNDEFINED Hash Key
Bits [32*(N+1)-1:32*N] of the hash key of the first part of the “no
match” parse graph.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2126 613875-009

13.2.2.1.81 GLGEN_ANA_TX_PG_KEYMASK -
GLGEN_ANA_TX_PG_KEYMASK[n] (0x0020D1C0 + 0x4*n,
n=0...3; RW)

Main parse graph key mask registers.

13.2.2.1.82 GLGEN_ANA_TX_NMPG_KEYMASK -
GLGEN_ANA_TX_NMPG_KEYMASK[n] (0x0020D1D0 +
0x4*n, n=0...3; RW)

“No match” parse graph key mask registers.

13.2.2.1.83 GLGEN_ANA_TX_PROFIL_CTRL -
GLGEN_ANA_TX_PROFIL_CTRL (0x0020D1FC; RW)

Number of profiles control register.

Field Bit(s) Init. Type CFG Policy Description

HASH_KEY 31:0 0x0 RW UNDEFINED Hash Key
Bits [32*(N+1)-1:32*N] of the key mask vector of the primary parse
graph.
When mask=1, the corresponding bit in the key is cleared. Effective key
= key & ~mask.

Field Bit(s) Init. Type CFG Policy Description

HASH_KEY 31:0 0x0 RW UNDEFINED Hash Key
Bits [32*(N+1)-1:32*N] of the key mask vector of the “no match” parse
graph.
When mask=1, the corresponding bit in the key is cleared. Effective key
= key & ~mask.

Field Bit(s) Init. Type CFG Policy Description

PROFILE_SELECT_MDID 4:0 0x0 RW UNDEFINED Profile Select MDID
Used for extracting the “profile select entity” from input
interfaces.
This field describes the MDID from which the profile
select entity is extracted.

PROFILE_SELECT_MDSTART 8:5 0x0 RW UNDEFINED Profile Select MDID Start
The MDstart and MDlen fields define the “profile select
entity” location in the MDID as follows:

profile select entity = MDID[MDstart + MDlen -1 :
MDID_start]

PROFILE_SELECT_MD_LEN 13:9 0x0 RW UNDEFINED Profile Select MDID Length

NUM_CTRL_DOMAIN 15:14 00b RW UNDEFINED Number of Control Domains
Defines the control domain key width in the PTYPE
marker vector.

00b = 1 control domain (80 markers. No control
domain bitmap.)

01b = 2 control domains (78 markers + 2b one-hot
control domain bitmap).

10b = 4 control domains (76 markers + 4b one-hot
control domain bitmap).

11b = 8 control domains (72 markers + 8b one-hot
control domain bitmap).

613875-009 2127

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.84 GLGEN_ANA_TX_NO_HIT_PG_NM_PG -
GLGEN_ANA_TX_NO_HIT_PG_NM_PG (0x0020D204; RW)

13.2.2.1.85 GLGEN_ANA_TX_ALU_ACCSS_OUT_OF_PKT -
GLGEN_ANA_TX_ALU_ACCSS_OUT_OF_PKT (0x0020D208;
RW)

13.2.2.1.86 GLGEN_ANA_TX_INV_NODE_PTYPE -
GLGEN_ANA_TX_INV_NODE_PTYPE (0x0020D210; RW)

13.2.2.1.87 GLGEN_ANA_TX_INV_PROT_ID -
GLGEN_ANA_TX_INV_PROT_ID (0x0020D214; RW)

DEF_PROF_ID 19:16 0x0 RW UNDEFINED Default Profile ID
This profile is considered when the SEL_DEF_PROF_ID
is set.

SEL_DEF_PROF_ID 20 0b RW UNDEFINED Select Default Profile ID
Select bit of the default Profile ID.

RESERVED 31:21 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

NPC 7:0 0xBF RW UNDEFINED NPC
Error exception handling PC.
Activated when there is no hit either in PG or in no match PG.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

NPC 7:0 0xBF RW UNDEFINED NPC
Error exception handling PC.
Activated when ALU tries to access outside the last byte valid of the 256b
of data available or when PG does the same violation to build its key.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

INV_NODE_PTYPE 10:0 0x0 RW UNDEFINED Invalid Node PTYPE
Invalid node PTYPE number.

RESERVED 31:11 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

INV_PROT_ID 7:0 0xFF RW UNDEFINED Invalid Protocol ID
Invalid protocol ID.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

2128 613875-009

13.2.2.1.88 GLGEN_ANA_TX_INV_PTYPE_MARKER -
GLGEN_ANA_TX_INV_PTYPE_MARKER (0x0020D218; RW)

13.2.2.1.89 GLGEN_ANA_TX_ABORT_PTYPE -
GLGEN_ANA_TX_ABORT_PTYPE (0x0020D21C; RW)

13.2.2.1.90 GLGEN_ANA_TX_ERR_CTRL - GLGEN_ANA_TX_ERR_CTRL
(0x0020D220; RW)

Errors mask register.

Field Bit(s) Init. Type CFG Policy Description

INV_PTYPE_MARKER 6:0 0x7F RW UNDEFINED Invalid PTYPE Marker
Invalid PTYPE marker number.

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ABORT 9:0 0xFF RW UNDEFINED Abort
Abort PTYPE number reflected on output interface when malicious packet
is detected.

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ERR_MASK_EN 31:0 0xFFFFFFBF RW UNDEFINED Error Mask Enable
Per error type enable bit.
When bit is cleared, error detection logic is not activated and
error is not reported.

Bit 0 = TCAM validity checks (for example: version field in
ipv6 != 6).

Bit 1 = HO is bigger pocket size.
Bit 2 = There is no match in parse graph.
Bit 3 = Illegal progress in parse graph (illegal leaf node).
Bit 4 = HO is bigger than 504B (max header size).
Bit 5 = Analyzer spent too many rounds on packet (number of

cycles > fixed configured value).
Bit 6 = Analyzer spent too many rounds on packet (number of

cycles > packet cycles for performance).
Bit 7 = ALU validity checks.
Bit 8 = Packet has than 16 packet protocols
Bit 9 = total_ip field not coherent to pkt_len field from

interface.
Bit 10 = ALU access outside the packet.
Bit 11 = No hit in PG and no match PG.

613875-009 2129

Intel® Ethernet Controller E810 Datasheet
Programming Interface - General Registers

13.2.2.1.91 GLGEN_ANA_TX_DFD_PACE_OUT -
GLGEN_ANA_TX_DFD_PACE_OUT (0x0020D4CC; RW)

DFD pacing.

Field Bit(s) Init. Type CFG Policy Description

PUSH 0 0b SC UNDEFINED Push
Pace the output of the analyzer.

RESERVED 31:1 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Internal Fuses Registers

2130 613875-009

13.2.2.2 PF - Internal Fuses Registers

13.2.2.2.1 SKU Fuses - GL_UFUSE_SOC (0x000A400C; RO)

Field Bit(s) Init. Type CFG Policy Description

PORT_MODE 1:0 00b RO N/A Port Mode
Bit 1:0 in fuse map in Pull Fuse message.

00b = Octal Port
01b = Quad Port
10b = Dual Port
11b = Single Port

BANDWIDTH 3:2 00b RO UNDEFINED Bandwidth
Bit 3:2 in fuse map in Pull Fuse message.
Maximum network speed:

00b = 200 Gb/s
01b = 100 Gb/s
10b = 50 Gb/s
11b = 25 Gb/s

PE_DISABLE 4 0b RO UNDEFINED PE Disable
Bit 4 in fuse map in Pull Fuse message.
Controls the enablement of the PE engine:

0b = PE enabled.
1b = PE disabled.

SWITCH_MODE 5 0b RO UNDEFINED Switch Mode
Bit 5 in fuse map in Pull Fuse message.
Switch mode enable:

0b = Switch mode enabled.
1b = Switch mode disabled.

CSR_PROTECTION_ENABLE 6 0b RO UNDEFINED CSR Protection Enable
Bit 6 in fuse map in Pull Fuse message.

0b = CSR Protection disabled.
1b = CSR Protection enabled.

RESERVED 8:7 0x0 RSV N/A Reserved.

BLOCK_BME_TO_FW 9 0b RO UNDEFINED Block BME Access to Firmware
Bit 9 in fuse map in Pull Fuse message.

0b = BME is writable by firmware.
1b = BME is not writable by firmware.

SOC_TYPE 10 0b RO UNDEFINED SoC Type
Bit 10 in fuse map in Pull Fuse message.

0b = ICX-D
1b = SNR

BTS_MODE 11 0b RO UNDEFINED BTS Mode
Bit 11 in fuse map in Pull Fuse message.

0b = BTS mode.
1b = Non-BTS mode.

RESERVED 31:12 0x0000F RSV N/A Reserved.

613875-009 2131

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

13.2.2.3 PF - PCIe Registers

This category contains registers for PCIe configuration and control.

13.2.2.3.1 PFPCIe Subsystem ID - PFPCI_SUBSYSID (0x0009D880;
RO)

13.2.2.3.2 PCIe Functions Configuration - PFPCI_FUNC (0x0009D980;
RO)

13.2.2.3.3 PCIe Function Status 1 - PFPCI_STATUS1 (0x0009DA00;
RO)

Field Bit(s) Init. Type CFG Policy Description

PF_SUBSYS_ID 15:0 0x0 RW UNDEFINED PF Subsystem ID
Subsystem ID for this PF.

VF_SUBSYS_ID 31:16 0x0 RW UNDEFINED VF Subsystem ID
Subsystem ID for VFs of this PF.

Field Bit(s) Init. Type CFG Policy Description

FUNC_DIS 0 1b RW UNDEFINED Function Disable
Defines if the PCI function is enabled from the NVM.
Exception: This bit is RO for PF0. It is always enabled and
cannot be disabled from the NVM.

0b = Enabled
1b = Disabled

Default:
• 0b for PF0.
• 1b for other functions.

ALLOW_FUNC_DIS 1 0b RW UNDEFINED Allow Function Disable
0b = Asserting PCI_DIS_N has no effect on this PCI

function.
1b = Asserting PCI_DIS_N disables this PCI function.

DIS_FUNC_ON_PORT_DIS 2 0b RW UNDEFINED Disable Function on Port Disable
Defines whether this PF is disabled when the DEV_DIS_N
pin is asserted.

0b = Asserting DEV_DIS_N has no effect on this PCI
function.

1b = Asserting DEV_DIS_N disables this PCI function.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FUNC_VALID 0 0b RO N/A Function Valid
0b = Function is disabled.
1b = Function is enabled.

Note: This bit is valid to firmware even when the function is disabled.

RESERVED 31:1 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

2132 613875-009

13.2.2.3.4 PCIe PM - PFPCI_PM (0x0009DA80; RW)

13.2.2.3.5 PCIe Storage Class - PFPCI_CLASS (0x0009DB00; RO)

Contains per-PF configuration loaded from NVM.

13.2.2.3.6 PCIe PF Device ID - PFPCI_DEVID (0x0009DE00; RO)

Contains the per-PF Device ID.

13.2.2.3.7 Clock Gating Events - GL_CLKGATE_EVENTS (0x0009DE70;
RO)

Field Bit(s) Init. Type CFG Policy Description

PME_EN 0 0b RW UNDEFINED PME Enable
This read/write bit is used by the software device driver to generate a
PME event without writing to the Power Management Control/Status
Register (PMCSR) in the PCIe configuration space.
Note: The internal PME Enablement is a logic OR function of the

following: PME_EN flag in the PMCSR, PME_EN flag in the
PFPCI_PM CSR, and APME flag in the PFPM_APM CSR.

The bit is reset on STRST (Sticky Reset): bit is reset only on power-on
reset (LAN_PWR_GOOD). When AUX_PWR = 0b, this bit is also reset
when de-asserting PE_RST_N.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

STORAGE_CLASS 0 0b RW UNDEFINED Storage Class
0b = The class code of this function is set to 0x020000 (LAN).
1b = The class code of this function is set to 0x010000 (SCSI).

RESERVED 1 0b RSV N/A Reserved.

PF_IS_LAN 2 1b RW UNDEFINED PF is LAN
0b = SAN function.
1b = LAN function.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PF_DEV_ID 15:0 0x374C RW UNDEFINED PF Device ID
Contains the device ID for this PF.

VF_DEV_ID 31:16 0x374D RW UNDEFINED VF Device ID
Contains the device ID for the VFs of this PF.

Field Bit(s) Init. Type CFG Policy Description

PRIMARY_CLKGATE_EVENTS 15:0 0x0 RO N/A Primary Clock Gating Events
P-IOSF Clock gating aliveness indication (increments
every clock gating event - wraps around).

SIDEBAND_CLKGATE_EVENTS 31:16 0x0 RO N/A Sideband Clock Gating Events
SB-IOSF Clock gating aliveness indication (increments
every clock gating event - wraps around).

613875-009 2133

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

13.2.2.3.8 PCI BAR Control - GLPCI_LBARCTRL (0x0009DE74; RO)

13.2.2.3.9 PCIe Power Data Register - GLPCI_PWRDATA (0x0009DE7C;
RO)

Field Bit(s) Init. Type CFG Policy Description

PREFBAR 0 1b RW UNDEFINED Prefetchable BAR
Prefetchable bit indication in the memory BAR and MSI-X BAR
(should be set when 64-bit BARs are used).

0b = BARs are marked as non prefetchable.
1b = BARs are marked as prefetchable.

RESERVED 1 0b RSV N/A Reserved.

PAGES_SPACE_EN_PF 2 0b RW UNDEFINED Pages Space Enable PF
When set, the PF switch mode memory space is accessible
through the memory BAR

FLASH_EXPOSE 3 1b RW UNDEFINED Flash Exposed
When set, the Flash memory is accessible through the
memory BAR.

PE_DB_SIZE 5:4 00b RW UNDEFINED PE Doorbell Size
Determines the size of the memory space allocated to the
protocol engine doorbells in the PF BARs:

00b = Memory space is not allocated for PE doorbells.
01b = A 64 KB area is allocated.
10b = A (8 MB + 64 KB) area is allocated.
11b = Reserved.

RESERVED 8:6 111b RSV N/A Reserved.

PAGES_SPACE_EN_VF 9 0b RW UNDEFINED Pages Space Enable PF
When set, the VF switch mode memory space is accessible
through the memory BAR

RESERVED 10 0b RSV N/A Reserved.

EXROM_SIZE 13:11 011b RW UNDEFINED Expansion ROM Size
This field indicates the size of the Expansion ROM BAR as = 64
KB x (2 ** EXROM_SIZE).

000b = 64 KB size.
...
111b = 8 MB size.

Default value is 512 KB.

VF_PE_DB_SIZE 15:14 00b RW UNDEFINED VF PE Doorbell Size
Determines the size of the memory space allocated to the
protocol engine doorbells in the VF BARs:

00b = Memory Space is not allocated for PE doorbells.
01b = An 8 KB area is allocated right after the legacy space

(0x10000 ->0x11FFF).
10b = A 64 KB area is allocated (0x10000 ->0x20000).
11b = Reserved.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

D0_POWER 7:0 0x0 RW UNDEFINED D0 Power
The value in this field is reflected in the PCI Power Management Data
register of the LAN functions for D0 power consumption and
dissipation (Data_Select = 0 or 4).

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

2134 613875-009

13.2.2.3.10 PCIe Serial Number MAC Address Low - GLPCI_SERL
(0x0009DE80; RO)

13.2.2.3.11 PCIe Serial Number MAC Address High - GLPCI_SERH
(0x0009DE84; RO)

13.2.2.3.12 PCIe Capabilities Control - GLPCI_CAPCTRL (0x0009DE88;
RW)

Determines PCIe capabilities supported by the device and that software is allowed to enable or disable.

COMM_POWER 15:8 0x0 RW UNDEFINED Common Power
The value in this field is reflected in the PCI Power Management Data
register of function 0 when the Data_Select field is set to 8 (common
function).

D3_POWER 23:16 0x0 RW UNDEFINED D3 Power
The value in this field is reflected in the PCI Power Management Data
register of the LAN functions for D3 power consumption and
dissipation (Data_Select = 3 or 7).

DATA_SCALE 25:24 00b RW UNDEFINED Data Scale
The value in this field reflects the Data_Scale field in the PCI PMCSR
register.

RESERVED 31:26 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SER_NUM_L 31:0 0x0 RW UNDEFINED Serial Number Low
The low DWord of the Ethernet MAC Address used to generate the PCIe
serial number.
The register contents is loaded from NVM. The location in NVM is
pointed by the fourth item in the Auto-Generated Pointers Module. It is
a per-device manufacturing value that represents the whole device. It
can be set identical to the concatenated [PFPM_SAL1|PFPM_SAL0]
words of the EMP Settings Module.

Field Bit(s) Init. Type CFG Policy Description

SER_NUM_H 15:0 0x0 RW UNDEFINED Serial Number High
The high word of the Ethernet MAC Address used to generate the PCIe
serial number.
The register contents is loaded from NVM. The location in NVM is
pointed by the fifth item in the Auto-Generated Pointers Module. It is a
per device manufacturing value which represents the whole device. It
can be set identical to the concatenated [PFPM_SAH1|PFPM_SAH0]
words of the EMP Settings Module.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VPD_EN 0 0b RW UNDEFINED VPD Enable
0b = The PCIe VPD capability is not present and is not exposed.
1b = The PCIe VPD capability is present and exposed.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2135

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

13.2.2.3.13 PCIe Capabilities Support - GLPCI_CAPSUP (0x0009DE8C;
RO)

Determines PCIe capabilities supported by the device.

13.2.2.3.14 PCIe Link Capabilities - GLPCI_LINKCAP (0x0009DE90; RO)

Field Bit(s) Init. Type CFG Policy Description

PCIE_VER 0 1b RW UNDEFINED PCIe Version
Determines the PCIe capability version.

0b = Capability version 0x1.
1b = Capability version 0x2.

RESERVED 1 0b RSV N/A Reserved.

LTR_EN 2 0b RW UNDEFINED LTR Enable
1b = Indicates support for PCIe Latency Tolerance Reporting

(LTR) capability.
This bit must be set to 0b (LTR is not supported by this product).

TPH_EN 3 1b RW UNDEFINED TPH Enable
1b = Indicates support for the PCIe TPH requester capability.

ARI_EN 4 1b RW UNDEFINED ARI Enable
1b = Indicates support for PCIe ARI capability.

IOV_EN 5 1b RW UNDEFINED IOV Enable
1b = Indicates support for PCIe SR-IOV capability.

ACS_EN 6 1b RW UNDEFINED ACS Enable
1b = Indicates support for PCIe ACS capability.

SEC_EN 7 1b RW UNDEFINED Secondary Enable
1b = Indicates support for the secondary PCIe extended

capability.

PASID_EN 8 0b RW UNDEFINED PASID Enable
1b = Indicates support for PCIe PASID capability.

DLFE_EN 9 0b RW UNDEFINED Data Link Feature Enable
1b = Indicates support for PCIe Data Link Feature capability.

GEN4_EXT_EN 10 0b RW UNDEFINED Gen4 Extended Enable
1b = Indicates support for PCIe physical layer 13.0 GT/s

extended capability.

GEN4_MARG_EN 11 0b RW UNDEFINED Gen4 Margining Enable
1b = Indicates support for PCIe lane margining at receiver

capability.

RESERVED 15:12 0x0 RSV N/A Reserved.

ECRC_GEN_EN 16 0b RW UNDEFINED ECRC Generation Enable
Loaded into the ECRC. Generation capable bit of the PCIe
configuration registers.

ECRC_CHK_EN 17 0b RW UNDEFINED ECRC Check Enable
Loaded into the ECRC Check capable bit of the PCIe configuration
registers.

IDO_EN 18 0b RW UNDEFINED IDO Enable
Enables ID-based ordering (IDO).

MSI_MASK 19 1b RW UNDEFINED MSI Mask
MSI per-vector masking setting. This bit is loaded to the masking
bit (bit 8) in the message control of the MSI configuration
capability structure.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

2136 613875-009

Determines PCIe link capabilities supported by the device.

13.2.2.3.15 PCIe PM Support - GLPCI_PMSUP (0x0009DE94; RO)

This register contains parameters that define PCIe power management support.

CSR_CONF_EN 20 1b RW UNDEFINED CSR Configuration Enable
Enables access to CSRs via the PCI configuration space. See the
section on Configuration Access to Internal Registers and
Memories.

WAKUP_EN 21 0b RW UNDEFINED Wake-Up Enable
1b = Wake-up in D3 is exposed in PME_Support field in Power

Management Capabilities register

RESERVED 29:22 0x0 RSV N/A Reserved.

LOAD_SUBSYS_ID 30 0b RW UNDEFINED Load Subsystem IDs
1b = Indicates that the device loads its PCIe sub-system ID and

sub-system vendor ID from the NVM.

LOAD_DEV_ID 31 0b RW UNDEFINED Load Device ID
1b = Indicates that the device loads its PCI device IDs from the

NVM.

Field Bit(s) Init. Type CFG Policy Description

LINK_SPEEDS_VECTOR 5:0 0x0 RW UNDEFINED Supported Link Speeds Vector
Loaded to the Link Capabilities 2 register in the PCIe
capability.

Bit 0 = 5.0 GT/s
Bit 1 = 8.0 GT/s
Bits 5:2 = Reserved

Note: 2.5 GT/s is always supported.
Must be zero.

RESERVED 8:6 100b RSV N/A Reserved.

MAX_LINK_WIDTH 12:9 0x7 RW UNDEFINED Max Link Width
Loaded to the PCIe Link Capabilities register.

0x1 = Limit max link width to x1.
0x3 = Limit max link width to x4.
0x4 = Limit max link width to x8.
0x7 = Do not limit max link width. Negotiate to the max

width supported by the link.
All other values are reserved.

Must be 0001b

RESERVED 31:13 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 7:0 0x97 RSV N/A Reserved.

L0S_ACC_LAT 10:8 011b RW UNDEFINED L0s Acceptable Latency
Loaded to the Endpoint L0s Acceptable Latency field in the PCIe
Device Capabilities register.

L1_ACC_LAT 13:11 110b RW UNDEFINED L1s Acceptable Latency
Loaded to the Endpoint L1 Acceptable Latency field in the PCIe Device
Capabilities register.

RESERVED 14 1b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2137

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

13.2.2.3.16 PCIe Revision ID - GLPCI_REVID (0x0009DE98; RO)

13.2.2.3.17 PCIe VF Capabilities Support - GLPCI_VFSUP (0x0009DE9C;
RO)

13.2.2.3.18 PCIe Global Config - GLPCI_CNF (0x0009DEA0; RO)

13.2.2.3.19 PCIe Vendor ID - GLPCI_VENDORID (0x0009DEC8; RO)

OBFF_SUP 16:15 00b RW UNDEFINED OBFF Supported
Loaded to the OBFF Supported field in the PCIe Device Capabilities 2
register.
Must be set to 0b in the NVM (OBFF is not supported).

RESERVED 31:17 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

NVM_REVID 7:0 0x0 RW UNDEFINED NVM Revision ID
Value of the Rev ID loaded from the NVM. The actual value reflected in
the config space is the XOR of this field with the
GLPCI_DREVID.DEFAULT_REVID value.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VF_PREFETCH 0 1b RW UNDEFINED VF Prefetchable
0b = IOV memory BAR and MSI-X BAR are declared as

non-prefetchable.
1b = IOV memory BAR and MSI-X BAR are declared as prefetchable.

RESERVED 31:1 0x1 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 1:0 00b RSV N/A Reserved.

WAKE_PIN_EN 2 0b RW UNDEFINED WAKE Pin Enable
When set to 1b, enables the use of the WAKE pin for a
PME event in all power states.

MSIX_ECC_BLOCK_DISABLE 3 0b RW UNDEFINED MSI-X ECC Block Disable
When set, MSI-X vector tables is not blocked after an
ECC error event.
This bit can also be used to release the MSI-X table as
part of an ECC recovery flow by setting it and then
clearing it again.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VENDORID 15:0 0x8086 RW UNDEFINED Vendor ID
Contains the Vendor ID exposed in offset 0x0 in the config space of all
functions. A value of 0xFFFF is ignored.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

2138 613875-009

13.2.2.3.20 PCIe Subsystem ID - GLPCI_SUBVENID (0x0009DEE8; RO)

13.2.2.3.21 PCIe PF Configuration - PFPCI_CNF (0x0009DF00; RO)

Contains per-PF configuration loaded from NVM.

13.2.2.3.22 Posted Queue IOSF FIFO Status - PQ_FIFO_STATUS
(0x0009DF40; RO)

Field Bit(s) Init. Type CFG Policy Description

SUB_VEN_ID 15:0 0x8086 RW UNDEFINED Subsystem Vendor ID
Loaded to the PCI configuration Subsystem Vendor ID register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 1:0 00b RSV N/A Reserved.

MSI_EN 2 1b RW UNDEFINED MSI Enable
Enables the MSI capability structure for this PCI function.

0b = MSI is disabled.
1b = MSI is enabled.

EXROM_DIS 3 0b RW UNDEFINED Expansion ROM Disable
0b = The Expansion ROM BAR in the PCI configuration space is

enabled.
1b = The Expansion ROM BAR in the PCI configuration space is

disabled.

IO_BAR 4 0b RW UNDEFINED I/O BAR Support
0b = I/O BAR is not supported.
1b = I/O BAR is supported.

INT_PIN 6:5 00b RW UNDEFINED Interrupt Pin
Controls the value advertised in the Interrupt Pin field of the PCI
configuration header for this function.

00b = INTA#
01b = INTB#
10b = INTC#
11b = INTD#

The value advertised in the PCI configuration header is the value loaded
from NVM + 1.

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PQ_FIFO_COUNT 30:0 0x0 RO N/A Posted Queue FIFO Count
Counter of PFB POSTED FIFO. Increases by 1 when the FIFO round
is completed.

PQ_FIFO_EMPTY 31 1b RO UNDEFINED Posted Queue FIFO Empty
PFB POSTED FIFO is empty.

613875-009 2139

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

13.2.2.3.23 Push PE IF Status - GLPCI_PUSH_PE_IF_TO_STATUS
(0x0009DF44; RW1C)

13.2.2.3.24 PCIe VF Flush Done - PFPCI_VF_FLUSH_DONE[VF]
(0x0009E000 + 0x4*VF, VF=0...255; RO)

13.2.2.3.25 PCIe PF Flush Done - PFPCI_PF_FLUSH_DONE
(0x0009E400; RO)

13.2.2.3.26 PCIe VM Flush Done - PFPCI_VM_FLUSH_DONE
(0x0009E480; RO)

Field Bit(s) Init. Type CFG Policy Description

GLPCI_PUSH_PE_IF_TO_STATUS 0 0b RW1C UNDEFINED Push PE Interface Timeout Status
Once time-out is reached, the PCIe Push logic
silently drains the push buffer in PCIe.
Exiting this mechanism is done by CORER or writing
1b.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLUSH_DONE 0 0b RO N/A Flush Done
VF transaction pending bit.
Reset by function level reset, and set when the pipe is clean.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLUSH_DONE 0 0b RO N/A Flush Done
PF transaction pending bit.
Reset by function level reset, and set when the pipe is clean.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLUSH_DONE 0 0b RO N/A Flush Done
VM transaction pending bit.
Reset by function level reset, and set when the pipe is clean.

RESERVED 31:1 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

2140 613875-009

13.2.2.3.27 PCIe Configuration Indirect Access Data - PF_PCI_CIAD
(0x0009E500; RW)

13.2.2.3.28 PF Configuration Indirect Access Address - PF_PCI_CIAA
(0x0009E580; RW)

13.2.2.3.29 PCIe VM Pending Index - PFPCI_VMINDEX (0x0009E600;
RW)

13.2.2.3.30 PCIe VM Pending Status - PFPCI_VMPEND (0x0009E800;
RO)

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
Used to access the configuration registers of the VF. It operates together
with the PF_PCI_CIAA register as follows:
• Reading this register returns the content of the register at offset =

ADDRESS in the configuration space of VF index = VF_NUM (the
ADDRESS and VF_NUM parameters are defined by the PF_PCI_CIAA
register).

• Writing to this register is gated by the CONFIG_ACCESS_ENABLE
flag in the GL_PCI_DBGCTL register. If enabled, the value written to
this register is programmed to the register at offset = ADDRESS in
the configuration space of VF index = VF_NUM.

Field Bit(s) Init. Type CFG Policy Description

ADDRESS 11:0 0x0 RW UNDEFINED Address
The configuration space address to access.

VF_NUM 19:12 0x0 RW UNDEFINED VF Number
Defines the VF number to access. The VF number is the absolute VF
number in the device.
Note: The PF can access any VF (its own VFs as well as other VFs).

RESERVED 31:20 0x0 RSV N/A Reserved. Ignore on read. Write 0b.

Field Bit(s) Init. Type CFG Policy Description

VMINDEX 9:0 0x0 RW UNDEFINED VM Index
Software sets the VMINDEX that its transaction pending flag should be
reflected in the PFPCI_VMPEND register. The VM index is an absolute
index in the range of 0 through 767. It can only be set by software to
VMs that the PF owns and only to VMs that are not assigned to a VF.

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PENDING 0 0b RO N/A PCIe Transaction Pending Status
The reported VM is controlled by the VMINDEX field in the
PFPCI_VMINDEX register. This flag is set to 1b as long as there is at least
one PCIe transaction pending for its completion.

RESERVED 31:1 0x0 RSV N/A Reserved.

613875-009 2141

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

13.2.2.3.31 Function Requester ID Information Register - PF_FUNC_RID
(0x0009E880; RO)

13.2.2.3.32 Function Active and Power State - PFPCI_FACTPS
(0x0009E900; RO)

This register provides different indications about the function status.

13.2.2.3.33 PCIe Statistic Control Register #5...#8 -
GLPCI_GSCL_5_8[n] (0x0009E954 + 0x4*n, n=0...3; RW)

These registers control the operation of the leaky bucket counter n.

Field Bit(s) Init. Type CFG Policy Description

FUNCTION_NUMBER 2:0 000b RO N/A Function Number
Function number assigned to the function based on BIOS/OS
enumeration.

DEVICE_NUMBER 7:3 0x0 RO N/A Device Number
No-ARI mode:

Device number assigned to the function based on BIOS/OS
enumeration.

ARI mode:
Upper 5 bits of the 8-bit function number.

BUS_NUMBER 15:8 0x0 RO N/A Bus Number
Bus number assigned to the function based on BIOS/OS
enumeration.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FUNC_POWER_STATE 1:0 00b RO N/A Function Power State
Power state indication of the function.

00b = Dr
01b = D3
10b = D0a
11b = D0u

RESERVED 2 0b RSV N/A Reserved.

FUNC_AUX_EN 3 0b RO N/A Function Aux Enable
Reflects the Auxiliary Power PM Enable bit from the PCI
configuration space.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

LBC_THRESHOLD_N 15:0 0x0 RW UNDEFINED Leaky Bucket Counter Threshold n
Threshold for the leaky bucket counter n.

LBC_TIMER_N 31:16 0x0 RW UNDEFINED Leaky Bucket Counter Timer n
Time period between decrementing the value in leaky bucket
Counter n.
The time period is defined in μs units.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

2142 613875-009

13.2.2.3.34 PCIe Byte Counter High - GLPCI_BYTCTH_P (0x0009E970;
RO)

A byte counter used by the PCIe performance counters.

13.2.2.3.35 PCIe Byte Counter Low - GLPCI_BYTCTL_P (0x0009E994;
RO)

A byte counter used by the PCIe performance counters.

13.2.2.3.36 PCIe Statistic Control Registers #2 - GLPCI_GSCL_2
(0x0009E998; RW)

This register defines the events counted by the performance counters.

13.2.2.3.37 PCIe Statistic Counter Registers #0...#3 -
GLPCI_GSCN_0_3[n] (0x0009E99C + 0x4*n, n=0...3; RO)

These registers contain the performance counters 0-3.

Field Bit(s) Init. Type CFG Policy Description

PCI_COUNT_BW_BCT 31:0 0x0 RO N/A PCIe Byte Counter High
Contains the high double-word of a 64-bit counter that counts
PCIe payload bytes.
This register gets stuck at its maximum value of 0xFF...F.

Field Bit(s) Init. Type CFG Policy Description

PCI_COUNT_BW_BCT 31:0 0x0 RO N/A PCIe Byte Counter Low
Contains the low double-word of a 64-bit counter that counts
PCIe payload bytes.
This register gets stuck at its maximum value of 0xFF...F.

Field Bit(s) Init. Type CFG Policy Description

GIO_EVENT_NUM_0 7:0 0x0 RW UNDEFINED GIO Event Number 0
Event number that counter 0 counts (GSCN_0).

GIO_EVENT_NUM_1 15:8 0x0 RW UNDEFINED GIO Event Number 1
Event number that counter 1 counts (GSCN_1).

GIO_EVENT_NUM_2 23:16 0x0 RW UNDEFINED GIO Event Number 2
Event number that counter 2 counts (GSCN_2).

GIO_EVENT_NUM_3 31:24 0x0 RW UNDEFINED GIO Event Number 3
Event number that counter 3 counts (GSCN_3).

Field Bit(s) Init. Type CFG Policy Description

EVENT_COUNTER 31:0 0x0 RO N/A Event Counter
A 32-bit event counter. See the section on Performance and
Statistics Counters.
These registers are stuck at their maximum value of 0xFF...F.

613875-009 2143

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

13.2.2.3.38 PCIe Default Revision ID - GLPCI_DREVID (0x0009E9AC;
RO)

13.2.2.3.39 PCIe Packet Counter - GLPCI_PKTCT_P (0x0009E9B0; RO)

A packet counter used by the PCIe performance counters.

13.2.2.3.40 PCIe Statistic Control Register #1 - GLPCI_GSCL_1_P
(0x0009E9B4; RW)

This register controls the operation of the PCIe performance counters.

Field Bit(s) Init. Type CFG Policy Description

DEFAULT_REVID 7:0 0x0 RO N/A Default Revision ID
Mirroring of default Rev ID prior to an NVM load.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PCI_COUNT_BW_PCT 31:0 0x0 RO N/A PCIe Packet Counter
A 32-bit counter that counts PCIe packets.
This register gets stuck at its maximum value of 0xFF...F.

Field Bit(s) Init. Type CFG Policy Description

GIO_COUNT_EN_0 0 0b RW UNDEFINED GIO Counter Enable 0
Enables PCIe statistic counter number 0.

GIO_COUNT_EN_1 1 0b RW UNDEFINED GIO Counter Enable 1
Enables PCIe statistic counter number 1.

GIO_COUNT_EN_2 2 0b RW UNDEFINED GIO Counter Enable 2
Enables PCIe statistic counter number 2.

GIO_COUNT_EN_3 3 0b RW UNDEFINED GIO Counter Enable 3
Enables PCIe statistic counter number 3.

LBC_ENABLE_0 4 0b RW UNDEFINED Leaky Bucket Counter Enable 0
0b = Leaky bucket mode is disabled and the counter is

incremented by one for each event.
1b = Statistics counter 0 operates in leaky bucket mode.

LBC_ENABLE_1 5 0b RW UNDEFINED Leaky Bucket Counter Enable 1
0b = Leaky bucket mode is disabled and the counter is

incremented by one for each event.
1b = Statistics counter 1 operates in leaky bucket mode.

LBC_ENABLE_2 6 0b RW UNDEFINED Leaky Bucket Counter Enable 2
0b = Leaky bucket mode is disabled and the counter is

incremented by one for each event.
1b = Statistics counter 2 operates in leaky bucket mode.

LBC_ENABLE_3 7 0b RW UNDEFINED Leaky Bucket Counter Enable 3
0b = Leaky bucket mode is disabled and the counter is

incremented by one for each event.
1b = Statistics counter 3 operates in leaky bucket mode.

RESERVED 27:8 0x0 RSV N/A Reserved.

GIO_64_BIT_EN 28 0b RW UNDEFINED GIO 64-bit Enable
Enables two 64-bit counters instead of four 32-bit counters.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

2144 613875-009

13.2.2.3.41 PCIe Global Config 2 - GLPCI_CNF2 (0x000BE004; RO)

This register contains global status fields of PCIe configuration.

13.2.2.3.42 PCIe Upper Address - GLPCI_UPADD (0x000BE0D4; RW)

This register is used to block PCIe master accesses above some address. See Section 3.1.5.7, “Blocking
on Upper Address”.

13.2.2.3.43 PCIe NPQ Config - GLPCI_NPQ_CFG (0x000BFD80; RW)

This register controls some parameters of NPQ.

GIO_COUNT_RESET 29 0b RW1S DYNAMIC GIO Counters Reset
Reset indication of PCIe statistic counters.
Reading this bit returns a 0b.

GIO_COUNT_STOP 30 0b RW1S DYNAMIC GIO Counters Stop
Stop indication of PCIe statistic counters.
Reading this bit returns a 0b.

GIO_COUNT_START 31 0b RW1S DYNAMIC GIO Counters Start
Start indication of PCIe statistic counters.
Reading this bit returns a 0b.

Field Bit(s) Init. Type CFG Policy Description

RO_DIS 0 0b RW UNDEFINED Relaxed Ordering Disable
0b = Relaxed ordering is specified per request type.
1b = The device does not request any relaxed ordering

transactions.

CACHELINE_SIZE 1 0b RW UNDEFINED Cache Line Size
Determines the system cache line size.

0b = 64 bytes
1b = 128 bytes

This field is loaded from the NVM.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 0 0b RSV N/A Reserved.

ADDRESS 31:1 0x0 RW UNDEFINED Address
Bits [31:1] correspond to bits [63:33] in the PCIe address space,
respectively.

Field Bit(s) Init. Type CFG Policy Description

EXTEND_TO 0 0b RW UNDEFINED Extend Timeout
Extends timeout in the permitted range.

0b = Max
1b = Min

SMALL_TO 1 0b RW UNDEFINED Small Timeout
Reduce timeout value for simulation

Field Bit(s) Init. Type CFG Policy Description

613875-009 2145

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

13.2.2.3.44 PCIe NPQ Watermark of Pipe Monitor -
GLPCI_WATMK_CLNT_PIPEMON (0x000BFD90; RO)

This register reports the current value of pipe monitor in NPQ.

13.2.2.3.45 PCIe Packet Counter - GLPCI_PKTCT_NP_C (0x000BFD9C;
RO)

A packet counter used by the PCIe performance counters.

13.2.2.3.46 PCIe Packet Counter - GLPCI_LATCT_NP_C (0x000BFDA0;
RO)

A packet counter used by the PCIe performance counters.

13.2.2.3.47 PCIe Statistic Control Register #1 - GLPCI_GSCL_1_NP_C
(0x000BFDA4; RW)

This register controls the operation of the PCIe performance counters.

WEIGHT_AVG 5:2 0x2 RW UNDEFINED Weight Average
Controls the weight of the average filter for average round trip
calculation.

NPQ_SPARE 15:6 0x0 RW UNDEFINED NPQ Spare Bits
Spare bits.

NPQ_ERR_STAT 19:16 0x0 RO N/A NPQ Error Status

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DATA_LINES 15:0 0x4D9 RO N/A Data Lines
Amount of data lines available.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PCI_COUNT_BW_PCT 31:0 0x0 RO N/A PCIe Packet Counter
A 32-bit counter that counts PCIe packets.
This register gets stuck at its maximum value of 0xFF...F.

Field Bit(s) Init. Type CFG Policy Description

PCI_LATENCY_COUNT 31:0 0x0 RO N/A PCIe Latency Counter
When GPLCI_GSCL_0.cfg_rt_event = 0, maximal round trip.
When GLPCI_GSCL_0.cfg_rt_event = 1, minimal round trip.
When GLPCI_GSCL_0.cfg_rt_event = 2, average round trip.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 7:0 0x0 RSV N/A Reserved.

RT_MODE 8 0b RW UNDEFINED RT Mode

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - PCIe Registers

2146 613875-009

13.2.2.3.48 PCIe Byte Counter High - GLPCI_BYTCTH_NP_C
(0x000BFDA8; RO)

A byte counter used by the PCIe performance counters.

13.2.2.3.49 PCIe Byte Counter Low - GLPCI_BYTCTL_NP_C
(0x000BFDAC; RO)

A byte counter used by the PCIe performance counters.

RT_EVENT 13:9 0x0 RW UNDEFINED RT Event
0x0 = Max
0x1 = Min
0x2 = Average

RESERVED 28:14 0x0 RSV N/A Reserved.

GIO_COUNT_RESET 29 0b RW1S DYNAMIC GIO Count Reset
Reset indication of PCIe statistic counters.
Reading this bit returns a 0b.

GIO_COUNT_STOP 30 0b RW1S DYNAMIC GIO Count Stop
Stop indication of PCIe statistic counters.
Reading this bit returns a 0b.

GIO_COUNT_START 31 0b RW1S DYNAMIC GIO Count Start
Start indication of PCIe statistic counters.
Reading this bit returns a 0b.

Field Bit(s) Init. Type CFG Policy Description

PCI_COUNT_BW_BCT 31:0 0x0 RO N/A PCIe Byte Counter High
Contains the high double word of a 64-bit counter that counts
PCIe payload bytes.
This register gets stuck at its maximum value of 0xFF...F.

Field Bit(s) Init. Type CFG Policy Description

PCI_COUNT_BW_BCT 31:0 0x0 RO N/A PCIe Byte Counter Low
Contains the low double word of a 64-bit counter that counts
PCIe payload bytes.
This register gets stuck at its maximum value of 0xFF...F.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2147

Intel® Ethernet Controller E810 Datasheet
Programming Interface - MAC Registers

13.2.2.4 PF - MAC Registers

13.2.2.4.1 HSEC CONTROL Receive PFC ENABLE -
PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x001E3180; RO)

13.2.2.4.2 HSEC CONTROL Transmit PAUSE_ENABLE -
PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE (0x001E31A0; RO)

13.2.2.4.3 HSEC CONTROL Receive ENABLE_GCP -
PRTMAC_HSEC_CTL_RX_ENABLE_GCP (0x001E31C0; RO)

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_PAUSE_
ENABLE

8:0 0x0 RW UNDEFINED Rx Pause Enable
Rx priority flow control enable.
This field is used to enable priority flow control per priority.
When Bit[x] is set to 1b, PFC processing is enabled for
priority-x
Bit[8] is used to enable 802.3x flow control.
Note: Priority flow control can be enabled only when the

receive packet buffer of the port is configured for
DCB mode.

RESERVED 31:9 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_TX_PAUSE_
ENABLE

8:0 0x0 RW UNDEFINED Tx Pause Enable
Tx priority flow control enable.
This field is used to enable priority flow control per priority.
When Bit[x] is set to 1b, PFC packet transmission is enabled
for Priority-X.
Bit[8] is used to enable 802.3x flow control.

RESERVED 31:9 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_ENABLE_
GCP

0 1b RW UNDEFINED Rx Enable GCP
When set to 1b and rx_forward_control is set to 0, flow
control packets are terminated by the HSEC MAC.
When set to 0b, both 802.3x and PFC packet processing is
disabled and the HSEC MAC forwards all control packets.
Note: To enable 802.3x and PFC functional packet

processing, a dedicated enable bit must be
configured.

RESERVED 31:1 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - MAC Registers

2148 613875-009

13.2.2.4.4 HSEC CONTROL Receive PAUSE_DA_UCAST_PART1 -
PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART1
(0x001E3220; RO)

13.2.2.4.5 HSEC CONTROL Receive PAUSE_DA_UCAST_PART2 -
PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART2
(0x001E3240; RO)

13.2.2.4.6 HSEC CONTROL Receive PAUSE_SA_PART1 -
PRTMAC_HSEC_CTL_RX_PAUSE_SA_PART1 (0x001E3280;
RO)

13.2.2.4.7 HSEC CONTROL Receive PAUSE_SA_PART2 -
PRTMAC_HSEC_CTL_RX_PAUSE_SA_PART2 (0x001E32A0;
RO)

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_PAUSE_
DA_UCAST_PART1

31:0 0x0 RW UNDEFINED Rx Pause Destination Address Unicast Part 1
Unicast destination address for pause processing.
Valid only if the UC address is enabled for control processing
through RX_CHECK_UC_PPP/PCP/GPP/GCP.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_PAUSE_
DA_UCAST_PART2

15:0 0x0 RW UNDEFINED Rx Pause Destination Address Unicast Part 2
Unicast destination address for pause processing.
Valid only if the UC address is enabled for control processing
through RX_CHECK_UC_PPP/PCP/GPP/GCP.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_PAUSE_
SA_PART1

31:0 0x0 RW UNDEFINED Rx Pause Source Address Part 1
Source address for pause processing.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_PAUSE_
SA_PART2

15:0 0x0 RW UNDEFINED Rx Pause Source Address Part 2
Source address for pause processing.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2149

Intel® Ethernet Controller E810 Datasheet
Programming Interface - MAC Registers

13.2.2.4.8 HSEC CONTROL Receive ENABLE_GPP -
PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x001E34C0; RO)

13.2.2.4.9 HSEC CONTROL Receive ENABLE_PPP -
PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x001E35C0; RO)

13.2.2.4.10 HSEC CONTROL Receive FORWARD_CONTROL -
PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL
(0x001E36C0; RO)

13.2.2.4.11 HSEC CONTROL Transmit PAUSE_QUANTA -
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA[n] (0x001E36E0 +
0x20*n, n=0...8; RO)

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_ENABLE_GPP 0 0b RW UNDEFINED Rx Enable GPP
1b = Enables 802.3x pause packet processing.

Note: 802.3x pause is also referred to as Global
Pause in HSEC registers.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_ENABLE_PPP 0 0b RW UNDEFINED Rx Enable PPP
1b = Enables priority pause packet processing.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_RX_FORWARD
_CONTROL

0 0b RW UNDEFINED Rx Forward Control
0b = Causes the HSEC MAC to drop control packets.
1b = Indicates that the HSEC MAC forwards control

packets to the user.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_TX_PAUSE_
QUANTA

15:0 0xFFFF RW UNDEFINED Tx Pause Quanta
These nine buses indicate the quanta to be transmitted for
each of the eight priorities in priority-based pause operation
and the global pause operation.
The value for stat_tx_pause_quanta[8] is used for global
pause operation. All other values are used for priority pause
operation.

RESERVED 31:16 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - MAC Registers

2150 613875-009

13.2.2.4.12 HSEC CONTROL Transmit PAUSE_REFRESH_TIMER -
PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER[n]
(0x001E3800 + 0x20*n, n=0...8; RO)

13.2.2.4.13 HSEC CONTROL Transmit SA_GPP_PART1 -
PRTMAC_HSEC_CTL_TX_SA_PART1 (0x001E3960; RO)

13.2.2.4.14 HSEC CONTROL Transmit SA_GPP_PART2 -
PRTMAC_HSEC_CTL_TX_SA_PART2 (0x001E3980; RO)

13.2.2.4.15 MAC Rx Silent Drop Count - PRTMAC_RX_PKT_DRP_CNT
(0x001E3C20; RW)

This register counts silent drop packets due to CORER, RX_ENABLE, and RPB overflow.

13.2.2.4.16 MAC Rx Shift FC Quanta -
PRTMAC_HSEC_CTL_RX_QUANTA_SHIFT (0x001E3C40;
RW)

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_TX_PAUSE_
REFRESH_TIMER

15:0 0x0 RW UNDEFINED Tx Pause Refresh Timer
These nine buses set the retransmission time of pause
packets for each of the eight priorities in priority-based pause
operation and the global pause operation.
The value for stat_tx_pause_refresh_timer[8] is used for
global pause operation. All other values are used for priority
pause operation.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_TX_SA_PART1 31:0 0x0 RW UNDEFINED Tx Source Address Part 1
Source address for transmitting pause packets.

Field Bit(s) Init. Type CFG Policy Description

HSEC_CTL_TX_SA_PART2 15:0 0x0 RW UNDEFINED Tx Source Address Part 2
Source address for transmitting pause packets.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RX_PKT_DRP_CNT 15:0 0x0 RW1C DYNAMIC Rx Packet Drop Count

RX_MKR_PKT_DRP_CNT 31:16 0x0 RW1C DYNAMIC Rx Marker Packet Drop Count

Field Bit(s) Init. Type CFG Policy Description

PRTMAC_HSEC_CTL_
RX_QUANTA_SHIFT

15:0 0x0 RW UNDEFINED Rx Quanta Shift
Shift left FC quanta counter values.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2151

Intel® Ethernet Controller E810 Datasheet
Programming Interface - MAC Registers

13.2.2.4.17 MAC Rx Metadata Override Enable -
PRTMAC_MD_OVRRIDE_ENABLE[n] (0x001E3C60 + 0x20*n,
n=0...7; RO)

13.2.2.4.18 MAC Rx Metadata Override Value -
PRTMAC_MD_OVRRIDE_VAL[n] (0x001E3D60 +0x20*n,
n=0...7; RO)

13.2.2.4.19 Link Down Counter - PRTMAC_LINK_DOWN_COUNTER
(0x001E47C0; RO)

13.2.2.4.20 Link UP Counter Limit - PRTMAC_TX_LNK_UP_CNT
(0x001E4840; RW)

13.2.2.4.21 MAC Markers Counter Tx - PRTMAC_TX_CNT_MRKR
(0x001E48C0; RW1C)

Field Bit(s) Init. Type CFG Policy Description

PRTMAC_MD_OVRRIDE_ENABLE 31:0 0x0 RW UNDEFINED Metadata Override Enable
Debug feature to force value on metadata Rx.

Field Bit(s) Init. Type CFG Policy Description

PRTMAC_MD_OVRRIDE_ENABLE 31:0 0x0 RW UNDEFINED Metadata Override Enable
Debug feature to force value on metadata Rx.

Field Bit(s) Init. Type CFG Policy Description

LINK_DOWN_COUNTER 15:0 0x0 RW1C DYNAMIC Link Down Counter
Increments on link down event. Does not do wrap around.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TX_LINK_UP_CNT 15:0 0x50 RW UNDEFINED Tx Link Up Counter
Link UP counter limit.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TX_CNT_MRKR 15:0 0x0 RW1C DYNAMIC Tx Count Marker

RESERVED 31:16 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - MAC Registers

2152 613875-009

13.2.2.4.22 MAC Markers Counter Rx - PRTMAC_RX_CNT_MRKR
(0x001E48E0; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RX_CNT_MRKR 15:0 0x0 RW1C DYNAMIC Rx Count Marker

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2153

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5 PF - Power Management Registers

Registers related to LTR and EEE.

13.2.2.5.1 PME_TO Indication - GLGEN_PME_TO (0x000B81BC; RO)

This register reflects an incoming PME turn-off message.

13.2.2.5.2 Global Power Mode Control S5 -
GL_PWR_MODE_DIVIDE_S5_H_CTRL (0x000B81EC; RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

Field Bit(s) Init. Type CFG Policy Description

PME_TO_FOR_PE 0 0b RO N/A PME Turn-Off for PE
The bit is set to 1b when a PME_Turn_off message is received on
the sideband IOSF and cleared upon PE core reset de-assertion.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_H 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S5 power mode when total bandwidth
configuration is up to 100G, and total link speed is up to
50G.

DIV_VAL_TBW_25G_H 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S5 power mode when total bandwidth
configuration is up to 100G, and total link speed is up to
25G.

DIV_VAL_TBW_10G_H 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S5 power mode when total bandwidth
configuration is up to 100G, and total link speed is up to
10G.

DIV_VAL_TBW_4G_H 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S5 power mode when total bandwidth
configuration is up to 100G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_H 15:12 0x0 RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S5 power mode when total bandwidth
configuration is up to 100G, and total link speed is above
50G.

RESERVED 31:16 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

2154 613875-009

13.2.2.5.3 Global Power Mode Control PE -
GL_PWR_MODE_DIVIDE_S0_CTRL_H_PECLK (0x000B81F0;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.4 Global Power Mode Control Upper -
GL_PWR_MODE_DIVIDE_S0_CTRL_H_UCLK (0x000B81F4;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_H 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
PE core clock divide in S0 power mode when total bandwidth
configuration is up to 100G, and total link speed is up to
50G

DIV_VAL_TBW_25G_H 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
PE core clock divide in S0 power mode when total bandwidth
configuration is up to 100G, and total link speed is up to
25G.

DIV_VAL_TBW_10G_H 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
PE core clock divide in S0 power mode when total bandwidth
configuration is up to 100G, and total link speed is up to
10G.

DIV_VAL_TBW_4G_H 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
PE core clock divide in S0 power mode when total bandwidth
configuration is up to 100G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_H 15:12 0x0 RW UNDEFINED Divide Value Total Bandwidth Above 50G
PE core clock divide in S0 power mode when total bandwidth
configuration is up to 100G, and total link speed is above
50G.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_H 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Upper core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 50G.

DIV_VAL_TBW_25G_H 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Upper core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 25G.

DIV_VAL_TBW_10G_H 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Upper core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 10G.

DIV_VAL_TBW_4G_H 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Upper core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 4G.

613875-009 2155

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5.5 Global Power Mode Control RXCTL -
GL_PWR_MODE_DIVIDE_S0_CTRL_H_RXCTL (0x000B81F8;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.6 Global Power Mode Control PSM -
GL_PWR_MODE_DIVIDE_S0_CTRL_H_PSM (0x000B81FC;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

DIV_VAL_TBW_A50G_H 15:12 0x0 RW UNDEFINED Divide Value Total Bandwidth Above 50G
Upper core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is above 50G.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_H 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
RXCTL core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 50G.

DIV_VAL_TBW_25G_H 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
RXCTL core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 25G.

DIV_VAL_TBW_10G_H 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
RXCTL core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 10G.

DIV_VAL_TBW_4G_H 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
RXCTL core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 4G.

DIV_VAL_TBW_A50G_H 15:12 0x0 RW UNDEFINED Divide Value Total Bandwidth Above 50G
RXCTL core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is above 50G.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_H 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
PSM core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 50G.

DIV_VAL_TBW_25G_H 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
PSM core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 25G.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

2156 613875-009

13.2.2.5.7 Global Power Mode Control Lower -
GL_PWR_MODE_DIVIDE_S0_CTRL_H_LCLK (0x000B8200;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

DIV_VAL_TBW_10G_H 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
PSM core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 10G.

DIV_VAL_TBW_4G_H 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
PSM core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 4G.

DIV_VAL_TBW_A50G_H 15:12 0x0 RW UNDEFINED Divide Value Total Bandwidth Above 50G
PSM core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is above 50G.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_H 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Lower core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 50G.

DIV_VAL_TBW_25G_H 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Lower core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 25G.

DIV_VAL_TBW_10G_H 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Lower core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 10G.

DIV_VAL_TBW_4G_H 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Lower core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 4G.

DIV_VAL_TBW_A50G_H 15:12 0x0 RW UNDEFINED Divide Value Total Bandwidth Above 50G
Lower core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is above 50G.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2157

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5.8 Global Power Mode Control UANA -
GL_PWR_MODE_DIVIDE_S0_CTRL_H_UANA (0x000B8208;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.9 Global Power Mode Control - GL_PWR_MODE_CTL
(0x000B820C; RO)

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_H 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Upper ANA core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 50G.

DIV_VAL_TBW_25G_H 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Upper ANA core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 25G.

DIV_VAL_TBW_10G_H 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Upper ANA core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 10G.

DIV_VAL_TBW_4G_H 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Upper ANA core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is up to 4G.

DIV_VAL_TBW_A50G_H 15:12 0x0 RW UNDEFINED Divide Value Total Bandwidth Above 50G
Upper ANA core clock divide in S0 power mode when total
bandwidth configuration is up to 100G, and total link speed
is above 50G.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SWITCH_PWR_MODE_EN 0 0b RW UNDEFINED Switch Power Mode Enable
Switch S0 power mode enable.

NIC_PWR_MODE_EN 1 0b RW UNDEFINED NIC Power Mode Enable
NIC S0 power mode enable.

S5_PWR_MODE_EN 2 1b RW UNDEFINED S5 Power Mode Enable
Global S5 power mode enable.

CAR_MAX_SW_CONFIG 4:3 00b RW UNDEFINED CAR Max Bandwidth Configuration
Max bandwidth fuse override. Can only decrease max
bandwidth.

00b = 100 GbE
01b = 50 GbE
10b = 25 GbE
11b = 25 GbE

RESERVED 29:5 0x0 RSV N/A Reserved.

CAR_MAX_BW 31:30 00b RO N/A CAR Max Bandwidth
Final system max bandwidth.

00b = 200 GbE
01b = 100 GbE
10b = 50 GbE
11b = 25 GbE

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

2158 613875-009

13.2.2.5.10 Global Power Mode Control Defaults -
GL_PWR_MODE_DIVIDE_CTRL_L_DEFAULT (0x000B8218;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.11 Global Power Mode Control PE -
GL_PWR_MODE_DIVIDE_S0_CTRL_M_PECLK (0x000B821C;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

Field Bit(s) Init. Type CFG Policy Description

DEFAULT_DIV_VAL_PECLK 2:0 001b RW UNDEFINED Default Divide Value PE Clock
Core clock divide with power mode disabled when total
bandwidth is up to 25G.

DEFAULT_DIV_VAL_UCLK 5:3 001b RW UNDEFINED Default Divide Value Upper Clock
Core clock divide with power mode disabled when total
bandwidth is up to 25G.

DEFAULT_DIV_VAL_LCLK 8:6 001b RW UNDEFINED Default Divide Value Lower Clock
Core clock divide with power mode disabled when total
bandwidth is up to 25G.

DEFAULT_DIV_VAL_PSM 11:9 001b RW UNDEFINED Default Divide Value PSM
Core clock divide with power mode disabled when total
bandwidth is up to 25G.

DEFAULT_DIV_VAL_RXCTL 14:12 001b RW UNDEFINED Default Divide Value RXCTL
Core clock divide with power mode disabled when total
bandwidth is up to 25G.

DEFAULT_DIV_VAL_UANA 17:15 001b RW UNDEFINED Default Divide Value Upper ANA
Core clock divide with power mode disabled when total
bandwidth is up to 25G.

DEFAULT_DIV_VAL_S5 20:18 001b RW UNDEFINED Default Divide Value S5
Core clock divide in S5 with power mode disabled when
total bandwidth is up to 25G, and total link speed is up to
50G.

RESERVED 31:21 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_M 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_M 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_M 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_M 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 4G.

613875-009 2159

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5.12 Global Power Mode Control PE -
GL_PWR_MODE_DIVIDE_S0_CTRL_L_PECLK (0x000B8220;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.13 Global Power Mode Control Upper -
GL_PWR_MODE_DIVIDE_S0_CTRL_M_UCLK (0x000B8224;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

DIV_VAL_TBW_A50G_M 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_L 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_L 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_L 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_L 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_L 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_M 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_M 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_M 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_M 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 4G.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

2160 613875-009

13.2.2.5.14 Global Power Mode Control RXCTL -
GL_PWR_MODE_DIVIDE_S0_CTRL_M_RXCTL (0x000B8228;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.15 Global Power Mode Control PSM -
GL_PWR_MODE_DIVIDE_S0_CTRL_M_PSM (0x000B822C;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

DIV_VAL_TBW_A50G_M 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_M 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_M 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_M 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_M 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 4G000b = no divide

DIV_VAL_TBW_A50G_M 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_M 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_M 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_M 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_M 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 4G.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2161

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5.16 Global Power Mode Control Lower -
GL_PWR_MODE_DIVIDE_S0_CTRL_M_LCLK (0x000B8230;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.17 Global Power Mode Control UANA -
GL_PWR_MODE_DIVIDE_S0_CTRL_M_UANA (0x000B8234;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

DIV_VAL_TBW_A50G_M 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_M 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_M 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_M 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_M 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_M 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_M 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_M 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_M 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_M 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is up to 4G.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

2162 613875-009

13.2.2.5.18 Global Power Mode Control Upper -
GL_PWR_MODE_DIVIDE_S0_CTRL_L_UCLK (0x000B8238;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.19 Global Power Mode Control RXCTL -
GL_PWR_MODE_DIVIDE_S0_CTRL_L_RXCTL (0x000B823C;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

DIV_VAL_TBW_A50G_M 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 50G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_L 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_L 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_L 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_L 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_L 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_L 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_L 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_L 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_L 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 4G.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2163

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5.20 Global Power Mode Control PSM -
GL_PWR_MODE_DIVIDE_S0_CTRL_L_PSM (0x000B8240;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.21 Global Power Mode Control Lower -
GL_PWR_MODE_DIVIDE_S0_CTRL_L_LCLK (0x000B8244;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

DIV_VAL_TBW_A50G_L 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_L 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_L 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_L 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_L 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_L 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_L 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_L 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_L 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_L 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 4G.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

2164 613875-009

13.2.2.5.22 Global Power Mode Control UANA -
GL_PWR_MODE_DIVIDE_S0_CTRL_L_UANA (0x000B8248;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.23 Global Power Mode Control S5 -
GL_PWR_MODE_DIVIDE_S5_L_CTRL (0x000B824C; RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

DIV_VAL_TBW_A50G_L 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_L 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_L 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_L 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_L 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_L 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S0 power mode when total bandwidth is
up to 25G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_L 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S5 power mode when total bandwidth is
up to 25G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_L 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S5 power mode when total bandwidth is
up to 25G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_L 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S5 power mode when total bandwidth is
up to 25G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_L 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S5 power mode when total bandwidth is
up to 25G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_L 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S5 power mode when total bandwidth is
up to 25G, and total link speed is above 50G.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2165

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5.24 Global Power Mode Control S5 -
GL_PWR_MODE_DIVIDE_S5_M_CTRL (0x000B8250; RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.25 Global Power Mode Control Defaults -
GL_PWR_MODE_DIVIDE_CTRL_H_DEFAULT (0x000B825C;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DIV_VAL_TBW_50G_M 2:0 000b RW UNDEFINED Divide Value Total Bandwidth 50G
Core clock divide in S5 power mode when total bandwidth is
up to 50G, and total link speed is up to 50G.

DIV_VAL_TBW_25G_M 5:3 001b RW UNDEFINED Divide Value Total Bandwidth 25G
Core clock divide in S5 power mode when total bandwidth is
up to 50G, and total link speed is up to 25G.

DIV_VAL_TBW_10G_M 8:6 010b RW UNDEFINED Divide Value Total Bandwidth 10G
Core clock divide in S5 power mode when total bandwidth is
up to 50G, and total link speed is up to 10G.

DIV_VAL_TBW_4G_M 11:9 011b RW UNDEFINED Divide Value Total Bandwidth 4G
Core clock divide in S5 power mode when total bandwidth is
up to 50G, and total link speed is up to 4G.

DIV_VAL_TBW_A50G_M 14:12 000b RW UNDEFINED Divide Value Total Bandwidth Above 50G
Core clock divide in S5 power mode when total bandwidth is
up to 50G, and total link speed is above 50G.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DEFAULT_DIV_VAL_PECLK 2:0 000b RW UNDEFINED Default Divide Value PE Clock
Core clock divide with power mode disabled when total
bandwidth is up to 100G.

DEFAULT_DIV_VAL_UCLK 5:3 000b RW UNDEFINED Default Divide Value Upper Clock
Core clock divide with power mode disabled when total
bandwidth is up to 100G.

DEFAULT_DIV_VAL_LCLK 8:6 000b RW UNDEFINED Default Divide Value Lower Clock
Core clock divide with power mode disabled when total
bandwidth is up to 100G.

DEFAULT_DIV_VAL_PSM 11:9 000b RW UNDEFINED Default Divide Value PSM
Core clock divide with power mode disabled when total
bandwidth is up to 100G.

DEFAULT_DIV_VAL_RXCTL 14:12 000b RW UNDEFINED Default Divide Value RXCTL
Core clock divide with power mode disabled when total
bandwidth is up to 100G.

DEFAULT_DIV_VAL_UANA 17:15 000b RW UNDEFINED Default Divide Value Upper ANA
Core clock divide with power mode disabled when total
bandwidth is up to 100G.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

2166 613875-009

13.2.2.5.26 Global Power Mode Control Defaults -
GL_PWR_MODE_DIVIDE_CTRL_M_DEFAULT (0x000B8260;
RO)

000b = No divide; 001b = Divide by 2; 010b = Divide by 4; 011b = Divide by 8; 100b = Divide by 16.
All other values are reserved.

13.2.2.5.27 Global Power Mode Control - GL_S5_PWR_MODE_EXIT_CTL
(0x000B8270; RW)

DEFAULT_DIV_VAL_S5 20:18 000b RW UNDEFINED Default Divide Value S5
Core clock divide with power mode disabled when total
bandwidth is up to 100G.

RESERVED 31:21 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DEFAULT_DIV_VAL_PECLK 2:0 000b RW UNDEFINED Default Divide Value PE Clock
Core clock divide with power mode disabled when total
bandwidth is up to 50G.

DEFAULT_DIV_VAL_UCLK 5:3 000b RW UNDEFINED Default Divide Value Upper Clock
Core clock divide with power mode disabled when total
bandwidth is up to 50G.

DEFAULT_DIV_VAL_LCLK 8:6 000b RW UNDEFINED Default Divide Value Lower Clock
Core clock divide with power mode disabled when total
bandwidth is up to 50G.

DEFAULT_DIV_VAL_PSM 11:9 000b RW UNDEFINED Default Divide Value PSM
Core clock divide with power mode disabled when total
bandwidth is up to 50G.

DEFAULT_DIV_VAL_RXCTL 14:12 000b RW UNDEFINED Default Divide Value RXCTL
Core clock divide with power mode disabled when total
bandwidth is up to 50G.

DEFAULT_DIV_VAL_UANA 17:15 000b RW UNDEFINED Default Divide Value Upper ANA
Core clock divide with power mode disabled when total
bandwidth is up to 50G.

DEFAULT_DIV_VAL_S5 20:18 000b RW UNDEFINED Default Divide Value S5
Core clock divide with power mode disabled when total
bandwidth is up to 50G.

RESERVED 31:21 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

S5_PWR_MODE_AUTO_EXIT 0 1b RW UNDEFINED S5 Power Mode Auto Exit
When set, hardware exits S5 power mode
automatically when moving to S0.

RESERVED 2:1 00b RSV N/A Reserved.

S5_PWR_MODE_PRST_FLOWS
_ON_CORER

3 1b RW UNDEFINED S5 Power Mode PRST Flows on CORER

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2167

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5.28 Energy Efficient Ethernet (EEE) Status - PRTPM_EEE_STAT
(0x001E4320; RO)

13.2.2.5.29 Energy Efficient Ethernet (EEE) Register - PRTPM_EEER
(0x001E4360; RO)

Field Bit(s) Init. Type CFG Policy Description

RESERVED 28:0 0x0 RSV N/A Reserved. Write 0. Ignore on read.

EEE_NEG 29 0b RO N/A EEE Negotiated
EEE support negotiated on link.

0b = EEE operation not supported on link.
1b = EEE operation supported on link.

RX_LPI_STATUS 30 0b RO N/A Rx LPI Status
Rx link in LPI state.

0b = Rx in Active state.
1b = Rx in LPI state.

TX_LPI_STATUS 31 0b RO N/A Tx LPI Status
Tx link in LPI state.

0b = Tx in Active state.
1b = Tx in LPI state.

Field Bit(s) Init. Type CFG Policy Description

TW_SYSTEM 15:0 0x0 RW UNDEFINED TW System
Time expressed in microseconds that no data will be transmitted
following move from EEE Tx LPI link state to Link Active state. Field
holds the Transmit Tw_sys_tx value negotiated during EEE LLDP
negotiation.
Notes:

1. If value is lower than minimum Tw_sys_tx value defined in
IEEE802.3az clause 78.5, then interval where no data is
transmitted following move out of EEE Tx LPI state defaults to
minimum Tw_sys_tx.

2. Following link disconnect or auto-negotiation, value of this field
returns to default value, until software re-negotiates new
Tw_sys_tx value via EEE LLDP.

3. Fast Retrain and Local/Remote Fault indication are not considered
link disconnect, and do not cause the field to return to the default
value.

4. When transmitting flow control frames, device waits the minimum
time defined in the IEEE802.3az standard before transmitting the
flow control packet. Device does not wait the TW_SYSTEM time
following exit of LPI before transmitting the flow control frame.

TX_LPI_EN 16 0b RW UNDEFINED TW LPI Enable
Enable entry into EEE LPI on Tx path.

0b = Disable entry into EEE LPI on Tx path.
1b = Enable entry into EEE LPI on Tx path.

Notes:
1. Even when TX_LPI_EN is 1b, device will not enable entry into Tx

LPI state for at least PRTPM_EEEC.TX_LU_LPI_DLY following the
change of link_status to OK as defined in IEEE802.3az clause
78.1.2.1.

2. Even if the TX_LPI_EN bit is set, device will initiate entry into Tx
EEE LPI link state only if EEE support at the link speed was
negotiated during auto-negotiation or forced by software to enable
EEE on non AN protocols.

RESERVED 31:17 0x0 RSV N/A Reserved. Write 0. Ignore on read.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

2168 613875-009

13.2.2.5.30 Energy Efficient Ethernet (EEE) Control - PRTPM_EEEC
(0x001E4380; RO)

13.2.2.5.31 EEE Rx LPI Count - PRTPM_RLPIC (0x001E43A0; RO)

13.2.2.5.32 EEE Tx LPI Count - PRTPM_TLPIC (0x001E43C0; RO)

Field Bit(s) Init. Type CFG Policy Description

RESERVED 15:0 0x0 RSV N/A Reserved. Write 0. Ignore on read.

TW_WAKE_MIN 21:16 0xA RW UNDEFINED TW Wake Minimum
Minimum time (expressed in 1 microseconds) between sending a
request to move into EEE Tx LPI and sending a request to move back
to Active state.
Note: If conditions to exit LPI during the TW_WAKE_MIN interval

cease to exist, then device will not move out of Tx LPI after
timer has expired.

RESERVED 23:22 00b RSV N/A Reserved.

TX_LU_LPI_DLY 25:24 011b RW UNDEFINED Tx Link-Up LPI Delay
Delay to enable entry of Tx EEE LPI state following link-up indication.

00b = No delay
01b = 10 ms
10b = 100 ms
11b = 1 second

Note: IEEE802.3az clause 78.1.2.1 defines delay of 1 second
following link-up.

TEEE_DLY 31:26 0x3 RW UNDEFINED Tx EEE Delay
Tx EEE LPI entry delay.
Field defines delay to EEE entry once conditions to enter EEE LPI are
detected.
Field resolution is 1 μs.
Notes:

1. If conditions to enter LPI during the TEEE_DLY interval cease to
exist, device will not enter Tx LPI and continues normal
operation.

2. Minimum configuration should be 0x1.

Field Bit(s) Init. Type CFG Policy Description

ERLPIC 31:0 0x0 RO N/A EEE Rx LPI Counter
Counts EEE Rx LPI entry events.
A EEE Rx LPI event occurs when the receiver detects link partner entry
into EEE (IEEE802.3az) LPI state. This register only increments if
receives are enabled and EEE operation is enabled.
Register is cleared on read.

Field Bit(s) Init. Type CFG Policy Description

ETLPIC 31:0 0x0 RO N/A EEE Tx LPI Counter
Counts EEE Tx LPI entry events.
A EEE Tx LPI event occurs when the transmitter enters EEE
(IEEE802.3az) LPI state. This register only increments if transmits are
enabled and EEE operation is enabled.
Register is cleared on read.

613875-009 2169

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Power Management Registers

13.2.2.5.33 EEE Tx Control - PRTPM_EEETXC (0x001E43E0; RO)

13.2.2.5.34 EEE Tx FW Done - PRTPM_EEEFWD (0x001E4400; RO)

Field Bit(s) Init. Type CFG Policy Description

TW_PHY 15:0 0x1 RW UNDEFINED TW PHY
TW_PHY value is set by firmware and should accommodate for the time
defined in IEEE802.3az for the per connected PHY technology TW_PHY
with the addition of the proper per-PHY technology addition as defined in
the GLPM_EEE_SU and GLPM_EEE_SU_EXT registers.
Value defined in this field is expressed in 102.4 nanosecond resolution.
Note: The idle time value defined by this field is used when moving out

of EEE Tx LPI state to transmit flow control frames even if value
specified in EEER.TW_SYSTEM field is higher.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 30:0 0x0 RSV N/A Reserved.

EEE_FW_CONFIG_DONE 31 0b RW UNDEFINED EEE Firmware Configuration Done
Set by firmware to indicate that firmware configuration of
the EEE parameters after link establishment is done.
Cleared by hardware when link is down.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Wake-Up Registers

2170 613875-009

13.2.2.6 PF - Wake-Up Registers

13.2.2.6.1 Wake-Up Status Register - PFPM_WUS (0x0009DB80;
RW1C)

This register is used to record statistics about all wake-up packets received. If a packet matches
multiple criteria, then multiple bits could be set. Writing a 1b to any bit clears that bit.

This register is not cleared when PE_RST_N is asserted (excepted for PME_STATUS bit). It is only
cleared when LAN_PWR_GOOD is de-asserted or when cleared by the software device driver.

Note: If additional packets are received that match one of the wake-up filters, after the original
wake-up packet is received, the WUS register is not updated with the new match detection
until the register is cleared.

Wakeup statuses are reported in this register also when no wake-up event is generated because a CRC
error is detected on the presumed wake-up packet.

13.2.2.6.2 Wake-Up Filter Control Register - PFPM_WUFC
(0x0009DC00; RW)

This register is used to enable each of the pre-defined filters for wake-up support. A value of 1b means
the filter is turned on, a value of 0b means the filter is turned off.

The bits reset only on power-on reset (LAN_PWR_GOOD) and on D3/Dr to D0 transitions.

Field Bit(s) Init. Type CFG Policy Description

LNKC 0 0b RW1C DYNAMIC Link Change
Link status changed.

MAG 1 0b RW1C DYNAMIC Magic
Magic packet received.

PME_STATUS 2 0b RW1C DYNAMIC PME Status
This bit is set when device receives a wake-up event. It is the same as
the PME_Status bit in the Power Management Control/Status Register
(PMCSR).
Writing a 1b to this bit also clears the PME_Status bit in the PMCSR.
Bit is reset only on power-on reset (LAN_PWR_GOOD). When AUX_PWR
= 0, bit is reset also on de-assertion of PE_RST_N.

MNG 3 0b RW1C DYNAMIC MNG
MNG wake-up status.

RESERVED 30:4 0x0 RSV N/A Reserved.

FW_RST_WK 31 0b RW1C DYNAMIC Firmware Reset Wake
Wake due to firmware reset assertion event.
When set to 1b, indicates that firmware reset assertion caused system
wake so that software driver can re-send proxying information to
firmware.

Field Bit(s) Init. Type CFG Policy Description

LNKC 0 0b RW UNDEFINED Link Change
Link status change wake-up enable.

MAG 1 0b RW UNDEFINED Magic
Magic packet wake-up enable.

RESERVED 2 0b RSV N/A Reserved.

613875-009 2171

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Wake-Up Registers

13.2.2.6.3 Wake-Up Control Register - PFPM_WUC (0x0009DC80; RW)

13.2.2.6.4 Wake-Up on MNG Control - GLPM_WUMC (0x0009DEE4; RO)

13.2.2.6.5 APM Control Register - PFPM_APM (0x000B8080; RW)

13.2.2.6.6 MAC Address Low - PRTPM_SAL[n] (0x001E3B20 + 0x20*n,
n=0...3; RW)

This register contains the station address lower 32 bits of the 48-bit Ethernet MAC Address. It is loaded
by firmware from NVM and can be altered later by PF driver admin command.

MNG 3 0b RW UNDEFINED MNG
MNG wake-up enable.

RESERVED 30:4 0x0 RSV N/A Reserved.

FW_RST_WK 31 0b RW UNDEFINED Firmware Reset Wake
Enable wake on firmware reset assertion.
When set a firmware reset causes system wake so that software driver
can re-send Proxying information to firmware.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 4:0 0x0 RSV N/A Reserved.

EN_APM_D0 5 0b RW UNDEFINED Enable APM D0
Enable APM wake also on D0.

0b = Enable wake only when function is in D3/Dr.
1b = Enable wake also in D0.

Should be set for normal operation.

RESERVED 31:6 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 15:0 0x0 RSV N/A Reserved.

MNG_WU_PF 23:16 0x0 RW UNDEFINED MNG Wake-Up PF
MNG_WU_PF EMP can set a bit in this field to indicate MNG initiated
wake-up event (bit per PF).

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

APME 0 0b RW UNDEFINED Advance Power Management Enable
If set to 1b, APM wake-up is enabled.
Note: Bit is reset on Power on reset (LAN_PWR_GOOD) only.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PFPM_SAL 31:0 0x0 RW UNDEFINED Station Address Low
The lower 32 bits of the 48-bit NVM pre-assigned Ethernet MAC Address.
Note: Field is defined in Big Endian (LS byte of SAL is first on the wire).

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Wake-Up Registers

2172 613875-009

13.2.2.6.7 MAC Address High - PRTPM_SAH[n] (0x001E3BA0 +
0x20*n, n=0...3; RW)

This register contains the station address upper 16 bits of the 48-bit Ethernet MAC Address. It is loaded
by firmware from NVM and can be altered later by PF driver admin command.

PRTPM_SAH.AV determines whether this address is valid and compared against the incoming packet.
After reset, firmware loads the relevant MAC Address from NVM, and sets its Address Valid field to 1b.

Field Bit(s) Init. Type CFG Policy Description

PFPM_SAH 15:0 0x0 RW UNDEFINED Station Address High
The upper 16 bits of the 48-bit Ethernet MAC Address.
Note: Field is defined in Big Endian (MS byte of PRTPM_SAH is last on

the wire).

RESERVED 25:16 0x0 RSV N/A Reserved.

PF_NUM 29:26 0x0 RW UNDEFINED PF Number
PF number to be used for reporting the waking PF. Value is written by
firmware.

MC_MAG_EN 30 0b RW UNDEFINED Multicast Magic Packet Enable
Enable promiscuous multicast for Magic Packets.
If this bit is set to 1b, every multicast Magic Packet generates a WoL
event if enabled in PFPM_WUFC.MAG

AV 31 0b RW UNDEFINED Address Valid
If the NVM is present, the station address is assigned by firmware after
loading from the NVM and its Address Valid field is set to 1b

613875-009 2173

Intel® Ethernet Controller E810 Datasheet
Programming Interface - NVM Registers

13.2.2.7 PF - NVM Registers

13.2.2.7.1 HLP Auto-Load Done Register - GLNVM_AL_DONE_HLP
(0x000824C4; RO)

13.2.2.7.2 Unit Load Status - GLNVM_ULD (0x000B6008; RO)

This register provides indications on the completion of loading the Shadow RAM and Alternate Module
into the device units.

Field Bit(s) Init. Type CFG Policy Description

HLP_CORER 0 0b RO N/A HLP Core Reset
Auto-load done indication.

HLP_FULLR 1 0b RO N/A HLP Full Reset
Auto-load done indication.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PCIER_DONE 0 0b RO N/A PCIe Reset Done
The PCIe Reset process is done (all related registers are loaded).

PCIER_DONE_1 1 0b RO N/A PCIe Reset Done 1
The PCIe Reset process is done (all related registers are loaded).
Mirror of Bit 0.

RESERVED 2 1b RSV N/A Reserved.

CORER_DONE 3 0b RO N/A Core Reset Done
The Core Reset process is done (all related registers are loaded).

GLOBR_DONE 4 0b RO N/A Global Reset Done
The Global Reset process is done (all related registers are loaded).

POR_DONE 5 0b RO N/A Power On Reset Done
The Power On Reset process is done (all related registers are
loaded).

RESERVED 7:6 11b RSV N/A Reserved.

POR_DONE_1 8 0b RO N/A Power On Reset Done 1
The Power On Reset process is done (all related registers are
loaded). Mirror of Bit 5.

PCIER_DONE_2 9 0b RO N/A PCIe Reset Done 2
The PCIe Reset process is done (all related registers are loaded).
Mirror of bit 0.

PE_DONE 10 0b RO N/A Protocol Engine Done
The Protocol Engine Core Reset process is done (all related
registers are loaded).

RESERVED 31:11 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - NVM Registers

2174 613875-009

13.2.2.7.3 Protected CSR List - GLNVM_PROTCSR[n] (0x000B6010 +
0x4*n, n=0...59; RO)

13.2.2.7.4 Global NVM General Status Register - GLNVM_GENS
(0x000B6100; RO)

This register cannot be loaded from NVM via one of the CSR format modules.

Field Bit(s) Init. Type CFG Policy Description

ADDR_BLOCK 23:0 0xFFFFFF RW UNDEFINED CSR Blocked Address.
The field contains the address of a “blocked” register included in the
CSR Protected List NVM module. Blocked registers cannot be loaded
from a CSR format module (Type 1/2/3).
The register is loaded from Shadow RAM at POR events only, and only
from the CSR Protected List module in NVM. It can be written by EMP.
It can be written by host only when in the blank Flash programming
mode.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

NVM_PRES 0 0b RW N/A NVM Present
Setting this bit to 1b indicates that a Flash part is present and that a
correct validity field was found in one of the two basic banks (i.e.
validity field value read is 01b).

RESERVED 4:1 0x0 RSV N/A Reserved.

SR_SIZE 7:5 110b RO N/A Shadow RAM Size
This field defines the size of the internal Shadow RAM. The Shadow
RAM size is equal to 2^SR_Size KB. Initial value is 110b, which
corresponds to 2^6 = 64 KB.

BANK1VAL 8 0b RW N/A Basic Bank 1 Valid
0b = Indicates that the content of basic banks 0 of the Flash device is

valid.
1b = Indicates that the content of basic bank 1 of the Flash device is

valid.
Meaningful only when NVM_PRES bit is read as 1b.
It is written by the hardware once at power-up, and then toggled only
by EMP.

RESERVED 31:9 0x0 RSV N/A Reserved.

613875-009 2175

Intel® Ethernet Controller E810 Datasheet
Programming Interface - NVM Registers

13.2.2.7.5 Flash Access Register - GLNVM_FLA (0x000B6108; RO)

This register is writable by the host only when the device is in the blank Flash programming mode. It
cannot be loaded from NVM via one of the CSR format modules.

Note: The access type in the PF and VF spaces is determined individually per field. The values are
contained in the table that describes the fields in the internal space.

13.2.2.7.6 Auto-Load Timers - GLNVM_ALTIMERS (0x000B6140; RO)

13.2.2.7.7 Unit Load Timeout - GLNVM_ULT (0x000B6154; RO)

This register cannot be loaded from NVM via one of the CSR format modules.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 5:0 0x0 RSV N/A Reserved.

LOCKED 6 1b RW UNDEFINED Locked
Normal NVM programming mode.

0b = The device is in the blank Flash programming mode.
1b = The device is in the normal NVM programming mode.

The bit can be cleared by EMP or by software.

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PCI_ALTIMER 11:0 0x010 RW UNDEFINED PCIe Auto-Load Timer
Default is 16 to 15 ms. Resolution is in ms.

GEN_ALTIMER 31:12 0x0012C RW UNDEFINED General Auto-Load Timer
Default is ~ 300 ms. Resolution is in ms.

Field Bit(s) Init. Type CFG Policy Description

CONF_PCIR_AE 0 0b RW UNDEFINED When set, indicates that the PCIe Auto-load Timer has ended
before the respective NVM module has been initialized.

CONF_PCIRTL_AE 1 0b RW UNDEFINED When set, indicates that the PCIe Auto-load Timer has ended
before the respective NVM module has been initialized.

RESERVED 2 0b RSV N/A Reserved.

CONF_CORE_AE 3 0b RW UNDEFINED When set, indicates that the General Auto-load Timer has ended
before the respective NVM module has been initialized.

CONF_GLOBAL_AE 4 0b RW UNDEFINED When set, indicates that the General Auto-load Timer has ended
before the respective NVM module has been initialized.

CONF_POR_AE 5 0b RW UNDEFINED When set, indicates that the General Auto-load Timer has ended
before the respective NVM module has been initialized.

RESERVED 8:6 000b RSV N/A Reserved.

CONF_PCIALT_AE 9 0b RW UNDEFINED When set, indicates that the PCIe Auto-load Timer has ended
before the respective NVM module has been initialized.

CONF_PE_AE 10 0b RW UNDEFINED When set, indicates that the PCIe Auto-load Timer has ended
before the respective NVM module has been initialized.

RESERVED 31:11 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Analyzer Registers

2176 613875-009

13.2.2.8 PF - Analyzer Registers (Pre Parser)

Registers used for the pre-parser analyzer configuration.

13.2.2.8.1 L2 Tag Data Low - GL_SWT_L2TAG0[n] (0x000492A8 +
0x4*n, n=0...7; RO)

The data to insert in the fixed part of the L2 tag. Which bytes to take is fixed by the L2TAGTXIB register.

13.2.2.8.2 L2 Tag Data High - GL_SWT_L2TAG1[n] (0x000492C8 +
0x4*n, n=0...7; RO)

The data to insert in the fixed part of the L2 tag. Which bytes to take is fixed by the L2TAGTXIB register.

13.2.2.8.3 L2 Tag Tx Insert Bytes - GL_SWT_L2TAGTXIB[n]
(0x000492E8 + 0x4*n, n=0...7; RO)

This register describes where to insert the variable part for the tags.

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
L2TAG Data bytes.
Fixed bytes 0-3 of the L2 tag. Unused part of these bytes and the word in
which the variable part is inserted should be set to zero.

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
L2TAG Data bytes.
Fixed bytes 4-7 of the L2 tag. Unused part of these bytes and the word in
which the variable part is inserted should be set to zero.

Field Bit(s) Init. Type CFG Policy Description

OFFSET 7:0 0x0 RW UNDEFINED Offset
Describes the offset (in bytes) in the header to which the variable data
should be inserted.

LENGTH 9:8 00b RW UNDEFINED Length
Defines the length of the tag to insert.

00b = 8 bits
01b = 16 bits
10b = 24 bits
11b = 32 bits

RESERVED 31:10 0x0 RSV N/A Reserved.

613875-009 2177

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Analyzer Registers

13.2.2.8.4 L2 Tag Rx Extract Bytes - GL_SWT_L2TAGRXEB[n]
(0x00052000 + 0x4*n, n=0...7; RW)

Rx byte enable for L2 tag.

13.2.2.8.5 L2 Tag Control - GL_SWT_L2TAGCTRL[n] (0x001D2660 +
0x4*n, n=0...7; RW)

Control register for L2 tags.

Field Bit(s) Init. Type CFG Policy Description

OFFSET 7:0 0x0 RW UNDEFINED Offset
Describes the offset in the header from which the variable data should be
extracted. Offset is given in bytes and does not include the EtherType.

LENGTH 9:8 00b RW UNDEFINED Length
Variable part length.

00b = 8 bits
01b = 16 bits
10b = 24 bits
11b = 32 bits

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

LENGTH 6:0 0x0 RW UNDEFINED Length
Describes the number of bytes expected for this tag, not including the
EtherType (2/4/6/8 if LONG bit is not set, any value otherwise). Length is
in bytes (up to 126).

HAS_UP 7 0b RW UNDEFINED Has UP
Indicates that this tag has a UP field, and this field should be taken into
account for UP-to-TC translation if this is the first tag of the packet.

RESERVED 8 0b RSV N/A Reserved.

ISVLAN 9 0b RW UNDEFINED Is VLAN
If this bit is set, this tag is a VLAN tag.
In this case, a tag with VLAN ID = 0 is treated as untagged (priority
tagging) and the priority bits can be extracted to the Rx-Descriptor.

INNERUP 10 0b RW UNDEFINED Inner UP
If this bit is set, the UP remapping is done on this field. Should be set
only on one tag. If this bit is set, the ISVLAN bit should also be set.

OUTERUP 11 0b RW UNDEFINED Outer UP
If this bit is set, this is the tag on which the inner-to-outer UP remapping
is applied. Should be set only in one tag.

LONG 12 0b RW UNDEFINED Long
Do not support insert of entire header. In this case, the length can be
higher than 8 bytes.

ISMPLS 13 0b RW UNDEFINED Is MPLS
Identifies the tags that contain a MPLS EtherType.
This bit should be set for tags 6 (MPLS unicast) and 7 (MPLS multicast).

ISNSH 14 0b RW UNDEFINED Is NSH
Identifies the tags that contains a NSH EtherType.

RESERVED 15 0b RSV N/A Reserved.

ETHERTYPE 31:16 0x0 RW UNDEFINED EtherType
The EtherType identifying the L2 tag.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2178 613875-009

13.2.2.9 PF - FlexiPipe Registers

Registers used to configure the generic parts of the FlexiPipe. Registers specific to the analyzer, switch,
ACL or filters are described in their respective sections.

13.2.2.9.1 Force Profile ID - GL_PSTEXT_FORCE_PID[n] (0x0020E000
+ 0x4*n, n=0...2; RO)

13.2.2.9.2 Profile Level Selector - GL_PSTEXT_PLVL_SEL[n]
(0x0020E00C + 0x4*n, n=0...2; RO)

13.2.2.9.3 L1 Force CDID - GL_PSTEXT_FORCE_L1CDID[n]
(0x0020E018 + 0x4*n, n=0...2; RO)

13.2.2.9.4 L1 P2P Table Configuration Address -
GL_PSTEXT_P2P_L1ADDR[n] (0x0020E024 + 0x4*n,
n=0...2; RO)

Field Bit(s) Init. Type CFG Policy Description

STATIC_PID 15:0 0x1 RW UNDEFINED Static Profile ID
Selected Profile ID if STATIC_PID_EN is set.

RESERVED 30:16 0x0 RSV N/A Reserved.

STATIC_PID_EN 31 1b RW UNDEFINED Static Profile ID Enable
Enable static Profile ID selection.

Field Bit(s) Init. Type CFG Policy Description

PLVL_SEL 0 1b RW UNDEFINED Profile Level Select
0b = Profile selected by L1 profile (CDID).
1b = Profile selected by L2 profile.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

STATIC_CDID 3:0 0x0 RW UNDEFINED Static CDID
Static CDID index to be used when static CDID is enabled.

RESERVED 30:4 0x0 RSV N/A Reserved.

STATIC_CDID_EN 31 0b RW UNDEFINED Static CDID Enable
Enable static CDID selection.

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 0 0b RW UNDEFINED Line Index
XLT0 SRAM output to XLT0_CDID translation table entry address.

RESERVED 30:1 0x0 RSV N/A Reserved.

AUTO_INC 31 0b RW UNDEFINED Auto-Increment
Enable auto-increment. When this bit is set, the hardware automatically
increments the LINE_IDX value on every P2P_L1DATA write/read.

613875-009 2179

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.5 L1 P2P Table Configuration Data -
GL_PSTEXT_P2P_L1DATA[n] (0x0020E030 + 0x4*n,
n=0...2; RO)

13.2.2.9.6 XLT0 Table Configuration Address -
GL_PSTEXT_XLT0_L1ADDR[n] (0x0020E03C + 0x4*n,
n=0...2; RO)

13.2.2.9.7 XLT0 Table Configuration Data -
GL_PSTEXT_XLT0_L1DATA[n] (0x0020E048 + 0x4*n,
n=0...2; RO)

13.2.2.9.8 L1 Bidirectional CTL - GL_PSTEXT_CDMD_L1SEL[n]
(0x0020E054 + 0x4*n, n=0...2; RO)

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
XLT0 SRAM output to XLT0_CDID translation table entry data

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 7:0 0x0 RW UNDEFINED Line Index
XLT0 memory address.

RESERVED 30:8 0x0 RSV N/A Reserved.

AUTO_INC 31 0b RW UNDEFINED Auto-Increment
Enable auto-increment. When this bit is set, the hardware automatically
increments the LINE_IDX on every XLT0_L1DATA write/read.

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
XLT0 entry data.

Field Bit(s) Init. Type CFG Policy Description

RX_SEL 4:0 0x0 RW UNDEFINED Rx Select
Selects which MDID is used to select md0 input to XLT0 for Rx traffic.

RESERVED 7:5 000b RSV N/A Reserved.

TX_SEL 12:8 0x0 RW UNDEFINED Tx Select
Selects which MDID is used to select md0 input to XLT0 for Tx traffic.

RESERVED 15:13 000b RSV N/A Reserved.

AUX0_SEL 20:16 0x0 RW UNDEFINED Aux 0 Select
Selects which MDID is used to select md0 input to XLT0 for Rx traffic.

RESERVED 23:21 000b RSV N/A Reserved.

AUX1_SEL 28:24 0x0 RW UNDEFINED Aux 1 Select
Selects which MDID is used to select md0 input to XLT0 for Rx traffic

RESERVED 29 0b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2180 613875-009

13.2.2.9.9 L1 Flag Select Table - GL_PSTEXT_FLGS_L1TBL[n]
(0x0020E060 + 0x4*n, n=0...2; RO)

13.2.2.9.10 L1 Flag Select Control (0-1) -
GL_PSTEXT_FLGS_L1SEL0_1[n] (0x0020E06C + 0x4*n,
n=0...2; RO)

13.2.2.9.11 L1 Flag Select Control (2-3) -
GL_PSTEXT_FLGS_L1SEL2_3[n] (0x0020E078 + 0x4*n,
n=0...2; RO)

BIDIR_ENA 31:30 00b RW UNDEFINED Bidirectional Enable
00b = Direction not part of XLT0 input.
01b = LSB bit of direction (GL_PSTEXT_FLGS_L1TBL output) is part of

XLT0 input.
10b = Two bits of direction (GL_PSTEXT_FLGS_L1TBL output) are part

of XLT0 input.
11b = Reserved.

Field Bit(s) Init. Type CFG Policy Description

LSB 15:0 0x0 RW UNDEFINED LSB
A 4b->1b (16 entry) table maps the Flags values into a direction
indication (LSB).

MSB 31:16 0x0 RW UNDEFINED MSB
A 4b->1b (16 entry) table maps the Flags values into a direction
indication (MSB).

Field Bit(s) Init. Type CFG Policy Description

FLS0 8:0 0x0 RW UNDEFINED Flag Select 0
Index of first flag used to define the direction from list of flags described
in the “MDID Namespace” section.

RESERVED 15:9 0x0 RSV N/A Reserved.

FLS1 24:16 0x0 RW UNDEFINED Flag Select 1
Index of second flag used to define the direction from list of flags
described in the “MDID Namespace” section

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLS2 8:0 0x0 RW UNDEFINED Flag Select 2
Index of third flag used to define the direction from list of flags described
in the “MDID Namespace” section.

RESERVED 15:9 0x0 RSV N/A Reserved.

FLS3 24:16 0x0 RW UNDEFINED Flag Select 3
Index of fourth flag used to define the direction from list of flags
described in the “MDID Namespace” section

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2181

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.12 L2 Configuration Table Address -
GL_PSTEXT_CTLTBL_L2ADDR[n] (0x0020E084 + 0x4*n,
n=0...2; RO)

13.2.2.9.13 L2 Configuration Table Data -
GL_PSTEXT_CTLTBL_L2DATA[n] (0x0020E090 + 0x4*n,
n=0...2; RO)

Field Bit(s) Init. Type CFG Policy Description

LINE_OFF 2:0 000b RW UNDEFINED Line Offset
Data selection for CTLTBL_L2DATA (see Section 13.2.2.9.13). Valid
values are 0...4.

RESERVED 7:3 0x0 RSV N/A Reserved.

LINE_IDX 10:8 000b RW UNDEFINED Line Index
CDID selection for MDID digest builder configuration.

RESERVED 30:11 0x0 RSV N/A Reserved.

AUTO_INC 31 0b RW UNDEFINED Auto-Increment
Auto-increment enable. When this bit is set, the hardware
auto-increments the LINE_OFF for every write/read of CTLTBL_L2DATA,
while incrementing LINE_IDX each time LINE_OFF reaches 0x4.
LINE_OFF wraps around on 0x4 value.

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
CTLTBL data according to CTLTBL_L2ADDR.LINE_OFF.
For LINE_OFF = 0x0

[2:0] = xlt1_adsel
[5:3] = xlt2_adsel
[14:6] = flg0_sel
[23:15] = flg1_sel
[31:24] = flg2_sel[7:0]

For LINE_OFF = 0x1
[0:0] = flg2_sel[5]
[9:1] = flg3_sel
[10:18] = flg4_sel
[27:19] = flg5_sel
[31:28] = flg6_sel[3:0]

For LINE_OFF = 0x2
[4:0] = flg6_sel[8:4]
[13:5] = flg7_sel
[22:14] = flg8_sel
[31:23] = flg9_sel

For LINE_OFF = 0x3
[8:0] = flg10_sel
[17:9] = flg11_sel
[26:18] = flg12_sel
[31:27] = flg13_sel[4:0]

For LINE_OFF = 0x4
[3:0] = flg13_sel[5:2]
[12:4] = flg14_sel
[21:13] = Reserved
[26:22] = xlt2_mdsel
[31:27] = xlt1_mdsel

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2182 613875-009

13.2.2.9.14 XLT1, XLT2 Partition Mode - GL_PSTEXT_L2PRTMOD[n]
(0x0020E09C + 0x4*n, n=0...2; RO)

13.2.2.9.15 XLT1 Table Configuration Address -
GL_PSTEXT_XLT1_L2ADDR[n] (0x0020E0C0 + 0x4*n,
n=0...2; RO)

13.2.2.9.16 XLT1 Table Configuration Data -
GL_PSTEXT_XLT1_L2DATA[n] (0x0020E0CC + 0x4*n,
n=0...2; RO)

Field Bit(s) Init. Type CFG Policy Description

XLT1 1:0 00b RW UNDEFINED XLT1
Selects the size of the partitions of XLT1:

00b = Single 8K entries partition.
01b = Two 4K entries partitions (selection by xlt1_adsel[0]).
10b = Four 2K entries partitions (selection by xlt1_adsel[1:0].
11b = Eight 1K entries partitions (selection by xlt1_adsel[2:0].

RESERVED 7:2 0x0 RSV N/A Reserved.

XLT2 9:8 00b RW UNDEFINED XLT2
Selects the size of the partitions of XLT2:

00b = Single 1K entries partition.
01b = Two 512 entries partitions (selection by xlt2_adsel[0]).
10b = Four 256 entries partitions (selection by xlt2_adsel[1:0].
11b = Eight 128 entries partitions (selection by xlt2_adsel[2:0].

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 10:0 0x0 RW UNDEFINED Line Index
XLT1 memory address.

RESERVED 30:11 0x0 RSV N/A Reserved.

AUTO_INC 31 0b RW UNDEFINED Auto-Increment
Enable auto-increment. When this bit is set, the hardware automatically
increments the LINE_IDX on every XLT1_L2DATA write/read.

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
XLT1 memory entry data.
Four consequent entries are read/written at once:

[7:0] = Offset 0
[15: 8] = Offset 1
[23:16] = Offset 2
[31:24] = Offset 3

613875-009 2183

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.17 XLT2 Table Configuration Address -
GL_PSTEXT_XLT2_L2ADDR[n] (0x0020E0D8 + 0x4*n,
n=0...2; RO)

13.2.2.9.18 XLT2 Table Configuration Data -
GL_PSTEXT_XLT2_L2DATA[n] (0x0020E0E4 + 0x4*n,
n=0...2; RO)

13.2.2.9.19 Profile ID Gen Key Type - GL_PSTEXT_PID_L2GKTYPE[n]
(0x0020E0F0 + 0x4*n, n=0...2; RO)

13.2.2.9.20 Profile Key Mask (LSB) - GL_PSTEXT_L2_PMASK0[n]
(0x0020E0FC + 0x4*n, n=0...2; RO)

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 8:0 0x0 RW UNDEFINED Line Index
XLT2 memory entry address.

RESERVED 30:9 0x0 RSV N/A Reserved.

AUTO_INC 31 0b RW UNDEFINED Auto-Increment
Enable auto-increment. When this bit is set, the hardware automatically
increments the LINE_IDX on every XLT2_L2DATA write/read.

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
XLT2 memory entry data.
Two consequent entries are read/written at once:

[15:0] = Offset 0
[31:16] = Offset 1

Field Bit(s) Init. Type CFG Policy Description

PID_GKTYPE 1:0 00b RW UNDEFINED Profile ID Gen Key Type
00b = CD bitmap not part of key.
01b = 2 bits of CD bitmap are part of key.
10b = 4 bits of CD bitmap are part of key.
11b = 8 bits of CD bitmap are part of key.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BITMASK 31:0 0x0 RW UNDEFINED Bitmask
MDID digest mask (32 LSBs).

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2184 613875-009

13.2.2.9.21 Profile Key Mask (MSB) - GL_PSTEXT_L2_PMASK1[n]
(0x0020E108 + 0x4*n, n=0...2; RO)

13.2.2.9.22 TCAM Configuration (Address) -
GL_PSTEXT_TCAM_L2ADDR[n] (0x0020E114 + 0x4*n,
n=0...2; RO)

13.2.2.9.23 TCAM Configuration LSB (Data) -
GL_PSTEXT_TCAM_L2DATALSB[n] (0x0020E120 + 0x4*n,
n=0...2; RO)

13.2.2.9.24 TCAM Configuration MSB (Data+Mask) -
GL_PSTEXT_TCAM_L2DATAMSB[n] (0x0020E12C + 0x4*n,
n=0...2; RO)

13.2.2.9.25 L2 Default Profile - GL_PSTEXT_DFLT_L2PRFL[n]
(0x0020E138 + 0x4*n, n=0...2; RO)

Field Bit(s) Init. Type CFG Policy Description

BITMASK 15:0 0x0 RW UNDEFINED Bitmask
MDID digest mask (16 MSBs).

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 9:0 0x0 RW UNDEFINED Line Index
TCAM entry index.

RESERVED 30:10 0x0 RSV N/A Reserved.

AUTO_INC 31 0b RW UNDEFINED Auto-Increment
Enable auto-increment. When this bit is set, the hardware automatically
increments the LINE_IDX on every TCAM_L2DATAMSB write/read.

Field Bit(s) Init. Type CFG Policy Description

DATALSB 31:0 0x0 RW UNDEFINED Data LSB
TCAM entry/inverted mask data (LSB).

Field Bit(s) Init. Type CFG Policy Description

DATAMSB 7:0 0x0 RW UNDEFINED Data MSB
TCAM entry/inverted mask data (MSB).

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DFLT_PRFL 15:0 0x1 RW UNDEFINED Default Profile
Profile IDX chosen when “no hit” in the TCAM.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2185

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.26 K2N Table Configuration Address -
GL_PSTEXT_K2N_L2ADDR[n] (0x0020E144 + 0x4*n,
n=0...2; RO)

13.2.2.9.27 K2N Table Configuration Data -
GL_PSTEXT_K2N_L2DATA[n] (0x0020E150 + 0x4*n,
n=0...2; RO)

13.2.2.9.28 K2N Table Configuration Address -
GL_PSTEXT_N2N_L2ADDR[n] (0x0020E15C + 0x4*n,
n=0...2; RW)

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 6:0 0x0 RW UNDEFINED Line Index
TCAM entry to Profile ID mapping entry index (each index serves four
TCAM entries).

RESERVED 30:7 0x0 RSV N/A Reserved.

AUTO_INC 31 0b RW UNDEFINED Auto-Increment
Enable auto-increment. When this bit is set, the hardware automatically
increments the LINE_IDX on every K2N_L2DATA write/read.

Field Bit(s) Init. Type CFG Policy Description

DATA0 7:0 0x0 RW UNDEFINED Data 0
TCAM entry #(4*K2N_L2ADDR.LINE_IDX) destination Profile ID.

DATA1 15:8 0x0 RW UNDEFINED Data 1
TCAM entry #(4*K2N_L2ADDR.LINE_IDX+1) destination Profile ID.

DATA2 23:16 0x0 RW UNDEFINED Data 2
TCAM entry #(4*K2N_L2ADDR.LINE_IDX+2) destination Profile ID.

DATA3 31:24 0x0 RW UNDEFINED Data 3
TCAM entry #(4*K2N_L2ADDR.LINE_IDX+3) destination Profile ID.

Field Bit(s) Init. Type CFG Policy Description

LINE_IDX 5:0 0x0 RW UNDEFINED Line Index
N2N table mapping entry index (each index serves four entries).

RESERVED 30:6 0x0 RSV N/A Reserved.

AUTO_INC 31 0b RW UNDEFINED Auto-Increment
Enable auto-increment. When this bit is set, the hardware automatically
increments the LINE_IDX on every K2N_L2DATA write/read.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2186 613875-009

13.2.2.9.29 K2N Table Configuration Data -
GL_PSTEXT_N2N_L2DATA[n] (0x0020E168 + 0x4*n,
n=0...2; RW)

13.2.2.9.30 Profile Memory Configuration Data -
GL_PSTEXT_PRFLM_DATA_0[n] (0x0020E174 + 0x4*n,
n=0...63; RO)

This register array is used by the PE to program QH filter entries.

13.2.2.9.31 Profile Memory Configuration Data -
GL_PSTEXT_PRFLM_DATA_1[n] (0x0020E274 + 0x4*n,
n=0...63; RO)

This register array is used by the PE to program QH filter entries.

Field Bit(s) Init. Type CFG Policy Description

DATA0 7:0 0x0 RW UNDEFINED Data 0
K2N entry #(4*N2N_L2ADDR.LINE_IDX) destination Profile ID.

DATA1 15:8 0x0 RW UNDEFINED Data 1
K2N entry #(4*N2N_L2ADDR.LINE_IDX+1) destination Profile ID.

DATA2 23:16 0x0 RW UNDEFINED Data 2
K2N entry #(4*N2N_L2ADDR.LINE_IDX+2) destination Profile ID.

DATA3 31:24 0x0 RW UNDEFINED Data 3
K2N entry #(4*N2N_L2ADDR.LINE_IDX+3) destination Profile ID.

Field Bit(s) Init. Type CFG Policy Description

PROT 7:0 0x0 RW UNDEFINED Protocol ID
Protocol ID in this FV location.

RESERVED 15:8 0x0 RSV N/A Reserved.

OFF 24:16 0x0 RW UNDEFINED Offset
Offset within protocol header.

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PROT 7:0 0x0 RW UNDEFINED Protocol ID
Protocol ID in this FV location.

RESERVED 15:8 0x0 RSV N/A Reserved.

OFF 24:16 0x0 RW UNDEFINED Offset
Offset within protocol header.

RESERVED 31:25 0x0 RSV N/A Reserved.

613875-009 2187

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.32 Profile Memory Configuration Data -
GL_PSTEXT_PRFLM_DATA_2[n] (0x0020E374 + 0x4*n,
n=0...63; RO)

This register array is used by the PE to program QH filter entries.

13.2.2.9.33 Profile Memory Configuration Control -
GL_PSTEXT_PRFLM_CTRL[n] (0x0020E474 + 0x4*n,
n=0...2; RO)

This register is used by the PE to program QH filter entries.

13.2.2.9.34 PG L2 Flag15 Bitmask (LSB) - GL_PSTEXT_FL15_BMPLSB[n]
(0x0020E480 + 0x4*n, n=0...2; RO)

Field Bit(s) Init. Type CFG Policy Description

PROT 7:0 0x0 RW UNDEFINED Protocol ID
Protocol ID in this FV location.

RESERVED 15:8 0x0 RSV N/A Reserved.

OFF 24:16 0x0 RW UNDEFINED Offset
Offset within protocol header.

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PRFL_IDX 7:0 0x0 RW UNDEFINED Profile Index
Programmed/read profile index.

RESERVED 29:8 0x0 RSV N/A Reserved.

RD_REQ 30 0b RW UNDEFINED Read Req
Setting the RD_REQ flag by the programming entity, the Profile “recipe”
is written to GL_PSTEXT_PRFLM_DATA_[n] array, n=0..2.
The RD_REQ flag is auto-cleared when the programming is received from
the Profile “Recipe” Memory.

WR_REQ 31 0b RW UNDEFINED Write Req
Setting the WR_REQ flag by the programming entity, the Profile “recipe”
is programmed by data previously written to
GL_PSTEXT_PRFLM_DATA_[n] array, n=0..2.
The WR_REQ flag is auto-cleared when the programming is sent to the
Profile “Recipe” Memory.

Field Bit(s) Init. Type CFG Policy Description

BMPLSB 31:0 0x0 RW UNDEFINED Bitmap LSB
32 LSBs of bitmask used for “flag 15” calculation.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2188 613875-009

13.2.2.9.35 PG L2 Flag15 Bitmask (MSB) -
GL_PSTEXT_FL15_BMPMSB[n] (0x0020E48C + 0x4*n,
n=0...2; RO)

13.2.2.9.36 Profile Key Mask (LSB) - GL_PSTEXT_L2_TMASK0[n]
(0x0020E498 + 0x4*n, n=0...2; RO)

13.2.2.9.37 Profile Key Mask (MSB) - GL_PSTEXT_L2_TMASK1[n]
(0x0020E4A4 + 0x4*n, n=0...2; RO)

13.2.2.9.38 Force Profile ID - GL_PREEXT_FORCE_PID[n] (0x0020F000
+ 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.1.

13.2.2.9.39 Profile Level Selector - GL_PREEXT_PLVL_SEL[n]
(0x0020F00C + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.2.

13.2.2.9.40 L1 Force CDID - GL_PREEXT_FORCE_L1CDID[n]
(0x0020F018 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.3.

13.2.2.9.41 L1 P2P Table Configuration Address -
GL_PREEXT_P2P_L1ADDR[n] (0x0020F024 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.4.

Field Bit(s) Init. Type CFG Policy Description

BMPMSB 31:0 0x0 RW UNDEFINED Bitmap MSB
32 MSBs of bitmask used for “flag 15” calculation.

Field Bit(s) Init. Type CFG Policy Description

BITMASK 31:0 0x0 RW UNDEFINED Bitmask
TCAM input mask (32 LSBs).

Field Bit(s) Init. Type CFG Policy Description

BITMASK 7:0 0x0 RW UNDEFINED Bitmask
TCAM input mask (8 MSBs).

RESERVED 31:8 0x0 RSV N/A Reserved.

613875-009 2189

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.42 L1 P2P Table Configuration Data -
GL_PREEXT_P2P_L1DATA[n] (0x0020F030 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.5.

13.2.2.9.43 XLT0 Table Configuration Address -
GL_PREEXT_XLT0_L1ADDR[n] (0x0020F03C + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.6.

13.2.2.9.44 XLT0 Table Configuration Data -
GL_PREEXT_XLT0_L1DATA[n] (0x0020F048 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.7.

13.2.2.9.45 L1 Bidirectional CTL - GL_PREEXT_CDMD_L1SEL[n]
(0x0020F054 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.8.

13.2.2.9.46 L1 Flag Select Table - GL_PREEXT_FLGS_L1TBL[n]
(0x0020F060 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.9.

13.2.2.9.47 L1 Flag Select Control (0-1) -
GL_PREEXT_FLGS_L1SEL0_1[n] (0x0020F06C + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.10.

13.2.2.9.48 L1 Flag Select Control (2-3) -
GL_PREEXT_FLGS_L1SEL2_3[n] (0x0020F078 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.11.

13.2.2.9.49 L2 Configuration Table Address -
GL_PREEXT_CTLTBL_L2ADDR[n] (0x0020F084 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.12.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2190 613875-009

13.2.2.9.50 L2 Configuration Table Data -
GL_PREEXT_CTLTBL_L2DATA[n] (0x0020F090 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.13.

13.2.2.9.51 XLT1, XLT2 Partition Mode - GL_PREEXT_L2PRTMOD[n]
(0x0020F09C + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.14.

13.2.2.9.52 PG L2 CDID Bitmap (LSB) - GL_PREEXT_L2BMP0_3[n]
(0x0020F0A8 + 0x4*n, n=0...2; RO)

13.2.2.9.53 PG L2 CDID Bitmap (MSB) - GL_PREEXT_L2BMP4_7[n]
(0x0020F0B4 + 0x4*n, n=0...2; RO)

13.2.2.9.54 XLT1 Table Configuration Address -
GL_PREEXT_XLT1_L2ADDR[n] (0x0020F0C0 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.15.

Field Bit(s) Init. Type CFG Policy Description

BMP0 7:0 0x1 RW UNDEFINED Bitmap 0
One-hot encoding for CDID 0.

BMP1 15:8 0x2 RW UNDEFINED Bitmap 1
One-hot encoding for CDID 1.

BMP2 23:16 0x4 RW UNDEFINED Bitmap 2
One-hot encoding for CDID 2.

BMP3 31:24 0x8 RW UNDEFINED Bitmap 3
One-hot encoding for CDID 3.

Field Bit(s) Init. Type CFG Policy Description

BMP4 7:0 0x10 RW UNDEFINED Bitmap 4
One-hot encoding for CDID 4.

BMP5 15:8 0x20 RW UNDEFINED Bitmap 5
One-hot encoding for CDID 5.

BMP6 23:16 0x40 RW UNDEFINED Bitmap 6
One-hot encoding for CDID 6.

BMP7 31:24 0x80 RW UNDEFINED Bitmap 7
One-hot encoding for CDID 7.

613875-009 2191

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.55 XLT1 Table Configuration Data -
GL_PREEXT_XLT1_L2DATA[n] (0x0020F0CC + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.16.

13.2.2.9.56 XLT2 Table Configuration Address -
GL_PREEXT_XLT2_L2ADDR[n] (0x0020F0D8 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.17.

13.2.2.9.57 XLT2 Table Configuration Data -
GL_PREEXT_XLT2_L2DATA[n] (0x0020F0E4 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.18.

13.2.2.9.58 Profile ID Gen Key Type - GL_PREEXT_PID_L2GKTYPE[n]
(0x0020F0F0 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.19.

13.2.2.9.59 Profile Key Mask (LSB) - GL_PREEXT_L2_PMASK0[n]
(0x0020F0FC + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.20.

13.2.2.9.60 Profile Key Mask (MSB) - GL_PREEXT_L2_PMASK1[n]
(0x0020F108 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.21.

13.2.2.9.61 TCAM Configuration (Address) -
GL_PREEXT_TCAM_L2ADDR[n] (0x0020F114 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.22.

13.2.2.9.62 TCAM Configuration LSB (Data) -
GL_PREEXT_TCAM_L2DATALSB[n] (0x0020F120 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.23.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2192 613875-009

13.2.2.9.63 TCAM Configuration MSB (Data+Mask) -
GL_PREEXT_TCAM_L2DATAMSB[n] (0x0020F12C + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.24.

13.2.2.9.64 L2 Default Profile - GL_PREEXT_DFLT_L2PRFL[n]
(0x0020F138 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.25.

13.2.2.9.65 K2N Table Configuration Address -
GL_PREEXT_K2N_L2ADDR[n] (0x0020F144 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.26.

13.2.2.9.66 K2N Table Configuration Data -
GL_PREEXT_K2N_L2DATA[n] (0x0020F150 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.27.

13.2.2.9.67 K2N Table Configuration Address -
GL_PREEXT_N2N_L2ADDR[n] (0x0020F15C + 0x4*n,
n=0...2; RW)

Field definitions are the same as those defined in Section 13.2.2.9.28.

13.2.2.9.68 K2N Table Configuration Data -
GL_PREEXT_N2N_L2DATA[n] (0x0020F168 + 0x4*n,
n=0...2; RW)

Field definitions are the same as those defined in Section 13.2.2.9.29.

13.2.2.9.69 Profile Key Mask (LSB) - GL_PREEXT_L2_TMASK0[n]
(0x0020F498 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.36.

13.2.2.9.70 Profile Key Mask (MSB) - GL_PREEXT_L2_TMASK1[n]
(0x0020F4A4 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.37.

613875-009 2193

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.71 Force Profile ID - GL_ACLEXT_FORCE_PID[n] (0x00210000
+ 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.1.

13.2.2.9.72 Profile Level Selector - GL_ACLEXT_PLVL_SEL[n]
(0x0021000C + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.2.

13.2.2.9.73 L1 Force CDID - GL_ACLEXT_FORCE_L1CDID[n]
(0x00210018 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.3.

13.2.2.9.74 L1 P2P Table Configuration Address -
GL_ACLEXT_P2P_L1ADDR[n] (0x00210024 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.4.

13.2.2.9.75 L1 P2P Table Configuration Data -
GL_ACLEXT_P2P_L1DATA[n] (0x00210030 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.5.

13.2.2.9.76 XLT0 Table Configuration Address -
GL_ACLEXT_XLT0_L1ADDR[n] (0x0021003C + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.6.

13.2.2.9.77 XLT0 Table Configuration Data -
GL_ACLEXT_XLT0_L1DATA[n] (0x00210048 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.7.

13.2.2.9.78 L1 Bidirectional CTL - GL_ACLEXT_CDMD_L1SEL[n]
(0x00210054 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.8.

13.2.2.9.79 L1 Flag Select Table - GL_ACLEXT_FLGS_L1TBL[n]
(0x00210060 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.9.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2194 613875-009

13.2.2.9.80 L1 Flag Select Control (0-1) -
GL_ACLEXT_FLGS_L1SEL0_1[n] (0x0021006C + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.10.

13.2.2.9.81 L1 Flag Select Control (2-3) -
GL_ACLEXT_FLGS_L1SEL2_3[n] (0x00210078 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.11.

13.2.2.9.82 L2 Configuration Table Address -
GL_ACLEXT_CTLTBL_L2ADDR[n] (0x00210084 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.12.

13.2.2.9.83 L2 Configuration Table Data -
GL_ACLEXT_CTLTBL_L2DATA[n] (0x00210090 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.13.

13.2.2.9.84 XLT1, XLT2 Partition Mode - GL_ACLEXT_L2PRTMOD[n]
(0x0021009C + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.14.

13.2.2.9.85 PG L2 CDID Bitmap (LSB) - GL_ACLEXT_L2BMP0_3[n]
(0x002100A8 + 0x4*n, n=0...2; RO)

Field Bit(s) Init. Type CFG Policy Description

BMP0 7:0 0x1 RW UNDEFINED Bitmap 0
One-hot encoding for CDID 0.

BMP1 15:8 0x2 RW UNDEFINED Bitmap 1
One-hot encoding for CDID 1.

BMP2 23:16 0x4 RW UNDEFINED Bitmap 2
One-hot encoding for CDID 2.

BMP3 31:24 0x8 RW UNDEFINED Bitmap 3
One-hot encoding for CDID 3.

613875-009 2195

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.86 PG L2 CDID Bitmap (MSB) - GL_ACLEXT_L2BMP4_7[n]
(0x002100B4 + 0x4*n, n=0...2; RO)

13.2.2.9.87 XLT1 Table Configuration Address -
GL_ACLEXT_XLT1_L2ADDR[n] (0x002100C0 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.15.

13.2.2.9.88 XLT1 Table Configuration Data -
GL_ACLEXT_XLT1_L2DATA[n] (0x002100CC + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.16.

13.2.2.9.89 XLT2 Table Configuration Address -
GL_ACLEXT_XLT2_L2ADDR[n] (0x002100D8 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.17.

13.2.2.9.90 XLT2 Table Configuration Data -
GL_ACLEXT_XLT2_L2DATA[n] (0x002100E4 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.18.

13.2.2.9.91 Profile ID Gen Key Type - GL_ACLEXT_PID_L2GKTYPE[n]
(0x002100F0 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.19.

13.2.2.9.92 Profile Key Mask (LSB) - GL_ACLEXT_L2_PMASK0[n]
(0x002100FC + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.20.

Field Bit(s) Init. Type CFG Policy Description

BMP4 7:0 0x10 RW UNDEFINED Bitmap 4
One-hot encoding for CDID 4.

BMP5 15:8 0x20 RW UNDEFINED Bitmap 5
One-hot encoding for CDID 5.

BMP6 23:16 0x40 RW UNDEFINED Bitmap 6
One-hot encoding for CDID 6.

BMP7 31:24 0x80 RW UNDEFINED Bitmap 7
One-hot encoding for CDID 7.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2196 613875-009

13.2.2.9.93 Profile Key Mask (MSB) - GL_ACLEXT_L2_PMASK1[n]
(0x00210108 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.21.

13.2.2.9.94 TCAM Configuration (Address) -
GL_ACLEXT_TCAM_L2ADDR[n] (0x00210114 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.22.

13.2.2.9.95 TCAM Configuration LSB (Data) -
GL_ACLEXT_TCAM_L2DATALSB[n] (0x00210120 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.23.

13.2.2.9.96 TCAM Configuration MSB (Data) -
GL_ACLEXT_TCAM_L2DATAMSB[n] (0x0021012C + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.24.

13.2.2.9.97 L2 Default Profile - GL_ACLEXT_DFLT_L2PRFL[n]
(0x00210138 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.25.

13.2.2.9.98 K2N Table Configuration Address -
GL_ACLEXT_K2N_L2ADDR[n] (0x00210144 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.26.

13.2.2.9.99 K2N Table Configuration Data -
GL_ACLEXT_K2N_L2DATA[n] (0x00210150 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.27.

13.2.2.9.100 K2N Table Configuration Address -
GL_ACLEXT_N2N_L2ADDR[n] (0x0021015C + 0x4*n,
n=0...2; RW)

Field definitions are the same as those defined in Section 13.2.2.9.28.

613875-009 2197

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.101 K2N Table Configuration Data -
GL_ACLEXT_N2N_L2DATA[n] (0x00210168 + 0x4*n,
n=0...2; RW)

Field definitions are the same as those defined in Section 13.2.2.9.29.

13.2.2.9.102 Profile Key Mask (LSB) - GL_ACLEXT_L2_TMASK0[n]
(0x00210498 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.36.

13.2.2.9.103 Profile Key Mask (MSB) - GL_ACLEXT_L2_TMASK1[n]
(0x002104A4 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.37.

13.2.2.9.104 L2 Default Profile - GL_ACLEXT_DFLT_L2PRFL_ACL[n]
(0x00393800 + 0x4*n, n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.2.9.25.

13.2.2.9.105 Tx Scheduling Correction Control -
GLFLXP_TX_SCHED_CORRECT[n,m] (0x00458000 + 0x4*n
+ 0x100*m, n=0...63, m=0...31; RO)

Controls the reporting of the Tx scheduling corrections from the Rx path, per operator.

The correlation between each field and each CSR within the operator is:

We have 4 corrections per operator, each using 16 tupples (tupple 0 being the highest priority
tupple) of protID & recipe.

So:

Correction 0 uses m=0..7, where tupple0/tupple1 use m=0, tupple2/tupple3 use m=1,... tupple14/
tupple15 use m=7.

Correction 1 uses m=8..15, where tupple0/tupple1 use m=8, tupple2/tupple3 use m=9,...
tupple14/tupple15 use m=15

Correction 2 uses m=16..23, where tupple0/tupple1 use m=16, tupple2/tupple3 use m=17,...
tupple14/tupple15 use m=23

Correction 3 uses m=24..31, where tupple0/tupple1 use m=24, tupple2/tupple3 use m=25,...
tupple14/tupple15 use m=31

Field Bit(s) Init. Type CFG Policy Description

PROTD_ID_2N 7:0 0x0 RW UNDEFINED Protocol ID 2n
ProtID 2n of offset “offset” of operator “operator” to look for in the
packet’s reported protIDs using prioritization mechanism of “look
first for lowest n”.

RECIPE_2N 12:8 0x0 RW UNDEFINED Recipe 2n
Recipe 2n of offset “offset” of operator “operator” to be reported in
case the matching protID was found (“won” in the priority list) in
the packet.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2198 613875-009

13.2.2.9.106 ProtIDs for Creating RRX CMD Offsets -
GLFLXP_RX_CMD_PROTIDS[n,m] (0x0045A000 + 0x4*n +
0x400*m, n=0...255, m=0...5; RO)

Determines the protID for the L3 protocols to match the ones configured in the Analyzer (for later
parsing in the Rx-Pipe).

13.2.2.9.107 PTYPE_10b to PTYPE_8b Translation -
GLFLXP_PTYPE_TRANSLATION[n] (0x0045C000 + 0x4*n,
n=0...255; RO)

RESERVED 15:13 000b RSV N/A Reserved.

PROTD_ID_2N_1 23:16 0x0 RW UNDEFINED Protocol ID 2n+1
ProtID 2n+1 of offset “offset” of operator “operator” to look for in
the packet’s reported protIDs using prioritization mechanism of
“look first for lowest n”.

RECIPE_2N_1 28:24 0x0 RW UNDEFINED Recipe 2n+1
Recipe 2n+1 of offset “offset” of operator “operator” to be reported
in case the matching protID was found (“won” in the priority list) in
the packet.

RESERVED 31:29 000b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PROTID_4N 7:0 0x0 RW UNDEFINED Protocol ID 4n
ProtID #0 for creating offset N to RDPU (out of the 6 RDPU offsets).

PROTID_4N_1 15:8 0x0 RW UNDEFINED Protocol ID 4n+1
ProtID #1 for creating offset N to RDPU (out of the 6 RDPU offsets).

PROTID_4N_2 23:16 0x0 RW UNDEFINED Protocol ID 4n+2
ProtID #2 for creating offset N to RDPU (out of the 6 RDPU offsets).

PROTID_4N_3 31:24 0x0 RW UNDEFINED Protocol ID 4n+3
ProtID #3 for creating offset N to RDPU (out of the 6 RDPU offsets).

Field Bit(s) Init. Type CFG Policy Description

PTYPE_4N 7:0 0x0 RW UNDEFINED PTYPE 4n
PTYPE_8b for PTYPE_10b N.

PTYPE_4N_1 15:8 0x0 RW UNDEFINED PTYPE 4n+1
PTYPE_8b for PTYPE_10b N+1.

PTYPE_4N_2 23:16 0x0 RW UNDEFINED PTYPE 4n+2
PTYPE_8b for PTYPE_10b N+2.

PTYPE_4N_3 31:24 0x0 RW UNDEFINED PTYPE 4n+3
PTYPE_8b for PTYPE_10b N+3.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2199

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.108 LX Prot & Index for Rx CMD -
GLFLXP_RX_CMD_LX_PROT_IDX[n] (0x0045C400 + 0x4*n,
n=0...255; RO)

Determines the LX prot and cloud/L4/payload offsets index per 8b PTPYE for RDPU.

13.2.2.9.109 RXDID FlexiWord 0 Control -
GLFLXP_RXDID_FLX_WRD_0[n] (0x0045C800 + 0x4*n,
n=0...63; RO)

Controls the reporting of FlexiWord 0 in the flexible Rx-Descriptors, per RXDID. Default value is meant
to be aligned with legacy behavior (RSS/FDID).

Field Bit(s) Init. Type CFG Policy Description

INNER_CLOUD_OFFSET_INDEX 2:0 000b RW UNDEFINED Inner Cloud Offset Index
Index of “L3_header_offset_*” that defines first
inner header of the packet (After Outer IP/GRE/
Outer UDP).
Value of 000b means there is no cloud tunneling
header.

RESERVED 3 0b RSV N/A Reserved.

L4_OFFSET_INDEX 6:4 000b RW UNDEFINED L4 Offset Index
Index of “L3_header_offset_*” that defines the L4
header in the packet.
Value of 000b means there is no L4 header.

RESERVED 7 0b RSV N/A Reserved.

PAYLOAD_OFFSET_INDEX 10:8 000b RW UNDEFINED Payload Offset Index
Index of “L3_header_offset_*” that defines the
payload in the packet.
Value of 000b means there is no L4 header.

RESERVED 11 0b RSV N/A Reserved.

L3_PROTOCOL 13:12 00b RW UNDEFINED L3 Protocol
Indicates the first L3 protocol of the packet:

00b = IP4
01b = IPv6
10b = Non-valid value
11b = Other

L4_PROTOCOL 15:14 00b RW UNDEFINED L4 Protocol
Indicates the last L4 protocol of the packet.

00b = TCP
01b = UDP
10b = SCTP
11b = Other

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PROT_MDID 7:0 0x38 RW UNDEFINED Protocol ID or MDID
This field can hold a protID value or a MDID value (for
flexiword[n] of RXDID_IDX “RXDID_idx”). Its decoding is
based on the RXDID_OPCODE field.

ProtID: For reporting its offset or for extracting pkt bytes
from its offset.

MDID: For reporting the MDID's content.
Default value is aimed to serve the selection of RSS (low
word), to match legacy behavior.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2200 613875-009

13.2.2.9.110 RXDID FlexiWord 1 Control -
GLFLXP_RXDID_FLX_WRD_1[n] (0x0045C900 + 0x4*n,
n=0...63; RO)

Controls the reporting of FlexiWord 1 in the flexible Rx-Descriptors, per RXDID. Default value is meant
to be aligned with legacy behavior (RSS/FDID).

EXTRACTION_OFFSET 17:8 0x0 RW UNDEFINED Extraction Offset
Relevant only if PROT_MDID field is a ProtID.
Used as offset within protID to extract bytes from the packet.
Its usage is based on RXDID_OPCODE field.

RESERVED 29:18 0x0 RSV N/A Reserved.

RXDID_OPCODE 31:30 01b RW UNDEFINED RXDID Opcode
Opcode to decide what to report in flexword[n] into the
Rx-Descriptor:

00b = Fixed Value — Report the value from PROT_MDID field
itself (for debug purposes).

01b = Metadata Offset — Report the selected MD word from
the internal FlexiPipe buses.

10b = Extraction Offset — Report the value of bytes (protID’s
offset + byte offset) in the packet.

11b = Protocol Offset — Report the offset to the selected
protocol.

Field Bit(s) Init. Type CFG Policy Description

PROT_MDID 7:0 0x39 RW UNDEFINED Protocol ID or MDID
This field can hold a protID value or a MDID value (for
flexiword[n] of RXDID_IDX “RXDID_idx”). Its decoding is
based on the RXDID_OPCODE field.

ProtID: For reporting its offset or for extracting pkt bytes
from its offset.

MDID: For reporting the MDID's content.
Default value is aimed to serve the selection of RSS (high
word), to match legacy behavior.

EXTRACTION_OFFSET 17:8 0x0 RW UNDEFINED Extraction Offset
Relevant only if PROT_MDID field is a ProtID.
Used as offset within protID to extract bytes from the packet.
Its usage is based on RXDID_OPCODE field.

RESERVED 29:18 0x0 RSV N/A Reserved.

RXDID_OPCODE 31:30 01b RW UNDEFINED RXDID Opcode
Opcode to decide what to report in flexword[n] into the
Rx-Descriptor:

00b = Fixed Value — Report the value from PROT_MDID field
itself (for debug purposes).

01b = Metadata Offset — Report the selected MD word from
the internal FlexiPipe buses.

10b = Extraction Offset — Report the value of bytes (protID’s
offset + byte offset) in the packet.

11b = Protocol Offset — Report the offset to the selected
protocol.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2201

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.111 RXDID FlexiWord 2 Control -
GLFLXP_RXDID_FLX_WRD_2[n] (0x0045CA00 + 0x4*n,
n=0...63; RO)

Controls the reporting of FlexiWord 2 in the flexible Rx-Descriptors, per RXDID. Default value is meant
to be aligned with legacy behavior (RSS/FDID).

13.2.2.9.112 RXDID FlexiWord 3 Control -
GLFLXP_RXDID_FLX_WRD_3[n] (0x0045CB00 + 0x4*n,
n=0...63; RO)

Controls the reporting of FlexiWord 3 in the flexible Rx-Descriptors, per RXDID. Default value is meant
to be aligned with legacy behavior (RSS/FDID).

Field Bit(s) Init. Type CFG Policy Description

PROT_MDID 7:0 0x0 RW UNDEFINED Protocol ID or MDID
This field can hold a protID value or a MDID value (for
flexiword[n] of RXDID_IDX “RXDID_idx”). Its decoding is
based on the RXDID_OPCODE field.

ProtID: For reporting its offset or for extracting pkt bytes
from its offset.

MDID: For reporting the MDID's content.
Default = 0 (genericMD_word0.

EXTRACTION_OFFSET 17:8 0x0 RW UNDEFINED Extraction Offset
Relevant only if PROT_MDID field is a ProtID.
Used as offset within protID to extract bytes from the packet.
Its usage is based on RXDID_OPCODE field.

RESERVED 29:18 0x0 RSV N/A Reserved.

RXDID_OPCODE 31:30 01b RW UNDEFINED RXDID Opcode
Opcode to decide what to report in flexword[n] into the
Rx-Descriptor:

00b = Fixed Value — Report the value from PROT_MDID field
itself (for debug purposes).

01b = Metadata Offset — Report the selected MD word from
the internal FlexiPipe buses.

10b = Extraction Offset — Report the value of bytes (protID’s
offset + byte offset) in the packet.

11b = Protocol Offset — Report the offset to the selected
protocol.

Field Bit(s) Init. Type CFG Policy Description

PROT_MDID 7:0 0x1 RW UNDEFINED Protocol ID or MDID
This field can hold a protID value or a MDID value (for
flexiword[n] of RXDID_IDX “RXDID_idx”). Its decoding is
based on the RXDID_OPCODE field.

ProtID: For reporting its offset or for extracting pkt bytes
from its offset.

MDID: For reporting the MDID's content.
Default = 1 (genericMD_word1).

EXTRACTION_OFFSET 17:8 0x0 RW UNDEFINED Extraction Offset
Relevant only if PROT_MDID field is a ProtID.
Used as offset within protID to extract bytes from the packet.
Its usage is based on RXDID_OPCODE field.

RESERVED 29:18 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2202 613875-009

13.2.2.9.113 RXDID FlexiWord 4 Control -
GLFLXP_RXDID_FLX_WRD_4[n] (0x0045CC00 + 0x4*n,
n=0...63; RO)

Controls the reporting of FlexiWord 4 in the flexible Rx-Descriptors, per RXDID. Default value is meant
to be aligned with legacy behavior (RSS/FDID).

RXDID_OPCODE 31:30 01b RW UNDEFINED RXDID Opcode
Opcode to decide what to report in flexword[n] into the
Rx-Descriptor:

00b = Fixed Value — Report the value from PROT_MDID field
itself (for debug purposes).

01b = Metadata Offset — Report the selected MD word from
the internal FlexiPipe buses.

10b = Extraction Offset — Report the value of bytes (protID’s
offset + byte offset) in the packet.

11b = Protocol Offset — Report the offset to the selected
protocol.

Field Bit(s) Init. Type CFG Policy Description

PROT_MDID 7:0 0x5 RW UNDEFINED Protocol ID or MDID
This field can hold a protID value or a MDID value (for
flexiword[n] of RXDID_IDX “RXDID_idx”). Its decoding is
based on the RXDID_OPCODE field.

ProtID: For reporting its offset or for extracting pkt bytes
from its offset.

MDID: For reporting the MDID's content.
Default value is aimed to serve the selection of FlowID (low
word), to match legacy behavior (called “FDFID” in legacy).

EXTRACTION_OFFSET 17:8 0x0 RW UNDEFINED Extraction Offset
Relevant only if PROT_MDID field is a ProtID.
Used as offset within protID to extract bytes from the packet.
Its usage is based on RXDID_OPCODE field.

RESERVED 29:18 0x0 RSV N/A Reserved.

RXDID_OPCODE 31:30 01b RW UNDEFINED RXDID Opcode
Opcode to decide what to report in flexword[n] into the
Rx-Descriptor:

00b = Fixed Value — Report the value from PROT_MDID field
itself (for debug purposes).

01b = Metadata Offset — Report the selected MD word from
the internal FlexiPipe buses.

10b = Extraction Offset — Report the value of bytes (protID’s
offset + byte offset) in the packet.

11b = Protocol Offset — Report the offset to the selected
protocol.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2203

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

13.2.2.9.114 RXDID FlexiWord 5 Control -
GLFLXP_RXDID_FLX_WRD_5[n] (0x0045CD00 + 0x4*n,
n=0...63; RO)

Controls the reporting of FlexiWord 5 in the flexible Rx-Descriptors, per RXDID. Default value is meant
to be aligned with legacy behavior (RSS/FDID).

13.2.2.9.115 RXDID FlexiFlags Control - GLFLXP_RXDID_FLAGS[n,m]
(0x0045D000 + 0x4*n + 0x100*m, n=0...63, m=0...4; RO)

Controls the reporting of the FlexiFlags in the flexible Rx-Descriptors.

Field Bit(s) Init. Type CFG Policy Description

PROT_MDID 7:0 0x6 RW UNDEFINED Protocol ID or MDID
This field can hold a protID value or a MDID value (for
flexiword[n] of RXDID_IDX “RXDID_idx”). Its decoding is
based on the RXDID_OPCODE field.

ProtID: For reporting its offset or for extracting pkt bytes
from its offset.

MDID: For reporting the MDID's content.
Default value is aimed to serve the selection of FlowID (high
word), to match legacy behavior (called “FDFID” in legacy).

EXTRACTION_OFFSET 17:8 0x0 RW UNDEFINED Extraction Offset
Relevant only if PROT_MDID field is a ProtID.
Used as offset within protID to extract bytes from the packet.
Its usage is based on RXDID_OPCODE field.

RESERVED 29:18 0x0 RSV N/A Reserved.

RXDID_OPCODE 31:30 01b RW UNDEFINED RXDID Opcode
Opcode to decide what to report in flexword[n] into the
Rx-Descriptor:

00b = Fixed Value — Report the value from PROT_MDID field
itself (for debug purposes).

01b = Metadata Offset — Report the selected MD word from
the internal FlexiPipe buses.

10b = Extraction Offset — Report the value of bytes (protID’s
offset + byte offset) in the packet.

11b = Protocol Offset — Report the offset to the selected
protocol.

Field Bit(s) Init. Type CFG Policy Description

FLEXIFLAG_4N 5:0 0x0 RW UNDEFINED FlexiFlag 4n
Determines the flag index to be reported in flexiflag[4*m] of
RXDID_IDX “n” from the 64 available flags in the FlexiPipe.

RESERVED 7:6 00b RSV N/A Reserved.

FLEXIFLAG_4N_1 13:8 0x0 RW UNDEFINED FlexiFlag 4n+1
Same for 4m+1.

RESERVED 15:14 00b RSV N/A Reserved.

FLEXIFLAG_4N_2 21:16 0x0 RW UNDEFINED FlexiFlag 4n+2
Same for 4m+2.

RESERVED 23:22 00b RSV N/A Reserved.

FLEXIFLAG_4N_3 29:24 0x0 RW UNDEFINED FlexiFlag 4n+3
Same for 4m+3.

RESERVED 31:30 00b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - FlexiPipe Registers

2204 613875-009

13.2.2.9.116 RXDID Flags1 Override Control -
GLFLXP_RXDID_FLAGS1_OVERRIDE[n] (0x0045D600 +
0x4*n, n=0...63; RO)

Controls the overriding of the FlexiFlags1 in the flexible Rx-Descriptors with RDPU related information.

13.2.2.9.117 Queue Context Flex Extension - QRXFLXP_CNTXT[QRX]
(0x00480000 + 0x4*QRX, QRX=0...2047; RW)

Extension to the legacy queue context, supporting RXDID and TimeSync information.

Field Bit(s) Init. Type CFG Policy Description

FLEXIFLAGS1_OVERIDE 3:0 0x0 RW UNDEFINED FlexiFlags 1 Override
If Bit[0] is set, EXT_UDP_0 indication from RDPU replaces
the value of flexiflags1[0].
If Bit[1] is set, INT_UDP_0 indication from RDPU replaces
the value of flexiflags1[1].
If Bit[2] is set, RECIPE_ERROR indication from RDPU
replaces the value of flexiflags1[2].
If Bit[3] is set: OVERSIZE indication from RDPU replaces the
value of flexiflags1[3].

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RXDID_IDX 5:0 0x0 RW UNDEFINED RXDID Index
Default RXDID_idx for this queue.

RESERVED 7:6 00b RSV N/A Reserved.

RXDID_PRIO 10:8 001b RW UNDEFINED RXDID Priority
Priority of this RXDID_idx to be compared against previous priority
from the pipe. If equal, this one wins.

TS 11 0b RW UNDEFINED Timestamp
Timestamp reporting per Rx packet enabled for this queue.

RESERVED 31:12 0x0 RSV N/A Reserved.

613875-009 2205

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Parser Registers

13.2.2.10 PF - Parser Registers

13.2.2.10.1 PRS Balancer Config - GL_PRS_RX_SIZE_CTRL
(0x00200004; RO)

13.2.2.10.2 Rx-Query Pipe-Status Init for Word 0-6 -
GL_PRS_RX_PIPE_INIT0[n] (0x0020000C + 0x4*n,
n=0...6; RO)

13.2.2.10.3 Rx-Query Pipe-Status Init for Word 7 -
GL_PRS_RX_PIPE_INIT1 (0x00200028; RO)

13.2.2.10.4 Rx-Query Pipe-Status Init for Word 8 -
GL_PRS_RX_PIPE_INIT2 (0x0020002C; RO)

Field Bit(s) Init. Type CFG Policy Description

MIN_SIZE 9:0 0x3C RW UNDEFINED Minimum Size
Minimum frame size (bytes).

RESERVED 14:10 0x0 RSV N/A Reserved.

MIN_SIZE_EN 15 0b RW UNDEFINED Minimum Size Enable
Enable undersize (<49 bytes) frames padding.

MAX_SIZE 25:16 0x1F8 RW UNDEFINED Maximum Size
Maximum frame size (bytes).

RESERVED 30:26 0x0 RSV N/A Reserved.

MAX_SIZE_EN 31 1b RW UNDEFINED Maximum Size Enable
0b = Read entire packet.
1b = Enable read of header only.

Must be set to 1b.

Field Bit(s) Init. Type CFG Policy Description

GPCSR_INIT 15:0 0xFFFF RW UNDEFINED GPCSR Initial
Initial value of this word in the pipe_status.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GPCSR_INIT 15:0 0x0040 RW UNDEFINED GPCSR Initial
Initial value of this word in the pipe_status.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GPCSR_INIT 15:0 0x2492 RW UNDEFINED GPCSR Initial
Initial value of this word in the pipe_status.

RESERVED 31:16 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Parser Registers

2206 613875-009

13.2.2.10.5 XLR Marker Trigger - GL_XLR_MARKER_TRIG_RCU_PRS
(0x002001C0; RO)

13.2.2.10.6 QH Removal Marker Trigger -
GL_QH_MARKER_TRIG_RCU_PRS[n] (0x002001C4 + 0x4*n,
n=0...3; RO)

13.2.2.10.7 COTF Marker Trigger -
GL_COTF_MARKER_TRIG_RCU_PRS[n] (0x002001D4 +
0x4*n, n=0...7; RO)

Field Bit(s) Init. Type CFG Policy Description

VM_VF_NUM 9:0 0x0 RW UNDEFINED VF/VM Number
The number of the VF/VM to be reset (invalid if VM_VF_TYPE = PF).

VM_VF_TYPE 11:10 00b RW UNDEFINED VF/VM Type
00b = Reset for VF
01b = Reset for VM.
10b = Reset for PF only.
11b = Reserved.

PF_NUM 14:12 000b RW UNDEFINED PF Number
PF number of the reset operation (should be valid in VM/VF reset type
as well).

RESERVED 15 0b RSV N/A Reserved.

PORT_NUM 18:16 000b RW UNDEFINED Port Number
The port to which the function belongs.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QPID 17:0 0x0 RW UNDEFINED Queue Pair ID
RDMA queue pair ID.

PE_TAG 25:18 0x0 RW UNDEFINED PE Tag
Internal PE tag.

PORT_NUM 28:26 000b RW UNDEFINED Port Number
The port to which the function belongs.

RESERVED 30:29 00b RSV N/A Reserved.

SET_RST 31 0b SC UNDEFINED SET_RST
0b = Event is cleared.
1b = Writing operation to this array (0..3) bit triggers marker injection

to TCs under PORT_NUM port.

Field Bit(s) Init. Type CFG Policy Description

SET_RST 0 0b SC UNDEFINED SET_RST
Writing operation to this array (0..7) triggers marker injection for all TCs.
Cleared when marker is sent.

RESERVED 31:1 0x0 RSV N/A Reserved.

613875-009 2207

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Parser Registers

13.2.2.10.8 XLR Debug Markers Status - GL_XLR_MARKER_STATUS[n]
(0x002001F4 + 0x4*n, n=0...1; RO)

13.2.2.10.9 QH Debug Markers Status - GL_QH_MARKER_STATUS
(0x002001FC; RO)

13.2.2.10.10 COTF Debug Markers Status - GL_COTF_MARKER_STATUS
(0x00200200; RO)

13.2.2.10.11 PRS Markers Error Indication (Marker FIFO Full) -
GL_PRS_MARKER_ERROR (0x00200204; RO)

Field Bit(s) Init. Type CFG Policy Description

MRKR_BUSY 31:0 0x0 RO N/A Marker Busy
Each respective bit represents a pending marker injection, by order of
triggering.
When 1, indicates marker has not been fully sent yet. 0 means sent.
From 2 CSRs - 40 LSb are valid.
This CSR should be read before initiating a new XLR marker, to make
sure that at least one bit here signals “not-busy”.

Field Bit(s) Init. Type CFG Policy Description

MRKR_BUSY 3:0 0x0 RO N/A Marker Busy
Each respective bit represents a pending marker injection, by order of
triggering.
When 1, indicates marker has not been fully sent yet. 0 means sent.
This CSR should be read before initiating a new PE marker, to make sure
that the index that will be used is indeed “not-busy”.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MRKR_BUSY 7:0 0x0 RO N/A Marker Busy
Each respective bit represents a pending marker injection, by order of
triggering.
When 1, indicates marker has not been fully sent yet. 0 means sent.
This CSR should be read before initiating a new COTF marker, to make
sure that the index that will be used is indeed “not-busy”.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

XLR_CFG_ERR 0 0b RCW UNDEFINED XLR Config Error
Sticky bit. Clears on read.

QH_CFG_ERR 1 0b RCW UNDEFINED QH Config Error
Sticky bit. Clears on read.

COTF_CFG_ERR 2 0b RCW UNDEFINED COTF Config Error
Sticky bit. Clears on read.

RESERVED 31:3 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Parser Registers

2208 613875-009

13.2.2.10.12 PRS Marker FIFO Read Access -
GL_XLR_MARKER_LOG_RCU_PRS[n] (0x00200208 + 0x4*n,
n=0...63; RO)

13.2.2.10.13 Rx ANA CSR Access Control - GL_RPRS_ANA_CSR_CTRL
(0x00200708; RO)

13.2.2.10.14 Pipe Monitor Threshold - GL_TPRS_PM_THR (0x00202000;
RO)

13.2.2.10.15 MNG Pipe Monitor Threshold - GL_TPRS_MNG_PM_THR
(0x00202004; RO)

Field Bit(s) Init. Type CFG Policy Description

XLR_TRIG 31:0 0x0 RO N/A XLR Trigger
Each array index relevant to the configured XLR trigger index. Each CSR
contains exact write data as logged in CSR write access to
XLR_MARKER_TRIG.

Field Bit(s) Init. Type CFG Policy Description

SELECT_EN 0 0b RW UNDEFINED Select Enable
Enable single selected access to ANA0/1.

0b = CSR access to ANA register is broadcasted to both analyzers.
Read data is driven only by ANA0.

1b = CSR access is pointed to a single analyzer according to
SELECTED_ANA bit.

SELECTED_ANA 1 0b RW UNDEFINED Selected Analyzer
Selected analyzer for CSR access.

0b = CSR access is pointed to Analyzer 0.
1b = CSR access is pointed to Analyzer 1.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PM_THR 13:0 0x2B20 RW UNDEFINED Pipe Monitor Threshold
In byte count resolution.

RESERVED 31:14 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MNG_PM_THR 13:0 0x1 RW UNDEFINED Management Pipe Monitor Threshold
Pipe monitor threshold for management commands.

RESERVED 31:14 0x0 RSV N/A Reserved.

613875-009 2209

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Parser Registers

13.2.2.10.16 Pipe Monitor Counters Status - GL_TPRS_PM_CNT[n]
(0x00202008 + 0x4*n, n=0...1; RO)

13.2.2.10.17 Tx-Query Min/Max Size Control - GL_PRS_TX_SIZE_CTRL
(0x00202014; RO)

13.2.2.10.18 Tx-Query Pipe-Status Init for Word 0-6 -
GL_PRS_TX_PIPE_INIT0[n] (0x00202018 + 0x4*n, n=0...6;
RO)

13.2.2.10.19 Tx-Query Pipe-Status Init for Word 7 -
GL_PRS_TX_PIPE_INIT1 (0x00202034; RO)

Field Bit(s) Init. Type CFG Policy Description

GL_PRS_PM_CNT 13:0 0x0 RO UNDEFINED Pipe Monitor Counter
Contains the current PM Counter value.

RESERVED 31:14 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MIN_SIZE 9:0 0x3C RW UNDEFINED Minimum Size
Minimum frame size (bytes).

RESERVED 14:10 0x0 RSV N/A Reserved.

MIN_SIZE_EN 15 1b RW UNDEFINED Minimum Size Enable
Min size padding enable.

MAX_SIZE 25:16 0x1F8 RW UNDEFINED Maximum Size
Maximum frame size (bytes).

RESERVED 30:26 0x0 RSV N/A Reserved.

MAX_SIZE_EN 31 1b RW UNDEFINED Maximum Size Enable
Max size chopping enable.

Field Bit(s) Init. Type CFG Policy Description

GPCSR_INIT 15:0 0xFFFF RW UNDEFINED GPCSR Initial
Initial value of this word in the pipe_status.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GPCSR_INIT 15:0 0x1000 RW UNDEFINED GPCSR Initial
Initial value of this word in the pipe_status.

RESERVED 31:16 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Parser Registers

2210 613875-009

13.2.2.10.20 Tx-Query Pipe-Status Init for Word 8 -
GL_PRS_TX_PIPE_INIT2 (0x00202038; RO)

13.2.2.10.21 Tx ANA CSR Access Control - GL_TPRS_ANA_CSR_CTRL
(0x00202100; RO)

Field definitions are the same as those defined in Section 13.2.2.10.13.

13.2.2.10.22 XLR Marker Trigger PE - GL_XLR_MARKER_TRIG_PE
(0x005008C0; RO)

Field definitions are the same as those defined in Section 13.2.2.10.5.

Field Bit(s) Init. Type CFG Policy Description

GPCSR_INIT 15:0 0x2492 RW UNDEFINED GPCSR Initial
Initial value of this word in the pipe_status.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2211

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

13.2.2.11 PF - Switch Registers

Registers used to describe the switch behavior.

13.2.2.11.1 Port - TC Transmit UP Replacement - PRT_TCTUPR[n]
(0x00040840 + 0x4*n, n=0...31; RW)

Defines the TC-based Tx UP remapping.

13.2.2.11.2 IPsec Function limiting - GL_SWT_FUNCFILT (0x001D2698;
RO)

Field Bit(s) Init. Type CFG Policy Description

UP0 2:0 000b RW UNDEFINED UP 0
Defines the UP to set if UP in packet is zero and packet is sent through TC
#n.

RESERVED 3 0b RSV N/A Reserved.

UP1 6:4 001b RW UNDEFINED UP 1
Defines the UP to set if UP in packet is one and packet is sent through TC
#n.

RESERVED 7 0b RSV N/A Reserved.

UP2 10:8 010b RW UNDEFINED UP 2
Defines the UP to set if UP in packet is two and packet is sent through TC
#n.

RESERVED 11 0b RSV N/A Reserved.

UP3 14:12 011b RW UNDEFINED UP 3
Defines the UP to set if UP in packet is three and packet is sent through
TC #n.

RESERVED 15 0b RSV N/A Reserved.

UP4 18:16 100b RW UNDEFINED UP 4
Defines the UP to set if UP in packet is four and packet is sent through TC
#n.

RESERVED 19 0b RSV N/A Reserved.

UP5 22:20 101b RW UNDEFINED UP 5
Defines the UP to set if UP in packet is five and packet is sent through TC
#n.

RESERVED 23 0b RSV N/A Reserved.

UP6 26:24 110b RW UNDEFINED UP 6
Defines the UP to set if UP in packet is six and packet is sent through TC
#n.

RESERVED 27 0b RSV N/A Reserved.

UP7 30:28 111b RW UNDEFINED UP 7
Defines the UP to set if UP in packet is seven and packet is sent through
TC #n.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FUNCFILT 0 0b RW UNDEFINED Function Filter
If set, receiving VSI function should match the function of the packet as
indicated by the description engine.

RESERVED 31:1 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

2212 613875-009

13.2.2.11.3 Large Action - Single Action Offset - GL_SWT_LAT_SINGLE
(0x00204000; RO)

13.2.2.11.4 Large Action - Double Action Offset - GL_SWT_LAT_DOUBLE
(0x00204004; RO)

13.2.2.11.5 Large Action - Quad Action Offset - GL_SWT_LAT_QUAD
(0x00204008; RO)

13.2.2.11.6 Replication Table Control - EMP_SWT_REPIND
(0x0020401C; RO)

Field Bit(s) Init. Type CFG Policy Description

BASE 10:0 0x0 RW UNDEFINED Base
Base of Single Action section in Large Action Table (encoded as base/4).

RESERVED 15:11 0x0 RSV N/A Reserved.

SIZE 26:16 0x0 RW UNDEFINED Size
Size of Single Action section in Large Action Table (encoded as size/4).

RESERVED 31:27 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BASE 10:0 0x0 RW UNDEFINED Base
Base of Double Action section in Large Action Table (encoded as base/4).

RESERVED 15:11 0x0 RSV N/A Reserved.

SIZE 26:16 0x0 RW UNDEFINED Size
Size of Double Action section in Large Action Table (encoded as size/4).

RESERVED 31:27 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BASE 10:0 0x0 RW UNDEFINED Base
Base of Quad Action section in Large Action Table (encoded as base/4).

RESERVED 15:11 0x0 RSV N/A Reserved.

SIZE 26:16 0x0 RW UNDEFINED Size
Size of Quad Action section in Large Action Table (encoded as size/4).

RESERVED 31:27 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

OPCODE 3:0 0x0 RW UNDEFINED Opcode
0x0 = Done
0x1 = Write (clears on done)
0x2 = Read (clears on done)
0x3 = Write All (clears on done)
0x4 = Read All “And” (clears on done)
0x5 = Read All “Nor” (clears on done)
0x6 = Reserved
0x7 = Read Error (status)

613875-009 2213

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

13.2.2.11.7 Prune Table Control - EMP_SWT_PRUNIND (0x00204020;
RO)

LIST_INDEX_NUMBER 13:4 0x0 RW UNDEFINED List Index Number
Address of the prune table. Allows 0-1023 access range.

RESERVED 15:14 00b RSV N/A Reserved.

VSI_NUM 25:16 0x0 RW UNDEFINED VSI Number
Bit index of VSI bit vector (prune table line). Allowed values
are 0-383. Accessing >383 causes “Read Error” status.

RESERVED 30:26 0x0 RSV N/A Reserved.

BIT_VALUE 31 0b RW UNDEFINED Bit Value
Write — Bit write value to VSI index.
Read — Upon Opcode=0, bit read value of VSI index.
Write All — Bit write value to all VSIs (entire line).
Read All “And” — The “And” (&) result of entire line (all ones).
Read All “Nor” — The “Nor” result of entire line (all zeros).

Field Bit(s) Init. Type CFG Policy Description

OPCODE 3:0 0x0 RW UNDEFINED Opcode
0x0 = Done
0x1 = Write (clears on done)
0x2 = Read (clears on done)
0x3 = Write All (clears on done)
0x4 = Read All “And” (clears on done)
0x5 = Read All “Nor” (clears on done)
0x6 = Reserved
0x7 = Read Error (status)

LIST_INDEX_NUMBER 13:4 0x0 RW UNDEFINED List Index Number
Address of the prune table. Allows 0-1023 access range.

RESERVED 15:14 00b RSV N/A Reserved.

VSI_NUM 25:16 0x0 RW UNDEFINED VSI Number
Bit index of VSI bit vector (prune table line). Allowed values
are 0-383. Accessing >383 causes “Read Error” status.

RESERVED 30:26 0x0 RSV N/A Reserved.

BIT_VALUE 31 0b RW UNDEFINED Bit Value
Write — Bit write value to VSI index.
Read — Upon Opcode=0, bit read value of VSI index.
Write All — Bit write value to all VSIs (entire line).
Read All “And” — The “And” (&).

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

2214 613875-009

13.2.2.11.8 Unallowed Override Attempt Count - GL_OVERRIDEC
(0x002040A4; RWC)

13.2.2.11.9 Switch Metadata Priority - GL_SWT_MD_PRI (0x002040AC;
RO)

13.2.2.11.10 Storm Control - Multicast Current Count -
PRT_SWT_MSCCNT (0x00204100; RWC)

Field Bit(s) Init. Type CFG Policy Description

OVERRIDE_ATTEMPTC 15:0 0x0 RWC UNDEFINED Override Attempt Count
Increments on each override attempt from source VSI for
which VSI_SRCSWCTRL.ALLOWDESTOVERRIDE is not set
(override attempt is setting non-zero value in the SWTCH field
of the descriptor).

LAST_VSI 25:16 0x0 RWC UNDEFINED Last VSI
The value of the last source VSI that attempted override and
its VSI_SRCSWCTRL.ALLOWDESTOVERRIDE is not set
(override attempt is setting non-zero value in the SWTCH field
of the descriptor).

RESERVED 31:26 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VSI_PRI 2:0 011b RW UNDEFINED VSI Priority
Priority of VSI action.

RESERVED 3 0b RSV N/A Reserved.

LB_PRI 6:4 011b RW UNDEFINED Loopback Priority
Priority of Loopback Enable action.

RESERVED 7 0b RSV N/A Reserved.

LAN_EN_PRI 10:8 011b RW UNDEFINED LAN Enable Priority
Priority of LAN Enable action.

RESERVED 11 0b RSV N/A Reserved.

QH_PRI 14:12 110b RW UNDEFINED Queue High Priority
Priority of queuing actions with Q_SET = 1 in action.

RESERVED 15 0b RSV N/A Reserved.

QL_PRI 18:16 100b RW UNDEFINED Queue Low Priority
Priority of queuing actions with Q_SET = 0 in action.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CCOUNT 24:0 0x0 RO N/A Current Count
IBSC traffic current count.
Represents the count of multicast traffic received in the current time
interval in units of 64-byte segments.

RESERVED 31:25 0x0 RSV N/A Reserved.

613875-009 2215

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

13.2.2.11.11 Port - Store Bad Packets VSI - PRT_SBPVSI (0x00204120;
RO)

13.2.2.11.12 Storm Control - Status - PRT_SCSTS (0x00204140; RO)

13.2.2.11.13 Storm Control - Broadcast Current Count -
PRT_SWT_BSCCNT (0x00204160; RWC)

13.2.2.11.14 Storm Control - Broadcast Threshold - PRT_SWT_BSCTRH
(0x00204180; RO)

Field Bit(s) Init. Type CFG Policy Description

BAD_FRAMES_VSI 9:0 0x0 RW UNDEFINED Bad Frames VSI
Indicates the VSI used to forward error packets if the SBP bit is
set.

RESERVED 30:10 0x0 RSV N/A Reserved.

SBP 31 0b RW UNDEFINED Store Bad Packets
If set, pass bad frames to the VSI defined in the
BAD_FRAMES_VSI field.

Field Bit(s) Init. Type CFG Policy Description

BSCA 0 0b RO N/A Broadcast Storm Control Active
Broadcast storm control active.

BSCAP 1 0b RO N/A Broadcast Storm Control Active Previous
Broadcast storm control active in previous window.

MSCA 2 0b RO N/A Multicast Storm Control Active
Multicast storm control active.

MSCAP 3 0b RO N/A Multicast Storm Control Active Previous
Multicast storm control active in previous window.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CCOUNT 24:0 0x0 RO N/A Current Count
IBSC traffic current count.
Represents the count of broadcast traffic received in the current time
interval in units of 64-byte segments.

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UTRESH 18:0 0x0 RW UNDEFINED Upper Threshold
Traffic upper threshold size.
Represents the upper threshold for broadcast storm control.

RESERVED 31:19 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

2216 613875-009

13.2.2.11.15 Storm Control - Multicast Threshold - PRT_SWT_MSCTRH
(0x002041C0; RO)

13.2.2.11.16 Storm Control - Basic Interval - PRT_SWT_SCBI
(0x002041E0; RO)

13.2.2.11.17 Storm Control - Control Register - PRT_SWT_SCCRL
(0x00204200; RO)

Field Bit(s) Init. Type CFG Policy Description

UTRESH 18:0 0x0 RW UNDEFINED Upper Threshold
Traffic upper threshold size.
Represents the upper threshold for multicast storm control.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BI 24:0 0x2710 RW UNDEFINED Basic Interval
Basic interval in 100 Mb/s port link rate in 1 μs strobes.
The default is equivalent to 1 Mbit of data.
Notes:

1. Initial value defines a basic interval of 10 ms at 100 Mb/s link speed.
2. The interval in higher port link rates is divided by the link speed/100

Mb/s to get the new interval.

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MDIPW 0 0b RW UNDEFINED Multicast Drop if Previous Window
Drop multicast packets (excluding flow control packets) if multicast
threshold is exceeded in previous window.

MDICW 1 0b RW UNDEFINED Multicast Drop if Current Window
Drop multicast packets (excluding flow control packets) if multicast
threshold is exceeded in current window.

BDIPW 2 0b RW UNDEFINED Broadcast Drop if Previous Window
Drop broadcast packets if broadcast threshold is exceeded in previous
window.

BDICW 3 0b RW UNDEFINED Broadcast Drop if Current Window
Drop broadcast packets if broadcast threshold is exceeded in current
window.

RESERVED 7:4 0x0 RSV N/A Reserved.

INTERVAL 27:8 0xA RW UNDEFINED Interval
BSC/MSC time interval specification.
The interval size for applying Ingress Broadcast or Multicast Storm
Control. Interrupt decisions are made at the end of each interval (and
most flags are also set at interval end). Setting this field resets the
counter.

RESERVED 31:28 0x0 RSV N/A Reserved.

613875-009 2217

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

13.2.2.11.18 Mirror - LAN Port Ingress Rule - PRT_SWT_MIRIG
(0x00204280; RO)

This register defines the rules that request to mirror ingress VSI n.

13.2.2.11.19 Mirror - LAN Port Egress Rule - PRT_SWT_MIREG
(0x002042A0; RO)

This register defines the rules that request to mirror egress VSI n.

13.2.2.11.20 Mirror - Target VSI - GL_SWT_MIRTARVSI[n] (0x00204500
+ 0x4*n, n=0...63; RO)

This register defines the destination VSI of mirror rules.

Field Bit(s) Init. Type CFG Policy Description

MIRRULE 5:0 0x0 RW UNDEFINED Mirror Rule
Mirror rule index.

RESERVED 6 0b RSV N/A Reserved.

MIRENA 7 0b RW UNDEFINED Mirror Enable
Mirror enable.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MIRRULE 5:0 0x0 RW UNDEFINED Mirror Rule
Mirror rule index.

RESERVED 6 0b RSV N/A Reserved.

MIRENA 7 0b RW UNDEFINED Mirror Enable
Mirror enable.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VFVMNUMBER 9:0 0x0 RW UNDEFINED VF/VM Number
Defines the VF this VSI belongs to, or the VM within the PF
associated with this VSI.
Must be zero if VSI type is PF or EMP (VSI_VSI2F.FUNCTIONTYPE
=10b or 11b, respectively).
If the VSI is of type VM (VSI_VSI2F.FUNCTIONTYPE = 01b), this
number should be equal to the VSI number.

FUNCTIONTYPE 11:10 00b RW UNDEFINED Function Type
Defines the type of VSI:

00b = VF
01b = VM
10b = PF
11b = EMP

PFNUMBER 14:12 000b RW UNDEFINED PF Number
Defines the PF this VSI belongs to.
Should be set to the PF number for all VSI types except EMP
(VSI_VSI2PF.FUNCTIONTYPE = 00b, 01b, or 10b).

RESERVED 19:15 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

2218 613875-009

13.2.2.11.21 SWID Stat Block ID - GLSWID_STAT_BLOCK[n]
(0x0020A1A4 + 0x4*n, n=0...255; RO)

Defines if one of 32 VEB statistic block is associated with this switch ID.

13.2.2.11.22 Switch Recipes Used - GLSWT_ACT_RESP_0 (0x0020A5A4;
RO)

13.2.2.11.23 Switch Recipes Used - GLSWT_ACT_RESP_1 (0x0020A5A8;
RO)

Field definitions are the same as those defined in Section 13.2.2.11.22.

13.2.2.11.24 Throughput Counters Config - GL_PLG_AVG_CALC_CFG
(0x0020A5AC; RW)

TARGETVSI 29:20 0x0 RW UNDEFINED Target VSI
Defines the target VSI of mirror rule #n.

RESERVED 30 0b RSV N/A Reserved.

RULEENABLE 31 0b RW UNDEFINED Rule Enable
If set, this mirror rule is enabled.

Field Bit(s) Init. Type CFG Policy Description

VEBID 4:0 0x0 RW UNDEFINED VEB ID
Defines the stat block ID to which the switch ID is associated.

RESERVED 30:5 0x0 RSV N/A Reserved.

VEBID_VALID 31 0b RW UNDEFINED VEB ID Valid
A switch ID may not be associated with any switch block
(GLSWID_STAT_BLOCK.VEBID_VALID = 0b)

Field Bit(s) Init. Type CFG Policy Description

GLSWT_ACT_RESP 31:0 0x0 RO UNDEFINED Action Recipes
Bitmap of recipes used in actions.

Field Bit(s) Init. Type CFG Policy Description

CYCLE_LEN 30:0 0x0 RW UNDEFINED Cycle Length

MODE 31 0b RW UNDEFINED Mode

Field Bit(s) Init. Type CFG Policy Description

613875-009 2219

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

13.2.2.11.25 Throughput Counters Status - GL_PLG_AVG_CALC_ST
(0x0020A5B0; RO)

13.2.2.11.26 Hardware Arb Control - GLSWT_ARB_MODE (0x0020A674;
RW)

13.2.2.11.27 Recipe Data - GL_PRE_CFG_DATA[n] (0x00214074 + 0x4*n,
n=0...6; RO)

Indirect configuration of RCU pre-LUTs.

13.2.2.11.28 Recipe Command - GL_PRE_CFG_CMD (0x00214090; RO)

Indirect configuration of RCU pre-LUTs.

Field Bit(s) Init. Type CFG Policy Description

IN_DATA 14:0 0x0 RO UNDEFINED In Data

RESERVED 15 0b RSV N/A Reserved.

OUT_DATA 30:16 0x0 RO UNDEFINED Out Data

VALID 31 0b RO UNDEFINED Valid

Field Bit(s) Init. Type CFG Policy Description

FLU_PRI_SHM 0 0b RW UNDEFINED FLU Priority
rcu_swr FLU-->KGG collectors ARB:

0b = Prioritized according to FIFO level (above occupancy of 4).
1b = RR.

TX_RX_FWD_PRI 1 0b RW UNDEFINED Tx/Rx Forward Priority
Tx/Rx replica arbitration at MFIFO output:

0b = RR.
1b = SP to Tx.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GL_PRE_RCP_DATA 31:0 0x0 RW UNDEFINED Pre RCP Data

Field Bit(s) Init. Type CFG Policy Description

ADDR 12:0 0x0 WO UNDEFINED Address
Index within the table.

RESERVED 15:13 000b RSV N/A Reserved.

TBLIDX 18:16 000b WO UNDEFINED Table Index
000b = Recipes
001b = Profile to recipe mapping
010b = Queue context
011b = Large actions
100b = Dependent recipes table
All other values are reserved.

RESERVED 28:19 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Switch Registers

2220 613875-009

13.2.2.11.29 Virtual Port Switch ID - GL_VP_SWITCHID[n] (0x00214094
+ 0x4*n, n=0...31; RO)

13.2.2.11.30 SWID Field Vector Index - GL_SWT_SWIDFVIDX
(0x00214114; RO)

13.2.2.11.31 FW Config Status - GL_SWT_FW_STS[n] (0x00216000 +
0x4*n, n=0...5; RO)

CMD 29 0b WO UNDEFINED Command
0b = Read
1b = Write

RESERVED 30 0b RSV N/A Reserved.

DONE 31 0b ROCV N/A Done
Done indication. Cleared on read.

Field Bit(s) Init. Type CFG Policy Description

SWITCHID 7:0 0x0 RW UNDEFINED Switch ID
Source VSI Switch ID.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SWIDFVIDX 5:0 0x0 RW UNDEFINED Switch ID Field Vector Index
Destination of Switch ID in the Field Vector.

RESERVED 30:6 0x0 RSV N/A Reserved.

PORT_TYPE 31 0b RW UNDEFINED Port Type
Selects Virtual or Physical port Switch ID.

0b = Physical
1b = Virtual

Field Bit(s) Init. Type CFG Policy Description

GL_SWT_FW_STS 31:0 0x0 RO UNDEFINED Firmware Config Status

Field Bit(s) Init. Type CFG Policy Description

613875-009 2221

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

13.2.2.12 PF - VSI Context Registers

These registers create the VSI context. Unless otherwise stated, these registers are accessed by
internal firmware. There are 768 VSI contexts shared between all PFs. All VSIs are accessible to all
functions, but each function should access only the VSIs allocated to it.

13.2.2.12.1 VSI Tag Insert Register - First Tag - VSI_TIR_0[VSI]
(0x00041000 + 0x4*VSI, VSI=0...767; RO)

Controls the port (VSI) based insertion of tags.

13.2.2.12.2 VSI Tag Insert Register - Second Tag - VSI_TIR_1[VSI]
(0x00042000 + 0x4*VSI, VSI=0...767; RO)

Controls the port (VSI) based insertion of tags.

13.2.2.12.3 VSI Tag Insert Register - Third Tag - VSI_TIR_2[VSI]
(0x00043000 + 0x4*VSI, VSI=0...767; RO)

Controls the port (VSI) based insertion of tags.

13.2.2.12.4 VSI Tag Alternate Insert Register - VSI_TAIR[VSI]
(0x00044000 + 0x4*VSI, VSI=0...767; RO)

Contains the alternate port (VSI) based tag for selected queues.

Field Bit(s) Init. Type CFG Policy Description

PORT_TAG_ID 15:0 0x0 RW UNDEFINED Port Tag ID
Port (VSI) L2 tag to insert. The tag to insert to is defined in the
VSI_L2TAGSTXVALID.TIR0INSERTID field. The insert enable is
VSI_L2TAGSTXVALID.TIR0_INSERT.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORT_TAG_ID 31:0 0x0 RW UNDEFINED Port Tag ID
Port (VSI) L2 tag to insert. The tag to insert to is defined in the
VSI_L2TAGSTXVALID.TIR1INSERTID field. The insert enable is
VSI_L2TAGSTXVALID.TIR1_INSERT.

Field Bit(s) Init. Type CFG Policy Description

PORT_TAG_ID 15:0 0x0 RW UNDEFINED Port Tag ID
Port (VSI) L2 tag to insert. The tag to insert to is defined in the
VSI_L2TAGSTXVALID.TIR2INSERTID field. The insert enable is
VSI_L2TAGSVALID.TIR2_INSERT.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORT_TAG_ID 15:0 0x0 RW UNDEFINED Port Tag ID
Port VLAN tag to insert if the VSI_L2TAGSTXVALID.TIR0_INSERT is
set and the ALT_VLAN bit in the transmit queue context is set.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

2222 613875-009

13.2.2.12.5 VSI Tag Accept Register - VSI_TAR[VSI] (0x00045000 +
0x4*VSI, VSI=0...767; RO)

Defines which tags can be accepted from the driver. This register impacts only tag insertion from the
driver and not tag insertion by the hardware.

13.2.2.12.6 VSI L2 Tx Tags Control - VSI_L2TAGSTXVALID[VSI]
(0x00046000 + 0x4*VSI, VSI=0...767; RO)

Identifies which of the eight L2 tags are available for this port for Tx traffic.

Note: The IDs for all the valid tags should be different.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ACCEPTTAGGED 9:0 0x0 RW UNDEFINED Accept Tagged
A bitmap describing if a packet with tag N is accepted.
Note: The two first bits are mapped to the pre L2 and MAC

headers.

RESERVED 15:10 0x0 RSV N/A Reserved.

ACCEPTUNTAGGED 25:16 0x0 RW UNDEFINED Accept Untagged
A bitmap describing if a packet without tag N is accepted (if
L2TAGCTRL.ISVLAN is set, admits also priority tagged packets
(VLAN tag = 0)).
Note: The two first bits are mapped to the pre L2 and MAC

headers.

RESERVED 31:26 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

L2TAG1INSERTID 2:0 000b RW UNDEFINED L2 Tag1 Insert ID
Defines the tag ID to which the value in the L2TAG1
descriptor field should be inserted.
This field is valid only if L2TAG1INSERTID_VALID is set.
Otherwise, insertion requests from L2TAG1 are ignored.

L2TAG1INSERTID_VALID 3 0b RW UNDEFINED L2 Tag1 Inserted ID Valid
If set, the L2TAG1INSERTID field contains a valid value.

L2TAG2INSERTID 6:4 000b RW UNDEFINED L2 Tag2 Insert ID
Defines the tag ID to which the value in the L2TAG2
descriptor field should be inserted.
This field is valid only if L2TAG2INSERTID_VALID is set.
Otherwise, insertion requests from L2TAG2 are ignored.

L2TAG2INSERTID_VALID 7 0b RW UNDEFINED L2 Tag2 Inserted ID Valid
If set, the L2TAG2INSERTID field contains a valid value.

RESERVED 15:8 0x0 RSV N/A Reserved.

TIR0INSERTID 18:16 000b RW UNDEFINED TIR0 Insert ID
Defines the tag ID to which the value in the
VSI_TIR[0].PORT_TAG_ID field should be inserted.
The tags encoding is described in Section 7.12.3.4, “Tag
Handling - Programming Interface”.
The tag is inserted only if the TIR0_INSERT bit is set.
This tag is the only one that supports alternate tagging
using the VSI_TAIR value.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2223

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

13.2.2.12.7 VSI Transmit UP Replacement - VSI_TUPR[VSI]
(0x00047000 + 0x4*VSI, VSI=0...767; RO)

Defines the VSI-based Tx UP remapping.

TIR0_INSERT 19 0b RW UNDEFINED TIR0 Insert
Insert the tag in VSI_TIR_0 to the L2 Tag pointed by the
TIR0INSERID field.

TIR1INSERTID 22:20 000b RW UNDEFINED TIR1 Insert ID
Defines the tag ID to which the value in the
VSI_TIR[1].PORT_TAG_ID field should be inserted.
See TIR0INSERTID description for this field encoding.
The tag is inserted only if the TIR1_INSERT bit is set.

TIR1_INSERT 23 0b RW UNDEFINED TIR1 Insert
Insert the tag in VSI_TIR_1 to the L2 Tag pointed by the
TIR1INSERID field.

TIR2INSERTID 26:24 000b RW UNDEFINED TIR2 Insert ID
Defines the tag ID to which the value in the
VSI_TIR[2].PORT_TAG_ID field should be inserted.
See TIR0INSERTID description for this field encoding.
The tag is inserted only if the TIR2_INSERT bit is set.

TIR2_INSERT 27 0b RW UNDEFINED TIR2 Insert
Insert the tag in VSI_TIR_2 to the L2 Tag pointed by the
TIR2INSERID field.

RESERVED 31:28 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UP0 2:0 000b RW UNDEFINED UP 0
Defines the UP to set if UP in packet is zero.

UP1 5:3 000b RW UNDEFINED UP 1
Defines the UP to set if UP in packet is one.

UP2 8:6 000b RW UNDEFINED UP 2
Defines the UP to set if UP in packet is two.

UP3 11:9 000b RW UNDEFINED UP 3
Defines the UP to set if UP in packet is three.

UP4 14:12 000b RW UNDEFINED UP 4
Defines the UP to set if UP in packet is four.

UP5 17:15 000b RW UNDEFINED UP 5
Defines the UP to set if UP in packet is five.

UP6 20:18 000b RW UNDEFINED UP 6
Defines the UP to set if UP in packet is six.

UP7 23:21 000b RW UNDEFINED UP 7
Defines the UP to set if UP in packet is seven.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

2224 613875-009

13.2.2.12.8 VSI Transmit UP Inner to Outer Mapping -
VSI_TUPIOM[VSI] (0x00048000 + 0x4*VSI, VSI=0...767;
RO)

Defines the VSI-based Tx UP remapping.

13.2.2.12.9 VSI Receive UP Replacement - VSI_RUPR[VSI]
(0x00050000 + 0x4*VSI, VSI=0...767; RW)

Defines the VSI based Rx UP remapping. The tag on which this translation is done is the tag for which
the L2TAGSCTRL.INNERUP is set.

Field Bit(s) Init. Type CFG Policy Description

UP0 2:0 000b RW UNDEFINED UP 0
Defines the UP to set in outer tag if UP in inner tag is zero.

UP1 5:3 000b RW UNDEFINED UP 1
Defines the UP to set in outer tag if UP in inner tag is one.

UP2 8:6 000b RW UNDEFINED UP 2
Defines the UP to set in outer tag if UP in inner tag is two.

UP3 11:9 000b RW UNDEFINED UP 3
Defines the UP to set in outer tag if UP in inner tag is three.

UP4 14:12 000b RW UNDEFINED UP 4
Defines the UP to set in outer tag if UP in inner tag is four.

UP5 17:15 000b RW UNDEFINED UP 5
Defines the UP to set in outer tag if UP in inner tag is five.

UP6 20:18 000b RW UNDEFINED UP 6
Defines the UP to set in outer tag if UP in inner tag is six.

UP7 23:21 000b RW UNDEFINED UP 7
Defines the UP to set in outer tag if UP in inner tag is seven.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UP0 2:0 000b RW UNDEFINED UP 0
Defines the UP to set if UP in packet is zero.

UP1 5:3 000b RW UNDEFINED UP 1
Defines the UP to set if UP in packet is one.

UP2 8:6 000b RW UNDEFINED UP 2
Defines the UP to set if UP in packet is two.

UP3 11:9 000b RW UNDEFINED UP 3
Defines the UP to set if UP in packet is three.

UP4 14:12 000b RW UNDEFINED UP 4
Defines the UP to set if UP in packet is four.

UP5 17:15 000b RW UNDEFINED UP 5
Defines the UP to set if UP in packet is five.

UP6 20:18 000b RW UNDEFINED UP 6
Defines the UP to set if UP in packet is six.

UP7 23:21 000b RW UNDEFINED UP 7
Defines the UP to set if UP in packet is seven.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2225

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

13.2.2.12.10 VSI Tag Strip Register - VSI_TSR[VSI] (0x00051000 +
0x4*VSI, VSI=0...767; RW)

Defines the behavior of tag extraction from receive packets.

13.2.2.12.11 PASID Context - VSI_PASID[VSI] (0x0009C000 + 0x4*VSI,
VSI=0...767; RW)

PASID context per VSI.

Field Bit(s) Init. Type CFG Policy Description

STRIPTAG 9:0 0x0 RW UNDEFINED Strip Tag
A per tag bitmap defining which tags to strip from the packet. The
SHOWTAG and SHOWPRIONLY fields define which part of the tag to
extract to descriptor.
Note: The two LS bits of this field relate to the pre-L2 and MAC

headers and should not be set. Bits 9:2 should be used to
configure the striping of the L2 tags.

SHOWTAG 19:10 0x0 RW UNDEFINED Show Tag
A per tag bitmap defining which tags to extract to the descriptor. The
SHOWPRIONLY field defines which part of the tag to extract to the
descriptor.
At most, two of these bits should be set. If more than two bits are set,
only the two first ones are considered.
See For details on the format in the descriptor, see Section 10.4.2.2,
“Receive Descriptor - Write-Back Format”.

SHOWPRIONLY 29:20 0x0 RW UNDEFINED Strip Priority Only
A per tag bitmap defining which par of the tags to extract to the
descriptor. If set, only the priority bits are extracted. Otherwise the
entire tag is used. Relevant only if the corresponding bit in SHOWTAG
is set.
Note: The two LS bits of this field relate to the pre-L2 and MAC

headers and should not be set. Bits 9:2 should be used to
configure the exposure of the L2 tags priority bits.

RESERVED 31:30 00b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PASID 19:0 0x0 RW UNDEFINED Process Address Space ID
PASID value of PASID TLP prefix.

RESERVED 30:20 0x0 RSV N/A Reserved.

EN 31 0b RW UNDEFINED Enable
Valid for PASID field.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

2226 613875-009

13.2.2.12.12 VSI to Function Mapping Multicast - VSI_VSI2F[VSI]
(0x001D0000 + 0x4*VSI, VSI=0...767; RW)

This register indicates the function owning the VSI.

13.2.2.12.13 VSI Rx Switch Control - VSI_RXSWCTRL[VSI] (0x00205000
+ 0x4*VSI, VSI=0...767; RO)

Field Bit(s) Init. Type CFG Policy Description

VFVMNUMBER 9:0 0x0 RW UNDEFINED VF/VM Number
Defines the VF this VSI belongs to, or the VM within the PF
associated with this VSI.
Must be zero if VSI type is PF or EMP (VSI_VSI2F.FUNCTIONTYPE
=10b or 11b, respectively).
If the VSI is of type VM (VSI_VSI2F.FUNCTIONTYPE = 01b), this
number should be equal to the VSI number.

FUNCTIONTYPE 11:10 00b RW UNDEFINED Function Type
Defines the type of VSI:

00b = VF
01b = VM
10b = PF
11b = EMP

PFNUMBER 14:12 000b RW UNDEFINED PF Number
Defines the PF this VSI belongs to.
Should be set to the PF number for all VSI types except EMP
(VSI_VSI2PF.FUNCTIONTYPE = 00b, 01b, or 10b).

RESERVED 15 0b RSV N/A Reserved.

BUFFERNUMBER 18:16 0x0 RW UNDEFINED Buffer Number
Defines the buffer in the EMP that is used for this VSI. Relevant only
if FUNCTIONTYPE = EMP (11b).

RESERVED 19 0b RSV N/A Reserved.

VSI_NUMBER 29:20 0x0 RW UNDEFINED VSI Number
Defines the VSI number of this VSI. The default of this field in the
VSI#.
This field is not used for VSI redirection.
Note: This field is a candidate for removal in future gen products

and software/firmware should refrain from referring it.

RESERVED 30 0b RSV N/A Reserved.

VSI_ENABLE 31 0b RW UNDEFINED VSI Enable
When set, this VSI is enabled and can receive or transmit packets.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 7:0 0x0 RSV N/A Reserved.

MACVSIPRUNEENABLE 8 0b RW UNDEFINED MAC VSI Prune Enable
If set, inverse actions are applied to Rx traffic to this VSI
(used in default image for MAC source pruning).

PRUNEENABLE 12:9 0x0 RW UNDEFINED Prune Enable
Defines which pruning modes are enabled for Rx traffic. Each
bit matches one of the prune index in the recipe (offset
181:180).

SRCPRUNEENABLE 13 0b RW UNDEFINED Source Prune Enable
Enable source pruning. If set, a packet is not received by this
VSI if sent from it.

RESERVED 31:14 0x0 RSV N/A Reserved.

613875-009 2227

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

13.2.2.12.14 Mirror - Rx Rules VSIs - VSI_SWT_MIREG[VSI]
(0x00207000 + 0x4*VSI, VSI=0...767; RO)

This register defines the rules that request to mirror egress VSI n.

13.2.2.12.15 Mirror - Tx Rules VSIs - VSI_SWT_MIRIG[VSI] (0x00208000
+ 0x4*VSI, VSI=0...767; RO)

This register defines the rules that request to mirror ingress VSI n.

13.2.2.12.16 VSI Source Switch Control - VSI_SRCSWCTRL[VSI]
(0x00209000 + 0x4*VSI, VSI=0...767; RO)

These registers contain the switch ID for each VF. If the VF is identified by an STag, this field should
include the STag and the ISNSTAG should be cleared. Otherwise, it should include a switch ID and the
ISNSTAG should be set.

Field Bit(s) Init. Type CFG Policy Description

MIRRULE 5:0 0x0 RW UNDEFINED Mirror Rule
Mirror rule index.

RESERVED 6 0b RSV N/A Reserved.

MIRENA 7 0b RW UNDEFINED Mirror Enable
Mirror enable.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MIRRULE 5:0 0x0 RW UNDEFINED Mirror Rule
Mirror rule index.

RESERVED 6 0b RSV N/A Reserved.

MIRENA 7 0b RW UNDEFINED Mirror Enable
Mirror enable.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ALLOWDESTOVERRIDE 0 0b RW UNDEFINED Allow Destination Override
Allows destination override by transmit descriptor.

ALLOWLOOPBACK 1 0b RW UNDEFINED Allow Loopback
Allows forwarding of packets from this VSI to local VSIs.

LANENABLE 2 0b RW UNDEFINED LAN Enable
If set, packets sent from this VSI can be sent to the external
port.

MACAS 3 0b RW UNDEFINED MAC Anti-Spoofing
Enabling recipes where the inverse_action is set for Tx
packets (Enables MAC anti-spoofing in default setting)

PRUNEENABLE 7:4 0x0 RW UNDEFINED Prune Enable
Enables prune actions for Tx traffic. According to the
prune_index in recipe (offset 181:180).

RESERVED 31:8 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

2228 613875-009

13.2.2.12.17 Source VSI Switch ID - VSI_SWITCHID[VSI] (0x00215000
+ 0x4*VSI, VSI=0...767; RO)

13.2.2.12.18 VSI Classification Filter - Hash Key - VSIQF_HKEY[n,VSI]
(0x00400000 + 0x1000*n + 0x4*VSI, n=0...12,
VSI=0...767; RW)

13.2.2.12.19 VSI Classification Filter - Hash Control -
VSIQF_HASH_CTL[VSI] (0x0040D000 + 0x4*VSI,
VSI=0...767; RW)

Field Bit(s) Init. Type CFG Policy Description

SWITCHID 7:0 0x0 RW UNDEFINED Switch ID
Source VSI Switch ID.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

KEY_0 7:0 0x0 RW UNDEFINED Key 0
Toeplitz key byte “4*m+3” of VSI “n”.
Register index is “1024*m + n”, where “m” range is 0-12 (total 52 key
bytes), and “n” range is 0-767.
Note: Index range 768-1023 of each key-quad register is unused

(reserved).

KEY_1 15:8 0x0 RW UNDEFINED Key 1
Toeplitz key byte “4*m+3” of VSI “n”.
Register index is “1024*m + n”, where “m” range is 0-12 (total 52 key
bytes), and “n” range is 0-767.
Note: Index range 768-1023 of each key-quad register is unused

(reserved).

KEY_2 23:16 0x0 RW UNDEFINED Key 2
Toeplitz key byte “4*m+3” of VSI “n”.
Register index is “1024*m + n”, where “m” range is 0-12 (total 52 key
bytes), and “n” range is 0-767.
Note: Index range 768-1023 of each key-quad register is unused

(reserved).

KEY_3 31:24 0x0 RW UNDEFINED Key 3
Toeplitz key byte “4*m+3” of VSI “n”.
Register index is “1024*m + n”, where “m” range is 0-12 (total 52 key
bytes), and “n” range is 0-767.
Note: Index range 768-1023 of each key-quad register is unused

(reserved).

Field Bit(s) Init. Type CFG Policy Description

HASH_LUT_SEL 1:0 00b RW UNDEFINED Hash LUT Select
Selects the Hash LUT for the VSI:

00b = VSI LUT
01b = Reserved
10b = PF LUT
11b = Global LUT (one of 16 Global LUTs)

GLOB_LUT 5:2 0x0 RW UNDEFINED Global LUT
The Global LUT index for the VSI. This field is relevant only if the
RSS_LUT_SEL equals to Global LUT. Otherwise it must be set to zero.

613875-009 2229

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

13.2.2.12.20 VSI Classification Filter - FD Control 1 -
VSIQF_FD_CTL1[VSI] (0x00411000 + 0x4*VSI,
VSI=0...767; RW)

13.2.2.12.21 VSI Classification Filter - PE Control 1 -
VSIQF_PE_CTL1[VSI] (0x00414000 + 0x4*VSI,
VSI=0...767; RW)

13.2.2.12.22 VSI Classification Filter - Hash LUT - VSIQF_HLUT[n,VSI]
(0x00420000 + 0x1000*n + 0x4*VSI, n=0...15,
VSI=0...767; RW)

HASH_SCHEME 7:6 00b RW UNDEFINED Hash Scheme
The hash type that can be one of the following:

00b = Toeplitz Hash
01b = Symmetric Toeplitz
10b = Simple XOR
11b = Reserved

TC_OVER_SEL 12:8 0x0 RW UNDEFINED TC Override Select
An index to one of 32 global tables used to override TC regions of
queues by some of the packet profiles defined by the
GLQF_PROF2TC tables. This field is meaningful only if the
TC_OVER_ENA flag is set. Otherwise, this field must be set to zero.

RESERVED 14:13 00b RSV N/A Reserved.

TC_OVER_ENA 15 0b RW UNDEFINED TC Override Enable
Enable packet profile override the TC region of queues according to
the TC_OVER_SEL parameter.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLT_ENA 0 0b RW UNDEFINED Filtering Enable
Enable FD filtering for the VSI.

CFG_ENA 1 0b RW UNDEFINED Configuration Enable
Enable FD programming for the VSI.

EVICT_ENA 2 0b RW UNDEFINED Evict Enable
Enable auto-evict by FIN/RST for the VSI.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PE_FLTENA 0 0b RW UNDEFINED PE Filter Enable
Enable PE filter for the VSI.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

LUT0 3:0 0x0 RW UNDEFINED LUT 0
Hash redirection LUT entry 4 x n, where “n” is the register index.

RESERVED 7:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

2230 613875-009

13.2.2.12.23 VSI Classification Filter - Receive TC Queue Regions -
VSIQF_TC_REGION[n,VSI] (0x00448000 + 0x1000*n +
0x4*VSI, n=0...3, VSI=0...767; RW)

13.2.2.12.24 VSI Classification Filter - FD Default Action -
VSIQF_FD_DFLT[VSI] (0x00457000 + 0x4*VSI,
VSI=0...767; RW)

LUT1 11:8 0x0 RW UNDEFINED LUT 1
Hash redirection LUT entry 4 x n+1, where “n” is the register index.

RESERVED 15:12 0x0 RSV N/A Reserved.

LUT2 19:16 0x0 RW UNDEFINED LUT 2
Hash redirection LUT entry 4 x n+2, where “n” is the register index.

RESERVED 23:20 0x0 RSV N/A Reserved.

LUT3 27:24 0x0 RW UNDEFINED LUT 3
Hash redirection LUT entry 4 x n+3, where “n” is the register index.

RESERVED 31:28 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TC_BASE0 10:0 0x0 RW UNDEFINED TC Base 0
TC_BASE0 in register “n” defines the TC[2*n] region base (within the VSI
space).
The hardware does not check if the queue index exceeds the VSI range.
So it is the PF software responsibility to ensure that TC_BASE + TC_SIZE
does not exceed the VSI space.

TC_SIZE0 14:11 0x0 RW UNDEFINED TC Size 0
TC_SIZE0 in register “n” defines the TC[2*n] region size as follows:

Values 0...8 are mapped to the following respective TC sizes:
1, 2, 4, 8, 16, 32, 64, 128, and 256, respectively.

Other values (larger than 8) are not defined and should not be used or
programmed.

RESERVED 15 0b RSV N/A Reserved.

TC_BASE1 26:16 0x0 RW UNDEFINED TC Base 1
TC_BASE1 in register “n” defines the TC[2*n+1] region base (within the
VSI space).
The hardware does not check if the queue index exceeds the VSI range.
So it is the PF software responsibility to make sure that TC_BASE +
TC_SIZE does not exceed the VSI space.

TC_SIZE1 30:27 0x0 RW UNDEFINED TC Size 1
TC_SIZE1 in register “n” defines the TC[2*n+1] region size as follows:

Values 0...8 are mapped to the following respective TC sizes:
1, 2, 4, 8, 16, 32, 64, 128, and 256, respectively.

Other values (larger than 8) are not defined and should not be used or
programmed.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DEFLT_QINDX 10:0 0x0 RW UNDEFINED Default Queue Index
This field defines the receive queue index within the VSI for
packets that miss the FD filter. Permitted values are in the range
of the queues of the VSI.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2231

Intel® Ethernet Controller E810 Datasheet
Programming Interface - VSI Context Registers

13.2.2.12.25 VSI Classification Filter - FD VSI Space Sizes -
VSIQF_FD_SIZE[VSI] (0x00462000 + 0x4*VSI,
VSI=0...767; RW)

13.2.2.12.26 VSI Classification Filter - FD VSI Space Counters -
VSIQF_FD_CNT[VSI] (0x00464000 + 0x4*VSI, VSI=0...767;
RW)

RESERVED 11 0b RSV N/A Reserved.

DEFLT_TOQUEUE 14:12 000b RW UNDEFINED Default ToQueue
The ToQueue parameter associates a target queue or a queue
group to the FD filter:

000b = The filter assigns a target queue defined by the
QINDX.

001b-111b = The filter assigns a region of queues. The region
base equals the QINDX and the region size
equals 2^(ToQueue).

RESERVED 15 0b RSV N/A Reserved.

COMP_QINDX 26:16 0x0 RW UNDEFINED Completion Queue Index
This field defines the receive queue index of the programming
VSI on which the FD filter completion status is reported when
the COMP_QUEUE flag in the programming descriptor is set to
“1”.

RESERVED 27 0b RSV N/A Reserved.

DEFLT_QINDX_PRIO 30:28 000b RW UNDEFINED Default Queue Index Priority
The priority of the default QINDX action.

DEFLT_DROP 31 0b RW UNDEFINED Default Drop
When set to 1b, packets that miss the FD filters are dropped.

Field Bit(s) Init. Type CFG Policy Description

FD_GSIZE 13:0 0x0 RW UNDEFINED FD Guaranteed Size
VSI guaranteed size in the FD table.

RESERVED 15:14 00b RSV N/A Reserved.

FD_BSIZE 29:16 0x0 RW UNDEFINED FD Best Size
VSI best effort size in the FD table.

RESERVED 31:30 00b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FD_GCNT 13:0 0x0 RW UNDEFINED FD Guaranteed Counter
VSI guaranteed filter counter in the FD table.

RESERVED 15:14 00b RSV N/A Reserved.

FD_BCNT 29:16 0x0 RW UNDEFINED FD Best Counter
VSI best effort filter counter in the FD table.

RESERVED 31:30 00b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - ACL Registers

2232 613875-009

13.2.2.13 PF - ACL Registers

13.2.2.13.1 Configuration Access Command - GL_ACL_ACCESS_CMD
(0x00391000; RO)

13.2.2.13.2 Configuration Access Status - GL_ACL_ACCESS_STATUS
(0x00391004; RO)

Field Bit(s) Init. Type CFG Policy Description

TABLE_ID 7:0 0x0 RW UNDEFINED Table ID
TCAM/Action memory index used for the access (when relevant).
Inapplicable indexes will cause the command to fail.

ENTRY_INDEX 19:8 0x0 RW UNDEFINED Entry Index
Entry/Scenario/Profile index. Inapplicable indexes will cause the
command to fail.

OPERATION 20 0b RW UNDEFINED Operation
0b = Read an entry from the index specified in ENTRY_INDEX in the

table whose index is specified in TABLE_ID.
1b = Write an entry to the index specified in ENTRY_INDEX in table

whose index is specified in TABLE_ID.

RESERVED 23:21 000b RSV N/A Reserved.

OBJ_TYPE 27:24 0x0 RW UNDEFINED Object Type
Accessed object type:

0x0 = TCAM entry.
0x1 = Action memory entry.
0x2 = Scenario configuration.
0x3 = Scenario action memory configuration.
0x4 = Profile dependent configuration (except for range checkers).
0x5 = Range checker configuration (profile dependent).
All other values are reserved.

RESERVED 30:28 000b RSV N/A Reserved.

EXECUTE 31 0b SC UNDEFINED Execute
Execute bit. Setting this self-clearing bit initiates the operation. The
hardware clears this bit one cycle after it was set.

Field Bit(s) Init. Type CFG Policy Description

BUSY 0 0b RO N/A Busy
Busy indication.

DONE 1 0b RO N/A Done
Done indication.

ERROR 2 0b RO N/A Error
Error indication.

OPERATION 3 0b RO N/A Operation
Operation used in last access.

ERROR_CODE 7:4 0x0 RO N/A Error Code
Error code:

0x0 = Table ID out of bounds.
0x1 = Entry index out of bounds.
All other values are reserved.

TABLE_ID 15:8 0x0 RO N/A Table ID
Table ID used for last access.

613875-009 2233

Intel® Ethernet Controller E810 Datasheet
Programming Interface - ACL Registers

13.2.2.13.3 Byte and Word Selection Bases Select per Profile -
GL_ACL_PROFILE_BWSB_SEL[n] (0x00391008 + 0x4*n,
n=0...31; RO)

13.2.2.13.4 DWord Selection Base Select per Profile -
GL_ACL_PROFILE_DWSB_SEL[n] (0x00391088 + 0x4*n,
n=0...15; RO)

13.2.2.13.5 Profile Assignment to Scenario -
GL_ACL_PROFILE_PF_CFG[n] (0x003910C8 + 0x4*n,
n=0...7; RO)

ENTRY_INDEX 27:16 0x0 RO N/A Entry Index
Entry index used for last access.

OBJ_TYPE 31:28 0x0 RO N/A Object Type
Object type used for last access.

Field Bit(s) Init. Type CFG Policy Description

BSB_SRC_OFF 5:0 0x0 RW UNDEFINED Source Byte Offset
Offset (expressed in bytes) for the source byte in the extracted fields
vector.

RESERVED 7:6 00b RSV N/A Reserved.

WSB_SRC_OFF 12:8 0x0 RW UNDEFINED Source Word Offset
Offset (expressed in words) for the source word in the extracted fields
vector.

RESERVED 31:13 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DWORD_SEL_OFF 3:0 0x0 RW UNDEFINED DWord Selection Offset
Offset (expressed in DWords) for the source DWord in the extracted
fields vector

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SCEN_SEL 5:0 0x0 RW UNDEFINED Scenario Selection
This determines the selected scenario for this PF when this profile is
selected.

RESERVED 31:6 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - ACL Registers

2234 613875-009

13.2.2.13.6 Range Checker Configuration per Profile -
GL_ACL_PROFILE_RC_CFG[n] (0x003910E8 + 0x4*n,
n=0...7; RO)

13.2.2.13.7 Word Selection Base Range Checked Fields Masking per
Profile - GL_ACL_PROFILE_RCF_MASK[n] (0x00391108 +
0x4*n, n=0...7; RO)

13.2.2.13.8 Default Action Array - GL_ACL_DEFAULT_ACT[n]
(0x00391168 + 0x4*n, n=0...15; RO)

Field definitions are the same as those defined in Section 13.2.2.13.15.

13.2.2.13.9 VSI Dependent ACL Configuration - VSI_ACL_DEF_SEL[VSI]
(0x00391800 + 0x4*VSI, VSI=0...767; RO)

Field Bit(s) Init. Type CFG Policy Description

LOW_BOUND 15:0 0x0 RW UNDEFINED Low Boundary
The range checker's output is negative if the related field's value is
lower than this value.

HIGH_BOUND 31:16 0x0 RW UNDEFINED High Boundary
The range checker's output is negative if the related field's value is
higher than this value.

Field Bit(s) Init. Type CFG Policy Description

MASK 15:0 0x0 RW UNDEFINED Mask
Range checker input mask.
When a bit is cleared in this field, the relevant bit is cleared in the range
checker's input.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RX_PROFILE_MISS_SEL 1:0 00b RW UNDEFINED Rx Profile Miss Selection
This field selects which action set sets the action when a
packet belonging to this VSI is not associated with any
profile (i.e., misses the profile table).

RESERVED 3:2 00b RSV N/A Reserved.

RX_TABLES_MISS_SEL 5:4 00b RW UNDEFINED Rx Tables Miss Selection
This field selects which action set sets the action when a
packet belonging to this VSI is not associated with any ACL
action (i.e., misses the ACL tables).

RESERVED 7:6 00b RSV N/A Reserved.

TX_PROFILE_MISS_SEL 9:8 00b RW UNDEFINED Tx Profile Miss Selection
This field selects which action set sets the action when an
packet originating from this VSI is not associated with any
profile (i.e., misses the profile table).

RESERVED 11:10 00b RSV N/A Reserved.

TX_TABLES_MISS_SEL 13:12 00b RW UNDEFINED Tx Tables Miss Selection
This field selects which action set sets the action when a
packet originating from this VSI is not associated with any
ACL action (i.e., misses the ACL tables).

613875-009 2235

Intel® Ethernet Controller E810 Datasheet
Programming Interface - ACL Registers

13.2.2.13.10 GL_ACL_CHICKEN_REGISTER -
GL_ACL_CHICKEN_REGISTER (0x00393810; RO)

13.2.2.13.11 TCAM Write Key Low - GL_ACL_TCAM_KEY_L (0x00393814;
RO)

13.2.2.13.12 TCAM Write Key High - GL_ACL_TCAM_KEY_H (0x00393818;
RO)

13.2.2.13.13 TCAM Write Key Invert Low - GL_ACL_TCAM_KEY_INV_L
(0x0039381C; RO)

13.2.2.13.14 TCAM Write Key Invert High - GL_ACL_TCAM_KEY_INV_H
(0x00393820; RO)

RESERVED 31:14 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCAM_DATA_POL_CH 0 0b RW UNDEFINED TCAM Data Polarity Chicken

TCAM_ADDR_POL_CH 1 0b RW UNDEFINED TCAM Address Polarity Chicken

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GL_ACL_FFU_TCAM_KEY_L 31:0 0x0 RW UNDEFINED TCAM Key Low
32 LSB of the entry key to be written to the TCAM.

Field Bit(s) Init. Type CFG Policy Description

GL_ACL_FFU_TCAM_KEY_H 7:0 0x0 RW UNDEFINED TCAM Key High
8 MSB of the entry key to be written to the TCAM.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GL_ACL_FFU_TCAM_KEY_INV_L 31:0 0x0 RW UNDEFINED TCAM Key Invert Low
32 LSB of the key invert to be written to the TCAM.

Field Bit(s) Init. Type CFG Policy Description

GL_ACL_FFU_TCAM_KEY_INV_H 7:0 0x0 RW UNDEFINED TCAM Key Invert High
8 MSB of the key invert to be written to the TCAM.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - ACL Registers

2236 613875-009

13.2.2.13.15 Action Write Data - GL_ACL_ACTMEM_ACT[n] (0x00393824
+ 0x4*n, n=0...1; RO)

13.2.2.13.16 Scenario Configuration Write Data Low Part -
GL_ACL_SCENARIO_CFG_L[n] (0x0039382C + 0x4*n,
n=0...15; RO)

Field Bit(s) Init. Type CFG Policy Description

VALUE 15:0 0x0 RW UNDEFINED Value
Action value.

RESERVED 19:16 0x0 RSV N/A Reserved.

MDID 25:20 0x0 RW UNDEFINED MDID
Action metadata ID.

RESERVED 27:26 00b RSV N/A Reserved.

PRIORITY 30:28 000b RW UNDEFINED Priority
Action priority.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SELECT0 6:0 0x0 RW UNDEFINED Select 0
Selects byte 0 of the lookup key:
• If SELECT0 is in the range of 0-31, the value is:

KEY16[SELECT0][7:0]
• If SELECT0 is in the range of 32-63, the value is:

KEY8[SELECT0 - 32]
• If SELECT0 is in the range of 64-95, the value is 0x0.
• If SELECT0 is in the range of 96-111, the value is:

KEY32[SELECT0 - 96][7:0]

RESERVED 7 0b RSV N/A Reserved.

SELECT1 14:8 0x0 RW UNDEFINED Select 1
Selects byte 1 of the lookup key:
• If SELECT1 is in the range of 0-31, the value is:

KEY16[SELECT1][15:8]
• If SELECT1 is in the range of 32-63, the value is:

KEY8[SELECT1 - 32].
• If SELECT1 is in the range of 64-95, the value is 0x0.
• If SELECT1 is in the range of 96-111, the value is:

KEY32[SELECT1 - 96][15:8]

RESERVED 15 0b RSV N/A Reserved.

SELECT2 22:16 0x0 RW UNDEFINED Select 2
Selects byte 2 of the lookup key:
• If SELECT2 is in the range of 0-31, the value is:

KEY16[SELECT2][7:0]
• If SELECT2 is in the range of 32-63, the value is:

KEY8[SELECT2 - 32].
• If SELECT2 is in the range of 64-95, the value is 0x0.
• If SELECT2 is in the range of 96-111, the value is:

KEY32[SELECT2 - 96][23:16]

RESERVED 23 0b RSV N/A Reserved.

613875-009 2237

Intel® Ethernet Controller E810 Datasheet
Programming Interface - ACL Registers

13.2.2.13.17 Scenario Configuration Write Data High Part -
GL_ACL_SCENARIO_CFG_H[n] (0x0039386C + 0x4*n,
n=0...15; RO)

13.2.2.13.18 Scenario Action RAM Configuration Write Data -
GL_ACL_SCENARIO_ACT_CFG[n] (0x003938AC + 0x4*n,
n=0...19; RO)

SELECT3 30:24 0x0 RW UNDEFINED Select 3
Selects byte 3 of the lookup key:
• If SELECT3 is in the range of 0-31, the value is:

KEY16[SELECT3][15:8]
• If SELECT3 is in the range of 32-63, the value is:

KEY8[SELECT3 - 32].
• If SELECT3 is in the range of 64-95, the value is 0x0.
• If SELECT3 is in the range of 96-111, the value is:

KEY32[SELECT3 - 96][31:24]

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SELECT4 4:0 0x0 RW UNDEFINED Select 4
Selects byte 4 of the lookup key:
Selects KEY8[SelectTop] as the top eight bits of the lookup key.
Only KEY8s can be selected for this field.

RESERVED 7:5 000b RSV N/A Reserved.

CHUNKMASK 15:8 0x0 RW UNDEFINED Chunk Mask
Specifies the validity of 64-rule chunks:
• ChunkMask[0] enables rules 0..63.
• ChunkMask[1] enables rules 64..127.
• and so on

Used to create smaller per-scenario tables.

RESERVED 23:16 0x0 RSV N/A Reserved.

START_COMPARE 24 0b RW UNDEFINED Start Compare
Starts a compare cascade.

RESERVED 27:25 000b RSV N/A Reserved.

START_SET 28 0b RW UNDEFINED Start Set
Start a TCAM stacking.

RESERVED 31:29 000b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ACTMEM_SEL 3:0 0x0 RW UNDEFINED Action Memory Select
Selects which TCAM controls the action memory for this scenario

RESERVED 7:4 0x0 RSV N/A Reserved.

ACTMEM_EN 8 0b RW UNDEFINED Action Memory Enable
Enable/disable control:

0b = The action memory is disable for this scenario.
1b = The action memory is enabled for this scenario.

RESERVED 31:9 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2238 613875-009

13.2.2.14 PF - Rx Filters Registers

13.2.2.14.1 Global Classification Filter - PE Table Clear -
GLQF_PETABLE_CLR[n] (0x000AA078 + 0x4*n, n=0...1;
RW)

Register '0' is used by the EMP as part of PFR / VFR flows.
Register '1' is used by the PE as part of a function table removal flow.

13.2.2.14.2 PF Classification Filter - PE Field Vector Bitmap Enable -
GLQF_PE_FVE (0x0020E514; RW)

This register is used by the PE to program QH filter entries.

13.2.2.14.3 Global Classification Filter - Hash Input Set -
GLQF_HINSET[n,m] (0x0040E000 + 0x4*n + 0x200*m,
n=0...127, m=0...5; RW)

Field Bit(s) Init. Type CFG Policy Description

VM_VF_NUM 9:0 0x0 RW UNDEFINED VM/VF Number
Absolute VF number. Relevant only for VM_VF_TYPE = VF (00b).
Otherwise, must be set to zero.

VM_VF_TYPE 11:10 00b RW UNDEFINED VM/VF Type
Defines the impact of the clear action:

00b = VF clear.
10b = PF clear.
All other values are reserved.

PF_NUM 14:12 000b RW UNDEFINED PF Number
PF index.

RESERVED 15 0b RSV N/A Reserved.

PE_BUSY 16 0b SC UNDEFINED PE Busy
The BUSY flag indicates that PE cache clear is in progress. It is set by
software and cleared by the device.

PE_CLEAR 17 0b RW UNDEFINED PE Clear
Setting this flag clears the PE filters entries of the entity (PF/VF) from
the PE cache.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

W_ENA 23:0 0x0 RW UNDEFINED Word Enable
Bit 'i' in this field enables word 'i' in the field vector.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FV_WORD_INDX0 4:0 0x1F RW UNDEFINED FV Word Index 0
The word index in the FV that is copied to the input set word “m*4”
of packet profile “n”, where “n”, “m” are the register's indexes in
the array.

RESERVED 6:5 00b RSV N/A Reserved.

613875-009 2239

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.4 Global Classification Filter - Symmetric Hash -
GLQF_HSYMM[n,m] (0x0040F000 + 0x4*n + 0x200*m,
n=0...127, m=0...5; RW)

FV_WORD_VAL0 7 1b RW UNDEFINED FV Word Valid 0
Valid indication for the word defined by FV_WORD_INDX0.

FV_WORD_INDX1 12:8 0x1F RW UNDEFINED FV Word Index 1
The word index in the FV that is copied to the input set word
“m*4+1” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 14:13 00b RSV N/A Reserved.

FV_WORD_VAL1 15 1b RW UNDEFINED FV Word Valid 1
Valid indication for the word defined by FV_WORD_INDX1.

FV_WORD_INDX2 20:16 0x1F RW UNDEFINED FV Word Index 2
The word index in the FV that is copied to the input set word
“m*4+2” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 22:21 00b RSV N/A Reserved.

FV_WORD_VAL2 23 1b RW UNDEFINED FV Word Valid 2
Valid indication for the word defined by FV_WORD_INDX2.

FV_WORD_INDX3 28:24 0x1F RW UNDEFINED FV Word Index 3
The word index in the FV that is copied to the input set word
“m*4+3” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 30:29 00b RSV N/A Reserved.

FV_WORD_VAL3 31 1b RW UNDEFINED FV Word Valid 3
Valid indication for the word defined by FV_WORD_INDX3.

Field Bit(s) Init. Type CFG Policy Description

FV_SYMM_INDX0 4:0 0x0 RW UNDEFINED FV Symmetric Index 0
Registers “n” belongs to packet profile “n”. There are multiple
registers per packet profile indexed by “m”.
If the SYMM0_ENA is set, the input set word index “m*4” equals an
XOR function between FV word index = FV_SYMM_INDX0 (in this
register) and FV word index = FV_INSET_INDX0 (in the
GLQF_HINSET register).

RESERVED 6:5 00b RSV N/A Reserved.

SYMM0_ENA 7 0b RW UNDEFINED Symmetric 0 Enable
Symmetric word indication for the word defined by
FV_SYMM_INDX0.

FV_SYMM_INDX1 12:8 0x0 RW UNDEFINED FV Symmetric Index 1
Registers “n” belongs to packet profile “n”. There are multiple
registers per packet profile indexed by “m”.
If the SYMM1_ENA is set, the input set word index “m*4+1” equals
an XOR function between FV word index = FV_SYMM_INDX1 (in
this register) and FV word index = FV_INSET_INDX1 (in the
GLQF_HINSET register).

RESERVED 14:13 00b RSV N/A Reserved.

SYMM1_ENA 15 0b RW UNDEFINED Symmetric 1 Enable
Symmetric word indication for the word defined by
FV_SYMM_INDX1.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2240 613875-009

13.2.2.14.5 Global Classification Filter - Hash Mask - GLQF_HMASK[n]
(0x0040FC00 + 0x4*n, n=0...31; RW)

13.2.2.14.6 Global Classification Filter - Hash Mask Select -
GLQF_HMASK_SEL[n] (0x00410000 + 0x4*n, n=0...127;
RW)

FV_SYMM_INDX2 20:16 0x0 RW UNDEFINED FV Symmetric Index 2
Registers “n” belongs to packet profile “n”. There are multiple
registers per packet profile indexed by “m”.
If the SYMM2_ENA is set, the input set word index “m*4+2” equals
an XOR function between FV word index = FV_SYMM_INDX2 (in
this register) and FV word index = FV_INSET_INDX2 (in the
GLQF_HINSET register).

RESERVED 22:21 00b RSV N/A Reserved.

SYMM2_ENA 23 0b RW UNDEFINED Symmetric 2 Enable
Symmetric word indication for the word defined by
FV_SYMM_INDX2.

FV_SYMM_INDX3 28:24 0x0 RW UNDEFINED FV Symmetric Index 3
Registers “n” belongs to packet profile “n”. There are multiple
registers per packet profile indexed by “m”.
If the SYMM3_ENA is set, the input set word index “m*4+3” equals
an XOR function between FV word index = FV_SYMM_INDX3 (in
this register) and FV word index = FV_INSET_INDX3 (in the
GLQF_HINSET register).

RESERVED 30:29 00b RSV N/A Reserved.

SYMM3_ENA 31 0b RW UNDEFINED Symmetric 3 Enable
Symmetric word indication for the word defined by
FV_SYMM_INDX3.

Field Bit(s) Init. Type CFG Policy Description

MSK_INDEX 4:0 0x0 RW UNDEFINED Mask Index
Word index in the Input Set vector to be masked.

RESERVED 15:5 0x0 RSV N/A Reserved.

MASK 31:16 0x0 RW UNDEFINED Mask
Mask word. Any bit set to “0” masks out the matched bit of MSK_INDEX
byte in the field vector.

Field Bit(s) Init. Type CFG Policy Description

MASK_SEL 31:0 0x0 RW UNDEFINED Mask Select
The MASK_SEL is a bitmap field that enables the GLQF_HMASK registers
per packet profile “n”, where “n” is the GLQF_HMASK_SEL register index.
Bit “x” in this register enables register GLQF_HMASK[x].

Field Bit(s) Init. Type CFG Policy Description

613875-009 2241

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.7 Global Classification Filter - FD Mask Select -
GLQF_FDMASK_SEL[n] (0x00410400 + 0x4*n, n=0...127;
RW)

13.2.2.14.8 Global Classification Filter - FD Mask - GLQF_FDMASK[n]
(0x00410800 + 0x4*n, n=0...31; RW)

13.2.2.14.9 Global Classification Filter - FD Input Set -
GLQF_FDINSET[n,m] (0x00412000 + 0x4*n + 0x200*m,
n=0...127, m=0...5; RW)

Field Bit(s) Init. Type CFG Policy Description

MASK_SEL 31:0 0x0 RW UNDEFINED Mask Select
The MASK_SEL is a bitmap field that enables the GLQF_FDMASK
registers per packet profile “n”, where “n” is the GLQF_FDMASK_SEL
register index. Bit “x” in this register enables register GLQF_FDMASK[x].

Field Bit(s) Init. Type CFG Policy Description

MSK_INDEX 4:0 0x0 RW UNDEFINED Mask Index
Word index in the Input Set vector to be masked.

RESERVED 15:5 0x0 RSV N/A Reserved.

MASK 31:16 0x0 RW UNDEFINED Mask
Mask word. Any bit set to “0” masks out the matched bit of MSK_INDEX
byte in the field vector.

Field Bit(s) Init. Type CFG Policy Description

FV_WORD_INDX0 4:0 0x1F RW UNDEFINED FV Word Index 0
The word index in the FV that is copied to the input set word “m*4”
of packet profile “n”, where “n”, “m” are the register's indexes in
the array.

RESERVED 6:5 00b RSV N/A Reserved.

FV_WORD_VAL0 7 1b RW UNDEFINED FV Word Valid 0
Valid indication for the word defined by FV_WORD_INDX0.

FV_WORD_INDX1 12:8 0x1F RW UNDEFINED FV Word Index 1
The word index in the FV that is copied to the input set word
“m*4+1” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 14:13 00b RSV N/A Reserved.

FV_WORD_VAL1 15 1b RW UNDEFINED FV Word Valid 1
Valid indication for the word defined by FV_WORD_INDX1.

FV_WORD_INDX2 20:16 0x1F RW UNDEFINED FV Word Index 2
The word index in the FV that is copied to the input set word
“m*4+2” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 22:21 00b RSV N/A Reserved.

FV_WORD_VAL2 23 1b RW UNDEFINED FV Word Valid 2
Valid indication for the word defined by FV_WORD_INDX2.

FV_WORD_INDX3 28:24 0x1F RW UNDEFINED FV Word Index 3
The word index in the FV that is copied to the input set word
“m*4+3” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2242 613875-009

13.2.2.14.10 Global Classification Filter - FD SWAP - GLQF_FDSWAP[n,m]
(0x00413000 + 0x4*n + 0x200*m, n=0...127, m=0...5; RW)

13.2.2.14.11 Global Classification Filter - PE Input Set -
GLQF_PEINSET[n,m] (0x00415000 + 0x4*n + 0x80*m,
n=0...31, m=0...5; RW)

RESERVED 30:29 00b RSV N/A Reserved.

FV_WORD_VAL3 31 1b RW UNDEFINED FV Word Valid 3
Valid indication for the word defined by FV_WORD_INDX3.

Field Bit(s) Init. Type CFG Policy Description

FV_WORD_INDX0 4:0 0x0 RW UNDEFINED FV Word Index 0
The word index in the FV that is copied to the swapped input set
word “m*4” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 6:5 00b RSV N/A Reserved.

FV_WORD_VAL0 7 0b RW UNDEFINED FV Word Valid 0
Valid indication for the word defined by FV_WORD_INDX0.

FV_WORD_INDX1 12:8 0x0 RW UNDEFINED FV Word Index 1
The word index in the FV that is copied to the swapped input set
word “m*4+1” of packet profile “n”, where “n”, “m” are the
register's indexes in the array.

RESERVED 14:13 00b RSV N/A Reserved.

FV_WORD_VAL1 15 0b RW UNDEFINED FV Word Valid 1
Valid indication for the word defined by FV_WORD_INDX1.

FV_WORD_INDX2 20:16 0x0 RW UNDEFINED FV Word Index 2
The word index in the FV that is copied to the swapped input set
word “m*4+2” of packet profile “n”, where “n”, “m” are the
register's indexes in the array.

RESERVED 22:21 00b RSV N/A Reserved.

FV_WORD_VAL2 23 0b RW UNDEFINED FV Word Valid 2
Valid indication for the word defined by FV_WORD_INDX2.

FV_WORD_INDX3 28:24 0x0 RW UNDEFINED FV Word Index 3
The word index in the FV that is copied to the swapped input set
word “m*4+3” of packet profile “n”, where “n”, “m” are the
register's indexes in the array.

RESERVED 30:29 00b RSV N/A Reserved.

FV_WORD_VAL3 31 0b RW UNDEFINED FV Word Valid 3
Valid indication for the word defined by FV_WORD_INDX3.

Field Bit(s) Init. Type CFG Policy Description

FV_WORD_INDX0 4:0 0x1F RW UNDEFINED FV Word Index 0
The word index in the FV that is copied to the input set word “m*4”
of packet profile “n”, where “n”, “m” are the register's indexes in
the array.

RESERVED 6:5 00b RSV N/A Reserved.

FV_WORD_VAL0 7 1b RW UNDEFINED FV Word Valid 0
Valid indication for the word defined by FV_WORD_INDX0.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2243

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.12 Global Classification Filter - PE Mask - GLQF_PEMASK[n]
(0x00415400 + 0x4*n, n=0...15; RW)

13.2.2.14.13 Global Classification Filter - PE Mask Select -
GLQF_PEMASK_SEL[n] (0x00415500 + 0x4*n, n=0...31;
RW)

FV_WORD_INDX1 12:8 0x1F RW UNDEFINED FV Word Index 1
The word index in the FV that is copied to the input set word
“m*4+1” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 14:13 00b RSV N/A Reserved.

FV_WORD_VAL1 15 1b RW UNDEFINED FV Word Valid 1
Valid indication for the word defined by FV_WORD_INDX1.

FV_WORD_INDX2 20:16 0x1F RW UNDEFINED FV Word Index 2
The word index in the FV that is copied to the input set word
“m*4+2” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 22:21 00b RSV N/A Reserved.

FV_WORD_VAL2 23 1b RW UNDEFINED FV Word Valid 2
Valid indication for the word defined by FV_WORD_INDX2.

FV_WORD_INDX3 28:24 0x1F RW UNDEFINED FV Word Index 3
The word index in the FV that is copied to the input set word
“m*4+3” of packet profile “n”, where “n”, “m” are the register's
indexes in the array.

RESERVED 30:29 00b RSV N/A Reserved.

FV_WORD_VAL3 31 1b RW UNDEFINED FV Word Valid 3
Valid indication for the word defined by FV_WORD_INDX3.

Field Bit(s) Init. Type CFG Policy Description

MSK_INDEX 4:0 0x0 RW UNDEFINED Mask Index
Word index in the Input Set vector to be masked.

RESERVED 15:5 0x0 RSV N/A Reserved.

MASK 31:16 0x0 RW UNDEFINED Mask
Mask word. Any bit set to “0” masks out the matched bit of MSK_INDEX
byte in the field vector.

Field Bit(s) Init. Type CFG Policy Description

MASK_SEL 15:0 0x0 RW UNDEFINED Mask Select
The MASK_SEL is a bitmap field that enables the GLQF_PEMASK registers
per packet profile “n”, where “n'” is the GLQF_PEMASK_SEL register
index. Bit “x” in this register enables register GLQF_PEMASK[x].

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2244 613875-009

13.2.2.14.14 PF Classification Filter - Hash LUT - PFQF_HLUT[n,PF]
(0x00430000 + 0x40*n + 0x4*PF, n=0...511, PF=0...7; RW)

13.2.2.14.15 Global Classification Filter - Hash LUT - GLQF_HLUT[n,m]
(0x00438000 + 0x4*n + 0x200*m, n=0...127, m=0...15;
RW)

13.2.2.14.16 PF Classification Filter - FD Enable - PFQF_FD_ENA
(0x0043A000; RW)

Setting this register, the hardware auto-clears the internal PE Quad Hash context counter and table
pointers of the function.

Field Bit(s) Init. Type CFG Policy Description

LUT0 7:0 0x0 RW UNDEFINED LUT 0
Hash redirection LUT entry 4 x “n”, where “n” is the register index.

LUT1 15:8 0x0 RW UNDEFINED LUT 1
Hash redirection LUT entry 4 x “n” + 1, where “n” is the register index.

LUT2 23:16 0x0 RW UNDEFINED LUT 2
Hash redirection LUT entry 4 x “n” + 2, where “n” is the register index.

LUT3 31:24 0x0 RW UNDEFINED LUT 3
Hash redirection LUT entry 4 x “n” + 3, where “n” is the register index.

Field Bit(s) Init. Type CFG Policy Description

LUT0 5:0 0x0 RW UNDEFINED LUT 0
Hash redirection LUT entry 4 x “n”, where “n” is the register index.

RESERVED 7:6 00b RSV N/A Reserved.

LUT1 13:8 0x0 RW UNDEFINED LUT 1
Hash redirection LUT entry 4 x “n” + 1, where “n” is the register index.

RESERVED 15:14 00b RSV N/A Reserved.

LUT2 21:16 0x0 RW UNDEFINED LUT 2
Hash redirection LUT entry 4 x “n” + 2, where “n” is the register index.

RESERVED 23:22 00b RSV N/A Reserved.

LUT3 29:24 0x0 RW UNDEFINED LUT 3
Hash redirection LUT entry 4 x “n” + 3, where “n” is the register index.

RESERVED 31:30 00b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FD_ENA 0 0b RW UNDEFINED FD Enable
Enables programming and filtering of the FD filter for the function.

RESERVED 31:1 0x0 RSV N/A Reserved.

613875-009 2245

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.17 PF Classification Filter - PE Enable -
PFQF_PE_FILTERING_ENA (0x0043A080; RW)

Setting this register, the hardware auto-clears the internal PE Quad Hash context counter and table
pointers of the function.

13.2.2.14.18 Global Classification Filter - Packet Profile to Hash TC Region
Mapping - GLQF_PROF2TC[n,m] (0x0044D000 + 0x4*n +
0x200*m, n=0...127, m=0...3; RW)

Field Bit(s) Init. Type CFG Policy Description

PE_ENA 0 0b RW UNDEFINED PE Enable
Enables the filtering and programming of PE filters.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

OVERRIDE_ENA_0 0 0b RW UNDEFINED Override Enable 0
Enable for Override TC Region “8*m” in the Prof2TC table, for
packet profile “n”, where “n” is the register index and “m” is the
word index.
The index “8*m” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.

REGION_0 3:1 000b RW UNDEFINED Region 0
Receive queue region for Override TC Region “8*m” in the
Prof2TC table, for packet profile “n”, where 'n' is the register index
and “m” is the word index.
The index “8*m” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.
This field is meaningful only if the OVERRIDE_ENA_0 flag is set.

OVERRIDE_ENA_1 4 0b RW UNDEFINED Override Enable 1
Enable for Override TC Region “8*m+1” in the Prof2TC table, for
packet profile “n”, where “n” is the register index and “m” is the
word index.
The index “8*m+1” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.

REGION_1 7:5 000b RW UNDEFINED Region 1
Receive queue region for Override TC Region “8*m+1” in the
Prof2TC table, for packet profile “n”, where 'n' is the register index
and “m” is the word index.
The index “8*m+1” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.
This field is meaningful only if the OVERRIDE_ENA_1 flag is set.

OVERRIDE_ENA_2 8 0b RW UNDEFINED Override Enable 2
Enable for Override TC Region “8*m+2” in the Prof2TC table, for
packet profile “n”, where “n” is the register index and “m” is the
word index.
The index “8*m+2” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.

REGION_2 11:9 000b RW UNDEFINED Region 2
Receive queue region for Override TC Region “8*m+2” in the
Prof2TC table, for packet profile “n”, where 'n' is the register index
and “m” is the word index.
The index “8*m+2” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.
This field is meaningful only if the OVERRIDE_ENA_2 flag is set.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2246 613875-009

OVERRIDE_ENA_3 12 0b RW UNDEFINED Override Enable 3
Enable for Override TC Region “8*m+3” in the Prof2TC table, for
packet profile “n”, where “n” is the register index and “m” is the
word index.
The index “8*m+3” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.

REGION_3 15:13 000b RW UNDEFINED Region 3
Receive queue region for Override TC Region “8*m+3” in the
Prof2TC table, for packet profile “n”, where 'n' is the register index
and “m” is the word index.
The index “8*m+3” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.
This field is meaningful only if the OVERRIDE_ENA_3 flag is set.

OVERRIDE_ENA_4 16 0b RW UNDEFINED Override Enable 4
Enable for Override TC Region “8*m+4” in the Prof2TC table, for
packet profile “n”, where “n” is the register index and “m” is the
word index.
The index “8*m+4” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.

REGION_4 19:17 000b RW UNDEFINED Region 4
Receive queue region for Override TC Region “8*m+4” in the
Prof2TC table, for packet profile “n”, where 'n' is the register index
and “m” is the word index.
The index “8*m+4” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.
This field is meaningful only if the OVERRIDE_ENA_4 flag is set.

OVERRIDE_ENA_5 20 0b RW UNDEFINED Override Enable 5
Enable for Override TC Region “8*m+5” in the Prof2TC table, for
packet profile “n”, where “n” is the register index and “m” is the
word index.
The index “8*m+5” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.

REGION_5 23:21 000b RW UNDEFINED Region 5
Receive queue region for Override TC Region “8*m+5” in the
Prof2TC table, for packet profile “n”, where 'n' is the register index
and “m” is the word index.
The index “8*m+5” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.
This field is meaningful only if the OVERRIDE_ENA_5 flag is set.

OVERRIDE_ENA_6 24 0b RW UNDEFINED Override Enable 6
Enable for Override TC Region “8*m+6” in the Prof2TC table, for
packet profile “n”, where “n” is the register index and “m” is the
word index.
The index “8*m+6” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.

REGION_6 27:25 000b RW UNDEFINED Region 6
Receive queue region for Override TC Region “8*m+6” in the
Prof2TC table, for packet profile “n”, where 'n' is the register index
and “m” is the word index.
The index “8*m+6” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.
This field is meaningful only if the OVERRIDE_ENA_6 flag is set.

OVERRIDE_ENA_7 28 0b RW UNDEFINED Override Enable 7
Enable for Override TC Region “8*m+7” in the Prof2TC table, for
packet profile “n”, where “n” is the register index and “m” is the
word index.
The index “8*m+7” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2247

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.19 Global Classification Filter Accelerated Port Bit Vector -
GLQF_APBVT[n] (0x00450000 + 0x4*n, n=0...2047; RW)

13.2.2.14.20 Global Classification Filter - FD Profile Evict Enable -
GLQF_FDEVICTENA[n] (0x00452000 + 0x4*n, n=0...3; RW)

13.2.2.14.21 PF Classification Filter - QH TC Enable - PFQF_PE_TC_CTL
(0x00452080; RW)

REGION_7 31:29 000b RW UNDEFINED Region 7
Receive queue region for Override TC Region “8*m+7” in the
Prof2TC table, for packet profile “n”, where 'n' is the register index
and “m” is the word index.
The index “8*m+7” in the table is selected by the TC_OVER_SEL
field in the VSIQF_HASH_CTL register.
This field is meaningful only if the OVERRIDE_ENA_7 flag is set.

Field Bit(s) Init. Type CFG Policy Description

APBVT 31:0 0x0 RW UNDEFINED Accelerated Port Bit Vector
Each bit “i” in the APBVT of register “n” enables port number 32 x “n” +
“i”.

Field Bit(s) Init. Type CFG Policy Description

FDEVICTENA 31:0 0x0 RW UNDEFINED FD Evict Enable
Defines the PCTYPES that are candidates for hardware eviction of Flow
Director filters.
For register “n”, any bit “k” in relation to profile [32*n+k], defines if a
packet matching this profile is a candidate for auto-eviction by FIN/RST.

Field Bit(s) Init. Type CFG Policy Description

TC_EN_PF 7:0 0x0 RW UNDEFINED TC Enable PF
Bit “n” in this field enables TC “n” for PE filter for the PF.

RESERVED 15:8 0x0 RSV N/A Reserved.

TC_EN_VF 23:16 0x0 RW UNDEFINED TC Enable VF
Bit “n” in this field enables TC “n” for PE filter for the VFs of the PF.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2248 613875-009

13.2.2.14.22 Global Classification Filter - PE Control 2 -
GLQF_PE_CTL2[n] (0x00455200 + 0x4*n, n=0...31; RW)

13.2.2.14.23 Global Classification Filter - Hash LUT Size -
GLQF_HLUT_SIZE[n] (0x00455400 + 0x4*n, n=0...15; RW)

13.2.2.14.24 PF Classification Filter - Hash LUT Size - PFQF_HLUT_SIZE
(0x00455480; RW)

13.2.2.14.25 Global PE APBVT LAN Packet Counter -
GLQF_PE_APBVT_CNT (0x00455500; RW)

Field Bit(s) Init. Type CFG Policy Description

TO_QH 1:0 00b RW UNDEFINED TO QH
The TO_QH field defines the target of the packet profile “n”, where “n” is
the register index.

00b = Reserved.
01b = Packet is candidate for the QH filter.
10b = Packet is candidate for the PE bypassing the QH filter.
11b = Packet is candidate for the QH filter and forwarded to the PE

even if it does not match the filter.

APBVT_ENA 2 0b RW UNDEFINED APBVT Enable
Packet profile “n” should hit the APBVT to be a candidate for the QH or
directly to the PE, where “n” is the register index.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSIZE 0 0b RW UNDEFINED Hash Size
Defines the size of the matched Global Hash LUT.

0b = 128
1b = 512

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HSIZE 1:0 00b RW UNDEFINED Hash Size
This field defines the size of the PF Hash LUT.

00b = 128
01b = 512
10b = 2K
11b = Reserved

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

APBVT_LAN 31:0 0x0 RCW UNDEFINED APBVT LAN
Global counter of packets that matched the APBVT filter that are not
directed to the PE just because they miss the QH filter. This counter is
expected to provide an indication for the APBVT filter efficiency.
Note: Count is not enabled if the packet is not initiating filter lookup

(that is, not enabled by PF/VSI. Profile or packet is RoCE_UC).

613875-009 2249

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.26 VF Classification Filter - PE Enable -
VPQF_PE_FILTERING_ENA[VF] (0x00455800 + 0x4*VF,
VF=0...255; RW)

Setting this register, the hardware auto-clears the internal PE Quad Hash context counter and table
pointers of the function.

Field definitions are the same as those defined in Section 13.2.2.14.17.

13.2.2.14.27 Global Classification Filter - Hash Key - GLQF_HKEY[n]
(0x00456000 + 0x4*n, n=0...12; RW)

Field definitions are the same as those defined in Section 13.2.2.12.18.

13.2.2.14.28 Global Classification Filter Control - GLQF_FD_CTL
(0x00460000; RW)

13.2.2.14.29 Global Classification Filter - FD Space Size - GLQF_FD_SIZE
(0x00460010; RW)

Field Bit(s) Init. Type CFG Policy Description

FDLONG 3:0 0x1 RW N/A FD Long
FD filter entry found at larger location in the bucket than
FDLONGB is reported as such in the receive descriptor. Value of
zero, means all collision are reported.
In addition, PFQF_FD_CLSN1 statistical counter is incremented for
the relevant PF. See PFQF_FD_ST_CTL for details of statistical
counter configuration.

HASH_REPORT 4 0b RW UNDEFINED Hash Report
When this flag is set, the FD Bucket_HASH and Bucket_LEN
parameters are reported in the Filter Programming Status
Descriptor.

FLT_ADDR_REPORT 5 0b RW UNDEFINED Filter Address Report
When this flag is set, FD actual FLT_Addr (on-die memory)
parameters are reported in the Filter Programming Status
Descriptor.

RESERVED 31:6 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FD_GSIZE 14:0 0x0 RW UNDEFINED Guaranteed Size
Global guaranteed number of filters in the FD table.

RESERVED 15 0b RSV N/A Reserved.

FD_BSIZE 30:16 0x0 RW UNDEFINED Best Size
Global best effort number of filters in the FD table,

RESERVED 31 0b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2250 613875-009

13.2.2.14.30 Global Classification Filter - FD Space Counters -
GLQF_FD_CNT (0x00460018; RW)

13.2.2.14.31 PF Classification Filter - FD Space Sizes - PFQF_FD_SIZE
(0x00460100; RW)

13.2.2.14.32 Global Classification Filter - FD PF Space Counter -
PFQF_FD_CNT (0x00460180; RW)

13.2.2.14.33 Global Classification Filter - FD PF Space Counter -
PFQF_FD_SUBTRACT (0x00460200; RW)

Field Bit(s) Init. Type CFG Policy Description

FD_GCNT 14:0 0x0 RW/V UNDEFINED Guaranteed Count
Global guaranteed filter counter in the FD table.

RESERVED 15 0b RSV N/A Reserved.

FD_BCNT 30:16 0x0 RW/V UNDEFINED Best Count
Global best effort filter counter in the FD table.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FD_GSIZE 14:0 0x0 RW UNDEFINED Guaranteed Size
PF guaranteed number of filters in the FD table.

RESERVED 15 0b RSV N/A Reserved.

FD_BSIZE 30:16 0x0 RW UNDEFINED Best Size
PF best effort number of filters in the FD table.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FD_GCNT 14:0 0x0 RW/V UNDEFINED Guaranteed Count
PF guaranteed filter counter in the FD table.

RESERVED 15 0b RSV N/A Reserved.

FD_BCNT 30:16 0x0 RW/V UNDEFINED Best Count
PF best effort filter counter in the FD table.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FD_GCNT 14:0 0x0 WO UNDEFINED Guaranteed Count
Subtract value for PF guaranteed filter counter in the FD table.
Value written to this field will subtracted from GLQF_FD_CNT.FD_GCNT
and PFQF_FD_CNT.FD_GCNT (for the same PF number).
Reading this register returns 0.

RESERVED 15 0b RSV N/A Reserved.

613875-009 2251

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.34 PF Classification Filter - PE Control - PFQF_PE_CTL1
(0x00470000; RW)

Setting this register, the hardware auto-clears the internal PE Quad Hash context counter and table
pointers of the function.

13.2.2.14.35 PF Classification Filter - PE Control - PFQF_PE_CTL2
(0x00470040; RW)

Setting this register, the hardware auto-clears the internal PE Quad Hash context counter and table
pointers of the function.

FD_BCNT 30:16 0x0 WO UNDEFINED Best Count
Subtract value for PF best effort filter counter in the FD table.
Value written to this field will subtracted from GLQF_FD_CNT.BFD_CNT
and PFQF_FD_CNT.FD_BCNT (for the same PF number).
Reading this register will return 0.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PEHSIZE 3:0 0x0 RW UNDEFINED Size
PEHSIZE defines the number of “buckets” of the PE Quad Hash filter
table for the function defined in power of 2 equals 1K x 2 ** PEHSIZE.
PEHSIZE can have any value between 0 and 10. Other values are
reserved.
PEHSIZE = 0, 1,... 10 is equivalent to 1K, 2K, 4K... 1M buckets.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PEDSIZE 3:0 0x0 RW UNDEFINED Size
PEDSIZE defines the number of PE Quad Hash contexts for the function
defined in power of 2 equals to 0.5K x 2 ** PEDSIZE-1.
PEDSIZE can have any value between 0 and 9. Other values are
reserved.
PEDSIZE = 0, 1,... 9 is equivalent to 0.5K-1 1K-1 2K-1, 4K-1... 256K-1
contexts.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2252 613875-009

13.2.2.14.36 PF Free List Head Array - PFQF_PE_FLHD (0x00470100; RW)

13.2.2.14.37 PF Classification Filter PE Filter Counter 0 - PFQF_PECNT_0
(0x00470200; RW)

Total bucket count.

13.2.2.14.38 PF Classification Filter PE Filter Counter 1 - PFQF_PECNT_1
(0x00470300; RW)

Total filter count.

13.2.2.14.39 PF Control Register for the Statistic Counter -
PFQF_PE_ST_CTL (0x00470400; RW)

Field Bit(s) Init. Type CFG Policy Description

FLHD 23:0 0x0 RW UNDEFINED Free List Head
PF Filter Free List Head Pointer is initialized by software, but through
operation is managed by hardware.
It is a pointer to the Collision FPM, to the first available filter entry in the
link list of all unused entries.
Upon initialization (i.e. XLR, or function Clear command), software must
write this register to zero. This is addition to cleanup of FPM collision
area, which should be written to all zeros.
After PF configuration is enabled, software must not write to this register.
In case of PF initialization, the software is expected to clear and initialize
all FLHD field of all the VFs of the PF.
In case of ungraceful XLR, firmware must perform the register cleanup
process.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BUCKETCNT 17:0 0x0 RW/V UNDEFINED Bucket Count
Reflects the number of active PE filter buckets of the function. This
counter together with the PFQF_PECNT_1 register gives a hint on how
uniform the filter's hash function is.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLTCNT 17:0 0x0 RW/V DYNAMIC Filter Count
Reflects the total number of active PE filters of the function.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PF_CNT_EN 0 0b RW UNDEFINED PE Count Enable
Enable counting PF filters. CLSN0 counts entry hits that are less than or
equal to PELONGB. CLSN1 counts entry hits that are higher collision
order than PELONGB.
Note: Clearing this bit, does not clear the counter.

613875-009 2253

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.40 PF PE Classification Filter Collision Counter 0 -
PFQF_PE_CLSN0 (0x00470480; RCW)

Filter lookup search at low bucket counter.

13.2.2.14.41 PF PE Classification Filter Collision Counter 1 -
PFQF_PE_CLSN1 (0x00470500; RCW)

Filter lookup search at high bucket counter.

13.2.2.14.42 Global PE Classification Filter Outstanding Request Counter -
GLQF_PE_OSR_STS (0x00471040; RCW)

VFS_CNT_EN 1 0b RW UNDEFINED VFs Count Enable
Enable counting filters of the PF and all VFs of this PF. CLSN0 counts
entry hits that are less than or equal to PELONGB. CLSN1 counts entry
hits that are higher collision order than PELONGB.
Note: Clearing this bit, does not clear the counter.

VF_CNT_EN 2 0b RW UNDEFINED VF Count Enable
Enable counting specific VF of this PF, as specified by VF_NUM. CLSN0
counts entry hits that are less than or equal to PELONGB. CLSN1 counts
entry hits that are higher collision order than PELONGB.
Note: Clearing this bit, does not clear the counter.

RESERVED 15:3 0x0 RSV N/A Reserved.

VF_NUM 23:16 0x0 RW UNDEFINED VF Number
VF number for specific VF counting.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

HITSBCNT 31:0 0x0 RWC UNDEFINED Hots Short Count
Counts processed packets of PF/VFs as defined by _CNT_EN in
PFQF_PE_ST_CTL register, in which the PE filter is at a position shorter or
equal than PELONGB threshold in the GLQF_FD_CTL register.

Field Bit(s) Init. Type CFG Policy Description

HITLBCNT 31:0 0x0 RWC UNDEFINED Hits Long Count
Counts processed packets of PF/VFs as defined by _CNT_EN in
PFQF_PE_ST_CTL register, in which the PE filter is at a position longer
than PELONGB threshold in the GLQF_FD_CTL register.

Field Bit(s) Init. Type CFG Policy Description

QH_SRCH_MAXOSR 9:0 0x0 RCW UNDEFINED QH Search Max Outstanding Search Requests
Reflects actual max number of active outstanding search
requests (OSRs)

RESERVED 15:10 0x0 RSV N/A Reserved.

QH_CMD_MAXOSR 25:16 0x0 RCW UNDEFINED QH Command Max Outstanding Search Requests
Reflects actual max number of active outstanding Add/Remove
requests (OSRs)

RESERVED 31:26 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

2254 613875-009

13.2.2.14.43 QH ADD/REM Commands Status - GLQF_PE_CMD
(0x00471080; RW)

13.2.2.14.44 Global Classification Filter Control - GLQF_PE_CTL
(0x004710C0; RW)

13.2.2.14.45 VF Free List Head Array - VPQF_PE_FLHD[VF] (0x00472000
+ 0x4*VF, VF=0...255; RW)

Field Bit(s) Init. Type CFG Policy Description

ADDREM_STS 23:0 0x0 RW/V UNDEFINED Add/Remove Statuses
12x2-bit vector. Each 2-bit entry corresponds to an incoming command.
Codes are:

00b = Free entry
01b = Busy (WIP)
10b = Done Fail
11b = Done Pass

The statuses are written cyclically, enabling the monitoring of 12
commands in parallel. Busy indicates for software that the command is
in processing and the next command can be inserted.
Entries that are Done, are cleared automatically upon read.
Note: Completions (Done) are not in order.

RESERVED 27:24 0x0 RSV N/A Reserved.

ADDREM_ID 31:28 0x0 RW/V UNDEFINED Add/Remove Index
Reflects the index of the next free command location in the
ADDREM_STS vector. The index is for the status entry, which is two
bits. Therefore, for offset within the CSR, must to multiply by two.

Field Bit(s) Init. Type CFG Policy Description

PELONG 3:0 0x1 RW UNDEFINED PE Long
PE filter entry found at larger location in the bucket than PELONGB is
reported as such in the receive descriptor.
Value of one, means all collisions are reported.
In addition, PFQF_PE_CLSN1 statistical counter is incremented for the
relevant PF. See PFQF_PE_ST_CTL for details of statistical counter
configuration.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLHD 23:0 0x0 RW UNDEFINED Free List Head
VF Filter Free List Head Pointer is initialized by software, but through
operation is managed by hardware.
It is a pointer to the Collision FPM, to the first available filter entry in the
link list of all unused entries.
Upon initialization (i.e. XLR, or function Clear command), software must
write this register to zero. This is addition to cleanup of FPM collision
area, which should be written to all zeros.
After VF configuration is enabled, software must not write to this register.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2255

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx Filters Registers

13.2.2.14.46 VF Classification Filter PE Filter Counter 0 -
VPQF_PECNT_0[VF] (0x00472800 + 0x4*VF, VF=0...255;
RW)

Total bucket count.

13.2.2.14.47 VF Classification Filter PE Filter Counter 1 -
VPQF_PECNT_1[VF] (0x00473000 + 0x4*VF, VF=0...255;
RW)

Total filter count.

13.2.2.14.48 VF Classification Filter - PE Control - VPQF_PE_CTL1[VF]
(0x00474000 + 0x4*VF, VF=0...255; RW)

Setting this register, the hardware auto-clears the internal PE Quad Hash context counter and table
pointers of the function.

Field definitions are the same as those defined in Section 13.2.2.14.34.

13.2.2.14.49 PF Classification Filter - PE Control - VPQF_PE_CTL2[VF]
(0x00474800 + 0x4*VF, VF=0...255; RW)

Setting this register, the hardware auto-clears the internal PE Quad Hash context counter and table
pointers of the function.

Field definitions are the same as those defined in Section 13.2.2.14.35.

Field Bit(s) Init. Type CFG Policy Description

BUCKETCNT 17:0 0x0 RW/V UNDEFINED Bucket Count
Reflects the number of active PE filter buckets of the function. This
counter together with the VPQF_PECNT_0 register gives a hint on how
uniform the filter's hash function is.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FLTCNT 17:0 0x0 RW/V UNDEFINED Filter Count
Reflects the total number of active PE filters of the function.

RESERVED 31:18 0x0 RSV N/A Reserved

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

2256 613875-009

13.2.2.15 PF - Interrupt Registers

13.2.2.15.1 PF General Purpose IO Interrupt Enablement -
PFINT_GPIO_ENA (0x00088080; RW)

13.2.2.15.2 EMP General Purpose IO Interrupt Enablement -
EMPINT_GPIO_ENA (0x000880C0; RW)

Field definitions are the same as those defined in Section 13.2.2.15.1.

13.2.2.15.3 VF Vector Allocation - VPINT_ALLOC_PCI[VF] (0x0009D000
+ 0x4*VF, VF=0...255; RW)

Field Bit(s) Init. Type CFG Policy Description

GPIO0_ENA 0 0b RW UNDEFINED GPIO 0 Enable
Enable interrupt on GPIO 0.

GPIO1_ENA 1 0b RW UNDEFINED GPIO 1 Enable
Enable interrupt on GPIO 1.

GPIO2_ENA 2 0b RW UNDEFINED GPIO 2 Enable
Enable interrupt on GPIO 2.

GPIO3_ENA 3 0b RW UNDEFINED GPIO 3 Enable
Enable interrupt on GPIO 3.

GPIO4_ENA 4 0b RW UNDEFINED GPIO 4 Enable
Enable interrupt on GPIO 4.

GPIO5_ENA 5 0b RW UNDEFINED GPIO 5 Enable
Enable interrupt on GPIO 5.

GPIO6_ENA 6 0b RW UNDEFINED GPIO 6 Enable
Enable interrupt on GPIO 6.

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FIRST 10:0 0x0 RW UNDEFINED First
Index of the first interrupt vector of the VF in the internal physical space.

RESERVED 11 0b RSV N/A Reserved

LAST 22:12 0x0 RW UNDEFINED Last
Index of the last interrupt vector of the VF in the internal physical space.

RESERVED 30:23 0x0 RSV N/A Reserved

VALID 31 0b RW UNDEFINED Valid
Valid indication. When this bit is clear, the contents of this CSR are not
valid.

613875-009 2257

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

13.2.2.15.4 PF Vector Allocation - PCI - PFINT_ALLOC_PCI
(0x0009D800; RW)

13.2.2.15.5 Transmit Queue Interrupt Cause Control -
QINT_TQCTL[DBQM] (0x00140000 + 0x4*DBQM,
DBQM=0...16383; RW)

Field definitions are the same as those defined in Section 13.2.2.15.6.

13.2.2.15.6 Receive Queue Interrupt Cause Control - QINT_RQCTL[QRX]
(0x00150000 + 0x4*QRX, QRX=0...2047; RW)

Field Bit(s) Init. Type CFG Policy Description

FIRST 10:0 0x0 RW UNDEFINED First
Index of the first interrupt vector of the PF in the internal physical space.

RESERVED 11 0b RSV N/A Reserved

LAST 22:12 0x0 RW UNDEFINED Last
Index of the last interrupt vector of the PF and its VFs in the internal
physical space.

RESERVED 30:23 0x0 RSV N/A Reserved

VALID 31 0b RW UNDEFINED Valid
Valid indication. When this bit is clear, the contents of this CSR are not
valid.

Field Bit(s) Init. Type CFG Policy Description

MSIX_INDX 10:0 0x0 RW UNDEFINED MSI-X Index
MSI-X vector index within the function space. The software should set
the MSIX_INDX to values in the range of allocated interrupt vectors to
the function.

ITR_INDX 12:11 00b RW UNDEFINED ITR Index
ITR Index of the interrupt cause.

00b = ITR0
01b = ITR1
10b = ITR2
11b = No ITR

RESERVED 29:13 0x0 RSV N/A Reserved.

CAUSE_ENA 30 0b RW UNDEFINED Cause Enable
Enable interrupt by this queue. When CAUSE_ENA is cleared, interrupts
are not generated by the queue. The queue remains in the interrupt
linked list and is processed at ITR expiration.

RESERVED 31 0b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

2258 613875-009

13.2.2.15.7 Global Interrupt Throttling - GLINT_ITR[n,INT]
(0x00154000 + 0x2000*n + 0x4*INT, n=0...2,
INT=0...2047; RW)

13.2.2.15.8 Global Interrupt Rate Limit - GLINT_RATE[INT]
(0x0015A000 + 0x4*INT, INT=0...2047; RW)

13.2.2.15.9 Global PE Completion Event Queue Interrupt Cause Control -
GLINT_CEQCTL[INT] (0x0015C000 + 0x4*INT,
INT=0...2047; RW)

Field Bit(s) Init. Type CFG Policy Description

INTERVAL 11:0 0x0 RW UNDEFINED Interval
ITR “n” interval, where “n” is the register index = 0,1,2 for the three
ITRs per interrupt. It is defined in 2 μs units enabling interval range from
zero to 8160 μs (0xFF0). Setting the INTERVAL to zero enables
immediate interrupt. This register can be programmed also by setting
the INTERVAL field in the matched xxINT_DYN_CTLx register.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

INTERVAL 5:0 0x0 RW UNDEFINED Interval
Time interval defined in 4 μs units between consecutive credit
incremental. When the interrupt rate limit is enabled by the INTRL_ENA
flag in this register, the INTERVAL must be greater than zero. And for
accurate rate limit, the INTERVAL must be smaller than 0x3C (up to
236-μs).

INTRL_ENA 6 0b RW UNDEFINED Interrupt Rate Limit Enable
Enable Interrupt Rate Limit on this interrupt vector.

RESERVED 31:7 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MSIX_INDX 10:0 0x0 RW UNDEFINED MSI-X Index
MSI-X vector index within the function space. The software should set
the MSIX_INDX to values in the range of allocated interrupt vectors to
the function.

ITR_INDX 12:11 0x0 RW UNDEFINED ITR Index
ITR Index of the interrupt cause.

00b = ITR0
01b = ITR1
10b = ITR2
11b = No ITR

RESERVED 29:13 00b RSV N/A Reserved.

CAUSE_ENA 30 0b RW UNDEFINED Cause Enable
Enable interrupt by this queue. When CAUSE_ENA is cleared, interrupts
are not generated by the queue. The queue remains in the interrupt
linked list and is processed at ITR expiration.

RESERVED 31 0b RSV N/A Reserved.

613875-009 2259

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

13.2.2.15.10 Global Interrupt Dynamic Control - GLINT_DYN_CTL[INT]
(0x00160000 + 0x4*INT, INT=0...2047; RW)

In case of MSI or Legacy INTA mode of operation Interrupt zero is the only valid interrupt. The space of
these registers is according to the number of total interrupt registers for the device. The PF can access
only those first “N” interrupts according to the PFINT_ALLOC registers.

Field Bit(s) Init. Type CFG Policy Description

INTENA 0 0b RW UNDEFINED Interrupt Enable
0b = Interrupt is disabled.
1b = Interrupt is enabled.

See auto-clear policy in the Section 9.1.1.1, “Interrupt Enable
Procedure”.
This bit is meaningful only if the INTENA_MSK flag in this
register is not set.
Note: The INTENA and WB_ON_ITR flags are mutually

exclusive.

CLEARPBA 1 0b RW1C UNDEFINED Clear PBA
Setting this bit, the matched PBA bit is cleared.
This bit is auto-cleared by the hardware.

SWINT_TRIG 2 0b RW1C DYNAMIC Software Interrupt Trigger
When the bit is set, a software interrupt is triggered.
This bit is auto-cleared by the hardware.

ITR_INDX 4:3 00b RW1C DYNAMIC ITR Index
This field defines the ITR Index to be updated as follows:

00b = ITR0
01b = ITR1
10b = ITR2
11b = No ITR Update

This field is auto-cleared by the hardware.

INTERVAL 16:5 0x0 RW1C DYNAMIC Interval
The interval for the ITR defined by the ITR_INDX in this register.
This field is auto-cleared by the hardware.

RESERVED 23:17 0x0 RSV N/A Reserved.

SW_ITR_INDX_ENA 24 0b RW1C DYNAMIC Software ITR Index Enable
This flag enables the programming of the SW_ITR_INDX in this
register.
This flag is auto cleared by the hardware.

SW_ITR_INDX 26:25 00b RW UNDEFINED Software ITR Index
ITR Index of the software interrupt.

00b = ITR0
01b = ITR1
10b = ITR2
11b = No ITR

When programming this field, the SW_ITR_INDX_ENA flag in
this register should be set as well.

RESERVED 29:27 000b RSV N/A Reserved.

WB_ON_ITR 30 0b RW UNDEFINED Write Back on ITR
When this bit is set, ITR expiration triggers write back of
completed descriptors without an interrupt.
Note: The INTENA and WB_ON_ITR flags are mutually

exclusive.

INTENA_MSK 31 0b RW1C DYNAMIC Interrupt Enable Mask
When this bit is set, the INTENA setting does not impact the
device setting. This bit is auto-cleared by the hardware.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

2260 613875-009

13.2.2.15.11 Global Interrupt Vector 2 Function Allocation -
GLINT_VECT2FUNC[INT] (0x00162000 + 0x4*INT,
INT=0...2047; RW)

These registers map the interrupts to their functions.

13.2.2.15.12 VF Mailbox Queue Mapping to Interrupt Control -
VPINT_MBX_CTL[VSI] (0x0016A000 + 0x4*VSI,
VSI=0...767; RW)

13.2.2.15.13 VF Mailbox Queue Mapping to Interrupt Control -
VPINT_MBX_CPM_CTL[VP128] (0x0016B000 + 0x4*VP128,
VP128=0...127; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

Field Bit(s) Init. Type CFG Policy Description

VF_NUM 7:0 0x0 RW UNDEFINED VF Number
An absolute VF index in the range of 0 to 255. It is meaningful only if the
IS_PF flag in this register is cleared. Otherwise, it should be set to zero.

RESERVED 11:8 0x0 RSV N/A Reserved.

PF_NUM 14:12 000b RW UNDEFINED PF Number
The PF index can be set to 0-7.

RESERVED 15 0b RSV N/A Reserved.

IS_PF 16 0b RW UNDEFINED Is PF
0b = The queue belongs to the VF. In this case the VF_NUM is valid as

well.
1b = The interrupt belongs to the PF.

RESERVED 31:17 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MSIX_INDX 10:0 0x0 RW UNDEFINED MSI-X Index
MSI-X vector index within the function space. The software should set
the MSIX_INDX to values in the range of allocated interrupt vectors to
the function.

ITR_INDX 12:11 00b RW UNDEFINED ITR Index
ITR Index of the interrupt cause.

00b = ITR0
01b = ITR1
10b = ITR2
11b = No ITR

RESERVED 29:13 0x0 RSV N/A Reserved.

CAUSE_ENA 30 0b RW UNDEFINED Cause Enable
Enable interrupt. When CAUSE_ENA is cleared, interrupts are not
generated and relevant events are disregarded by the interrupt block.
This control is not relevant for OICR causes for which each cause is
controlled in XXINT_PICR_ENA. For OICR, this bit value is disregarded by
the hardware.

RESERVED 31 0b RSV N/A Reserved.

613875-009 2261

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

13.2.2.15.14 VF HLP Mailbox Queue Mapping to Interrupt Control -
VPINT_MBX_HLP_CTL[VP16] (0x0016B200 + 0x4*VP16,
VP16=0...15; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.15 VF PSM Mailbox Queue Mapping to Interrupt Control -
VPINT_MBX_PSM_CTL[VP16] (0x0016B240 + 0x4*VP16,
VP16=0...15; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.16 PF Mailbox Queue Mapping to Interrupt Control -
PFINT_MBX_CTL (0x0016B280; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.17 PF0 CPM Mailbox Queue Mapping to Interrupt Control -
PF0INT_MBX_CPM_CTL (0x0016B2C0; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.18 PF0 HLP Mailbox Queue Mapping to Interrupt Control -
PF0INT_MBX_HLP_CTL (0x0016B2C4; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.19 PF0 PSM Mailbox Queue Mapping to Interrupt Control -
PF0INT_MBX_PSM_CTL (0x0016B2C8; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.20 PF0 CPM SB Queue Mapping to Interrupt Control -
PF0INT_SB_CPM_CTL (0x0016B2CC; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.21 VF CPM SB Queue Mapping to Interrupt Control -
VPINT_SB_CPM_CTL[VP128] (0x0016B400 + 0x4*VP128,
VP128=0...127; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.22 PF SB Queue Mapping to Interrupt Control - PFINT_SB_CTL
(0x0016B600; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

2262 613875-009

13.2.2.15.23 PF0 HLPSB Queue Mapping to Interrupt Control -
PF0INT_SB_HLP_CTL (0x0016B640; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.24 VF PE Asynchronous Event Queue Interrupt Cause Control -
VPINT_AEQCTL[VF] (0x0016B800 + 0x4*VF, VF=0...255;
RW)

Field definitions are the same as those defined in Section 13.2.2.15.33.

13.2.2.15.25 PF Firmware Admin Queue Mapping to Interrupt Control -
PFINT_FW_CTL (0x0016C800; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.26 Global Tools Firmware Admin Queue Mapping to Interrupt
Control - GLINT_FW_TOOL_CTL (0x0016C840; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.27 PF0 HLP Firmware Admin Queue Mapping to Interrupt
Control - PF0INT_FW_HLP_CTL (0x0016C844; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.28 PF0 PSM Firmware Admin Queue Mapping to Interrupt
Control - PF0INT_FW_PSM_CTL (0x0016C848; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.29 PF Interrupt Other Cause Enablement - PFINT_OICR_ENA
(0x0016C900; RW)

Field Bit(s) Init. Type CFG Policy Description

RESERVED 0 0b RSV N/A Reserved.

INT_ENA 31:1 0x0 RW UNDEFINED Interrupt Enable
Each bit set to '1' in this field enables its matched interrupt cause in the
PFINT_OICR register.

613875-009 2263

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

13.2.2.15.30 Global Interrupt TimeSync PHY Mask - PFINT_TSYN_MSK
(0x0016C980; RW)

13.2.2.15.31 PF Interrupt Other Cause - PFINT_OICR (0x0016CA00;
RCW)

Field Bit(s) Init. Type CFG Policy Description

PHY_INDX 4:0 0x0 RW UNDEFINED PHY Index
Bit 'i' in this register enables Quad-PHY index 'i' interrupt to the TSYN_TX
flag in the PFINT_OICR register.
This value should be loaded by NVM and correspond to the port-to-PF
mapping.

RESERVED 31:5 0x0 RSV N/A Reserved

Field Bit(s) Init. Type CFG Policy Description

RESERVED 0 1b RSV N/A Reserved.

QUEUE 1 1b RCW UNDEFINED Queue
Interrupt indication for LAN queues and PE CEQs that are linked
to the other cause interrupt vector.

RESERVED 9:2 0x0 RSV N/A Reserved.

HH_COMP 10 0b RCW UNDEFINED HH Complete
Hammock Harbor sequence is completed (matched completion
message is received).

TSYN_TX 11 0b RCW UNDEFINED TimeSync Tx
Tx packet time is sampled.

TSYN_EVNT 12 0b RCW UNDEFINED TimeSync Event
Event is sampled by the 1588 timer due to a transition in one of
the input GPIOs.

TSYN_TGT 13 0b RCW UNDEFINED TimeSync Target
One of the target time of the 1588 timer is expired.

HLP_RDY 14 0b RCW UNDEFINED HLP Ready
HLP changed its status from not RDY to RDY or visa versa.

CPM_RDY 15 0b RCW UNDEFINED CMP Ready
CPM changed its status from not RDY to RDY or visa versa.

ECC_ERR 16 0b RCW UNDEFINED ECC Error
Unrecoverable ECC Error. This bit is set when an unrecoverable
error is detected in one of the device memories.

RESERVED 18:17 00b RSV N/A Reserved.

MAL_DETECT 19 0b RCW UNDEFINED Malicious Detected
Malicious programming detected.

GRST 20 0b RCW UNDEFINED Global Resets Requested
CORER, GLOBR, or EMPR.

RESERVED 21 0b RSV N/A Reserved.

GPIO 22 0b RCW UNDEFINED GPIO
GPIO Event indicates an event on any of the GPIO pins enabled
for interrupt by the PFINT_GPIOCTL register.
The GPIO state can be fetched on the GLGEN_GPIO_STAT
register. The level transition that generates an interrupt is set for
GPIO 'n' by the INT_MODE field in the matched
GLGEN_GPIO_CTL[n] register.

RESERVED 23 0b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

2264 613875-009

13.2.2.15.32 PF Interrupt Other Cause Control - PFINT_OICR_CTL
(0x0016CA80; RW)

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.33 PF PE Asynchronous Event Queue Interrupt Cause Control -
PFINT_AEQCTL (0x0016CB00; RW)

STORM_DETECT 24 0b RCW UNDEFINED Storm Detected
Indicates a change entering the storm control state of the LAN
port that is connected to this PF. The storm control state is
reflected in the PRT_SWT_SCSTS register.

RESERVED 25 0b RSV N/A Reserved.

HMC_ERR 26 0b RCW UNDEFINED HMC Errors
PEPMAT or FPMAT. or CMPE.
Specific PEMAT errors are reported in the PFHMC_ERRORINFO
and PFHMC_ERRORDATA registers.
Specific FPMAT errors are reported in the
PFHMC_ERRORINFO_FPMAT and PFCHMC_ERRORDATA_FPMAT
registers.
Specific CMPE errors are reported in the
PFCM_PE_CRCERRINFO.

PE_PUSH 27 0b RCW UNDEFINED PE Push
Indication that RDMA engine does not pull data from the push
buffer (Indication that pe_pcie_push_rdy watchdog timer
expired).

RESERVED 28 0b RSV N/A Reserved.

VFLR 29 0b RCW UNDEFINED VFLR
VFLR was initiated by one of the VFs of the PF.
The PF should read the GLGEN_VFLRSTAT getting an indication
for the VF that generated the VFLR.

XLR_HW_DONE 30 0b RCW UNDEFINED XLR Hardware Done
VF or VM of the PF has set their hardware done indications after
VM/VF reset.

SWINT 31 0b RCW UNDEFINED Software Interrupt indication

Field Bit(s) Init. Type CFG Policy Description

MSIX_INDX 10:0 0x0 RW UNDEFINED MSI-X Index
MSI-X vector index within the function space. The software should set
the MSIX_INDX to values in the range of allocated interrupt vectors to
the function.

ITR_INDX 12:11 00b RW UNDEFINED ITR Index
ITR Index of the interrupt cause.

00b = ITR0
01b = ITR1
10b = ITR2
11b = No ITR

RESERVED 29:13 0x0 RSV N/A Reserved.

CAUSE_ENA 30 0b RW UNDEFINED Cause Enable
Enable interrupt by this queue. When CAUSE_ENA is cleared, interrupts
are not generated by the queue. The queue remains in the interrupt
linked list and is processed at ITR expiration.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2265

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

13.2.2.15.34 PF0 Interrupt Other Cause CPM - PF0INT_OICR_CPM
(0x0016CC40; RCW)

This register is set by the hardware with the same indication as the PFINT_OICR for the sake of the CPM
driver.

Field definitions are the same as those defined in Section 13.2.2.15.31.

13.2.2.15.35 PF0 Interrupt Other Cause PSM - PF0INT_OICR_PSM
(0x0016CC44; RCW)

This register is set by the hardware with the same indication as the PFINT_OICR for the sake of the PSM
driver.

Field definitions are the same as those defined in Section 13.2.2.15.31.

13.2.2.15.36 PF0 Interrupt Other Cause CPM Control -
PF0INT_OICR_CTL_CPM (0x0016CC48; RW)

This register is valid only for PF0. It has the same functionality of PFINT_OICR_CTL mapped in the same
4 KB page as PFINT_OICR3.

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.37 PF0 Interrupt Other Cause HLP Enablement -
PF0INT_OICR_ENA_HLP (0x0016CC4C; RW)

This register is valid only for PF0. It has the same functionality of PFINT_OICR_ENA mapped in the
same 4 KB page as PFINT_OICR1.

Field definitions are the same as those defined in Section 13.2.2.15.29.

13.2.2.15.38 Global Interrupt TimeSync PHY Indication -
GLINT_TSYN_PHY (0x0016CC50; RW1C)

13.2.2.15.39 Global Interrupt Control - GLINT_CTL (0x0016CC54; RW)

Field Bit(s) Init. Type CFG Policy Description

PHY_INDX 4:0 0x0 RW1C DYNAMIC PHY Index
Bit 'i' in this register is set when Quad-PHY index 'i' initiates the transmit
packet timestamp interrupt.

RESERVED 31:5 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 15:0 0x0 RSV N/A Reserved.

ITR_GRAN_200 19:16 0x2 RW UNDEFINED TITR Granularity 200
Defines the granularity of the ITR in 1 μs granularity for the
200 Gb/s Max speed SKU. Min allowed value is 1 μs.

ITR_GRAN_100 23:20 0x2 RW UNDEFINED TITR Granularity 100
Defines the granularity of the ITR in 1 μs granularity for the
100 Gb/s Max speed SKU. Min allowed value is 1 μs.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

2266 613875-009

13.2.2.15.40 PF0 Interrupt Other Cause PSM Enablement -
PF0INT_OICR_ENA_PSM (0x0016CC58; RW)

This register is valid only for PF0. It has the same functionality of PFINT_OICR_ENA mapped in the
same 4 KB page as PFINT_OICR2.

Field definitions are the same as those defined in Section 13.2.2.15.29.

13.2.2.15.41 PF0 Interrupt Other Cause HLP Control -
PF0INT_OICR_CTL_HLP (0x0016CC5C; RW)

This register is valid only for PF0. It has the same functionality of PFINT_OICR_CTL mapped in the same
4 KB page as PFINT_OICR1.

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.42 PF0 Interrupt Other Cause CPM Enablement -
PF0INT_OICR_ENA_CPM (0x0016CC60; RW)

This register is valid only for PF0. It has the same functionality of PFINT_OICR_ENA mapped in the
same 4 KB page as PFINT_OICR3.

Field definitions are the same as those defined in Section 13.2.2.15.29.

13.2.2.15.43 PF0 Interrupt Other Cause PSM Control -
PF0INT_OICR_CTL_PSM (0x0016CC64; RW)

This register is valid only for PF0. It has the same functionality of PFINT_OICR_CTL mapped in the same
4 KB page as PFINT_OICR2.

Field definitions are the same as those defined in Section 13.2.2.15.12.

13.2.2.15.44 PF0 Interrupt Other Cause HLP - PF0INT_OICR_HLP
(0x0016CC68; RCW)

This register is set by the hardware with the same indication as the PFINT_OICR for the sake of the HLP
driver.

Field definitions are the same as those defined in Section 13.2.2.15.31.

ITR_GRAN_50 27:24 0x2 RW UNDEFINED TITR Granularity 50
Defines the granularity of the ITR in 1 μs granularity for the 50 Gb/s
Max speed SKU. Min allowed value is 2 μs.

ITR_GRAN_25 31:28 0x4 RW UNDEFINED TITR Granularity 25
Defines the granularity of the ITR in 1 μs granularity for the 25 Gb/s
Max speed SKU. Min allowed value is 4 μs.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2267

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Interrupt Registers

13.2.2.15.45 Global Interrupt TimeSync Primary Select -
GLINT_TSYN_PFMSTR[n] (0x0016CCC0 + 0x4*n, n=0...1;
RW)

13.2.2.15.46 VF Vector Allocation - VPINT_ALLOC[VF] (0x001D1000 +
0x4*VF, VF=0...255; RW)

This register indicates the interrupt allocation of the VF.

13.2.2.15.47 PF Vector Allocation - PFINT_ALLOC (0x001D2600; RW)

Field Bit(s) Init. Type CFG Policy Description

PF_MASTER 2:0 000b RW UNDEFINED PF Primary
This field indicates the index of the PF that owns the 1588 primary timer
'n', where 'n' is the register index.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FIRST 10:0 0x0 RW UNDEFINED First
Index of the first interrupt vector of the VF in the internal physical space.

RESERVED 11 0b RSV N/A Reserved.

LAST 22:12 0x0 RW UNDEFINED Last
Index of the last interrupt vector of the VF in the internal physical space.

RESERVED 30:23 0x0 RSV N/A Reserved.

VALID 31 0b RW UNDEFINED Valid
Valid indication. When this bit is clear, the contents of this CSR are not
valid.

Field Bit(s) Init. Type CFG Policy Description

FIRST 10:0 0x0 RW UNDEFINED First
Index of the first interrupt vector of the PF in the internal physical space.

RESERVED 11 0b RSV N/A Reserved.

LAST 22:12 0x0 RW UNDEFINED Last
Index of the last interrupt vector of the PF and its VFs in the internal
physical space.

RESERVED 30:23 0x0 RSV N/A Reserved.

VALID 31 0b RW UNDEFINED Valid
Valid indication. When this bit is clear, the contents of this CSR are not
valid.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Virtualization PF Registers

2268 613875-009

13.2.2.16 PF - Virtualization PF Registers

13.2.2.16.1 PF Resources Allocation - PF_VT_PFALLOC_HIF
(0x0009DD80; RW)

This register indicates the VFs allocated to the each PF.

13.2.2.16.2 PF Virtualization Status Register - PF_VIRT_VSTATUS
(0x0009E680; RO)

13.2.2.16.3 PF Resources Allocation - PF_VT_PFALLOC_PCIE
(0x000BE080; RW)

This register indicates the VFs allocated to the each PF.

Field Bit(s) Init. Type CFG Policy Description

FIRSTVF 7:0 0x0 RW UNDEFINED First VF
The first VF allocated to this PF. Valid only if the VALID flag is set.
Valid values are 0-255.

LASTVF 15:8 0x0 RW UNDEFINED Last VF
The last VF allocated to this PF. Valid only if the VALID flag is set.
Valid values are 0-255.

RESERVED 30:16 0x0 RSV N/A Reserved.

VALID 31 0b RW UNDEFINED Valid
The FIRSTVF and LASTVF fields in this register are valid. If cleared no
VFs are allocated to this PF.
If cleared, the SR-IOV capability should not be exposed for this PF.

Field Bit(s) Init. Type CFG Policy Description

NUM_VFS 7:0 0x0 RO N/A Number of VFs
Reflects the value of the Num VFs field in the IOV capability structure.

TOTAL_VFS 15:8 0x0 RO N/A Total VFs
Reflects the value of the TotalVFs field in the IOV capability structure.

IOV_ACTIVE 16 0b RO N/A IOV Active
Reflects the value of the VF Enable (VFE) bit in the IOV control/status
register

RESERVED 31:17 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FIRSTVF 7:0 0x0 RW UNDEFINED First VF
The first VF allocated to this PF. Valid only if the VALID flag is set.
Valid values are 0-255.

LASTVF 15:8 0x0 RW UNDEFINED Last VF
The last VF allocated to this PF. Valid only if the VALID flag is set.
Valid values are 0-255.

RESERVED 30:16 0x0 RSV N/A Reserved.

VALID 31 0b RW UNDEFINED Valid
The FIRSTVF and LASTVF fields in this register are valid. If cleared no
VFs are allocated to this PF.
If cleared, the SR-IOV capability should not be exposed for this PF.

613875-009 2269

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Virtualization PF Registers

13.2.2.16.4 PF Resources Allocation - PF_VT_PFALLOC (0x001D2480;
RW)

This register indicates the VFs allocated to the each PF.

Field Bit(s) Init. Type CFG Policy Description

FIRSTVF 7:0 0x0 RW UNDEFINED First VF
The first VF allocated to this PF. Valid only if the VALID flag is set.
Valid values are 0-255.

LASTVF 15:8 0x0 RW UNDEFINED Last VF
The last VF allocated to this PF. Valid only if the VALID flag is set.
Valid values are 0-255.

RESERVED 30:16 0x0 RSV N/A Reserved.

VALID 31 0b RW UNDEFINED Valid
The FIRSTVF and LASTVF fields in this register are valid. If cleared no
VFs are allocated to this PF.
If cleared, the SR-IOV capability should not be exposed for this PF.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2270 613875-009

13.2.2.17 PF - DCB Registers

13.2.2.17.1 DCB TDPU Control - PRTDCB_TDPUC (0x00040940; RW)

Malicious indication/control register. Drop reasons are not valid on markers/head update packets.

Field Bit(s) Init. Type CFG Policy Description

MAX_TXFRAME 15:0 0x2600 RW UNDEFINED Max Tx Frame
Maximum Tx frame size in bytes.
Frames longer than the size specified here are discarded and not
transmitted (nor looped back).
Default and maximum allowed value is 9.5 KB (jumbo frame).
Minimum size to be configured here is 60.

MAL_LENGTH 16 0b RO N/A Malicious Length
Detected malicious length parameters in the Tx-Descriptor

MAL_CMD 17 0b RO N/A Malicious Commands
Detected malicious combination of commands vs. packet types in
the Tx-Descriptor.

TTL_DROP 18 0b RO N/A TTL Drop
Packet was dropped due to TTL parameter. This indication is
invalid on DUMMY or UR_DROP.

UR_DROP 19 0b RO N/A Unsupported Requests Drop
Packet dropped due to unsupported request or dummy
completion event of requested packet data.

DUMMY 20 0b RO N/A Dummy
Packet was dropped because dummy bit was on

BIG_PKT_SIZE 21 0b RO N/A Big Packet Size
Packet dropped because it exceeds MAX_TXFRAME size.

L2_ACCEPT_FAIL 22 0b RO N/A L2 Acceptance Fail
Packet dropped because of L2 acceptance rules fail. This
indication is invalid on DUMMY or UR_DROP.

DSCP_CHECK_FAIL 23 0b RO N/A DSCP Check Fail
Packet dropped because of DSCP rule check fail.

RCU_ANTISPOOF 24 0b RO N/A RCU Anti-Spoof
Packet dropped by RCU.

NIC_DSI 25 0b RO N/A NIC DSI
Packet dropped because DSI command in NIC mode was
identified.

NIC_IPSEC 26 0b RO N/A NIC IPsec
Packet dropped because IPSEC command in NIC mode was
identified.

RESERVED 30:27 0x0 RSV N/A Reserved.

CLEAR_DROP 31 0b SC UNDEFINED Clear Drop
Setting this bit, clears the malicious and drop flags in this register.
This bit is auto-cleared.

613875-009 2271

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.2 DCB Receive UP in TDPU - PRTDCB_RUP_TDPU
(0x00040960; RW)

Default UP per port.

13.2.2.17.3 Tx DCB DSCP to User Priority Control -
PRTDCB_TX_DSCP2UP_CTL (0x00040980; RW)

DSCP mode enable/disable per port:

13.2.2.17.4 Tx DCB DSCP to User Priority LUT for IPv4 Packets -
PRTDCB_TX_DSCP2UP_IPV4_LUT[n] (0x000409A0 +
0x20*n, n=0...7; RW)

This register is used to load Tx DSCP2UP tables for IPv4 packets. The table is used for DSCP to UP
manipulation, for ports which are DSCP enabled. Result UP from the table is passed in metadata for
loopback packets.

Field definitions are the same as those defined in Section 13.2.2.17.5.

Field Bit(s) Init. Type CFG Policy Description

NOVLANUP 2:0 000b RW UNDEFINED No VLAN UP
This field assigns a default UP value to untagged incoming packets.
The default UP is not inserted in the packet itself, but it controls in which
linked list of RPB untagged packets are stored.
UP 0 is the default.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DSCP2UP_ENA 0 0b RW UNDEFINED DSCP-to-UP Enable
This flag enables the DSCP to User Priority Lookup table.

0b = The DSCP lookup table is disabled and the User Priority is
taken from the VLAN tag.

1b = The DSCP to User Priority LUP is enabled.

DSCP_DEFAULT_UP 3:1 000b RW UNDEFINED DSCP Default UP
Default User Priority for packets without an IP header. This field is
meaningful only when the DSCP2UP LUT is enabled by the
DSCP2UP_ENA flag in this register.

RESERVED 31:4 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2272 613875-009

13.2.2.17.5 Tx DCB DSCP to User Priority LUT for IPv6 Packets -
PRTDCB_TX_DSCP2UP_IPV6_LUT[n] (0x00040AA0 +
0x20*n, n=0...7; RW)

This register is used to load Tx DSCP2UP tables for IPv6 packets. The table is used for DSCP to UP
manipulation, for ports which are DSCP enabled. Result UP from the table is passed in metadata for
loopback packets.

Field Bit(s) Init. Type CFG Policy Description

DSCP2UP_LUT_0 2:0 000b RW UNDEFINED DSCP-to-UP LUT 0
This entry in register 'n' of the array represents the User Priority
output for DSCP input equals to '8*n'.

RESERVED 3 0b RSV N/A Reserved.

DSCP2UP_LUT_1 6:4 000b RW UNDEFINED DSCP-to-UP LUT 1
This entry in register 'n' of the array represents the User Priority
output for DSCP input equals to '8*n+1'.

RESERVED 7 0b RSV N/A Reserved.

DSCP2UP_LUT_2 10:8 000b RW UNDEFINED DSCP-to-UP LUT 2
This entry in register 'n' of the array represents the User Priority
output for DSCP input equals to '8*n+2'.

RESERVED 11 0b RSV N/A Reserved.

DSCP2UP_LUT_3 14:12 000b RW UNDEFINED DSCP-to-UP LUT 3
This entry in register 'n' of the array represents the User Priority
output for DSCP input equals to '8*n+3'.

RESERVED 15 0b RSV N/A Reserved.

DSCP2UP_LUT_4 18:16 000b RW UNDEFINED DSCP-to-UP LUT 4
This entry in register 'n' of the array represents the User Priority
output for DSCP input equals to '8*n+4'.

RESERVED 19 0b RSV N/A Reserved.

DSCP2UP_LUT_5 22:20 000b RW UNDEFINED DSCP-to-UP LUT 5
This entry in register 'n' of the array represents the User Priority
output for DSCP input equals to '8*n+5'.

RESERVED 23 0b RSV N/A Reserved.

DSCP2UP_LUT_6 26:24 000b RW UNDEFINED DSCP-to-UP LUT 6
This entry in register 'n' of the array represents the User Priority
output for DSCP input equals to '8*n+6'.

RESERVED 27 0b RSV N/A Reserved.

DSCP2UP_LUT_7 30:28 000b RW UNDEFINED DSCP-to-UP LUT 7
This entry in register 'n' of the array represents the User Priority
output for DSCP input equals to '8*n+7'.

RESERVED 31 0b RSV N/A Reserved.

613875-009 2273

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.6 Transmit DCSP to TC Enforcement - IPv4 -
GL_DCB_TDSCP2TC_BLOCK_IPV4[n] (0x00049018 +
0x4*n, n=0...63; RO)

Defines DSCP-to-TC enforcement for IPv4 packets.

For each DSCP (0..63) this register maps the TCs for which this DSCP is allowed, by having
corresponding TC bit set or cleared.

For DSCP #n, CSR contains 32 entries. Each entry represents TC per port, according to device mode of
operation:

• 1 port x 32 TCs: bit[N] represents TC[N]

• 2 ports x 8 TCs: bit[N] represents port[P] x TC[T], where:

P = 0..1
T = 0..7
N = P*8 + T
bits 16..31 are not valid

• 4 ports x 8 TCs: bit[N] represents port[P] x TC[T], where:

P = 0..4
T = 0..7
N = P*8 + T

• 8 ports x 4 TCs: bit[N] represents port[P] x TC[T], where:

P = 0..7
T = 0..3
N = P*4 + T

For each entry:

0b = DSCP is allowed for this TC (packet is not blocked)
1b = DSCP is blocked for this TC (packet is blocked if enabled by DSCP2TC_BLOCK_DIS register).

Field Bit(s) Init. Type CFG Policy Description

TC_BLOCK_LUT 31:0 0x0 RW UNDEFINED TC Block LUT
Defines if it is allowed to have DSCP #N in packet that is sent
through port=x, tc=y and port is DSCP enabled.
If number of ports = X, number of TCs = Y, bit Y*port + TC defines if
DSCP is allowed for this port/TC.

0b = Allowed.
1b = Block (if enabled by DSCP2TC_BLOCK_DIS register).

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2274 613875-009

13.2.2.17.7 Transmit DCSP to TC Enforcement - IPv6 -
GL_DCB_TDSCP2TC_BLOCK_IPV6[n] (0x00049118 +
0x4*n, n=0...63; RO)

Defines DSCP-to-TC enforcement for IPv6 packets.

For each DSCP (0..63) this register maps the TCs for which this DSCP is allowed, by having
corresponding TC bit set or cleared.

For DSCP #n, CSR contains 32 entries. Each entry represents TC per port, according to device mode of
operation:

• 1 port x 32 TCs: bit[N] represents TC[N]

• 2 ports x 8 TCs: bit[N] represents port[P] x TC[T], where:

P = 0..1
T = 0..7
N = P*8 + T
bits 16..31 are not valid

• 4 ports x 8 TCs: bit[N] represents port[P] x TC[T], where:

P = 0..4
T = 0..7
N = P*8 + T

• 8 ports x 4 TCs: bit[N] represents port[P] x TC[T], where:

P = 0..7
T = 0..3
N = P*4 + T

For each entry:

0b = DSCP is allowed for this TC (packet is not blocked)
1b = DSCP is blocked for this TC (packet is blocked if enabled by DSCP2TC_BLOCK_DIS register).

Field definitions are the same as those defined in Section 13.2.2.17.6.

13.2.2.17.8 Transmit DCSP to TC Enforcement Enable -
GL_DCB_TDSCP2TC_BLOCK_DIS (0x00049218; RO)

If a packet failed in DSCP-to-TC enforcement checks (as configured by TDSCP2TC_BLOCK LUTs), this
register determines if the packet is dropped or not.

Field Bit(s) Init. Type CFG Policy Description

DSCP2TC_BLOCK_DIS 0 1b RW UNDEFINED DSCP-to-TC Block Disable
0b = If DSCP2TC LUT returned status = FAIL, packet is

dropped.
1b = Packet is not dropped due to DSCP2TC LUT status=FAIL.

RESERVED 31:1 0x0 RSV N/A Reserved.

613875-009 2275

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.9 Port DCB General Control - PRTDCB_GENC (0x00083000;
RW)

13.2.2.17.10 Port DCB General Status - PRTDCB_GENS (0x00083020; RO)

13.2.2.17.11 Global DCB General Control - GLDCB_GENC (0x00083044;
RW)

13.2.2.17.12 DCB Transmit Port DWRR Status -
TPB_PRTDCB_TCB_DWRR_CREDITS (0x000991C0; RO)

Field definitions are the same as those defined in Section 13.2.2.17.49.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 1:0 00b RSV N/A Reserved.

NUMTC 5:2 0x1 RW UNDEFINED Number of TCs
Number of Traffic Classes (TCs) for the port.
This field must be set consistently with the settings made in the
Tx-Scheduler.

FCOEUP 8:6 0x3 RW UNDEFINED Defines the 802.1p UP field used for FCoE traffic over the link.

FCOEUP_VALID 9 1b RW UNDEFINED FCoE UP Valid
Validity bit for the FCoEUP field.

0b = FCoE is not used over this port, and therefore RPB settings
must use the same Max Frame Size for all TCs.

1b = The FCoEUP field contents is valid.

RESERVED 15:10 0x0 RSV N/A Reserved.

PFCLDA 31:16 0x079D RW UNDEFINED PFC Link Delay Allowance
It is expressed in 16-bytes unit.
Default value assumes 9.5 KB jumbo frames over a 10G link with a
10GBASE-T PHY and 100 meter Cat6 cable (no optimization done for
lower links speeds).
For a 40G link, the number must be 0x1E70.

Field Bit(s) Init. Type CFG Policy Description

DCBX_STATUS 2:0 000b RW N/A DCBx Status
000b = NOT_STARTED
001b = IN_PROGRESS
010b = DONE
011b = MULTIPLE_PEERS
111b = DISABLED
All other values are reserved.

RESERVED 31:3 0x0 RSV N/A Reserved

Field Bit(s) Init. Type CFG Policy Description

PCIRTT 15:0 0x009C RW UNDEFINED PCIe Round Trip Time
It is expressed in 16-bytes unit.
Default is 2 ms PCIe round trip time assuming 10G links (no optimization
done for lower links speeds).
For a 40G link, the number must be 0x0270.

RESERVED 31:16 0x0 RSV N/A

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2276 613875-009

13.2.2.17.13 DCB Transmit Port DWRR Quanta/Weights -
TPB_PRTDCB_TCB_DWRR_QUANTA (0x00099220; RW)

13.2.2.17.14 DCB Transmit Port DWRR Saturation Value -
TPB_PRTDCB_TCB_DWRR_SAT (0x00099260; RW)

13.2.2.17.15 DCB Transmit Regular Bulk DWRR Status -
TPB_PRTTCB_BULK_DWRR_REG_CREDITS (0x000992A0;
RO)

Field definitions are the same as those defined in Section 13.2.2.17.52.

13.2.2.17.16 DCB Transmit Wait Bulk DWRR Status -
TPB_PRTTCB_BULK_DWRR_WB_CREDITS (0x000992C0;
RO)

Field definitions are the same as those defined in Section 13.2.2.17.53.

13.2.2.17.17 DCB Transmit Regular Low Latency DWRR Status -
TPB_PRTTCB_LL_DWRR_REG_CREDITS (0x00099300; RO)

Field definitions are the same as those defined in Section 13.2.2.17.54.

13.2.2.17.18 DCB Transmit Wait Low Latency DWRR Status -
TPB_PRTTCB_LL_DWRR_WB_CREDITS (0x00099320; RO)

Field definitions are the same as those defined in Section 13.2.2.17.55.

13.2.2.17.19 DCB Transmit Regular Bulk DWRR Quanta/Weights -
TPB_BULK_DWRR_REG_QUANTA (0x00099340; RW)

Field definitions are the same as those defined in Section 13.2.2.17.56.

Field Bit(s) Init. Type CFG Policy Description

QUANTA 10:0 0x1 RW UNDEFINED Quanta
Port quanta size in 64-byte granularity.
Actual bandwidth share is determined by considering the other ports'
quantas.

RESERVED 31:11 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SATURATION 16:0 0x1000 RW UNDEFINED Saturation
Port saturation value in bytes.
Port DWRR credits cannot be above this value.

RESERVED 31:17 0x0 RSV N/A Reserved.

613875-009 2277

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.20 DCB Transmit Wait Bulk DWRR Quanta/Weights -
TPB_BULK_DWRR_WB_QUANTA (0x00099344; RW)

Field definitions are the same as those defined in Section 13.2.2.17.57.

13.2.2.17.21 DCB Transmit Regular Low Latency DWRR Quanta/Weights -
TPB_LL_DWRR_REG_QUANTA (0x00099348; RW)

Field definitions are the same as those defined in Section 13.2.2.17.58.

13.2.2.17.22 DCB Transmit Wait Low Latency DWRR Quanta/Weights -
TPB_LL_DWRR_WB_QUANTA (0x0009934C; RW)

Field definitions are the same as those defined in Section 13.2.2.17.59.

13.2.2.17.23 DCB Transmit Regular Bulk DWRR Saturation Value -
TPB_BULK_DWRR_REG_SAT (0x00099350; RW)

Field definitions are the same as those defined in Section 13.2.2.17.60.

13.2.2.17.24 DCB Transmit Wait Bulk DWRR Saturation Value -
TPB_BULK_DWRR_WB_SAT (0x00099354; RW)

Field definitions are the same as those defined in Section 13.2.2.17.61.

13.2.2.17.25 DCB Transmit Regular Low Latency DWRR Saturation Value -
TPB_LL_DWRR_REG_SAT (0x00099358; RW)

Field definitions are the same as those defined in Section 13.2.2.17.62.

13.2.2.17.26 DCB Transmit Wait Low Latency DWRR Saturation Value -
TPB_LL_DWRR_WB_SAT (0x0009935C; RW)

Field definitions are the same as those defined in Section 13.2.2.17.63.

13.2.2.17.27 DCB Transmit Rate Limiter Control per TC -
TPB_WB_RL_TC_CFG[n] (0x00099360 + 0x4*n, n=0...31;
RO)

Field definitions are the same as those defined in Section 13.2.2.17.68.

13.2.2.17.28 DCB Transmit Rate Limiter Status per TC -
TPB_WB_RL_TC_STAT[n] (0x000993E0 + 0x4*n, n=0...31;
RO)

Field definitions are the same as those defined in Section 13.2.2.17.69.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2278 613875-009

13.2.2.17.29 TC Rate Limiters Config - GLTPB_WB_RL (0x00099460; RO)

Field definitions are the same as those defined in Section 13.2.2.17.70.

13.2.2.17.30 TPB TC LL Config - GLDCB_TPB_TCLL_CFG (0x00099464;
RO)

13.2.2.17.31 TPB TLPM TC Immediate FC Enable -
GLDCB_TPB_IMM_TLPM (0x00099468; RO)

Configures FC immediate mode per TC for TCUPM interface.

13.2.2.17.32 TPB TC Immediate FC Enable - GLDCB_TPB_IMM_TPB
(0x0009946C; RO)

Configures FC immediate mode per TC for TCB interface.

Field Bit(s) Init. Type CFG Policy Description

LLTC 31:0 0x0 RW UNDEFINED Low Latency TC
1-bit entry per each TC. Each entry controls whether the TC is considered
to have low latency needs for the transmit path.

0b = TC is defined to be a Bulk.
1b = TC is defined to be a Low Latency TC for transmit.

Field Bit(s) Init. Type CFG Policy Description

IMM_EN 31:0 0xFFFFFFFF RW UNDEFINED Immediate Enable
Per-TC Tx immediate FC enable.

0b = Conditioned XOFF Forwarding Mode (default). XOFF
notifications received from the line or from the internal
loopback path are not forwarded upward to the TCUPM, but
only once the data pipe monitor for this TC is filled over its
threshold. This mode provides better XON recovering time.

1b = Immediate XOFF Forwarding Mode. XOFF notifications
received from the line or from the internal loopback path are
immediately forwarded internally upward to the TCUPM. This
mode is useful to support PFC-enabled TCs of the port like
true independent traffic classes when more than two such TCs
are configured over the port.

This bit should be kept as zero

Field Bit(s) Init. Type CFG Policy Description

IMM_EN 31:0 0xFFFFFFFF RW UNDEFINED Immediate Enable
Per-TC Tx immediate FC enable.

0b = Conditioned XOFF Forwarding Mode (default). XOFF
notifications received from the line or from the internal
loopback path are not forwarded upward to the TCB, but only
once the data pipe monitor for this TC is filled over its
threshold. This mode provides better XON recovering time.

1b = Immediate XOFF Forwarding Mode. XOFF notifications
received from the line or from the internal loopback path are
immediately forwarded internally upward to the TCB.

613875-009 2279

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.33 Ignore FC per TC List - GLDCB_TFPFCI (0x0009949C; RO)

13.2.2.17.34 TCB Arbiter Credit Expansion - TPB_PRTTCB_CREDIT_EXP
(0x00099644; RW)

Register used to add arbiter credit expansion for packets per port.

Field definitions are the same as those defined in Section 13.2.2.17.64.

13.2.2.17.35 TCB Arbiter Credit Expansion Control -
TPB_GLTCB_CREDIT_EXP_CTL (0x00099664; RW)

Used to enable/disable arbiter credit expansion and set minimal packet size for updating credits.

Field definitions are the same as those defined in Section 13.2.2.17.65.

13.2.2.17.36 Global Wait Buffer Strict Priority Enable -
TPB_GLDCB_TCB_WB_SP (0x0009966C; RW)

Field definitions are the same as those defined in Section 13.2.2.17.71.

13.2.2.17.37 DCB Transmit Data Pipe Port Monitor Status -
PRTDCB_TLPM_REG_DM (0x000A0000; RO)

Regular buffer data monitor status per port.

Field Bit(s) Init. Type CFG Policy Description

GLDCB_TFPFCI 31:0 0x0 RW UNDEFINED A bit per TC, that if high FC is ignored for this TC:
Packets are dropped and not sent to MAC/RPB (even if FC from MAC/
RPB is not set).
Indication to pipe monitor is not asserted.
MAC/RPB FC is ignored.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 18:0 0x0 RW UNDEFINED Monitor
Regular buffer port monitor status.
Current amount of data in lower pipe not including TPB wait buffer per
port, in bytes.

RESERVED 31:19 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2280 613875-009

13.2.2.17.38 DCB Transmit Data Pipe Port Monitor Threshold -
PRTDCB_TLPM_REG_DTHR (0x000A0020; RW)

Regular buffer data monitor threshold per port.

13.2.2.17.39 DCB Transmit Data Pipe Port Waiting Monitor Status -
PRTDCB_TLPM_WAIT_PFC_DM (0x000A0040; RO)

Wait + regular buffer data monitor status per port of PFC-enabled TCs only.

13.2.2.17.40 DCB Transmit Data Pipe Port Waiting Monitor Threshold -
PRTDCB_TLPM_WAIT_PFC_DTHR (0x000A0060; RW)

Wait + regular buffer data monitor threshold per port.

Field Bit(s) Init. Type CFG Policy Description

PORTOFFTH_H 11:0 0x1A9 RW UNDEFINED Port OFF Threshold High
Regular buffer port monitor high threshold applied over the Data Pipe.
It is expressed in 128-byte units of Layer2 packet lengths (i.e.,
excluding preamble, IPG, and CRC).
When over this threshold, monitor blocks the port.

PORTOFFTH_L 23:12 0x1A9 RW UNDEFINED Port OFF Threshold Low
Regular buffer port monitor low threshold applied over the Data Pipe.
It is expressed in 128Byte units of Layer2 packet lengths (i.e.,
excluding preamble, IPG, and CRC).
When over this threshold, monitor blocks bulk traffic of the port.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 18:0 0x0 RW UNDEFINED Monitor
Wait buffer port monitor status.
Current amount of data in lower pipe for both regular and wait buffers of
TPB per port, in bytes.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORTOFFTH 11:0 0x3A0 RW UNDEFINED Port OFF Threshold
High threshold on the total amount of data that is waiting in the TPB
waiting lists of the port for all its PFC-enabled TCs, in 128-byte units.

RESERVED 31:12 0x0 RSV N/A Reserved.

613875-009 2281

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.41 DCB Transmit Data Pipe TC Waiting Monitor Status -
TCDCB_TLPM_WAIT_DM[n] (0x000A0080 + 0x4*n,
n=0...31; RO)

Wait + regular buffer data monitor status per TC.

13.2.2.17.42 DCB Transmit Data Pipe TC Waiting Monitor Threshold -
TCDCB_TLPM_WAIT_DTHR[n] (0x000A0100 + 0x4*n,
n=0...31; RW)

Wait + regular buffer data monitor threshold per TC.

13.2.2.17.43 DCB PCIe Tx Data Count - GLDCB_TLPM_PCI_DM
(0x000A0180; RO)

13.2.2.17.44 DCB PCIe Tx Data Threshold - GLDCB_TLPM_PCI_DTHR
(0x000A0184; RW)

Field Bit(s) Init. Type CFG Policy Description

MONITOR 18:0 0x0 RW UNDEFINED Monitor
Wait buffer TC monitor status.
Current amount of data in lower pipe for both regular and wait buffers of
TPB per TC (32), in bytes.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCOFFTH 11:0 0x1A9 RW UNDEFINED TC Off Threshold
The total amount of data that can accumulate in the TPB (waiting list
included) of the port for the same PFC-enabled TC, in 128B units.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 18:0 0x0 RW UNDEFINED Monitor
Byte count of all the Tx data (for all ports) which is in transit from host
PCIe to TDPU block.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PCI_TDATA 11:0 0x96 RW UNDEFINED PCI Data Threshold
Shared threshold expressed in 128-byte units for all Tx data (from all
ports) that is in transit between host and TDPU block.
When the threshold is reached, no Tx data read request is sent to the
host. When we pass under the threshold, data read request(s) for an
entire frame can be sent to the host, and so on until we reach the
threshold again. The byte count register associated with this threshold is
GLDCB_TLPM_PCI_DATA.
Default of 19200 bytes provides some good margin when assuming a
PCIe round trip time of 1.5 μs.

RESERVED 31:12 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2282 613875-009

13.2.2.17.45 DCB TC Immediate FC Enable - GLDCB_TLPM_IMM_TCUPM
(0x000A018C; RW)

Configures FC immediate mode per TC for TCUPM interface.

13.2.2.17.46 DCB TC Immediate FC Mode - GLDCB_TLPM_IMM_TCB
(0x000A0190; RW)

Configures FC immediate mode per TC for TCB interface.

13.2.2.17.47 DCB TLPM TC PFC Mapping - GLDCB_TLPM_TC2PFC
(0x000A0194; RW)

PFC enabled TCs mapping.

Field definitions are the same as those defined in Section 13.2.2.17.48.

Field Bit(s) Init. Type CFG Policy Description

IMM_EN 31:0 0xFFFFFFFF RW UNDEFINED Immediate Enable
Per-TC Tx immediate FC enable.

0b = Conditioned XOFF Forwarding Mode (default). XOFF
notifications received from the line or from the internal
loopback path are not forwarded upward to the TCUPM, but
only once the data pipe monitor for this TC is filled over its
threshold. This mode provides better XON recovering time.

1b = Immediate XOFF Forwarding Mode. XOFF notifications
received from the line or from the internal loopback path are
immediately forwarded internally upward to the TCUPM. This
mode is useful to support PFC-enabled TCs of the port like
true independent traffic classes when more than two such TCs
are configured over the port.

This bit should be kept as zero

Field Bit(s) Init. Type CFG Policy Description

IMM_EN 31:0 0xFFFFFFFF RW UNDEFINED Immediate Enable
Per-TC Tx immediate FC enable.

0b = Conditioned XOFF Forwarding Mode (default). XOFF
notifications received from the line or from the internal
loopback path are not forwarded upward to the TCB, but only
once the data pipe monitor for this TC is filled over its
threshold. This mode provides better XON recovering time.

1b = Immediate XOFF Forwarding Mode. XOFF notifications
received from the line or from the internal loopback path are
immediately forwarded internally upward to the TCB.

613875-009 2283

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.48 DCB TC to PFC Mapping - GLRPB_TC2PFC (0x000AC040; RW)

13.2.2.17.49 DCB Transmit Port DWRR Status -
PRTDCB_TCB_DWRR_CREDITS (0x000AE000; RO)

13.2.2.17.50 DCB Transmit Port DWRR Quanta/Weights -
PRTDCB_TCB_DWRR_QUANTA (0x000AE020; RW)

13.2.2.17.51 DCB Transmit Port DWRR Saturation Value -
PRTDCB_TCB_DWRR_SAT (0x000AE040; RW)

Field Bit(s) Init. Type CFG Policy Description

TC2PFC 31:0 0x0 RW UNDEFINED TC-to-Priority Flow Control
Bitmap that controls the use of Priority Flow Control (PFC) per each TC.
Bit n set to 1b:

TC n uses PFC in Rx and Tx. The TC is referred as a no-drop TC.
Bit n clear to 0b:

The device does not issue PFC pause frames with bits set to 1b in the
priority_enable_vector for the UPs attached to that TC. It does not
react to bits set to 1b for the UPs attached to that TC in the
priority_enable_vector of a received PFC pause frame. The TC is
referred as a drop UP.

Field Bit(s) Init. Type CFG Policy Description

CREDITS 17:0 0x0 RW UNDEFINED Credits
Current amount of credits accumulated by the port in Tx.
The amount is expressed in byte units and it is formatted as an algebraic
2's complement number. Writing to this field has the effect of loading a
new current credit value, which is used by Tx-PRR algorithm.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QUANTA 10:0 0x14 RW UNDEFINED Quanta
Port quanta size in 64-byte granularity.
Actual bandwidth share is determined by considering the ratio with other
ports' quantas.

RESERVED 31:11 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SATURATION 16:0 0x3000 RW UNDEFINED Saturation
Port saturation value in bytes.
Port DWRR credits cannot be above this value.
Minimal Saturation value depends on Port MTU Size (for all quantas):

MTU is [0k-2k]: 3K
MTU is [2k-4k]: 6K
MTU is [4k-8k]: 12K
MTU is [8k-16k] (Jumbo): 24K

Final Minimal Saturation = Max(Quanta, MTU Min Saturation).

RESERVED 31:17 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2284 613875-009

13.2.2.17.52 DCB Transmit Regular Bulk DWRR Status -
PRTTCB_BULK_DWRR_REG_CREDITS (0x000AE060; RO)

13.2.2.17.53 DCB Transmit Wait Bulk DWRR Status -
PRTTCB_BULK_DWRR_WB_CREDITS (0x000AE080; RO)

13.2.2.17.54 DCB Transmit Regular Low Latency DWRR Status -
PRTTCB_LL_DWRR_REG_CREDITS (0x000AE0A0; RO)

13.2.2.17.55 DCB Transmit Wait Low Latency DWRR Status -
PRTTCB_LL_DWRR_WB_CREDITS (0x000AE0C0; RO)

Field Bit(s) Init. Type CFG Policy Description

CREDITS 17:0 0x0 RW UNDEFINED Credits
Current amount of credits accumulated by the port for bulk regular buffer
in Tx.
The amount is expressed in byte units and it is formatted as an algebraic
2's complement number.
Writing to this field has the effect of loading a new current credit value.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CREDITS 17:0 0x0 RW UNDEFINED Credits
Current amount of credits accumulated by the port for bulk wait buffer in
Tx.
The amount is expressed in byte units and it is formatted as an algebraic
2's complement number.
Writing to this field has the effect of loading a new current credit value.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CREDITS 17:0 0x0 RW UNDEFINED Credits
Current amount of credits accumulated by the port for low latency
regular buffer in Tx.
The amount is expressed in byte units and it is formatted as an algebraic
2's complement number.
Writing to this field has the effect of loading a new current credit value.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CREDITS 17:0 0x0 RW UNDEFINED Credits
Current amount of credits accumulated by the port for low latency wait
buffer in Tx.
The amount is expressed in byte units and it is formatted as an algebraic
2's complement number.
Writing to this field has the effect of loading a new current credit value.

RESERVED 31:18 0x0 RSV N/A Reserved.

613875-009 2285

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.56 DCB Transmit Regular Bulk DWRR Quanta/Weights -
GLTCB_BULK_DWRR_REG_QUANTA (0x000AE0E0; RW)

13.2.2.17.57 DCB Transmit Wait Bulk DWRR Quanta/Weights -
GLTCB_BULK_DWRR_WB_QUANTA (0x000AE0E4; RW)

13.2.2.17.58 DCB Transmit Regular Low Latency DWRR Quanta/Weights -
GLTCB_LL_DWRR_REG_QUANTA (0x000AE0E8; RW)

13.2.2.17.59 DCB Transmit Wait Low Latency DWRR Quanta/Weights -
GLTCB_LL_DWRR_WB_QUANTA (0x000AE0EC; RW)

Field Bit(s) Init. Type CFG Policy Description

QUANTA 10:0 0x1 RW UNDEFINED Quanta
Quanta for bulk buffer DWRR arbitration in 64-byte granularity.
This quanta is used for all ports. Actual bandwidth share is determined
by considering the ratio with the wait buffer's bulk quanta.

RESERVED 31:11 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QUANTA 10:0 0x2 RW UNDEFINED Quanta
Quanta for bulk wait buffer DWRR arbitration in 64-byte granularity.
This quanta is used for all ports. Actual bandwidth share is determined
by considering the ratio with the regular buffer's bulk quanta.

RESERVED 31:11 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QUANTA 10:0 0x1 RW UNDEFINED Quanta
Quanta for low latency regular buffer DWRR arbitration in 64-byte
granularity.
Actual bandwidth share is determined by considering the ratio with the
wait buffer's low latency quanta.

RESERVED 31:11 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QUANTA 10:0 0x2 RW UNDEFINED Quanta
Quanta for low latency wait buffer DWRR arbitration in 64-byte
granularity.
Actual bandwidth share is determined by considering the ratio with the
regular buffer's low latency quanta.

RESERVED 31:11 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2286 613875-009

13.2.2.17.60 DCB Transmit Regular Bulk DWRR Saturation Value -
GLTCB_BULK_DWRR_REG_SAT (0x000AE0F0; RW)

13.2.2.17.61 DCB Transmit Wait Bulk DWRR Saturation Value -
GLTCB_BULK_DWRR_WB_SAT (0x000AE0F4; RW)

13.2.2.17.62 DCB Transmit Regular Low Latency DWRR Saturation Value -
GLTCB_LL_DWRR_REG_SAT (0x000AE0F8; RW)

Field Bit(s) Init. Type CFG Policy Description

SATURATION 16:0 0x2000 RW UNDEFINED Saturation
Bulk regular buffer saturation value in bytes for all ports.
Credits cannot be added over this value.
Minimal Saturation value depends on Port MTU Size (for all quantas):

MTU is [0k-2k]: 3K
MTU is [2k-4k]: 6K
MTU is [4k-8k]: 12K
MTU is [8k-16k] (Jumbo): 24K

Final Minimal Saturation = Max(Quanta, MTU Min Saturation).

RESERVED 31:17 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SATURATION 16:0 0x2000 RW UNDEFINED Saturation
Bulk wait buffer saturation value in bytes for all ports.
Credits cannot be added over this value.
Minimal Saturation value depends on Port MTU Size (for all quantas):

MTU is [0k-2k]: 3K
MTU is [2k-4k]: 6K
MTU is [4k-8k]: 12K
MTU is [8k-16k] (Jumbo): 24K

Final Minimal Saturation = Max(Quanta, MTU Min Saturation).

RESERVED 31:17 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SATURATION 16:0 0x2000 RW UNDEFINED Saturation
Low latency regular buffer saturation value in bytes for all ports.
Credits cannot be added over this value.
Minimal Saturation value depends on Port MTU Size (for all quantas):

MTU is [0k-2k]: 3K
MTU is [2k-4k]: 6K
MTU is [4k-8k]: 12K
MTU is [8k-16k] (Jumbo): 24K

Final Minimal Saturation = Max(Quanta, MTU Min Saturation).

RESERVED 31:17 0x0 RSV N/A Reserved.

613875-009 2287

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.63 DCB Transmit Wait Low Latency DWRR Saturation Value -
GLTCB_LL_DWRR_WB_SAT (0x000AE0FC; RW)

13.2.2.17.64 TCB Arbiter Credit Expansion - PRTTCB_CREDIT_EXP
(0x000AE100; RW)

Register used to add arbiter credit expansion for packets per port.

13.2.2.17.65 TCB Arbiter Credit Expansion Control -
GLTCB_CREDIT_EXP_CTL (0x000AE120; RW)

Used to enable/disable arbiter credit expansion and set minimal packet size for updating credits.

Field Bit(s) Init. Type CFG Policy Description

SATURATION 16:0 0x2000 RW UNDEFINED Saturation
Low latency wait buffer saturation value in bytes for all ports.
Credits cannot be added over this value.
Minimal Saturation value depends on Port MTU Size (for all quantas):

MTU is [0k-2k]: 3K
MTU is [2k-4k]: 6K
MTU is [4k-8k]: 12K
MTU is [8k-16k] (Jumbo): 24K

Final Minimal Saturation = Max(Quanta, MTU Min Saturation).

RESERVED 31:17 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

EXPANSION 7:0 0x18 RW UNDEFINED Expansion
Amount of credits in bytes to be added when updating the arbiter.
Can be used to allow arbiter to take into account MAC IPG and so on.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

EN 0 0b RW UNDEFINED Enable
Enables credit expansion.

0b = Packet length received is updated to arbiter.
1b = Packet length is expanded according to:

 new_len = Max(orig_len + expansion, min_pkt)

MIN_PKT 9:1 0x80 RW UNDEFINED Minimal Packet
Used to enforce minimal size for arbiter credit update, expressed in
bytes.
This value is updated to arbiter for packets smaller than (min_pkt -
configured expansion), otherwise the packet size + configured expansion
is updated.

RESERVED 31:10 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2288 613875-009

13.2.2.17.66 Global MNG LL Strict Priority Enable - GLDCB_TCB_MNG_SP
(0x000AE12C; RW)

13.2.2.17.67 TC Low Latency Config - GLDCB_TCB_TCLL_CFG
(0x000AE134; RW)

13.2.2.17.68 DCB Transmit Rate Limiter Control per TC -
TCTCB_WB_RL_TC_CFG[n] (0x000AE138 + 0x4*n, n=0...31;
RW)

13.2.2.17.69 DCB Transmit Rate Limiter Status per TC -
TCTCB_WB_RL_TC_STAT[n] (0x000AE1B8 + 0x4*n,
n=0...31; RO)

Field Bit(s) Init. Type CFG Policy Description

MNG_SP 0 1b RW UNDEFINED MNG Strict Priority
When set, low latency MNG packets get strict priority over low latency
wait/regular buffer packets of the same port in TCB arbitration.
Otherwise, the wait/regular buffer packets get strict priority over the
MNG packets.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

LLTC 31:0 0x0 RW UNDEFINED Low Latency TC
Bit per each TC. Each entry controls whether the TC is considered to have
low latency needs for the transmit path.

0b = TC is defined to be a Bulk.
1b = TC is defined to be a Low Latency TC for transmit.

Field Bit(s) Init. Type CFG Policy Description

TOKENS 11:0 0x381 RW UNDEFINED Tokens
Amount of tokens in bytes added to bucket after each period (period is
configured) per TC.

BURST_SIZE 21:12 0x017 RW UNDEFINED Burst Size
Max amount of tokens a bucket can hold in 64-byte resolutions (up to
64KB) per TC.

RESERVED 31:22 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BUCKET 16:0 0x0 RO N/A Bucket
Current amount of tokens in bytes that are in the bucket per TC.Coded in
2's compliment.

RESERVED 31:17 0x0 RSV N/A Reserved.

613875-009 2289

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.70 TC Rate Limiters Config - GLTCB_WB_RL (0x000AE238; RW)

13.2.2.17.71 Global Wait Buffer Strict Priority Enable -
GLDCB_TCB_WB_SP (0x000AE310; RW)

13.2.2.17.72 DCB TC to PFC Mapping - GLDCB_TCUPM_TC2PFC
(0x000BC34C; RW)

PFC enabled TCs mapping.

Field definitions are the same as those defined in Section 13.2.2.17.48.

13.2.2.17.73 DCB Transmit Command Pipe Port Monitor Status -
PRTDCB_TCUPM_REG_CM (0x000BC360; RO)

Regular buffer command monitor status per port.

Field Bit(s) Init. Type CFG Policy Description

PERIOD 15:0 0x0020 RW UNDEFINED Period
Amount of clock cycles to wait before adding new tokens to bucket.
Every PERIOD CC, TCB_WB_RL_TC_CFG.TOKENS bytes are added to
TCB_WB_RL_TC_STAT.BUCKET.

EN 16 0b RW UNDEFINED Enable
0b = Disables TCB wait buffer rate limiters. They no longer block WB

traffic and receive credit updates.
1b = Enables TCB wait buffer rate limiters.

RESERVED 31:17 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

WB_SP 0 0b RW UNDEFINED Wait Buffer Strict Priority
When set, wait buffer packets get strict priority over regular buffer
packets of the same port in the same LL/Bulk class, in TCB arbitration.
Otherwise, the wait/regular buffer arbitration is done using the weighted
round-robin algorithm.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 14:0 0x0 RW UNDEFINED Monitor
Regular buffer port commands monitor status.
Current amount of commands accounted by the Per Port Tx LAN
Command Pipe Monitor.

RESERVED 31:15 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2290 613875-009

13.2.2.17.74 DCB Transmit Command Pipe Port Monitor Threshold -
PRTDCB_TCUPM_REG_CTHR (0x000BC380; RW)

Regular buffer command monitor threshold per port.

13.2.2.17.75 DCB Transmit Data Pipe Port Monitor Status -
PRTDCB_TCUPM_REG_DM (0x000BC3A0; RO)

Regular buffer data monitor status per port.

13.2.2.17.76 DCB Transmit Data non-Exceed Pipe Monitor Status -
PRTDCB_TCUPM_NO_EXCEED_DM (0x000BC3C0; RO)

Regular buffer non-exceed data monitor status.

Field Bit(s) Init. Type CFG Policy Description

PORTOFFTH_H 14:0 0x43C RW UNDEFINED Port OFF Threshold High
Regular buffer port OFF commands high threshold.
Depth of the per Port Monitor applied over the Tx LAN/RDMA
Command Pipes altogether.
It is expressed in commands units.
Blocks port when monitor is over threshold.

PORTOFFTH_L 29:15 0x43C RW UNDEFINED Port OFF Threshold Low
regular buffer port OFF commands low threshold.
Depth of the per Port Monitor applied over the Tx LAN/RDMA
Command Pipes altogether.
It is expressed in commands units.
Blocks only Legacy TCs of the port when monitor is over threshold.

RESERVED 31:30 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 18:0 0x0 RW UNDEFINED Monitor
Regular buffer port data monitor status.
Current amount of bytes accounted by the Per Port Tx LAN Data Pipe
Monitor.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 18:0 0x0 RW UNDEFINED Monitor
Regular buffer non-exceed data monitor status.
Total number of bytes in the TCB waiting and regular buffer for all
PFC-enabled TCs of the port.
Counts scheduled data only (not including exceeded quantas).

RESERVED 31:19 0x0 RSV N/A Reserved.

613875-009 2291

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.77 DCB Transmit Data Pipe Port Monitor Threshold -
PRTDCB_TCUPM_REG_DTHR (0x000BC3E0; RW)

Regular buffer data monitor threshold per port.

13.2.2.17.78 DCB Transmit Data Pipe Port Monitor Status -
PRTDCB_TCUPM_REG_PE_HB_DM (0x000BC400; RO)

Regular buffer PE headers monitor status per port.

13.2.2.17.79 DCB Transmit Data Pipe Port Monitor Threshold -
PRTDCB_TCUPM_REG_PE_HB_DTHR (0x000BC420; RW)

Regular buffer PE headers monitor threshold per port.

Field Bit(s) Init. Type CFG Policy Description

PORTOFFTH_H 11:0 0x98 RW UNDEFINED Port OFF Threshold High
Regular buffer port OFF data high threshold.
Depth of the per Port Monitor applied over the Tx LAN/RDMA
Command Pipes altogether.
It is expressed in 128-byte units.
Threshold is checked against the non-Exceed Data Monitor. When
GLDCB_TCUPM_GENC.NON_EXCEED_DIS is high, threshold applies to
the Regular Data Monitor instead.
Blocks port when monitor is over threshold.

PORTOFFTH_L 23:12 0x98 RW UNDEFINED Port OFF Threshold Low
Regular buffer port OFF data low threshold.
Depth of the per Port Monitor applied over the Tx LAN/RDMA
Command Pipes altogether.
It is expressed in 128-byte units.
Blocks only Legacy TCs of the port when monitor is over threshold.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 11:0 0x0 RW UNDEFINED Monitor
Regular buffer port PE header buffers monitor status.
Current amount of bytes accounted by the per port PE Header Buffers
Pipe Monitor, in 32byte units.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORTOFFTH_H 11:0 0x98 RW UNDEFINED Port OFF Threshold High
Regular buffer port OFF PE header buffers high threshold.
It is expressed in 32-byte units.
Blocks port when monitor is over threshold.

PORTOFFTH_L 23:12 0x98 RW UNDEFINED Port OFF Threshold Low
Regular buffer port OFF PE header buffers low threshold.
It is expressed in 32-byte units.
Blocks only Legacy TCs of the port when monitor is over threshold.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2292 613875-009

13.2.2.17.80 DCB Transmit Command Pipe Port Waiting Monitor Status -
PRTDCB_TCUPM_WAIT_PFC_CM (0x000BC440; RO)

Wait + regular buffer command monitor status per port of PFC-enabled TCs only.

13.2.2.17.81 DCB Transmit Command Pipe Port Waiting Monitor
Threshold - PRTDCB_TCUPM_WAIT_PFC_CTHR
(0x000BC460; RW)

Wait + regular buffer command monitor threshold per port.

13.2.2.17.82 DCB Transmit Data Pipe Port Waiting Monitor Status -
PRTDCB_TCUPM_WAIT_PFC_DM (0x000BC480; RO)

Wait + regular buffer data monitor status per port of PFC-enabled TCs only.

13.2.2.17.83 DCB Transmit Data Pipe Port Waiting Monitor Threshold -
PRTDCB_TCUPM_WAIT_PFC_DTHR (0x000BC4A0; RW)

Wait + regular buffer data monitor threshold per port.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 14:0 0x0 RW UNDEFINED Monitor
Wait buffer port commands monitor status.
Total number of commands in the TCB waiting and regular buffer for all
PFC-enabled TCs of the port.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORTOFFTH 14:0 0x9F8 RW UNDEFINED Port OFF Threshold
Wait buffer port OFF commands threshold.
High threshold on the total amount of commands that is waiting in the
TCB waiting lists of the port for all its PFC-enabled TCs. Only PFC-enabled
TCs of the port are flow controlled when this threshold is crossed.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 18:0 0x0 RW UNDEFINED Monitor
Wait buffer port data monitor status.
Total number of bytes in the TCB waiting and regular buffer for all
PFC-enabled TCs of the port.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORTOFFTH 11:0 0x274 RW UNDEFINED Port OFF Threshold
Wait buffer port OFF data threshold.
High threshold on the total amount of bytes in 128-byte units that is
waiting in the TCB waiting lists of the port for all its PFC-enabled TCs.
Only PFC-enabled TCs of the port are flow controlled when this threshold
is crossed.

RESERVED 31:12 0x0 RSV N/A Reserved.

613875-009 2293

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.84 DCB Transmit Data Pipe Port Waiting Monitor Status -
PRTDCB_TCUPM_WAIT_PFC_PE_HB_DM (0x000BC4C0; RO)

Wait + regular buffer PE headers monitor status per port of PFC enabled TCs only.

13.2.2.17.85 DCB Transmit Data Pipe Port Waiting Monitor Threshold -
PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x000BC4E0;
RW)

Wait + regular buffer PE headers monitor threshold per port.

13.2.2.17.86 DCB Transmit Command Pipe TC Waiting Monitor Status -
TCDCB_TCUPM_WAIT_CM[n] (0x000BC520 + 0x4*n,
n=0...31; RO)

Wait + regular buffer command monitor status per TC.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 11:0 0x0 RW UNDEFINED Monitor
Wait buffer port PE header buffers monitor status.
Expressed in 32-byte units.
Total number of PE headers bytes in the TCB waiting and regular buffer
for all PFC enabled TCs of the port.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORTOFFTH 11:0 0x130 RW UNDEFINED Port OFF Threshold
Wait buffer port OFF PE header buffers threshold.
High threshold on the total amount of bytes in 32-byte units that is
waiting in the TCB waiting lists of the port for all its PFC-enabled TCs.
Only PFC-enabled TCs of the port are flow controlled when this threshold
is crossed.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 14:0 0x0 RW UNDEFINED Monitor
Wait buffer TC commands monitor status.
Number of commands that are in transit from the host to the TCB (TCB
waiting list included) for TC n, where n is the index of the register in the
array.

RESERVED 31:15 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2294 613875-009

13.2.2.17.87 DCB Transmit Command Pipe TC Waiting Monitor Threshold
- TCDCB_TCUPM_WAIT_CTHR[n] (0x000BC5A0 + 0x4*n,
n=0...31; RW)

Wait + regular buffer command monitor threshold per TC.

13.2.2.17.88 DCB Transmit Data Pipe TC Waiting Monitor Status -
TCDCB_TCUPM_WAIT_DM[n] (0x000BC620 + 0x4*n,
n=0...31; RO)

Wait + regular buffer data monitor status per TC.

13.2.2.17.89 DCB Transmit Data Pipe TC Waiting Monitor Threshold -
TCDCB_TCUPM_WAIT_DTHR[n] (0x000BC6A0 + 0x4*n,
n=0...31; RW)

Wait + regular buffer data monitor threshold per TC.

Field Bit(s) Init. Type CFG Policy Description

TCOFFTH 14:0 0x4BC RW UNDEFINED TC OFF Threshold
Wait buffer TC OFF commands threshold.
The total amount of commands that can accumulate in the TCB (waiting
list included) of the port for the same PFC-enabled TC.

RESERVED 31:15 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 18:0 0x0 RW UNDEFINED Monitor
Wait Buffer TC data monitor status.
Number of bytes that are in transit from the host to the TCB (TCB waiting
list included) for TC n, where n is the index of the register in the array.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCOFFTH 11:0 0x104 RW UNDEFINED TC OFF Threshold
Wait buffer TC OFF Data Threshold.
The total amount of bytes in 128-byte units that can accumulate in the
TCB (waiting list included) of the port for the same PFC-enabled TC.

RESERVED 31:12 0x0 RSV N/A Reserved.

613875-009 2295

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.90 DCB Transmit Data Pipe TC Waiting Monitor Status -
TCDCB_TCUPM_WAIT_PE_HB_DM[n] (0x000BC720 +
0x4*n, n=0...31; RO)

Wait + regular buffer PE headers monitor status per TC.

13.2.2.17.91 DCB Transmit Data Pipe TC Waiting Monitor Threshold -
TCDCB_TCUPM_WAIT_PE_HB_DTHR[n] (0x000BC7A0 +
0x4*n, n=0...31; RW)

Wait + regular buffer PE headers monitor threshold per TC.

13.2.2.17.92 DCB TC Immediate FC Mode - GLDCB_TCUPM_IMM_EN
(0x000BC824; RW)

Configures FC immediate mode for each TC.

Field Bit(s) Init. Type CFG Policy Description

MONITOR 11:0 0x0 RW UNDEFINED Monitor
Wait buffer TC PE header buffers monitor status.
Expressed in 32-byte units.
Number of bytes that are in transit from the host to the TCB (TCB waiting
list included) for TC n, where n is the index of the register in the array.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCOFFTH 11:0 0x98 RW UNDEFINED TC OFF Threshold
Wait buffer TC OFF PE header buffers threshold.
The total amount of bytes in 32-byte units that can accumulate in the
TCB (waiting list included) of the port for the same PFC-enabled TC.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IMM_EN 31:0 0xFFFFFFFF RW UNDEFINED Immediate Enable
Per TC Tx-Pipe immediate FC mode.

0b = Conditioned XOFF Forwarding Mode (default). XOFF
notifications received from the TC data pipe monitor are
internally forwarded upward to the Tx-Scheduler only once
the command pipe monitor for this TC is full. This mode
provides better XON recovering time.

1b = Immediate XOFF Forwarding Mode. XOFF notifications
received from the TC data pipe monitor are immediately
forwarded internally upward to the Tx-Scheduler. This mode is
useful to support PFC-enabled TCs of the port like true
independent traffic classes when more than two such TCs are
configured over the port.

This bit should be kept as zero.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2296 613875-009

13.2.2.17.93 DCB TC Legacy Queues Mapping -
GLDCB_TCUPM_LEGACY_TC (0x000BC828; RW)

Configure which TCs send legacy queues.

13.2.2.17.94 DCB Transmit Data non-Exceed Monitor Enable -
GLDCB_TCUPM_NO_EXCEED_DIS (0x000BC830; RW)

TCUPM non-exceed regular buffer data monitor enable.

13.2.2.17.95 DCB Transmit Wait Port Data Monitor Enable -
GLDCB_TCUPM_WB_DIS (0x000BC834; RW)

TCUPM wait buffer port/TC data monitor disable.

13.2.2.17.96 DCB Receive Port Round Robin Control - PRTDCB_RPRRC
(0x001220C0; RW)

Field Bit(s) Init. Type CFG Policy Description

LEGTC 31:0 0x0 RW UNDEFINED Legacy TC
Per TC configuration to indicate if it is sending legacy queues.
Only legacy TCs are halted by the regular buffer data monitor (instead of
entire port) when over low threshold.
The port is blocked by the non-exceed monitor when over high threshold.

Field Bit(s) Init. Type CFG Policy Description

NON_EXCEED_DIS 0 1b RW UNDEFINED Non-Exceed Disable
Disables non-exceed monitor.
When disabled, the regular buffer high threshold is applied over
the regular (exceed) monitor.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORT_DISABLE 0 1b RW UNDEFINED Port Disable
Disables wait buffer port data monitors.

TC_DISABLE 1 0b RW UNDEFINED TC Disable
Disables wait buffer TC data monitors.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BWSHARE 9:0 0x14 RW UNDEFINED Bandwidth Share
Relative weight of the available bandwidth allocated to the port in Rx.
The value of 1 is used for ports operated at 100 Mb/s speed.

RESERVED 30:10 0x0 RSV N/A Reserved.

BWSHARE_DIS 31 1b RW UNDEFINED Bandwidth Share Disable
Disable weighted arbitration.
Disabled ports arbitrate in packet-based round-robin manner.

613875-009 2297

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.97 DCB Receive Port Round Robin Status - PRTDCB_RPRRS
(0x001220E0; RW)

13.2.2.17.98 QRX - GLDCB_RTC2PFC_RCB (0x00122100; RW)

13.2.2.17.99 DCB Receive ETS per TC Control - GLDCB_RETSTCC[n]
(0x00122140 + 0x4*n, n=0...31; RW)

One register per TC. Register index corresponds to TCID.

Field Bit(s) Init. Type CFG Policy Description

CREDITS 31:0 0x0 RW UNDEFINED Credits
Current amount of credits accumulated by the port in Rx.
The amount is expressed in byte units and it is formatted as an algebraic
2's complement number.
Writing to this field has the effect of loading a new current credit value,
which is used by Rx-PRR algorithm.

Field Bit(s) Init. Type CFG Policy Description

TC2PFC 31:0 0x0 RW UNDEFINED TC-to-Priority Flow Control
Bitmap that controls the use of Priority Flow Control (PFC) per each TC.
Bit n set to 1b:

TC n uses PFC in Rx and Tx. The TC is referred as a no-drop TC.
Bit n clear to 0b:

The device does not issue PFC pause frames with bits set to 1b in the
priority_enable_vector for the UPs attached to that TC. It does not
react to bits set to 1b for the UPs attached to that TC in the
priority_enable_vector of a received PFC pause frame. The TC is
referred as a drop UP.

For up to four link topology:
Bits 0-7 are for port 0, TC 0 to 7.
Bits 8-15 are for port 1, TC 0 to 7.
Bits 16-23 are for port 2, TC 0 to 7.
Bits 24-31 are for port 3, TC 0 to 7.

For more than four link topology:
Bits 00-03 are for port 0, TC 0 to 3.
Bits 04-07 are for port 1, TC 0 to 3.
Bits 08-11 are for port 2, TC 0 to 3.
Bits 12-15 are for port 3, TC 0 to 3.
Bits 16-19 are for port 4, TC 0 to 3.
Bits 20-23 are for port 5, TC 0 to 3.
Bits 24-27 are for port 6, TC 0 to 3.
Bits 28-31 are for port 7, TC 0 to 3.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 30:0 0x0 RSV N/A Reserved.

ETSTC 31 0b RW UNDEFINED ETS TC
Controls the use of ETS as the Transmit Selection Algorithm (TSA) in Rx
for TC n, where n is the register index in the array.

0b = TC n uses a Strict Priority or other TSA in Rx.
1b = TC n uses ETS scheme in Rx.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2298 613875-009

13.2.2.17.100 DCB Receive ETS per TC Status - GLDCB_RETSTCS[n]
(0x001221C0 + 0x4*n, n=0...31; RW)

One register per TC. Register index corresponds to TCID.

13.2.2.17.101 DCB Receive ETS Control - PRTDCB_RETSC (0x001222A0;
RW)

13.2.2.17.102 DCB Receive UP to TC Mapping - PRTDCB_RUP2TC
(0x001D2640; RW)

Bitmap long by 24 bits, with a 3-bit entry per each UP. Each entry controls the mapping of a UP to a
3-bit TC index in receive. Higher TC index means higher priority of the traffic class.

The same mapping is used for packets received from the wires and for those looped back internally. It
defines on the account of which TC a packet is stored in the Rx packet buffer, and which UPs bits are set
in the PFC XOFF/XON frames issued to the link partner when the filling state of a TC requires it.

Default mapping maps all UPs to TC0.

Field Bit(s) Init. Type CFG Policy Description

CREDITS 31:0 0x0 RW UNDEFINED Credits
Current amount of credits accumulated by TC n in Rx, where n is the
register index in the array.
The amount is expressed in byte units and it is formatted as an algebraic
2's complement number.
Writing to this field has the effect of loading a new current credit value,
which is used by Rx-ETS algorithm.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 0 1b RSV N/A Reserved.

NON_ETS_MODE 1 1b RW UNDEFINED Non-ETS Mode
Rx non-ETS operating mode.

0b = Strict Priority (SP) mode.
1b = Round Robin (RR) mode.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UP0TC 2:0 000b RW UNDEFINED UP 0 TC
TC index to which UP 0 is mapped.

UP1TC 5:3 000b RW UNDEFINED UP 1 TC
TC index to which UP 1 is mapped.

UP2TC 8:6 000b RW UNDEFINED UP 2 TC
TC index to which UP 2 is mapped.

UP3TC 11:9 000b RW UNDEFINED UP 3 TC
TC index to which UP 3 is mapped.

UP4TC 14:12 000b RW UNDEFINED UP 4 TC
TC index to which UP 4 is mapped.

UP5TC 17:15 000b RW UNDEFINED UP 5 TC
TC index to which UP 5 is mapped.

UP6TC 20:18 000b RW UNDEFINED UP 6 TC
TC index to which UP 6 is mapped.

613875-009 2299

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.103 DCB TC to PFC Mapping - GLDCB_TC2PFC (0x001D2694;
RW)

Notes: This register has been deprecated and must not used.

13.2.2.17.104 DCB Transmit UP to TC Mapping - PRTDCB_TUP2TC
(0x001D26C0; RW)

Bitmap long by 24 bits, with a 3-bit entry per each UP. Each entry controls the mapping of a UP to a 3-
bit TC index in receive. Higher TC index means higher priority of the traffic class.

The same mapping is used for packets received from the wires and for those looped back internally. It
defines on the account of which TC a packet is stored in the Rx packet buffer, and which UPs bits are set
in the PFC XOFF/XON frames issued to the link partner when the filling state of a TC requires it.

Default mapping maps all UPs to TC0.

UP7TC 23:21 000b RW UNDEFINED UP 7 TC
TC index to which UP 7 is mapped.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UP0TC 2:0 000b RW UNDEFINED UP 0 TC
TC index to which UP 0 is mapped.

UP1TC 5:3 000b RW UNDEFINED UP 1 TC
TC index to which UP 1 is mapped.

UP2TC 8:6 000b RW UNDEFINED UP 2 TC
TC index to which UP 2 is mapped.

UP3TC 11:9 000b RW UNDEFINED UP 3 TC
TC index to which UP 3 is mapped.

UP4TC 14:12 000b RW UNDEFINED UP 4 TC
TC index to which UP 4 is mapped.

UP5TC 17:15 000b RW UNDEFINED UP 5 TC
TC index to which UP 5 is mapped.

UP6TC 20:18 000b RW UNDEFINED UP 6 TC
TC index to which UP 6 is mapped.

UP7TC 23:21 000b RW UNDEFINED UP 7 TC
TC index to which UP 7 is mapped.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2300 613875-009

13.2.2.17.105 Transmit Flow Control Status - PRTDCB_TFCS (0x001E4560;
RO)

13.2.2.17.106 Flow Control Transmit Timer Value n - PRTDCB_FCTTVN[n]
(0x001E4580 + 0x20*n, n=0...3; RW)

Field Bit(s) Init. Type CFG Policy Description

TXOFF 0 0b RO N/A Tx Off
Transmission Paused. Pause state indication of the transmit function
when symmetrical link flow control is enabled.

RESERVED 7:1 0x0 RSV N/A Reserved.

TXOFF0 8 0b RO N/A Tx Off 0
TC 0 Transmission Paused.
Pause state indication of the TC 0 when priority flow control is enabled.

TXOFF1 9 0b RO N/A Tx Off 1
TC 1 Transmission Paused.
Pause state indication of the TC 1 when priority flow control is enabled.

TXOFF2 10 0b RO N/A Tx Off 2
TC 2 Transmission Paused.
Pause state indication of the TC 2 when priority flow control is enabled.

TXOFF3 11 0b RO N/A Tx Off 3
TC 3 Transmission Paused.
Pause state indication of the TC 3 when priority flow control is enabled.

TXOFF4 12 0b RO N/A Tx Off 4
TC 4 Transmission Paused.
Pause state indication of the TC 4 when priority flow control is enabled.

TXOFF5 13 0b RO N/A Tx Off 5
TC 5 Transmission Paused.
Pause state indication of the TC 5 when priority flow control is enabled.

TXOFF6 14 0b RO N/A Tx Off 6
TC 6 Transmission Paused.
Pause state indication of the TC 6 when priority flow control is enabled.

TXOFF7 15 0b RO N/A Tx Off 7
TC 7 Transmission Paused.
Pause state indication of the TC 7 when priority flow control is enabled.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TTV_2N 15:0 0xFFFF RW UNDEFINED Transmit Timer Value 2n
Timer value included in XOFF frames as Timer (2n).
The same value must be set to User Priorities attached to the same TC,
as defined in PRTDCB_RUP2TC register.
For legacy 802.3x flow control packets, TTV0 is the only timer that is
used.

TTV_2N_P1 31:16 0xFFFF RW UNDEFINED Transmit Timer Value 2n+1
Timer value included in XOFF frames as Timer (2n+1).
The same value must be set to User Priorities attached to the same TC,
as defined in PRTDCB_RUP2TC register.

613875-009 2301

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

13.2.2.17.107 Flow Control Refresh Threshold Value - PRTDCB_FCRTV
(0x001E4600; RW)

13.2.2.17.108 Flow Control Configuration - PRTDCB_FCCFG (0x001E4640;
RW)

13.2.2.17.109 DCB Transmit PFC Timer Status - PRTDCB_TPFCTS[n]
(0x001E4660 + 0x20*n, n=0...7; RW)

One register per TC. Register index corresponds to TCID.

13.2.2.17.110 DCB Receive ETS per TC Control - GLDCB_PRS_RETSTCC[n]
(0x002000B0 + 0x4*n, n=0...31; RW)

One register per TC. Register index corresponds to TCID.

Field definitions are the same as those defined in Section 13.2.2.17.99.

Field Bit(s) Init. Type CFG Policy Description

FC_REFRESH_TH 15:0 0x7FFF RW UNDEFINED Flow Control Refresh Threshold
This value is used to calculate the actual refresh period for sending
the next pause frame if conditions for a pause state are still valid
(buffer fullness above low threshold value).
The formula for the refresh period for user priority N is:

FCTTV[N/2].TTV[Nmod2] - FCRTV.FC_REFRESH_TH

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 2:0 000b RSV N/A Reserved.

TFCE 4:3 00b RW UNDEFINED Transmit Flow Control Enable
These bits indicate that the device transmits Flow Control packets (XON/
XOFF frames) based on receive fullness.
If auto-negotiation is enabled, this bit should be set by software to the
negotiated flow control value.

00b = Transmit flow control disabled.
01b = Link Flow Control enabled.
10b = Priority Flow Control enabled.
11b = Reserved.

RESERVED 31:5 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PFCTIMER 13:0 0x0 RW UNDEFINED Priority Flow Control Timer
Current value of the PFC Timer of TC n in Tx, where n is the register
index in the array.
The amount is expressed in milliseconds. The timer saturates to 0x3FFF.
Writing to this field has the effect of loading a new current timer value,
which can be useful for diagnostic purposes.

RESERVED 31:14 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - DCB Registers

2302 613875-009

13.2.2.17.111 DCB Receive Shared Pipe Monitor Control -
GLDCB_PRS_RSPMC (0x00200160; RW)

Field definitions are the same as those defined in Section 13.2.2.31.8.

13.2.2.17.112 DCB Receive Port Round Robin Control -
PRTDCB_PRS_RPRRC (0x00200180; RW)

Field definitions are the same as those defined in Section 13.2.2.17.96.

13.2.2.17.113 DCB Receive ETS Control - PRTDCB_PRS_RETSC
(0x002001A0; RW)

Field definitions are the same as those defined in Section 13.2.2.17.101.

13.2.2.17.114 DCB Receive ETS per TC Control - GLDCB_SWT_RETSTCC[n]
(0x0020A040 + 0x4*n, n=0...31; RW)

One register per TC. Register index corresponds to TCID.

Field definitions are the same as those defined in Section 13.2.2.17.99.

13.2.2.17.115 DCB Receive ETS Control - PRTDCB_SWT_RETSC
(0x0020A140; RW)

Field definitions are the same as those defined in Section 13.2.2.17.101.

613875-009 2303

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Receive Packet Buffer Registers

13.2.2.18 PF - Receive Packet Buffer Registers

13.2.2.18.1 RPB Dedicated Pool High Watermark - GLRPB_DHW[n]
(0x000AC000 + 0x4*n, n=0...15; RW)

One register per TC. Register index corresponds to TCID.

13.2.2.18.2 RPB Dedicated Pool Low Watermark - GLRPB_DLW[n]
(0x000AC044 + 0x4*n, n=0...15; RW)

One register per TC. Register index corresponds to TCID.

13.2.2.18.3 RPB Dedicated Pool Size - GLRPB_DPS[n] (0x000AC084 +
0x4*n, n=0...15; RW)

13.2.2.18.4 RPB Shared Pool Size - GLRPB_SPS[n] (0x000AC0C4 +
0x4*n, n=0...7; RW)

13.2.2.18.5 RPB Shared Pool High Watermark - GLRPB_SHW[n]
(0x000AC120 + 0x4*n, n=0...7; RW)

Field Bit(s) Init. Type CFG Policy Description

DHW_TCN 19:0 0x0 RW UNDEFINED Dedicated Pool High Watermark
It is expressed in bytes.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DLW_TCN 19:0 0x0 RW UNDEFINED Dedicated Pool Low Watermark
It is expressed in bytes.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DPS_TCN 19:0 0x0 RW UNDEFINED Dedicated Pool Size
It is expressed in bytes.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SPS_TCN 19:0 0xE1000 RW UNDEFINED Shared Pool Size
It is expressed in bytes.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SHW 19:0 0xC8000 RW UNDEFINED Shared Pool High Watermark
It is expressed in bytes.

RESERVED 31:20 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Receive Packet Buffer Registers

2304 613875-009

13.2.2.18.6 RPB Shared Pool Low Watermark - GLRPB_SLW[n]
(0x000AC140 + 0x4*n, n=0...7; RW)

13.2.2.18.7 TC Pool Config - GLRPB_TC_CFG[n] (0x000AC2A4 + 0x4*n,
n=0...31; RW)

13.2.2.18.8 DSI Traffic Enable - GLRPB_DSI_EN (0x000AC324; RW)

13.2.2.18.9 RPB TC High Watermark - GLRPB_TCHW[n] (0x000AC330 +
0x4*n, n=0...31; RW)

13.2.2.18.10 RPB TC Low Watermark - GLRPB_TCLW[n] (0x000AC3B0 +
0x4*n, n=0...31; RW)

Field Bit(s) Init. Type CFG Policy Description

SLW 19:0 0x0 RW UNDEFINED Shared Pool Low Watermark
It is expressed in bytes.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

D_POOL 15:0 0x8 RW UNDEFINED Dedicated Pool
TC dedicated pool index. Allowed values are 0..7.

S_POOL 31:16 0x1 RW UNDEFINED Shared Pool
TC shared pool index. Allowed values are 0..15.

Field Bit(s) Init. Type CFG Policy Description

DSI_EN 0 0b RW UNDEFINED DSI Enable

DSI_L2_MAC_ERR_DROP_EN 1 1b RW UNDEFINED DSI L2 MAC Error Drop Enable
Enables the dropping of DSI packets that have
l2_mac_error (CRC, oversize, and so on).

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCHW 19:0 0x19000 RW UNDEFINED TC High Watermark
It is expressed in bytes.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCLW 19:0 0x0 RW UNDEFINED TC Low Watermark
It is expressed in bytes.

RESERVED 31:20 0x0 RSV N/A Reserved.

613875-009 2305

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Transmit Scheduler Registers

13.2.2.19 PF - Transmit Scheduler Registers

Registers related to the Transmit Scheduler.

13.2.2.19.1 TSCD PEPM - GLPE_TSCD_PEPM (0x0051E228; RO)

Credit information for TSCD requests from PEPM.

13.2.2.19.2 Transmit Scheduler FLR - GLPE_TSCD_FLR[n] (0x0051E24C
+ 0x4*n, n=0...3; RO)

CQP writes these registers to trigger FLR flow through PE.

13.2.2.19.3 Transmit Scheduler Number of PQS - GLPE_TSCD_NUM_PQS
(0x0051E2FC; RO)

Field Bit(s) Init. Type CFG Policy Description

MDQ_CREDITS 7:0 0x29 RW UNDEFINED MDQ Credits
The number of MDQ credits TSCD requests from PEPM.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DRAIN_VCTR_ID 1:0 00b RW UNDEFINED Drain Vector ID

PORT 4:2 000b RW UNDEFINED Port

PF_NUM 7:5 000b RW UNDEFINED PF Number

VM_VF_TYPE 9:8 00b RW UNDEFINED VM/VF Type

RESERVED 15:10 0x0 RSV N/A Reserved.

VM_VF_NUM 25:16 0x0 RW UNDEFINED VM/VF Number

RESERVED 30:26 0x0 RSV N/A Reserved.

VLD 31 0b RW UNDEFINED Valid

Field Bit(s) Init. Type CFG Policy Description

NUM_PQS 31:0 0x120 RO N/A Number of PQs
The number of PQs that the Transmit Scheduler was built with.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2306 613875-009

13.2.2.20 PF - Host Memory Cache Registers

Registers for Host Memory Cache.

13.2.2.20.1 FOC Cache Attributes - GLFOC_CACHESIZE (0x000AA074;
RO)

13.2.2.20.2 Private Memory Space Segment Descriptor Command -
PFHMC_SDCMD_FPMAT (0x00100000; RW)

This register is used to access the Host Memory Cache's segment table. The HMC's segment table is
partitioned per Private Memory Function (PMF), and this register is only allowed to access the Segment
Table entries allocated to the PMF associated with this register via the SD Partition register,
GLHMC_SDPART.

For read operations, PFHMC_SDCMD must be written with PMSDWR set to 0b and PMSDIDX set to the
segment table index to be read. After the write to PFHMC_SDCMD completes, PFHMC_SDDATALOW and
PFHMC_SDDATAHIGH can be read to retrieve the segment descriptor contents.

For write operations, PFHMC_SDDATALOW and PFHMC_SDDATAHIGH must be written before writing
PFHMC_SDCMD with PMSDWR set to 1b and PMSDIDX set to the segment table index to be written.

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 7:0 0x40 RO N/A Word Size
The cache line size in bytes.

SETS 19:8 0x80 RO N/A Sets
The number of cache sets.

WAYS 23:20 0x8 RO N/A Ways
The number of cache ways.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMSDIDX 11:0 0x0 RW UNDEFINED Private Memory Segment Descriptor Index
Relative Index of the HMC Segment Descriptor to be read or written.
The actual absolute index to be used to access the Segment Table is
(PMSDBASE + PMSDIDX), where PMSDBASE is from the PMSDBASE
field of the GLHMC_SDPART or GLHMC_PFPESDPART register
associated with this function.
On write operations, if (PMSDIDX >= PMSDSIZE), the write is
dropped, where PMSDSIZE is from the PMSDSIZE field of the
GLHMC_SDPART or GLHMC_PFPESDPART register associated with this
function.
The PMSDPARTSEL bit of this register determines which SD Partition
register is selected for the absolute SD index calculation and for the
check that PMSDIDX is within the range allowed by this function.

RESERVED 14:12 000b RSV N/A Reserved.

PMSDPARTSEL 15 0b RW UNDEFINED Private Memory Segment Descriptor Partitioning Select
0b = (Default) The GLHMC_SDPART register is used for calculating

the absolute SD Index to access within the Segment Table, and
for checking whether or not PMSDIDX is within this function's
allocated range.

1b = The GLHMC_PFPESDPART register is used for calculating the
absolute SD Index to access within the Segment Table, and for
checking whether or not PMSDIDX is within this function's
allocated range.

613875-009 2307

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.3 Private Memory Space Segment Descriptor Data Low -
PFHMC_SDDATALOW_FPMAT (0x00100100; RW)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATAHIGH to access the Host
Memory Cache's segment table.

13.2.2.20.4 Private Memory Space Segment Descriptor Data High -
PFHMC_SDDATAHIGH_FPMAT (0x00100200; RW)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATALOW to access the Host
Memory Cache's segment table.

RESERVED 30:16 0x0 RSV N/A Reserved.

PMSDWR 31 0b RW UNDEFINED Private Memory Segment Descriptor Write/Read
0b = Read operations.
1b = Write operations.

Field Bit(s) Init. Type CFG Policy Description

PMSDVALID 0 0b RW UNDEFINED Private Memory Segment Descriptor Valid
Valid bit of an HMC segment descriptor table entry.

PMSDTYPE 1 0b RW UNDEFINED Private Memory Segment Descriptor Type
0b = The Segment Descriptor is paged (the SD points to a the

physical address of a host memory page that contains an
array of Page Descriptors.

1b = The Segment Descriptor directly points the physical address
of a physically contiguous 2 MB memory region.

PMSDBPCOUNT 11:2 0x0 RW UNDEFINED Private Memory Segment Descriptor Backing Page Count
Backing Page count of an HMC segment descriptor table entry.
Every SD entry in a given Function Private memory space must be
set to 512, except the last SD. The last SD can have a value from 1
to 512. This field is used to calculate the end of the FPM space
associated with a Segment Descriptor without having to read the
valid bit for each individual PD entry.

PMSDDATALOW 31:12 0x0 RW UNDEFINED Private Memory Segment Descriptor Data Low
Bits 31:12 bits of an HMC segment descriptor table entry.

Field Bit(s) Init. Type CFG Policy Description

PMSDDATAHIGH 31:0 0x0 RW UNDEFINED Private Memory Segment Descriptor Data High
Most significant 32 bits of a segment descriptor.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2308 613875-009

13.2.2.20.5 Private Memory Space Page Descriptor Invalidate -
PFHMC_PDINV_FPMAT (0x00100300; RW)

This register is used to invalidate cached HMC page descriptors that have been set to the invalid state
by software.

13.2.2.20.6 Host Memory Cache Error Information Register -
PFHMC_ERRORINFO_FPMAT (0x00100400; RW)

This register reports the errors detected by the Host Memory Cache. Errors reported through this
register also can trigger interrupts through the HMC_ERR bit in the PFINT_ICR0 register.

Field Bit(s) Init. Type CFG Policy Description

PMSDIDX 11:0 0x0 RW UNDEFINED Private Memory Segment Descriptor Index
Relative Index of the HMC Segment Descriptor associated with the
HMC Page Descriptor that is to be invalidated.
For PFs, the actual index to be used to access the Segment Table is
(PMSDBASE + PMSDIDX), where PMSDBASE is from the PMSDBASE
field of the GLHMC_SDPART or GLHMC_PFPESDPART register
associated with this function.
If (PMSDIDX >= PMSDSIZE), the invalidate request is dropped, where
PMSDSIZE is from the PMSDSIZE field of the GLHMC_SDPART or
GLHMC_PFPESDPART register associated with this function.
The PMSDPARTSEL bit of this register determines which SD Partition
register is selected for the absolute SD index calculation and for the
check that PMSDIDX is within the range allowed by this function.
For Protocol Engine enabled VFs, the actual index to be used to
invalidate a Segment Table entry is (PMSDBASE + PMSDIDX), where
PMSDBASE is from the GLHMC_VFSDPART register associated with
this function. For VFs, if (PMSDIDX >=
GLHMC_VFSDPART.PMSDSIZE), the invalidate request is dropped. The
PMSDPARTSEL bit is ignored in the GLHMC_VFPDINV registers.
For the GLHMC_FWPDINV version of this register, this field is the
absolute SD index, and the PMSDPARTSEL bit is ignored.

RESERVED 14:12 000b RSV N/A Reserved.

PMSDPARTSEL 15 0b RW UNDEFINED Private Memory Segment Descriptor Partitioning Select
0b = (Default) The GLHMC_SDPART register is used for calculating

the absolute SD Index to invalidate within the Segment Table,
and for checking whether or not PMSDIDX is within this
function's allocated range.

1b = The GLHMC_PFPESDPART register is used for calculating the
absolute SD Index to invalidate within the Segment Table, and
for checking whether or not PMSDIDX is within this function's
allocated range.

This field is ignored in the GLHMC_VFPDINV and GLHMC_FWPDINV
versions of this register.

PMPDIDX 24:16 0x0 RW UNDEFINED Private Memory Page Descriptor Index
Index of the Page Descriptor within the Page Descriptor Page indicated
by PMSDIDX.

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMF_INDEX 4:0 0x0 RW UNDEFINED Private Memory Function Index
This field reports the HMC Private Memory Function associated
with the error.
Writes to this field are ignored.

RESERVED 6:5 00b RSV N/A Reserved.

613875-009 2309

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

PMF_ISVF 7 0b RW UNDEFINED Private Memory Function Is VF
0b = The Private Memory Function reported in PMF_INDEX is

associated with a PF.
1b = The Private Memory Function reported in PMF_INDEX is

associated with a Protocol Engine enabled VF.
Writes to this field are ignored.

HMC_ERROR_TYPE 11:8 0x0 RW UNDEFINED HMC Error Type
This field reports the error type detected by the Host Memory
Cache. The values are:

0 = Private Memory Function is not valid (the valid bit is clear
in the GLHMC_VFPMFMAP register associated with the
PMF).

1 = Invalid Private Memory Function index for a Protocol
Engine enabled VF in GLHMC_VFPMFMAP. (i.e., The PMF
Index programmed in the GLHMC_VFPMFMAP register is
< 8 or > 40. This is a firmware error.)

2 = Invalid PF for a Protocol Engine enabled VF in
GLHMC_VFPMFTABLE. (i.e., the parent PF index
programmed in the GLHMC_VFPMFMAP register did not
match the PF index received in the HMC transaction. This
is a firmware error.)

3 = Reserved. In predecessor devices it was used to be an
indication for Invalid LAN Queue Index or FCoE VF Index.
(i.e., The absolute LAN Queue Index or FCoE VF Index
received in the HMC transaction was less than the LAN
Queue Index Base register or FCoE VF Index Base
register associated with the PF Index received in the HMC
transaction.)

4 = Index to big error: Indication that Object Index from
transaction was larger than the value specified in the
object's GLHMC_*CNT register.

5 = Private Memory Address Extends beyond the limits of the
Segment Descriptors assigned to the PCIe function.

6 = Segment Descriptor Invalid.
7 = Segment Descriptor Too Small (only applies to Direct

Mapped SDs).
8 = Page Descriptor Invalid.
9 = Received Unsupported Request (UR) Completion from

PCIe read of object.
10 = Reserved. In predecessor devices this was used to be an

indication that the valid bit in PFLAN_QALLOC_PMAT[PF]
or PF_VT_PFALLOC_PMAT[PF] register was not set.

11 = An invalid object type was detected.
12 = Reserved. In predecessor devices it was used to be an

indication for Object Index for an FCoE DDP Context
object was larger than the size specified in the
PFFCDSIZE or VFFCDSIZE field of the corresponding
PFQF_CTL_0_PMAT register, or the object index for an
FCoE Filter object was larger than the sum of the sizes
specified in the PFFCHSIZE and PFFCDSIZE fields or
VFFCHSIZE and VFFCDSIZE fields of the corresponding
PFQF_CTL_0_PMAT register.

All other values are reserved.
The PFHMC_ERRORDATA register can be read to determine the
LAN Queue index or FCoE VF index associated with error type 3.
The PFHMC_ERRORDATA register can be read to determine the
HMC object index associated with error types 4 and 12. The
PFHMC_ERRORDATA register can be read to determine the HMC
function relative SD_Index and PD_Index associated with error
types 5 through 9.

RESERVED 15:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2310 613875-009

HMC_OBJECT_TYPE 20:16 0x0 RW UNDEFINED HMC Object Type
Specifies the object type associated with the error. The
encodings for the object type are as follows:

0x00 = QP_CNTXT
0x01 = ARP_TBL_ENTRY
0x02 = TXFIFO
0x03 = IRRQ
0x04 = MRTE
0x05 = PBLE
0x06 = CQ_CNTXT
0x07 = SRQ_CNTXT
0x08 = APBVT_INUSE
0x09 = FSI_ADR_VCTR
0x0A = FSI_MCAST_GRP
0x0B = XF_FL
0x0C = Q1_FL
0x0D = TIMER
0x10 = LAN_TXQ_CNTXT
0x11 = LAN_RXQ_CNTXT
0x12 = FCOE_CNTXT
0x13 = FCOE_DDP_HTE
0x16 = QUAD_HTE
0x19 = PD
All other values are reserved.

RESERVED 30:21 0x0 RSV N/A Reserved.

ERROR_DETECTED 31 0b RW UNDEFINED Error Detected
This field is set to 1b when a new error has been detected by the
HMC. No subsequent errors are recorded until this field is written
with a value of 0b.
Write of a 0b to this field clears the error and allow a subsequent
error to be reported. Writes of 1b to this field are ignored.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2311

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.7 Host Memory Cache Error Data Register -
PFHMC_ERRORDATA_FPMAT (0x00100500; RO)

This register reports the HMC function relative SD_Index and PD_Index or HMC object index related to
an error detected by the Host Memory Cache.

13.2.2.20.8 Private Memory Segment Table Partitioning Registers -
GLHMC_SDPART_FPMAT[n] (0x00100800 + 0x4*n, n=0...7;
RO)

This register is used to partition the shared Host Memory Cache segment table.

Note: This register must be read only in the PF CSR Space.

Field Bit(s) Init. Type CFG Policy Description

HMC_ERROR_DATA 29:0 0x0 RO N/A HMC Error Data
This field reports either the HMC function relative SD_Index,
PD_Index, LAN Queue index, FCoE VF index, or HMC object index
associated with the error reported in the PFHMC_ERRORINFO
register. FCoE reporting is not valid anymore in this device.
When PFHMC_ERRORINFO.HMC_ERROR_TYPE is 3:
• HMC_ERROR_DATA[27:0] reports the LAN Queue index or

FCoE VF index associated with the error.
• HMC_ERROR_DATA[29:28] should be zero.
• This option is not valid anymore in this device.

When PFHMC_ERRORINFO.HMC_ERROR_TYPE is 4 or 12:
• HMC_ERROR_DATA[27:0] reports the object index associated

with the error.
• HMC_ERROR_DATA[29:28] should be zero.

When PFHMC_ERRORINFO.HMC_ERROR_TYPE is 5 through 9:
• HMC_ERROR_DATA[29:9] reports the HMC function relative

SD_Index and PD_Index associated with the error detected
by the HMC.

• HMC_ERROR_DATA[29:18] is set to HMC function relative
SD_Index for the affected HMC function.

• HMC_ERROR_DATA[17:9] is set to the PD_Index.
• HMC_ERROR_DATA[8:0] are reserved for error types 5

through 9.
When PFHMC_ERRORINFO.HMC_ERROR_TYPE is 0 through 2, or
10 through 1:
• HMC_ERROR_DATA[29:0] is not valid, and should be zero.

RESERVED 31:30 00b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMSDBASE 11:0 0x0 RW UNDEFINED Private Memory Segment Descriptor Base
Base segment table index for the function n.

RESERVED 15:12 0x0 RSV N/A Reserved.

PMSDSIZE 28:16 0x0 RW UNDEFINED Private Memory Segment Descriptor Size
Number of valid segment table entries for the function n.

RESERVED 31:29 000b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2312 613875-009

13.2.2.20.9 Private Memory Segment Table Partitioning Registers -
GLHMC_PFPESDPART_FPMAT[n] (0x00100880 + 0x4*n,
n=0...7; RO)

This register is used to partition the shared Host Memory Cache segment table.

Field definitions are the same as those defined in Section 13.2.2.20.41.

Note: This register must be read only in the PF CSR Space.

13.2.2.20.10 Private Memory PE Hash Table Entry Object Size -
GLHMC_PEHTEOBJSZ_FPMAT (0x0010202C; RO)

13.2.2.20.11 Private Memory Protocol Engine Hash Entry Max -
GLHMC_PEHTMAX_FPMAT (0x00102030; RO)

Note: This register is different from GLHMC_PEHTMAX because the PE changed to account for
multicast groups.

13.2.2.20.12 Private Memory Space Segment Descriptor Data Low -
GLHMC_FWSDDATALOW_FPMAT (0x00102074; RO)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATAHIGH to access the Host
Memory Cache's segment table.

Field definitions are the same as those defined in Section 13.2.2.20.36.

13.2.2.20.13 Private Memory Space Segment Descriptor Data High -
GLHMC_FWSDDATAHIGH_FPMAT (0x00102078; RO)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATALOW to access the Host
Memory Cache's segment table.

Field definitions are the same as those defined in Section 13.2.2.20.37.

Field Bit(s) Init. Type CFG Policy Description

PMPEHTEOBJSZ 3:0 0x6 RO N/A Protocol Engine Hash Table Entry Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Protocol Engine Hash Table Entry
objects.
0x6 = 64 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEHTMAX 20:0 0x140000 RO N/A Private Memory PE Hash Table Entry Max
Reports that maximum number of hash table entries supported by
the Host Memory Cache.

RESERVED 31:21 0x0 RSV N/A Reserved.

613875-009 2313

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.14 Private Memory Space Page Descriptor Invalidate -
GLHMC_FWPDINV_FPMAT (0x0010207C; RO)

This register is used to invalidate cached HMC page descriptors that have been set to the invalid state
by software.

Field definitions are the same as those defined in Section 13.2.2.20.38.

13.2.2.20.15 FPM PE Hash Table Entry Base -
GLHMC_PEHTEBASE_FPMAT[n] (0x00104600 + 0x4*n,
n=0...7; RO)

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.16 FPM PE Hash Table Object Count -
GLHMC_PEHTCNT_FPMAT[n] (0x00104700 + 0x4*n,
n=0...7; RO)

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMPEHTEBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Hash Table Entry
Base
Reports the Function Private Memory space base address for the
Protocol Engine Hash Table Entry objects in 512-byte increments. In
other words, the value in this registers must be multiplied by 512 to
get the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEHTCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Hash Table Object
Count
Used to set the Function Private Memory space size for the Protocol
Engine Hash Table objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 000b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2314 613875-009

13.2.2.20.17 Private Memory Space VF Segment Descriptor Data Low -
GLHMC_VFSDDATALOW_FPMAT[n] (0x00108100 + 0x4*n,
n=0...31; RO)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATAHIGH to access the Host
Memory Cache's segment table.

Field definitions are the same as those defined in Section 13.2.2.20.36.

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.18 Private Memory Space VF Segment Descriptor Data High -
GLHMC_VFSDDATAHIGH_FPMAT[n] (0x00108200 + 0x4*n,
n=0...31; RO)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATALOW to access the Host
Memory Cache's segment table.

Field definitions are the same as those defined in Section 13.2.2.20.37.

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.19 Private Memory Space Page Descriptor Invalidate -
GLHMC_VFPDINV_FPMAT[n] (0x00108300 + 0x4*n,
n=0...31; RO)

This register is used to invalidate cached HMC page descriptors that have been set to the invalid state
by software.

Field definitions are the same as those defined in Section 13.2.2.20.38.

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.20 Private Memory Segment Table Partitioning Registers -
GLHMC_VFSDPART_FPMAT[n] (0x00108800 + 0x4*n,
n=0...31; RO)

This register is used to partition the shared Host Memory Cache segment table.

Field definitions are the same as those defined in Section 13.2.2.20.41.

Note: This register must be read only in the PF CSR Space.

13.2.2.20.21 FPM PE Hash Table Entry Base -
GLHMC_VFPEHTEBASE_FPMAT[n] (0x0010C600 + 0x4*n,
n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.83.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

613875-009 2315

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.22 FPM PE Hash Table Object Count -
GLHMC_VFPEHTCNT_FPMAT[n] (0x0010C700 + 0x4*n,
n=0...31; RW)

Field definitions are the same as those defined in Section 13.2.2.20.84.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.23 PDOC Cache Attributes - GLPDOC_CACHESIZE_FPMAT
(0x00110088; RO)

13.2.2.20.24 Private Memory CQ Doorbell Partition Registers -
GLHMC_VFDBCQPART[n] (0x00502E00 + 0x4*n, n=0...31;
RO)

These registers are used to partition the shared doorbell array for Protocol Engine Completion Queues
PCIe PFs.

Field definitions are the same as those defined in Section 13.2.2.20.26.

Note: This register must be read only in the PF CSR Space.

13.2.2.20.25 Private Memory CEQ Partitioning Registers -
GLHMC_VFCEQPART[n] (0x00502F00 + 0x4*n, n=0...31;
RO)

This register is used to partition the shared pool of Protocol Engine Completion Event Queues for PCIe
PFs.

Field definitions are the same as those defined in Section 13.2.2.20.27.

Note: This register must be read only in the PF CSR Space.

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 7:0 0x40 RO N/A Word Size
The cache line size in bytes.

SETS 19:8 0x40 RO N/A Sets
The number of cache sets.

WAYS 23:20 0x8 RO N/A Ways
The number of cache ways.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2316 613875-009

13.2.2.20.26 Private Memory CQ Doorbell Partition Registers -
GLHMC_DBCQPART[n] (0x00503180 + 0x4*n, n=0...7; RO)

These registers are used to partition the shared doorbell array for Protocol Engine Completion Queues
PCIe PFs.

Note: This register must be read only in the PF CSR Space.

13.2.2.20.27 Private Memory CEQ Partitioning Registers -
GLHMC_CEQPART[n] (0x005031C0 + 0x4*n, n=0...7; RO)

This register is used to partition the shared pool of Protocol Engine Completion Event Queues for PCIe
PFs.

Note: This register must be read only in the PF CSR Space.

Field Bit(s) Init. Type CFG Policy Description

PMDBCQBASE 13:0 0x0 RW UNDEFINED Private Memory Doorbell CQ Base
Base CQ doorbell array index for the Host Memory Cache PCI function
n in multiples of 64 CQs.

RESERVED 15:14 00b RSV N/A Reserved.

PMDBCQSIZE 30:16 0x0 RW UNDEFINED Private Memory Doorbell CQ Size
Number of valid doorbell array elements for the Host Memory Cache
PCI function n in increments of 64 CQs.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMCEQBASE 9:0 0x0 RW UNDEFINED Private Memory CEQ Base
Base CEQ index for the function n.

RESERVED 15:10 0x0 RSV N/A Reserved.

PMCEQSIZE 25:16 0x0 RW UNDEFINED Private Memory CEQ Size
Number of valid CEQs index for the function n.

RESERVED 31:26 0x0 RSV N/A Reserved.

613875-009 2317

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.28 Private Memory QP Doorbell Partition Registers -
GLHMC_DBQPPART[n] (0x005044C0 + 0x4*n, n=0...7; RO)

These registers are used to partition the shared doorbell array for Protocol Engine Queue Pairs
associated with PCIe PFs.

Note: This register must be read only in the PF CSR Space. This register is configured by CQP
firmware instead of from NVRAM due to the Protocol Engine clock gating at chip initialization.

13.2.2.20.29 Private Memory VF QP Doorbell Partition Registers -
GLHMC_VFDBQPPART[n] (0x00504520 + 0x4*n, n=0...31;
RO)

These registers are used to partition the shared doorbell array for Protocol Engine Queue Pairs
associated with PCIe PFs.

Field definitions are the same as those defined in Section 13.2.2.20.28.

Note: This register must be read only in the PF CSR Space. This register is configured by CQP
firmware instead of from NVRAM due to the Protocol Engine clock gating at chip initialization.

13.2.2.20.30 PEOC0 Cache Attributes - GLPEOC0_CACHESIZE
(0x005140A8; RO)

Field Bit(s) Init. Type CFG Policy Description

PMDBQPBASE 13:0 0x0 RW UNDEFINED Private Memory Doorbell QP Base
Base QP doorbell array index for the Host Memory Cache PCI function
n in multiples of 128 QPs.

RESERVED 15:14 00b RSV N/A Reserved.

PMDBQPSIZE 30:16 0x0 RW UNDEFINED Private Memory Doorbell QP Size
Number of valid doorbell array elements for the Host Memory Cache
PCI function n in increments of 128 QPs.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 7:0 0x40 RO N/A Word Size
The cache line size in bytes.

SETS 19:8 0x200 RO N/A Sets
The number of cache sets.

WAYS 23:20 0x8 RO N/A Ways
The number of cache ways.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2318 613875-009

13.2.2.20.31 PEOC1 Cache Attributes - GLPEOC1_CACHESIZE
(0x005160A8; RO)

13.2.2.20.32 PBLOC0 Cache Attributes - GLPBLOC0_CACHESIZE
(0x00518074; RO)

13.2.2.20.33 PBLOC1 Cache Attributes - GLPBLOC1_CACHESIZE
(0x0051A074; RO)

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 7:0 0x40 RO N/A Word Size
The cache line size in bytes.

SETS 19:8 0x200 RO N/A Sets
The number of cache sets.

WAYS 23:20 0x8 RO N/A Ways
The number of cache ways.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 7:0 0x40 RO N/A Word Size
The cache line size in bytes.

SETS 19:8 0x100 RO N/A Sets
The number of cache sets.

WAYS 23:20 0x8 RO N/A Ways
The number of cache ways.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 7:0 0x40 RO N/A Word Size
The cache line size in bytes.

SETS 19:8 0x100 RO N/A Sets
The number of cache sets.

WAYS 23:20 0x8 RO N/A Ways
The number of cache ways.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2319

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.34 MDOC Cache Attributes - GLMDOC_CACHESIZE
(0x0051C06C; RO)

13.2.2.20.35 Private Memory Space Segment Descriptor Command -
PFHMC_SDCMD (0x00520000; RW)

This register is used to access the Host Memory Cache's segment table. The HMC's segment table is
partitioned per Private Memory Function (PMF), and this register is only allowed to access the Segment
Table entries allocated to the PMF associated with this register via the SD Partition register,
GLHMC_SDPART.

For read operations, PFHMC_SDCMD must be written with PMSDWR set to 0b and PMSDIDX set to the
segment table index to be read. After the write to PFHMC_SDCMD completes, PFHMC_SDDATALOW and
PFHMC_SDDATAHIGH can be read to retrieve the segment descriptor contents.

For write operations, PFHMC_SDDATALOW and PFHMC_SDDATAHIGH must be written before writing
PFHMC_SDCMD with PMSDWR set to 1b and PMSDIDX set to the segment table index to be written.

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 7:0 0x80 RO N/A Word Size
The cache line size in bytes.

SETS 19:8 0x200 RO N/A Sets
The number of cache sets.

WAYS 23:20 0x8 RO N/A Ways
The number of cache ways.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMSDIDX 11:0 0x0 RW UNDEFINED Private Memory Segment Descriptor Index
Relative Index of the HMC Segment Descriptor to be read or written.
The actual absolute index to be used to access the Segment Table is
(PMSDBASE + PMSDIDX), where PMSDBASE is from the PMSDBASE
field of the GLHMC_SDPART or GLHMC_PFPESDPART register
associated with this function.
On write operations, if (PMSDIDX >= PMSDSIZE), the write is
dropped, where PMSDSIZE is from the PMSDSIZE field of the
GLHMC_SDPART or GLHMC_PFPESDPART register associated with this
function.
The PMSDPARTSEL bit of this register determines which SD Partition
register is selected for the absolute SD_Index calculation and for the
check that PMSDIDX is within the range allowed by this function.

RESERVED 14:12 000b RSV N/A Reserved.

PMSDPARTSEL 15 0b RW UNDEFINED Private Memory Segment Descriptor Partitioning Select
0b = (Default) The GLHMC_SDPART register is used for calculating

the absolute SD Index to access within the Segment Table, and
for checking whether or not PMSDIDX is within this function's
allocated range.

1b = The GLHMC_PFPESDPART register is used for calculating the
absolute SD Index to access within the Segment Table, and for
checking whether or not PMSDIDX is within this function's
allocated range.

RESERVED 30:16 0x0 RSV N/A Reserved.

PMSDWR 31 0b RW UNDEFINED Private Memory Segment Descriptor Write/Read
0b = Read operations.
1b = Write operations.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2320 613875-009

13.2.2.20.36 Private Memory Space Segment Descriptor Data Low -
PFHMC_SDDATALOW (0x00520100; RW)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATAHIGH to access the Host
Memory Cache's segment table.

13.2.2.20.37 Private Memory Space Segment Descriptor Data High -
PFHMC_SDDATAHIGH (0x00520200; RW)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATALOW to access the Host
Memory Cache's segment table.

Field Bit(s) Init. Type CFG Policy Description

PMSDVALID 0 0b RW UNDEFINED Private Memory Segment Descriptor Valid
Valid bit of an HMC segment descriptor table entry.

PMSDTYPE 1 0b RW UNDEFINED Private Memory Segment Descriptor Type
0b = The Segment Descriptor is paged (the SD points to a the

physical address of a host memory page that contains an
array of Page Descriptors.

1b = The Segment Descriptor directly points the physical address
of a physically contiguous 2 MB memory region.

PMSDBPCOUNT 11:2 0x0 RW UNDEFINED Private Memory Segment Descriptor Backing Page Count
Backing Page count of an HMC segment descriptor table entry.
Every SD entry in a given Function Private memory space must be
set to 512, except the last SD. The last SD can have a value from 1
to 512. This field is used to calculate the end of the FPM space
associated with a Segment Descriptor without having to read the
valid bit for each individual PD entry

PMSDDATALOW 31:12 0x0 RW UNDEFINED Private Memory Segment Descriptor Data Low
Bits 31:12 bits of an HMC segment descriptor table entry.

Field Bit(s) Init. Type CFG Policy Description

PMSDDATAHIGH 31:0 0x0 RW UNDEFINED Private Memory Segment Descriptor Data High
Most significant 32 bits of a segment descriptor.

613875-009 2321

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.38 Private Memory Space Page Descriptor Invalidate -
PFHMC_PDINV (0x00520300; RW)

This register is used to invalidate cached HMC page descriptors that have been set to the invalid state
by software.

13.2.2.20.39 Host Memory Cache Error Information Register -
PFHMC_ERRORINFO (0x00520400; RW)

This register reports the errors detected by the Host Memory Cache. Errors reported through this
register also can trigger interrupts through the HMC_ERR bit in the PFINT_ICR0 register.

Field Bit(s) Init. Type CFG Policy Description

PMSDIDX 11:0 0x0 RW UNDEFINED Private Memory Segment Descriptor Index
Relative Index of the HMC Segment Descriptor associated with the
HMC Page Descriptor that is to be invalidated.
For PFs, the actual index to be used to access the Segment Table is
(PMSDBASE + PMSDIDX), where PMSDBASE is from the PMSDBASE
field of the GLHMC_SDPART or GLHMC_PFPESDPART register
associated with this function.
If (PMSDIDX >= PMSDSIZE), the invalidate request is dropped, where
PMSDSIZE is from the PMSDSIZE field of the GLHMC_SDPART or
GLHMC_PFPESDPART register associated with this function.
The PMSDPARTSEL bit of this register determines which SD Partition
register is selected for the absolute SD index calculation and for the
check that PMSDIDX is within the range allowed by this function.
For Protocol Engine enabled VFs, the actual index to be used to
invalidate a Segment Table entry is (PMSDBASE + PMSDIDX), where
PMSDBASE is from the GLHMC_VFSDPART register associated with
this function. For VFs, if (PMSDIDX >=
GLHMC_VFSDPART.PMSDSIZE), the invalidate request will be
dropped. The PMSDPARTSEL bit is ignored in the GLHMC_VFPDINV
registers.
For the GLHMC_FWPDINV version of this register, this field is the
absolute SD index, and the PMSDPARTSEL bit is ignored.

RESERVED 14:12 000b RSV N/A Reserved.

PMSDPARTSEL 15 0b RW UNDEFINED Private Memory Segment Descriptor Partitioning Select
0b = (Default) The GLHMC_SDPART register is used for calculating

the absolute SD Index to invalidate within the Segment Table,
and for checking whether or not PMSDIDX is within this
function's allocated range.

1b = The GLHMC_PFPESDPART register is used for calculating the
absolute SD Index to invalidate within the Segment Table, and
for checking whether or not PMSDIDX is within this function's
allocated range.

This field is ignored in the GLHMC_VFPDINV and GLHMC_FWPDINV
versions of this register.

PMPDIDX 24:16 0x0 RW UNDEFINED Private Memory Page Descriptor Index
Index of the Page Descriptor within the Page Descriptor Page indicated
by PMSDIDX.

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMF_INDEX 4:0 0x0 RW UNDEFINED Private Memory Function Index
This field reports the HMC Private Memory Function associated
with the error.
Writes to this field are ignored.

RESERVED 6:5 00b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2322 613875-009

PMF_ISVF 7 0b RW UNDEFINED Private Memory Function Is VF
0b = The Private Memory Function reported in PMF_INDEX is

associated with a PF.
1b = The Private Memory Function reported in PMF_INDEX is

associated with a Protocol Engine enabled VF.
Writes to this field are ignored.

HMC_ERROR_TYPE 11:8 0x0 RW UNDEFINED HMC Error Type
This field reports the error type detected by the Host Memory
Cache. The values are:

0 = Private Memory Function is not valid (the valid bit is clear
in the GLHMC_VFPMFMAP register associated with the
PMF)

1 = Invalid Private Memory Function index for a Protocol
Engine enabled VF in GLHMC_VFPMFMAP. (i.e., The PMF
Index programmed in the GLHMC_VFPMFMAP register is
< 8 or > 39. This is a firmware error.)

2 = Invalid PF for a Protocol Engine enabled VF in
GLHMC_VFPMFTABLE. (i.e., the parent PF index
programmed in the GLHMC_VFPMFMAP register did not
match the PF index received in the HMC transaction. This
is a firmware error.

3= Reserved. In predecessor devices it was used to be an
indication for Invalid LAN Queue Index or FCoE VF Index.
(i.e., The absolute LAN Queue Index or FCoE VF Index
received in the HMC transaction was less than the LAN
Queue Index Base register or FCoE VF Index Base
register associated with the PF Index received in the HMC
transaction.)

4 = Index to big error: Indication that Object Index from
transaction was larger than the value specified in the
object's GLHMC_*CNT register.

5 = Private Memory Address Extends beyond the limits of the
Segment Descriptors assigned to the PCIe function.

6 = Segment Descriptor Invalid.
7 = Segment Descriptor Too Small (only applies to Direct

Mapped SDs).
8 = Page Descriptor Invalid.
9 = Received Unsupported Request (UR) Completion from

PCIe read of object.
10 = Reserved. In predecessor devices this was used to be an

indication that the valid bit in PFLAN_QALLOC_PMAT[PF]
or PF_VT_PFALLOC_PMAT[PF] register was not set.

11 = An invalid object type was detected.
12 = Reserved. In predecessor devices it was used to be an

indication for Object Index for an FCoE DDP Context
object was larger than the size specified in the
PFFCDSIZE or VFFCDSIZE field of the corresponding
PFQF_CTL_0_PMAT register, or the object index for an
FCoE Filter object was larger than the sum of the sizes
specified in the PFFCHSIZE and PFFCDSIZE fields or
VFFCHSIZE and VFFCDSIZE fields of the corresponding
PFQF_CTL_0_PMAT register.

All other values are reserved.
The PFHMC_ERRORDATA register can be read to determine the
LAN Queue index or FCoE VF index associated with error type 3.
The PFHMC_ERRORDATA register can be read to determine the
HMC object index associated with error types 4 and 12. The
PFHMC_ERRORDATA register can be read to determine the HMC
function relative SD_Index and PD_Index associated with error
types 5 through 9.

RESERVED 15:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2323

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

HMC_OBJECT_TYPE 20:16 0x0 RW UNDEFINED HMC Object Type
Specifies the object type associated with the error. The
encodings for the object type are as follows:

0x00 = QP_CNTXT
0x01 = ARP_TBL_ENTRY
0x02 = TXFIFO
0x03 = IRRQ
0x04 = MRTE
0x05 = PBLE
0x06 = CQ_CNTXT
0x07 = SRQ_CNTXT
0x08 = APBVT_INUSE
0x09 = FSI_ADR_VCTR
0x0A = FSI_MCAST_GRP
0x0B = XF_FL
0x0C = Q1_FL
0x0D = TIMER
0x10 = LAN_TXQ_CNTXT
0x11 = LAN_RXQ_CNTXT
0x12 = FCOE_CNTXT
0x13 = FCOE_DDP_HTE
0x16 = QUAD_HTE
0x19 = PD
All other values are reserved.

RESERVED 30:21 0x0 RSV N/A Reserved.

ERROR_DETECTED 31 0b RW UNDEFINED Error Detected
This field is set to 1b when a new error has been detected by the
HMC. No subsequent errors will be recorded until this field is
written with a value of 0b.
Writes of a 0 to this register clears the error and allow a
subsequent error to be reported. Writes of 1 to this field are
ignored.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2324 613875-009

13.2.2.20.40 Host Memory Cache Error Data Register -
PFHMC_ERRORDATA (0x00520500; RO)

This register reports the HMC function relative SD_Index and PD_Index or HMC object index related to
an error detected by the Host Memory Cache.

13.2.2.20.41 Private Memory Segment Table Partitioning Registers -
GLHMC_SDPART[n] (0x00520800 + 0x4*n, n=0...7; RO)

This register is used to partition the shared Host Memory Cache segment table.

Note: This register must be read only in the PF CSR Space.

Field Bit(s) Init. Type CFG Policy Description

HMC_ERROR_DATA 29:0 0x0 RO N/A HMC Error Data
This field reports either the HMC function relative SD_Index,
PD_Index, LAN Queue index, FCoE VF index, or HMC object index
associated with the error reported in the PFHMC_ERRORINFO
register. FCoE reporting is not valid anymore in this device.
When PFHMC_ERRORINFO.HMC_ERROR_TYPE is 3:
• HMC_ERROR_DATA[27:0] reports the LAN Queue index or

FCoE VF index associated with the error.
• HMC_ERROR_DATA[29:28] should be zero.
• This option is not valid anymore in this device.

When PFHMC_ERRORINFO.HMC_ERROR_TYPE is 4 or 12:
• HMC_ERROR_DATA[27:0] reports the object index associated

with the error.
• HMC_ERROR_DATA[29:28] should be zero.

When PFHMC_ERRORINFO.HMC_ERROR_TYPE is 5 through 9:
• HMC_ERROR_DATA[29:9] reports the HMC function relative

SD_Index and PD_Index associated with the error detected
by the HMC.

• HMC_ERROR_DATA[29:18] is set to HMC function relative
SD_Index for the affected HMC function.

• HMC_ERROR_DATA[17:9] is set to the PD_Index.
• HMC_ERROR_DATA[8:0] are reserved for error types 5

through 9.
When PFHMC_ERRORINFO.HMC_ERROR_TYPE is 0 through 2, or
10 through 1:
• HMC_ERROR_DATA[29:0] is not valid, and should be zero.

RESERVED 31:30 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMSDBASE 11:0 0x0 RW UNDEFINED Private Memory Segment Descriptor Base
Base segment table index for the function n.

RESERVED 15:12 0x0 RSV N/A Reserved.

PMSDSIZE 28:16 0x0 RW UNDEFINED Private Memory Segment Descriptor Size
Number of valid segment table entries for the function n.

RESERVED 31:29 0x0 RSV N/A Reserved.

613875-009 2325

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.42 Private Memory Segment Table Partitioning Registers -
GLHMC_PFPESDPART[n] (0x00520880 + 0x4*n, n=0...7;
RO)

This register is used to partition the shared Host Memory Cache segment table.

Field definitions are the same as those defined in Section 13.2.2.20.41.

Note: This register must be read only in the PF CSR Space.

13.2.2.20.43 Private Memory Protocol Engine Header Max -
GLHMC_PEHDROBJSZ (0x00522004; RO)

13.2.2.20.44 FPM PE Header Object Count - GLHMC_PEHDRMAX
(0x00522008; RO)

13.2.2.20.45 Private Memory PE Metadata Object Size -
GLHMC_PEMDOBJSZ (0x0052200C; RO)

13.2.2.20.46 Private Memory Protocol Engine Metadata Max -
GLHMC_PEMDMAX (0x00522010; RO)

Field Bit(s) Init. Type CFG Policy Description

PMPEHDROBJSZ 3:0 0x6 RO N/A Private Memory Protocol Engine Header Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Protocol Engine Header objects.
0x6 = 64 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEHDRMAX 18:0 0x40000 RO N/A Private Memory Protocol Engine Header Max
Reports the maximum number of Protocol Engine Metadata objects
supported by the Host Memory Cache.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEMDOBJSZ 3:0 0x4 RO N/A Private Memory Protocol Engine Metadata Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Protocol Engine Metadata objects.
0x4 = 16 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEMDMAX 23:0 0x800000 RO N/A Private Memory Protocol Engine Metadata Max
Reports the maximum number of Protocol Engine Metadata objects
supported by the Host Memory Cache.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2326 613875-009

13.2.2.20.47 Private Memory PE Out of Order Send Completion Object
Size - GLHMC_PEOOISCOBJSZ (0x00522014; RO)

13.2.2.20.48 Private Memory Protocol Engine Out of Order Send
Completion Max - GLHMC_PEOOISCMAX (0x00522018; RO)

13.2.2.20.49 Private Memory PE QP Object Size - GLHMC_PEQPOBJSZ
(0x0052201C; RO)

13.2.2.20.50 Private Memory PE CQ Object Size - GLHMC_PECQOBJSZ
(0x00522020; RO)

Field Bit(s) Init. Type CFG Policy Description

PMPEOOISCOBJSZ 3:0 0x5 RO N/A Private Memory Protocol Engine Out-of-Order Send
Completion Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Protocol Engine Out-of-Order
Send Completion objects.
0x5 = 32 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEOOISCMAX 18:0 0x40000 RO N/A Private Memory Protocol Engine Out-of-Order Send
Completion Max
Reports the maximum number of Protocol Engine Out-of-Order
Send Completions supported by the Host Memory Cache.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEQPOBJSZ 3:0 0x9 RO N/A Private Memory Protocol Engine QP Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Protocol Engine Queue Pair objects.
0x9 = 512 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPECQOBJSZ 3:0 0x6 RO N/A Private Memory Protocol Engine CQ Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Protocol Engine Completion Queue
objects.
0x6 = 64 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

613875-009 2327

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.51 Private Memory PE Hash Table Entry Object Size -
GLHMC_PEHTEOBJSZ (0x0052202C; RO)

13.2.2.20.52 Private Memory Protocol Engine Hash Entry Max -
GLHMC_PEHTMAX (0x00522030; RO)

13.2.2.20.53 Private Memory PE ARP Table Entry Object Size -
GLHMC_PEARPOBJSZ (0x00522034; RO)

13.2.2.20.54 Private Memory Protocol Engine ARP Table Entry Max -
GLHMC_PEARPMAX (0x00522038; RO)

Field Bit(s) Init. Type CFG Policy Description

PMPEHTEOBJSZ 3:0 0x6 RO N/A Private Memory Protocol Engine Hash Table Entry Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Protocol Engine Hash Table Entry
objects.
0x6 = 64 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEHTMAX 20:0 0x14A000 RO N/A Private Memory Protocol Engine Hash Table Max
Reports that maximum number of Hash Table entries supported by the
Host Memory Cache.

RESERVED 31:21 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEARPOBJSZ 2:0 0x4 RO N/A Private Memory Protocol Engine ARP Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache ARP Table Entry objects.
0x4 = 16 bytes

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEARPMAX 16:0 0x10000 RO N/A Private Memory Protocol Engine ARP Max
Reports that maximum number of ARP Table entries supported by the
Host Memory Cache.

RESERVED 31:17 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2328 613875-009

13.2.2.20.55 Private Memory PE Memory Region Table Entry Object Size -
GLHMC_PEMROBJSZ (0x0052203C; RO)

13.2.2.20.56 Private Memory Protocol Engine Memory Registration Max -
GLHMC_PEMRMAX (0x00522040; RO)

13.2.2.20.57 Private Memory PE Xmit FIFO Object Size -
GLHMC_PEXFOBJSZ (0x00522044; RO)

13.2.2.20.58 Private Memory Protocol Engine Transmit FIFO Entry Max -
GLHMC_PEXFMAX (0x00522048; RO)

13.2.2.20.59 Private Memory Protocol Engine Transmit FIFO Free List
Max - GLHMC_PEXFFLMAX (0x0052204C; RO)

Field Bit(s) Init. Type CFG Policy Description

PMPEMROBJSZ 3:0 0x5 RO N/A Private Memory Protocol Engine Memory Region Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Memory Region Table Entry objects.
0x5 = 32 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEMRMAX 22:0 0x400000 RO N/A Private Memory Protocol Engine Memory Region Max
Reports that maximum number of Memory Registration Table entries
supported by the Host Memory Cache.

RESERVED 31:23 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEXFOBJSZ 3:0 0x5 RO N/A Private Memory Protocol Engine Transmit FIFO Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Xmit FIFO objects.
0x5 = 32 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEXFMAX 27:0 0x8000000 RO N/A Private Memory Protocol Engine Transmit FIFO Max
Reports that maximum number of Transmit FIFO entries supported
by the Host Memory Cache.

RESERVED 31:28 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEXFFLMAX 27:0 0x2000000 RO N/A Private Memory Protocol Engine Transmit FIFO Free List
Max
Reports that maximum number of Transmit FIFO Free List entries
supported by the Host Memory Cache.

RESERVED 31:28 0x0 RSV N/A Reserved.

613875-009 2329

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.60 Private Memory PE IRRQ Object Size - GLHMC_PEQ1OBJSZ
(0x00522050; RO)

13.2.2.20.61 Private Memory Protocol Engine Q1 Max - GLHMC_PEQ1MAX
(0x00522054; RO)

13.2.2.20.62 Private Memory Protocol Engine Q1 Free List Max -
GLHMC_PEQ1FLMAX (0x00522058; RO)

13.2.2.20.63 Private Memory FSI Multicast Group Object Size -
GLHMC_FSIMCOBJSZ (0x0052205C; RO)

13.2.2.20.64 Private Memory FSI Multicast Group Max -
GLHMC_FSIMCMAX (0x00522060; RO)

Field Bit(s) Init. Type CFG Policy Description

PMPEQ1OBJSZ 3:0 0x6 RO N/A Private Memory Protocol Engine Q1 Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Inbound RDMA Read (Q1) objects.
0x6 = 64 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEQ1MAX 27:0 0x8000000 RO N/A Private Memory Protocol Engine Q1 Max
Reports that maximum number of Inbound RDMA Read Queue (Q1)
entries supported by the Host Memory Cache.

RESERVED 31:28 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEQ1FLMAX 25:0 0x2000000 RO N/A Private Memory Protocol Engine Q1 Free List Max
Reports that maximum number of Inbound RDMA Read Queue
(Q1) Free List entries supported by the Host Memory Cache.

RESERVED 31:26 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMFSIMCOBJSZ 3:0 0x6 RO N/A Private Memory FSI Multicast Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache FSI Multicast Group objects.
0x6 = 64 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMFSIMCMAX 13:0 0x2000 RO N/A Private Memory FSI Multicast Max
Reports that maximum number of FSI Multicast Group entries
supported by the Host Memory Cache.

RESERVED 31:14 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2330 613875-009

13.2.2.20.65 Private Memory FSI Address Vector Object Size -
GLHMC_FSIAVOBJSZ (0x00522064; RO)

13.2.2.20.66 Private Memory FSI Address Vector Max -
GLHMC_FSIAVMAX (0x00522068; RO)

13.2.2.20.67 Private Memory Protocol Engine Physical Buffer List Max -
GLHMC_PEPBLMAX (0x0052206C; RO)

13.2.2.20.68 Private Memory Space Segment Descriptor Data Low -
GLHMC_FWSDDATALOW (0x00522074; RO)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATAHIGH to access the Host
Memory Cache's segment table.

Field definitions are the same as those defined in Section 13.2.2.20.36.

13.2.2.20.69 Private Memory Space Segment Descriptor Data High -
GLHMC_FWSDDATAHIGH (0x00522078; RO)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATALOW to access the Host
Memory Cache's segment table.

Field definitions are the same as those defined in Section 13.2.2.20.37.

Field Bit(s) Init. Type CFG Policy Description

PMFSIAVOBJSZ 3:0 0x6 RO N/A Private Memory FSI Address Vector Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache FSI Address Vector objects.
0x6 = 64 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMFSIAVMAX 17:0 0x20000 RO N/A Private Memory FSI Address Vector Max
Reports that maximum number of FSI Address Vectors supported by
the Host Memory Cache.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEPBLMAX 28:0 0x10000000 RO N/A Private Memory Protocol Engine Physical Buffer List Max
Reports that maximum number of Physical Buffer List entries
supported by the Host Memory Cache.

RESERVED 31:29 0x0 RSV N/A Reserved.

613875-009 2331

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.70 Private Memory Space Page Descriptor Invalidate -
GLHMC_FWPDINV (0x0052207C; RO)

This register is used to invalidate cached HMC Page Descriptors that have been set to the invalid state
by software.

Field definitions are the same as those defined in Section 13.2.2.20.38.

13.2.2.20.71 Private Memory PE Timer Object Size -
GLHMC_PETIMEROBJSZ (0x00522080; RO)

13.2.2.20.72 Private Memory PE Timer Object Max -
GLHMC_PETIMERMAX (0x00522084; RO)

13.2.2.20.73 Private Memory Protocol Engine Read Response Entry
Object Size - GLHMC_PERRFOBJSZ (0x00522098; RO)

13.2.2.20.74 Private Memory Protocol Engine Read Response FIFO Entry
Max - GLHMC_PERRFMAX (0x0052209C; RO)

Field Bit(s) Init. Type CFG Policy Description

PMPETIMEROBJSZ 3:0 0x6 RO N/A Private Memory Protocol Engine Timer Object Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Protocol Engine Timer objects.
0x6 = 64 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPETIMERMAX 28:0 0x10000000 RO N/A Private Memory Protocol Engine Timer Max
Reports that maximum number of PE Timer objects supported
by the Host Memory Cache.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPERRFOBJSZ 3:0 0x5 RO N/A Private Memory Protocol Engine Read Response FIFO Object
Size
Used to calculate the amount of memory that is required to be
allocated for Host Memory Cache Read Response FIFO objects.
0x5 = 32 bytes

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPERRFMAX 27:0 0x8000000 RO N/A Private Memory Protocol Engine Read Response FIFO Max
Reports that maximum number of Read Response FIFO entries
supported by the Host Memory Cache.

RESERVED 31:28 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2332 613875-009

13.2.2.20.75 Private Memory Protocol Engine Read Response FIFO Free
List Max - GLHMC_PERRFFLMAX (0x005220A0; RO)

13.2.2.20.76 Private Memory Protocol Engine Out of Order Send
Completion (OOISC) FIFO Free List Max -
GLHMC_PEOOISCFFLMAX (0x005220A4; RO)

13.2.2.20.77 Private Memory Protocol Engine Queue Pair Max -
GLHMC_DBQPMAX (0x005220EC; RO)

13.2.2.20.78 Private Memory Protocol Engine Completion Queue Max -
GLHMC_DBCQMAX (0x005220F0; RO)

Field Bit(s) Init. Type CFG Policy Description

PMPERRFFLMAX 25:0 0x2000000 RO N/A Private Memory Protocol Engine Read Response FIFO
Free List Max
Reports that maximum number of Read Response FIFO Free List
entries supported by the Host Memory Cache.

RESERVED 31:26 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PMPEOOISCFFLMAX 18:0 0x40000 RO N/A Private Memory Protocol Engine Out-of-Order Send
Completion FIFO Free List Max

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_DBQPMAX 18:0 0x40000 RO N/A Doorbell QP Max
Reports the maximum number of Protocol Engine Queue Pairs
supported by the Host Memory Cache and Doorbell array.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_DBCQMAX 19:0 0x080000 RO N/A Doorbell CQ Max
Reports the maximum number of Protocol Engine Completion
Queues supported by the Host Memory Cache and Doorbell
array.

RESERVED 31:20 0x0 RSV N/A Reserved.

613875-009 2333

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.79 FPM PE QP Base - GLHMC_PEQPBASE[n] (0x00524000 +
0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.80 FPM PE QP Object Count - GLHMC_PEQPCNT[n]
(0x00524100 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.81 FPM PE CQ Base - GLHMC_PECQBASE[n] (0x00524200 +
0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMPEQPBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine QP Base
Reports the Function Private Memory space base address for the
Protocol Engine Queue Pair objects in 512-byte increments. In other
words, the value is this registers must be multiplied by 512 to get the
actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEQPCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine QP Count
Used to set the Function Private Memory space size for the Protocol
Engine Queue Pair objects.
The associated base register is updated after Commit FPM Values CQP
operation is performed to indicate to hardware that all of the FPM size
registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPECQBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine CQ Base
Reports the Function Private Memory space base address for the
Protocol Engine Completion Queue objects in 512-byte increments. In
other words, the value is this registers must be multiplied by 512 to
get the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2334 613875-009

13.2.2.20.82 FPM PE CQ Object Count - GLHMC_PECQCNT[n]
(0x00524300 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.83 FPM PE Hash Table Entry Base - GLHMC_PEHTEBASE[n]
(0x00524600 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.84 FPM PE Hash Table Object Count - GLHMC_PEHTCNT[n]
(0x00524700 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMPECQCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine CQ Count
Used to set the Function Private Memory space size for the Protocol
Engine Completion Queue objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEHTEBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Hash Table Entry
Base
Reports the Function Private Memory space base address for the
Protocol Engine Hash Table Entry objects in 512-byte increments. In
other words, the value is this registers must be multiplied by 512 to
get the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEHTCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Hash Table Count
Used to set the Function Private Memory space size for the Protocol
Engine Hash Table objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

613875-009 2335

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.85 FPM PE ARP Table Base - GLHMC_PEARPBASE[n]
(0x00524800 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.86 FPM PE ARP Table Object Count - GLHMC_PEARPCNT[n]
(0x00524900 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.87 FPM PE APBVT In-Use Base - GLHMC_APBVTINUSEBASE[n]
(0x00524A00 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMPEARPBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine ARP Base
Reports the Function Private Memory space base address for the
Protocol Engine ARP Table objects in 512-byte increments. In other
words, the value is this registers must be multiplied by 512 to get
the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEARPCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine ARP Count
Used to set the Function Private Memory space size for the Protocol
Engine ARP table objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMAPBINUSEBASE 23:0 0x0 RW UNDEFINED Function Private Memory APBVT In-Use Base
Reports the base Function Private Memory Space Address of the
Accelerated Port Bit In-Use object in 512-byte increments.
There is a single APBVT In-Use object for each PCI function and
it is a fixed 8 KB in size. Since there is only a single object and it
is a fixed size, there is not a corresponding Object Size or region
size register.
This register is updated by hardware when the Commit FPM
Values CQP operation is performed.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2336 613875-009

13.2.2.20.88 FPM PE MRT Base - GLHMC_PEMRBASE[n] (0x00524C00 +
0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.89 FPM PE Memory Region Table Object Count -
GLHMC_PEMRCNT[n] (0x00524D00 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.90 FPM PE Xmit FIFO Base - GLHMC_PEXFBASE[n]
(0x00524E00 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMPEMRBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Memory Region Base
Reports the Function Private Memory space base address for the
Protocol Engine Memory Region Table objects in 512-byte increments.
In other words, the value is this registers must be multiplied by 512 to
get the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEMRSZ 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Memory Region Size
Used to set the Function Private Memory space size for the Protocol
Engine Memory Region Table objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEXFBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Transmit FIFO Base
Reports the Function Private Memory space base address for the
Protocol Engine Xmit FIFO objects in 512-byte increments. In other
words, the value is this registers must be multiplied by 512 to get the
actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2337

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.91 FPM PE Xmit FIFO Object Count - GLHMC_PEXFCNT[n]
(0x00524F00 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.92 FPM PE Xmit FIFO Free List Base - GLHMC_PEXFFLBASE[n]
(0x00525000 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.93 FPM PE IRRQ Base - GLHMC_PEQ1BASE[n] (0x00525200 +
0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMPEXFCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Transmit FIFO Count
Used to set the Function Private Memory space size for the Protocol
Engine Xmit FIFO objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEXFFLBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Transmit FIFO Free List
Base
Reports the Function Private Memory space base address for the
Protocol Engine Xmit FIFO Free List objects in 512-byte increments.
In other words, the value is this registers must be multiplied by 512
to get the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEQ1BASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Q1 Base
Reports the Function Private Memory space base address for the
Protocol Engine Inbound RDMA Read Queue (Q1) objects in 512-byte
increments. In other words, the value is this registers must be
multiplied by 512 to get the actual address out of the 8 GB FPM
address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2338 613875-009

13.2.2.20.94 FPM PE IRRQ Object Count - GLHMC_PEQ1CNT[n]
(0x00525300 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.95 FPM PE IRRQ Free List Base - GLHMC_PEQ1FLBASE[n]
(0x00525400 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.96 FPM FSI Address Vector Base - GLHMC_FSIAVBASE[n]
(0x00525600 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMPEQ1CNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Q1 Count
Used to set the Function Private Memory space size for the Protocol
Engine Inbound RDMA Read Queue (Q1) objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEQ1FLBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Q1 Free List Base
Reports the Function Private Memory space base address for the
Protocol Engine Inbound RDMA Read Queue (Q1) Free List objects
in 512-byte increments. In other words, the value is this registers
must be multiplied by 512 to get the actual address out of the 8 GB
FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMFSIAVBASE 23:0 0x0 RW UNDEFINED Function Private Memory FSI Address Vector Base
Reports the Function Private Memory space base address for the FSI
Address Vector objects in 512-byte increments. In other words, the
value is this registers must be multiplied by 512 to get the actual
address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2339

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.97 FPM FSI Address Vector Object Count -
GLHMC_FSIAVCNT[n] (0x00525700 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.98 FPM PE Physical Buffer List Base - GLHMC_PEPBLBASE[n]
(0x00525800 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.99 FPM PE PBL Object Count - GLHMC_PEPBLCNT[n]
(0x00525900 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMFSIAVCNT 28:0 0x0 RW UNDEFINED Function Private Memory FSI Address Vector Count
Used to set the Function Private Memory space size for the FSI
Address Vector objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEPBLBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Physical Buffer List
Base
Reports the Function Private Memory space base address for the
Protocol Engine Physical Buffer List objects in 512-byte increments.
In other words, the value is this registers must be multiplied by 512
to get the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPEPBLCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Physical Buffer List
Count
Used to set the Function Private Memory space size for the Protocol
Engine Physical Buffer List objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2340 613875-009

13.2.2.20.100 FPM PE Timer Base - GLHMC_PETIMERBASE[n]
(0x00525A00 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.101 FPM PE Timer Object Count - GLHMC_PETIMERCNT[n]
(0x00525B00 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.102 FPM FSI Multicast Group Base - GLHMC_FSIMCBASE[n]
(0x00526000 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMPETIMERBASE 23:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Timer Base
Reports the Function Private Memory space base address for the
Protocol Engine Timer objects in 512-byte increments. In other
words, the value of this registers must be multiplied by 512 to get
the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMPETIMERCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Timer Count
Used to set the Function Private Memory space size for the Protocol
Engine Timer objects.
The associated base register is updated after the Commit FPM
Values CQP operation is performed to indicate to hardware that all
of the FPM size registers have been set properly and the FPM map
should be recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FPMFSIMCBASE 23:0 0x0 RW UNDEFINED Function Private Memory FSI Multicast Base
Reports the Function Private Memory space base address for the FSI
Multicast Group objects in 512-byte increments. In other words, the
value is this registers must be multiplied by 512 to get the actual
address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM Values
CQP operation is performed. Other than for debug purposes, this
register should be treated as Read Only.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2341

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.103 FPM FSI Multicast Group Object Count -
GLHMC_FSIMCCNT[n] (0x00526100 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.104 FPM PE Header Base - GLHMC_PEHDRBASE[n] (0x00526200
+ 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.105 FPM PE Header Object Count - GLHMC_PEHDRCNT[n]
(0x00526300 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

FPMFSIMCSZ 28:0 0x0 RW UNDEFINED Function Private Memory FSI Multicast Size
Used to set the Function Private Memory space size for the FSI
Multicast Group objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the FPM
size registers have been set properly and the FPM map should be
recomputed.

RESERVED 31:29 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PEHDRBASE 31:0 0x0 RW UNDEFINED Protocol Engine Header Base
Reports the Function Private Memory space base address for the
Protocol Engine Header objects in 512-byte increments. In other
words, the value in this register must be multiplied by 512 to get
the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM
Values CQP operation is performed. Other than for debug
purposes, this register should be treated as Read Only.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PEHDRCNT 31:0 0x0 RW UNDEFINED Protocol Engine Header Count
Used to set the Function Private Memory space size for the
Protocol Engine Header objects.
The associated base register is updated after the Commit FPM
Values CQP operation is performed to indicate to hardware that
all of the FPM size registers have been set properly and the FPM
map should be recomputed.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2342 613875-009

13.2.2.20.106 FPM PE Metadata Base - GLHMC_PEMDBASE[n]
(0x00526400 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.107 FPM PE Metadata Object Count - GLHMC_PEMDCNT[n]
(0x00526500 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.108 FPM PE Out of Order Send Completion Base -
GLHMC_PEOOISCBASE[n] (0x00526600 + 0x4*n, n=0...7;
RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PEMDBASE 31:0 0x0 RW UNDEFINED Protocol Engine Metadata Base
Reports the Function Private Memory space base address for the
Protocol Engine Metadata objects in 512-byte increments. In
other words, the value in this register must be multiplied by 512
to get the actual address out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM
Values CQP operation is performed. Other than for debug
purposes, this register should be treated as Read Only.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PEMDCNT 31:0 0x0 RW UNDEFINED Protocol Engine Metadata Count
Used to set the Function Private Memory space size for the
Protocol Engine Metadata objects.
The associated base register is updated after the Commit FPM
Values CQP operation is performed to indicate to hardware that all
of the FPM size registers have been set properly and the FPM map
should be recomputed.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PEOOISCBASE 31:0 0x0 RW UNDEFINED Protocol Engine Out-of-Order Send Completion Base
Reports the Function Private Memory space base address for
the Protocol Engine Out of Order Send Completion objects in
512-byte increments. In other words, the value in this
register must be multiplied by 512 to get the actual address
out of the 8 GB FPM address space.
This register is updated by hardware when the Commit FPM
Values CQP operation is performed. Other than for debug
purposes, this register should be treated as Read Only.

613875-009 2343

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.109 FPM PE Out of Order Send Completion Object Count -
GLHMC_PEOOISCCNT[n] (0x00526700 + 0x4*n, n=0...7;
RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.110 FPM PE Read Response Base - GLHMC_PERRFBASE[n]
(0x00526800 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.111 FPM PE Read Response Object Count - GLHMC_PERRFCNT[n]
(0x00526900 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PEOOISCCNT 31:0 0x0 RW UNDEFINED Protocol Engine Out-of-Order Send Completion Count
Used to set the Function Private Memory space size for the
Protocol Engine Out of Order Send Completion objects.
The associated base register is updated after Commit FPM
Values CQP operation is performed to indicate to hardware that
all of the FPM size registers have been set properly and the
FPM map should be recomputed.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PERRFBASE 31:0 0x0 RW UNDEFINED Protocol Engine Read Response FIFO Base
Reports the Function Private Memory space base address for the
Protocol Engine Read Response objects in 512-byte increments.
In other words, the value in this register must be multiplied by
512 to get the actual address out of the 8 GB FPM address
space.
This register is updated by hardware when the Commit FPM
Values CQP operation is performed. Other than for debug
purposes, this register should be treated as Read Only.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PERRFCNT 31:0 0x0 RW UNDEFINED Protocol Engine Read Response FIFO Count
Used to set the Function Private Memory space size for the
Protocol Engine Read Response objects.
The associated base register is updated after the Commit FPM
Values CQP operation is performed to indicate to hardware that all
of the FPM size registers have been set properly and the FPM map
should be recomputed.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2344 613875-009

13.2.2.20.112 FPM PE Read Response FIFO Free List Base -
GLHMC_PERRFFLBASE[n] (0x00526A00 + 0x4*n, n=0...7;
RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.113 FPM PE Read Response FIFO Free List Object Count -
GLHMC_PERRFFLCNT_PMAT[n] (0x00526B00 + 0x4*n,
n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PERRFFLBASE 31:0 0x0 RW UNDEFINED Protocol Engine Read Response FIFO Free List Base
Reports the Function Private Memory space base address for
the Protocol Engine Read Response FIFO Free List objects in
512-byte increments. In other words, the value in this register
must be multiplied by 512 to get the actual address out of the
8 GB FPM address space.
This register is updated by hardware when the Commit FPM
Values CQP operation is performed. Other than for debug
purposes, this register should be treated as Read Only.

Field Bit(s) Init. Type CFG Policy Description

FPMPERRFFLCNT 28:0 0x0 RW UNDEFINED Function Private Memory Protocol Engine Read Response
FIFO Free List Count
Used to set the Function Private Memory space size for the Protocol
Engine Read Response FIFO objects.
The associated base register is updated after the Commit FPM Values
CQP operation is performed to indicate to hardware that all of the
FPM size registers have been set properly and the FPM map should
be recomputed.

RESERVED 31:29 000b RSV N/A Reserved.

613875-009 2345

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.114 FPM PE Out of Order Send Completion (OOISC) FIFO Free
List Base - GLHMC_PEOOISCFFLBASE[n] (0x00526C00 +
0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.115 FPM PE Out of Order Send Completion (OOISC) FIFO Free
List Object Count - GLHMC_PEOOISCFFLCNT_PMAT[n]
(0x00526D00 + 0x4*n, n=0...7; RO)

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.116 Private Memory Space VF Segment Descriptor Data Low -
GLHMC_VFSDDATALOW[n] (0x00528100 + 0x4*n, n=0...31;
RO)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATAHIGH to access the Host
Memory Cache's segment table.

Field definitions are the same as those defined in Section 13.2.2.20.36.

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion

Field Bit(s) Init. Type CFG Policy Description

GLHMC_PEOOISCFFLBASE 31:0 0x0 RW UNDEFINED Protocol Engine Out-of-Order Send Completion FIFO
Free List Base
Reports the Function Private Memory space base address
for the Protocol Engine Out of Order Send Completion
(OOISC) FIFO Free List objects in 512-byte increments. In
other words, the value in this register must be multiplied
by 512 to get the actual address out of the 8 GB FPM
address space.
This register is updated by hardware when the Commit
FPM Values CQP operation is performed. Other than for
debug purposes, this register should be treated as Read
Only.

Field Bit(s) Init. Type CFG Policy Description

FPMPEOOISCFLCNT 28:0 0x0 RW UNDEFINED Protocol Engine Out-of-Order Send Completion Free List
Count
Used to set the Function Private Memory space size for the
Protocol Engine Out of Order Send Completion (OOISC) FIFO
objects.
The associated base register is updated after the Commit FPM
Values CQP operation is performed to indicate to hardware that all
of the FPM size registers have been set properly and the FPM map
should be recomputed.

RESERVED 31:29 000b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2346 613875-009

13.2.2.20.117 Private Memory Space VF Segment Descriptor Data High -
GLHMC_VFSDDATAHIGH[n] (0x00528200 + 0x4*n,
n=0...31; RO)

This register is used in conjunction with PFHMC_SDCMD and PFHMC_SDDATALOW to access the Host
Memory Cache's segment table.

Field definitions are the same as those defined in Section 13.2.2.20.37.

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion

13.2.2.20.118 Private Memory Space Page Descriptor Invalidate -
GLHMC_VFPDINV[n] (0x00528300 + 0x4*n, n=0...31; RO)

This register is used to invalidate cached HMC Page Descriptors that have been set to the invalid state
by software.

Field definitions are the same as those defined in Section 13.2.2.20.38.

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion

13.2.2.20.119 Private Memory Segment Table Partitioning Registers -
GLHMC_VFSDPART[n] (0x00528800 + 0x4*n, n=0...31; RO)

This register is used to partition the shared Host Memory Cache segment table.

Field definitions are the same as those defined in Section 13.2.2.20.41.

Note: This register must be read only in the PF CSR Space.

13.2.2.20.120 FPM PE QP Base - GLHMC_VFPEQPBASE[n] (0x0052C000 +
0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.79.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.121 FPM PE QP Object Count - GLHMC_VFPEQPCNT[n]
(0x0052C100 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.80.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.122 FPM PE CQ Base - GLHMC_VFPECQBASE[n] (0x0052C200 +
0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.81.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

613875-009 2347

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.123 FPM PE CQ Object Count - GLHMC_VFPECQCNT[n]
(0x0052C300 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.82.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.124 FPM PE Hash Table Entry Base - GLHMC_VFPEHTEBASE[n]
(0x0052C600 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.83.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.125 FPM PE Hash Table Object Count - GLHMC_VFPEHTCNT[n]
(0x0052C700 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.84.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.126 FPM PE ARP Table Base - GLHMC_VFPEARPBASE[n]
(0x0052C800 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.85.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.127 FPM PE ARP Table Object Count - GLHMC_VFPEARPCNT[n]
(0x0052C900 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.86.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.128 FPM PE APBVT In-Use Base -
GLHMC_VFAPBVTINUSEBASE[n] (0x0052CA00 + 0x4*n,
n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.87.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2348 613875-009

13.2.2.20.129 FPM PE MRT Base - GLHMC_VFPEMRBASE[n] (0x0052CC00 +
0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.88.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.130 FPM PE Memory Region Table Object Count -
GLHMC_VFPEMRCNT[n] (0x0052CD00 + 0x4*n, n=0...31;
RO)

Field definitions are the same as those defined in Section 13.2.2.20.89.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.131 FPM PE Xmit FIFO Base - GLHMC_VFPEXFBASE[n]
(0x0052CE00 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.90.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.132 FPM PE Xmit FIFO Object Count - GLHMC_VFPEXFCNT[n]
(0x0052CF00 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.91.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.133 FPM PE Xmit FIFO Free List Base -
GLHMC_VFPEXFFLBASE[n] (0x0052D000 + 0x4*n, n=0...31;
RO)

Field definitions are the same as those defined in Section 13.2.2.20.92.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.134 FPM PE IRRQ Base - GLHMC_VFPEQ1BASE[n] (0x0052D200
+ 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.93.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

613875-009 2349

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.135 FPM PE IRRQ Object Count - GLHMC_VFPEQ1CNT[n]
(0x0052D300 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.94.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.136 FPM PE IRRQ Free List Base - GLHMC_VFPEQ1FLBASE[n]
(0x0052D400 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.95.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.137 FPM FSI Address Vector Base - GLHMC_VFFSIAVBASE[n]
(0x0052D600 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.96.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.138 FPM FSI Address Vector Object Count -
GLHMC_VFFSIAVCNT[n] (0x0052D700 + 0x4*n, n=0...31;
RO)

Field definitions are the same as those defined in Section 13.2.2.20.97.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.139 FPM PE Physical Buffer List Base - GLHMC_VFPEPBLBASE[n]
(0x0052D800 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.98.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.140 FPM PE PBL Object Count - GLHMC_VFPEPBLCNT[n]
(0x0052D900 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.99.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2350 613875-009

13.2.2.20.141 FPM PE Timer Base - GLHMC_VFPETIMERBASE[n]
(0x0052DA00 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.100.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.142 FPM PE Timer Object Count - GLHMC_VFPETIMERCNT[n]
(0x0052DB00 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.101.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.143 FPM FSI Multicast Group Base - GLHMC_VFFSIMCBASE[n]
(0x0052E000 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.102.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.144 FPM FSI Multicast Group Object Count -
GLHMC_VFFSIMCCNT[n] (0x0052E100 + 0x4*n, n=0...31;
RO)

Field definitions are the same as those defined in Section 13.2.2.20.103.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.145 FPM PE Header Base - GLHMC_VFPEHDRBASE[n]
(0x0052E200 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.104.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.146 FPM PE Header Object Count - GLHMC_VFPEHDRCNT[n]
(0x0052E300 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.105.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

613875-009 2351

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

13.2.2.20.147 FPM PE Metadata Base - GLHMC_VFPEMDBASE[n]
(0x0052E400 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.106.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.148 FPM PE Metadata Object Count - GLHMC_VFPEMDCNT[n]
(0x0052E500 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.107.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.149 FPM PE Out of Order Send Completion Base -
GLHMC_VFPEOOISCBASE[n] (0x0052E600 + 0x4*n,
n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.108.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.150 FPM PE Out of Order Send Completion Object Count -
GLHMC_VFPEOOISCCNT[n] (0x0052E700 + 0x4*n,
n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.109.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.151 FPM PE Read Response Base - GLHMC_VFPERRFBASE[n]
(0x0052E800 + 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.110.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.152 FPM PE Read Response Object Count -
GLHMC_VFPERRFCNT[n] (0x0052E900 + 0x4*n, n=0...31;
RO)

Field definitions are the same as those defined in Section 13.2.2.20.111.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Host Memory Cache Registers

2352 613875-009

13.2.2.20.153 FPM PE Read Response FIFO Free List Base -
GLHMC_VFPERRFFLBASE[n] (0x0052EA00 + 0x4*n,
n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.112.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.154 FPM PE Out of Order Send Completion (OOISC) FIFO Free
List Base - GLHMC_VFPEOOISCFFLBASE[n] (0x0052EC00 +
0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.20.114.

Note: Eight instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.20.155 PDOC Cache Attributes - GLPDOC_CACHESIZE (0x00530048;
RO)

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 7:0 0x40 RO N/A Word Size
The cache line size in bytes.

SETS 19:8 0x40 RO N/A Sets
The number of cache sets.

WAYS 23:20 0x8 RO N/A Ways
The number of cache ways.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2353

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Context Manager Registers

13.2.2.21 PF - Context Manager Registers

13.2.2.21.1 CMPE Cache Attributes - GLCM_PE_CACHESIZE
(0x005046B4; RO)

Field Bit(s) Init. Type CFG Policy Description

WORD_SIZE 11:0 0x200 RO N/A Word Size
The cache line size in bytes.

SETS 15:12 0x1 RO N/A Sets
The number of cache sets.

WAYS 24:16 0x100 RO N/A Ways
The number of cache ways.

RESERVED 31:25 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2354 613875-009

13.2.2.22 PF - Control Queues Registers

Registers related to the various types of control queues: firmware Admin Queues, sideband queues,
and mailbox queues.

13.2.2.22.1 PF Firmware Admin Transmit Queue Base Address Low -
PF_FW_ATQBAL (0x00080000; RW)

This register contains the lower bits of the 64-bit descriptor base address.

13.2.2.22.2 Global Tools Firmware Admin Transmit Queue Base Address
Low - GL_FW_TOOL_ATQBAL (0x00080040; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.1.

13.2.2.22.3 PF0 PSM Firmware Admin Transmit Queue Base Address
Low - PF0_FW_PSM_ATQBAL (0x00080044; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.1.

13.2.2.22.4 PF0 HLP Firmware Admin Transmit Queue Base Address Low
- PF0_FW_HLP_ATQBAL (0x00080048; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.1.

13.2.2.22.5 PF Firmware Admin Receive Queue Base Address Low -
PF_FW_ARQBAL (0x00080080; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field Bit(s) Init. Type CFG Policy Description

ATQBAL_LSB 5:0 0x0 RO N/A Admin Transmit Queue Base Address Low LSB
Tied to zero to achieve alignment.

ATQBAL 31:6 0x0 RW UNDEFINED Admin Transmit Queue Base Address Low
Transmit descriptor base address low. Must be 64-byte aligned
(together with ATQBAL_LSB).

Field Bit(s) Init. Type CFG Policy Description

ARQBAL_LSB 5:0 0x0 RO N/A Admin Receive Queue Base Address Low LSB
Tied to zero to achieve alignment.

ARQBAL 31:6 0x0 RW UNDEFINED Admin Receive Queue Base Address Low
Receive descriptor base address low. Must be 64-byte aligned (together
with ARQBAL_LSB).

613875-009 2355

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.6 Global Tools Firmware Admin Receive Queue Base Address
Low - GL_FW_TOOL_ARQBAL (0x000800C0; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.5.

13.2.2.22.7 PF0 PSM Firmware Admin Receive Queue Base Address Low
- PF0_FW_PSM_ARQBAL (0x000800C4; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.5.

13.2.2.22.8 PF0 HLP Firmware Admin Receive Queue Base Address Low
- PF0_FW_HLP_ARQBAL (0x000800C8; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.5.

13.2.2.22.9 PF Firmware Admin Transmit Queue Base Address High -
PF_FW_ATQBAH (0x00080100; RW)

This register contains the higher bits of the 64-bit descriptor base address.

13.2.2.22.10 Global Tools Firmware Admin Transmit Queue Base Address
High - GL_FW_TOOL_ATQBAH (0x00080140; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.9.

13.2.2.22.11 PF0 PSM Firmware Admin Transmit Queue Base Address
High - PF0_FW_PSM_ATQBAH (0x00080144; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.9.

13.2.2.22.12 PF0 HLP Firmware Admin Transmit Queue Base Address
High - PF0_FW_HLP_ATQBAH (0x00080148; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.9.

Field Bit(s) Init. Type CFG Policy Description

ATQBAH 31:0 0x0 RW UNDEFINED Admin Transmit Queue Base Address High
Transmit descriptor base address high.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2356 613875-009

13.2.2.22.13 PF Firmware Admin Receive Queue Base Address High -
PF_FW_ARQBAH (0x00080180; RW)

This register contains the higher bits of the 64-bit descriptor base address.

13.2.2.22.14 Global Tools Firmware Admin Receive Queue Base Address
High - GL_FW_TOOL_ARQBAH (0x000801C0; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.13.

13.2.2.22.15 PF0 PSM Firmware Admin Receive Queue Base Address High
- PF0_FW_PSM_ARQBAH (0x000801C4; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.13.

13.2.2.22.16 PF0 HLP Firmware Admin Receive Queue Base Address High
- PF0_FW_HLP_ARQBAH (0x000801C8; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.13.

13.2.2.22.17 PF Firmware Admin Transmit Queue Length -
PF_FW_ATQLEN (0x00080200; RW)

This register sets the size of the ring. Maximum size is 1024.

Field Bit(s) Init. Type CFG Policy Description

ARQBAH 31:0 0x0 RW UNDEFINED Admin Receive Queue Base Address High
Receive descriptor base address high.

Field Bit(s) Init. Type CFG Policy Description

ATQLEN 9:0 0x0 RW UNDEFINED Admin Transmit Queue Length
Descriptor ring length. Max size is 1024.

RESERVED 27:10 0x0 RSV N/A Reserved.

ATQVFE 28 0b RW UNDEFINED Admin Transmit Queue VF Error
VF error. This bit is set by firmware on a PF queue when one of its VFs
had an Admin Queue error.

ATQOVFL 29 0b RW UNDEFINED Admin Transmit Queue Overflow
Overflow error. This bit is set by firmware when a message was lost
because there was no room on the queue.

ATQCRIT 30 0b RW UNDEFINED Admin Transmit Queue Critical
Critical error. This bit is set by firmware when a critical error has been
detected on this queue.

ATQENABLE 31 0b RW UNDEFINED Admin Transmit Queue Enable
Enable bit. This bit is set by driver to indicate that the queue is active.
When setting the enable bit, software should initialize all other fields.
This flag is implemented by a FF and cleared by PFR.

613875-009 2357

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.18 Global Tools Firmware Admin Transmit Queue Length -
GL_FW_TOOL_ATQLEN (0x00080240; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.17.

13.2.2.22.19 PF0 PSM Firmware Admin Transmit Queue Length -
PF0_FW_PSM_ATQLEN (0x00080244; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.17.

13.2.2.22.20 PF0 HLP Firmware Admin Transmit Queue Length -
PF0_FW_HLP_ATQLEN (0x00080248; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.17.

13.2.2.22.21 PF Firmware Admin Receive Queue Length - PF_FW_ARQLEN
(0x00080280; RW)

This register specifies the receive queue length. Maximum size is 1024.

13.2.2.22.22 Global Tools Firmware Admin Receive Queue Length -
GL_FW_TOOL_ARQLEN (0x000802C0; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.21.

Field Bit(s) Init. Type CFG Policy Description

ARQLEN 9:0 0x0 RW UNDEFINED Admin Receive Queue Length
Descriptor ring length. Max size is 1024.

RESERVED 27:10 0x0 RSV N/A Reserved.

ARQVFE 28 0b RW UNDEFINED Admin Receive Queue VF Error
VF error. This bit is set by firmware on a PF queue when one of its VFs
had an Admin Queue error.

ARQOVFL 29 0b RW UNDEFINED Admin Receive Queue Overflow
Overflow error. This bit is set by firmware when a message was lost
because there was no room on the queue.

ARQCRIT 30 0b RW UNDEFINED Admin Receive Queue Critical
Critical error. This bit is set by firmware when a critical error has been
detected on this queue.

ARQENABLE 31 0b RW UNDEFINED Admin Receive Queue Enable
Enable bit. This bit is set by driver to indicate that the queue is active.
When setting the enable bit, software should initialize all other fields.
This flag is implemented by a FF and cleared by PFR.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2358 613875-009

13.2.2.22.23 PF0 PSM Firmware Admin Receive Queue Length -
PF0_FW_PSM_ARQLEN (0x000802C4; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.21.

13.2.2.22.24 PF0 HLP Firmware Admin Receive Queue Length -
PF0_FW_HLP_ARQLEN (0x000802C8; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.21.

13.2.2.22.25 PF Firmware Admin Transmit Head - PF_FW_ATQH
(0x00080300; RW)

Admin transmit queue head pointer.

13.2.2.22.26 Global Tools Firmware Admin Transmit Head -
GL_FW_TOOL_ATQH (0x00080340; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.25.

13.2.2.22.27 PF0 PSM Firmware Admin Transmit Head -
PF0_FW_PSM_ATQH (0x00080344; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.25.

13.2.2.22.28 PF0 HLP Firmware Admin Transmit Head -
PF0_FW_HLP_ATQH (0x00080348; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.25.

Field Bit(s) Init. Type CFG Policy Description

ATQH 9:0 0x0 RW UNDEFINED Admin Transmit Queue Head
Transmit queue head pointer.
At queue initialization, the software clears the head pointer. During
nominal operation, the firmware increments the head following command
execution.

RESERVED 31:10 0x0 RSV N/A Reserved.

613875-009 2359

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.29 PF Firmware Admin Receive Queue Head - PF_FW_ARQH
(0x00080380; RW)

Admin receive queue head pointer.

13.2.2.22.30 Global Tools Firmware Admin Receive Queue Head -
GL_FW_TOOL_ARQH (0x000803C0; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.29.

13.2.2.22.31 PF0 PSM Firmware Admin Receive Queue Head -
PF0_FW_PSM_ARQH (0x000803C4; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.29.

13.2.2.22.32 PF0 HLP Firmware Admin Receive Queue Head -
PF0_FW_HLP_ARQH (0x000803C8; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.29.

13.2.2.22.33 PF Firmware Admin Transmit Tail - PF_FW_ATQT
(0x00080400; RW)

Admin transmit queue tail pointer.

Field Bit(s) Init. Type CFG Policy Description

ARQH 9:0 0x0 RW UNDEFINED Admin Receive Queue Head
Receive queue head pointer.
At queue initialization, the software clears the head pointer. During
nominal operation, the firmware increments the head following command
execution.

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ATQT 9:0 0x0 RW UNDEFINED Admin Transmit Queue Tail
Transmit queue tail pointer.
Incremented to indicate that there are new valid descriptors on the ring.
Software can only write to this register once both transmit and receive
queues are properly initialized. And clear to zero at queue initialization.

RESERVED 31:10 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2360 613875-009

13.2.2.22.34 Global Tools Firmware Admin Transmit Tail -
GL_FW_TOOL_ATQT (0x00080440; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.33.

13.2.2.22.35 PF0 PSM Firmware Admin Transmit Tail -
PF0_FW_PSM_ATQT (0x00080444; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.33.

13.2.2.22.36 PF0 HLP Firmware Admin Transmit Tail -
PF0_FW_HLP_ATQT (0x00080448; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.33.

13.2.2.22.37 PF Firmware Admin Receive Queue Tail - PF_FW_ARQT
(0x00080480; RW)

Admin receive queue tail pointer.

13.2.2.22.38 Global Tools Firmware Admin Receive Queue Tail -
GL_FW_TOOL_ARQT (0x000804C0; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.37.

13.2.2.22.39 PF0 PSM Firmware Admin Receive Queue Tail -
PF0_FW_PSM_ARQT (0x000804C4; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.37.

Field Bit(s) Init. Type CFG Policy Description

ARQT 9:0 0x0 RW UNDEFINED Admin Receive Queue Tail
Receive queue tail pointer.
Incremented to indicate that there are new valid descriptors on the ring.
Software can only write to this register once the queue is fully
configured. And clear to zero at queue initialization.

RESERVED 31:10 0x0 RSV N/A Reserved.

613875-009 2361

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.40 PF0 HLP Firmware Admin Receive Queue Tail -
PF0_FW_HLP_ARQT (0x000804C8; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.37.

13.2.2.22.41 Tools Mailbox HOST Interface Buffer Area - GL_HIBA[n]
(0x00081000 + 0x4*n, n=0...1023; RW)

13.2.2.22.42 Tools Mailbox HOST Interface Descriptor Area - GL_HIDA[n]
(0x00082000 + 0x4*n, n=0...15; RW)

13.2.2.22.43 Tools Mailbox HOST Interface Control Register - GL_HICR
(0x00082040; RW)

Field Bit(s) Init. Type CFG Policy Description

GL_HIBA 31:0 0x0 RW UNDEFINED Host Interface Buffer Area

Field Bit(s) Init. Type CFG Policy Description

GL_HIDA 31:0 0x0 RW UNDEFINED Host Interface Descriptor Area

Field Bit(s) Init. Type CFG Policy Description

RESERVED 0 0b RSV N/A Reserved.

C 1 0b RW UNDEFINED Command
The tool sets this bit when it has finished putting a command block in the
command buffer.
This bit should be cleared by the firmware when the command's
processing is completed. Setting this bit causes an interrupt to the
firmware.
This bit can be only set through the CSR (software) interface. and can be
cleared through the AUX (firmware) interface.
While this bit is set, the memory is RO to software.

SV 2 0b RW UNDEFINED Status Valid
Indicates that there is a valid status in the first descriptor that the device
driver can read.
If Flags.BUF is set in the first descriptor, the buffer is valid.

0b = Status not valid.
1b = Status valid.

EV 3 0b RW UNDEFINED Event Valid
Indicates that there is a valid status in the second descriptor that the
device driver can read.
If Flags.BUF is set in the second descriptor, the buffer is valid.

0b = Status not valid.
1b = Status valid.

RESERVED 31:4 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2362 613875-009

13.2.2.22.44 Tools Mailbox HOST Interface Enable Register -
GL_HICR_EN (0x00082044; RO)

13.2.2.22.45 VSI Mailbox Transmit Queue Base Address Low -
VSI_MBX_ATQBAL[VSI] (0x00220000 + 0x4*VSI,
VSI=0...767; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.46 VSI Mailbox Transmit Queue Base Address High -
VSI_MBX_ATQBAH[VSI] (0x00221000 + 0x4*VSI,
VSI=0...767; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.47 VSI Mailbox Transmit Queue Length -
VSI_MBX_ATQLEN[VSI] (0x00222000 + 0x4*VSI,
VSI=0...767; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.48 VSI Mailbox Transmit Head - VSI_MBX_ATQH[VSI]
(0x00223000 + 0x4*VSI, VSI=0...767; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.49 VSI Mailbox Transmit Tail - VSI_MBX_ATQT[VSI]
(0x00224000 + 0x4*VSI, VSI=0...767; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

Field Bit(s) Init. Type CFG Policy Description

EN 0 0b RO UNDEFINED Enable
When set, indicates that the buffer is accessible for the device.
Note: This bit is common to all nodes/functions.

RESERVED 31:1 0x0 RSV UNDEFINED Reserved.

613875-009 2363

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.50 VSI Mailbox Receive Queue Base Address Low -
VSI_MBX_ARQBAL[VSI] (0x00225000 + 0x4*VSI,
VSI=0...767; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.51 VSI Mailbox Receive Queue Base Address High -
VSI_MBX_ARQBAH[VSI] (0x00226000 + 0x4*VSI,
VSI=0...767; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.52 VSI Mailbox Receive Queue Length -
VSI_MBX_ARQLEN[VSI] (0x00227000 + 0x4*VSI,
VSI=0...767; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.53 VSI Mailbox Receive Head - VSI_MBX_ARQH[VSI]
(0x00228000 + 0x4*VSI, VSI=0...767; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.54 VSI Mailbox Receive Tail - VSI_MBX_ARQT[VSI]
(0x00229000 + 0x4*VSI, VSI=0...767; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.55 VF Mailbox Transmit Queue Base Address Low -
VF_MBX_ATQBAL[VF] (0x0022A000 + 0x4*VF, VF=0...255;
RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field Bit(s) Init. Type CFG Policy Description

ATQBAL_LSB 5:0 0x0 RSV N/A Admin Transmit Queue Base Address Low LSB
Tied to zero to achieve alignment.

ATQBAL 31:6 0x0 RW UNDEFINED Admin Transmit Queue Base Address Low
Transmit descriptor base address low. Must be 64-byte aligned
(together with ATQBAL_LSB).

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2364 613875-009

13.2.2.22.56 VF Mailbox Transmit Queue Base Address High -
VF_MBX_ATQBAH[VF] (0x0022A400 + 0x4*VF, VF=0...255;
RW)

This register contains the higher bits of the 64-bit descriptor base address.

13.2.2.22.57 VF Mailbox Transmit Queue Length - VF_MBX_ATQLEN[VF]
(0x0022A800 + 0x4*VF, VF=0...255; RW)

This register sets the size of the ring. Maximum size is 1024.

13.2.2.22.58 VF Mailbox Transmit Head - VF_MBX_ATQH[VF]
(0x0022AC00 + 0x4*VF, VF=0...255; RW)

Admin transmit queue head pointer.

Field Bit(s) Init. Type CFG Policy Description

ATQBAH 31:0 0x0 RW UNDEFINED Admin Transmit Queue Base Address High
Transmit descriptor base address high.

Field Bit(s) Init. Type CFG Policy Description

ATQLEN 9:0 0x0 RW UNDEFINED Admin Transmit Queue Length
Descriptor ring length. Max size is 1024.

RESERVED 27:10 0x0 RSV N/A Reserved.

ATQVFE 28 0b RW UNDEFINED Admin Transmit Queue VF Error
VF error. This bit is set by firmware on a PF queue when one of its VFs
had an Admin Queue error.

ATQOVFL 29 0b RW UNDEFINED Admin Transmit Queue Overflow
Overflow error. This bit is set by firmware when a message was lost
because there was no room on the queue.

ATQCRIT 30 0b RW UNDEFINED Admin Transmit Queue Critical
Critical error. This bit is set by firmware when a critical error has been
detected on this queue.

ATQENABLE 31 0b RW UNDEFINED Admin Transmit Queue Enable
Enable bit. This bit is set by driver to indicate that the queue is active.
When setting the enable bit, software should initialize all other fields.
This flag is implemented by a FF and cleared by PFR.

Field Bit(s) Init. Type CFG Policy Description

ATQH 9:0 0x0 RW UNDEFINED Admin Transmit Queue Head
Transmit queue head pointer.
At queue initialization, the software clears the head pointer. During
nominal operation, the firmware increments the head following command
execution.

RESERVED 31:10 0x0 RSV N/A Reserved.

613875-009 2365

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.59 VF Mailbox Transmit Tail - VF_MBX_ATQT[VF] (0x0022B000
+ 0x4*VF, VF=0...255; RW)

Admin transmit queue tail pointer.

13.2.2.22.60 VF Mailbox Receive Queue Base Address Low -
VF_MBX_ARQBAL[VF] (0x0022B400 + 0x4*VF, VF=0...255;
RW)

This register contains the lower bits of the 64-bit descriptor base address.

13.2.2.22.61 VF Mailbox Receive Queue Base Address High -
VF_MBX_ARQBAH[VF] (0x0022B800 + 0x4*VF, VF=0...255;
RW)

This register contains the higher bits of the 64-bit descriptor base address.

13.2.2.22.62 VF Mailbox Receive Queue Length - VF_MBX_ARQLEN[VF]
(0x0022BC00 + 0x4*VF, VF=0...255; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field Bit(s) Init. Type CFG Policy Description

ATQT 9:0 0x0 RW UNDEFINED Admin Transmit Queue Tail
Transmit queue tail pointer.
Incremented to indicate that there are new valid descriptors on the ring.
Software can only write to this register once both transmit and receive
queues are properly initialized. And clear to zero at queue initialization.

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ARQBAL_LSB 5:0 0x0 RO N/A Admin Receive Queue Base Address Low LSB
Tied to zero to achieve alignment.

ARQBAL 31:6 0x0 RW UNDEFINED Admin Receive Queue Base Address Low
Receive descriptor base address low. Must be 64-byte aligned (together
with ARQBAL_LSB).

Field Bit(s) Init. Type CFG Policy Description

ARQBAH 31:0 0x0 RW UNDEFINED Admin Receive Queue Base Address High
Receive descriptor base address high.

Field Bit(s) Init. Type CFG Policy Description

ARQLEN 9:0 0x0 RW UNDEFINED Admin Receive Queue Length
Descriptor ring length. Max size is 1024.

RESERVED 27:10 0x0 RSV N/A Reserved.

ARQVFE 28 0b RW UNDEFINED Admin Receive Queue VF Error
VF error. This bit is set by firmware on a PF queue when one of its VFs
had an Admin Queue error.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2366 613875-009

13.2.2.22.63 VF Mailbox Receive Head - VF_MBX_ARQH[VF]
(0x0022C000 + 0x4*VF, VF=0...255; RW)

Admin receive queue head pointer.

13.2.2.22.64 VF Mailbox Receive Tail - VF_MBX_ARQT[VF] (0x0022C400
+ 0x4*VF, VF=0...255; RW)

Admin receive queue tail pointer.

13.2.2.22.65 VF CPM Mailbox Transmit Queue Base Address Low -
VF_MBX_CPM_ATQBAL[VF128] (0x0022C800 + 0x4*VF128,
VF128=0...127; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

ARQOVFL 29 0b RW UNDEFINED Admin Receive Queue Overflow
Overflow error. This bit is set by firmware when a message was lost
because there was no room on the queue.

ARQCRIT 30 0b RW UNDEFINED Admin Receive Queue Critical
Critical error. This bit is set by firmware when a critical error has been
detected on this queue.

ARQENABLE 31 0b RW UNDEFINED Admin Receive Queue Enable
Enable bit. This bit is set by driver to indicate that the queue is active.
When setting the enable bit, software should initialize all other fields.
This flag is implemented by a FF and cleared by PFR.

Field Bit(s) Init. Type CFG Policy Description

ARQH 9:0 0x0 RW UNDEFINED Admin Receive Queue Head
Receive queue head pointer.
At queue initialization, the software clears the head pointer. During
nominal operation, the firmware increments the head following command
execution.

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ARQT 9:0 0x0 RW UNDEFINED Admin Receive Queue Tail
Receive queue tail pointer.
Incremented to indicate that there are new valid descriptors on the ring.
Software can only write to this register once the queue is fully
configured. And clear to zero at queue initialization.

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2367

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.66 VF CPM Mailbox Transmit Queue Base Address High -
VF_MBX_CPM_ATQBAH[VF128] (0x0022CA00 + 0x4*VF128,
VF128=0...127; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.67 VF CPM Mailbox Transmit Queue Length -
VF_MBX_CPM_ATQLEN[VF128] (0x0022CC00 + 0x4*VF128,
VF128=0...127; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.68 VF CPM Mailbox Transmit Head -
VF_MBX_CPM_ATQH[VF128] (0x0022CE00 + 0x4*VF128,
VF128=0...127; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.69 VF CPM Mailbox Transmit Tail - VF_MBX_CPM_ATQT[VF128]
(0x0022D000 + 0x4*VF128, VF128=0...127; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.70 VF CPM Mailbox Receive Queue Base Address Low -
VF_MBX_CPM_ARQBAL[VF128] (0x0022D200 + 0x4*VF128,
VF128=0...127; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.71 VF CPM Mailbox Receive Queue Base Address High -
VF_MBX_CPM_ARQBAH[VF128] (0x0022D400 +
0x4*VF128, VF128=0...127; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2368 613875-009

13.2.2.22.72 VF CPM Mailbox Receive Queue Length -
VF_MBX_CPM_ARQLEN[VF128] (0x0022D600 + 0x4*VF128,
VF128=0...127; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.73 VF CPM Mailbox Receive Head -
VF_MBX_CPM_ARQH[VF128] (0x0022D800 + 0x4*VF128,
VF128=0...127; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.74 VF CPM Mailbox Receive Tail - VF_MBX_CPM_ARQT[VF128]
(0x0022DA00 + 0x4*VF128, VF128=0...127; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.75 VF HLP Mailbox Transmit Queue Base Address Low -
VF_MBX_HLP_ATQBAL[VF16] (0x0022DC00 + 0x4*VF16,
VF16=0...15; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.76 VF HLP Mailbox Transmit Queue Base Address High -
VF_MBX_HLP_ATQBAH[VF16] (0x0022DC40 + 0x4*VF16,
VF16=0...15; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.77 VF HLP Mailbox Transmit Queue Length -
VF_MBX_HLP_ATQLEN[VF16] (0x0022DC80 + 0x4*VF16,
VF16=0...15; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

613875-009 2369

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.78 VF HLP Mailbox Transmit Head - VF_MBX_HLP_ATQH[VF16]
(0x0022DCC0 + 0x4*VF16, VF16=0...15; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.79 VF HLP Mailbox Transmit Tail - VF_MBX_HLP_ATQT[VF16]
(0x0022DD00 + 0x4*VF16, VF16=0...15; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.80 VF HLP Mailbox Receive Queue Base Address Low -
VF_MBX_HLP_ARQBAL[VF16] (0x0022DD40 + 0x4*VF16,
VF16=0...15; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.81 VF HLP Mailbox Receive Queue Base Address High -
VF_MBX_HLP_ARQBAH[VF16] (0x0022DD80 + 0x4*VF16,
VF16=0...15; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.82 VF HLP Mailbox Receive Queue Length -
VF_MBX_HLP_ARQLEN[VF16] (0x0022DDC0 + 0x4*VF16,
VF16=0...15; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.83 VF HLP Mailbox Receive Head - VF_MBX_HLP_ARQH[VF16]
(0x0022DE00 + 0x4*VF16, VF16=0...15; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.84 VF HLP Mailbox Receive Tail - VF_MBX_HLP_ARQT[VF16]
(0x0022DE40 + 0x4*VF16, VF16=0...15; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2370 613875-009

13.2.2.22.85 VF PSM Mailbox Transmit Queue Base Address Low -
VF_MBX_PSM_ATQBAL[VF16] (0x0022DE80 + 0x4*VF16,
VF16=0...15; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.86 VF PSM Mailbox Transmit Queue Base Address High -
VF_MBX_PSM_ATQBAH[VF16] (0x0022DEC0 + 0x4*VF16,
VF16=0...15; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.87 VF PSM Mailbox Transmit Queue Length -
VF_MBX_PSM_ATQLEN[VF16] (0x0022DF00 + 0x4*VF16,
VF16=0...15; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.88 VF PSM Mailbox Transmit Head - VF_MBX_PSM_ATQH[VF16]
(0x0022DF40 + 0x4*VF16, VF16=0...15; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.89 VF PSM Mailbox Transmit Tail - VF_MBX_PSM_ATQT[VF16]
(0x0022DF80 + 0x4*VF16, VF16=0...15; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.90 VF PSM Mailbox Receive Queue Base Address Low -
VF_MBX_PSM_ARQBAL[VF16] (0x0022DFC0 + 0x4*VF16,
VF16=0...15; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

613875-009 2371

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.91 VF PSM Mailbox Receive Queue Base Address High -
VF_MBX_PSM_ARQBAH[VF16] (0x0022E000 + 0x4*VF16,
VF16=0...15; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.92 VF PSM Mailbox Receive Queue Length -
VF_MBX_PSM_ARQLEN[VF16] (0x0022E040 + 0x4*VF16,
VF16=0...15; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.93 VF PSM Mailbox Receive Head - VF_MBX_PSM_ARQH[VF16]
(0x0022E080 + 0x4*VF16, VF16=0...15; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.94 VF PSM Mailbox Receive Tail - VF_MBX_PSM_ARQT[VF16]
(0x0022E0C0 + 0x4*VF16, VF16=0...15; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.95 PF Mailbox Transmit Queue Base Address Low -
PF_MBX_ATQBAL (0x0022E100; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.96 PF Mailbox Transmit Queue Base Address High -
PF_MBX_ATQBAH (0x0022E180; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.97 PF Mailbox Transmit Queue Length - PF_MBX_ATQLEN
(0x0022E200; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2372 613875-009

13.2.2.22.98 PF Mailbox Transmit Head - PF_MBX_ATQH (0x0022E280;
RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.99 PF Mailbox Transmit Tail - PF_MBX_ATQT (0x0022E300;
RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.100 PF Mailbox Receive Queue Base Address Low -
PF_MBX_ARQBAL (0x0022E380; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.101 PF Mailbox Receive Queue Base Address High -
PF_MBX_ARQBAH (0x0022E400; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.102 PF Mailbox Receive Queue Length - PF_MBX_ARQLEN
(0x0022E480; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.103 PF Mailbox Receive Head - PF_MBX_ARQH (0x0022E500;
RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.104 PF Mailbox Receive Tail - PF_MBX_ARQT (0x0022E580; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

613875-009 2373

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.105 PF0 CPM Mailbox Transmit Queue Base Address Low -
PF0_MBX_CPM_ATQBAL (0x0022E5C0; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.106 PF0 CPM Mailbox Transmit Queue Base Address High -
PF0_MBX_CPM_ATQBAH (0x0022E5C4; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.107 PF0 CPM Mailbox Transmit Queue Length -
PF0_MBX_CPM_ATQLEN (0x0022E5C8; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.108 PF0 CPM Mailbox Transmit Head - PF0_MBX_CPM_ATQH
(0x0022E5CC; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.109 PF0 CPM Mailbox Transmit Tail - PF0_MBX_CPM_ATQT
(0x0022E5D0; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.110 PF0 CPM Mailbox Receive Queue Base Address Low -
PF0_MBX_CPM_ARQBAL (0x0022E5D4; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.111 PF0 CPM Mailbox Receive Queue Base Address High -
PF0_MBX_CPM_ARQBAH (0x0022E5D8; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2374 613875-009

13.2.2.22.112 PF0 CPM Mailbox Receive Queue Length -
PF0_MBX_CPM_ARQLEN (0x0022E5DC; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.113 PF0 CPM Mailbox Receive Head - PF0_MBX_CPM_ARQH
(0x0022E5E0; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.114 PF0 CPM Mailbox Receive Tail - PF0_MBX_CPM_ARQT
(0x0022E5E4; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.115 PF0 HLP Mailbox Transmit Queue Base Address Low -
PF0_MBX_HLP_ATQBAL (0x0022E5E8; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.116 PF0 HLP Mailbox Transmit Queue Base Address High -
PF0_MBX_HLP_ATQBAH (0x0022E5EC; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.117 PF0 HLP Mailbox Transmit Queue Length -
PF0_MBX_HLP_ATQLEN (0x0022E5F0; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.118 PF0 HLP Mailbox Transmit Head - PF0_MBX_HLP_ATQH
(0x0022E5F4; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

613875-009 2375

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.119 PF0 HLP Mailbox Transmit Tail - PF0_MBX_HLP_ATQT
(0x0022E5F8; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.120 PF0 HLP Mailbox Receive Queue Base Address Low -
PF0_MBX_HLP_ARQBAL (0x0022E5FC; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.121 PF0 HLP Mailbox Receive Queue Base Address High -
PF0_MBX_HLP_ARQBAH (0x0022E600; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.122 PF0 HLP Mailbox Receive Queue Length -
PF0_MBX_HLP_ARQLEN (0x0022E604; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.123 PF0 HLP Mailbox Receive Head - PF0_MBX_HLP_ARQH
(0x0022E608; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.124 PF0 HLP Mailbox Receive Tail - PF0_MBX_HLP_ARQT
(0x0022E60C; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.125 PF0 PSM Mailbox Transmit Queue Base Address Low -
PF0_MBX_PSM_ATQBAL (0x0022E610; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2376 613875-009

13.2.2.22.126 PF0 PSM Mailbox Transmit Queue Base Address High -
PF0_MBX_PSM_ATQBAH (0x0022E614; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.127 PF0 PSM Mailbox Transmit Queue Length -
PF0_MBX_PSM_ATQLEN (0x0022E618; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.128 PF0 PSM Mailbox Transmit Head - PF0_MBX_PSM_ATQH
(0x0022E61C; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.129 PF0 PSM Mailbox Transmit Tail - PF0_MBX_PSM_ATQT
(0x0022E620; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.130 PF0 PSM Mailbox Receive Queue Base Address Low -
PF0_MBX_PSM_ARQBAL (0x0022E624; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.131 PF0 PSM Mailbox Receive Queue Base Address High -
PF0_MBX_PSM_ARQBAH (0x0022E628; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.132 PF0 PSM Mailbox Receive Queue Length -
PF0_MBX_PSM_ARQLEN (0x0022E62C; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

613875-009 2377

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.133 PF0 PSM Mailbox Receive Head - PF0_MBX_PSM_ARQH
(0x0022E630; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.134 PF0 PSM Mailbox Receive Tail - PF0_MBX_PSM_ARQT
(0x0022E634; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.135 PF0 CPM Sideband Transmit Queue Base Address Low -
PF0_SB_CPM_ATQBAL (0x0022E638; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.136 PF0 CPM Sideband Transmit Queue Base Address High -
PF0_SB_CPM_ATQBAH (0x0022E63C; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.137 PF0 CPM Sideband Transmit Queue Length -
PF0_SB_CPM_ATQLEN (0x0022E640; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.138 PF0 CPM Sideband Transmit Head - PF0_SB_CPM_ATQH
(0x0022E644; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.139 PF0 CPM Sideband Transmit Tail - PF0_SB_CPM_ATQT
(0x0022E648; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2378 613875-009

13.2.2.22.140 PF0 CPM Sideband Receive Queue Base Address Low -
PF0_SB_CPM_ARQBAL (0x0022E64C; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.141 PF0 CPM Sideband Receive Queue Base Address High -
PF0_SB_CPM_ARQBAH (0x0022E650; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.142 PF0 CPM Sideband Receive Queue Length -
PF0_SB_CPM_ARQLEN (0x0022E654; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.143 PF0 CPM Sideband Receive Head - PF0_SB_CPM_ARQH
(0x0022E658; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.144 PF0 CPM Sideband Receive Tail - PF0_SB_CPM_ARQT
(0x0022E65C; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.145 VF CPM Sideband Transmit Queue Base Address Low -
VF_SB_CPM_ATQBAL[VF128] (0x0022E800 + 0x4*VF128,
VF128=0...127; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.146 VF CPM Sideband Transmit Queue Base Address High -
VF_SB_CPM_ATQBAH[VF128] (0x0022EA00 + 0x4*VF128,
VF128=0...127; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

613875-009 2379

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.147 VF CPM Sideband Transmit Queue Length -
VF_SB_CPM_ATQLEN[VF128] (0x0022EC00 + 0x4*VF128,
VF128=0...127; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.148 VF CPM Sideband Transmit Head -
VF_SB_CPM_ATQH[VF128] (0x0022EE00 + 0x4*VF128,
VF128=0...127; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.149 VF CPM Sideband Transmit Tail - VF_SB_CPM_ATQT[VF128]
(0x0022F000 + 0x4*VF128, VF128=0...127; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.150 VF CPM Sideband Receive Queue Base Address Low -
VF_SB_CPM_ARQBAL[VF128] (0x0022F200 + 0x4*VF128,
VF128=0...127; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.151 VF CPM Sideband Receive Queue Base Address High -
VF_SB_CPM_ARQBAH[VF128] (0x0022F400 + 0x4*VF128,
VF128=0...127; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.152 VF CPM Sideband Receive Queue Length -
VF_SB_CPM_ARQLEN[VF128] (0x0022F600 + 0x4*VF128,
VF128=0...127; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2380 613875-009

13.2.2.22.153 VF CPM Sideband Receive Head - VF_SB_CPM_ARQH[VF128]
(0x0022F800 + 0x4*VF128, VF128=0...127; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.154 VF CPM Sideband Receive Tail - VF_SB_CPM_ARQT[VF128]
(0x0022FA00 + 0x4*VF128, VF128=0...127; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.155 PF Sideband Transmit Queue Base Address Low -
PF_SB_ATQBAL (0x0022FC00; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.156 PF Sideband Transmit Queue Base Address High -
PF_SB_ATQBAH (0x0022FC80; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.2.2.22.157 PF Sideband Transmit Queue Length - PF_SB_ATQLEN
(0x0022FD00; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.158 PF Sideband Transmit Head - PF_SB_ATQH (0x0022FD80;
RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.159 PF Sideband Transmit Tail - PF_SB_ATQT (0x0022FE00; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

613875-009 2381

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.160 PF Sideband Receive Queue Base Address Low -
PF_SB_ARQBAL (0x0022FE80; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.161 PF Sideband Receive Queue Base Address High -
PF_SB_ARQBAH (0x0022FF00; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.162 PF Sideband Receive Queue Length - PF_SB_ARQLEN
(0x0022FF80; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.163 PF Sideband Receive Head - PF_SB_ARQH (0x00230000;
RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.2.2.22.164 PF Sideband Receive Tail - PF_SB_ARQT (0x00230080; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.165 PF0 HLP Sideband Transmit Queue Base Address Low -
PF0_SB_HLP_ATQBAL (0x002300C0; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.55.

13.2.2.22.166 PF0 HLP Sideband Transmit Queue Base Address High -
PF0_SB_HLP_ATQBAH (0x002300C4; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.56.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2382 613875-009

13.2.2.22.167 PF0 HLP Sideband Transmit Queue Length -
PF0_SB_HLP_ATQLEN (0x002300C8; RW)

This register sets the size of the ring. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.2.2.22.168 PF0 HLP Sideband Transmit Head - PF0_SB_HLP_ATQH
(0x002300CC; RW)

Admin transmit queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.2.2.22.169 PF0 HLP Sideband Transmit Tail - PF0_SB_HLP_ATQT
(0x002300D0; RW)

Admin transmit queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.2.2.22.170 PF0 HLP Sideband Receive Queue Base Address Low -
PF0_SB_HLP_ARQBAL (0x002300D4; RW)

This register contains the lower bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.2.2.22.171 PF0 HLP Sideband Receive Queue Base Address High -
PF0_SB_HLP_ARQBAH (0x002300D8; RW)

This register contains the higher bits of the 64-bit descriptor base address.

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.2.2.22.172 PF0 HLP Sideband Receive Queue Length -
PF0_SB_HLP_ARQLEN (0x002300DC; RW)

This register specifies the receive queue length. Maximum size is 1024.

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.2.2.22.173 PF0 HLP Sideband Receive Head - PF0_SB_HLP_ARQH
(0x002300E0; RW)

Admin receive queue head pointer.

Field definitions are the same as those defined in Section 13.2.2.22.63.

613875-009 2383

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.174 PF0 HLP Sideband Receive Tail - PF0_SB_HLP_ARQT
(0x002300E4; RW)

Admin receive queue tail pointer.

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.2.2.22.175 PF SB HLP Remote Device Control Register -
PF0_SB_HLP_REM_DEV_CTL (0x002300E8; RW)

Bit mapping of the remote devices allowed to be accessed by HLP PF driver.

13.2.2.22.176 VF SB CPM Remote Device Control Register -
VF_SB_CPM_REM_DEV_CTL (0x002300EC; RW)

Bit mapping of the remote devices allowed to be accessed by CPM VF driver.

Field definitions are the same as those defined in Section 13.2.2.22.175.

13.2.2.22.177 PF SB Remote Device Control Register -
PF_SB_REM_DEV_CTL (0x002300F0; RW)

Bit mapping of the remote devices allowed to be accessed by CPK PF driver.

Field definitions are the same as those defined in Section 13.2.2.22.175.

13.2.2.22.178 PF SB CPM Remote Device Control Register -
PF0_SB_CPM_REM_DEV_CTL (0x002300F4; RW)

Bit mapping of the remote devices allowed to be accessed by CPM PF driver.

Field definitions are the same as those defined in Section 13.2.2.22.175.

Field Bit(s) Init. Type CFG Policy Description

DEST_EN 15:0 0x0 RW UNDEFINED Destination Enable
Bit mapping of the sideband remote devices allowed to be accessed by
the software driver.

RESERVED 31:16 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

2384 613875-009

13.2.2.22.179 SB Remote Device Destination Register -
SB_REM_DEV_DEST[n] (0x002300F8 + 0x4*n, n=0...7; RW)

This register contains the destination software driver that the SB remote device is mapped to (per
remote device source)

13.2.2.22.180 PF VF Control Register - VP_MBX_PF_VF_CTRL[VSI]
(0x00230800 + 0x4*VSI, VSI=0...767; RW)

13.2.2.22.181 PF VF Control Register - VP_MBX_CPM_PF_VF_CTRL[VP128]
(0x00231800 + 0x4*VP128, VP128=0...127; RW)

13.2.2.22.182 PF VF Control Register - VP_MBX_HLP_PF_VF_CTRL[VP16]
(0x00231A00 + 0x4*VP16, VP16=0...15; RW)

Field Bit(s) Init. Type CFG Policy Description

DEST 3:0 0x0 RW UNDEFINED Destination
Destination software driver of this sideband remote device.

0x0 = CPK driver
0x1 = CPM driver
0x2 = HLP driver
All other values are reserved.

RESERVED 30:4 0x0 RSV N/A Reserved.

DEST_VALID 31 0b RW UNDEFINED Destination Valid

Field Bit(s) Init. Type CFG Policy Description

QUEUE_EN 0 1b RW UNDEFINED Queue Enable
A PF can disable a VF’s transmit and receive Admin Queues by clearing
this bit.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QUEUE_EN 0 1b RW UNDEFINED Queue Enable
A PF can disable a VF’s transmit and receive Admin Queues by clearing
this bit.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QUEUE_EN 0 1b RW UNDEFINED Queue Enable
A PF can disable a VF’s transmit and receive Admin Queues by clearing
this bit.

RESERVED 31:1 0x0 RSV N/A Reserved.

613875-009 2385

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Control Queues Registers

13.2.2.22.183 PF VF Control Register - VP_MBX_PSM_PF_VF_CTRL[VP16]
(0x00231A40 + 0x4*VP16, VP16=0...15; RW)

13.2.2.22.184 PF VF Control Register - VP_SB_CPM_PF_VF_CTRL[VP128]
(0x00231C00 + 0x4*VP128, VP128=0...127; RW)

13.2.2.22.185 PF VF Control Register - GL_MBX_PASID (0x00231EC0; RW)

This register contains MBX PASID related configurations.

Field Bit(s) Init. Type CFG Policy Description

QUEUE_EN 0 1b RW UNDEFINED Queue Enable
A PF can disable a VF’s transmit and receive Admin Queues by clearing
this bit.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QUEUE_EN 0 1b RW UNDEFINED Queue Enable
A PF can disable a VF’s transmit and receive Admin Queues by clearing
this bit.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PASID_MODE 0 0b RW UNDEFINED PASID Mode
When set, the E810 works in PASID mode, and MBX should
handle its queues accordingly.

PASID_MODE_VALID 1 0b RW N/A PASID Mode Valid
Validates the PASID_MODE bit (for software use only).

RESERVED 31:2 0x0 RSV UNDEFINED Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2386 613875-009

13.2.2.23 PF - Statistics Registers

Statistics counters. Refer to Section 9.6 for information regarding wide counters, clearing counters,
sampling points, and counter consistency rules.

Note: Wide counters (48 bits) are represented as two registers (high and low) containing the 16
most significant bits and 32 least significant bits, respectively. They are implemented as a 64-
bit register. Atomicity is only guaranteed when reading both parts in one 64-bit read.

Note: Per-function registers are implemented as an array of 144 registers. Elements 0-127
correspond to VFs 0-127 and elements 128-143 are used for PFs 0-15.

13.2.2.23.1 PORT TC Transmit Byte Count -
TPB_PRTTPB_STAT_TC_BYTES_SENT[n] (0x00099094 +
0x4*n, n=0...63; RWC)

13.2.2.23.2 PORT Transmit Packet Count -
TPB_PRTTPB_STAT_PKT_SENT[n] (0x00099470 + 0x4*n,
n=0...7; RWC)

13.2.2.23.3 Port (Line) Receive Drop Counter - PRTRPB_RDPC
(0x000AC260; RWC)

13.2.2.23.4 Port (LB) Receive Drop Counter - PRTRPB_LDPC
(0x000AC280; RWC)

Field definitions are the same as those defined in Section 13.2.2.23.3.

Field Bit(s) Init. Type CFG Policy Description

TCCNT 31:0 0x0 RW1C DYNAMIC TC Count
Port per-TC byte count.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PKTCNT 31:0 0x0 RW1C DYNAMIC Packet Count
Port packet counter.

Field Bit(s) Init. Type CFG Policy Description

CRCERRS 31:0 0x0 RW1C DYNAMIC CRC Errors
Port drop counter.
Counts all packets that were dropped due to shortage of storage space.

613875-009 2387

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.5 VSI Received Discard Packet Count - GLV_RDPC[n]
(0x00294C04 + 0x4*n, n=0...767; RWC)

13.2.2.23.6 Per VSI Error Drops - GLV_REPC[n] (0x00295804 + 0x4*n,
n=0...767; RWC)

Note: Writing to this register clears both the counters. There is no way to clear a single counter.

13.2.2.23.7 VSI Good Octets Transmit Count Low - GLV_GOTCL[n]
(0x00300000 + 0x8*n, n=0...767; RWC)

13.2.2.23.8 VSI Good Octets Transmit Count High - GLV_GOTCH[n]
(0x00300004 + 0x8*n, n=0...767; RWC)

Field Bit(s) Init. Type CFG Policy Description

RDPC 31:0 0x0 RWC UNDEFINED Received Discard Packet Count
Counts (per VSI) packets that were drop due to no descriptors in host
queue or other drops in the pipe.
Pipe drops includes Flow Director, ACL, and packets directed to invalid
receive queues drops.
For EMP VSIs, it counts dropped packets due to no EMP buffer space.

Field Bit(s) Init. Type CFG Policy Description

NO_DESC_CNT 15:0 0x0 RW UNDEFINED No Descriptors Count
Counts packets dropped from this VSI due to no descriptors available.
For VSIs associated with the EMP, counts drops due to EMP buffer full.
Stuck at 0xFFFF.

ERROR_CNT 31:16 0x0 RW UNDEFINED Error Count
Counts packet dropped from this VSI due to the following cases:
• Packet size is larger than RXMAX of the queue.
• Receive descriptor Unsupported Request on the PCI or internal

Dummy completion.
• Packets directed to disabled receive queues.
• Packets dropped due to VM reset, VF reset, or PF reset.

Stuck at 0xFFFF

Field Bit(s) Init. Type CFG Policy Description

GOTCL 31:0 0x0 RWC UNDEFINED Good Octet Transmit Count Low
Transmit octet count. Counts the number of bytes transmitted by this
VSI. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

GOTCH 7:0 0x0 RWC UNDEFINED Good Octet Transmit Count High
Transmit octet count. Counts the number of bytes transmitted by this
VSI. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2388 613875-009

13.2.2.23.9 Switch Good Octets Transmit Count Low - GLSW_GOTCL[n]
(0x00302000 + 0x8*n, n=0...31; RWC)

13.2.2.23.10 Switch Good Octets Transmit Count High - GLSW_GOTCH[n]
(0x00302004 + 0x8*n, n=0...31; RWC)

13.2.2.23.11 VEB VLAN Transmit Byte Count Low -
GL_STAT_SWR_GOTCL[n] (0x00304000 + 0x8*n,
n=0...127; RWC)

13.2.2.23.12 VEB VLAN Transmit Byte Count High -
GL_STAT_SWR_GOTCH[n] (0x00304004 + 0x8*n,
n=0...127; RWC)

Field Bit(s) Init. Type CFG Policy Description

GOTCL 31:0 0x0 RWC UNDEFINED Good Octet Transmit Count Low
Transmit octet count. Counts the number of bytes transmitted. Lower 32
bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

GOTCH 7:0 0x0 RWC UNDEFINED Good Octet Transmit Count High
Transmit octet count. Counts the number of bytes transmitted. Higher 8
bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VLBCL 31:0 0x0 RWC UNDEFINED VLAN Byte Count Low
VEB per VLAN byte count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

VLBCH 7:0 0x0 RWC UNDEFINED VLAN Byte Count High
VEB per VLAN byte count High.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

613875-009 2389

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.13 VEB UP Transmit Byte Count Low - GLVEBUP_TBCL[n,m]
(0x00306000 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)

13.2.2.23.14 VEB UP Transmit Byte Count High - GLVEBUP_TBCH[n,m]
(0x00306004 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)

13.2.2.23.15 VEB UP Transmit Packet Count Low - GLVEBUP_TPCL[n,m]
(0x00308000 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)

13.2.2.23.16 VEB UP Transmit Packet Count High - GLVEBUP_TPCH[n,m]
(0x00308004 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)

13.2.2.23.17 VSI Unicast Packets Transmit Count Low - GLV_UPTCL[n]
(0x0030A000 + 0x8*n, n=0...767; RWC)

Field Bit(s) Init. Type CFG Policy Description

UPBCL 31:0 0x0 RWC UNDEFINED UP Byte Count Low
UP transmit byte count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

UPBCH 7:0 0x0 RWC UNDEFINED UP Byte Count High
UP transmit byte count High.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UPPCL 31:0 0x0 RWC UNDEFINED UP Packet Count Low
VEB per UP transmit packets count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

UPPCH 7:0 0x0 RWC UNDEFINED UP Packet Count High
VEB per UP transmit packets count high.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UPTCL 31:0 0x0 RWC UNDEFINED Unicast Packets Transmit Count Low
Transmit unicast packet count. Counts the number of unicast packets
transmitted by this VSI. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2390 613875-009

13.2.2.23.18 VSI Unicast Packets Transmit Count High - GLV_UPTCH[n]
(0x0030A004 + 0x8*n, n=0...767; RWC)

13.2.2.23.19 VSI Multicast Packets Transmit Count Low - GLV_MPTCL[n]
(0x0030C000 + 0x8*n, n=0...767; RWC)

13.2.2.23.20 VSI Multicast Packets Transmit Count High - GLV_MPTCH[n]
(0x0030C004 + 0x8*n, n=0...767; RWC)

13.2.2.23.21 VSI Broadcast Packets Transmit Count Low - GLV_BPTCL[n]
(0x0030E000 + 0x8*n, n=0...767; RWC)

Field Bit(s) Init. Type CFG Policy Description

GLVUPTCH 7:0 0x0 RWC UNDEFINED Unicast Packets Transmit Count High
Transmit unicast packet count. Counts the number of unicast packets
transmitted by this VSI. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MPTCL 31:0 0x0 RWC UNDEFINED Multicast Packets Transmit Count Low
Transmit multicast packet count. Counts the number of multicast packets
transmitted by this VSI. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

MPTCH 7:0 0x0 RWC UNDEFINED Multicast Packets Transmit Count High
Transmit multicast packet count. Counts the number of multicast packets
transmitted by this VSI. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BPTCL 31:0 0x0 RWC UNDEFINED Broadcast Packets Transmit Count Low
Transmit broadcast packet count. Counts the number of broadcast
packets transmitted by this VSI. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

613875-009 2391

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.22 VSI Broadcast Packets Transmit Count High -
GLV_BPTCH[n] (0x0030E004 + 0x8*n, n=0...767; RWC)

13.2.2.23.23 Switch Unicast Packets Transmit Count Low -
GLSW_UPTCL[n] (0x00310000 + 0x8*n, n=0...31; RWC)

13.2.2.23.24 Switch Unicast Packets Transmit Count High -
GLSW_UPTCH[n] (0x00310004 + 0x8*n, n=0...31; RWC)

13.2.2.23.25 Switch Multicast Packets Transmit Count Low -
GLSW_MPTCL[n] (0x00310100 + 0x8*n, n=0...31; RWC)

Field Bit(s) Init. Type CFG Policy Description

BPTCH 7:0 0x0 RWC UNDEFINED Broadcast Packets Transmit Count High
Transmit broadcast packet count. Counts the number of broadcast
packets transmitted by this VSI. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UPTCL 31:0 0x0 RWC UNDEFINED Unicast Packets Transmit Count Low
Transmit unicast packet count. Counts the number of unicast packets
transmitted. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

UPTCH 7:0 0x0 RWC UNDEFINED Unicast Packets Transmit Count High
Transmit unicast packet count. Counts the number of unicast packets
transmitted. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MPTCL 31:0 0x0 RWC UNDEFINED Multicast Packets Transmit Count Low
Transmit multicast packet count. Counts the number of multicast packets
transmitted. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2392 613875-009

13.2.2.23.26 Switch Multicast Packets Transmit Count High -
GLSW_MPTCH[n] (0x00310104 + 0x8*n, n=0...31; RWC)

13.2.2.23.27 Switch Broadcast Packets Transmit Count Low -
GLSW_BPTCL[n] (0x00310200 + 0x8*n, n=0...31; RWC)

13.2.2.23.28 Switch Broadcast Packets Transmit Count High -
GLSW_BPTCH[n] (0x00310204 + 0x8*n, n=0...31; RWC)

13.2.2.23.29 VSI Transmit Error Packet Count - GLV_TEPC[VSI]
(0x00312000 + 0x4*VSI, VSI=0...767; RWC)

Field Bit(s) Init. Type CFG Policy Description

MPTCH 7:0 0x0 RWC UNDEFINED Multicast Packets Transmit Count High
Transmit multicast packet count. Counts the number of multicast packets
transmitted. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BPTCL 31:0 0x0 RWC UNDEFINED Broadcast Packets Transmit Count Low
Transmit broadcast packet count. Counts the number of broadcast
packets transmitted. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

BPTCH 7:0 0x0 RWC UNDEFINED Broadcast Packets Transmit Count High
Transmit broadcast packet count. Counts the number of broadcast
packets transmitted. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TEPC 31:0 0x0 RWC UNDEFINED Transmit Error Packet Count
Includes:
• Packets dropped due to drop resolution of the switch (for example,

violation of anti-spoof rules) - i.e. LAN_EN = 0 and LB_EN = 0.
• Packets dropped due to malicious behavior (including In-line IPsec

malicious behavior and DSCP enforcement).
• TTL <= 0

613875-009 2393

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.30 Port Storm Control Discarded Count - GLPRT_STDC[n]
(0x00340000 + 0x4*n, n=0...7; RWC)

13.2.2.23.31 Switch Good Octets Received Count Low - GLSW_GORCL[n]
(0x00341000 + 0x8*n, n=0...31; RWC)

13.2.2.23.32 Switch Good Octets Received Count High - GLSW_GORCH[n]
(0x00341004 + 0x8*n, n=0...31; RWC)

13.2.2.23.33 VEB VLAN Receive Byte Count Low -
GL_STAT_SWR_GORCL[n] (0x00342000 + 0x8*n,
n=0...127; RWC)

13.2.2.23.34 VEB VLAN Receive Byte Count High -
GL_STAT_SWR_GORCH[n] (0x00342004 + 0x8*n,
n=0...127; RWC)

Field Bit(s) Init. Type CFG Policy Description

STDC 31:0 0x0 RWC UNDEFINED Storm Control Discarded Count
Packets dropped due to storm control.

Field Bit(s) Init. Type CFG Policy Description

GORCL 31:0 0x0 RWC UNDEFINED Good Octet Receive Count Low
Receive octet count. Counts the number of bytes received. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

GORCH 7:0 0x0 RWC UNDEFINED Good Octet Receive Count High
Receive octet count. Counts the number of bytes received. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VLBCL 31:0 0x0 RWC UNDEFINED VLAN Byte Count Low
VEB per VLAN Byte count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

VLBCH 7:0 0x0 RWC UNDEFINED VLAN Byte Count High
VEB per VLAN Byte count high.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2394 613875-009

13.2.2.23.35 VEB UP Receive Byte Count Low - GLVEBUP_RBCL[n,m]
(0x00343000 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)

13.2.2.23.36 VEB UP Receive Byte Count High - GLVEBUP_RBCH[n,m]
(0x00343004 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)

13.2.2.23.37 VEB UP Receive Packet Count Low - GLVEBUP_RPCL[n,m]
(0x00344000 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)

13.2.2.23.38 VEB UP Receive Packet Count High - GLVEBUP_RPCH[n,m]
(0x00344004 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)

13.2.2.23.39 Switch Unicast Packets Received Count Low -
GLSW_UPRCL[n] (0x00346000 + 0x8*n, n=0...31; RWC)

Field Bit(s) Init. Type CFG Policy Description

UPBCL 31:0 0x0 RWC UNDEFINED UP Byte Count Low
VEB per UP receive byte count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

UPBCH 7:0 0x0 RWC UNDEFINED UP Byte Count High
VEB per UP transmit byte count high.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UPPCL 31:0 0x0 RWC UNDEFINED UP Packet Count Low
VEB per UP receive packets count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

UPPCH 7:0 0x0 RWC UNDEFINED UP Packet Count High
VEB per UP receive packets count high.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UPRCL 31:0 0x0 RWC UNDEFINED Unicast Packets Received Count Low
Receive unicast packet count. Counts the number of unicast packets
received. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

613875-009 2395

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.40 Switch Unicast Packets Received Count High -
GLSW_UPRCH[n] (0x00346004 + 0x8*n, n=0...31; RWC)

13.2.2.23.41 Switch Multicast Packets Received Count Low -
GLSW_MPRCL[n] (0x00346100 + 0x8*n, n=0...31; RWC)

13.2.2.23.42 Switch Multicast Packets Received Count High -
GLSW_MPRCH[n] (0x00346104 + 0x8*n, n=0...31; RWC)

13.2.2.23.43 Switch Broadcast Packets Received Count Low -
GLSW_BPRCL[n] (0x00346200 + 0x8*n, n=0...31; RWC)

Field Bit(s) Init. Type CFG Policy Description

UPRCH 7:0 0x0 RWC UNDEFINED Unicast Packets Received Count High
Receive unicast packet count. Counts the number of unicast packets
received. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MPRCL 31:0 0x0 RWC UNDEFINED Multicast Packets Received Count Low
Receive multicast packet count. Counts the number of multicast packets
received. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

MPRCH 7:0 0x0 RWC UNDEFINED Multicast Packets Received Count High
Receive multicast packet count. Counts the number of multicast packets
received. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BPRCL 31:0 0x0 RWC UNDEFINED Broadcast Packets Received Count Low
Receive broadcast packet count. Counts the number of broadcast
packets received. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2396 613875-009

13.2.2.23.44 Switch Broadcast Packets Received Count High -
GLSW_BPRCH[n] (0x00346204 + 0x8*n, n=0...31; RWC)

13.2.2.23.45 VEB VLAN Unicast Packet Count Low -
GL_STAT_SWR_UPCL[n] (0x00347000 + 0x8*n, n=0...127;
RWC)

13.2.2.23.46 VEB VLAN Unicast Packet Count High -
GL_STAT_SWR_UPCH[n] (0x00347004 + 0x8*n, n=0...127;
RWC)

13.2.2.23.47 VEB VLAN Multicast Packet Count Low -
GL_STAT_SWR_MPCL[n] (0x00347400 + 0x8*n, n=0...127;
RWC)

Field Bit(s) Init. Type CFG Policy Description

BPRCH 7:0 0x0 RWC UNDEFINED Broadcast Packets Received Count High
Receive broadcast packet count. Counts the number of broadcast
packets received. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VLUPCL 31:0 0x0 RWC UNDEFINED VLAN Unicast Packet Count Low
VEB per VLAN unicast packet count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

VLUPCH 7:0 0x0 RWC UNDEFINED VLAN Unicast Packet Count High
VEB per VLAN unicast packet count high.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VLMPCL 31:0 0x0 RWC UNDEFINED VLAN Multicast Packet Count Low
VEB per VLAN multicast packet count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

613875-009 2397

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.48 VEB VLAN Multicast Packet Count High -
GL_STAT_SWR_MPCH[n] (0x00347404 + 0x8*n, n=0...127;
RWC)

13.2.2.23.49 VEB VLAN Broadcast Packet Count Low -
GL_STAT_SWR_BPCL[n] (0x00347800 + 0x8*n, n=0...127;
RWC)

13.2.2.23.50 VEB VLAN Broadcast Packet Count High -
GL_STAT_SWR_BPCH[n] (0x00347804 + 0x8*n, n=0...127;
RWC)

13.2.2.23.51 Port Good Octets Received Count Low - GLPRT_GORCL[n]
(0x00380000 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

VLMPCH 7:0 0x0 RWC UNDEFINED VLAN Multicast Packet Count High
VEB per VLAN multicast packet count high.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VLBPCL 31:0 0x0 RWC UNDEFINED VLAN Broadcast Packet Count Low
VEB per VLAN broadcast packet count low.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

VLBPCH 7:0 0x0 RWC UNDEFINED VLAN Broadcast Packet Count High
VEB per VLAN broadcast packet count high.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GORCL 31:0 0x0 RWC UNDEFINED Good Octets Received Count Low
Receive octet count. Counts the number of bytes received by this port.
Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2398 613875-009

13.2.2.23.52 Port Good Octets Received Count High - GLPRT_GORCH[n]
(0x00380004 + 0x8*n, n=0...7; RWC)

13.2.2.23.53 Port MAC Local Fault Count - GLPRT_MLFC[n] (0x00380040
+ 0x8*n, n=0...7; RWC)

13.2.2.23.54 Port MAC Local Fault Count - GLPRT_MLFC_H[n]
(0x00380044 + 0x8*n, n=0...7; RWC)

13.2.2.23.55 Port MAC Remote Fault Count - GLPRT_MRFC[n]
(0x00380080 + 0x8*n, n=0...7; RWC)

13.2.2.23.56 Port MAC Remote Fault Count - GLPRT_MRFC_H[n]
(0x00380084 + 0x8*n, n=0...7; RWC)

13.2.2.23.57 Port CRC Error Count - GLPRT_CRCERRS[n] (0x00380100 +
0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

GORCH 7:0 0x0 RWC UNDEFINED Good Octets Received Count High
Receive octet count. Counts the number of bytes received by this port.
Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MLFC 31:0 0x0 RWC UNDEFINED MAC Local Fault Count
Number of faults in the local MAC.

Field Bit(s) Init. Type CFG Policy Description

MLFC 31:0 0x0 RWC UNDEFINED MAC Local Fault Count
Number of faults in the local MAC.

Field Bit(s) Init. Type CFG Policy Description

MRFC 31:0 0x0 RWC UNDEFINED MAC Remote Fault Count
Number of faults in the remote MAC.

Field Bit(s) Init. Type CFG Policy Description

MRFC 31:0 0x0 RWC UNDEFINED MAC Remote Fault Count
Number of faults in the remote MAC.

Field Bit(s) Init. Type CFG Policy Description

CRCERRS 31:0 0x0 RWC UNDEFINED CRC Errors
CRC error count. Counts the number of receive packets with CRC errors.

613875-009 2399

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.58 Port CRC Error Count - GLPRT_CRCERRS_H[n] (0x00380104
+ 0x8*n, n=0...7; RWC)

13.2.2.23.59 Receive Length Error Count - GLPRT_RLEC[n] (0x00380140
+ 0x8*n, n=0...7; RWC)

13.2.2.23.60 Receive Length Error Count - GLPRT_RLEC_H[n]
(0x00380144 + 0x8*n, n=0...7; RWC)

13.2.2.23.61 Port Illegal Byte Error Count - GLPRT_ILLERRC[n]
(0x003801C0 + 0x8*n, n=0...7; RWC)

13.2.2.23.62 Port Illegal Byte Error Count - GLPRT_ILLERRC_H[n]
(0x003801C4 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

CRCERRS 31:0 0x0 RWC UNDEFINED CRC Errors
CRC error count. Counts the number of receive packets with CRC errors.

Field Bit(s) Init. Type CFG Policy Description

RLEC 31:0 0x0 RWC UNDEFINED Receive Length Error Count
Number of SNAP packets with receive length errors.
A length error occurs if an incoming packet length field in the MAC
header does not match the packet length.
Does not count length error in tagged packets (like VLAN tagged) or
non-SNAP packets

Field Bit(s) Init. Type CFG Policy Description

RLEC 31:0 0x0 RWC UNDEFINED Receive Length Error Count
Number of packets with receive length errors.
A length error occurs if an incoming packet length field in the MAC
header does not match the packet length.

Field Bit(s) Init. Type CFG Policy Description

ILLERRC 31:0 0x0 RWC UNDEFINED Illegal Error Count
Illegal byte error packet count.
Counts the number of receive packets with illegal bytes errors (in other
words, there is an illegal symbol in the packet).

Field Bit(s) Init. Type CFG Policy Description

ILLERRC 31:0 0x0 RWC UNDEFINED Illegal Error Count
Illegal byte error packet count.
Counts the number of receive packets with illegal bytes errors (in other
words, there is an illegal symbol in the packet).

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2400 613875-009

13.2.2.23.63 Receive Undersize Count - GLPRT_RUC[n] (0x00380200 +
0x8*n, n=0...7; RWC)

13.2.2.23.64 Receive Undersize Count - GLPRT_RUC_H[n] (0x00380204
+ 0x8*n, n=0...7; RWC)

13.2.2.23.65 Receive Oversize Count - GLPRT_ROC[n] (0x00380240 +
0x8*n, n=0...7; RWC)

13.2.2.23.66 Receive Oversize Count - GLPRT_ROC_H[n] (0x00380244 +
0x8*n, n=0...7; RWC)

13.2.2.23.67 Port Link XON Received Count - GLPRT_LXONRXC[n]
(0x00380280 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

RUC 31:0 0x0 RWC UNDEFINED Receive Undersize Count
Receive undersize error.
Counts the number of received frames that are shorter than minimum
size (64 bytes from <Destination Address> through <CRC>, inclusively)
and had a valid CRC.

Field Bit(s) Init. Type CFG Policy Description

RUC 31:0 0x0 RWC UNDEFINED Receive Undersize Count
Receive undersize error.
Counts the number of received frames that are shorter than minimum
size (64 bytes from <Destination Address> through <CRC>, inclusively)
and had a valid CRC.

Field Bit(s) Init. Type CFG Policy Description

ROC 31:0 0x0 RWC UNDEFINED Receive Oversize Count
Receive oversize error.
Counts the number of received frames that are longer than maximum
size as defined by the Set MAC Config command (from <Destination
Address> through <CRC>, inclusively) and have valid CRC.

Field Bit(s) Init. Type CFG Policy Description

ROC 31:0 0x0 RWC UNDEFINED Receive Oversize Count
Receive oversize error.
Counts the number of received frames that are longer than maximum
size as defined by MAXFRS.MFS (from <Destination Address> through
<CRC>, inclusively) and have valid CRC.

Field Bit(s) Init. Type CFG Policy Description

LXONRXCNT 31:0 0x0 RWC UNDEFINED Link XON Received Count
Number of XON packets received.

613875-009 2401

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.68 Port Link XON Received Count - GLPRT_LXONRXC_H[n]
(0x00380284 + 0x8*n, n=0...7; RWC)

13.2.2.23.69 Port Link XOFF Received Count - GLPRT_LXOFFRXC[n]
(0x003802C0 + 0x8*n, n=0...7; RWC)

13.2.2.23.70 Port Link XOFF Received Count - GLPRT_LXOFFRXC_H[n]
(0x003802C4 + 0x8*n, n=0...7; RWC)

13.2.2.23.71 Priority XON Received Count - GLPRT_PXONRXC[n,m]
(0x00380300 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

13.2.2.23.72 Priority XON Received Count - GLPRT_PXONRXC_H[n,m]
(0x00380304 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

13.2.2.23.73 Priority XOFF Received Count - GLPRT_PXOFFRXC[n,m]
(0x00380500 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

LXONRXCNT 31:0 0x0 RWC UNDEFINED Link XON Received Count
Number of XON packets received.

Field Bit(s) Init. Type CFG Policy Description

LXOFFRXCNT 31:0 0x0 RWC UNDEFINED Link XOFF Received Count
Number of XOFF packets received.

Field Bit(s) Init. Type CFG Policy Description

LXOFFRXCNT 31:0 0x0 RWC UNDEFINED Link XOFF Received Count
Number of XOFF packets received.

Field Bit(s) Init. Type CFG Policy Description

PRPXONRXCNT 31:0 0x0 RWC UNDEFINED Priority XON Received Count
Number of XON packets received. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

PRPXONRXCNT 31:0 0x0 RWC UNDEFINED Priority XON Received Count
Number of XON packets received. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

PRPXOFFRXCNT 31:0 0x0 RWC UNDEFINED Priority XOFF Received Count
Number of XOFF packets received. Array of eight per port.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2402 613875-009

13.2.2.23.74 Priority XOFF Received Count - GLPRT_PXOFFRXC_H[n,m]
(0x00380504 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

13.2.2.23.75 Priority XON to XOFF Count - GLPRT_RXON2OFFCNT[n,m]
(0x00380700 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

13.2.2.23.76 Priority XON to XOFF Count - GLPRT_RXON2OFFCNT_H[n,m]
(0x00380704 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

13.2.2.23.77 Packets Received [64 Bytes] Count Low - GLPRT_PRC64L[n]
(0x00380900 + 0x8*n, n=0...7; RWC)

13.2.2.23.78 Packets Received [64 Bytes] Count High -
GLPRT_PRC64H[n] (0x00380904 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

PRPXOFFRXCNT 31:0 0x0 RWC UNDEFINED Priority XOFF Received Count
Number of XOFF packets received. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

PRRXON2OFFCNT 31:0 0x0 RWC UNDEFINED Priority XON to XOFF Count
Number of times transmitter transitioned from XON to XOFF. Array
of eight per port.

Field Bit(s) Init. Type CFG Policy Description

PRRXON2OFFCNT 31:0 0x0 RWC UNDEFINED Priority XON to XOFF Count
Number of times transmitter transitioned from XON to XOFF. Array
of eight per port.

Field Bit(s) Init. Type CFG Policy Description

PRC64L 31:0 0x0 RWC UNDEFINED Packets Received Count (64 Bytes) Low
Number of good packets received that are 64 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PRC64H 7:0 0x0 RWC UNDEFINED Packets Received Count (64 Bytes) High
Number of good packets received that are 64 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

613875-009 2403

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.79 Packets Received [65-127 Bytes] Count Low -
GLPRT_PRC127L[n] (0x00380940 + 0x8*n, n=0...7; RWC)

13.2.2.23.80 Packets Received [65-127 Bytes] Count High -
GLPRT_PRC127H[n] (0x00380944 + 0x8*n, n=0...7; RWC)

13.2.2.23.81 Packets Received [128-255 Bytes] Count Low -
GLPRT_PRC255L[n] (0x00380980 + 0x8*n, n=0...7; RWC)

13.2.2.23.82 Packets Received [128-255 Bytes] Count High -
GLPRT_PRC255H[n] (0x00380984 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

PRC127L 31:0 0x0 RWC UNDEFINED Packets Received Count (65-127 Bytes) Low
Number of packets received that are 65-127 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PRC127H 7:0 0x0 RWC UNDEFINED Packets Received Count (65-127 Bytes) High
Number of packets received that are 65-127 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PRC255L 31:0 0x0 RWC UNDEFINED Packets Received Count (128-255 Bytes) Low
Number of packets received that are 128-255 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PRTPRC255H 7:0 0x0 RWC UNDEFINED Packets Received Count (128-255 Bytes) High
Number of packets received that are 128-255 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2404 613875-009

13.2.2.23.83 Packets Received [256-511 Bytes] Count Low -
GLPRT_PRC511L[n] (0x003809C0 + 0x8*n, n=0...7; RWC)

13.2.2.23.84 Packets Received [256-511 Bytes] Count High -
GLPRT_PRC511H[n] (0x003809C4 + 0x8*n, n=0...7; RWC)

13.2.2.23.85 Packets Received [512-1023 Bytes] Count Low -
GLPRT_PRC1023L[n] (0x00380A00 + 0x8*n, n=0...7; RWC)

13.2.2.23.86 Packets Received [512-1023 Bytes] Count High -
GLPRT_PRC1023H[n] (0x00380A04 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

PRC511L 31:0 0x0 RWC UNDEFINED Packets Received Count (256-511 Bytes) Low
Number of packets received that are 256-511 bytes in length (from
<Destination Address> through <CRC>, inclusively)
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PRC511H 7:0 0x0 RWC UNDEFINED Packets Received Count (256-511 Bytes) High
Number of packets received that are 256-511 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PRC1023L 31:0 0x0 RWC UNDEFINED Packets Received Count (512-1023 Bytes) Low
Number of packets received that are 512-1023 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PRC1023H 7:0 0x0 RWC UNDEFINED Packets Received Count (512-1023 Bytes) High
Number of packets received that are 512-1023 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

613875-009 2405

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.87 Packets Received [1024-1522 Bytes] Count Low -
GLPRT_PRC1522L[n] (0x00380A40 + 0x8*n, n=0...7; RWC)

13.2.2.23.88 Packets Received [1024-1522 Bytes] Count High -
GLPRT_PRC1522H[n] (0x00380A44 + 0x8*n, n=0...7; RWC)

13.2.2.23.89 Packets Received [1523-9522 Bytes] Count Low -
GLPRT_PRC9522L[n] (0x00380A80 + 0x8*n, n=0...7; RWC)

13.2.2.23.90 Packets Received [1523-9522 Bytes] Count High -
GLPRT_PRC9522H[n] (0x00380A84 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

PRC1522L 31:0 0x0 RWC UNDEFINED Packets Received Count (1024-1522 Bytes) Low
Number of packets received that are 1024-1522 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PRC1522H 7:0 0x0 RWC UNDEFINED Packets Received Count (1024-1522 Bytes) High
Number of packets received that are 1024-1522 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PRC1522L 31:0 0x0 RWC UNDEFINED Packets Received Count (1523-9522 Bytes) Low
Number of packets received that are 1523-9522 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PRC1522H 7:0 0x0 RWC UNDEFINED Packets Received Count (1523-9522 Bytes) High
Number of packets received that are 1523-9522 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2406 613875-009

13.2.2.23.91 Receive Fragment Count - GLPRT_RFC[n] (0x00380AC0 +
0x8*n, n=0...7; RWC)

13.2.2.23.92 Receive Fragment Count - GLPRT_RFC_H[n] (0x00380AC4 +
0x8*n, n=0...7; RWC)

13.2.2.23.93 Receive Jabber Count - GLPRT_RJC[n] (0x00380B00 +
0x8*n, n=0...7; RWC)

13.2.2.23.94 Receive Jabber Count - GLPRT_RJC_H[n] (0x00380B04 +
0x8*n, n=0...7; RWC)

13.2.2.23.95 Port Good Octets Transmit Count Low - GLPRT_GOTCL[n]
(0x00380B40 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

RFC 31:0 0x0 RWC UNDEFINED Receive Fragments Count
Counts the number of received frames that are shorter than minimum
size (64 bytes from <Destination Address> through <CRC>, inclusively)
and had an invalid CRC.

Field Bit(s) Init. Type CFG Policy Description

RFC 31:0 0x0 RWC UNDEFINED Receive Fragments Count
Counts the number of received frames that are shorter than minimum
size (64 bytes from <Destination Address> through <CRC>, inclusively)
and had an invalid CRC.

Field Bit(s) Init. Type CFG Policy Description

RJC 31:0 0x0 RWC UNDEFINED Receive Jabber Count
Number of receive jabber errors.
Counts the number of received packets that passed address filtering, are
greater than maximum size, and have bad CRC (this is slightly different
from the Receive Oversize Count register). The packets length is counted
from <Destination Address> through <CRC>, inclusively.

Field Bit(s) Init. Type CFG Policy Description

RJC 31:0 0x0 RWC UNDEFINED Receive Jabber Count
Number of receive jabber errors.
Counts the number of received packets that passed address filtering, are
greater than maximum size, and have bad CRC (this is slightly different
from the Receive Oversize Count register). The packets length is counted
from <Destination Address> through <CRC>, inclusively.

Field Bit(s) Init. Type CFG Policy Description

GOTCL 31:0 0x0 RWC UNDEFINED Good Octets Transmit Count Low
Transmit octet count. Counts the number of bytes transmitted by this
VSI. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

613875-009 2407

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.96 Port Good Octets Transmit Count High - GLPRT_GOTCH[n]
(0x00380B44 + 0x8*n, n=0...7; RWC)

13.2.2.23.97 Packets Transmitted [64 Bytes] Count Low -
GLPRT_PTC64L[n] (0x00380B80 + 0x8*n, n=0...7; RWC)

13.2.2.23.98 Packets Transmitted [64 Bytes] Count High -
GLPRT_PTC64H[n] (0x00380B84 + 0x8*n, n=0...7; RWC)

13.2.2.23.99 Packets Transmitted [65-127 Bytes] Count Low -
GLPRT_PTC127L[n] (0x00380BC0 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

GOTCH 7:0 0x0 RWC UNDEFINED Good Octets Transmit Count High
Transmit octet count. Counts the number of bytes transmitted by this
port. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PTC64L 31:0 0x0 RWC UNDEFINED Packets Transmitted Count (64 Bytes) Low
Number of packets transmitted that are 64 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PTC64H 7:0 0x0 RWC UNDEFINED Packets Transmitted Count (64 Bytes) High
Number of packets transmitted that are 64 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PTC127L 31:0 0x0 RWC UNDEFINED Packets Transmitted Count (65-127 Bytes) Low
Number of packets transmitted that are 65-127 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2408 613875-009

13.2.2.23.100 Packets Transmitted [65-127 Bytes] Count High -
GLPRT_PTC127H[n] (0x00380BC4 + 0x8*n, n=0...7; RWC)

13.2.2.23.101 Packets Transmitted [128-255 Bytes] Count Low -
GLPRT_PTC255L[n] (0x00380C00 + 0x8*n, n=0...7; RWC)

13.2.2.23.102 Packets Transmitted [128-255 Bytes] Count High -
GLPRT_PTC255H[n] (0x00380C04 + 0x8*n, n=0...7; RWC)

13.2.2.23.103 Packets Transmitted [256-511 Bytes] Count Low -
GLPRT_PTC511L[n] (0x00380C40 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

PTC127H 7:0 0x0 RWC UNDEFINED Packets Transmitted Count (65-127 Bytes) High
Number of packets transmitted that are 65-127 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PTC255L 31:0 0x0 RWC UNDEFINED Packets Transmitted Count (128-255 Bytes) Low
Number of packets transmitted that are 128-255 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PTC255H 7:0 0x0 RWC UNDEFINED Packets Transmitted Count (128-255 Bytes) High
Number of packets transmitted that are 128-255 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PTC511L 31:0 0x0 RWC UNDEFINED Packets Transmitted Count (256-511 Bytes) Low
Number of packets transmitted that are 256-511 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

613875-009 2409

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.104 Packets Transmitted [256-511 Bytes] Count High -
GLPRT_PTC511H[n] (0x00380C44 + 0x8*n, n=0...7; RWC)

13.2.2.23.105 Packets Transmitted [512-1023 Bytes] Count Low -
GLPRT_PTC1023L[n] (0x00380C80 + 0x8*n, n=0...7; RWC)

13.2.2.23.106 Packets Transmitted [512-1023 Bytes] Count High -
GLPRT_PTC1023H[n] (0x00380C84 + 0x8*n, n=0...7; RWC)

13.2.2.23.107 Packets Transmitted [1024-1522 Bytes] Count Low -
GLPRT_PTC1522L[n] (0x00380CC0 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

PTC511H 7:0 0x0 RWC UNDEFINED Packets Transmitted Count (256-511 Bytes) High
Number of packets transmitted that are 256-511 bytes in length (from
<Destination Address> through <CRC>, inclusively). The low and high
registers are part of a 64-bit register and are read using 64-bit read
accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PTC1023L 31:0 0x0 RWC UNDEFINED Packets Transmitted Count (512-1023 Bytes) Low
Number of packets transmitted that are 512-1023 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PTC1023H 7:0 0x0 RWC UNDEFINED Packets Transmitted Count (512-1023 Bytes) High
Number of packets transmitted that are 512-1023 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PTC1522L 31:0 0x0 RWC UNDEFINED Packets Transmitted Count (1024-1522 Bytes) Low
Number of packets transmitted that are 1024-1522 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2410 613875-009

13.2.2.23.108 Packets Transmitted [1024-1522 Bytes] Count High -
GLPRT_PTC1522H[n] (0x00380CC4 + 0x8*n, n=0...7; RWC)

13.2.2.23.109 Packets Transmitted [1523-9522 bytes] Count Low -
GLPRT_PTC9522L[n] (0x00380D00 + 0x8*n, n=0...7; RWC)

13.2.2.23.110 Packets Transmitted [1523-9522 bytes] Count High -
GLPRT_PTC9522H[n] (0x00380D04 + 0x8*n, n=0...7; RWC)

13.2.2.23.111 Priority XON Transmitted Count - GLPRT_PXONTXC[n,m]
(0x00380D40 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

13.2.2.23.112 Priority XON Transmitted Count - GLPRT_PXONTXC_H[n,m]
(0x00380D44 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

PTC1522H 7:0 0x0 RWC UNDEFINED Packets Transmitted Count (1024-1522 Bytes) High
Number of packets transmitted that are 1024-1522 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PTC9522L 31:0 0x0 RWC UNDEFINED Packets Transmitted Count (1523-9522 Bytes) Low
Number of packets transmitted that are 1523-9522 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

PTC9522H 7:0 0x0 RWC UNDEFINED Packets Transmitted Count (1523-9522 Bytes) High
Number of packets transmitted that are 1523-9522 bytes in length (from
<Destination Address> through <CRC>, inclusively).
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PRPXONTXC 31:0 0x0 RWC UNDEFINED Priority XON Transmitted Count
Number of XON packets transmitted. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

PRPXONTXC 31:0 0x0 RWC UNDEFINED Priority XON Transmitted Count
Number of XON packets transmitted. Array of eight per port.

613875-009 2411

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.113 Priority XOFF Transmitted Count - GLPRT_PXOFFTXC[n,m]
(0x00380F40 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)

13.2.2.23.114 Priority XOFF Transmitted Count -
GLPRT_PXOFFTXC_H[n,m] (0x00380F44 + 0x8*n +
0x40*m, n=0...7, m=0...7; RWC)

13.2.2.23.115 Port Link XON Transmitted Count - GLPRT_LXONTXC[n]
(0x00381140 + 0x8*n, n=0...7; RWC)

13.2.2.23.116 Port Link XON Transmitted Count - GLPRT_LXONTXC_H[n]
(0x00381144 + 0x8*n, n=0...7; RWC)

13.2.2.23.117 Port Link XOFF Transmitted Count - GLPRT_LXOFFTXC[n]
(0x00381180 + 0x8*n, n=0...7; RWC)

13.2.2.23.118 Port Link XOFF Transmitted Count - GLPRT_LXOFFTXC_H[n]
(0x00381184 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

PRPXOFFTXC 31:0 0x0 RWC UNDEFINED Priority XOFF Transmitted Count
Number of XOFF packets transmitted. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

PRPXOFFTXC 31:0 0x0 RWC UNDEFINED Priority XOFF Transmitted Count
Number of XOFF packets transmitted. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

LXONTXC 31:0 0x0 RWC UNDEFINED Link XON Transmitted Count
Number of XON packets transmitted. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

LXONTXC 31:0 0x0 RWC UNDEFINED Link XON Transmitted Count
Number of XON packets transmitted. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

LXOFFTXC 31:0 0x0 RWC UNDEFINED Link XOFF Transmitted Count
Number of XOFF packets transmitted. Array of eight per port.

Field Bit(s) Init. Type CFG Policy Description

LXOFFTXC 31:0 0x0 RWC UNDEFINED Link XOFF Transmitted Count
Number of XOFF packets transmitted. Array of eight per port.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2412 613875-009

13.2.2.23.119 Port Unicast Packets Transmit Count Low - GLPRT_UPTCL[n]
(0x003811C0 + 0x8*n, n=0...7; RWC)

13.2.2.23.120 Port Unicast Packets Transmit Count High -
GLPRT_UPTCH[n] (0x003811C4 + 0x8*n, n=0...7; RWC)

13.2.2.23.121 Port Multicast Packets Transmit Count Low -
GLPRT_MPTCL[n] (0x00381200 + 0x8*n, n=0...7; RWC)

13.2.2.23.122 Port Multicast Packets Transmit Count High -
GLPRT_MPTCH[n] (0x00381204 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

VUPTCH 31:0 0x0 RWC UNDEFINED Unicast Packets Transmit Count Low
Transmit unicast packet count. Counts the number of unicast packets
transmitted by this port. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

UPTCH 7:0 0x0 RWC UNDEFINED Unicast Packets Transmit Count High
Transmit unicast packet count. Counts the number of unicast packets
transmitted by this port. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MPTCL 31:0 0x0 RWC UNDEFINED Multicast Packets Transmit Count Low
Transmit multicast packet count. Counts the number of multicast packets
transmitted by this port. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

MPTCH 7:0 0x0 RWC UNDEFINED Multicast Packets Transmit Count High
Transmit multicast packet count. Counts the number of multicast packets
transmitted by this port. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

613875-009 2413

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.123 Port Broadcast Packets Transmit Count Low -
GLPRT_BPTCL[n] (0x00381240 + 0x8*n, n=0...7; RWC)

13.2.2.23.124 Port Broadcast Packets Transmit Count High -
GLPRT_BPTCH[n] (0x00381244 + 0x8*n, n=0...7; RWC)

13.2.2.23.125 Transmit Discard on Link Down - GLPRT_TDOLD[n]
(0x00381280 + 0x8*n, n=0...7; RWC)

13.2.2.23.126 Transmit Discard on Link Down - GLPRT_TDOLD_H[n]
(0x00381284 + 0x8*n, n=0...7; RWC)

13.2.2.23.127 Port Unicast Packets Received Count Low -
GLPRT_UPRCL[n] (0x00381300 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

UPRCH 31:0 0x0 RWC UNDEFINED Broadcast Packets Transmit Count Low
Transmit broadcast packet count. Counts the number of broadcast
packets transmitted by this port. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

UPRCH 7:0 0x0 RWC UNDEFINED Broadcast Packets Transmit Count High
Transmit broadcast packet count. Counts the number of broadcast
packets transmitted by this port. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GLPRT_TDOLD 31:0 0x0 RWC UNDEFINED Transmit Discard on Link Down
Packets discarded at the port because the link was down.

Field Bit(s) Init. Type CFG Policy Description

GLPRT_TDOLD 31:0 0x0 RWC UNDEFINED Transmit Discard on Link Down
Packets discarded at the port because the link was down.

Field Bit(s) Init. Type CFG Policy Description

UPRCL 31:0 0x0 RWC UNDEFINED Unicast Packets Received Count Low
Receive unicast packet count. Counts the number of unicast packets
received by this port. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2414 613875-009

13.2.2.23.128 Port Unicast Packets Received Count High -
GLPRT_UPRCH[n] (0x00381304 + 0x8*n, n=0...7; RWC)

13.2.2.23.129 Port Multicast Packets Received Count Low -
GLPRT_MPRCL[n] (0x00381340 + 0x8*n, n=0...7; RWC)

13.2.2.23.130 Port Multicast Packets Received Count High -
GLPRT_MPRCH[n] (0x00381344 + 0x8*n, n=0...7; RWC)

13.2.2.23.131 Port Broadcast packets received count low -
GLPRT_BPRCL[n] (0x00381380 + 0x8*n, n=0...7; RWC)

Field Bit(s) Init. Type CFG Policy Description

UPRCH 7:0 0x0 RWC UNDEFINED Unicast Packets Received Count High
Receive unicast packet count. Counts the number of unicast packets
received by this port. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MPRCL 31:0 0x0 RWC UNDEFINED Multicast Packets Received Count Low
Receive multicast packet count. Counts the number of multicast packets
received by this port. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

Field Bit(s) Init. Type CFG Policy Description

MPRCH 7:0 0x0 RWC UNDEFINED Multicast Packets Received Count High
Receive multicast packet count. Counts the number of multicast packets
received by this port. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UPRCH 31:0 0x0 RWC UNDEFINED Broadcast Packets Received Count Low
Receive broadcast packet count. Counts the number of broadcast
packets received by this port. Lower 32 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

613875-009 2415

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.132 Port Broadcast Packets Received Count High -
GLPRT_BPRCH[n] (0x00381384 + 0x8*n, n=0...7; RWC)

13.2.2.23.133 ACL Counter Bank 0 LSBs - GLSTAT_ACL_CNT_0_L[n]
(0x00388000 + 0x8*n, n=0...511; RWC)

13.2.2.23.134 ACL Counter Bank 0 MSBs - GLSTAT_ACL_CNT_0_H[n]
(0x00388004 + 0x8*n, n=0...511; RWC)

13.2.2.23.135 ACL Counter Bank 1 LSBs - GLSTAT_ACL_CNT_1_L[n]
(0x00389000 + 0x8*n, n=0...511; RWC)

13.2.2.23.136 ACL Counter Bank 1 MSBs - GLSTAT_ACL_CNT_1_H[n]
(0x00389004 + 0x8*n, n=0...511; RWC)

Field Bit(s) Init. Type CFG Policy Description

UPRCH 7:0 0x0 RWC UNDEFINED Broadcast Packets Received Count High
Receive broadcast packet count. Counts the number of broadcast
packets received by this port. Higher 8 bits.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CNT_LSB 31:0 0x0 RWC UNDEFINED Counter LSB
Packet octet packet byte count or packet count for ACL hits from ACL
action - bank0.

Field Bit(s) Init. Type CFG Policy Description

CNT_MSB 7:0 0x0 RWC UNDEFINED Counter MSB
Packet octet packet byte count or packet count for ACL hits from ACL
action - bank0.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CNT_LSB 31:0 0x0 RWC UNDEFINED Counter LSB
Packet octet packet byte count or packet count for ACL hits from ACL
action - bank1.

Field Bit(s) Init. Type CFG Policy Description

CNT_MSB 7:0 0x0 RWC UNDEFINED Counter MSB
Packet octet packet byte count or packet count for ACL hits from ACL
action - bank1.

RESERVED 31:8 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2416 613875-009

13.2.2.23.137 ACL Counter Bank 2 LSBs - GLSTAT_ACL_CNT_2_L[n]
(0x0038A000 + 0x8*n, n=0...511; RWC)

13.2.2.23.138 ACL Counter Bank 2 MSBs - GLSTAT_ACL_CNT_2_H[n]
(0x0038A004 + 0x8*n, n=0...511; RWC)

13.2.2.23.139 ACL Counter Bank 3 LSBs - GLSTAT_ACL_CNT_3_L[n]
(0x0038B000 + 0x8*n, n=0...511; RWC)

13.2.2.23.140 ACL Counter Bank 3 MSBs - GLSTAT_ACL_CNT_3_H[n]
(0x0038B004 + 0x8*n, n=0...511; RWC)

13.2.2.23.141 Global Packet Byte Statistic Counter Bank 0 Low -
GLSTAT_FD_CNT0L[n] (0x003A0000 + 0x8*n, n=0...4095;
RWC)

Field Bit(s) Init. Type CFG Policy Description

CNT_LSB 31:0 0x0 RWC UNDEFINED Counter LSB
Packet octet packet byte count or packet count for ACL hits from ACL
action - bank2.

Field Bit(s) Init. Type CFG Policy Description

CNT_MSB 7:0 0x0 RWC UNDEFINED Counter MSB
Packet octet packet byte count or packet count for ACL hits from ACL
action - bank2.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CNT_LSB 31:0 0x0 RWC UNDEFINED Counter LSB
Packet octet packet byte count or packet count for ACL hits from ACL
action - bank3.

Field Bit(s) Init. Type CFG Policy Description

CNT_MSB 7:0 0x0 RWC UNDEFINED Counter MSB
Packet octet packet byte count or packet count for ACL hits from ACL
action - bank3.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FD0_CNT_L 31:0 0x0 RWC UNDEFINED FD0 Counter Low
Low 32 bits of packet/byte counter referenced by FD filters.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

613875-009 2417

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.142 Global Packet Byte Statistic Counter Bank 0 High -
GLSTAT_FD_CNT0H[n] (0x003A0004 + 0x8*n, n=0...4095;
RWC)

13.2.2.23.143 Global Packet Byte Statistic Counter Bank 1 Low -
GLSTAT_FD_CNT1L[n] (0x003A8000 + 0x8*n, n=0...4095;
RWC)

13.2.2.23.144 Global Packet Byte Statistic Counter Bank 1 High -
GLSTAT_FD_CNT1H[n] (0x003A8004 + 0x8*n, n=0...4095;
RWC)

Field Bit(s) Init. Type CFG Policy Description

FD0_CNT_H 7:0 0x0 RWC UNDEFINED FD0 Counter High
High 8 bits of packet/byte counter referenced by FD filters.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FD0_CNT_L 31:0 0x0 RWC UNDEFINED FD1 Counter Low
Low 32 bits of packet/byte counter referenced by FD filters.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

FD0_CNT_H 7:0 0x0 RWC UNDEFINED FD1 Counter High
High 8 bits of packet/byte counter referenced by FD filters.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

RESERVED 31:8 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

2418 613875-009

13.2.2.23.145 VSI Good Octets Received Count Low - GLV_GORCL[n]
(0x003B0000 + 0x8*n, n=0...767; RWC)

13.2.2.23.146 VSI Good Octets Received Count High - GLV_GORCH[n]
(0x003B0004 + 0x8*n, n=0...767; RWC)

13.2.2.23.147 VSI Unicast Packets Received Count Low - GLV_UPRCL[n]
(0x003B2000 + 0x8*n, n=0...767; RWC)

13.2.2.23.148 VSI Unicast Packets Received Count High - GLV_UPRCH[n]
(0x003B2004 + 0x8*n, n=0...767; RWC)

Field Bit(s) Init. Type CFG Policy Description

GORCL 31:0 0x0 RWC UNDEFINED Good Octets Received Count Low
Receive octet count. Counts the number of bytes received by this VSI.
Lower 32 bits.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

GORCH 7:0 0x0 RWC UNDEFINED Good Octets Received Count High
Receive octet count. Counts the number of bytes received by this VSI.
Higher 8 bits.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UPRCL 31:0 0x0 RWC UNDEFINED Unicast Packets Received Count Low
Receive unicast packet count. Counts the number of unicast packets
received by this VSI. Lower 32 bits.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

UPRCH 7:0 0x0 RWC UNDEFINED Unicast Packets Received Count High
Receive unicast packet count. Counts the number of unicast packets
received by this VSI. Higher 8 bits.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

RESERVED 31:8 0x0 RSV N/A Reserved.

613875-009 2419

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Statistics Registers

13.2.2.23.149 VSI Multicast Packets Received Count Low - GLV_MPRCL[n]
(0x003B4000 + 0x8*n, n=0...767; RWC)

13.2.2.23.150 VSI Multicast Packets Received Count High - GLV_MPRCH[n]
(0x003B4004 + 0x8*n, n=0...767; RWC)

13.2.2.23.151 VSI Broadcast Packets Received Count Low - GLV_BPRCL[n]
(0x003B6000 + 0x8*n, n=0...767; RWC)

13.2.2.23.152 VSI Broadcast Packets Received Count High -
GLV_BPRCH[n] (0x003B6004 + 0x8*n, n=0...767; RWC)

Field Bit(s) Init. Type CFG Policy Description

MPRCL 31:0 0x0 RWC UNDEFINED Multicast Packets Received Count Low
Receive multicast packet count. Counts the number of multicast packets
received by this VSI. Lower 32 bits.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

MPRCH 7:0 0x0 RWC UNDEFINED Multicast Packets Received Count High
Receive multicast packet count. Counts the number of multicast packets
received by this VSI. Higher 8 bits.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BPRCL 31:0 0x0 RWC UNDEFINED Broadcast Packets Received Count Low
Receive broadcast packet count. Counts the number of broadcast
packets received by this VSI. Lower 32 bits.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

BPRCH 7:0 0x0 RWC UNDEFINED Broadcast Packets Received Count High
Receive broadcast packet count. Counts the number of broadcast
packets received by this VSI. Higher 8 bits.
The low and high registers are part of a 64-bit register and can be read
using 64-bit read accesses. It is implemented internally breaking the
read request into two 32-bit reads. Reading the low 32 bits latches the
high 32 bits into a shadow register. Reading the high 32 bits returns the
value in the shadow register.

RESERVED 31:8 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2420 613875-009

13.2.2.24 PF - Protocol Engine Statistics Registers

13.2.2.24.1 Protocol Engine Statistics Received VLAN_ID Errors -
GLPES_PFRXVLANERR[n] (0x00540000 + 0x4*n, n=0...127;
RW1C)

13.2.2.24.2 Protocol Engine Statistics IPv4 Received Octets Low -
GLPES_PFIP4RXOCTSLO[n] (0x00540400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.3 Protocol Engine Statistics IPv4 Received Octets High -
GLPES_PFIP4RXOCTSHI[n] (0x00540404 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RXVLANERR 23:0 0x0 RW1C DYNAMIC Received VLAN_ID Errors
Counts the number of packets received by the Protocol Engine with
incorrect VLAN_ID.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP4RXOCTSLO 31:0 0x0 RW1C DYNAMIC IPv4 Received Octets Low
Counts the number of IPv4 octets received by the Protocol Engine.
This is the low 32 bits of the 48-bit counter. This counter is not
incremented for received IPv4 multicast packets. Software must add a
value of this counter to the IPv4 Multicast Octet counter to calculate a
total number of octets received.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP4RXOCTSHI 15:0 0x0 RW1C DYNAMIC IPv4 Received Octets High
Counts the number of IPv4 octets received by the Protocol Engine.
This is the high 16 bits of the 48-bit counter. This counter is not
incremented for received IPv4 multicast packets. Software must add a
value of this counter to the IPv4 Multicast Octet counter to calculate a
total number of octets received.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2421

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.4 Protocol Engine Statistics IPv4 Received Packets Low -
GLPES_PFIP4RXPKTSLO[n] (0x00540C00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.5 Protocol Engine Statistics IPv4 Received Packets High -
GLPES_PFIP4RXPKTSHI[n] (0x00540C04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.6 Protocol Engine Statistics IPv4 Discards -
GLPES_PFIP4RXDISCARD[n] (0x00541400 + 0x4*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP4RXPKTSLO 31:0 0x0 RW1C DYNAMIC IPv4 Received Packets Low
Counts the number of IPv4 packets received by the Protocol Engine.
This is the low 32 bits of the 48-bit counter. This counter is not
incremented for received IPv4 multicast packets. Software must add a
value of this counter to the IPv4 Multicast Packet counter to calculate a
total number of packets received.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP4RXPKTSHI 15:0 0x0 RW1C DYNAMIC IPv4 Received Packets High
Counts the number of IPv4 packets received by the Protocol Engine.
This is the high 16 bits of the 48-bit counter. This counter is not
incremented for received IPv4 multicast packets. Software must add a
value of this counter to the IPv4 Multicast Packet counter to calculate a
total number of packets received.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP4RXDISCARD 31:0 0x0 RW1C DYNAMIC IPv4 Received Discarded
Counts the number of IPv4 packets received by the Protocol Engine
without errors and discarded.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2422 613875-009

13.2.2.24.7 Protocol Engine Statistics IPv4 Truncated Packets -
GLPES_PFIP4RXTRUNC[n] (0x00541800 + 0x4*n,
n=0...127; RW1C)

13.2.2.24.8 Protocol Engine Statistics IPv4 Received Fragments Low -
GLPES_PFIP4RXFRAGSLO[n] (0x00541C00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.9 Protocol Engine Statistics IPv4 Received Fragments High -
GLPES_PFIP4RXFRAGSHI[n] (0x00541C04 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP4RXTRUNC 31:0 0x0 RW1C DYNAMIC IPv4 Received Truncated
Counts the number of IPv4 packets received by the Protocol Engine and
truncated due to insufficient payload or header buffering space in RQ
descriptors.

Field Bit(s) Init. Type CFG Policy Description

IP4RXFRAGSLO 31:0 0x0 RW1C DYNAMIC IPv4 Received Fragments Low
Counts the number of IPv4 fragments received by the Protocol
Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP4RXFRAGSHI 15:0 0x0 RW1C DYNAMIC IPv4 Received Fragments High
Counts the number of IPv4 fragments received by the Protocol
Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2423

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.10 Protocol Engine Statistics IPv4 Received Multicast Octets
Low - GLPES_PFIP4RXMCOCTSLO[n] (0x00542400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.11 Protocol Engine Statistics IPv4 Received Multicast Octets
High - GLPES_PFIP4RXMCOCTSHI[n] (0x00542404 +
0x8*n, n=0...127; RW1C)

13.2.2.24.12 Protocol Engine Statistics IPv4 Received Multicast Packets
Low - GLPES_PFIP4RXMCPKTSLO[n] (0x00542C00 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP4RXMCOCTSLO 31:0 0x0 RW1C DYNAMIC IPv4 Received Multicast Octets Low
Counts the number of IPv4 multicast octets received by the
Protocol Engine.
This is the low 32 bits of the 48-bit counter. This counter does not
count number of octets of the multicast packets replicated inside
Protocol Engine.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP4RXMCOCTSHI 15:0 0x0 RW1C DYNAMIC IPv4 Received Multicast Octets High
Counts the number of IPv4 multicast octets received by the
Protocol Engine.
This is the high 16 bits of the 48-bit counter. This counter does not
count number of octets of the multicast packets replicated inside
Protocol Engine.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP4RXMCPKTSLO 31:0 0x0 RW1C DYNAMIC IPv4 Received Multicast Packets Low
Counts the number of IPv4 multicast packets received by the
Protocol Engine.
This is the low 32 bits of the 48-bit counter. This counter does not
count number of multicast packets replicated inside Protocol
Engine.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2424 613875-009

13.2.2.24.13 Protocol Engine Statistics IPv4 Received Multicast Packets
High - GLPES_PFIP4RXMCPKTSHI[n] (0x00542C04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.14 Protocol Engine Statistics IPv6 Received Octets Low -
GLPES_PFIP6RXOCTSLO[n] (0x00543400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.15 Protocol Engine Statistics IPv6 Received Octets High -
GLPES_PFIP6RXOCTSHI[n] (0x00543404 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP4RXMCPKTSHI 15:0 0x0 RW1C DYNAMIC IPv4 Received Multicast Packets High
Counts the number of IPv4 multicast packets received by the
Protocol Engine.
This is the high 16 bits of the 48-bit counter. This counter does not
count number of multicast packets replicated inside Protocol
Engine.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP6RXOCTSLO 31:0 0x0 RW1C DYNAMIC Pv6 Received Octets Low
Counts the number of IPv6 octets received by the Protocol Engine.
This is the low 32 bits of the 48-bit counter. This counter is not
incremented for received IPv6 multicast packets. Software must add a
value of this counter to the IPv6 Multicast Octet counter to calculate a
total number of octets received.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP6RXOCTSHI 15:0 0x0 RW1C DYNAMIC Pv6 Received Octets High
Counts the number of IPv6 octets received by the Protocol Engine.
This is the high 16 bits of the 48-bit counter. This counter is not
incremented for received IPv6 multicast packets. Software must add a
value of this counter to the IPv6 Multicast Octet counter to calculate a
total number of octets received.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2425

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.16 Protocol Engine Statistics IPv6 Received Packets Low -
GLPES_PFIP6RXPKTSLO[n] (0x00543C00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.17 Protocol Engine Statistics IPv6 Received Packets High -
GLPES_PFIP6RXPKTSHI[n] (0x00543C04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.18 Protocol Engine Statistics IPv6 Discards -
GLPES_PFIP6RXDISCARD[n] (0x00544400 + 0x4*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP6RXPKTSLO 31:0 0x0 RW1C DYNAMIC IPv6 Received Packets Low
Counts the number of IPv6 packets received by the Protocol Engine.
This is the low 32 bits of the 48-bit counter. This counter is not
incremented for received IPv6 multicast packets. Software must add a
value of this counter to the IPv6 Multicast Packet counter to calculate a
total number of packets received.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP6RXPKTSHI 15:0 0x0 RW1C DYNAMIC IPv6 Received Packets High
Counts the number of IPv6 packets received by the Protocol Engine.
This is the high 16 bits of the 48-bit counter. This counter is not
incremented for received IPv6 multicast packets. Software must add a
value of this counter to the IPv6 Multicast Packet counter to calculate
a total number of packets received.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP6RXDISCARD 31:0 0x0 RW1C DYNAMIC IPv6 Received Discarded
Counts the number of IPv6 packets received by the Protocol Engine
without errors and discarded.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2426 613875-009

13.2.2.24.19 Protocol Engine Statistics IPv6 Truncated Packets -
GLPES_PFIP6RXTRUNC[n] (0x00544800 + 0x4*n,
n=0...127; RW1C)

13.2.2.24.20 Protocol Engine Statistics IPv6 Received Fragments Low -
GLPES_PFIP6RXFRAGSLO[n] (0x00544C00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.21 Protocol Engine Statistics IPv6 Received Fragments High -
GLPES_PFIP6RXFRAGSHI[n] (0x00544C04 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP6RXTRUNC 31:0 0x0 RW1C DYNAMIC IPv6 Received Truncated
Counts the number of IPv6 packets received by the Protocol Engine and
truncated due to insufficient payload or header buffering space in RQ
descriptors.

Field Bit(s) Init. Type CFG Policy Description

IP6RXFRAGSLO 31:0 0x0 RW1C DYNAMIC IPv6 Received Fragments Low
Counts the number of IPv6 fragments received by the Protocol
Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP6RXFRAGSHI 15:0 0x0 RW1C DYNAMIC IPv6 Received Fragments High
Counts the number of IPv6 fragments received by the Protocol
Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2427

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.22 Protocol Engine Statistics IPv6 Received Multicast Octets
Low - GLPES_PFIP6RXMCOCTSLO[n] (0x00545400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.23 Protocol Engine Statistics IPv6 Received Multicast Octets
High - GLPES_PFIP6RXMCOCTSHI[n] (0x00545404 +
0x8*n, n=0...127; RW1C)

13.2.2.24.24 Protocol Engine Statistics IPv6 Received Multicast Packets
Low - GLPES_PFIP6RXMCPKTSLO[n] (0x00545C00 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP6RXMCOCTSLO 31:0 0x0 RW1C DYNAMIC IPv6 Received Multicast Octets Low
Counts the number of IPv6 multicast octets received by the
Protocol Engine.
This is the low 32 bits of the 48-bit counter. This counter does not
count number of octets of the multicast packets replicated inside
Protocol Engine.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP6RXMCPKTSHI 15:0 0x0 RW1C DYNAMIC IPv6 Received Multicast Packets High
Counts the number of IPv6 multicast packets received by the
Protocol Engine.
This is the high 16 bits of the 48-bit counter. This counter does not
count number of multicast packets replicated inside Protocol
Engine.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP6RXMCPKTSLO 31:0 0x0 RW1C DYNAMIC IPv6 Received Multicast Packets Low
Counts the number of IPv6 multicast packets received by the
Protocol Engine.
This is the low 32 bits of the 48-bit counter. This counter does not
count number of multicast packets replicated inside Protocol
Engine.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2428 613875-009

13.2.2.24.25 Protocol Engine Statistics IPv6 Received Multicast Packets
High - GLPES_PFIP6RXMCPKTSHI[n] (0x00545C04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.26 Protocol Engine Statistics IPv4 Transmitted Octets Low -
GLPES_PFIP4TXOCTSLO[n] (0x00546400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.27 Protocol Engine Statistics IPv4 Transmitted Octets High -
GLPES_PFIP4TXOCTSHI[n] (0x00546404 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP6RXMCPKTSHI 15:0 0x0 RW1C DYNAMIC IPv6 Received Multicast Packets High
Counts the number of IPv6 multicast packets received by the
Protocol Engine.
This is the high 16 bits of the 48-bit counter. This counter does not
count number of multicast packets replicated inside Protocol
Engine.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP4TXOCTSLO 31:0 0x0 RW1C DYNAMIC IPv4 Transmitted Octets Low
Counts the number of IPv4 octets supplied by the Protocol Engine to
the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP4TXOCTSHI 15:0 0x0 RW1C DYNAMIC IPv4 Transmitted Octets High
Counts the number of IPv4 octets supplied by the Protocol Engine to
the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2429

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.28 Protocol Engine Statistics IPv4 Transmitted Packets Low -
GLPES_PFIP4TXPKTSLO[n] (0x00546C00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.29 Protocol Engine Statistics IPv4 Transmitted Packets High -
GLPES_PFIP4TXPKTSHI[n] (0x00546C04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.30 Protocol Engine Statistics IPv4 Transmitted Fragments Low
- GLPES_PFIP4TXFRAGSLO[n] (0x00547400 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP4TXPKTSLO 31:0 0x0 RW1C DYNAMIC IPv4 Transmitted Packets Low
Counts the number of IPv4 packets supplied by the Protocol Engine to
the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP4TXPKTSHI 15:0 0x0 RW1C DYNAMIC IPv4 Transmitted Packets High
Counts the number of IPv4 packets supplied by the Protocol Engine to
the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP4TXFRAGSLO 31:0 0x0 RW1C DYNAMIC IPv4 Transmitted Fragments Low
Counts the number of IPv4 fragments supplied by the Protocol Engine
to the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2430 613875-009

13.2.2.24.31 Protocol Engine Statistics IPv4 Transmitted Fragments High
- GLPES_PFIP4TXFRAGSHI[n] (0x00547404 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.32 Protocol Engine Statistics IPv4 Transmitted Multicast Octets
Low - GLPES_PFIP4TXMCOCTSLO[n] (0x00547C00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.33 Protocol Engine Statistics IPv4 Transmitted Multicast Octets
High - GLPES_PFIP4TXMCOCTSHI[n] (0x00547C04 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP4TXFRAGSHI 15:0 0x0 RW1C DYNAMIC IPv4 Transmitted Fragments High
Counts the number of IPv4 fragments supplied by the Protocol Engine
to the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP4TXMCOCTSLO 31:0 0x0 RW1C DYNAMIC IPv4 Transmitted Multicast Octets Low
Counts the number of IPv4 multicast octets supplied by the
Protocol Engine to the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP4TXMCOCTSHI 15:0 0x0 RW1C DYNAMIC IPv4 Transmitted Multicast Octets High
Counts the number of IPv4 multicast octets supplied by the
Protocol Engine to the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2431

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.34 Protocol Engine Statistics IPv4 Transmitted Multicast
Packets Low - GLPES_PFIP4TXMCPKTSLO[n] (0x00548400
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.35 Protocol Engine Statistics IPv4 Transmitted Multicast
Packets High - GLPES_PFIP4TXMCPKTSHI[n] (0x00548404
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.36 Protocol Engine Statistics IPv6 Transmitted Octets Low -
GLPES_PFIP6TXOCTSLO[n] (0x00548C00 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP4TXMCPKTSLO 31:0 0x0 RW1C DYNAMIC IPv4 Transmitted Multicast Packets Low
Counts the number of IPv4 multicast packets supplied by the
Protocol Engine to the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP4TXMCPKTSHI 15:0 0x0 RW1C DYNAMIC IPv4 Transmitted Multicast Packets High
Counts the number of IPv4 multicast packets supplied by the
Protocol Engine to the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP6TXOCTSLO 31:0 0x0 RW1C DYNAMIC IPv6 Transmitted Octets Low
Counts the number of IPv6 octets supplied by the Protocol Engine to
the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2432 613875-009

13.2.2.24.37 Protocol Engine Statistics IPv6 Transmitted Octets High -
GLPES_PFIP6TXOCTSHI[n] (0x00548C04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.38 Protocol Engine Statistics IPv6 Transmitted Packets Low -
GLPES_PFIP6TXPKTSLO[n] (0x00549400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.39 Protocol Engine Statistics IPv6 Transmitted Packets High -
GLPES_PFIP6TXPKTSHI[n] (0x00549404 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP6TXOCTSHI 15:0 0x0 RW1C DYNAMIC IPv6 Transmitted Octets High
Counts the number of IPv6 octets supplied by the Protocol Engine to
the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP6TXPKTSLO 31:0 0x0 RW1C DYNAMIC IPv6 Transmitted Packets Low
Counts the number of IPv6 packets supplied by the Protocol Engine to
the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP6TXPKTSHI 15:0 0x0 RW1C DYNAMIC IPv6 Transmitted Packets High
Counts the number of IPv6 packets supplied by the Protocol Engine to
the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2433

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.40 Protocol Engine Statistics IPv6 Transmitted Fragments Low
- GLPES_PFIP6TXFRAGSLO[n] (0x00549C00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.41 Protocol Engine Statistics IPv6 Transmitted Fragments High
- GLPES_PFIP6TXFRAGSHI[n] (0x00549C04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.42 Protocol Engine Statistics IPv6 Transmitted Multicast Octets
Low - GLPES_PFIP6TXMCOCTSLO[n] (0x0054A400 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP6TXFRAGSLO 31:0 0x0 RW1C DYNAMIC IPv6 Transmitted Fragments Low
Counts the number of IPv6 fragments supplied by the Protocol Engine
to the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP6TXFRAGSHI 15:0 0x0 RW1C DYNAMIC IPv6 Transmitted Fragments High
Counts the number of IPv6 fragments supplied by the Protocol Engine
to the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP6TXMCOCTSLO 31:0 0x0 RW1C DYNAMIC IPv6 Transmitted Multicast Octets Low
Counts the number of IPv6 multicast octets supplied by the
Protocol Engine to the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2434 613875-009

13.2.2.24.43 Protocol Engine Statistics IPv6 Transmitted Multicast Octets
High - GLPES_PFIP6TXMCOCTSHI[n] (0x0054A404 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.44 Protocol Engine Statistics IPv6 Transmitted Multicast
Packets Low - GLPES_PFIP6TXMCPKTSLO[n] (0x0054AC00
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.45 Protocol Engine Statistics IPv6 Transmitted Multicast
Packets High - GLPES_PFIP6TXMCPKTSHI[n] (0x0054AC04
+ 0x8*n, n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP6TXMCOCTSHI 15:0 0x0 RW1C DYNAMIC IPv6 Transmitted Multicast Octets High
Counts the number of IPv6 multicast octets supplied by the
Protocol Engine to the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP6TXMCPKTSLO 31:0 0x0 RW1C DYNAMIC IPv6 Transmitted Multicast Packets Low
Counts the number of IPv6 multicast packets supplied by the
Protocol Engine to the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

IP6TXMCPKTSHI 15:0 0x0 RW1C DYNAMIC IPv6 Transmitted Multicast Packets High
Counts the number of IPv6 multicast packets supplied by the
Protocol Engine to the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2435

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.46 Protocol Engine Statistics IPv4 Discarded No Route Packets
- GLPES_PFIP4TXNOROUTE[n] (0x0054B400 + 0x4*n,
n=0...127; RW1C)

13.2.2.24.47 Protocol Engine Statistics IPv6 Discarded No Route Packets
- GLPES_PFIP6TXNOROUTE[n] (0x0054B800 + 0x4*n,
n=0...127; RW1C)

13.2.2.24.48 Protocol Engine Statistics TCP Received Segments Low -
GLPES_PFTCPRXSEGSLO[n] (0x0054BC00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.49 Protocol Engine Statistics TCP Received Segments High -
GLPES_PFTCPRXSEGSHI[n] (0x0054BC04 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

IP4TXNOROUTE 23:0 0x0 RW1C DYNAMIC IPv4 Transmitted No Route
Counts the number of IPv4 packets discarded due to routing problem
(no hit in ARP table).

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IP6TXNOROUTE 23:0 0x0 RW1C DYNAMIC IPv6 Transmitted No Route
Counts the number of IPv6 packets discarded due to routing problem
(no hit in ARP table).

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPRXSEGSLO 31:0 0x0 RW1C DYNAMIC TCP Received Segments Low
Counts the number of TCP segments received by the Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

TCPRXSEGSHI 15:0 0x0 RW1C DYNAMIC TCP Received Segments High
Counts the number of TCP segments received by the Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2436 613875-009

13.2.2.24.50 Protocol Engine Statistics TCP Received Segments with
Unsupported Options - GLPES_PFTCPRXOPTERR[n]
(0x0054C400 + 0x4*n, n=0...127; RW1C)

13.2.2.24.51 Protocol Engine Statistics TCP Dropped Segments due
Protocol Errors - GLPES_PFTCPRXPROTOERR[n]
(0x0054C800 + 0x4*n, n=0...127; RW1C)

13.2.2.24.52 Protocol Engine Statistics TCP Transmitted Segments Low -
GLPES_PFTCPTXSEGLO[n] (0x0054CC00 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.53 Protocol Engine Statistics TCP Transmitted Segments High -
GLPES_PFTCPTXSEGHI[n] (0x0054CC04 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

TCPRXOPTERR 23:0 0x0 RW1C DYNAMIC TCP Received Options Errors
Counts the number of TCP segments received by the Protocol Engine
with unsupported TCP options and TCP option length errors.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPRXPROTOERR 23:0 0x0 RW1C DYNAMIC TCP Received Protocol Errors
Counts the number of TCP segments received and dropped by the
Protocol Engine due to TCP protocol errors.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPTXSEGLO 31:0 0x0 RW1C DYNAMIC TCP Transmitted Segments Low
Counts the number of TCP segments supplied by the Protocol Engine to
the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

TCPTXSEGHI 15:0 0x0 RW1C DYNAMIC TCP Transmitted Segments High
Counts the number of TCP segments supplied by the Protocol Engine to
the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2437

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.54 Protocol Engine Statistics UDP Received Packets Low -
GLPES_PFUDPRXPKTSLO[n] (0x0054D400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.55 Protocol Engine Statistics UDP Received Packets High -
GLPES_PFUDPRXPKTSHI[n] (0x0054D404 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.56 Protocol Engine Statistics UDP Transmitted Packets Low -
GLPES_PFUDPTXPKTSLO[n] (0x0054DC00 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

UDPRXPKTSLO 31:0 0x0 RW1C DYNAMIC UDP Received Packets Low
Counts the number of UDP packets received by the Protocol Engine
without errors.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

UDPRXPKTSHI 15:0 0x0 RW1C DYNAMIC UDP Received Packets High
Counts the number of UDP packets received by the Protocol Engine
without errors.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

UDPTXPKTSLO 31:0 0x0 RW1C DYNAMIC UDP Transmitted Packets Low
Counts the number of UDP packets submitted by the Protocol Engine
to the lower layers for transmission.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2438 613875-009

13.2.2.24.57 Protocol Engine Statistics UDP Transmitted Packets High -
GLPES_PFUDPTXPKTSHI[n] (0x0054DC04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.58 Protocol Engine Statistics RDMA Received Write Messages
Low - GLPES_PFRDMARXWRSLO[n] (0x0054E400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.59 Protocol Engine Statistics RDMA Received Write Messages
High - GLPES_PFRDMARXWRSHI[n] (0x0054E404 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

UDPTXPKTSHI 15:0 0x0 RW1C DYNAMIC UDP Transmitted Packets High
Counts the number of UDP packets submitted by the Protocol Engine
to the lower layers for transmission.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RDMARXWRSLO 31:0 0x0 RW1C DYNAMIC RDMA Received Writes Low
Counts the number of RDMA Write messages received by the
Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

RDMARXWRSHI 15:0 0x0 RW1C DYNAMIC RDMA Received Writes High
Counts the number of RDMA Write messages received by the
Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2439

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.60 Protocol Engine Statistics RDMA Received Read Request
Messages Low - GLPES_PFRDMARXRDSLO[n] (0x0054EC00
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.61 Protocol Engine Statistics RDMA Received Read Request
Messages High - GLPES_PFRDMARXRDSHI[n] (0x0054EC04
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.62 Protocol Engine Statistics RDMA Received Send Messages
Low - GLPES_PFRDMARXSNDSLO[n] (0x0054F400 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RDMARXRDSLO 31:0 0x0 RW1C DYNAMIC RDMA Received Reads Low
Counts the number of RDMA Read Request messages received by
the Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

RDMARXRDSHI 15:0 0x0 RW1C DYNAMIC RDMA Received Reads High
Counts the number of RDMA Read Request messages received by
the Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RDMARXSNDSLO 31:0 0x0 RW1C DYNAMIC RDMA Received Sends Low
Counts the number of RDMA Send messages received by the
Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2440 613875-009

13.2.2.24.63 Protocol Engine Statistics RDMA Received Send Messages
High - GLPES_PFRDMARXSNDSHI[n] (0x0054F404 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.64 Protocol Engine Statistics RDMA Transmitted Write
Messages Low - GLPES_PFRDMATXWRSLO[n] (0x0054FC00
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.65 Protocol Engine Statistics RDMA Transmitted Write
Messages High - GLPES_PFRDMATXWRSHI[n] (0x0054FC04
+ 0x8*n, n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RDMARXSNDSHI 15:0 0x0 RW1C DYNAMIC RDMA Received Sends High
Counts the number of RDMA Send messages received by the
Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RDMARXWRSLO 31:0 0x0 RW1C DYNAMIC RDMA Transmitted Writes Low
Counts the number of RDMA Write messages transmitted by the
Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

RDMARXWRSHI 15:0 0x0 RW1C DYNAMIC RDMA Transmitted Writes High
Counts the number of RDMA Write messages transmitted by the
Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2441

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.66 Protocol Engine Statistics RDMA Transmitted Read Request
Messages Low - GLPES_PFRDMATXRDSLO[n] (0x00550400
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.67 Protocol Engine Statistics RDMA Transmitted Read Request
Messages High - GLPES_PFRDMATXRDSHI[n] (0x00550404
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.68 Protocol Engine Statistics RDMA Transmitted Send Messages
Low - GLPES_PFRDMATXSNDSLO[n] (0x00550C00 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RDMARXRDSLO 31:0 0x0 RW1C DYNAMIC RDMA Transmitted Reads Low
Counts the number of RDMA Read Request messages transmitted by
the Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

RDMARXRDSHI 15:0 0x0 RW1C DYNAMIC RDMA Transmitted Reads High
Counts the number of RDMA Read Request messages transmitted by
the Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RDMARXSNDSLO 31:0 0x0 RW1C DYNAMIC RDMA Transmitted Sends Low
Counts the number of RDMA Send messages transmitted by the
Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2442 613875-009

13.2.2.24.69 Protocol Engine Statistics RDMA Transmitted Send Messages
High - GLPES_PFRDMATXSNDSHI[n] (0x00550C04 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.70 Protocol Engine Statistics RDMA Verbs Bind Operations Low
- GLPES_PFRDMAVBNDLO[n] (0x00551400 + 0x8*n,
n=0...127; RW1C)

13.2.2.24.71 Protocol Engine Statistics RDMA Verbs Bind Operations High
- GLPES_PFRDMAVBNDHI[n] (0x00551404 + 0x8*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RDMARXSNDSHI 15:0 0x0 RW1C DYNAMIC RDMA Transmitted Sends High
Counts the number of RDMA Send messages transmitted by the
Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading the
high 32 bits returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RDMAVBNDLO 31:0 0x0 RW1C DYNAMIC RDMA Verbs Binds Low
Counts a total number of RDMA Verb Bind operations carried out by
the Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

RDMAVBNDHI 15:0 0x0 RW1C DYNAMIC RDMA Verbs Binds High
Counts a total number of RDMA Verb Bind operations carried out by
the Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits
returns the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2443

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.72 Protocol Engine Statistics RDMA Verbs Invalidate
Operations Low - GLPES_PFRDMAVINVLO[n] (0x00551C00
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.73 Protocol Engine Statistics RDMA Verbs Invalidate
Operations High - GLPES_PFRDMAVINVHI[n] (0x00551C04
+ 0x8*n, n=0...127; RW1C)

13.2.2.24.74 Protocol Engine Statistics TCP Retransmitted Segments -
GLPES_PFTCPRTXSEG[n] (0x00552400 + 0x4*n, n=0...127;
RW1C)

13.2.2.24.75 Protocol Engine Statistics Congestion Notification Packets
Ignored - GLPES_PFRXRPCNPIGNORED[n] (0x00552800 +
0x4*n, n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RDMAVINVLO 31:0 0x0 RW1C DYNAMIC RDMA Verbs Invalidates Low
Counts a total number of RDMA Verb Invalidate operations carried out
by the Protocol Engine.
This is the low 32 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

RDMAVINVHI 15:0 0x0 RW1C DYNAMIC RDMA Verbs Invalidates High
Counts a total number of RDMA Verb Invalidate operations carried out
by the Protocol Engine.
This is the high 16 bits of the 48-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally breaking
the read request into two 32-bit reads. Reading the low 32 bits latches
the high 32 bits into a shadow register. Reading the high 32 bits returns
the value in the shadow register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPRTXSEG 31:0 0x0 RW1C DYNAMIC TCP Retransmitted Segments
Counts the number of TCP segments retransmitted by the Protocol
Engine.

Field Bit(s) Init. Type CFG Policy Description

RXRPCNPIGNORED 23:0 0x0 RW1C DYNAMIC Congestion Notification Packets Ignored
Counts the number of Congestion Notification Packets (CNPs) that
have been ignored by the reaction point.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2444 613875-009

13.2.2.24.76 Protocol Engine Statistics Congestion Notification Packets
Handled - GLPES_PFRXRPCNPHANDLED[n] (0x00552C00 +
0x4*n, n=0...127; RW1C)

13.2.2.24.77 Protocol Engine Statistics with ECN Bits Indicating
Congestion Low - GLPES_PFRXNPECNMARKEDPKTSLO[n]
(0x00553000 + 0x8*n, n=0...127; RW1C)

13.2.2.24.78 Protocol Engine Statistics with ECN Bits Indicating
Congestion High - GLPES_PFRXNPECNMARKEDPKTSHI[n]
(0x00553004 + 0x8*n, n=0...127; RW1C)

13.2.2.24.79 Protocol Engine Congestion Indication Sent Count -
GLPES_PFTXNPCNPSENT[n] (0x00553800 + 0x4*n,
n=0...127; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RXRPCNPHANDLED 31:0 0x0 RW1C DYNAMIC Congestion Notification Packets Handled
Counts the number of Congestion Notification Packets (CNPs) that
have been handled by the reaction point.

Field Bit(s) Init. Type CFG Policy Description

RXNPECNMARKEDPKTSLO 31:0 0x0 RW1C DYNAMIC Congestion Notification Marked Packets Low
Counts the number of packets that have the ECN bits set
to indicate congestion.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and
are read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a
shadow register. Reading the high 32 bits returns the value
in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

RXNPECNMARKEDPKTSHI 23:0 0x0 RW1C DYNAMIC Congestion Notification Marked Packets High
Counts the number of packets that have the ECN bits set
to indicate congestion.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and
are read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a
shadow register. Reading the high 32 bits returns the value
in the shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TXNPCNPSENT 23:0 0x0 RW1C DYNAMIC Congestion Notification Packets Sent
Counts the number of Congestion Notification Packets (CNPs) that
have been sent by the reaction point.

RESERVED 31:24 0x0 RSV N/A Reserved.

613875-009 2445

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.80 Protocol Engine Statistics RDMA Received Unaligned FPDUs
- GLPES_RDMARXUNALIGN (0x0055E000; RW1C)

13.2.2.24.81 Protocol Engine Statistics RDMA Received Out of Order No
Markers FPDUs - GLPES_RDMARXOOONOMARK
(0x0055E004; RW1C)

13.2.2.24.82 Protocol Engine Statistics RDMA Received Multiple FPDUs
Low - GLPES_RDMARXMULTFPDUSLO (0x0055E008; RW1C)

13.2.2.24.83 Protocol Engine Statistics RDMA Received Multiple FPDUs
High - GLPES_RDMARXMULTFPDUSHI (0x0055E00C; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RDMRXAUNALIGN 31:0 0x0 RW1C DYNAMIC RDMA Received Unaligned
Counts the number of TCP segments received by the Protocol
Engine that probably carried unaligned FPDUs.

Field Bit(s) Init. Type CFG Policy Description

RDMAOOONOMARK 31:0 0x0 RW1C DYNAMIC RDMA Out-of-Order No Markers
Counts RDMA FPDUs received by the Protocol Engine out-of-order
and not carrying markers.

Field Bit(s) Init. Type CFG Policy Description

RDMARXMULTFPDUSLO 31:0 0x0 RW1C DYNAMIC RDMA Received Multiple FPDUs Low
Counts the number of TCP segments received by the Protocol
Engine that probably have multiple FPDUs.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and
are read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

Field Bit(s) Init. Type CFG Policy Description

RDMARXMULTFPDUSHI 23:0 0x0 RW1C DYNAMIC RDMA Received Multiple FPDUs Low
Counts the number of TCP segments received by the Protocol
Engine that probably have multiple FPDUs.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and
are read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2446 613875-009

13.2.2.24.84 Protocol Engine Statistics RDMA Out of Order Placed DDP
Segments Low - GLPES_RDMARXOOODDPLO (0x0055E010;
RW1C)

13.2.2.24.85 Protocol Engine Statistics RDMA Out of Order Placed DDP
Segments High - GLPES_RDMARXOOODDPHI (0x0055E014;
RW1C)

13.2.2.24.86 Protocol Engine Statistics TCP Received Pure Acks Low -
GLPES_TCPRXPUREACKSLO (0x0055E018; RW1C)

Field Bit(s) Init. Type CFG Policy Description

RDMARXOOODDPLO 31:0 0x0 RW1C DYNAMIC RDMA Received Out-of-Order DDP Low
Counts the number of the DDP segments received by the
Protocol Engine, and out-of-order placed.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

Field Bit(s) Init. Type CFG Policy Description

RDMARXOOODDPHI 23:0 0x0 RW1C DYNAMIC RDMA Received Out-of-Order DDP High
Counts the number of the DDP segments received by the
Protocol Engine, and out-of-order placed.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPRXPUREACKLO 31:0 0x0 RW1C DYNAMIC TCP Received Pure Acks Low
Counts the number of TCP Acks received by the Protocol Engine
carrying no data.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading
the high 32 bits returns the value in the shadow register.

613875-009 2447

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.87 Protocol Engine Statistics TCP Received Pure Acks High -
GLPES_TCPRXPUREACKHI (0x0055E01C; RW1C)

13.2.2.24.88 Protocol Engine Statistics TCP Receive First Hole Low -
GLPES_TCPRXONEHOLELO (0x0055E020; RW1C)

13.2.2.24.89 Protocol Engine Statistics TCP Received First Hole High -
GLPES_TCPRXONEHOLEHI (0x0055E024; RW1C)

Field Bit(s) Init. Type CFG Policy Description

TCPRXPUREACKHI 23:0 0x0 RW1C DYNAMIC TCP Received Pure Acks High
Counts the number of TCP Acks received by the Protocol Engine
carrying no data.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading
the high 32 bits returns the value in the shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPRXONEHOLELO 31:0 0x0 RW1C DYNAMIC TCP Receive One Hole Low
Counts the number of TCP segments received by the Protocol
Engine and opened a first TCP Hole in TCP sequence space.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading
the high 32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

TCPRXONEHOLEHI 23:0 0x0 RW1C DYNAMIC TCP Receive One Hole High
Counts the number of TCP segments received by the Protocol
Engine and opened a first TCP Hole in TCP sequence space.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading
the high 32 bits returns the value in the shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2448 613875-009

13.2.2.24.90 Protocol Engine Statistics TCP Receive Second Hole Low -
GLPES_TCPRXTWOHOLELO (0x0055E028; RW1C)

13.2.2.24.91 Protocol Engine Statistics TCP Received Second Hole High -
GLPES_TCPRXTWOHOLEHI (0x0055E02C; RW1C)

13.2.2.24.92 Protocol Engine Statistics TCP Receive Third Hole Low -
GLPES_TCPRXTHREEHOLELO (0x0055E030; RW1C)

Field Bit(s) Init. Type CFG Policy Description

TCPRXTWOHOLELO 31:0 0x0 RW1C DYNAMIC TCP Receive Two Hole Low
Counts the number of TCP segments received by the Protocol
Engine and opened a second TCP Hole in TCP sequence space.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading
the high 32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

TCPRXTWOHOLEHI 23:0 0x0 RW1C DYNAMIC TCP Receive Two Hole High
Counts the number of TCP segments received by the Protocol
Engine and opened a second TCP Hole in TCP sequence space.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low
32 bits latches the high 32 bits into a shadow register. Reading
the high 32 bits returns the value in the shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPRXTHREEHOLELO 31:0 0x0 RW1C DYNAMIC TCP Receive Three Hole Low
Counts the number of TCP segments received by the Protocol
Engine and opened a third TCP Hole in TCP sequence space.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

613875-009 2449

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.93 Protocol Engine Statistics TCP Received Third Hole High -
GLPES_TCPRXTHREEHOLEHI (0x0055E034; RW1C)

13.2.2.24.94 Protocol Engine Statistics TCP Receive Fourth Hole Low -
GLPES_TCPRXFOURHOLELO (0x0055E038; RW1C)

13.2.2.24.95 Protocol Engine Statistics TCP Receive Fourth Hole High -
GLPES_TCPRXFOURHOLEHI (0x0055E03C; RW1C)

Field Bit(s) Init. Type CFG Policy Description

TCPRXTHREEHOLEHI 23:0 0x0 RW1C DYNAMIC TCP Receive Three Hole High
Counts the number of TCP segments received by the Protocol
Engine and opened a third TCP Hole in TCP sequence space.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPRXFOURHOLELO 31:0 0x0 RW1C DYNAMIC TCP Receive Four Hole Low
Counts the number of TCP segments received by the Protocol
Engine and opened a fourth TCP Hole in TCP sequence space.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

Field Bit(s) Init. Type CFG Policy Description

TCPRXFOURHOLEHI 23:0 0x0 RW1C DYNAMIC TCP Receive Four Hole High
Counts the number of TCP segments received by the Protocol
Engine and opened a fourth TCP Hole in TCP sequence space.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

2450 613875-009

13.2.2.24.96 Protocol Engine Statistics TCP Fast Retransmissions Low -
GLPES_TCPTXRETRANSFASTLO (0x0055E040; RW1C)

13.2.2.24.97 Protocol Engine Statistics TCP Fast Retransmissions High -
GLPES_TCPTXRETRANSFASTHI (0x0055E044; RW1C)

13.2.2.24.98 Protocol Engine Statistics TCP Fast Retransmission Timeouts
Low - GLPES_TCPTXTOUTSFASTLO (0x0055E048; RW1C)

Field Bit(s) Init. Type CFG Policy Description

TCPTXRETRANSFASTLO 31:0 0x0 RW1C DYNAMIC TCP Fast Retransmissions Low
Counts the number of TCP Fast Retransmissions by the
Protocol Engine.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and
are read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

Field Bit(s) Init. Type CFG Policy Description

TCPTXRETRANSFASTHI 23:0 0x0 RW1C DYNAMIC TCP Fast Retransmissions High
Counts the number of TCP Fast Retransmissions by the
Protocol Engine.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and
are read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPTXTOUTSFASTLO 31:0 0x0 RW1C DYNAMIC TCP Fast Retransmission Timeouts Low
Counts the number of TCP retransmission timeouts by the
Protocol Engine on the connections attempting fast retransmit.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

613875-009 2451

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Statistics Registers

13.2.2.24.99 Protocol Engine Statistics TCP Fast Retransmissions
Timeouts High - GLPES_TCPTXTOUTSFASTHI (0x0055E04C;
RW1C)

13.2.2.24.100 Protocol Engine Statistics TCP Retransmission Timeouts Low
- GLPES_TCPTXTOUTSLO (0x0055E050; RW1C)

13.2.2.24.101 Protocol Engine Statistics TCP Retransmissions Timeouts
High - GLPES_TCPTXTOUTSHI (0x0055E054; RW1C)

Field Bit(s) Init. Type CFG Policy Description

TCPTXTOUTSFASTHI 23:0 0x0 RW1C DYNAMIC TCP Fast Retransmission Timeouts High
Counts the number of TCP retransmission timeouts by the
Protocol Engine on the connections attempting fast retransmit.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are
read using 64-bit read accesses only. It is implemented
internally breaking the read request into two 32-bit reads.
Reading the low 32 bits latches the high 32 bits into a shadow
register. Reading the high 32 bits returns the value in the
shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPTXTOUTSLO 31:0 0x0 RW1C DYNAMIC TCP Retransmission Timeouts Low
Counts the number of TCP retransmission timeouts by the Protocol
Engine on the connections that are not currently attempting
retransmit.
This is a low 32 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

Field Bit(s) Init. Type CFG Policy Description

TCPTXTOUTSHI 23:0 0x0 RW1C DYNAMIC TCP Retransmission Timeouts High
Counts the number of TCP retransmission timeouts by the Protocol
Engine on the connections that are not currently attempting
retransmit.
This is a high 24 bits of the 56-bit counter.
The low and high registers are part of a 64-bit register and are read
using 64-bit read accesses only. It is implemented internally
breaking the read request into two 32-bit reads. Reading the low 32
bits latches the high 32 bits into a shadow register. Reading the high
32 bits returns the value in the shadow register.

RESERVED 31:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

2452 613875-009

13.2.2.25 PF - Comm Transmit Queues Registers

13.2.2.25.1 Global Transmit Queue Head - QTX_COMM_HEAD[DBQM]
(0x000E0000 + 0x4*DBQM, DBQM=0...16383; RW)

13.2.2.25.2 Transmit Comm Scheduler Completion Queue Control -
GLCOMM_CQ_CTL[CQ] (0x000F0000 + 0x4*CQ, CQ=0...511;
RW)

13.2.2.25.3 Tx Completion Queue Context Register 0 -
GLTCLAN_CQ_CNTX0[CQ] (0x000F0800 + 0x4*CQ,
CQ=0...511; RW)

Field Bit(s) Init. Type CFG Policy Description

RESERVED 31:0 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

COMP_TYPE 2:0 000b SC UNDEFINED Completion Type
COMP_TYPE reported on marker when command opcode = 1.

RESERVED 3 0b RSV N/A Reserved.

CMD 6:4 000b SC UNDEFINED Command
Command Opcode as follows:

000b = VM Reset marker operation. Initiating this command, VM reset
completion (Completion Type = 6) is written with the VM ID
provided in the ID field. The completion queue cache line is
written to the host immediately (like in ITR event).

001b = Write current completion cache line to the host and send
marker with “Completion Type” taken from COMP_TYPE field
and VM/Q ID taken from the ID field. The completion queue
cache line is written to the host immediately (like in ITR event).

All other values are reserved.

RESERVED 15:7 0x0 RSV N/A Reserved.

ID 29:16 0x0 SC UNDEFINED ID
When Command Opcode == 0, this field represents the VM ID and is
copied to VM/Q ID field in CQ descriptor.
When Command Opcode == 1, this field is copied to VM/Q ID field in CQ
descriptor.

RESERVED 31:30 00b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RING_ADDR_LSB 31:0 0x0 RW UNDEFINED Ring Address LSB
32 LS bits of the completion queue base address.
The resolution is 128 bytes.

613875-009 2453

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

13.2.2.25.4 Tx Completion Queue Context Register 1 -
GLTCLAN_CQ_CNTX1[CQ] (0x000F1000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.5 Tx Completion Queue Context Register 2 -
GLTCLAN_CQ_CNTX2[CQ] (0x000F1800 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.6 Tx Completion Queue Context Register 3 -
GLTCLAN_CQ_CNTX3[CQ] (0x000F2000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.7 Tx Completion Queue Context Register 4 -
GLTCLAN_CQ_CNTX4[CQ] (0x000F2800 + 0x4*CQ,
CQ=0...511; RW)

Field Bit(s) Init. Type CFG Policy Description

RING_ADDR_MSB 24:0 0x0 RW UNDEFINED Ring Address MSB
25 MS bits of the completion queue base address.
The resolution is 128 bytes.

RESERVED 31:25 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RING_LEN 17:0 0x0 RW UNDEFINED Ring Length
Completion queue length in 16 completions unit (64 bytes).

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GENERATION 0 0b RW UNDEFINED Generation
Tx completion queue generation bit exposed on CQ write-back.
Value flips each ring wrap-around.

CQ_WR_PTR 22:1 0x0 RW UNDEFINED CQ Write Pointer

RESERVED 31:23 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PF_NUM 2:0 000b RW UNDEFINED PF Number
PF number of the CQ.

VMVF_NUM 12:3 0x0 RW UNDEFINED VM/VF Number
VM number or VF number.

VMVF_TYPE 14:13 00b RW UNDEFINED VM/VF Type
00b = CQ belongs to a VF. VMVF_NUM describes the VM number.
01b = CQ belongs to a VM. VMVF_NUM describes the VM number.
10b = CQ is a PF only CQ. VMVF_NUM is meaningless.
11b = Reserved.

RESERVED 31:15 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

2454 613875-009

13.2.2.25.8 Tx Completion Queue Context Register 5 -
GLTCLAN_CQ_CNTX5[CQ] (0x000F3000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.9 Tx Completion Queue Context Register 6 -
GLTCLAN_CQ_CNTX6[CQ] (0x000F3800 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.10 Tx Completion Queue Context Register 7 -
GLTCLAN_CQ_CNTX7[CQ] (0x000F4000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.11 Tx Completion Queue Context Register 8 -
GLTCLAN_CQ_CNTX8[CQ] (0x000F4800 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.12 Tx Completion Queue Context Register 9 -
GLTCLAN_CQ_CNTX9[CQ] (0x000F5000 + 0x4*CQ,
CQ=0...511; RW)

Field Bit(s) Init. Type CFG Policy Description

TPH_EN 0 0b RW UNDEFINED TPH Enable
TPH enable for CQ write accesses.

CPU_ID 8:1 0x0 RW UNDEFINED CPU ID
CPUID for CQ write accesses.

FLUSH_ON_ITR_DIS 9 0b RW UNDEFINED Flush on ITR Discard
1b = CQ flush when ITR expire is silently dropped.

RESERVED 31:10 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

613875-009 2455

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

13.2.2.25.13 Tx Completion Queue Context Register 10 -
GLTCLAN_CQ_CNTX10[CQ] (0x000F5800 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.14 Tx Completion Queue Context Register 11 -
GLTCLAN_CQ_CNTX11[CQ] (0x000F6000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.15 Tx Completion Queue Context Register 12 -
GLTCLAN_CQ_CNTX12[CQ] (0x000F6800 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.16 Tx Completion Queue Context Register 13 -
GLTCLAN_CQ_CNTX13[CQ] (0x000F7000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.17 Tx Completion Queue Context Register 14 -
GLTCLAN_CQ_CNTX14[CQ] (0x000F7800 + 0x4*CQ,
CQ=0...511; RW)

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

2456 613875-009

13.2.2.25.18 Tx Completion Queue Context Register 15 -
GLTCLAN_CQ_CNTX15[CQ] (0x000F8000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.19 Tx Completion Queue Context Register 16 -
GLTCLAN_CQ_CNTX16[CQ] (0x000F8800 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.20 Tx Completion Queue Context Register 17 -
GLTCLAN_CQ_CNTX17[CQ] (0x000F9000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.21 Tx Completion Queue Context Register 18 -
GLTCLAN_CQ_CNTX18[CQ] (0x000F9800 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.22 Tx Completion Queue Context Register 19 -
GLTCLAN_CQ_CNTX19[CQ] (0x000FA000 + 0x4*CQ,
CQ=0...511; RW)

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

613875-009 2457

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

13.2.2.25.23 Tx Completion Queue Context Register 20 -
GLTCLAN_CQ_CNTX20[CQ] (0x000FA800 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.24 Tx Completion Queue Context Register 21 -
GLTCLAN_CQ_CNTX21[CQ] (0x000FB000 + 0x4*CQ,
CQ=0...511; RW)

13.2.2.25.25 Global Transmit Comm Min/Max Packet -
GLCOMM_MIN_MAX_PKT (0x000FC064; RW)

This register is not expected to be accessed by the software.

13.2.2.25.26 Transmit Comm Scheduler Tx LAN Cache Control -
GLLAN_TCLAN_CACHE_CTL (0x000FC0B8; RW)

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

CQ_CACHLINE 31:0 0x0 RW UNDEFINED CQ Cache Line
32-bit cache line raw data.

Field Bit(s) Init. Type CFG Policy Description

MAHDL 13:0 0x2600 RW UNDEFINED Maximum Host Data Length
Maximum transmit packet size in Host buffers (defined in byte
units).

RESERVED 15:14 00b RSV N/A Reserved.

MIHDL 21:16 0x11 RW UNDEFINED Minimum Host Data Length
Minimum transmit packet size in Host buffers (defined in byte
units).

LSO_COMS_MIHDL 31:22 0x0 RW UNDEFINED Reserved.

Field Bit(s) Init. Type CFG Policy Description

MIN_FETCH_THRESH 5:0 0x8 RW UNDEFINED Minimum Fetch Threshold
Minimum fetch threshold in LAN mode. Descriptor fetch length
is rounded up to this value.

RESERVED 6 1b RSV N/A Reserved.

MIN_ALLOC_THRESH 13:7 0x18 RW UNDEFINED Minimum Allocated Threshold
Minimum number of allocated descriptors in the cache for each
cache entry. Applicable for both LAN and Comms mode.

RESERVED 21:14 0x0 RSV N/A Reserved.

RESERVED 31:22 0x240 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

2458 613875-009

13.2.2.25.27 Transmit Comm Scheduler Queue Doorbell -
QTX_COMM_DBELL[DBQM] (0x002C0000 + 0x4*DBQM,
DBQM=0...16383; RW)

13.2.2.25.28 Transmit Comm Scheduler Queue Context -
QTX_COMM_DBLQ_CNTX[n,DBLQ] (0x002D0000 + 0x400*n
+ 0x4*DBLQ, n=0...4, DBLQ=0...255; RW)

13.2.2.25.29 Transmit Comm Scheduler Queue Doorbell -
QTX_COMM_DBLQ_DBELL[DBLQ] (0x002D1400 +
0x4*DBLQ, DBLQ=0...255; RW)

13.2.2.25.30 Transmit Comm Scheduler Queue Context Data -
GLCOMM_QTX_CNTX_DATA[n] (0x002D2D40 + 0x4*n,
n=0...9; RW)

Field Bit(s) Init. Type CFG Policy Description

QTX_COMM_DBELL 31:0 0x0 RW UNDEFINED QTX Comms Doorbell
See Section 10.5 for complete description of the SSO/LSO/DROP
doorbell formats.
Note: This CSR always returns 0x0 when read and not the

written value. To get the TAIL value of some Tx-Queue,
read it from Tx-Queue context.

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
Comm DBL Queue context data.
Bit 'i' in register 'n' is mapped to bit “32*n+i” in the comm DBL queue
context described in Section 10.5.5.6.

Field Bit(s) Init. Type CFG Policy Description

TAIL 12:0 0x0 RW UNDEFINED Tail
Defines the first DBLQ DBL that the software prepares for the hardware
(it is the last valid DBLQ DBL plus one).
The DBLQ Tail is a relative descriptor index to the beginning of the DBLQ
ring. This field is applicable for Comms mode only.

RESERVED 31:13 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DATA 31:0 0x0 RW UNDEFINED Data
Comm Transmit Queue context data.
Bit 'i' in register 'n' is mapped to bit “32*n+i” in the comm transmit
queue context described in Section 10.5.5.2.1.

613875-009 2459

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

13.2.2.25.31 Global Transmit Comm Scheduler Quanta Profile -
GLCOMM_QUANTA_PROF[n] (0x002D2D68 + 0x4*n,
n=0...15; RW)

13.2.2.25.32 Global Transmit Comm Scheduler Quanta Profile -
GLCOMM_PKT_SHAPER_PROF[n] (0x002D2DA8 + 0x4*n,
n=0...7; RW)

13.2.2.25.33 Transmit Comm Scheduler Queue Context Control -
GLCOMM_QTX_CNTX_CTL (0x002D2DC8; RW)

Field Bit(s) Init. Type CFG Policy Description

QUANTA_SIZE 13:0 0x0 RW UNDEFINED Quanta Size
Configured Quanta size in bytes.
Used by hardware for LSO processing and for legacy Queue.
When it configures a legacy Queue Quanta size, the value must be
configured in 64-byte granularity (The five LS bits must be set to 0).

RESERVED 15:14 00b RSV N/A Reserved.

MAX_CMD 23:16 0x0 RW UNDEFINED Maximum Commands
Max commands generated in a single Quanta.
When a specific quanta exceeds this number, the Tx-Queue is disabled
and the PF is notified by CSR GL_MDET_TX_TCLAN.

MAX_DESC 29:24 0x0 RW UNDEFINED Maximum Descriptors
Max descriptors in a single Quanta.
When a specific quanta exceeds this number, the Tx-Queue is disabled
and the PF is notified by CSR GL_MDET_TX_TCLAN.

RESERVED 31:30 00b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PKTCNT 5:0 0x0 RW UNDEFINED Packet Count
Configured Quanta size in packets. Used in Legacy Host interface Queue.

RESERVED 31:6 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QUEUE_ID 13:0 0x0 RW UNDEFINED Queue ID
Transmit queue ID accessed by the GLCSCD_TXQ_CNTX registers.

RESERVED 15:14 00b RSV N/A Reserved.

CMD 18:16 000b RW UNDEFINED Command
Command Opcode as follows:

000b = Read operation.
001b = Write operation, update static and dynamic fields.
011b = Reset Transmit queue context state, updates all static fields.
100b = Update static fields, preserving dynamic fields.
All other values are reserved.

CMD_EXEC 19 0b RW UNDEFINED Command Execute
Setting the CMD_EXEC flag kicks off the operation.

RESERVED 31:20 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Comm Transmit Queues Registers

2460 613875-009

13.2.2.25.34 Transmit Comm Scheduler Queue Context Status -
GLCOMM_QTX_CNTX_STAT (0x002D2DCC; RW)

Field Bit(s) Init. Type CFG Policy Description

CMD_IN_PROG 0 0b RO N/A Command in Progress
Initiating a command to the GLCSCD_TXQ_CTL register (setting the
CMD_EXEC flag), the device sets the CMD_IN_PROG flag. Then, the
CMD_IN_PROG flag is cleared when the command is completed.

RESERVED 31:1 0x0 RSV N/A Reserved.

613875-009 2461

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

13.2.2.26 PF - LAN Transmit/Receive Registers

13.2.2.26.1 L2 Tag - Enable - PRT_TDPUL2TAGSEN (0x00040BA0; RW)

L2 tags functionality enable per port.

13.2.2.26.2 Transmit DCSP to TC Enforcement - IPv4 -
GL_HLP_PRT_IPG_PREAMBLE_SIZE[n] (0x00049240 +
0x4*n, n=0...20; RW)

13.2.2.26.3 Transmit TDPU Scheduler 4 Adjustment Default Recipe -
GL_TDPU_PSM_DEFAULT_RECIPE[n] (0x00049294 +
0x4*n, n=0...3; RO)

TDPU default recipe to scheduler credits four adjustments (default recipe and mode per adjustment).

Field Bit(s) Init. Type CFG Policy Description

ENABLE 7:0 0x0 RW UNDEFINED Enable
Defines the L2 tags expected on this port.

NONLAST_TAG 15:8 0x8 RW UNDEFINED Non-Last Tags
For each L2 tag, if tag with same eth_type is expected following this
tag, set the corresponding bit in this field to “1”. Otherwise, set it to
zero.
Default is 0x04 to support double VLAN.
Note: This field is implemented only in the TDPU version of this

register.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

IPG_PREAMBLE_SIZE 7:0 0x14 RW UNDEFINED IPG+Preamble Size
IPG+Preamble size for credit update adjustments to scheduler.
Configurable per HLP port.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ADD_IPG 0 0b RW UNDEFINED Add IPG
1b = The default recipe includes IPG+Preamble (as

configured in HLP_PRT_IPG_PREAMBLE size).

SUB_CRC 1 1b RW UNDEFINED Subtract CRC
0b = The default recipe subtracts four MAC CRC bytes.

SUB_ESP_TRAILER 2 1b RW UNDEFINED Subtract ESP Trailer
0b = The default recipe subtracts ESP trailer length.

INCLUDE_L2_PAD 3 1b RW UNDEFINED Include L2 Padding
0b = The default recipe subtracts the number of L2

padding bytes that were in the packet received by
the host.

1b = The default recipe adds L2 padding added by the
Transmit data processing unit.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

2462 613875-009

13.2.2.26.4 Global TSO TCP Mask First - GLLAN_TSOMSK_F
(0x00049308; RO)

TSO TCP first-segment Flags mask control.

13.2.2.26.5 Global TSO TCP Mask Middle - GLLAN_TSOMSK_M
(0x0004930C; RO)

TSO TCP middle-segments Flags mask control.

13.2.2.26.6 Global TSO TCP Mask Last - GLLAN_TSOMSK_L
(0x00049310; RO)

TSO TCP last-segment Flags mask control.

DEFAULT_UPDATE_MODE 4 0b RW UNDEFINED Default Update Mode
Default update mode (upon default recipe).

0b = For update #N, if no recipe is provided, give same
update as for update #N-1. For update #0, use
default recipe (also add L2 tags and inner VLAN if
were inserted by Tx).

1b = For update #N, if no recipe is provided, use default
recipe as configured in this CSR. (also add L2 tags
and inner VLAN if were inserted by Tx).

RESERVED 31:5 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPMSKF 11:0 0x9 RW UNDEFINED TCP Mask First
TCP Flags mask for the first segment in the TSO.
Any bit set to one in the TCPMSKF field clears the respective TCP flag in
the TSO. Bit zero relates to 'FIN' flag, bit one relates to the 'SYN' flag,
and so on.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPMSKM 11:0 0x89 RW UNDEFINED TCP Mask Middle
TCP Flags mask for the middle segments in the TSO.
See TCPMSKF for the impact of each bit in the field.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCPMSKL 11:0 0x80 RW UNDEFINED TCP Mask Last
TCP Flags mask for the last segment in the TSO.
See TCPMSKF for the impact of each bit in the field.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2463

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

13.2.2.26.7 VF PF Rx-Queue Mapping Table - VPLAN_RX_QTABLE[n,VF]
(0x00060000 + 0x800*n + 0x4*VF, n=0...15, VF=0...255;
RW)

This register affects the VF but exposed only to the parent PF.

13.2.2.26.8 VF PF DB Queue Mapping Table - VPLAN_DB_QTABLE[n,VF]
(0x00070000 + 0x800*n + 0x4*VF, n=0...3, VF=0...255;
RW)

This register affects the VF but exposed only to the parent PF.

13.2.2.26.9 VF PF Rx-Queue Range - VPLAN_RX_QBASE[VF]
(0x00072000 + 0x4*VF, VF=0...255; RW)

Field Bit(s) Init. Type CFG Policy Description

QINDEX 11:0 0xFFF RW UNDEFINED Queue Index
Defines the index of VF queue 'n' in the PF queues space, where 'n' is the
register index.
Setting the QINDEX to 0xFFF means that the queue is not valid for the
VF.
Relevant only if VPLAN_QBASE.VFQTABLE_ENA is set.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QINDEX 8:0 0x1FF RW UNDEFINED Queue Index
Defines the index of VF queue 'n' in the PF queues space, where 'n' is the
register index.
Setting the QINDEX to 0x1FF means that the queue is not valid for the
VF.
Relevant only if VPLAN_QBASE.VFQTABLE_ENA is set.

RESERVED 31:9 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VFFIRSTQ 10:0 0x0 RW UNDEFINED VF First Queue
Defines the base index of VF 'n' within the range of the PF queues,
where 'n' is the VF register index.
The VFFIRSTQ field is meaningful for this VF only if VFQTABLE_ENA
is cleared.

RESERVED 15:11 0x0 RSV N/A Reserved.

VFNUMQ 23:16 0x0 RW UNDEFINED VF Number of Queues
Defines the number of queues allocated to VF 'n' within the range of
the PF queues, where 'n' is the VF register index.
The VFNUMQ is meaningful for this VF only if VFQTABLE_ENA is
cleared.
The value should be set to the number of queues. A value of 0
means 1 queue and a value of 255 means 256 queues.

RESERVED 30:24 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

2464 613875-009

13.2.2.26.10 VF LAN RXQ Enablement - VPLAN_RXQ_MAPENA[VF]
(0x00073000 + 0x4*VF, VF=0...255; RW)

13.2.2.26.11 VF LAN TXQ Enablement - VPLAN_TXQ_MAPENA[VF]
(0x00073800 + 0x4*VF, VF=0...255; RW)

13.2.2.26.12 VF PF Rx-Queue Mapping Table -
VPDSI_RX_QTABLE[n,VP16] (0x00074C00 + 0x40*n +
0x4*VP16, n=0...15, VP16=0...15; RW)

This register affects the VF but exposed only to the parent PF.

VFQTABLE_ENA 31 1b RW UNDEFINED VSI Queue Table Enable
Selects between contiguous range of queues for this VSI vs.
scattered range:

0b = The VSI is assigned a contiguous range starting at VSIBASE.
1b = The VSI is assigned a scattered range defined by the

VSILAN_QTABLE.
Note: The default of this bit is 1b to keep backward compatibility

with the X710/XXV710/XL710.

Field Bit(s) Init. Type CFG Policy Description

RX_ENA 0 0b RW UNDEFINED Rx Enable
The VPLAN_RX_QTABLE or VPLAN_RX_QBASE for the VF are enabled
only when the RX_ENA flag is set.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TX_ENA 0 0b RW UNDEFINED Tx Enable
The VPLAN_TX_QTABLE or VPLAN_TX_QBASE for the VF are enabled only
when the TX_ENA flag is set.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PAGE_INDEX0 6:0 0x7F RW UNDEFINED Page Index 0
Defines the index of a 256-Queues Page that is associated with the
queue (@VF Address Space).
The value 0x7F stands for invalid 32-Queues Page.

RESERVED 7 0b RSV N/A Reserved.

PAGE_INDEX1 14:8 0x7F RW UNDEFINED Page Index 1
Defines the index of a 32-Queues Page that is associated with the
queue (@VF Address Space).
The value 0x7F stands for invalid 256-Queues Page.

RESERVED 15 0b RSV N/A Reserved.

PAGE_INDEX2 22:16 0x7F RW UNDEFINED Page Index 2
Defines the index of a 32-Queues Page that is associated with the
queue (@VF Address Space).
The value 0x7F stands for invalid 256-Queues Page.

RESERVED 23 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2465

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

13.2.2.26.13 PF Doorbell Queue Allocation - PFLAN_DB_QALLOC
(0x00075680; RW)

These registers define the LAN queue pairs allocation to the PFs.

13.2.2.26.14 PF Completion Queue Allocation - PFLAN_CP_QALLOC
(0x00075700; RW)

These registers define the LAN queue pairs allocation to the PFs.

PAGE_INDEX3 30:24 0x7F RW UNDEFINED Page Index 3
Defines the index of a 32-Queues Page that is associated with the
queue (@VF Address Space).
The value 0x7F stands for invalid 256-Queues Page.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FIRSTQ 7:0 0x0 RW UNDEFINED First Queue
The first Tx LAN Queue pair allocated to this PF.
Valid only if the VALID flag is set. Valid values are 0-16383.

RESERVED 15:8 0x0 RSV N/A Reserved.

LASTQ 23:16 0x0 RW UNDEFINED Last Queue
The last Tx LAN Queue pair allocated to this PF.
Valid only if the VALID flag is set. Valid values are 0-16383.

RESERVED 30:24 0x0 RSV N/A Reserved.

VALID 31 0b RW UNDEFINED VALID
Indicates that queues are allocated to this PF.
For any active PF, this flag must be set.

Field Bit(s) Init. Type CFG Policy Description

FIRSTQ 8:0 0x0 RW UNDEFINED First Queue
The first Tx LAN Queue pair allocated to this PF.
Valid only if the VALID flag is set. Valid values are 0-16383.

RESERVED 15:9 0x0 RSV N/A Reserved.

LASTQ 24:16 0x0 RW UNDEFINED Last Queue
The last Tx LAN Queue pair allocated to this PF.
Valid only if the VALID flag is set. Valid values are 0-16383.

RESERVED 30:25 0x0 RSV N/A Reserved.

VALID 31 0b RW UNDEFINED VALID
Indicates that queues are allocated to this PF.
For any active PF, this flag must be set.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

2466 613875-009

13.2.2.26.15 Global Receive Queue Control - QRX_CTRL[QRX]
(0x00120000 + 0x4*QRX, QRX=0...2047; RW)

The access type of specific fields in this register are determined individually. It is documented per field
in the internal registers space.

13.2.2.26.16 VF PF Tx-Queue Mapping Table - VPLAN_TX_QTABLE[n,VF]
(0x001C0000 + 0x800*n + 0x4*VF, n=0...15, VF=0...255;
RW)

This register affects the VF but exposed only to the parent PF.

Field Bit(s) Init. Type CFG Policy Description

QENA_REQ 0 0b RW UNDEFINED Queue Enable Request
Receive queue enable request.
Setting this bit the software should poll the QENA_STAT flag (in this
register) before using the queue. After clearing this flag the software
should poll the QENA_STAT flag before releasing the memory structures.
Once the software changes the state of the QENA_REQ flag, it must poll
the QENA_STAT flag before it is permitted to revert the state of the
QENA_REQ once again.

FAST_QDIS 1 0b RW1C DYNAMIC Fast Queue Disable
See Section 10.4.3.1.2.1 for the usage of this flag.
This flag is auto-cleared by the hardware.

QENA_STAT 2 0b RO N/A Queue Enable Status
Receive queue enable status indication.

0b = Indicated that the queue is inactive.
1b = Indicates that the queue is active.

CDE 3 0b RW UNDEFINED Conditional Drop Enable
When set, temporarily enables drop of packets of this queue passing
through a no droppable TC. The dropping starts with “no drop” TC
experiencing TO event for packet of this queue. This can be reversed by
software/firmware by resetting the CDS bit.

CDS 4 0b RW1C DYNAMIC Conditional Drop Status
When set, packets of this queue passing through a no droppable TC can
be dropped if required.
Set event - “no drop” TC experiencing TO event for packet of this queue.
Clear event - software writes 1 to this bit.

RESERVED 31:5 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QINDEX 14:0 0x7FFF RW UNDEFINED Queue Index
Defines the index of VF queue 'n' in the PF queues space, where 'n' is the
register index.
Setting the QINDEX to 0x7FFF means that the queue is not valid for the
VF.
Relevant only if VPLAN_QBASE.VFQTABLE_ENA is set.

RESERVED 31:15 0x0 RSV N/A Reserved.

613875-009 2467

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

13.2.2.26.17 VF PF Tx-Queue Range - VPLAN_TX_QBASE[VF]
(0x001D1800 + 0x4*VF, VF=0...255; RW)

13.2.2.26.18 VF PF Tx-Queue Mapping Table -
VPDSI_TX_QTABLE[n,VP16] (0x001D2000 + 0x40*n +
0x4*VP16, n=0...15, VP16=0...15; RW)

This table maps blocks of queues to DSI VFs.

Field Bit(s) Init. Type CFG Policy Description

VFFIRSTQ 13:0 0x0 RW UNDEFINED VF First Queue
Defines the base index of VF 'n' within the range of the PF queues,
where 'n' is the VF register index.
The VFFIRSTQ field is meaningful for this VSI only if the
VFQTABLE_ENA flag is cleared.

RESERVED 15:14 00b RSV N/A Reserved.

VFNUMQ 23:16 0x0 RW UNDEFINED VF Number of Queues
Defines the number of queue allocated to VF 'n' within the range of
the PF queues, where 'n' is the VF register index.
The VFNUMQ field is meaningful for this VSI only if the
VFQTABLE_ENA flag is cleared.
The value should be set to the number of queues -1 (A value of 0
means 1 queue and a value of 255 means 256 queues).

RESERVED 30:24 0x0 RSV N/A Reserved.

VFQTABLE_ENA 31 1b RW UNDEFINED VF Queue Table Enable
Selects between contiguous range of queues for this VSI vs.
scattered range:

0b = The VF is assigned a contiguous range starting at VFFIRSTQ.
1b = The VF is assigned a scattered range defined by the

VFLAN_QTABLE.
Note: The default of this bit is 1b to keep backward compatibility

with the X710/XXV710/XL710.

Field Bit(s) Init. Type CFG Policy Description

PAGE_INDEX0 6:0 0x7F RW UNDEFINED Page Index 0
Defines the index of a 256-Queues Page that is associated with the
queue (@VF Address Space).
The value 0x7F stands for invalid 256-Queues Page.

RESERVED 7 0b RSV N/A Reserved.

PAGE_INDEX1 14:8 0x7F RW UNDEFINED Page Index 1
Defines the index of a 256-Queues Page that is associated with the
queue (@VF Address Space).
The value 0x7F stands for invalid 256-Queues Page.

RESERVED 15 0b RSV N/A Reserved.

PAGE_INDEX2 22:16 0x7F RW UNDEFINED Page Index 2
Defines the index of a 256-Queues Page that is associated with the
queue (@VF Address Space).
The value 0x7F stands for invalid 256-Queues Page.

RESERVED 23 0b RSV N/A Reserved

PAGE_INDEX3 30:24 0x7F RW UNDEFINED Page Index 3
Defines the index of a 256-Queues Page that is associated with the
queue (@VF Address Space).
The value 0x7F stands for invalid 256-Queues Page.

RESERVED 31 0b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

2468 613875-009

13.2.2.26.19 PF Queue Allocation - PFLAN_RX_QALLOC (0x001D2500;
RW)

These registers define the LAN Rx-Queues allocation to the PFs.

13.2.2.26.20 PF Queue Allocation - PFLAN_TX_QALLOC (0x001D2580;
RW)

These registers define the LAN Tx-Queues allocation to the PFs.

13.2.2.26.21 Global Receive Queue Context - QRX_CONTEXT[n,QRX]
(0x00280000 + 0x2000*n + 0x4*QRX, n=0...7,
QRX=0...2047; RW)

Field Bit(s) Init. Type CFG Policy Description

FIRSTQ 10:0 0x0 RW UNDEFINED First Queue
The first LAN Queue pair allocated to this PF.
Valid only if the VALID flag is set. Valid values are 0-2047.

RESERVED 15:11 0x0 RSV N/A Reserved.

LASTQ 26:16 0x0 RW UNDEFINED Last Queue
The last LAN Queue pair allocated to this PF.
Valid only if the VALID flag is set. Valid values are 0-2047.

RESERVED 30:27 0x0 RSV N/A Reserved.

VALID 31 0b RW UNDEFINED Valid
Indicates that queues are allocated to this PF.
For any active PF, this flag must be set.

Field Bit(s) Init. Type CFG Policy Description

FIRSTQ 13:0 0x0 RW UNDEFINED First Queue
The first Tx LAN Queue pair allocated to this PF.
Valid only if the VALID flag is set. Valid values are 0-16383.

RESERVED 15:14 00b RSV N/A Reserved.

LASTQ 29:16 0x0 RW UNDEFINED Last Queue
The last Tx LAN Queue pair allocated to this PF.
Valid only if the VALID flag is set. Valid values are 0-16383.

RESERVED 30 0b RSV N/A Reserved.

VALID 31 0b RW UNDEFINED Valid
Indicates that queues are allocated to this PF.
For any active PF, this flag must be set.

Field Bit(s) Init. Type CFG Policy Description

RXQ_CONTEXT 31:0 0x0 RW UNDEFINED Receive Queues Context
Composed of eight registers per queue. Bit 'i' (i = 0...31) of register
'n' (n=0...7) defines bit “i + 32*n” in the receive queue context as
defined in Section 10.4.3.6 and its subsections.
Context structure definition includes several reserved fields. These
fields must be set to zeros.

613875-009 2469

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

13.2.2.26.22 Receive Queue Tail Update - QRX_TAIL[QRX] (0x00290000
+ 0x4*QRX, QRX=0...2047; RW)

13.2.2.26.23 Global Receive Queue ITR Expire - QRX_ITR[QRX]
(0x00292000 + 0x4*QRX, QRX=0...2047; RW)

13.2.2.26.24 Global RLAN Control 0 - GLLAN_RCTL_0 (0x002941F8;
RW1C)

13.2.2.26.25 Global RLAN Control 1 - GLLAN_RCTL_1 (0x002941FC; RW)

Field Bit(s) Init. Type CFG Policy Description

TAIL 12:0 0x0 RW UNDEFINED Tail
Defines the first descriptor that the software hands to the hardware (it is
the last valid descriptor plus one).
The Tail is a relative descriptor index to the beginning of the receive
descriptor ring.

RESERVED 31:13 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

NO_EXPR 0 0b RW UNDEFINED No Expire
When set, each completed descriptor is written immediately to host
memory.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PXE_MODE 0 1b RW1C DYNAMIC PXE Mode
When the PXE_MODE flag is set, the device fetches and writes back a
single descriptor at a time. During nominal performance operation,
(non-PXE mode), this flag must be cleared.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 11:0 0x0 RSV N/A Reserved.

RXMAX_EXPANSION 15:12 0x0 RW UNDEFINED Rx Maximum Expansion
Maximum number of bytes that can be added to a single receive
frame by the hardware offload engines.
The field is defined in 32-byte granularity.
This field must be set to 0.

RESERVED 16 0b RSV UNDEFINED Reserved.

RXDRDCTL 17 0b RW UNDEFINED Receive Descriptor Read Control
0b = Read only those descriptors starting after the latest

completed one till the end of the cache line.
1b = Always read whole cache lines.

RXDESCRDROEN 18 0b RW UNDEFINED Rx-Descriptor Read Relaxed Order Enable
Enables relaxed ordering for Rx-Descriptor reads.

0b = Relaxed ordering is disabled for Rx-Descriptor reads.
1b = Relaxed ordering is enabled for Rx-Descriptor reads.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

2470 613875-009

13.2.2.26.26 Global PF LAN Recipe - GLLAN_PF_RECIPE[n] (0x0029420C
+ 0x4*n, n=0...7; RW)

13.2.2.26.27 VF LAN TXQ Enablement - VPLAN_DSI_VF_MODE[VP16]
(0x002D2C00 + 0x4*VP16, VP16=0...15; RW)

13.2.2.26.28 VSI Receive Queue Mapping Table - VSILAN_QTABLE[n,VSI]
(0x00440000 + 0x1000*n + 0x4*VSI, n=0...7, VSI=0...767;
RW)

RXDATAWRROEN 19 0b RW UNDEFINED Rx Data Write Relaxed Order Enable
Enables relaxed ordering for Rx data writes.

0b = Relaxed ordering is disabled for Rx data writes.
1b = Relaxed ordering is enabled for Rx data writes.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RECIPE 1:0 00b RW UNDEFINED Recipe
Recipe field per PF.
Register 'n' is associated with PF 'n'.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

LAN_DSI_VF_MODE 0 0b RW UNDEFINED LAN DSI VF Mode
VF[15:0] Mode:

0b = VF is LAN.
1b = VF is DSI.

By default, VF[15:0] are LAN.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QINDEX_0 10:0 0x0 RW UNDEFINED Queue Index 0
Defines the index of the VSI queue '2*n' in the PF queues space, where
'n' is the register index.
The absolute queue index in the device space equals to QINDEX plus
PFLAN_QALLOC.FIRSTQ of the parent PF.
Setting the QINDEX to 0x7FF means that the queue is not valid.

RESERVED 15:11 0x0 RSV N/A Reserved.

QINDEX_1 26:16 0x0 RW UNDEFINED Queue Index 1
Defines the index of the VSI queue '2*n+1' in the PF queues space,
where 'n' is the register index.
The absolute queue index in the device space equals to QINDEX plus
PFLAN_QALLOC.FIRSTQ of the parent PF.
Setting the QINDEX to 0x7FF means that the queue is not valid.

RESERVED 31:27 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2471

Intel® Ethernet Controller E810 Datasheet
Programming Interface - LAN Transmit Receive Registers

13.2.2.26.29 VSI Queue Control - VSILAN_QBASE[VSI] (0x0044C000 +
0x4*VSI, VSI=0...767; RW)

Field Bit(s) Init. Type CFG Policy Description

VSIBASE 10:0 0x0 RW UNDEFINED VSI Base
Defines the base index of VSI 'n' within the range of the PF queues,
where 'n' is the VSI register index.
The VSIBASE is meaningful for this VSI only if the VSIQTABLE_ENA
is cleared.

VSIQTABLE_ENA 11 0b RW UNDEFINED VSI Queue Table Enable
Selects between contiguous range of queues for this VSI vs.
scattered range:

0b = The VSI is assigned a contiguous range starting at VSIBASE.
1b = The VSI is assigned a scattered range defined by the

VSILAN_QTABLE.

RESERVED 31:12 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

2472 613875-009

13.2.2.27 PF - TimeSync (IEEE 1588) Registers

13.2.2.27.1 Global TimeSync Enable - GLTSYN_ENA[n] (0x00088808 +
0x4*n, n=0...1; RW)

13.2.2.27.2 Global Primary TimeSync Command - GLTSYN_CMD
(0x00088810; RW)

13.2.2.27.3 Global Primary TimeSync Command SYNC Control -
GLTSYN_CMD_SYNC (0x00088814; RW)

Field Bit(s) Init. Type CFG Policy Description

TSYN_ENA 0 0b RW UNDEFINED TimeSync Enable
0b = The timer is not incremented.
1b = Enables the 1588 Primary 'n', where 'n' is the register index.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CMD 7:0 0x0 RW UNDEFINED Command
Command to be executed by the primary timer that is defined by
SEL_MASTER.

0x01 = Init the TIME registers.
0x02 = Init the INCVAL registers.
0x03 = Init both the TIME and INCVAL registers.
0x04 = Adjust the TIME registers by the ADJ registers.
0x0C = Adjust the TIME registers after the TIME cross the INIT_TIME

registers.
0x80 = Read the TIME registers of both primary timers to their

INIT_TIME registers.
All other values re reserved.

SEL_MASTER 8 0b RW UNDEFINED Select Primary
0b = Select Primary 0.
1b = Select Primary 1.

RESERVED 31:9 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SYNC 1:0 00b WO UNDEFINED Sync
Setting the SYNC field, the SYNC signals are driven to the 2 x primary
timers and all the PHYs for one clock, and then the field is auto-cleared
by the device. The affected timers are defined by the SEL_MASTER in the
GLTSYN_CMD register.
The SYNC field can be one of the following options:

00b = Reserved.
01b = Increment the counter by 1 (the LS bit in the GLTSYN_TIME_L

register).
10b = Decrement the counter by 1 (the LS bit in the GLTSYN_TIME_L

register).
11b = Execute the programmed CMD when the SYNC signals are

driven.

RESERVED 31:2 0x0 RSV N/A Reserved.

613875-009 2473

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

13.2.2.27.4 Global TimeSync Sync Delay - GLTSYN_SYNC_DLAY
(0x00088818; RW)

13.2.2.27.5 Global HH Sync Delay - GLTSYN_HH_DLAY (0x0008881C;
RW)

13.2.2.27.6 Global TimeSync Semaphore - PFTSYN_SEM (0x00088880;
RW)

Field Bit(s) Init. Type CFG Policy Description

SYNC_DELAY 4:0 0xF RW UNDEFINED Sync Delay
Delay in 1588 clocks between assertion of the SYNC in the primary
register until the CMD is forwarded to the primary timers.
Note: This value should match the delay on the top level between the

SYNC in the primary register and the PHY secondaries.
For HH, this is the delay from SYNC assertion until the actual sampling
of the timestamp.

RESERVED 31:5 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SYNC_DELAY 3:0 0x0 RW UNDEFINED Sync Delay
Delay in 1588 clocks between assertion of the SYNC in the primary
register until the CMD is forwarded to the primary timers.
Note: This value should match the delay on the top level between the

SYNC in the primary register and the PHY secondaries.
For HH, this is the delay from SYNC assertion until the actual sampling
of the timestamp.

RESERVED 31:4 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

BUSY 0 0b RCW UNDEFINED Busy
This flag is used as a semaphore indication between software entities on
the same PF or multiple PFs.
Reading the BUSY flag by software, the bit is auto-set to '1', indicating to
other software entities that the hardware resource is busy. Software
clears this flag to '0' when the hardware resource is no longer needed.

RESERVED 3:1 000b RSV N/A Reserved.

PF_OWNER 6:4 000b RO N/A PF Owner
When the BUSY flag is set, this field holds the PF that currently owns the
logic.

RESERVED 31:7 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

2474 613875-009

13.2.2.27.7 Global TimeSync Status 0 - GLTSYN_STAT[n] (0x000888C0
+ 0x4*n, n=0...1; RCW)

13.2.2.27.8 Global TimeSync Time Zero - GLTSYN_TIME_0[n]
(0x000888C8 + 0x4*n, n=0...1; RW)

13.2.2.27.9 Global TimeSync Time Low - GLTSYN_TIME_L[n]
(0x000888D0 + 0x4*n, n=0...1; RW)

Field Bit(s) Init. Type CFG Policy Description

EVENT0 0 0b RCW UNDEFINED Event 0
Set to 1b when the EVENT register zero that belongs to the 1588 primary
'n' = GLTSYN_EVNT[n,0] captures the time of an input event, where 'n' is
the register index.

EVENT1 1 0b RCW UNDEFINED Event 1
Set to 1b when the EVENT register one that belongs to the 1588 primary
'n' = GLTSYN_EVNT[n,1] captures the time of an input event, where 'n' is
the register index.

EVENT2 2 0b RCW UNDEFINED Event 2
Set to 1b when the EVENT register two that belongs to the 1588 primary
'n' = GLTSYN_EVNT[n,2] captures the time of an input event, where 'n' is
the register index.

RESERVED 3 0b RSV N/A Reserved.

TGT0 4 0b RCW UNDEFINED Target Time 0
Set to 1b when the target time zero that belongs to the 1588 primary 'n'
= GLTSYN_TGT[n,0] expires, where 'n' is the register index.

TGT1 5 0b RCW UNDEFINED Target Time 1
Set to 1b when the target time one that belongs to the 1588 primary 'n'
= GLTSYN_TGT[n,1] expires, where 'n' is the register index.

TGT2 6 0b RCW UNDEFINED Target Time 2
Set to 1b when the target time two that belongs to the 1588 primary 'n'
= GLTSYN_TGT[n,2] expires., where 'n' is the register index.

TGT3 7 0b RCW UNDEFINED Target Time 3
Set to 1b when the target time three that belongs to the 1588 primary 'n'
= GLTSYN_TGT[n,3] expires, where 'n' is the register index.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TSYNTIME_0 31:0 0x0 RW UNDEFINED TimeSync Time 0
Bits 0...31 of the 96-bit primary timer 'n', where 'n' is the register
index.
In many applications (depending on the 1588 clock and the INCVAL of
the timer), this register holds the sub-nanosecond units of the timer.

Field Bit(s) Init. Type CFG Policy Description

TSYNTIME_L 31:0 0x0 RW UNDEFINED TimeSync Time Low
Bits 32...63 of the 96-bit primary timer 'n', where 'n' is the register
index.
In many applications (depending on the 1588 clock and the INCVAL of
the timer) this register holds the 32 LS bits of the time in nanosecond
units.

613875-009 2475

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

13.2.2.27.10 Global TimeSync Time High - GLTSYN_TIME_H[n]
(0x000888D8 + 0x4*n, n=0...1; RW)

13.2.2.27.11 Global TimeSync Shadow Time Zero - GLTSYN_SHTIME_0[n]
(0x000888E0 + 0x4*n, n=0...1; RW)

13.2.2.27.12 Global TimeSync Shadow Time Low - GLTSYN_SHTIME_L[n]
(0x000888E8 + 0x4*n, n=0...1; RW)

13.2.2.27.13 Global TimeSync Shadow Time High -
GLTSYN_SHTIME_H[n] (0x000888F0 + 0x4*n, n=0...1; RW)

13.2.2.27.14 Global TimeSync HH Time Low - GLTSYN_HHTIME_L[n]
(0x000888F8 + 0x4*n, n=0...1; RO)

Field definitions are the same as those defined in Section 13.2.2.27.28.

Field Bit(s) Init. Type CFG Policy Description

TSYNTIME_H 31:0 0x0 RW UNDEFINED TimeSync Time High
Upper 32 bits of the primary timer 'n', where 'n' is the register index.

Field Bit(s) Init. Type CFG Policy Description

TSYNTIME_0 31:0 0x0 RW UNDEFINED TimeSync Time 0
Used for one of the following programming actions of the primary timer
'n', where 'n' is the register index.
• Init value for the GLTSYN_TIME_0 register at SYNC.
• Used as time limit for primary adjust action.
• Used to sample the GLTSYN_TIME_0 register at SYNC.

Field Bit(s) Init. Type CFG Policy Description

TSYNTIME_L 31:0 0x0 RW UNDEFINED TimeSync Time Low
Used for one of the following programming actions of the primary timer
'n', where 'n' is the register index:
• Init value for the GLTSYN_TIME_L register at SYNC.
• Used as time limit for primary adjust action.
• Used to sample the GLTSYN_TIME_L register at SYNC.

Field Bit(s) Init. Type CFG Policy Description

TSYNTIME_H 31:0 0x0 RW UNDEFINED TimeSync Time High
Used for one of the following programming actions of the primary timer
'n', where 'n' is the register index:
• Init value for the GLTSYN_TIME_H register at SYNC.
• Used as time limit for primary adjust action.
• Used to sample the GLTSYN_TIME_H register at SYNC.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

2476 613875-009

13.2.2.27.15 Global TimeSync HH Time High - GLTSYN_HHTIME_H[n]
(0x00088900 + 0x4*n, n=0...1; RO)

Field definitions are the same as those defined in Section 13.2.2.27.29.

13.2.2.27.16 Global TimeSync Shadow Adjust Low - GLTSYN_SHADJ_L[n]
(0x00088908 + 0x4*n, n=0...1; RW)

13.2.2.27.17 Global TimeSync Shadow Adjust High -
GLTSYN_SHADJ_H[n] (0x00088910 + 0x4*n, n=0...1; RW)

13.2.2.27.18 Global TimeSync Increment Value Low -
GLTSYN_INCVAL_L[n] (0x00088918 + 0x4*n, n=0...1; RW)

13.2.2.27.19 Global TimeSync Increment Value High -
GLTSYN_INCVAL_H[n] (0x00088920 + 0x4*n, n=0...1; RW)

Field Bit(s) Init. Type CFG Policy Description

ADJUST_L 31:0 0x0 RW UNDEFINED Adjust Low
Low 32 bits of the SHADJ register.
It can be used as the lower 32-bit init value of the GLTSYN_INCVAL or
the lower 32 bits of the adjust by 'N' command.
When used for adjust by 'N' command, negative numbers are presented
in 2’s complement format.

Field Bit(s) Init. Type CFG Policy Description

ADJUST_H 31:0 0x0 RW UNDEFINED Adjust High
High 32 bits of the SHADJ register.
It can be used as the upper 32-bit init value of the GLTSYN_INCVAL or
the lower 32 bits of the adjust by 'N' command.
When used for adjust by 'N' command, negative numbers are presented
in 2’s complement format.

Field Bit(s) Init. Type CFG Policy Description

INCVAL_L 31:0 0x0 RW UNDEFINED Increment Value Low
32 LS bits of the Increment Value added to the 96-bit 1588 primary
timer for each 1588 clock of the primary timer 'n', where 'n' is the
register index.

Field Bit(s) Init. Type CFG Policy Description

INCVAL_H 7:0 0x0 RW UNDEFINED Increment Value Low
8 MS bits of the Increment Value added to the 96-bit 1588 primary timer
for each 1588 clock.

RESERVED 31:8 0x0 RSV N/A Reserved.

613875-009 2477

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

13.2.2.27.20 Global TimeSync Target Time Low - GLTSYN_TGT_L_0[n]
(0x00088928 + 0x4*n, n=0...1; RW)

13.2.2.27.21 Global TimeSync Target Time High - GLTSYN_TGT_H_0[n]
(0x00088930 + 0x4*n, n=0...1; RW)

13.2.2.27.22 Global TimeSync Target Time Low - GLTSYN_TGT_L_1[n]
(0x00088938 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.20.

13.2.2.27.23 Global TimeSync Target Time High - GLTSYN_TGT_H_1[n]
(0x00088940 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.21.

13.2.2.27.24 Global TimeSync Target Time Low - GLTSYN_TGT_L_2[n]
(0x00088948 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.20.

13.2.2.27.25 Global TimeSync Target Time High - GLTSYN_TGT_H_2[n]
(0x00088950 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.21.

13.2.2.27.26 Global TimeSync Target Time Low - GLTSYN_TGT_L_3[n]
(0x00088958 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.20.

13.2.2.27.27 Global TimeSync Target Time High - GLTSYN_TGT_H_3[n]
(0x00088960 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.21.

Field Bit(s) Init. Type CFG Policy Description

TSYNTGTT_L 31:0 0x0 RW UNDEFINED TimeSync Target Time Low
32 LS bits of the target time 'm' of an event out in one of the AUX IO
signals of the primary timer 'n', where 'n', 'm' are the register indexes.

Field Bit(s) Init. Type CFG Policy Description

TSYNTGTT_H 31:0 0x0 RW UNDEFINED TimeSync Target Time High
32 MS bits of the target time 'm' of an event out in one of the AUX IO
signals of the primary timer 'n', where 'n', 'm' are the register indexes.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

2478 613875-009

13.2.2.27.28 Global TimeSync Event Time Low - GLTSYN_EVNT_L_0[n]
(0x00088968 + 0x4*n, n=0...1; RO)

13.2.2.27.29 Global TimeSync Event Time High - GLTSYN_EVNT_H_0[n]
(0x00088970 + 0x4*n, n=0...1; RO)

13.2.2.27.30 Global TimeSync Event Time Low - GLTSYN_EVNT_L_1[n]
(0x00088978 + 0x4*n, n=0...1; RO)

Field definitions are the same as those defined in Section 13.2.2.27.28.

13.2.2.27.31 Global TimeSync Event Time High - GLTSYN_EVNT_H_1[n]
(0x00088980 + 0x4*n, n=0...1; RO)

Field definitions are the same as those defined in Section 13.2.2.27.29.

13.2.2.27.32 Global TimeSync Event Time Low - GLTSYN_EVNT_L_2[n]
(0x00088988 + 0x4*n, n=0...1; RO)

Field definitions are the same as those defined in Section 13.2.2.27.28.

13.2.2.27.33 Global TimeSync Event Time High - GLTSYN_EVNT_H_2[n]
(0x00088990 + 0x4*n, n=0...1; RO)

Field definitions are the same as those defined in Section 13.2.2.27.29.

Field Bit(s) Init. Type CFG Policy Description

TSYNEVNT_L 31:0 0x0 RO N/A TimeSync Event Low
32 LS bits of the sampled event 'm' time.
The sampled event is defined by EVNTLVL field in the PRTTSYN_AUX
register of the primary timer 'n', where 'n', 'm' are the register indexes.

Field Bit(s) Init. Type CFG Policy Description

TSYNEVNT_H 31:0 0x0 RO N/A TimeSync Event Low
32 MS bit of the sampled event 'm' time of a 1588 event defined by the
PRTTSYN_AUX register of the primary timer 'n', where 'n', 'm' are the
register indexes.

613875-009 2479

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

13.2.2.27.34 Global TimeSync AUX Output Control -
GLTSYN_AUX_OUT_0[n] (0x00088998 + 0x4*n, n=0...1;
RW)

13.2.2.27.35 Global TimeSync AUX Output Control -
GLTSYN_AUX_OUT_1[n] (0x000889A0 + 0x4*n, n=0...1;
RW)

Field definitions are the same as those defined in Section 13.2.2.27.34.

13.2.2.27.36 Global TimeSync AUX Output Control -
GLTSYN_AUX_OUT_2[n] (0x000889A8 + 0x4*n, n=0...1;
RW)

Field definitions are the same as those defined in Section 13.2.2.27.34.

13.2.2.27.37 Global TimeSync AUX Output Control -
GLTSYN_AUX_OUT_3[n] (0x000889B0 + 0x4*n, n=0...1;
RW)

Field definitions are the same as those defined in Section 13.2.2.27.34.

Field Bit(s) Init. Type CFG Policy Description

OUT_ENA 0 0b RW UNDEFINED Output Enable
Synchronized output enablement for the matched TGT register of
primary timer 'n'.
When set to 1b, the synchronized output signal is enabled according to
the other parameters in this register.

OUTMOD 2:1 00b RW UNDEFINED Output Mode
Output signal mode of operation:

00b = Output Level Mode
01b = Flipped Output Mode
10b = Output Pulse Mode
11b = Output Clock Mode

The GPIO signals should be set as 1588 output by the
GLGEN_GPIO_CTL[n] registers.

OUTLVL 3 0b RW UNDEFINED Output Level
Output level driven on the IO signal at the Target Time.

INT_ENA 4 0b RW UNDEFINED Interrupt Enable
At 1b, interrupt is enabled for this event.

RESERVED 7:5 000b RSV N/A Reserved.

PULSEW 11:8 0x0 RW UNDEFINED Pulse Width
Output pulse width for “Output Pulse Mode” equals to 16 x (PULSEW + 1)
1588 clocks.

RESERVED 31:12 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

2480 613875-009

13.2.2.27.38 Global TimeSync Clock Out Duration - GLTSYN_CLKO_0[n]
(0x000889B8 + 0x4*n, n=0...1; RW)

13.2.2.27.39 Global TimeSync Clock Out Duration - GLTSYN_CLKO_1[n]
(0x000889C0 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.38.

13.2.2.27.40 Global TimeSync Clock Out Duration - GLTSYN_CLKO_2[n]
(0x000889C8 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.38.

13.2.2.27.41 Global TimeSync Clock Out Duration - GLTSYN_CLKO_3[n]
(0x000889D0 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.38.

13.2.2.27.42 Global TimeSync AUX Input Control - GLTSYN_AUX_IN_0[n]
(0x000889D8 + 0x4*n, n=0...1; RW)

Field Bit(s) Init. Type CFG Policy Description

TSYNCLKO 31:0 0x0 RW UNDEFINED TimeSync Clock Out
Clock output duration 'm' defined by the units of the GLTSYN_TIME_L
register, controlled by primary timer 'n' as described in Section 9.7.6.1,
where 'n', 'm' are the register indexes.

Field Bit(s) Init. Type CFG Policy Description

EVNTLVL 1:0 00b RW UNDEFINED Event Level
Event level on the I/O signal configured as 1588 input for the matched
EVENT register of primary timer 'n'.
It can be set to one of the following options:

00b = Disable
01b = Rising Edge
10b = Falling Edge
11b = Any Transition

The GPIO signals should be set as 1588 input by the
GLGEN_GPIO_CTL[n] registers.

RESERVED 3:2 00b RSV N/A Reserved.

INT_ENA 4 0b RW UNDEFINED Interrupt Enable
At 1b, interrupt is enabled for this event.

RESERVED 31:5 0x0 RSV N/A Reserved.

613875-009 2481

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

13.2.2.27.43 Global TimeSync AUX Input Control - GLTSYN_AUX_IN_1[n]
(0x000889E0 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.42.

13.2.2.27.44 Global TimeSync AUX Input Control - GLTSYN_AUX_IN_2[n]
(0x000889E8 + 0x4*n, n=0...1; RW)

Field definitions are the same as those defined in Section 13.2.2.27.42.

13.2.2.27.45 Global Hammock Harbor Timer Control - GLHH_ART_CTL
(0x000A41D4; RW)

13.2.2.27.46 Global Hammock Harbor ART Time High -
GLHH_ART_TIME_H (0x000A41D8; RO)

13.2.2.27.47 Global Hammock Harbor ART Time Low - GLHH_ART_TIME_L
(0x000A41DC; RO)

Field Bit(s) Init. Type CFG Policy Description

ACTIVE 0 0b WO UNDEFINED Active
The Firmware sets the ACTIVE flag to start the Sync procedure with the
ART. It is then cleared by the hardware at sequence completion.

TIME_OUT1 1 0b RO N/A Timeout 1
The Local Sync message is not received from the ART within time limit.

TIME_OUT2 2 0b RO N/A Timeout 2
The Sync Comp message is not received from the ART within time limit.

RESERVED 31:3 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ART_TIME_H 31:0 0x0 RO N/A ART Time High
Upper 32 bits of ART time collected in the Local Sync message.

Field Bit(s) Init. Type CFG Policy Description

ART_TIME_L 31:0 0x0 RO N/A ART Time Low
Lower 32 bits of ART time collected in the Local Sync message.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - TimeSync (IEEE 1588) Registers

2482 613875-009

13.2.2.27.48 Global Hammock Harbor Sync-Start DATA -
GLHH_ART_DATA (0x000A41E0; RO)

This register defines the HH parameters. It is restricted and should not be modified by the Software or
the firmware.

13.2.2.27.49 Global Hammock Harbor Semaphore - PFHH_SEM
(0x000A4200; RW)

Field definitions are the same as those defined in Section 13.2.2.27.6.

Field Bit(s) Init. Type CFG Policy Description

AGENT_TYPE 2:0 001b RW UNDEFINED Agent Type
001b for Free-Running type.

SYNC_TYPE 3 1b RW UNDEFINED Sync Type
1b for SyncCTR based == Type D HH.

MAX_DELAY 7:4 0x8 RW UNDEFINED Max Allow Delay
0x8 for Round Range Max.

TIME_BASE 11:8 0x1 RW UNDEFINED Time Base
0x1 for 1 ns units.

RESERVED 31:12 0x0 RW UNDEFINED Reserved. Must be set to zero.

613875-009 2483

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

13.2.2.28 PF - Protocol Engine Registers

Registers related to protocol engine functionality.

13.2.2.28.1 Protocol Engine VF CQP Doorbell - VFPE_CQPDB[VF]
(0x00500000 + 0x4*VF, VF=0...255; RW)

This register is used to post work to the Protocol Engine Control QP. Software can determine if CQP has
pending work by comparing WQHEAD to WQTAIL after reading the CQPTAIL register. Software must
first populate one or more WQEs in the CQP WQ and then put the index of the WQE following the last
populated WQE into WQHEAD to submit work to CQP.

Field definitions are the same as those defined in Section 13.2.2.28.3.

13.2.2.28.2 Protocol Engine VF CQP Tail - VFPE_CQPTAIL[VF]
(0x00500400 + 0x4*VF, VF=0...255; RO)

This register is used to determine how much work the Protocol Engine Control QP has pending.
Software can determine if CQP has pending work by comparing the last value written to WQHEAD in the
CQPDB register to WQTAIL after reading this register. This register is updated after the CQP operation is
complete.

Field definitions are the same as those defined in Section 13.2.2.28.4.

13.2.2.28.3 Protocol Engine CQP Doorbell - PFPE_CQPDB (0x00500800;
RW)

This register is used to post work to the Protocol Engine Control QP. Software can determine if CQP has
pending work by comparing WQHEAD to WQTAIL after reading the CQPTAIL register. Software must
first populate one or more WQEs in the CQP WQ and then put the index of the WQE following the last
populated WQE into WQHEAD to submit work to CQP.

13.2.2.28.4 Protocol Engine CQP Tail - PFPE_CQPTAIL (0x00500880;
RO)

This register is used to determine how much work the Protocol Engine Control QP has pending.
Software can determine if CQP has pending work by comparing the last value written to WQHEAD in the
CQPDB register to WQTAIL after reading this register. This register is updated after the CQP operation is
complete.

Field Bit(s) Init. Type CFG Policy Description

WQHEAD 10:0 0x0 RW UNDEFINED Work Queue Head
Indicates the WQE index of the next WQE that software will post to CQP.

RESERVED 31:11 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

WQTAIL 10:0 0x0 RW UNDEFINED Work Queue Tail
Indicates the WQE index of the next WQE that CQP will process.

RESERVED 30:11 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

2484 613875-009

13.2.2.28.5 Protocol Engine VF CQ Arm - VFPE_CQARM[VF]
(0x00502000 + 0x4*VF, VF=0...255; RW)

This register is used to arm a Protocol Engine Completion Queue for events in conjunction with the
Completion Queue Doorbell Shadow Area located in host memory. Arming is also frequently referred to
as requesting notification for a Completion Queue. Events can be generated when the next completion
is generated or when the next completion related to a solicited operation is generated. On read, this
register returns the value of 0.

Field definitions are the same as those defined in Section 13.2.2.28.8.

Note: This register is also located in the Protocol Engine doorbell page section of the BAR.

13.2.2.28.6 Protocol Engine VF CQ Ack - VFPE_CQACK[VF] (0x00502400
+ 0x4*VF, VF=0...255; RW)

This register is used to acknowledge a completion event for a Protocol Engine Completion Queue. The
interrupt processing logic that handles completion events must write this register to enable new events
for a completion queue.

Field definitions are the same as those defined in Section 13.2.2.28.9.

13.2.2.28.7 Protocol Engine VF AEQ Allocate - VFPE_AEQALLOC[VF]
(0x00502800 + 0x4*VF, VF=0...255; RW)

This register is used to return Asynchronous Event Queue entries back to the hardware for usage.

Field definitions are the same as those defined in Section 13.2.2.28.10.

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.28.8 Protocol Engine CQ Arm - PFPE_CQARM (0x00502C00; RW)

This register is used to arm a Protocol Engine Completion Queue for events in conjunction with the
Completion Queue Doorbell Shadow Area located in host memory. Arming is also frequently referred to
as requesting notification for a Completion Queue. Events can be generated when the next completion
is generated or when the next completion related to a solicited operation is generated. On read, this
register returns the value of 0.

Note: This register is also located in the Protocol Engine doorbell page section of the BAR.

CQP_OP_ERR 31 0b RW UNDEFINED CQP Operation Error
Indicates that CQP encountered an error processing an operation.
If software has multiple requests outstanding to CQP at the time of the
error, WQTAIL might not indicate the WQE that caused the error.

Field Bit(s) Init. Type CFG Policy Description

PECQID 18:0 0x0 RW UNDEFINED Protocol Engine Completion Queue ID
Used to arm a Protocol Engine Completion Queue for generating events.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2485

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

13.2.2.28.9 Protocol Engine CQ Ack - PFPE_CQACK (0x00502C80; RW)

This register is used to acknowledge a completion event for a Protocol Engine Completion Queue. The
interrupt processing logic that handles completion events must write this register to enable new events
for a completion queue.

13.2.2.28.10 Protocol Engine AEQ Allocate - PFPE_AEQALLOC
(0x00502D00; RW)

This register is used to return Asynchronous Event Queue entries back to the hardware for usage.

Note: 16 instances of this register are implemented for this product. The remaining instances are
reserved for future expansion.

13.2.2.28.11 Protocol Engine CQE Drop Count - GLPE_VFCQEDROPCNT[n]
(0x00503000 + 0x4*n, n=0...31; RW1C)

This register counts the number of CQEs that are dropped due to the Valid bit being cleared in the CQ
Context for this PF.

Field definitions are the same as those defined in Section 13.2.2.28.14.

Note: There are 16 of these registers, one per PF.

13.2.2.28.12 Protocol Engine CEQE Drop Count -
GLPE_VFCEQEDROPCNT[n] (0x00503080 + 0x4*n, n=0...31;
RW1C)

This register counts the number of CEQEs that are dropped due to the Valid bit being cleared in the CEQ
Context for this PF.

Field definitions are the same as those defined in Section 13.2.2.28.15.

Note: There are 16 of these registers, one per PF.

Field Bit(s) Init. Type CFG Policy Description

PECQID 18:0 0x0 RW UNDEFINED Protocol Engine Completion Queue ID
Used to enable new events for a Protocol Engine Completion Queue.

RESERVED 31:19 0x0 RSV N/A Reserved

Field Bit(s) Init. Type CFG Policy Description

AECOUNT 31:0 0x0 RW UNDEFINED Asynchronous Event Count
Specifies the number of Asynchronous Event Queue entries that have
been processed by software and can now be reused by hardware.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

2486 613875-009

13.2.2.28.13 Protocol Engine AEQE Drop Count -
GLPE_VFAEQEDROPCNT[n] (0x00503100 + 0x4*n,
n=0...31; RW1C)

This register counts the number of AEQEs that are dropped due to the Valid bit being cleared in the AEQ
Context for this PF.

Field definitions are the same as those defined in Section 13.2.2.28.16.

Note: There are 16 of these registers, one per PF.

13.2.2.28.14 Protocol Engine CQE Drop Count - GLPE_PFCQEDROPCNT[n]
(0x00503200 + 0x4*n, n=0...7; RW1C)

Note: There are 16 of these registers, one per PF.

13.2.2.28.15 Protocol Engine CEQE Drop Count -
GLPE_PFCEQEDROPCNT[n] (0x00503220 + 0x4*n, n=0...7;
RW1C)

Note: There are 16 of these registers, one per PF.

13.2.2.28.16 Protocol Engine AEQE Drop Count -
GLPE_PFAEQEDROPCNT[n] (0x00503240 + 0x4*n, n=0...7;
RW1C)

Note: There are 16 of these registers, one per PF.

Field Bit(s) Init. Type CFG Policy Description

CQEDROPCNT 15:0 0x0 RW1C DYNAMIC CQE Drop Count
Counts the number of CQEs that are dropped due to the Valid bit
being cleared in the CQ Context for this PF.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CEQEDROPCNT 15:0 0x0 RW1C DYNAMIC CEQE Drop Count
Counts the number of CEQEs that are dropped due to the Valid bit
being cleared in the CEQ Context for this PF.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

AEQEDROPCNT 15:0 0x0 RW1C DYNAMIC AEQE Drop Count
Counts the number of AEQEs that are dropped due to the Valid bit
being cleared in the AEQ Context for this PF.

RESERVED 31:16 0x0 RSV N/A Reserved.

613875-009 2487

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

13.2.2.28.17 Protocol Engine CQM Func Invalidate Register -
GLPE_CQM_FUNC_INVALIDATE (0x00503300; RO)

This register is used to invalidate all CQs and related structures internal to PE pertaining to a specific
function.

13.2.2.28.18 Protocol Engine VF WQE Allocate Register -
VFPE_WQEALLOC[VF] (0x00504000 + 0x4*VF, VF=0...255;
RW)

This register is used to post work the Protocol Engine Queue Pairs. On read, this register returns the
value of 0.

Field definitions are the same as those defined in Section 13.2.2.28.19.

Note: This register is also located in the Protocol Engine doorbell page section of the BAR.

13.2.2.28.19 Protocol Engine WQE Allocate Register - PFPE_WQEALLOC
(0x00504400; RW)

This register is used to post work the Protocol Engine Queue Pairs. On read, this register returns the
value of 0.

Field Bit(s) Init. Type CFG Policy Description

PF_NUM 2:0 000b RW UNDEFINED PF Number
Specifies the PF associated with the invalidate command.

VM_VF_NUM 12:3 0x0 RW UNDEFINED VM/VF Number
Specifies the VM or VF associated with the invalidate command.

VM_VF_TYPE 14:13 00b RW UNDEFINED VM/VF Type
Specifies the VM_VF TYPE of the function associated with the
invalidate command.

PMF_ID 20:15 0x0 RW UNDEFINED PMF ID
The PMF to invalidate.
This field is only valid for the doorbell array.

RESERVED 28:21 0x0 RSV N/A Reserved.

INVALIDATE_TYPE 30:29 00b RW UNDEFINED Invalidate Type
Specifies what is being invalidated.

00b = Invalidate CQ Cache.
01b = Invalidate doorbell array.
10b = Invalidate CQ Cache and doorbell array.
11b = Reserved.

ENABLE 31 0b RW UNDEFINED Enable
This bit is set by software to start the invalidate process, and is
cleared by hardware when the invalidate process is complete.

Field Bit(s) Init. Type CFG Policy Description

PEQPID 17:0 0x0 RW UNDEFINED Protocol Engine Queue Pair ID
This field should be used to notify hardware that new work is
available to be processed.

RESERVED 19:18 00b RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

2488 613875-009

Note: This register is also located in the Protocol Engine doorbell page section of the BAR.

13.2.2.28.20 Protocol Engine VF Create CQP Status -
VFPE_CCQPSTATUS[VF] (0x00508000 + 0x4*VF,
VF=0...255; RO)

This register is used to indicate the progress of creating the control QP for a given PCI function. During
host software initialization, these bits are initially 0. Each bit is set when the associated step of the
initialization process completes.

Field definitions are the same as those defined in Section 13.2.2.28.27.

13.2.2.28.21 Protocol Engine VF Create CQP Low - VFPE_CCQPLOW[VF]
(0x00508400 + 0x4*VF, VF=0...255; RW)

This register stores the lower 32 bits of the 64-bit physical address of the Control QP context for its
associated PCI function. Under host software control, each PCI function uses its Create Control QP
High/Low registers to create its corresponding Control QP. The 64-bit address must always be updated
by writing the GLPE_CCQPLOW field last. Writing a 0 to both GLPE_CCQPHIGH and GLPE_CCQLOW
destroys the CQP and clears the GLPE_CCQPSTATUS.CCQP_DONE bit.

Field definitions are the same as those defined in Section 13.2.2.28.28.

13.2.2.28.22 Protocol Engine VF Create CQP High - VFPE_CCQPHIGH[VF]
(0x00508800 + 0x4*VF, VF=0...255; RW)

This register stores the upper 32 bits of the 64-bit physical address of the Control QP context for its
associated PCI function.

Field definitions are the same as those defined in Section 13.2.2.28.29.

13.2.2.28.23 Protocol Engine VF IP Config 0 - VFPE_IPCONFIG0[VF]
(0x00508C00 + 0x4*VF, VF=0...255; RW)

This register is used to set or view the IPID field that the Protocol Engine writes into the IP header. The
Protocol Engine increments this value for each outgoing IP datagram.

Field definitions are the same as those defined in Section 13.2.2.28.30.

WQE_DESC_INDEX 31:20 0x0 RW UNDEFINED WQE Descriptor Index
Indicates a high 12 bits of the WQE Index in the Send Queue.
This field is used to identify a Push Mode message in the head of
the SQ. Push Mode message is processed by hardware only if it is
in the head of the Send Queue, and otherwise it is dropped and
processed when WQE is re-fetched during regular transmit
operation.
This field is used for the Push Mode Doorbells only. For the regular
Doorbells, this field should be treated as reserved, and ignored by
hardware.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2489

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

13.2.2.28.24 Protocol Engine VF CQP Error Codes -
VFPE_CQPERRCODES[VF] (0x00509000 + 0x4*VF,
VF=0...255; RO)

This register reports errors encountered by CQP when CQ0 is not available. The contents of this register
are only valid when the associated CCQPSTATUS.CCQP_ERR bit or CQPTAIL.CQP_ERR bit is set.

Field definitions are the same as those defined in Section 13.2.2.28.31.

13.2.2.28.25 Protocol Engine VF TCP Now Timer -
VFPE_TCPNOWTIMER[VF] (0x00509400 + 0x4*VF,
VF=0...255; RO)

This register is a readable register, which contains TCP_NOW, a 32-bit counter that provides the TCP
time measurement for the all of the timers. It is also used to calculate the TS Value sent in the TCP
timestamp option, TCP_NOW is added to TSVAL_TICK_DELTA to form the TS Value.

Field definitions are the same as those defined in Section 13.2.2.28.32.

13.2.2.28.26 Protocol Engine VF MRTE Index Mask -
VFPE_MRTEIDXMASK[VF] (0x00509800 + 0x4*VF,
VF=0...255; RO)

This register is used to change the number of significant bits to be used as the Memory Region Table
index. The maximum number of bits that may be used is 22, and the minimum number of bits is 14.
The number of bits should never be larger than the number of HMC MRTE objects defined for the HMC
PM function associated with the PCI function. The remaining bits of the driver portion of the STag are
randomized by the driver.

Field definitions are the same as those defined in Section 13.2.2.28.33.

13.2.2.28.27 Protocol Engine Create CQP Status - PFPE_CCQPSTATUS
(0x0050A000; RO)

This register is used to indicate the progress of creating the control QP for a given PCI function. During
host software initialization, these bits are initially 0. Each bit is set when the associated step of the
initialization process completes.

Field Bit(s) Init. Type CFG Policy Description

CCQP_DONE 0 0b RW UNDEFINED Create CQP Done
0b = Indicates that CQP has not been created.
1b = Indicates that the Create CQP operation triggered by writing to

PECCQPHIGH and PECCQPLOW has completed.

RESERVED 3:1 000b RSV N/A Reserved.

HMC_PROFILE 6:4 000b RW UNDEFINED HMC Profile
Specifies the HMC resource profile that is active.

000b = Reserved
001b = Default
010b = SR-IOV VF Primary
011b = SR-IOV Even Distribution
All other values are reserved.

RESERVED 15:7 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

2490 613875-009

13.2.2.28.28 Protocol Engine Create CQP Low - PFPE_CCQPLOW
(0x0050A080; RW)

This register stores the lower 32 bits of the 64-bit physical address of the Control QP context for its
associated PCI function. Under host software control, each PCI function uses its Create Control QP
High/Low registers to create its corresponding Control QP. The 64-bit address must always be updated
by writing the GLPE_CCQPLOW field last. Writing a 0 to both GLPE_CCQPHIGH and GLPE_CCQLOW
destroys the CQP and clears the GLPE_CCQPSTATUS.CCQP_DONE bit.

13.2.2.28.29 Protocol Engine Create CQP High - PFPE_CCQPHIGH
(0x0050A100; RW)

This register stores the upper 32 bits of the 64-bit physical address of the Control QP context for its
associated PCI function.

13.2.2.28.30 Protocol Engine IP Config 0 - PFPE_IPCONFIG0
(0x0050A180; RW)

This register is used to set or view the IPID field that the Protocol Engine writes into the IP header. The
Protocol Engine increments this value for each outgoing IP datagram.

RDMA_EN_VFS 21:16 0x0 RW UNDEFINED RDMA Enabled VFs
Specifies the number of RDMA enabled VFs allocated in the HMC
Resource Profile.

RESERVED 30:22 0x0 RSV N/A Reserved.

CCQP_ERR 31 0b RW UNDEFINED Create CQP Error
Indicates that CQP encountered an error processing the last Create
CQP request.
This bit is reset when CQP is destroyed.

Field Bit(s) Init. Type CFG Policy Description

PECCQPLOW 31:0 0x0 RW UNDEFINED Protocol Engine Create CQP Low
Least significant bits of the Control QP context physical address in host
memory.

Field Bit(s) Init. Type CFG Policy Description

PECCQPHIGH 31:0 0x0 RW UNDEFINED Protocol Engine Create CQP High
Most significant bits of the Control QP context physical address in host
memory.

Field Bit(s) Init. Type CFG Policy Description

PEIPID 15:0 0x0 RW UNDEFINED Protocol Engine IP ID
Specifies the IP Identification field used for IPv4 IP
Header Generation.
This register is initialized by firmware or driver, and
incremented by hardware with each IPv4 datagram
transmitted by PE both UDA and iWARP on the given PCI
function.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2491

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

13.2.2.28.31 Protocol Engine CQP Error Codes - PFPE_CQPERRCODES
(0x0050A200; RO)

This register reports errors encountered by CQP when CQ0 is not available. The contents of this register
are only valid when the associated CCQPSTATUS.CCQP_ERR bit or CQPTAIL.CQP_ERR bit is set.

13.2.2.28.32 Protocol Engine TCP Now Timer - PFPE_TCPNOWTIMER
(0x0050A280; RO)

This register is a readable register, which contains TCP_NOW, a 32-bit counter that provides the TCP
time measurement for the all of the timers. It is also used to calculate the TS Value sent in the TCP
timestamp option, TCP_NOW is added to TSVAL_TICK_DELTA to form the TS Value.

USEENTIREIDRANGE 16 0b RW UNDEFINED Use Entire ID Range
Specifies that the Protocol Engine should use the entire
16-bit range for the IPID value.
When this bit is not set, only the lower 15 bits are used,
and the upper bit is set to the value in PEIPID[15].

UDP_SRC_PORT_MASK_EN 17 0b RW UNDEFINED UDP Source Port Mask Enable
When this bit is set (enabled), for RoCE v2 QPs on the
associated function, the UDP Source Port field is
interpreted as a entropy mask, except if UDP Source Port
is 0x0 (copied directly to packet in this case).
For every “0” bit in the UDP Source Port field, the
respective UDP packet header bit is randomized based on
associated Destination QP ID and Destination IP Address
(from Address Handle).
For every “1” bit in the UDP Source Port field, the
respective bit is copied directly as-is to the UDP packet
header. This allows for selecting up to any 15 bits of UDP
source port for entropy inclusion in the packet. The intent
is to enable UDP ECMP capability in the network fabric,
where supported in connecting equipment.
When this bit is clear (disabled), the UDP Source Port
field is simply copied as-is per software QP configuration
to the UDP packet header.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

CQP_MINOR_CODE 15:0 0x0 RW UNDEFINED CQP Minor Code
Minor code that would have been reported in a CQP Completion.

CQP_MAJOR_CODE 31:16 0x0 RW UNDEFINED CQP Major Code
Major code that would have been reported in a CQP Completion.

Field Bit(s) Init. Type CFG Policy Description

TCP_NOW 31:0 0x0 RO N/A TCP Now
Current value of TCP_NOW.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

2492 613875-009

13.2.2.28.33 Protocol Engine MRTE Index Mask - PFPE_MRTEIDXMASK
(0x0050A300; RO)

This register is used to change the number of significant bits to be used as the Memory Region Table
index. The maximum number of bits that may be used is 22, and the minimum number of bits is 14.
The number of bits should never be larger than the number of HMC MRTE objects defined for the HMC
PM function associated with the PCI function. The remaining bits of the driver portion of the STag are
randomized by the driver.

13.2.2.28.34 Protocol Engine TCP Now 50us Count -
GLPE_VFTCPNOW50USCNT[n] (0x0050B300 + 0x4*n,
n=0...31; RO)

Tracks the number of TCPNOW ticks which occur in 50 μs.

Field definitions are the same as those defined in Section 13.2.2.28.39.

13.2.2.28.35 Protocol Engine FLM XMIT Allocate Error -
GLPE_VFFLMXMITALLOCERR[n] (0x0050B400 + 0x4*n,
n=0...31; RO)

This register holds a count of the XMIT free list allocation errors.

Field definitions are the same as those defined in Section 13.2.2.28.40.

13.2.2.28.36 Protocol Engine FLM Q1 Allocate Error -
GLPE_VFFLMQ1ALLOCERR[n] (0x0050B480 + 0x4*n,
n=0...31; RO)

This register holds a count of the Q1 free list allocation errors.

Field definitions are the same as those defined in Section 13.2.2.28.41.

13.2.2.28.37 Protocol Engine FLM Read Response Allocate Error -
GLPE_VFFLMRRFALLOCERR[n] (0x0050B500 + 0x4*n,
n=0...31; RO)

This register holds a count of the Read Response free list allocation errors.

Field definitions are the same as those defined in Section 13.2.2.28.42.

Field Bit(s) Init. Type CFG Policy Description

MRTEIDXMASKBITS 4:0 0x0 RW UNDEFINED MRTE Index Mask Bits
Specifies the number of bits to be used for the MRTE index from
the driver portion of the STag.
The remaining bits (24 - MRTEIDEMASKBITS) are randomized by
the driver. The minimum value for this field is 14 and the
maximum is 22. Values outside of this range are normalized to
14 or 22 by the hardware.

RESERVED 31:5 0x0 RSV N/A Reserved.

613875-009 2493

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

13.2.2.28.38 Protocol Engine FLM Out of Order Send Completion (OOISC)
Allocate Error - GLPE_VFFLMOOISCALLOCERR[n]
(0x0050B580 + 0x4*n, n=0...31; RO)

This register holds a count of the Read Response free list allocation errors.

Field definitions are the same as those defined in Section 13.2.2.28.43.

13.2.2.28.39 Protocol Engine TCP Now 50us Count -
GLPE_PFTCPNOW50USCNT[n] (0x0050B8C0 + 0x4*n,
n=0...7; RO)

13.2.2.28.40 Protocol Engine FLM XMIT Allocate Error -
GLPE_PFFLMXMITALLOCERR[n] (0x0050B900 + 0x4*n,
n=0...7; RO)

13.2.2.28.41 Protocol Engine FLM Q1 Allocate Error -
GLPE_PFFLMQ1ALLOCERR[n] (0x0050B920 + 0x4*n,
n=0...7; RO)

This register holds a count of the Q1 free list allocation errors.

Field Bit(s) Init. Type CFG Policy Description

CNT 31:0 0x0 RW UNDEFINED Count
Tracks the number of TCPNOW ticks which occur in 50 μs.

Field Bit(s) Init. Type CFG Policy Description

ERROR_COUNT 15:0 0x0 RO N/A Error Count
The number of failed free list allocations for this function.
Counter does not roll over. Software read resets.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ERROR_COUNT 15:0 0x0 RO N/A Error Count
The number of failed free list allocations for this function.
Counter does not roll over. Software read resets.

RESERVED 31:16 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

2494 613875-009

13.2.2.28.42 Protocol Engine FLM Read Response Allocate Error -
GLPE_PFFLMRRFALLOCERR[n] (0x0050B940 + 0x4*n,
n=0...7; RO)

This register holds a count of the Read Response free list allocation errors.

13.2.2.28.43 Protocol Engine FLM Out of Order Send Completion (OOISC)
Allocate Error - GLPE_PFFLMOOISCALLOCERR[n]
(0x0050B960 + 0x4*n, n=0...7; RO)

This register holds a count of the Read Response free list allocation errors.

13.2.2.28.44 Protocol Engine CPU Status 0 - GLPE_CPUSTATUS0
(0x0050BA5C; RO)

13.2.2.28.45 Protocol Engine CPU Status 1 - GLPE_CPUSTATUS1
(0x0050BA60; RO)

Field Bit(s) Init. Type CFG Policy Description

ERROR_COUNT 15:0 0x0 RO N/A Error Count
The number of failed free list allocations for this function.
Counter does not roll over. Software read resets.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ERROR_COUNT 15:0 0x0 RO N/A Error Count
The number of failed free list allocations for this function.
Counter does not roll over. Software read resets.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PECPUSTATUS0 31:0 0x0 RW UNDEFINED Protocol Engine CPU Status 0
Provides the Host with the current status of one of the Protocol
Engine internal CPUs.
Typically, the exclusive writer of this register is CQP, and the
exclusive reader is Host software, but other usage models are
supported.
Note: Details on the meaning of each status code are not defined

in this specification and may change with firmware revision.

Field Bit(s) Init. Type CFG Policy Description

PECPUSTATUS1 31:0 0x0 RW UNDEFINED Protocol Engine CPU Status 1
Provides the Host with the current status of one of the Protocol
Engine internal CPUs.
Typically, the exclusive writer of this register is TEP, and the
exclusive reader is Host software, but other usage models are
supported.
Note: Details on the meaning of each status code are not defined

in this specification and may change with firmware revision.

613875-009 2495

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

13.2.2.28.46 Protocol Engine CPU Status 2 - GLPE_CPUSTATUS2
(0x0050BA64; RO)

13.2.2.28.47 PEPM Control - GLPE_PEPM_CTRL (0x0050C000; RO)

13.2.2.28.48 PEPM Dealloc - GLPE_PEPM_DEALLOC (0x0050C004; RO)

Field Bit(s) Init. Type CFG Policy Description

PECPUSTATUS2 31:0 0x0 RW UNDEFINED Protocol Engine CPU Status 2
Provides the Host with the current status of one of the Protocol
Engine internal CPUs.
Typically, the exclusive writer of this register is OOP, and the
exclusive reader is Host software, but other usage models are
supported.
Note: Details on the meaning of each status code are not defined

in this specification and may change with firmware revision.

Field Bit(s) Init. Type CFG Policy Description

PEPM_ENABLE 0 0b RW UNDEFINED PEPM Enable
0b = PEPM is disabled, pepm_fc is driven to 1's, and

interfaces are blocked/NAK'ed.
1b = PEPM is enabled, pepm_fc behaves normally.

RESERVED 7:1 0x0 RSV N/A Reserved.

PEPM_HALT 8 0b RW UNDEFINED PEPM Halt
0b = PEPM is not halted, pepm_fc behaves normally.
1b = PEPM is halted, pepm_fc bits driven to '0’, and no

credits allocated or returned.

RESERVED 15:9 0x0 RSV N/A Reserved.

PEPM_PUSH_MARGIN 23:16 0x25 RW UNDEFINED PEPM Push Margin
Used to calculate when to NAK a PUSH request.
This value is subtracted from the PQID threshold value before
comparing to the incoming MDQ credit request.

RESERVED 31:24 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MDQ_CREDITS 13:0 0x0 RW UNDEFINED MDQ Credits
The number of MDQ credits to deallocate.
Must be non-zero if PSQ_CREDITS=0.

PSQ_CREDITS 18:14 0x0 RW UNDEFINED PSQ Credits
The number of PSQ credits to deallocate.
Must be non-zero if MDQ_CREDITS=0.

PQID 27:19 0x0 RW UNDEFINED PQ ID
The PQ ID associated with the credits to deallocate.
Must be <= max number of PQs supported for the current
configuration.

PORT 30:28 000b RW UNDEFINED Port
The port associated with the credits to deallocate.
Must be <= the max number of ports supported for the current
configuration.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

2496 613875-009

13.2.2.28.49 PEPM PSQ Count - GLPE_PEPM_PSQ_COUNT (0x0050C020;
RO)

13.2.2.28.50 PEPM PSQ/MDQ Count - PRT_PEPM_COUNT[n]
(0x0050C040 + 0x4*n, n=0...511; RO)

13.2.2.28.51 PEPM PQ Threshold - GLPE_PEPM_THRESH[n] (0x0050C840
+ 0x4*n, n=0...511; RO)

DEALLOC_RDY 31 0b SC UNDEFINED Deallocate Ready
This bit should be set to initiate a request to deallocate the number of
MDQ/PSQ credits indicated in this register.
This bit is cleared by hardware to indicate that the credits have been
deallocated.
This register must never be changed when the DEALLOC_RDY bit is
set, or your results will be indeterminate.

Field Bit(s) Init. Type CFG Policy Description

PEPM_PSQ_COUNT 15:0 0x0 RW UNDEFINED PEPM PSQ Count
Indicates the number of allocated PSQ credits per port.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PEPM_PSQ_COUNT 4:0 0x0 RW UNDEFINED PEPM PSQ Count
The current count for the number of entries on the PSQ (Packet
Scheduling Queue) for the PQ.
This value is incremented by allocate requests and decremented
by deallocate requests.

RESERVED 15:5 0x0 RSV N/A Reserved.

PEPM_MDQ_COUNT 29:16 0x0 RW UNDEFINED PEPM MDQ Count
The current count for the number of entries on the MDQ
(Metadata Queue) for the PQ.
This value is incremented by allocate requests and decremented
by deallocate requests.

RESERVED 31:30 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PEPM_PSQ_THRESH 4:0 0x0 RW UNDEFINED PEPM PSQ Threshold
The threshold for the PSQ (Packet Scheduling Queue) for the PQ.
This value is compared against the PSQ_COUNT to determine if
the allocation request is successful.

RESERVED 15:5 0x0 RSV N/A Reserved.

PEPM_MDQ_THRESH 29:16 0x0 RW UNDEFINED PEPM MDQ Threshold
The threshold for the MDQ (Metadata Queue) for the PQ.
This value is compared against the MDQ_COUNT to determine if
the allocation request is successful.

RESERVED 31:30 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2497

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

13.2.2.28.52 PE Push PEPM - GLPE_PUSH_PEPM (0x0053241C; RO)

Credit values for Push requests from PEPM.

13.2.2.28.53 Critical Error Status and Control - GLPE_CRITERR
(0x00534000; RW)

This register controls functions and reports status of the critical error handler.

13.2.2.28.54 MDQ Base - GLPE_MDQ_BASE[n] (0x00536000 + 0x4*n,
n=0...511; RO)

Field Bit(s) Init. Type CFG Policy Description

MDQ_CREDITS 7:0 0x29 RW UNDEFINED MDQ Credits
The number of credits Push requests from PEPM for a Push WQE
doorbell.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

ERROR_INST 5:0 0x0 RW UNDEFINED Error Instance
Specifies the error instance for the module reporting the
error.

ERROR_TYPE 7:6 00b RW UNDEFINED Error Type
Specifies the type of error generated from the module. If bit
7 is set, this is a critical error.

00b = FIFO overflow/underflow
01b = HW Checkers
10b = ECC/Parity/CRC
11b = Other Critical Errors

ERROR_MODULE 15:8 0x0 RW UNDEFINED Error Module
Specifies which module is reporting the error.

ERROR_SET 16 0b RW UNDEFINED Error Set
Status bit that is set whenever any type of Debug or Critical
error has occurred.
When ERROR_SET==1, the values in ERROR_INST,
ERROR_TYPE, and ERROR_MODULE are valid.
A write with a value of 1 clears the bit. Writes with a value
of 0 are ignored.

RESERVED 23:17 0x0 RSV N/A Reserved.

INTERRUPT_ MASK 24 0b RW UNDEFINED Interrupt Mask
Masks interrupt assertion for all errors.

DEBUG_INTERRUPT_EN 25 0b RW UNDEFINED Debug Interrupt Enable
Enables debug errors (ERROR_TYPE = 00b or 01b) to cause
interrupt assertion.

RESERVED 31:26 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MDOC_INDEX 27:0 0x0 RW UNDEFINED MDOC Index
MDOC base index for this Metadata Queue.
The MDQ starts at this index.

RESERVED 31:28 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Protocol Engine Registers

2498 613875-009

13.2.2.28.55 MDQ Size - GLPE_MDQ_SIZE[n] (0x00536800 + 0x4*n,
n=0...511; RO)

13.2.2.28.56 MDQ Pointer - GLPE_MDQ_PTR[n] (0x00537000 + 0x4*n,
n=0...511; RO)

Field Bit(s) Init. Type CFG Policy Description

MDQ_SIZE 13:0 0x0 RW UNDEFINED MDQ Size
Size of MDQ for this PQ.
The MDQ wraps at index=base+size.

RESERVED 31:14 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MDQ_HEAD 13:0 0x0 RW UNDEFINED MDQ Head
Head pointer for Metadata Queue objects in MDOC.

RESERVED 15:14 00b RSV N/A Reserved.

MDQ_TAIL 29:16 0x0 RW UNDEFINED MDQ Tail
Tail pointer for Metadata Queue objects in MDOC.

RESERVED 31:30 00b RSV N/A Reserved.

613875-009 2499

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

13.2.2.29 PF - Manageability Registers

13.2.2.29.1 MNG FW RAM Status Registers - GL_MNG_FW_RAM_STAT
(0x0008309C; RO)

13.2.2.29.2 Firmware Reset Count - GL_FWRESETCNT (0x00083100;
RO)

13.2.2.29.3 SHA Extend Value - GL_MNG_SHA_EXTEND[n] (0x00083120
+ 0x4*n, n=0...7; RO)

Can be written (by firmware) only once per EMP reset assertion.

13.2.2.29.4 SHA Extend Value Status - GL_MNG_SHA_EXTEND_STATUS
(0x00083148; RO)

Field Bit(s) Init. Type CFG Policy Description

FW_RAM_RST_STAT 0 0b RO N/A Firmware RAM Reset State
Set by firmware and cleared when RAM is initialized:
1. POR reset.
2. EMPR followed ECC reset in EMP memories.

MNG_MEM_ECC_ERR 1 0b RO N/A MNG Memory EXX Error
ECC error in one of MNG memories.
Should be cleaned by firmware.

RESERVED 31:2 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FWRESETCNT 31:0 0x0 RO N/A Firmware Resets Count
Updated by Hardware. Saturates at 0xFFFF,FFFF.

Field Bit(s) Init. Type CFG Policy Description

GL_MNG_SHA_EXTEND 31:0 0x0 RO UNDEFINED MNG SHA Extend
SHA value calculated on signed image.

Field Bit(s) Init. Type CFG Policy Description

STAGE 2:0 000b RW UNDEFINED Stage
Firmware load SHA reflected in registers:

000b = No value.
001b = ROM version (in GL_MNG_SHA_EXTEND_ROM).
010b = Mini-loader SHA (in GL_MNG_SHA_EXTEND_ROM).
011b = Mini-loader SHA (no Full FW) (in GL_MNG_SHA_EXTEND_ROM).
100b = Full firmware SHA (in GL_MNG_SHA_EXTEND) and Mini-loader

SHA (in GL_MNG_SHA_EXTEND_ROM).
All other values are reserved.

RESERVED 29:3 0x0 RSV UNDEFINED Reserved.

FW_HALTED 30 0b RW UNDEFINED Firmware Halted
If set, firmware load process was halted before completion.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

2500 613875-009

13.2.2.29.5 SHA ROM Extend Value - GL_MNG_SHA_EXTEND_ROM[n]
(0x00083160 + 0x4*n, n=0...7; RO)

Can be written (by firmware) only once per EMP reset assertion.

13.2.2.29.6 Hardware Arbitration Control - GL_MNG_HWARB_CTRL
(0x000B6130; RO)

13.2.2.29.7 Firmware Status - GL_MNG_FWSM (0x000B6134; RO)

This register reflects the firmware load status. All the bits in the registers are RW bits and the firmware
implements the functionality. Bits 15:0 are reset by EMP reset.

DONE 31 0b RW UNDEFINED Done
If set, indicates this is the final version of GL_MNG_SHA_EXTEND
expected.

Field Bit(s) Init. Type CFG Policy Description

GL_MNG_SHA_EXTEND_ROM 31:0 0x0 RO UNDEFINED MNG SHA Extend ROM
SHA value calculated on signed image.

Field Bit(s) Init. Type CFG Policy Description

NCSI_ARB_EN 0 0b RW UNDEFINED NC-SI Arbitration Enable
Hardware Arbitration Enable.
If this bit is set, it is assumed the NCSI_ARB_IN and NCSI_ARB_OUT
are connected to a Hardware arbitration ring. Otherwise, the
NCSI_ARB_IN pin is pulled up internally.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

FW_MODES 1:0 00b RW UNDEFINED Firmware Modes
Indicate in which mode the firmware operates:

00b = Normal Mode
01b = Debug mode
10b = Recovery Mode
11b = Debug + Recovery mode.

RESERVED 9:2 0x0 RW N/A Reserved.

EEP_RELOAD_IND 10 0b RW UNDEFINED EEP Reload Indication
NVM reloaded indication.
Set to 1b after firmware reloads the NVM configuration after a
Core reset.
Cleared by firmware once the first AQ command is received
from one of the drivers.

RESERVED 15:11 0x0 RW N/A Reserved.

PCIR_AL_FAILURE 16 0b RW UNDEFINED PCIR Auto-Load Failure
A PCI Reset is requested

POR_AL_FAILURE 17 0b RW UNDEFINED POR Auto-Load Failure
A Power-on Reset is requested.

RESERVED 18 0b RW N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2501

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

13.2.2.29.8 General FW Debug Registers -
GENERAL_MNG_FW_DBG_CSR[n] (0x000B6180 + 0x4*n,
n=0...9; RW)

EXT_ERR_IND 24:19 0x0 RW UNDEFINED External Error Indication
Firmware writes here the reason that the firmware operation
has stopped.
Possible values are:

0x00 = No error
0x01 = Parser module failed
0x02 = Switch module failed.
0x03 = Scheduler module failed.
0x04 = DCB module failed
0x05 = Link module failed
0x06 = LLDP module failed
0x07 = Manage module failed.
0x08 = ACL module failed
0x09 = Flow director/RSS module failed
0x3E = Mini-loader failed (If set, devices is in blank flash

programming.)
0x3F = ROM process failure (if set, devices is in blank flash

programming.)
All other values are reserved.

Note: Following error detection and
GL_MNG_FWSM.EXT_IND_ERR update, the
PFINT_ICR0.ADMINQ bit is set and an interrupt is sent
to the Host. However, when values of 0x0 is placed in
this field, the PFINT_ICR0.ADMINQ bit is not set and
an interrupt is not generated.

RESERVED 29:25 0x0 RW N/A Reserved.

PHY_FW_LOAD_BUSY 30 0b RW UNDEFINED PHY Firmware Load Busy
When PHY firmware loading is required as part of the
initialization flow, firmware sets the bit when PHY firmware
download starts, and clears once complete.

RESERVED 31 0b RW N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

GENERAL_FW_DBG 31:0 0x0 RW UNDEFINED General Firmware Debug
All-purpose general firmware debug.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

2502 613875-009

13.2.2.29.9 Management Ethernet Type Filters - PRT_MNG_METF[n]
(0x00214120 + 0x20*n, n=0...3; RO)

The METF registers are written by the BMC and are not accessible to the host for writing. The registers
are used to filter manageability packets (see Section 12.4).

Reset - The METF registers are cleared on LAN_PWR_GOOD only. The initial values for this register
might be loaded from the EEPROM after power-up reset.

13.2.2.29.10 Manageability IPv4 Address Filter - PRT_MNG_MIPAF4[n]
(0x002141A0 + 0x20*n, n=0...3; RO)

The Manageability IPv6 Address Filter register stores IPv4 Addresses for manageability filtering.

Note: These registers should be written in network order.

13.2.2.29.11 Manageability MAC Address High - PRT_MNG_MMAH[n]
(0x00214220 + 0x20*n, n=0...3; RO)

These registers contain the upper bits of the 48-bit Ethernet address. The complete address is
{MMAH,MMAL}. The MMAH registers are written by the BMC and are not accessible to the host for
writing. The registers are used to filter manageability packets (see Section 12.4).

The initial values for this register can be loaded from the EEPROM after power-up reset or firmware
reset.

Note: The MMAH.MMAH field should be written in network order.

Field Bit(s) Init. Type CFG Policy Description

ETYPE 15:0 0x0 RW UNDEFINED EtherType
EtherType value to be compared against the L2 EtherType field in the Rx
packet.
Note: Appears in Little Endian order (high byte first on the wire).

RESERVED 29:16 0x0 RSV N/A Reserved.

POLARITY 30 0b RW UNDEFINED Polarity
0b = Positive filter - Filter enters the decision filters if a match

occurred.
1b = Negative filter - Filter enters the decision filters if a match did not

occur.

RESERVED 31 0b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MIPAF 31:0 0x0 RW UNDEFINED Manageability IP Address Filters
For each n, m, m=0...3, n=0...3, MIPAF[m,n] register holds DWord `n'
of IPv6 filter `m' (4 x IPv6 filters).

Field Bit(s) Init. Type CFG Policy Description

MMAH 15:0 0x0 RW UNDEFINED Manageability MAC Address High
The upper 16 bits of the 48-bit Ethernet address.
Note: Appears in Big Endian order (MS byte of MMAH is last on the

wire).

RESERVED 31:16 0x0 RSV N/A Reserved. Reads as 0. Ignored on write.

613875-009 2503

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

13.2.2.29.12 Manageability MAC Address Low - PRT_MNG_MMAL[n]
(0x002142A0 + 0x20*n, n=0...3; RO)

These registers contain the lower bits of the 48-bit Ethernet address. The MMAL registers are written by
the internal firmware and are not accessible to the host for writing. The registers are used to filter
manageability packets (see Section 12.4).

Reset - The MMAL registers are cleared on LAN_PWR_GOOD only. The initial values for this register can
be loaded from the EEPROM after power-up reset.

Note: The MMAH.MMAL field should be written in network order.

13.2.2.29.13 Management Flex UDP/TCP Ports - PRT_MNG_MFUTP[n]
(0x00214320 + 0x20*n, n=0...15; RO)

Each 32-bit register (n=0...15) refers to one UDP/TCP port filter.

The MFUTP registers are written by the BMC and are not accessible to the host for writing. The registers
are used to filter manageability packets (see Section 12.4).

Reset - The MFUTP registers are cleared on LAN_PWR_GOOD only. The initial values for this register can
be loaded from the EEPROM after power-up reset.

Note: The MFUTP_N fields should be written in network order.

13.2.2.29.14 Manageability IPv6 Address Filter - PRT_MNG_MIPAF6[n]
(0x00214520 + 0x20*n, n=0...15; RO)

The Manageability IPv6 Address Filter register stores IPv6 Addresses for manageability filtering.

Note: These registers should be written in network order.

Field Bit(s) Init. Type CFG Policy Description

MMAL 31:0 0x0 RW UNDEFINED Manageability MAC Address Low
The lower 32 bits of the 48-bit Ethernet address.
Note: Appears in Big Endian order (LS byte of MMAL is first on the

wire).

Field Bit(s) Init. Type CFG Policy Description

MFUTP_N 15:0 0x0 RW UNDEFINED Management Flex UDP/TCP Ports n
n-th Management Flex UDP/TCP port.

UDP 16 0b RW UNDEFINED UDP
Match if port is UDP

TCP 17 0b RW UNDEFINED TCP
Match if port is TCP

SOURCE_DESTINATION 18 0b RW UNDEFINED Source/Destination
0b = Compare Destination port.
1b = Compare Source port.

RESERVED 31:19 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MIPAF 31:0 0x0 RW UNDEFINED Manageability IP Address Filters
For each n, m, m=0...3, n=0...3, MIPAF[m,n] register holds DWord `n'
of IPv6 filter `m' (4 x IPv6 filters).

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

2504 613875-009

13.2.2.29.15 Management Control Register - PRT_MNG_MANC
(0x00214720; RO)

The MANC register can be written by the BMC and is not accessible to the host for writing.

Field Bit(s) Init. Type CFG Policy Description

FLOW_CONTROL_DISCARD 0 0b RW UNDEFINED Flow Control Discard
0b = Apply filtering rules to packets with Flow Control

EtherType.
1b = Discard packets with Flow Control EtherType.

Note: Flow Control EtherType is 0x8808.

NCSI_DISCARD 1 0b RW UNDEFINED NC-SI Discard
0b = Apply filtering rules to packets with NC-SI

EtherType.
1b = Discard packets with NC-SI EtherType.

Note: NC-SI EtherType is 0x88F8.

RESERVED 16:2 0x0 RSV N/A Reserved.

RCV_TCO_EN 17 0b RW UNDEFINED Receive TCO Packets Enabled
When this bit is set, it enables the receive flow to the
manageability block.
This bit should be set only if at least one of
MANC.EN_BMC2OS or MANC.EN_BMC2NET bits are set

RESERVED 24:18 0x0 RSV N/A Reserved.

FIXED_NET_TYPE 25 0b RW UNDEFINED Fixed Next Type
0b = Both tagged and un-tagged packets can be

forwarded to manageability engine.
1b = Only packets matching the net type defined by the

NET_TYPE field pass to manageability.

NET_TYPE 26 0b RW UNDEFINED Net Type
0b = Pass only un-tagged packets.
1b = Pass only VLAN tagged packets.

Valid only if FIXED_NET_TYPE is set.

RESERVED 27 0b RSV N/A Reserved.

EN_BMC2OS 28 0b RW UNDEFINED Enable BMC-to-OS and OS-to-BMC Traffic
0b = The BMC cannot communicate with the OS.
1b = The BMC can communicate with the OS.

When cleared, the BMC traffic is not forwarded to the OS,
even if the Host address filtering indicates that it should.
When cleared, the OS traffic is not forwarded to the BMC,
even if the manageability decision filters indicates it
should. This bit does not impact the BMC to Network
traffic.
Note:
• Initial value loaded according to value of Port n traffic

types field in NVM.
• Bit reflects internal management Aux register bit.

613875-009 2505

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

13.2.2.29.16 Management Only Traffic Register - PRT_MNG_MNGONLY
(0x00214740; RO)

The MNGONLY register allows exclusive filtering of certain type of traffic to the BMC. Exclusive filtering
enables the BMC to define certain packets that are forwarded to the BMC but not to the host. The
packets are not forwarded to the host even if they pass the host L2 filtering process.

Each manageability decision filter (MDEF and MDEF_EXT) has a corresponding bit in the MNGONLY
register. When a manageability decision filter (MDEF and MDEF_EXT) forwards a packet to
manageability, it might also block the packet from being forwarded to the host if the corresponding
MNGONLY bit is set.

13.2.2.29.17 Manageability Special Filters Modifiers - PRT_MNG_MSFM
(0x00214760; RO)

EN_BMC2NET 29 0b RW UNDEFINED Enable BMC-to-network and network-to-BMC
Traffic

0b = The BMC can not communicate with the network.
1b = The BMC can communicate with the network

When cleared, the BMC traffic is not forwarded to the
network and the network traffic is not forwarded to the
BMC, even if the decision filters indicates it should.
This bit does not impact the host-to-BMC traffic.
Notes:
• Initial value loaded according to value of Port n traffic

types field in NVM.
• Bit reflects internal management Aux register bit.
• This bit can change while the host is sending or

receiving traffic.

RESERVED 31:30 00b RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

EXCLUSIVE_TO_MANAGEABILITY 7:0 0x0 RW UNDEFINED Exclusive to Manageability
When set, indicates that packets forwarded by the
manageability filters to manageability are not sent
to the host.
Bits 0...7 correspond to decision rules defined in
registers MDEF[0...7] and MDEF_EXT[0...7].

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PORT_26F_UDP 0 1b RW UNDEFINED Port 26F UDP
Port 0x26F match if protocol is UDP.

PORT_26F_TCP 1 1b RW UNDEFINED Port 26F TCP
Port 0x26F match if protocol is TCP.

PORT_298_UDP 2 1b RW UNDEFINED Port 298 UDP
Port 0x298 match if protocol is UDP.

PORT_298_TCP 3 1b RW UNDEFINED Port 298 TCP
Port 0x298 match if protocol is TCP.

IPV6_0_MASK 4 0b RW UNDEFINED IPv6 0 Mask
Compare only 24 LSB bits of IPv6 Address 0 (MIPAF[0]).

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

2506 613875-009

13.2.2.29.18 Management VLAN TAG Value - PRT_MNG_MAVTV[n]
(0x00214780 + 0x20*n, n=0...7; RO)

The MAVTV registers are written by the BMC and are not accessible to the host for writing. The registers
are used to filter manageability packets (see Section 12.4).

13.2.2.29.19 Manageability Decision Filters1 - PRT_MNG_MDEF[n]
(0x00214880 + 0x20*n, n=0...7; RO)

IPV6_1_MASK 5 0b RW UNDEFINED IPv6 1 Mask
Compare only 24 LSB bits of IPv6 Address 1 (MIPAF[1]).

IPV6_2_MASK 6 0b RW UNDEFINED IPv6 2 Mask
Compare only 24 LSB bits of IPv6 Address 2 (MIPAF[2]).

IPV6_3_MASK 7 0b RW UNDEFINED IPv6 3 Mask
Compare only 24 LSB bits of IPv6 Address 3 (MIPAF[3]).

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VID 11:0 0x0 RW UNDEFINED VLAN ID
Contains the VLAN ID that should be compared with the incoming packet
inner VLAN ID if the corresponding bit in MDEF is set.

RESERVED 31:12 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MAC_EXACT_AND 3:0 0x0 RW UNDEFINED MAC Exact AND
Controls the inclusion of Exact MAC Address 0 to 3
in the manageability filter decision (AND section).
Bit 0 corresponds to exact MAC Address 0 (MMAL0
and MMAH0), and so on.

BROADCAST_AND 4 0b RW UNDEFINED Broadcast AND
Controls the inclusion of broadcast address filtering
in the manageability filter decision (AND section).

VLAN_AND 12:5 0x0 RW UNDEFINED VLAN AND
Controls the inclusion of VLAN tag 0 to 7,
respectively, in the manageability filter decision
(AND section).
Bit 5 corresponds to VLAN tag 0, and so on.

IPV4_ADDRESS_AND 16:13 0x0 RW UNDEFINED IPv4 Address AND
 Controls the inclusion of IPv4 Address 0 to 3,
respectively, in the manageability filter decision
(AND section).
Bit 13 corresponds to IPv4 Address 0, and so on.
Note: These bits are set also for an ARP request

packet if the Target IP match the IP
Address configured in the MIPAF register.

IPV6_ADDRESS_AND 20:17 0x0 RW UNDEFINED IPv6 Address AND
Controls the inclusion of IPv6 Address 0 to 3,
respectively, in the manageability filter decision
(AND section).
Bit 17 corresponds to IPv6 Address 0, and so on.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2507

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

13.2.2.29.20 Management Decision Filters VSI - PRT_MNG_MDEFVSI[n]
(0x00214980 + 0x20*n, n=0...3; RO)

This register is used to define the VSIs that is used to receive packets that matched a specific MDEF. In
case of multiple match, the VSI assigned to the MDEF with the highest index is used.

Note: In A0 the lowest index is used.

MAC_EXACT_OR 24:21 0x0 RW UNDEFINED MAC Exact OR
Controls the inclusion of exact MAC Address 0 to 3
in the manageability filter decision (OR section).
Bit 21 corresponds to exact MAC Address 0 (MMAL0
and MMAH0), and so on.

BROADCAST_OR 25 0b RW UNDEFINED Broadcast OR
Controls the inclusion of broadcast address filtering
in the manageability filter decision (OR section).

MULTICAST_AND 26 0b RW UNDEFINED Multicast AND
Controls the inclusion of Multicast Address filtering
in the manageability filter decision (AND section).
Broadcast packets are not included by this bit.

ARP_REQUEST_OR 27 0b RW UNDEFINED ARP Request OR
Controls the inclusion of ARP Request filtering in the
manageability filter decision (OR section).

ARP_RESPONSE_OR 28 0b RW UNDEFINED ARP Response OR
Controls the inclusion of ARP Response filtering in
the manageability filter decision (OR section).

NEIGHBOR_DISCOVERY_134_OR 29 0b RW UNDEFINED Neighbor Discovery 134 OR
Controls the inclusion of Neighbor Discovery
filtering in the manageability filter decision (OR
section).
The neighbor type accepted by this filter is type
0x86 (134).

PORT_0X298_OR 30 0b RW UNDEFINED Port 0x298 OR
Controls the inclusion of port 0x298 filtering in the
manageability filter decision (OR section).

PORT_0X26F_OR 31 0b RW UNDEFINED Port 0x26F OR
Controls the inclusion of port 0x26F filtering in the
manageability filter decision (OR section).

Field Bit(s) Init. Type CFG Policy Description

MDEFVSI_2N 15:0 0x0 RW UNDEFINED MDEF VSI 2n
Defines the VSI used for packets matching MDEF 2*n.

MDEFVSI_2NP1 31:16 0x0 RW UNDEFINED MDEF VSI 2n+1
Defines the VSI used for packets matching MDEF 2*n+1.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

2508 613875-009

13.2.2.29.21 Manageability Decision Filters - PRT_MNG_MDEF_EXT[n]
(0x00214A00 + 0x20*n, n=0...7; RO)

Field Bit(s) Init. Type CFG Policy Description

L2_ETHERTYPE_AND 3:0 0x0 RW UNDEFINED L2 EtherType AND
Controls the inclusion of L2 EtherType filtering in
the manageability filter decision (AND section).

L2_ETHERTYPE_OR 7:4 0x0 RW UNDEFINED L2 EtherType OR
Controls the inclusion of L2 EtherType filtering in
the manageability filter decision (OR section).

FLEX_PORT_OR 23:8 0x0 RW UNDEFINED Flex Port OR
Controls the inclusion of Flex port filtering in the
manageability filter decision (OR section).
Bit 16 corresponds to flex port 0, and so on.

FLEX_TCO 24 0b RW UNDEFINED Flex TCO
Controls the inclusion of Flex TCO filtering in the
manageability filter decision (OR section).
Bit 24 corresponds to Flex TCO filter.
Note: Supported only for Network traffic.

NEIGHBOR_DISCOVERY_135_OR 25 0b RW UNDEFINED Neighbor Discovery 135 OR
Controls the inclusion of Neighbor Discovery
filtering in the manageability filter decision (OR
section).
The neighbor type accepted by this filter is type
0x87 (135).

NEIGHBOR_DISCOVERY_136_OR 26 0b RW UNDEFINED Neighbor Discovery 136 OR
Controls the inclusion of Neighbor Discovery
filtering in the manageability filter decision (OR
section).
The neighbor type accepted by this filter is type
0x88 (136).

NEIGHBOR_DISCOVERY_137_OR 27 0b RW UNDEFINED Neighbor Discovery 137 OR
Controls the inclusion of Neighbor Discovery
filtering in the manageability filter decision (OR
section).
The neighbor type accepted by this filter is type
0x89 (137).

ICMP_OR 28 0b RW UNDEFINED ICMP OR
Controls the inclusion of ICMP filtering in the
manageability filter decision (OR section).

MLD 29 0b RW UNDEFINED MLD
Controls the inclusion of MLD packets.
These are ICMPv6 packets with the following types:
130, 131, 132, 143.

APPLY_TO_NETWORK_TRAFFIC 30 0b RW UNDEFINED Apply to Network Traffic
0b = This decision filter does not apply to traffic

received from the network.
1b = This decision filter applies to traffic received

from the network.

APPLY_TO_HOST_TRAFFIC 31 0b RW UNDEFINED Apply to Host Traffic
0b = This decision filter does not apply to traffic

received from the host.
1b = This decision filter applies to traffic received

from the host.

613875-009 2509

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Manageability Registers

13.2.2.29.22 Port to MDEF Set Mapping - GL_SWT_PRT2MDEF[n]
(0x00216018 + 0x4*n, n=0...31; RO)

For all the registers in the manageability section that are per-port, should be per MDEF set assigned by
this register to virtual ports.

Field Bit(s) Init. Type CFG Policy Description

MDEFIDX 2:0 000b RW UNDEFINED MDEF Index
Mapping from port to MDEF set.
The selection between port and virtual port is done according to
GL_SWT_SWIDFVIDX.PORT_TYPE field.

RESERVED 30:3 0x0 RSV N/A Reserved.

MDEFENA 31 0b RW UNDEFINED MDEF Enable
Enables MDEF for this port.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Malicious Prevention Registers

2510 613875-009

13.2.2.30 PF - Malicious Prevention Registers

13.2.2.30.1 Malicious VF Driver Detected on Tx TDPU -
VP_MDET_TX_TDPU[VF] (0x00040000 + 0x4*VF,
VF=0...255; RWC)

Malicious detect per VF. Hardware sets to '1' upon malicious event for corresponding VF. Writing '1' to
this CSR clears the malicious indication.

Field definitions are the same as those defined in Section 13.2.2.30.2.

13.2.2.30.2 Malicious PF Driver Detected on Tx TDPU -
PF_MDET_TX_TDPU (0x00040800; RWC)

Malicious detect per VF. Hardware sets to '1' upon malicious event for corresponding VF. Writing '1' to
this CSR clears the malicious indication.

13.2.2.30.3 Malicious VF Driver Detected on Tx TCLAN -
VP_MDET_TX_TCLAN[VF] (0x000FB800 + 0x4*VF,
VF=0...255; RW1C)

Field definitions are the same as those defined in Section 13.2.2.30.4.

13.2.2.30.4 Malicious PF Driver Detected on Tx TCLAN -
PF_MDET_TX_TCLAN (0x000FC000; RW1C)

13.2.2.30.5 Malicious Driver Tx Event Details - GL_MDET_TX_TCLAN
(0x000FC068; RW1C)

Field Bit(s) Init. Type CFG Policy Description

VALID 0 0b RWC DYNAMIC Valid
A malicious event has been detected by the Tx Dat processing unit on
this function.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VALID 0 0b RW1C DYNAMIC Valid
A malicious event has been detected by the TCLAN unit on this function

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

QNUM 14:0 0x0 RO DYNAMIC Queue Number
Absolute queue ID on which the event was detected.

VF_NUM 22:15 0x0 RO DYNAMIC VF Number
Absolute VF number on which the event was detected.

PF_NUM 25:23 000b RO DYNAMIC PF Number
PF/parent PF number on which the event was detected.

RESERVED 30:26 0x0 RSV N/A Reserved.

613875-009 2511

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Malicious Prevention Registers

13.2.2.30.6 Malicious PF Driver Detected on Tx TCLAN -
VM_MDET_TX_TCLAN[n] (0x000FC348 + 0x4*n, n=0...767;
RW1C)

Field definitions are the same as those defined in Section 13.2.2.30.4.

13.2.2.30.7 RLAN Malicious Events - GLRLAN_MDET (0x00294200;
RW1C)

13.2.2.30.8 Malicious Driver Rx Checks Enabled - GL_MDCK_RX
(0x0029422C; RW)

13.2.2.30.9 Malicious PF Driver Detected on Rx - PF_MDET_RX
(0x00294280; RW1C)

This register records a malicious event detected on the Rx-Queues. Once read, driver must write
0xFFFF to clear.

13.2.2.30.10 Malicious VF Driver Detected on Rx - VP_MDET_RX[VF]
(0x00294400 + 0x4*VF, VF=0...255; RW1C)

This register records a malicious event detected on the Rx-Queues. Once read, driver must write
0xFFFF to clear.

Field definitions are the same as those defined in Section 13.2.2.30.9.

VALID 31 0b RW1C DYNAMIC Valid
Indicates that an event has been captured.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 31:0 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DESC_ADDR 0 1b RW UNDEFINED Enable malicious event: descriptor fetch failed.
For proper operation this flag must be active.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

VALID 0 0b RW1C DYNAMIC Valid
A malicious event has been detected on this function.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Malicious Prevention Registers

2512 613875-009

13.2.2.30.11 Malicious Driver Rx Event Details - GL_MDET_RX
(0x00294C00; RW1C)

This register records the details of the first Rx event detected.

13.2.2.30.12 Malicious VF Driver Detected on Tx PQM -
VP_MDET_TX_PQM[VF] (0x002D2000 + 0x4*VF,
VF=0...255; RW1C)

This register records a malicious event detected on the Tx-Queues. Once read, driver must write 0xFFFF
to clear.

Field definitions are the same as those defined in Section 13.2.2.30.13.

13.2.2.30.13 Malicious PF Driver Detected on Tx PQM -
PF_MDET_TX_PQM (0x002D2C80; RW1C)

13.2.2.30.14 Malicious Driver Tx Command Checks PQM Configuration 1 -
GL_MDCK_CFG1_TX_PQM (0x002D2DF4; RW)

This register includes configuration which are used by PQM malicious detection (hardware) checks.

Field Bit(s) Init. Type CFG Policy Description

QNUM 14:0 0x0 RO DYNAMIC Queue Number
Absolute queue ID on which the event was detected.

VF_NUM 22:15 0x0 RO DYNAMIC VF Number
Absolute VF number on which the event was detected.

PF_NUM 25:23 000b RO DYNAMIC PF Number
PF/parent PF number on which the event was detected.

MAL_TYPE 30:26 0x0 RO DYNAMIC Malicious Type
ID of the event that has been recorded.

VALID 31 0b RW1C DYNAMIC Valid
Indicates that an event has been captured.

Field Bit(s) Init. Type CFG Policy Description

VALID 0 0b RW1C DYNAMIC Valid
A malicious event has been detected by the PQM unit on this function.

RESERVED 31:1 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SSO_MAX_DATA_LEN 7:0 0xFF RW UNDEFINED SSO Max Data Length
Max Data Length in 64-bytes resolution up to 16K-64 bytes.

SSO_MAX_PKT_CNT 13:8 0x3F RW UNDEFINED SSO Max Packet Count
Max number of packets incorporated in the Quanta.

RESERVED 15:14 00b RSV N/A Reserved.

SSO_MAX_DESC_CNT 21:16 0x3F RW UNDEFINED SSO Max Descriptor Count
Max number of descriptor incorporated in the Quanta.

RESERVED 31:22 0x0 RSV N/A Reserved.

613875-009 2513

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Malicious Prevention Registers

13.2.2.30.15 Malicious Driver Tx Command Checks Enable PQM -
GL_MDCK_EN_TX_PQM (0x002D2DFC; RW)

This register indicates which of PQM Tx malicious detection (hardware) checks are enabled.

Field Bit(s) Init. Type CFG Policy Description

PCI_DUMMY_COMP 0 1b RW UNDEFINED PCI Dummy Completion
Enable detection of PCI Dummy Completion (for a QD
Fetch Request)

PCI_UR_COMP 1 1b RW UNDEFINED PCI Unsupported Request Completion
Enable detection of PCI “Unsupported Request”
Completion (for a QD Fetch Request).

RESERVED 2 0b RSV N/A Reserved.

RCV_SH_BE_LSO 3 1b RW UNDEFINED Empty Q fetch (initiated by PQMMNG after 1st Quanta
was delivered to PQMMNG by DBL) and LSO QD is
expected in completion. Completion is received however
received QD is NOT LSO.

Q_FL_MNG_EPY_CH 4 1b RW UNDEFINED Queue Empty
In fetch command (initiated by PQMMNG) force_fetch is
set (Q is full PQMMNG wise) but PQMQDC concluded that
the Q is empty.

Q_EPY_MNG_FL_CH 5 1b RW UNDEFINED Queue Full
In fetch command (initiated by PQMMNG) force_fetch is
clear (Q is empty PQMMNG wise) but PQMQDC concludes
that the Q is not empty.

LSO_NUMDESCS_ZERO 6 1b RW UNDEFINED LSO Number of Descriptors Zero
Enable detection of LSO QD whose Number of Descriptors
is zero.

LSO_LENGTH_ZERO 7 1b RW UNDEFINED LSO Length Zero
Enable detection of LSO QD whose Length is zero.

LSO_MSS_BELOW_MIN 8 1b RW UNDEFINED LSO MSS Below Minimum
Enable detection of LSO QD whose MSS is below
GL_MDCK_CFG2_TX_PQM.LSO_MIN_MSS.

LSO_MSS_ABOVE_MAX 9 1b RW UNDEFINED LSO MSS Above Maximum
Enable detection of LSO QD whose MSS is above
GL_MDCK_CFG2_TX_PQM.LSO_MAX_MSS.

LSO_HDR_SIZE_ZERO 10 1b RW UNDEFINED LSO Header Size Zero
Enable detection of LSO QD whose Header Size is zero.

RCV_CNT_BE_LSO 11 1b RW UNDEFINED Enable detection of LSO QD for a Q which is LSO
disabled.

SKIP_ONE_QT_ONLY 12 1b RW UNDEFINED Skip One Quanta Only
The first Quanta of a LSO QD that is composed of
multiple Quantas is delivered to hardware.
The first Quanta is scheduled and hardware fetches LSO
QD so it can schedule the other Quantas of the same LSO
QD.
During processing of the fetched LSO QD, hardware
concludes it is a single Quanta (which has already been
scheduled) although DBL suggested it is multiple
Quantas.

LSO_PKTCNT_ZERO 13 1b RW UNDEFINED LSO Packet Count Zero
Enable detection of LSO DBL whose First Quanta Number
of Segments is zero.

SSO_LENGTH_ZERO 14 1b RW UNDEFINED SSO Length Zero
Enable detection of SSO QD whose Length is zero.

SSO_LENGTH_EXCEED 15 1b RW UNDEFINED SSO Length Exceeded
Enable detection of SSO QD whose Length exceeds
GL_MDCK_CFG1_TX_PQM.SSO_MAX_DATA_LEN.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Malicious Prevention Registers

2514 613875-009

13.2.2.30.16 Malicious Driver Tx Event Details PQM - GL_MDET_TX_PQM
(0x002D2E00; RW1C)

SSO_PKTCNT_ZERO 16 1b RW UNDEFINED SSO Packet Count Zero
Enable detection of SSO QD whose Packet Count is zero.

SSO_PKTCNT_EXCEED 17 1b RW UNDEFINED SSO Packet Count Exceeded
Enable detection of SSO QD whose Packet Count exceeds
GL_MDCK_CFG1_TX_PQM.SSO_MAX_PKT_CNT.

SSO_NUMDESCS_ZERO 18 1b RW UNDEFINED SSO Number of Descriptors Zero
Enable detection of SSO QD whose Number of
Descriptors is zero.

SSO_NUMDESCS_EXCEED 19 1b RW UNDEFINED SSO Number of Descriptors Exceeded
Enable detection of SSO QD whose Number of
Descriptors exceed minimum of {Remain-Ring-Length
and GL_MDCK_CFG1_TX_PQM.SSO_MAX_DESC_CNT}.

TAIL_GT_RING_LENGTH 20 1b RW UNDEFINED Tail Greater Than Ring Length
Enable detection of DBL whose Tail is greater than Ring
Length.
Applicable for both QD and Legacy Interfaces.

RESERVED_DBL_TYPE 21 1b RW UNDEFINED Reserved Doorbell Type
Enable detection of DBL whose Type field is Reserved
(2'b11), which is considered malicious.

ILLEGAL_HEAD_DROP_DBL 22 1b RW UNDEFINED Illegal Head Drop Doorbell
Enable detection of Head Drop DBL over Comms Queue
for which Head Drop is disabled.

LSO_OVER_COMMS_Q 23 1b RW UNDEFINED LSO Over Comms Queue
Enable detection of LSO DBL over Comms Queue for
which LSO is disabled.

ILLEGAL_VF_QNUM 24 1b RW UNDEFINED Illegal VF Queue Number
Enable detection of VF-TYPE DBLQ element that is
associated with illegal Q number.

QTAIL_GT_RING_LENGTH 25 1b RW UNDEFINED Queue Tail Greater Than Ring Length
Enable detection of DBL whose QDTail is greater than
Ring Length.
Applicable for QD Interface.

RESERVED 31:26 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PF_NUM 2:0 000b RO DYNAMIC PF Number
PF/parent PF number on which the event was detected.

RESERVED 3 0b RSV N/A Reserved

VF_NUM 11:4 0x0 RO DYNAMIC VF Number
Absolute VF number on which the event was detected.

QNUM 25:12 0x0 RO DYNAMIC Queue Number
Absolute queue ID on which the event was detected.

RESERVED 30:26 0x0 RSV N/A Reserved.

VALID 31 0b RW1C DYNAMIC Valid
Indicates that an event has been captured.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2515

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx QoS Registers

13.2.2.31 PF - Rx QoS Registers

Rx QoS configuration registers.

13.2.2.31.1 DCB Receive RDMA Pipe Monitor Status -
PRTDCB_RRDMAPMS (0x00122120; RW)

Meaningless when GLDCB_RSPMC.RPM_MODE is not set to 00b.

13.2.2.31.2 DCB Receive per Port Pipe Monitor Control - PRTDCB_RPPMC
(0x00122240; RW)

Meaningless when GLDCB_RSPMC.RPM_MODE is not set to 00b.

13.2.2.31.3 DCB Receive Pacing Control - GLDCB_RPCC (0x00122260;
RW)

13.2.2.31.4 DCB Receive LAN Pipe Monitor Status - PRTDCB_RLANPMS
(0x00122280; RW)

Meaningless when GLDCB_RSPMC.RPM_MODE is not set to 00b.

Field Bit(s) Init. Type CFG Policy Description

RDMARPPM 17:0 0x0 RW UNDEFINED RDMA Receive Per-Port Pipe Monitor
Current amount of bytes accounted by the Per-Port Rx RDMA Pipe
Monitor.
It is expressed in byte units of Layer2 packet lengths, including
preamble, IPG, and CRC.
Writing to this field has the effect of loading a new current value into the
Rx RDMA Pipe Monitor count, which is used by Rx-ETS algorithm.

RESERVED 31:18 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 31:0 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RESERVED 31:0 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

LANRPPM 17:0 0x0 RW UNDEFINED LAN Receive Per-Port Pipe Monitor
Current amount of bytes accounted by the Per-Port Rx LAN Pipe Monitor.
It is expressed in byte units of Layer2 packet lengths, including
preamble, IPG, and CRC.
Writing to this field has the effect of loading a new current value into the
Rx LAN Pipe Monitor count, which is used by Rx-ETS algorithm.

RESERVED 31:18 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx QoS Registers

2516 613875-009

13.2.2.31.5 DCB Receive per TC PFC Timer Queue - GLDCB_RTCTQ[n]
(0x001222C0 + 0x4*n, n=0...31; RO)

One register per UP. Register index corresponds to TCID.

13.2.2.31.6 DCB Receive per TC PFC Timer Status - GLDCB_RTCTS[n]
(0x00122340 + 0x4*n, n=0...31; RW)

One register per UP. Register index corresponds to TCID.

13.2.2.31.7 DCB Receive Shared Pipe Monitor Status - GLDCB_RSPMS
(0x001223C0; RW)

Meaningless when GLDCB_RSPMC.RPM_MODE is not set to 00b.

Field Bit(s) Init. Type CFG Policy Description

RXQNUM 10:0 0x0 RO N/A Rx-Queue Number
Returns the Rx-Queue number (which had not enough available
Rx-Descriptors) that caused the PFCTIMER of the Port/TC to time out.
The queue index reported in this register is the absolute queue index in
the device space, which is different than the queue index used for the
Tx-Queue and Rx-Queue registers.
The value is meaningful only when the corresponding bit in
PFDCB_RUPTI is set.

RESERVED 15:11 0x0 RSV N/A Reserved.

IS_PF_Q 16 0b RO UNDEFINED Is PF Queue
Set to 1b if the queue belongs to a PF.

RESERVED 31:17 0x0 RSV UNDEFINED Reserved.

Field Bit(s) Init. Type CFG Policy Description

PFCTIMER 13:0 0x0 RW UNDEFINED PFC Timer
Current value of the count-down PFC Timer of TC n in Rx, where n is the
register index in the array.
The amount is expressed in milliseconds.
Writing to this field has the effect of loading a new current timer value,
which can be useful for diagnostic purposes.

RESERVED 31:14 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

RSPM 17:0 0x0 RW UNDEFINED Receive Shared Pipe Monitor
Current amount to bytes accounted by the Rx Shared Pipe Monitor.
It is expressed in byte units of Layer2 packet lengths, including
preamble, IPG, and CRC.
Writing to this field has the effect of loading a new current value into the
Rx Shared Pipe Monitor count, which is used by Rx-ETS algorithm. It is
for debugging purposes only and must be avoided during normal
operations.

RESERVED 31:18 0x0 RSV N/A Reserved.

613875-009 2517

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx QoS Registers

13.2.2.31.8 DCB Receive Shared Pipe Monitor Control - GLDCB_RSPMC
(0x001223C4; RW)

13.2.2.31.9 DCB Receive Manageability Pipe Monitor Control -
GLDCB_RMPMC (0x001223C8; RW)

Field Bit(s) Init. Type CFG Policy Description

RSPM 7:0 0x70 RW UNDEFINED Receive Shared Pipe Monitor
Depth of the shared Pipe Monitor applied over the Rx-Pipe, for all
ports and LAN/RDMA pipes altogether.
It is expressed in KB units of Layer2 packet lengths, including
preamble, IPG, and CRC.
Meaningful only when RPM_MODE is set to 01b.
Max allowed value = 0xEF.
Unused by SWR/RPRS (used only in RCB instance of this CSR).

RPM_MODE 9:8 0x0 RW UNDEFINED Receive Pipe Monitor Mode
00b = Per Port Pipe Monitor.
01b = Shared Pipe Monitor.
10b = No Pipe Monitor. Pipes are filled up to their maximum capacity.
11b = Reserved.

PRR_MAX_EXP 13:10 0xB RW UNDEFINED Port Round-Robin Maximum Exponent
Maximum Exponent M used to compute the Max Credits that a Port
can accumulate.
Max Credits = (2^M) x PRTDCB_RPRRC.BWSHARE.

PFCTIMER 27:14 0x800 RW UNDEFINED PFC Timer
Value in milliseconds loaded into the per-UP PFC Timer in Rx.
The timer is loaded every time the device waits for software to free
Rx-Descriptors before dropping a packet destined to a no-drop
Rx-Queue. There is one such timer per UP and per port, which all are
loaded with the same value.
Unused by SWR/RPRS (used only in RCB instance of this CSR).

RESERVED 30:28 0x0 RSV N/A Reserved.

RPM_DIS 31 0b RW UNDEFINED Rx-Pipe Monitor(s) Disable
This bit controls all the Rx-Pipe monitors.

0b = 0b - Enabled
1b = Disabled

Unused by SWR/RPRS (used only in RCB instance of this CSR).

Field Bit(s) Init. Type CFG Policy Description

RSPM 5:0 0x9 RW UNDEFINED Receive Shared Pipe Monitor
Depth of the Manageability Pipe Monitor applied over the
Rx-Pipe, for all ports and LAN/RDMA pipes altogether.
It is expressed in KB units of Layer2 packet lengths, including
preamble, IPG, and CRC. It monitors all the bytes in transit
between RPB and the shared 24 KB manageability input queue
(included), but excluding the frame currently added into the
pipe.
Default setting is 9 KB = trunc(12 KB - 2.2 KB), assuming max
frame size is for FCoE.
Meaningful only when RMPM_DIS is set to 0b.
Max allowed value = 0xEF.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx QoS Registers

2518 613875-009

13.2.2.31.10 DCB Receive Manageability Pipe Monitor Status -
GLDCB_RMPMS (0x001223CC; RO)

13.2.2.31.11 DCB Receive per TC PFC Timer Indication - GLDCB_RTCTI
(0x001223D0; RW1C)

MIQ_NODROP_MODE 10:6 0x0 RW UNDEFINED Manageability Input Queue No-Drop Mode
This is a bitmap.
When bit n is set to 1b, Manageability Input Queue n is
operated in no-drop mode. Any manageability packet fetched
from RPB that is destined to this queue is NOT be dropped until
it has reached the EMP.
Note: Manageability packets mapped to a PB queue that is

operated in drop mode can still be dropped if the RPB
queue is congested.

When bit n is set to 0b, Manageability Input Queue n is
operated in drop mode. Manageability packets fetched from
RPB that are destined to this queue can be dropped under
congestion conditions.

RESERVED 30:11 0x0 RSV N/A Reserved.

RPM_DIS 31 0b RW UNDEFINED Rx-Pipe Monitor Disable
0b = Enabled
1b = Disabled

Field Bit(s) Init. Type CFG Policy Description

RMPM 15:0 0x0 RO N/A Receive Manageability Pipe Monitor
Current amount to bytes accounted by the Rx Manageability Pipe
Monitor.
It is expressed in byte units of Layer2 packet lengths, including
preamble, IPG, and CRC.

RESERVED 31:16 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

PFCTIMEOUT_TC 31:0 0x0 RW1C DYNAMIC PFC Time-out TCs
Bitmap where a bit set to 1b means that the PFC Timer
corresponding to the Port/TC has timed out.
For up to 4 link topology:

Bits 0-7 are for port 0, TC 0 to 7.
Bits 8-15 are for port 1, TC 0 to 7.
Bits 16-23 are for port 2, TC 0 to 7.
Bits 24-31 are for port 3, TC 0 to 7.

For more than 4 link topology:
Bits 00-03 are for port 0, TC 0 to 3.
Bits 04-07 are for port 1, TC 0 to 3.
Bits 08-11 are for port 2, TC 0 to 3.
Bits 12-15 are for port 3, TC 0 to 3.
Bits 16-19 are for port 4, TC 0 to 3.
Bits 20-23 are for port 5, TC 0 to 3.
Bits 24-27 are for port 6, TC 0 to 3.
Bits 28-31 are for port 7, TC 0 to 3.

Writing a bit with 1b restarts the corresponding PFC Timer.

Field Bit(s) Init. Type CFG Policy Description

613875-009 2519

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx QoS Registers

13.2.2.31.12 RCB Configuration Change on the Fly Counter -
GLRCB_CFG_COTF_CNT[n] (0x001223D4 + 0x4*n, n=0...7;
RO)

13.2.2.31.13 RCB Configuration Change on the Fly Status -
GLRCB_CFG_COTF_ST (0x001223F4; RO)

13.2.2.31.14 Rx PM Dedicated Pool Size - GLRPRS_PMCFG_DPS[n]
(0x00200308 + 0x4*n, n=0...15; RO)

13.2.2.31.15 Rx PM Dedicated Pool High Watermark -
GLRPRS_PMCFG_DHW[n] (0x00200388 + 0x4*n, n=0...15;
RO)

One register per TC. Register index corresponds to TCID.

Field Bit(s) Init. Type CFG Policy Description

MRKR_COTF_CNT 5:0 0x0 ROCV N/A Marker Change on-the-Fly Counter
Counts cfg_cotf markers originating on same configuration.
Counter is incremented when cfg_cotf marker of configuration
index correspond to counter index is selected by DCB arbiter in
RCB and dropped.
Counter is cleared on read.

RESERVED 31:6 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

MRKR_COTF_ST 7:0 0x0 RO N/A Marker Change on-the-Fly Status
Bit i reflects the status of the counter.

0b = Counter is either idle or has not yet reached threshold.
1b = Counter has reached threshold and is waiting to be cleared.

Bit i is set when the correspond counter reaches threshold.
Bit i is cleared when the correspond counter is read.

RESERVED 31:8 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DPS 19:0 0xFF RW UNDEFINED Dedicated Pool Size
It is expressed in bytes or commands according to usage.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

DHW 19:0 0xFF RW UNDEFINED Dedicated Pool High Watermark
It is expressed in bytes or commands according to usage.

RESERVED 31:20 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx QoS Registers

2520 613875-009

13.2.2.31.16 Rx PM Dedicated Pool Low Watermark -
GLRPRS_PMCFG_DLW[n] (0x002003C8 + 0x4*n, n=0...15;
RO)

One register per TC. Register index corresponds to TCID.

13.2.2.31.17 Rx PM Shared Pool Size - GLRPRS_PMCFG_SPS[n]
(0x00200408 + 0x4*n, n=0...7; RO)

13.2.2.31.18 Rx PM Shared Pool High Watermark -
GLRPRS_PMCFG_SHW[n] (0x00200448 + 0x4*n, n=0...7;
RO)

13.2.2.31.19 Rx PM Shared Pool Low Watermark -
GLRPRS_PMCFG_SLW[n] (0x00200468 + 0x4*n, n=0...7;
RO)

13.2.2.31.20 TC Pool Config - GLRPRS_PMCFG_TC_CFG[n] (0x00200488
+ 0x4*n, n=0...31; RO)

Field definitions are the same as those defined in Section 13.2.2.31.23.

Field Bit(s) Init. Type CFG Policy Description

DLW 19:0 0xFF RW UNDEFINED Dedicated Pool Low Watermark
It is expressed in bytes or commands according to usage.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SPS 19:0 0xFF RW UNDEFINED Shared Pool Size
Number of bytes/commands allocated to the shared pool.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SHW 19:0 0xFF RW UNDEFINED Shared Pool High Watermark
It is expressed in bytes or commands according to usage.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

SLW 19:0 0xFF RW UNDEFINED Shared Pool Low Watermark
It is expressed in bytes or commands according to usage.

RESERVED 31:20 0x0 RSV N/A Reserved.

613875-009 2521

Intel® Ethernet Controller E810 Datasheet
Programming Interface - Rx QoS Registers

13.2.2.31.21 Rx PM TC High Watermark - GLRPRS_PMCFG_TCHW[n]
(0x00200588 + 0x4*n, n=0...31; RO)

13.2.2.31.22 Rx PM TC Low Watermark - GLRPRS_PMCFG_TCLW[n]
(0x00200608 + 0x4*n, n=0...31; RO)

13.2.2.31.23 TC Pool Config - GLSWT_PMCFG_TC_CFG[n] (0x00204900 +
0x4*n, n=0...31; RO)

Field Bit(s) Init. Type CFG Policy Description

TCHW 19:0 0xFF RW UNDEFINED TC High Watermark
It is expressed in bytes or commands according to usage.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

TCLW 19:0 0xFF RW UNDEFINED TC Low Watermark
It is expressed in bytes or commands according to usage.

RESERVED 31:20 0x0 RSV N/A Reserved.

Field Bit(s) Init. Type CFG Policy Description

D_POOL 3:0 0x0 RW UNDEFINED Dedicated Pool
Index of dedicated pool TC belongs to.

RESERVED 15:4 0x0 RSV N/A Reserved.

S_POOL 18:16 000b RW UNDEFINED Shared Pool
Index of shared pool TC belongs to.

RESERVED 31:19 0x0 RSV N/A Reserved.

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2522 613875-009

13.2.3 BAR3 Registers Summary

13.2.3.1 PF - MSI-X Table Registers Summary

13.2.4 Detailed Register Descriptions - PF BAR3

13.2.4.1 PF - MSI-X Table Registers

13.2.4.1.1 MSI-X Message Address Low - MSIX_TADD[n] (0x00000000
+ 0x10*n, n=0...2047; RW)

13.2.4.1.2 MSI-X Message Address High - MSIX_TUADD[n]
(0x00000004 + 0x10*n, n=0...2047; RW)

Table 13-41. PF - MSI-X Table Registers Summary

Offset / Alias Offset Abbreviation Name Section
Reference

0x00000000 + 0x10*n, n=0...2047 MSIX_TADD[n] MSI-X Message Address Low 13.2.4.1.1

0x00000004 + 0x10*n, n=0...2047 MSIX_TUADD[n] MSI-X Message Address High 13.2.4.1.2

0x00000008 + 0x10*n, n=0...2047 MSIX_TMSG[n] MSI-X Message Data 13.2.4.1.3

0x0000000C + 0x10*n, n=0...2047 MSIX_TVCTRL[n] MSI-X Vector Control 13.2.4.1.4

0x00008000 + 0x4*n, n=0...63 MSIX_PBA[n] MSI-X PBA Structure 13.2.4.1.5

Field Bit(s) Init. Type CFG Policy Description

MSIXTADD10 1:0 00b RW UNDEFINED Message Address 1:0
For proper DWord alignment, software must always write zeros to these
two bits. Otherwise, the result is undefined. The state of these bits after
reset must be 0b. These bits are permitted to be read-only or read/
write.

MSIXTADD 31:2 0x0 RW UNDEFINED Message Address
System-specified message lower address.
For MSI-X messages, the contents of this field from an MSI-X table
entry specifies the lower portion of the DWord-aligned address
(AD[31:02]) for the memory write transaction. This field is read/write.

Field Bit(s) Init. Type CFG Policy Description

MSIXTUADD 31:0 0x0 RW UNDEFINED Message Upper Address
System-specified message upper address bits.
If this field is zero, Single Address Cycle (SAC) messages are used. If this
field is non-zero, Dual Address Cycle (DAC) messages are used. This field
is read/write.

613875-009 2523

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.2.4.1.3 MSI-X Message Data - MSIX_TMSG[n] (0x00000008 +
0x10*n, n=0...2047; RW)

13.2.4.1.4 MSI-X Vector Control - MSIX_TVCTRL[n] (0x0000000C +
0x10*n, n=0...2047; RW)

13.2.4.1.5 MSI-X PBA Structure - MSIX_PBA[n] (0x00008000 + 0x4*n,
n=0...63; RO)

Field Bit(s) Init. Type CFG Policy Description

MSIXTMSG 31:0 0x0 RW UNDEFINED Message Data
System-specified message data.
For MSI-X messages, the contents of this field from an MSI-X table entry
specifies the data driven on AD[31:0] during the memory write
transaction’s data phase. This field is read/write.

Field Bit(s) Init. Type CFG Policy Description

MASK 0 1b RW UNDEFINED Mask Bit
When this bit is set, the function is prohibited from sending a message
using this MSI-X table entry. However, any other MSI-X table entries
programmed with the same vector are still capable of sending an
equivalent message unless they are also masked.
This bit’s state after reset is 1b (entry is masked).

RESERVED 31:1 0x0 RSV N/A Reserved.
After reset, the state of these bits must be 0b. However, for potential
future use, software must preserve the value of these reserved bits when
modifying the value of other Vector Control bits. If software modifies the
value of these reserved bits, the result is undefined.

Field Bit(s) Init. Type CFG Policy Description

PENBIT 31:0 0x0 RO N/A MSI-X Pending Bits
Each bit is set to 1b when the appropriate interrupt request is set, and
cleared to 0b when the appropriate interrupt request is cleared.

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2524 613875-009

13.3 Device Registers - VF

13.3.1 VF Registers Mapping in the PF Space

Table 13-42. VF Registers Mapping in the PF Space

Abbreviation Virtual Address Physical Address

VFGEN_RSTAT 0x00008800 0x00074000 + 0x4*VF, VF=0...255

PFPCI_VF_FLUSH_DONE 0x0000E400 0x0009E000 + 0x4*VF, VF=0...255

VFINT_ITRN 0x00002800 + 0x4*n + 0x40*m, n=0...15,
m=0...2

0x00154000 + 0x2000*n + 0x4*INT, n=0...2,
INT=0...2047

VFINT_ITRN_64 0x00002C00 + 0x4*n + 0x100*m, n=0...63,
m=0...2

0x00154000 + 0x2000*n + 0x4*INT, n=0...2,
INT=0...2047

VFINT_DYN_CTLN 0x00003800 + 0x4*n, n=0...63 0x00160000 + 0x4*INT, INT=0...2047

VFINT_ITR0 0x00004C00 + 0x4*n, n=0...2 0x00154000 + 0x2000*n + 0x4*INT, n=0...2,
INT=0...2047

VFINT_DYN_CTL0 0x00005C00 0x00160000 + 0x4*INT, INT=0...2047

VF_MBX_ARQBAH 0x00006000 0x0022B800 + 0x4*VF, VF=0...255

VF_MBX_ATQH 0x00006400 0x0022AC00 + 0x4*VF, VF=0...255

VF_MBX_ATQLEN 0x00006800 0x0022A800 + 0x4*VF, VF=0...255

VF_MBX_ARQBAL 0x00006C00 0x0022B400 + 0x4*VF, VF=0...255

VF_MBX_ARQT 0x00007000 0x0022C400 + 0x4*VF, VF=0...255

VF_MBX_ARQH 0x00007400 0x0022C000 + 0x4*VF, VF=0...255

VF_MBX_ATQBAH 0x00007800 0x0022A400 + 0x4*VF, VF=0...255

VF_MBX_ATQBAL 0x00007C00 0x0022A000 + 0x4*VF, VF=0...255

VF_MBX_ARQLEN 0x00008000 0x0022BC00 + 0x4*VF, VF=0...255

VF_MBX_ATQT 0x00008400 0x0022B000 + 0x4*VF, VF=0...255

QTX_TAIL 0x00000000 + 0x4*DBQM, DBQM=0...255 0x002C0000 + 0x4*DBQM, DBQM=0...16383

QRX_TAIL 0x00002000 + 0x4*QRX, QRX=0...255 0x00290000 + 0x4*QRX, QRX=0...2047

VFPE_IPCONFIG0 0x00008C00 0x00508C00 + 0x4*VF, VF=0...255

VFPE_CCQPHIGH 0x00009800 0x00508800 + 0x4*VF, VF=0...255

VFPE_CQPERRCODES 0x00009C00 0x00509000 + 0x4*VF, VF=0...255

VFPE_CQPTAIL 0x0000A000 0x00500400 + 0x4*VF, VF=0...255

VFPE_AEQALLOC 0x0000A400 0x00502800 + 0x4*VF, VF=0...255

VFPE_TCPNOWTIMER 0x0000A800 0x00509400 + 0x4*VF, VF=0...255

VFPE_CCQPLOW 0x0000AC00 0x00508400 + 0x4*VF, VF=0...255

VFPE_CQACK 0x0000B000 0x00502400 + 0x4*VF, VF=0...255

VFPE_CQARM 0x0000B400 0x00502000 + 0x4*VF, VF=0...255

VFPE_CCQPSTATUS 0x0000B800 0x00508000 + 0x4*VF, VF=0...255

VFPE_CQPDB 0x0000BC00 0x00500000 + 0x4*VF, VF=0...255

VFPE_WQEALLOC 0x0000C000 0x00504000 + 0x4*VF, VF=0...255

613875-009 2525

Intel® Ethernet Controller E810 Datasheet
Programming Interface

VF_MBX_CPM_ATQBAL 0x0000F000 0x0022C800 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ATQBAH 0x0000F010 0x0022CA00 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ATQLEN 0x0000F020 0x0022CC00 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ATQH 0x0000F030 0x0022CE00 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ATQT 0x0000F040 0x0022D000 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ARQBAL 0x0000F050 0x0022D200 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ARQBAH 0x0000F060 0x0022D400 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ARQLEN 0x0000F070 0x0022D600 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ARQH 0x0000F080 0x0022D800 + 0x4*VF128, VF128=0...127

VF_MBX_CPM_ARQT 0x0000F090 0x0022DA00 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ATQBAL 0x0000F100 0x0022E800 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ATQBAH 0x0000F110 0x0022EA00 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ATQLEN 0x0000F120 0x0022EC00 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ATQH 0x0000F130 0x0022EE00 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ATQT 0x0000F140 0x0022F000 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ARQBAL 0x0000F150 0x0022F200 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ARQBAH 0x0000F160 0x0022F400 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ARQLEN 0x0000F170 0x0022F600 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ARQH 0x0000F180 0x0022F800 + 0x4*VF128, VF128=0...127

VF_SB_CPM_ARQT 0x0000F190 0x0022FA00 + 0x4*VF128, VF128=0...127

VF_MBX_HLP_ATQBAL 0x00020000 0x0022DC00 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ATQBAH 0x00020010 0x0022DC40 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ATQLEN 0x00020020 0x0022DC80 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ATQH 0x00020030 0x0022DCC0 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ATQT 0x00020040 0x0022DD00 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ARQBAL 0x00020050 0x0022DD40 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ARQBAH 0x00020060 0x0022DD80 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ARQLEN 0x00020070 0x0022DDC0 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ARQH 0x00020080 0x0022DE00 + 0x4*VF16, VF16=0...15

VF_MBX_HLP_ARQT 0x00020090 0x0022DE40 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ATQBAL 0x00021000 0x0022DE80 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ATQBAH 0x00021010 0x0022DEC0 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ATQLEN 0x00021020 0x0022DF00 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ATQH 0x00021030 0x0022DF40 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ATQT 0x00021040 0x0022DF80 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ARQBAL 0x00021050 0x0022DFC0 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ARQBAH 0x00021060 0x0022E000 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ARQLEN 0x00021070 0x0022E040 + 0x4*VF16, VF16=0...15

Table 13-42. VF Registers Mapping in the PF Space

Abbreviation Virtual Address Physical Address

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2526 613875-009

VF_MBX_PSM_ARQH 0x00021080 0x0022E080 + 0x4*VF16, VF16=0...15

VF_MBX_PSM_ARQT 0x00021090 0x0022E0C0 + 0x4*VF16, VF16=0...15

VFQTX_COMM_DBLQ_DBELL 0x00022000 + 0x4*DBLQ, DBLQ=0...3 0x002D1400 + 0x4*DBLQ, DBLQ=0...255

VFINT_DYN_CTL 0x00023000 + 0x1000*n, n=0...7 0x00160000 + 0x4*INT, INT=0...2047

VFINT_ITR_0 0x00023004 + 0x1000*n, n=0...7 0x00154000 + 0x2000*n + 0x4*INT, n=0...2,
INT=0...2047

VFINT_ITR_1 0x00023008 + 0x1000*n, n=0...7 0x00154000 + 0x2000*n + 0x4*INT, n=0...2,
INT=0...2047

VFINT_ITR_2 0x0002300C + 0x1000*n, n=0...7 0x00154000 + 0x2000*n + 0x4*INT, n=0...2,
INT=0...2047

VFQRX_TAIL 0x0002E000 + 0x4*QRX, QRX=0...255 0x00290000 + 0x4*QRX, QRX=0...2047

VFQTX_COMM_DBELL 0x00030000 + 0x4*DBQM, DBQM=0...255 0x002C0000 + 0x4*DBQM, DBQM=0...16383

MSIX_TADD 0x00000000 + 0x10*n, n=0...64 0x02E00000 + 0x10*n, n=0...2047

MSIX_TUADD 0x00000004 + 0x10*n, n=0...64 0x02E00004 + 0x10*n, n=0...2047

MSIX_TMSG 0x00000008 + 0x10*n, n=0...64 0x02E00008 + 0x10*n, n=0...2047

MSIX_TVCTRL 0x0000000C + 0x10*n, n=0...64 0x02E0000C + 0x10*n, n=0...2047

MSIX_PBA 0x00008000 + 0x4*n, n=0...2 0x02E08000 + 0x4*n, n=0...63

Table 13-42. VF Registers Mapping in the PF Space

Abbreviation Virtual Address Physical Address

613875-009 2527

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.3.2 BAR0 Registers Summary

Table 13-43. VF - General Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00008800 VFGEN_RSTAT VF Reset Status 13.3.3.1.1

0x0000E400 PFPCI_VF_FLUSH_DONE VF Flush Done 13.3.3.1.2

Table 13-44. VF - Interrupt Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00002800 + 0x4*n + 0x40*m,
n=0...15, m=0...2 VFINT_ITRN[n,m] VF Interrupt Throttling N 13.3.3.2.1

0x00002C00 + 0x4*n +
0x100*m, n=0...63, m=0...2 VFINT_ITRN_64[n,m] VF Interrupt Throttling N_64 13.3.3.2.2

0x00003800 + 0x4*n, n=0...63 VFINT_DYN_CTLN[n] VF Interrupt Dynamic Control N 13.3.3.2.3

0x00004C00 + 0x4*n, n=0...2 VFINT_ITR0[n] VF Interrupt Throttling Zero 13.3.3.2.4

0x00005C00 VFINT_DYN_CTL0 VF Interrupt Dynamic Control Zero 13.3.3.2.5

Table 13-45. VF - Control Queues Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00006000 VF_MBX_ARQBAH VF Mailbox Receive Queue Base Address High 13.3.3.3.1

0x00006400 VF_MBX_ATQH VF Mailbox Transmit Head 13.3.3.3.2

0x00006800 VF_MBX_ATQLEN VF Mailbox Transmit Queue Length 13.3.3.3.3

0x00006C00 VF_MBX_ARQBAL VF Mailbox Receive Queue Base Address Low 13.3.3.3.4

0x00007000 VF_MBX_ARQT VF Mailbox Receive Tail 13.3.3.3.5

0x00007400 VF_MBX_ARQH VF Mailbox Receive Head 13.3.3.3.6

0x00007800 VF_MBX_ATQBAH VF Mailbox Transmit Queue Base Address High 13.3.3.3.7

0x00007C00 VF_MBX_ATQBAL VF Mailbox Transmit Queue Base Address Low 13.3.3.3.8

0x00008000 VF_MBX_ARQLEN VF Mailbox Receive Queue Length 13.3.3.3.9

0x00008400 VF_MBX_ATQT VF Mailbox Transmit Tail 13.3.3.3.10

Table 13-46. VF - LAN Transmit and Receive Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00000000 + 0x4*DBQM, DBQM=0...255 QTX_TAIL[DBQM] Transmit Queue Doorbell 13.3.3.4.1

0x00002000 + 0x4*QRX, QRX=0...255 QRX_TAIL[QRX] Receive Queue Tail Update 13.3.3.4.2

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2528 613875-009

Table 13-47. VF - Protocol Engine Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x00008C00 VFPE_IPCONFIG0 Protocol Engine VF IP Config 0 13.3.3.5.1

0x00009800 VFPE_CCQPHIGH Protocol Engine VF Create CQP High 13.3.3.5.2

0x00009C00 VFPE_CQPERRCODES Protocol Engine VF CQP Error Codes 13.3.3.5.3

0x0000A000 VFPE_CQPTAIL Protocol Engine VF CQP Tail 13.3.3.5.4

0x0000A400 VFPE_AEQALLOC Protocol Engine VF AEQ Allocate 13.3.3.5.5

0x0000A800 VFPE_TCPNOWTIMER Protocol Engine VF TCP Now Timer 13.3.3.5.6

0x0000AC00 VFPE_CCQPLOW Protocol Engine VF Create CQP Low 13.3.3.5.7

0x0000B000 VFPE_CQACK Protocol Engine VF CQ Ack 13.3.3.5.8

0x0000B400 VFPE_CQARM Protocol Engine VF CQ Arm 13.3.3.5.9

0x0000B800 VFPE_CCQPSTATUS Protocol Engine VF Create CQP Status 13.3.3.5.10

0x0000BC00 VFPE_CQPDB Protocol Engine VF CQP Doorbell 13.3.3.5.11

0x0000C000 VFPE_WQEALLOC Protocol Engine VF WQE Allocate Register 13.3.3.5.12

Table 13-48. VF - Large VF Access Registers Summary

Offset/Alias Offset Abbreviation Name Section
Reference

0x0000F000 VF_MBX_CPM_ATQBAL VF CPM Mailbox Transmit Queue Base Address
Low 13.3.3.6.1

0x0000F010 VF_MBX_CPM_ATQBAH VF CPM Mailbox Transmit Queue Base Address
High 13.3.3.6.2

0x0000F020 VF_MBX_CPM_ATQLEN VF CPM Mailbox Transmit Queue Length 13.3.3.6.3

0x0000F030 VF_MBX_CPM_ATQH VF CPM Mailbox Transmit Head 13.3.3.6.4

0x0000F040 VF_MBX_CPM_ATQT VF CPM Mailbox Transmit Tail 13.3.3.6.5

0x0000F050 VF_MBX_CPM_ARQBAL VF CPM Mailbox Receive Queue Base Address
Low 13.3.3.6.6

0x0000F060 VF_MBX_CPM_ARQBAH VF CPM Mailbox Receive Queue Base Address
High 13.3.3.6.7

0x0000F070 VF_MBX_CPM_ARQLEN VF CPM Mailbox Receive Queue Length 13.3.3.6.8

0x0000F080 VF_MBX_CPM_ARQH VF CPM Mailbox Receive Head 13.3.3.6.9

0x0000F090 VF_MBX_CPM_ARQT VF CPM Mailbox Receive Tail 13.3.3.6.10

0x0000F100 VF_SB_CPM_ATQBAL VF CPM Sideband Transmit Queue Base Address
Low 13.3.3.6.11

0x0000F110 VF_SB_CPM_ATQBAH VF CPM Sideband Transmit Queue Base Address
High 13.3.3.6.12

0x0000F120 VF_SB_CPM_ATQLEN VF CPM Sideband Transmit Queue Length 13.3.3.6.13

0x0000F130 VF_SB_CPM_ATQH VF CPM Sideband Transmit Head 13.3.3.6.14

0x0000F140 VF_SB_CPM_ATQT VF CPM Sideband Transmit Tail 13.3.3.6.15

0x0000F150 VF_SB_CPM_ARQBAL VF CPM Sideband Receive Queue Base Address
Low 13.3.3.6.16

0x0000F160 VF_SB_CPM_ARQBAH VF CPM Sideband Receive Queue Base Address
High 13.3.3.6.17

613875-009 2529

Intel® Ethernet Controller E810 Datasheet
Programming Interface

0x0000F170 VF_SB_CPM_ARQLEN VF CPM Sideband Receive Queue Length 13.3.3.6.18

0x0000F180 VF_SB_CPM_ARQH VF CPM Sideband Receive Head 13.3.3.6.19

0x0000F190 VF_SB_CPM_ARQT VF CPM Sideband Receive Tail 13.3.3.6.20

0x00020000 VF_MBX_HLP_ATQBAL VF HLP Mailbox Transmit Queue Base Address
Low 13.3.3.6.21

0x00020010 VF_MBX_HLP_ATQBAH VF HLP Mailbox Transmit Queue Base Address
High 13.3.3.6.22

0x00020020 VF_MBX_HLP_ATQLEN VF HLP Mailbox Transmit Queue Length 13.3.3.6.23

0x00020030 VF_MBX_HLP_ATQH VF HLP Mailbox Transmit Head 13.3.3.6.24

0x00020040 VF_MBX_HLP_ATQT VF HLP Mailbox Transmit Tail 13.3.3.6.25

0x00020050 VF_MBX_HLP_ARQBAL VF HLP Mailbox Receive Queue Base Address
Low 13.3.3.6.26

0x00020060 VF_MBX_HLP_ARQBAH VF HLP Mailbox Receive Queue Base Address
High 13.3.3.6.27

0x00020070 VF_MBX_HLP_ARQLEN VF HLP Mailbox Receive Queue Length 13.3.3.6.28

0x00020080 VF_MBX_HLP_ARQH VF HLP Mailbox Receive Head 13.3.3.6.29

0x00020090 VF_MBX_HLP_ARQT VF HLP Mailbox Receive Tail 13.3.3.6.30

0x00021000 VF_MBX_PSM_ATQBAL VF PSM Mailbox Transmit Queue Base Address
Low 13.3.3.6.31

0x00021010 VF_MBX_PSM_ATQBAH VF PSM Mailbox Transmit Queue Base Address
High 13.3.3.6.32

0x00021020 VF_MBX_PSM_ATQLEN VF PSM Mailbox Transmit Queue Length 13.3.3.6.33

0x00021030 VF_MBX_PSM_ATQH VF PSM Mailbox Transmit Head 13.3.3.6.34

0x00021040 VF_MBX_PSM_ATQT VF PSM Mailbox Transmit Tail 13.3.3.6.35

0x00021050 VF_MBX_PSM_ARQBAL VF PSM Mailbox Receive Queue Base Address
Low 13.3.3.6.36

0x00021060 VF_MBX_PSM_ARQBAH VF PSM Mailbox Receive Queue Base Address
High 13.3.3.6.37

0x00021070 VF_MBX_PSM_ARQLEN VF PSM Mailbox Receive Queue Length 13.3.3.6.38

0x00021080 VF_MBX_PSM_ARQH VF PSM Mailbox Receive Head 13.3.3.6.39

0x00021090 VF_MBX_PSM_ARQT VF PSM Mailbox Receive Tail 13.3.3.6.40

0x00022000 + 0x4*DBLQ,
DBLQ=0...3 VFQTX_COMM_DBLQ_DBELL[DBLQ] Transmit Comm Scheduler Queue Doorbell 13.3.3.6.41

0x00023000 + 0x1000*n,
n=0...7 VFINT_DYN_CTL[n] VF Interrupt Dynamic Control 13.3.3.6.42

0x00023004 + 0x1000*n,
n=0...7 VFINT_ITR_0[n] VF Interrupt Throttling 0 13.3.3.6.43

0x00023008 + 0x1000*n,
n=0...7 VFINT_ITR_1[n] VF Interrupt Throttling 1 13.3.3.6.44

0x0002300C + 0x1000*n,
n=0...7 VFINT_ITR_2[n] VF Interrupt Throttling 2 13.3.3.6.45

Table 13-48. VF - Large VF Access Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2530 613875-009

13.3.3 Detailed Register Descriptions - VF BAR0

13.3.3.1 VF - General Registers

This section describes the registers allocated to a VF for generic control and status. These registers are
tied to the VF and are not dependent of any resource allocation.

13.3.3.1.1 VF Reset Status - VFGEN_RSTAT (0x00008800; RW)

Field definitions are the same as those defined in Section 13.2.2.1.1.

13.3.3.1.2 VF Flush Done - PFPCI_VF_FLUSH_DONE (0x0000E400; RO)

Field definitions are the same as those defined in Section 13.2.2.3.24.

13.3.3.2 VF - Interrupt Registers

13.3.3.2.1 VF Interrupt Throttling N - VFINT_ITRN[n,m] (0x00002800
+ 0x4*n + 0x40*m, n=0...15, m=0...2; RW)

Field definitions are the same as those defined in Section 13.2.2.15.7.

13.3.3.2.2 VF Interrupt Throttling N_64 - VFINT_ITRN_64[n,m]
(0x00002C00 + 0x4*n + 0x100*m, n=0...63, m=0...2; RW)

Field definitions are the same as those defined in Section 13.2.2.15.7.

13.3.3.2.3 VF Interrupt Dynamic Control N - VFINT_DYN_CTLN[n]
(0x00003800 + 0x4*n, n=0...63; RW)

Field definitions are the same as those defined in Section 13.2.2.15.10.

13.3.3.2.4 VF Interrupt Throttling Zero - VFINT_ITR0[n] (0x00004C00
+ 0x4*n, n=0...2; RW)

Field definitions are the same as those defined in Section 13.2.2.15.7.

0x0002E000 + 0x4*QRX,
QRX=0...255 VFQRX_TAIL[QRX] Global Receive Queue Tail 13.3.3.6.46

0x00030000 + 0x4*DBQM,
DBQM=0...255 VFQTX_COMM_DBELL[DBQM] Transmit Comm Scheduler Queue Doorbell 13.3.3.6.47

Table 13-48. VF - Large VF Access Registers Summary [continued]

Offset/Alias Offset Abbreviation Name Section
Reference

613875-009 2531

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.3.3.2.5 VF Interrupt Dynamic Control Zero - VFINT_DYN_CTL0
(0x00005C00; RW)

Field definitions are the same as those defined in Section 13.2.2.15.10.

13.3.3.3 VF - Control Queues Registers

VF exposed control queues.

13.3.3.3.1 VF Mailbox Receive Queue Base Address High -
VF_MBX_ARQBAH (0x00006000; RW)

Field definitions are the same as those defined in Section 13.2.2.22.61.

13.3.3.3.2 VF Mailbox Transmit Head - VF_MBX_ATQH (0x00006400;
RW)

Field definitions are the same as those defined in Section 13.2.2.22.58.

13.3.3.3.3 VF Mailbox Transmit Queue Length - VF_MBX_ATQLEN
(0x00006800; RW)

Field definitions are the same as those defined in Section 13.2.2.22.57.

13.3.3.3.4 VF Mailbox Receive Queue Base Address Low -
VF_MBX_ARQBAL (0x00006C00; RW)

Field definitions are the same as those defined in Section 13.2.2.22.60.

13.3.3.3.5 VF Mailbox Receive Tail - VF_MBX_ARQT (0x00007000; RW)

Field definitions are the same as those defined in Section 13.2.2.22.64.

13.3.3.3.6 VF Mailbox Receive Head - VF_MBX_ARQH (0x00007400;
RW)

Field definitions are the same as those defined in Section 13.2.2.22.63.

13.3.3.3.7 VF Mailbox Transmit Queue Base Address High -
VF_MBX_ATQBAH (0x00007800; RW)

Field definitions are the same as those defined in Section 13.2.2.22.56.

13.3.3.3.8 VF Mailbox Transmit Queue Base Address Low -
VF_MBX_ATQBAL (0x00007C00; RW)

Field definitions are the same as those defined in Section 13.2.2.22.55.

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2532 613875-009

13.3.3.3.9 VF Mailbox Receive Queue Length - VF_MBX_ARQLEN
(0x00008000; RW)

Field definitions are the same as those defined in Section 13.2.2.22.62.

13.3.3.3.10 VF Mailbox Transmit Tail - VF_MBX_ATQT (0x00008400;
RW)

Field definitions are the same as those defined in Section 13.2.2.22.59.

13.3.3.4 VF LAN Transmit and Receive Registers

13.3.3.4.1 Transmit Queue Doorbell - QTX_TAIL[DBQM] (0x00000000
+ 0x4*DBQM, DBQM=0...255; RW)

Field definitions are the same as those defined in Section 13.2.2.25.27.

13.3.3.4.2 Receive Queue Tail Update - QRX_TAIL[QRX] (0x00002000
+ 0x4*QRX, QRX=0...255; RW)

Field definitions are the same as those defined in Section 13.2.2.26.22.

13.3.3.5 VF - Protocol Engine Registers

13.3.3.5.1 Protocol Engine VF IP Config 0 - VFPE_IPCONFIG0
(0x00008C00; RW)

Field definitions are the same as those defined in Section 13.2.2.28.23.

13.3.3.5.2 Protocol Engine VF Create CQP High - VFPE_CCQPHIGH
(0x00009800; RW)

Field definitions are the same as those defined in Section 13.2.2.28.22.

13.3.3.5.3 Protocol Engine VF CQP Error Codes - VFPE_CQPERRCODES
(0x00009C00; RO)

Field definitions are the same as those defined in Section 13.2.2.28.24.

13.3.3.5.4 Protocol Engine VF CQP Tail - VFPE_CQPTAIL (0x0000A000;
RO)

Field definitions are the same as those defined in Section 13.2.2.28.2.

613875-009 2533

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.3.3.5.5 Protocol Engine VF AEQ Allocate - VFPE_AEQALLOC
(0x0000A400; RW)

Field definitions are the same as those defined in Section 13.2.2.28.7.

13.3.3.5.6 Protocol Engine VF TCP Now Timer - VFPE_TCPNOWTIMER
(0x0000A800; RO)

Field definitions are the same as those defined in Section 13.2.2.28.25.

13.3.3.5.7 Protocol Engine VF Create CQP Low - VFPE_CCQPLOW
(0x0000AC00; RW)

Field definitions are the same as those defined in Section 13.2.2.28.21.

13.3.3.5.8 Protocol Engine VF CQ Ack - VFPE_CQACK (0x0000B000;
RW)

Field definitions are the same as those defined in Section 13.2.2.28.6.

13.3.3.5.9 Protocol Engine VF CQ Arm - VFPE_CQARM (0x0000B400;
RW)

Field definitions are the same as those defined in Section 13.2.2.28.5.

13.3.3.5.10 Protocol Engine VF Create CQP Status - VFPE_CCQPSTATUS
(0x0000B800; RO)

Field definitions are the same as those defined in Section 13.2.2.28.20.

13.3.3.5.11 Protocol Engine VF CQP Doorbell - VFPE_CQPDB
(0x0000BC00; RW)

Field definitions are the same as those defined in Section 13.2.2.28.1.

13.3.3.5.12 Protocol Engine VF WQE Allocate Register -
VFPE_WQEALLOC (0x0000C000; RW)

Field definitions are the same as those defined in Section 13.2.2.28.18.

13.3.3.6 VF - Large VF Access Registers

13.3.3.6.1 VF CPM Mailbox Transmit Queue Base Address Low -
VF_MBX_CPM_ATQBAL (0x0000F000; RW)

Field definitions are the same as those defined in Section 13.2.2.22.65.

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2534 613875-009

13.3.3.6.2 VF CPM Mailbox Transmit Queue Base Address High -
VF_MBX_CPM_ATQBAH (0x0000F010; RW)

Field definitions are the same as those defined in Section 13.2.2.22.66.

13.3.3.6.3 VF CPM Mailbox Transmit Queue Length -
VF_MBX_CPM_ATQLEN (0x0000F020; RW)

Field definitions are the same as those defined in Section 13.2.2.22.67.

13.3.3.6.4 VF CPM Mailbox Transmit Head - VF_MBX_CPM_ATQH
(0x0000F030; RW)

Field definitions are the same as those defined in Section 13.2.2.22.68.

13.3.3.6.5 VF CPM Mailbox Transmit Tail - VF_MBX_CPM_ATQT
(0x0000F040; RW)

Field definitions are the same as those defined in Section 13.2.2.22.69.

13.3.3.6.6 VF CPM Mailbox Receive Queue Base Address Low -
VF_MBX_CPM_ARQBAL (0x0000F050; RW)

Field definitions are the same as those defined in Section 13.2.2.22.70.

13.3.3.6.7 VF CPM Mailbox Receive Queue Base Address High -
VF_MBX_CPM_ARQBAH (0x0000F060; RW)

Field definitions are the same as those defined in Section 13.2.2.22.71.

13.3.3.6.8 VF CPM Mailbox Receive Queue Length -
VF_MBX_CPM_ARQLEN (0x0000F070; RW)

Field definitions are the same as those defined in Section 13.2.2.22.72.

13.3.3.6.9 VF CPM Mailbox Receive Head - VF_MBX_CPM_ARQH
(0x0000F080; RW)

Field definitions are the same as those defined in Section 13.2.2.22.73.

13.3.3.6.10 VF CPM Mailbox Receive Tail - VF_MBX_CPM_ARQT
(0x0000F090; RW)

Field definitions are the same as those defined in Section 13.2.2.22.74.

613875-009 2535

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.3.3.6.11 VF CPM Sideband Transmit Queue Base Address Low -
VF_SB_CPM_ATQBAL (0x0000F100; RW)

Field definitions are the same as those defined in Section 13.2.2.22.145.

13.3.3.6.12 VF CPM Sideband Transmit Queue Base Address High -
VF_SB_CPM_ATQBAH (0x0000F110; RW)

Field definitions are the same as those defined in Section 13.2.2.22.146.

13.3.3.6.13 VF CPM Sideband Transmit Queue Length -
VF_SB_CPM_ATQLEN (0x0000F120; RW)

Field definitions are the same as those defined in Section 13.2.2.22.147.

13.3.3.6.14 VF CPM Sideband Transmit Head - VF_SB_CPM_ATQH
(0x0000F130; RW)

Field definitions are the same as those defined in Section 13.2.2.22.148.

13.3.3.6.15 VF CPM Sideband Transmit Tail - VF_SB_CPM_ATQT
(0x0000F140; RW)

Field definitions are the same as those defined in Section 13.2.2.22.149.

13.3.3.6.16 VF CPM Sideband Receive Queue Base Address Low -
VF_SB_CPM_ARQBAL (0x0000F150; RW)

Field definitions are the same as those defined in Section 13.2.2.22.150.

13.3.3.6.17 VF CPM Sideband Receive Queue Base Address High -
VF_SB_CPM_ARQBAH (0x0000F160; RW)

Field definitions are the same as those defined in Section 13.2.2.22.151.

13.3.3.6.18 VF CPM Sideband Receive Queue Length -
VF_SB_CPM_ARQLEN (0x0000F170; RW)

Field definitions are the same as those defined in Section 13.2.2.22.152.

13.3.3.6.19 VF CPM Sideband Receive Head - VF_SB_CPM_ARQH
(0x0000F180; RW)

Field definitions are the same as those defined in Section 13.2.2.22.153.

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2536 613875-009

13.3.3.6.20 VF CPM Sideband Receive Tail - VF_SB_CPM_ARQT
(0x0000F190; RW)

Field definitions are the same as those defined in Section 13.2.2.22.154.

13.3.3.6.21 VF HLP Mailbox Transmit Queue Base Address Low -
VF_MBX_HLP_ATQBAL (0x00020000; RW)

Field definitions are the same as those defined in Section 13.2.2.22.75.

13.3.3.6.22 VF HLP Mailbox Transmit Queue Base Address High -
VF_MBX_HLP_ATQBAH (0x00020010; RW)

Field definitions are the same as those defined in Section 13.2.2.22.76.

13.3.3.6.23 VF HLP Mailbox Transmit Queue Length -
VF_MBX_HLP_ATQLEN (0x00020020; RW)

Field definitions are the same as those defined in Section 13.2.2.22.77.

13.3.3.6.24 VF HLP Mailbox Transmit Head - VF_MBX_HLP_ATQH
(0x00020030; RW)

Field definitions are the same as those defined in Section 13.2.2.22.78.

13.3.3.6.25 VF HLP Mailbox Transmit Tail - VF_MBX_HLP_ATQT
(0x00020040; RW)

Field definitions are the same as those defined in Section 13.2.2.22.79.

13.3.3.6.26 VF HLP Mailbox Receive Queue Base Address Low -
VF_MBX_HLP_ARQBAL (0x00020050; RW)

Field definitions are the same as those defined in Section 13.2.2.22.80.

13.3.3.6.27 VF HLP Mailbox Receive Queue Base Address High -
VF_MBX_HLP_ARQBAH (0x00020060; RW)

Field definitions are the same as those defined in Section 13.2.2.22.81.

13.3.3.6.28 VF HLP Mailbox Receive Queue Length -
VF_MBX_HLP_ARQLEN (0x00020070; RW)

Field definitions are the same as those defined in Section 13.2.2.22.82.

613875-009 2537

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.3.3.6.29 VF HLP Mailbox Receive Head - VF_MBX_HLP_ARQH
(0x00020080; RW)

Field definitions are the same as those defined in Section 13.2.2.22.83.

13.3.3.6.30 VF HLP Mailbox Receive Tail - VF_MBX_HLP_ARQT
(0x00020090; RW)

Field definitions are the same as those defined in Section 13.2.2.22.84.

13.3.3.6.31 VF PSM Mailbox Transmit Queue Base Address Low -
VF_MBX_PSM_ATQBAL (0x00021000; RW)

Field definitions are the same as those defined in Section 13.2.2.22.85.

13.3.3.6.32 VF PSM Mailbox Transmit Queue Base Address High -
VF_MBX_PSM_ATQBAH (0x00021010; RW)

Field definitions are the same as those defined in Section 13.2.2.22.86.

13.3.3.6.33 VF PSM Mailbox Transmit Queue Length -
VF_MBX_PSM_ATQLEN (0x00021020; RW)

Field definitions are the same as those defined in Section 13.2.2.22.87.

13.3.3.6.34 VF PSM Mailbox Transmit Head - VF_MBX_PSM_ATQH
(0x00021030; RW)

Field definitions are the same as those defined in Section 13.2.2.22.88.

13.3.3.6.35 VF PSM Mailbox Transmit Tail - VF_MBX_PSM_ATQT
(0x00021040; RW)

Field definitions are the same as those defined in Section 13.2.2.22.89.

13.3.3.6.36 VF PSM Mailbox Receive Queue Base Address Low -
VF_MBX_PSM_ARQBAL (0x00021050; RW)

Field definitions are the same as those defined in Section 13.2.2.22.90.

13.3.3.6.37 VF PSM Mailbox Receive Queue Base Address High -
VF_MBX_PSM_ARQBAH (0x00021060; RW)

Field definitions are the same as those defined in Section 13.2.2.22.91.

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2538 613875-009

13.3.3.6.38 VF PSM Mailbox Receive Queue Length -
VF_MBX_PSM_ARQLEN (0x00021070; RW)

Field definitions are the same as those defined in Section 13.2.2.22.92.

13.3.3.6.39 VF PSM Mailbox Receive Head - VF_MBX_PSM_ARQH
(0x00021080; RW)

Field definitions are the same as those defined in Section 13.2.2.22.93.

13.3.3.6.40 VF PSM Mailbox Receive Tail - VF_MBX_PSM_ARQT
(0x00021090; RW)

Field definitions are the same as those defined in Section 13.2.2.22.94.

13.3.3.6.41 Transmit Comm Scheduler Queue Doorbell -
VFQTX_COMM_DBLQ_DBELL[DBLQ] (0x00022000 +
0x4*DBLQ, DBLQ=0...3; RW)

Field definitions are the same as those defined in Section 13.2.2.25.29.

13.3.3.6.42 VF Interrupt Dynamic Control - VFINT_DYN_CTL[n]
(0x00023000 + 0x1000*n, n=0...7; RW)

Field definitions are the same as those defined in Section 13.2.2.15.10.

13.3.3.6.43 VF Interrupt Throttling 0 - VFINT_ITR_0[n] (0x00023004 +
0x1000*n, n=0...7; RW)

Field definitions are the same as those defined in Section 13.2.2.15.7.

13.3.3.6.44 VF Interrupt Throttling 1 - VFINT_ITR_1[n] (0x00023008 +
0x1000*n, n=0...7; RW)

Field definitions are the same as those defined in Section 13.2.2.15.7.

13.3.3.6.45 VF Interrupt Throttling 2 - VFINT_ITR_2[n] (0x0002300C +
0x1000*n, n=0...7; RW)

Field definitions are the same as those defined in Section 13.2.2.15.7.

13.3.3.6.46 Global Receive Queue Tail - VFQRX_TAIL[QRX]
(0x0002E000 + 0x4*QRX, QRX=0...255; RW)

Field definitions are the same as those defined in Section 13.2.2.26.22.

613875-009 2539

Intel® Ethernet Controller E810 Datasheet
Programming Interface

13.3.3.6.47 Transmit Comm Scheduler Queue Doorbell -
VFQTX_COMM_DBELL[DBQM] (0x00030000 + 0x4*DBQM,
DBQM=0...255; RW)

Field definitions are the same as those defined in Section 13.2.2.25.27.

13.3.4 BAR3 Registers Summary

13.3.5 Detailed Register Descriptions - VF BAR3

13.3.5.1 VF - MSI-X Table Registers

13.3.5.1.1 MSI-X Message Address Low - MSIX_TADD[n] (0x00000000
+ 0x10*n, n=0...64; RW)

Field definitions are the same as those defined in Section 13.2.4.1.1.

13.3.5.1.2 MSI-X Message Address High - MSIX_TUADD[n]
(0x00000004 + 0x10*n, n=0...64; RW)

Field definitions are the same as those defined in Section 13.2.4.1.2.

13.3.5.1.3 MSI-X Message Data - MSIX_TMSG[n] (0x00000008 +
0x10*n, n=0...64; RW)

Field definitions are the same as those defined in Section 13.2.4.1.3.

13.3.5.1.4 MSI-X Vector Control - MSIX_TVCTRL[n] (0x0000000C +
0x10*n, n=0...64; RW)

Field definitions are the same as those defined in Section 13.2.4.1.4.

Table 13-49. VF - MSI-X Table Registers Summary

Offset / Alias Offset Abbreviation Name Section
Reference

0x00000000 + 0x10*n, n=0...2047 MSIX_TADD[n] MSI-X Message Address Low Section 13.3.5.1.1

0x00000004 + 0x10*n, n=0...2047 MSIX_TUADD[n] MSI-X Message Address High Section 13.3.5.1.2

0x00000008 + 0x10*n, n=0...2047 MSIX_TMSG[n] MSI-X Message Data Section 13.3.5.1.3

0x0000000C + 0x10*n, n=0...2047 MSIX_TVCTRL[n] MSI-X Vector Control Section 13.3.5.1.4

0x00008000 + 0x4*n, n=0...63 MSIX_PBA[n] MSI-X PBA Structure Section 13.3.5.1.5

Intel® Ethernet Controller E810 Datasheet
Programming Interface

2540 613875-009

13.3.5.1.5 MSI-X PBA Structure - MSIX_PBA[n] (0x00008000 + 0x4*n,
n=0...2; RO)

Field definitions are the same as those defined in Section 13.2.4.1.5.

613875-009 2541

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

Chapter 14 PCIe Programming Interface

14.1 Overview

The E810 supports the following configuration register sets:

• PCI basic configuration registers (see Section 14.2).

• PCI and PCIe capabilities in the PCI configuration space (see Section 14.3).

— Includes the PCIe capability structure (see Section 14.3.5).

• PCIe capabilities residing in the PCIe extended configuration Space (see Section 14.4).

• SR-IOV VF configuration space (see Section 14.5).

14.1.1 Functions Mapping

The E810 is a multi-function device with the following characteristics:

• Up to eight8 physical functions (PFs)

• Up to 256 SR-IOV Virtual Functions (VFs)

— Each PF can be allocated a different number of VFs in the range {0,...,256-1} as long as the
total number of VFs does not exceed 256.

The following rule applies regarding allocation of PCI functions to LAN ports:

• Each PCI function is associated with a single LAN port as indicated in the
PFGEN_PORTNUM.PORT_NUM register field.

Note: NVM programming notes:

Set PFGEN_PORTNUM_CAR in NVM POR auto-load section.

Set PFGEN_PORTNUM in NVM CORER auto-load section.

The number of enabled physical functions might be deducted from the PFPCI_STATUS1.FUNC_VALID
bits (one per PF). See Section 4.5.4 on how enabled functions are determined.

The ARI capability enables interpretation of the device number part of the RID as part of the function
number inside a device. Thus, a single device can span more than eight physical or virtual functions.
Table 14-1 and Table 14-2 map the physical functions to PCI Requester ID.

Table 14-1. RID per PF - ARI Mode

PF# B,D,F Binary Notes

PF 0 B,0,0 B,00000,000 PF #0

PF 1 B,0,1 B,00000,001 PF #1

PF 2 B,0,2 B,00000,010 PF #2

PF 7 B,0,7 B,00000,111 PF #7

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2542 613875-009

The Requester ID of a PF (bus, device, and function numbers) is captured in the PF_FUNC_RID register.

14.1.1.1 Support for Dynamic Changes

The E810 captures the bus number and device number per each configuration write request. However,
a dynamic change of the bus number or device number is not supported. Rather, the PCIe link should
be quiescent prior to such a change, including reception of all completion for previous requests.

14.1.2 Supported Features

Table 14-3 lists the PCI and PCIe capabilities supported per PCI function type. Some capabilities do not
necessarily appear with each function or in all cases. See Section 14.3 and Section 14.4 for details on
specific capabilities.

Table 14-2. RID per PF - non-ARI Mode

PF# B,D,F Binary Notes

PF 0 B,0,0 B,00000,000 PF #0

PF 1 B,0,1 B,00000,001 PF #1

PF 2 B,0,2 B,00000,010 PF #2

PF 7 B,0,7 B,00000,111 PF #7

Table 14-3. PCI Capabilities Supported by Function

PCI Capability PFs VFs Section
Reference

PCI Configuration Mandatory Mandatory 14.2

Power Management Yes Yes 14.3.1

MSI Yes No 14.3.2

MSI-X Yes Yes 14.3.3

Vital Product Data (VPD) Yes No 14.3.4

PCIe Yes Yes 14.3.5

Advanced Error Reporting (AER) Yes Yes 14.4.1

Device Serial Number Yes No (N/A) 14.4.2

Alternative RID Interpretation (ARI) Yes Yes 14.4.3

Single Root I/O Virtualization (SR-IOV) Yes No (N/A) 14.4.4

TPH Requester Yes Yes 14.4.5

Access Control Services (ACS) Yes Yes 14.4.6

Secondary PCIe Yes No (N/A) 14.4.7

Data Link Feature Yes No (N/A) 14.4.8

Process ID (PASID) Yes No (N/A) 14.4.9

Physical Layer 16.0 GT/s Extended Capability Yes No (N/A) 14.4.10

Lane Margining at the Receiver Capability Yes No (N/A) 14.4.11

613875-009 2543

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.2 PCI Configuration Space

Configuration registers are assigned one of the attributes listed in Table 14-4.

14.2.1 Register Attributes

Table 14-4 lists the register attributes used in this section.

Table 14-4. Register Attribute Descriptions

Type Description

RO Read-Only register
Register bits are read-only and cannot be altered by software.

RW Read/Write register
Register bits are read/write and can be either set or reset.

RW1C Read-only status, Write 1b to Clear status register.
Writing a 0b to RW1C bits has no effect.

ROS Read-only register with Sticky bits
Register bits are read-only and cannot be altered by software. Bits are neither initialized nor modified by PCIe
in-band reset or FLR.
Specific bits listed below are also not reset on PERST# when aux power consumption is enabled.

RWS Read/Write register with Sticky bits
Register bits are read/write and can be either set or cleared by software to the desired state. Bits are neither
initialized nor modified by PCIe in-band reset or FLR.
Specific bits listed below are also not reset on PERST# when aux power consumption is enabled.

RW1CS Read-only status, Write 1b to Clear status register
Register bits indicate status when read,. A set bit, indicating a status event, can be cleared by writing a 1b to it.
Writing a 0b to RW1C bits has no effect. Bits are neither initialized nor modified by PCIe in-band reset or FLR.
Specific bits listed in the sections that follow are also not reset on PERST# when aux power consumption is
enabled.

HwInit Hardware Initialized
Register bits are initialized by firmware or hardware mechanisms, such as pin strapping or serial NVM. Bits are
read-only after initialization and can only be reset (for write-once by firmware) with the PWRGOOD signal.

RsvdP Reserved and Preserved
Reserved for future read/write implementations;. Software must preserve value read for writes to these bits.

RsvdZ Reserved and Zero
Reserved for future RW1C implementations;. Software must use 0b for writes to these bits.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2544 613875-009

14.2.2 Reset Rules

Reset of the PCI configuration space (including any capability lists) is per the PCIe specification. Several
cases require special attention.

14.2.2.1 Sticky Registers

The following sticky register fields are also not reset on PERST# when aux power consumption is
enabled (AUX_PWR pin is set).

• PME-related fields:

— Power Management Capabilities register — PME_En bit.

— Power Management Capabilities register — PME_Status bit.

— Device Control register — Aux Power PM Enable bit.

— The function Requester ID.

• AER-related fields:

— Uncorrectable Error Status register.

— Uncorrectable Error Mask register.

— Uncorrectable Error Severity register.

— Correctable Error Status register.

— Correctable Error Mask register.

— Advanced Error Capabilities and Control register.

— Header log.

• Physical Layer 16.0 GT/s related fields:

— Physical Layer 16.0 GT/s Status Register

— 16.0 GT/s Local Data Parity Mismatch Status Register

— 16.0 GT/s First Re-timer Data Parity Mismatch Status Register

— 16.0 GT/s Second Re-timer Data Parity Mismatch Status Register

14.2.2.2 Reset on FLR

The following registers are not affected by FLR:

• The Max Payload Size field in the Device Control register.

• The Active State Link PM Control field in the Link Control register.

• The Common Clock Configuration field in the Link Control register.

• The Extended Sync field in the Link Control register.

• The Link Equalization Request field in the Link Status 2 register.

613875-009 2545

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.2.3 PCI Configuration Space Summary

Table 14-5 lists the PCI configuration registers, while their detailed description is given in the sections
that follow. Fields that have meaningful default values are indicated in parenthesis — (value).

The PCI configuration space from address 0x40 on is allocated for PCI capability structures as described
in Section 14.3. However, the region of 0x98-0x9F (8 bytes) is dedicated to an address/data port,
which provides access to the device I/O address space (see Section 13.1.1.6 for more details).

14.2.4 Sharing Among PCI Functions

The E810 supports multiple PCI functions. As each function exposes a PCIe configuration space, each
register and each field is either shared among the functions or is replicated per each PCI function. This
section summarizes configuration sharing of the fixed PCI configuration space. See the description of
each PCI capability structure for configuration sharing within it. Also, the description of each field
describes special considerations regarding configuration sharing.

Table 14-5. PCI Configuration Space - PF

Section Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

Mandatory PCI
Register

0x0 Device ID Vendor ID

0x4 Status Register Command Register

0x8 Class Code (0x020000/0x010000) Revision ID

0xC Reserved Header Type
(0x0/0x80) Latency Timer Cache Line Size

(0x10)

0x10 Base Address Register 0

0x14 Base Address Register 1

0x18 Base Address Register 2

0x1C Base Address Register 3

0x20 Base Address Register 4

0x24 Base Address Register 5

0x28 CardBus CIS Pointer (0x0000)

0x2C Subsystem ID Subsystem Vendor ID

0x30 Expansion ROM Base Address

0x34 Reserved Cap Ptr (0x40)

0x38 Reserved

0x3C Max Latency (0x00) Min Grant (0x00) Interrupt Pin
(0x01...0x04) Interrupt Line (0x00)

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2546 613875-009

Table 14-6. Configuration Sharing of PCI Configuration Space

Field Sub-Field Shared? Replicated? Comments Section
Reference

Vendor ID Vendor ID X 14.2.5.1

Device ID Device ID X 14.2.5.2

Command Register

I/O Access Enable X Issue UR per PF if disabled.

14.2.5.3

Memory Access Enable X Issue UR per PF if disabled.

Bus Master Enable X

Parity Error Response X Enables certain error reporting
per PF.

SERR# Enable X Controls error reporting per PF.

Interrupt Disable X Selection of interrupt method per
PF.

Status Register

Interrupt Status X

14.2.5.4

Capabilities List X Hard-wired to 1b.

Data Parity Reported /
Master Data Parity Error X Reports poisoned packets per PF.

Signaled Target Abort X Reports Completer Abort per PF.

Received Target Abort X Reports receiving a Completer
Abort per PF.

Received Master Abort X Reports receiving an UR per PF.

Signaled System Error X Reports Fatal / non-fatal
message per PF.

Detected Parity Error X Reports receiving a poisoned TLP
per PF.

Revision Register X 14.2.5.5

Class Code Register X Per function type. 14.2.5.6

Cache Line Size
Register X Does not affect device behavior. 14.2.5.7

Latency Timer X Hard-wired to 0x00 in PCIe. 14.2.5.8

Header Type Register X 14.2.5.9

BARs

Memory BAR X

14.2.6I/O BAR X

MSI-X BAR X See MSI-X capability.

I/O Bar Mapping IOADDR, IODATA X 14.2.6.1

Subsystem Vendor ID X 14.2.5.10

Subsystem ID X 14.2.5.11

Expansion ROM X Each PF has its own BAR. 14.2.6.2

Cap_Ptr Register X 14.2.5.12

Interrupt Line Register X Just store the register value. 14.2.5.13

Interrupt Pin Register X Separate interrupt number (A-D)
per PF. 14.2.5.14

Min Grant X
14.2.5.15

Max Latency X

613875-009 2547

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.2.5 Mandatory PCI Configuration Registers - Except
BARs

14.2.5.1 Vendor ID Register (0x0; RO)

This is a read-only register that has the same value for all PCI functions.

• Vendor ID is loaded from the NVM if the GLPCI_CAPSUP.LOAD_DEV_ID bit is set.

• The value for all PFs is loaded from the NVM GLPCI_VENDORID.VENDOR_ID field.

14.2.5.2 Device ID Register (0x2; RO)

This is a read-only register that identifies individual E810 PCI functions. All functions have the same
default value of 0x1590 for the E810-CAM2/CAM1 (25x25 mm package) and 0x1598 for the
E810-XXVAM2 (21x21 mm package), and can be auto-loaded from the NVM during initialization with
different values for each function as well as the dummy function (see Section 4.5.4.1 for dummy
function details).

Device ID is loaded from the NVM according to the following rules:

• The Device ID is loaded from the NVM if the GLPCI_CAPSUP.LOAD_DEV_ID bit is set.

• The value of each PF is loaded to the respective PFPCI_DEVID.PF_DEV_ID field.

Table 14-7 describes the values set in this register from NVM according to the different PHY
connections.

Table 14-7. Device IDs and Branding Strings

Device ID Interface Branding String

0x1590 Default Device ID (E810-CAM2/CAM1) Intel® Ethernet Connection E810-C

0x1598 Default Device ID (E810-XXVAM2) Intel® Ethernet Connection E810-XXV

0x1889 Default Virtual function device ID Intel® Ethernet Adaptive Virtual Function

0x1591 backplane (E810-CAM2/CAM1) Intel® Ethernet Controller E810-C for backplane

0x1599 backplane (E810-XXVAM2) Intel® Ethernet Controller E810-XXV for backplane

0x1592 QSFP (E810-CAM2/CAM1) Intel® Ethernet Controller E810-C for QSFP

0x159A QSFP (E810-XXVAM2) Intel® Ethernet Controller E810-XXV for QSFP

0x1593 SFP (E810-CAM2/CAM1) Intel® Ethernet Controller E810-C for SFP

0x159B SFP (E810-XXVAM2) Intel® Ethernet Controller E810-XXV for SFP

0x1594 10GBASE-T (E810-CAM2/CAM1) Intel® Ethernet Controller E810-C/X557-AT 10GBASE-T

0x159C 10GBASE-T (E810-XXVAM2) Intel® Ethernet Controller E810-XXV/X557-AT 10GBASE-T

0x1595 1GBASE-T (E810-CAM2/CAM1) Intel® Ethernet Controller E810-C 1GbE

0x159D 1GBASE-T (E810-XXVAM2) Intel® Ethernet Controller E810-XXV 1GbE

0x1596-7 Reserved for future use (E810-CAM2/CAM1)

0x159E-F Reserved for future use (E810-XXVAM2)

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2548 613875-009

14.2.5.3 Command Register (0x4; RW)

Shaded bits are not used by this implementation and are hard-wired to 0b. Each function has its own
Command register (see Table 14-6).

14.2.5.4 Status Register (0x6; RO)

Shaded bits are not used by this implementation and are hard-wired to 0b. Each function has its own
Status register.

Bits Init. Type Description

0 0b RW
(see comment)

I/O Access Enable
This bit is RO if an I/O BAR is not supported by the device.

1 0b RW Memory Access Enable

2 0b RW Enable Mastering
Also named Bus Master Enable (BME).
• LAN functions RW field.
• Dummy function RO as zero field.

3 0b RO Special Cycle Monitoring
Hard-wired to 0b.

4 0b RO MWI Enable
Hard-wired to 0b.

5 0b RO Palette Snoop Enable
Hard-wired to 0b.

6 0b RW Parity Error Response

7 0b RO Wait Cycle Enable
Hard-wired to 0b.

8 0b RW SERR# Enable

9 0b RO Fast Back-to-Back Enable
Hard-wired to 0b.

10 0b RW Interrupt Disable
When set, devices are prevented from generating legacy interrupt messages.
RO as 0b for a dummy function.

15:11 0x0 RO Reserved.

Bits Init. Type Description

0 0b RO Immediate Readiness
Not supported in the E810.

2:1 00b Reserved.

3 0b RO Interrupt Status1

4 1b RO New Capabilities
Indicates that a device implements extended capabilities. The E810 sets this bit and implements a
capabilities list to indicate that it supports PCI and PCIe capabilities.

5 0b 66 MHz Capable
Hard-wired to 0b.

6 0b Reserved.

7 0b Fast Back-to-Back Capable
Hard-wired to 0b.

8 0b RW1C Data Parity Reported

613875-009 2549

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.2.5.5 Revision Register (0x8; RO)

The default revision ID of this device is 0x00 for A0 step. The default value is readable through the
GLPCI_DREVID register. The value in the Revision register is a logic XOR between the default value and
a value loaded from the NVM, reflected via the GLPCI_REVID register.

The default Revision ID for each E810 SKU is:

• E810-C in 25x25 mm package, B0 Step: 0x01

• E810-XXV in 21x21 mm package, A0 Step: 0x01

14.2.5.6 Class Code Register (0x9; RO)

The class code is a read-only value that identifies the device functionality:

• Class Code = 0x020000 (Ethernet adapter) if NVM->Storage Class = 0b.

• Class Code = 0x010000 (SCSI storage device) if NVM->Storage Class = 1b.

In the dummy function, the class code equals to 0xFF0000.

The device default value is the class code of an Ethernet adapter. The value is overwritten from the
NVM. It is loaded to the RO PFPCI_CLASS register.

14.2.5.7 Cache Line Size Register (0xC; RW)

This field is implemented by PCIe devices as a read/write field for legacy compatibility purposes, but
has no impact on any PCIe device functionality. All functions are initialized to the same value of 0x00
(specification required).

14.2.5.8 Latency Timer (0xD; RO)

Not used. Hard-wired to 0b.

10:9 00b DEVSEL Timing
Hard-wired to 0b.

11 0b RW1C Signaled Target Abort

12 0b RW1C Received Target Abort

13 0b RW1C Received Master Abort

14 0b RW1C Signaled System Error

15 0b RW1C Detected Parity Error

1. The Interrupt Status field is a RO field that indicates that an interrupt message is pending internally to the device.

Bits Init. Type Description

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2550 613875-009

14.2.5.9 Header Type Register (0xE; RO)

This indicates if a device is single- or multi-function:

• 0x00 — A single function is enabled.

• 0x80 — At least two functions are enabled.

Notes:

• Dummy functions are considered as regular functions in this regard.

• SR-IOV VFs are not counted in the setting of the Header Type register.

• Functions might be disabled during the power on reset flow (through strapping pins, SMASH/CLP
commands, NC-SI commands) affecting this bit. See Section 4.5.4.

14.2.5.10 Subsystem Vendor ID Register (0x2C; RO)

This value is loaded from the NVM if the GLPCI_CAPSUP.LOAD_SUBSYS_ID bit is set. A value of 0x8086
is the default for this field. It can be read through the GLPCI_SUBVENID register.

14.2.5.11 Subsystem ID Register (0x2E; RO)

This value is loaded from the NVM if the GLPCI_CAPSUP.LOAD_SUBSYS_ID bit is set. Each PF is loaded
to the respective PFPCI_SUBSYSID.PF_SUBSYS_ID field.

14.2.5.12 Capabilities Pointer Register (0x34; RO)

The Capabilities Pointer field (Cap_Ptr) is an 8-bit field that provides an offset in the E810's PCI
configuration space for the location of the first item in the capabilities linked list. The E810 supports this
field and implements a capabilities list. Its value is 0x40, which is the address of the first entry: PCI
power management.

14.2.5.13 Interrupt Line Register (0x3C; RW)

Read/write register programmed by software to indicate which of the system interrupt request lines the
E810's interrupt pin is bound to. Refer to the PCI definition for more details.

14.2.5.14 Interrupt Pin Register (0x3D; RO)

Read-only register. A value of 0x1...0x4 indicates that this function implements a legacy interrupt on
INTA#...INTD# respectively. Loaded from the NVM. It can be read through the RO PFPCI_CNF register.
Device default value is 0x0.

If only a single function is enabled, the Interrupt Pin field of the enabled function reports INTA# usage.

Reports a value of 0x0 (function uses no legacy interrupt message) for a dummy function.

14.2.5.15 MIN_GNT and MAX_LAT (0x3E; RO)

Not used. Hard-wired to 0b.

613875-009 2551

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.2.6 Mandatory PCI Configuration Registers - BARs

14.2.6.1 Memory and I/O BARs (0x10 - 0x27; RW)

BARs are used to map E810 register space of the device functions. The E810 has a memory BAR, an I/
O BAR (optional) an MSI-X BAR as listed in Table 14-8. The BARs location and sizes are listed in
Table 14-9. The fields within each BAR are then listed in Table 14-10.

Table 14-8. E810 BAR Description

Mapping Windows Mapping Description

Memory BAR The internal registers memories, Protocol Engine doorbells, and external Flash devices are accessed as
direct memory-mapped offsets from the BAR. Software can access a DWord or 64 bits.

I/O BAR All internal registers and memories can be accessed using I/O operations. There are two 4-byte registers
in the I/O mapping window: Addr Reg and Data Reg accessible as DWord entities. The I/O BAR is
supported depending on the NVM configuration. Device default value is that an I/O BAR is not supported.
The state of the I/O BAR is exposed in the PFPCI_CNF register.
This BAR is not present in dummy functions.

MSI-X BAR The MSI-X vectors and PBA structures are accessed as direct memory-mapped offsets from the MSI-X
BAR. Software can access DWord entities.
This BAR is not present in dummy functions.

Table 14-9. E810 Base Address Setting in 64-bit BARs Mode

BAR Addr 31 5 4 3 2 1 0

0 0x10 Memory CSR + FLASH BAR Low:
31:24 = RW
23:18 = RW or 0b
17:4 = 0b

0/1 1 0 0

1 0x14 Memory CSR + FLASH BAR High (RW)

2 0x18 IO BAR (RW — 31:5) (optional) 0 0 0 0 1

3 0x1C MSI-X BAR Low (RW — 31:15; RO 0b — 14:4) 0/1 1 0 0

4 0x20 MSI-X BAR High (RW)

5 0x24 Reserved (RO — 0)

Table 14-10. Base Address Registers Fields

Field Bits Type Description

Memory and I/O Space
Indication

0 RO Memory and I/O Space Indication
0b = Indicates memory space.
1b = Indicates I/O.

Memory Type 2:1 RO Memory Type
This field is loaded from the NVM. Hardware default is 64-bit.

Prefetch Memory 3 RO Prefetch Memory
0b = Non-prefetchable space.
1b = Prefetchable space.

This bit is loaded from NVM. This bit should be set only on systems that do not
generate prefetchable cycles.
Device default is 1b (prefetchable). It is exposed in the GLPCI_LBARCTRL register.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2552 613875-009

14.2.6.2 Expansion ROM Base Address Register (0x30; RW)

This register is used to define the address and size information for boot-time access to the optional
Flash memory. This register returns a zero value for functions without an Expansion ROM window and
for dummy functions.

The Expansion ROM BAR is disabled through the PFPCI_CNF.EXROM_DIS register field.

Address Space
(low register for 64-bit
memory BARs)

31:4 RW Address Space
The length of the RW bits and RO 0b bits depend on the mapping window sizes.
Initial value of the RW fields is 0x0.

Mapping Window RO bits

Memory space for CSRs, PE doorbells, and Flash memory
access and 4K pages.

16:4 for 128 KB
17:4 for 256 KB
and so on...

MSI-X space is 32 KB. 14:4

I/O space size is 32 bytes. 4:0

Field Bits Init. Type Description

En 0 0b RW Enable
0b = Disables Expansion ROM access.
1b = Enables Expansion ROM access.

Reserved 10:1 0x0 R Reserved.
Always read as 0x0. Writes are ignored.

Address 31:11 0x0 RW Address
The number of bits that are not hard-wired to 0b is determined by the value of the
GLPCI_LBARCTRL.EXROM_SIZE register field, loaded from the NVM.

Table 14-10. Base Address Registers Fields [continued]

Field Bits Type Description

613875-009 2553

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3 Capabilities in PCI Configuration Space

The first entry of the PCI capabilities link list is pointed to by the Cap_Ptr register. Table 14-11 lists the
capabilities supported by the E810 that reside in the PCI configuration space.

14.3.1 PCI Power Management Capability

Table 14-13 lists the sharing of the Power Management Capability registers among the different PCI
functions.

Table 14-11. PCI Capabilities List

Address Range Item Cases Where Capability Does Not Exist Next Pointer Section
Reference

0x40 - 0x4F Power Management • None (always exists). 0x50 / 0xA0 14.3.1

0x50 - 0x6F MSI • Dummy function. 0x70 / 0xA0 14.3.2

0x70 - 0x8F MSI-X
• PFPCI_CNF.MSI_EN is 0b.
• Dummy function.

0xA0 14.3.3

0xA0 - 0xDF PCIe • None (always exists). 0xE0 / 0x00 14.3.5

0xE0 - 0xEF VPD
• VPD Enable bit (GLPCI_CAPCTRL.VPD_EN) is cleared.
• Dummy function.

0x00 14.3.4

Table 14-12. PCI Power Management Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x40 Power Management Capabilities Next Pointer Capability ID (0x01)

0x44 Data Bridge Support Extensions Power Management Control and Status

Table 14-13. Sharing the Power Management Capability Registers

Field Sub-Field Shared? Replicated? Comments Section
Reference

Capability ID X 14.3.1.1

Next Pointer X 14.3.1.2

Power Management
Capabilities

PME_Support X

14.3.1.3

D2_Support X

D1_Support X

AUX Current X

DSI X

PME Clock X Hard-wired to 0b.

Version X

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2554 613875-009

14.3.1.1 Capability ID Register (0x40; RO)

This field equals 0x01, indicating the linked list item as being the PCI Power Management registers.

14.3.1.2 Next Pointer Register (0x41; RO)

This field provides an offset to the next capability item in the capability list. See Table 14-11 for possible
values of the next pointer register.

14.3.1.3 Power Management Capabilities - PMCR (0x42; RO)

This register describes the device functionality during the power management states as listed in the
following table.

Power Management
Control / Status

PME_Status X

14.3.1.4

Data_Scale X

Data_Select X

PME_En X

No_Soft_Reset X

PowerState X

Data Register X 14.3.1.6

Bits Init. Type Description

2:0 011b RO Version
The E810 complies with the PCI PM specification revision 1.2.

3 0b RO PME_Clock
Disabled. Hard-wired to 0b.

4 0b RO Immediate Readiness
Immediate_Readiness_on_Return_to_D0 (not supported in the E810).

5 1b RO DSI
The E810 requires its device driver to be executed following a transition to the D0 uninitialized state.

8:6 000b RO AUX Current
Required current defined in the Data register.

9 0b RO D1_Support
The E810 does not support the D1 state.

10 0b RO D2_Support
The E810 does not support the D2 state.

15:11 0x0 RO PME_Support
This 5-bit field indicates the power states in which the function can generate a PME event.
If GLPCI_CAPSUP.WAKEUP_EN is set, the condition functionality values are as follows:

01001b = No AUX Pwr PME at D0 and D3hot
11001b = AUX Pwr PME at D0, D3hot, and D3cold
Otherwise zero.

Note: For dummy function, this field is RO - zero.

Table 14-13. Sharing the Power Management Capability Registers [continued]

Field Sub-Field Shared? Replicated? Comments Section
Reference

613875-009 2555

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.1.4 Power Management Control/Status Register - PMCSR
(0x44; RW)

This register is used to control and monitor power management events in the device.

14.3.1.5 PMCSR_BSE Bridge Support Extensions Register (0x46;
RO)

This register is not implemented in the E810; values set to 0x00.

14.3.1.6 Data Register (0x47; RO)

This optional register is used to report power consumption and heat dissipation. The reported register is
controlled by the Data_Select field in the PMCSR, while the power scale is reported in the Data_Scale
field in the PMCSR. The data for this field is loaded from the NVM with a default value of 0x00. It is
exposed through the GLPCI_PWRDATA register.

The values for E810 functions are as follows (the relevant column is selected based on the value of the
Data_Select field):

Bits Init. Type Description

1:0 00b RW PowerState
This field is used to set and report the power state of a function as follows:

00b = D0
01b = D1 (cycle ignored if written with this value)
10b = D2 (cycle ignored if written with this value)
11b = D3

2 0b RO Reserved for PCIe.

3 1b RO No_Soft_Reset
This bit is always set to 1b to indicate that the E810 does not perform an internal reset upon
transition from D3hot to D0 via software control of the PowerState bits. Configuration context
is maintained when performing the soft reset. Upon transition from the D3hot to the D0 state,
an initialization sequence is not needed to return the E810 to the D0 Initialized state.

7:4 0x0 RO Reserved.

8 0b
(at power up)

RWS PME_En
Writing a 1b to this register enables wake-up.

12:9 0x0 RW Data_Select
This 4-bit field is used to select which data is to be reported through the Data register and
Data_Scale field.

14:13 00b RO Data_Scale
This field indicates the scaling factor that is used when interpreting the value of the Data
register.
This field is loaded from the NVM (through the GLPCI_PWRDATA.DATA_SCALE register) for
legal values of Data_Select [0, 3, 4, 7, (and 8 for function 0)].
The normal value is 01b (indicating 0.1 watt/units).
Reserved (00b) for any other values of Data_Select.

15 0b
(at power up)

RW1CS PME_Status
This bit is set to 1b when the function detects a wake-up event independent of the state of the
PME_En bit. Writing a 1b clears this bit.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2556 613875-009

Note: For other Data_Select values the Data register output is reserved (0x00).

14.3.2 MSI Capability

This structure is enabled when the PFPCI_CNF.MSI_EN bit is set for the function.

Table 14-15 lists configuration sharing of the MSI Capability registers among the different PCI
functions.

Field D0 (Consume/ Dissipate) D3 (Consume/ Dissipate) Common

Data_Select (0x0/0x4) (0x3/0x7) (0x8)

Function 0 Loaded from NVM Loaded from NVM Multi-function value:
Loaded from the NVM

Single-function value:
0x00

Other functions Loaded from NVM Loaded from NVM 0x00

Table 14-14. MSI Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x50 Message Control (0x0080) Next Pointer Capability ID (0x05)

0x54 Message Address

0x58 Message Upper Address

0x5C Reserved Message Data

0x60 Mask Bits

0x64 Pending Bits

Table 14-15. Configuration Sharing of the MSI Capability

Field Sub-Field Shared? Replicated? Comments Section
Reference

Capability ID X 14.3.2.1

Next Pointer X 14.3.2.2

Message Control

MSI Enable X

14.3.2.3

Multiple Messages Capable X

Multiple Message Enable X

64-bit Capable X

MSI per-vector masking X

Message Address Low X 14.3.2.4

Message Address High X 14.3.2.5

Message Data X 14.3.2.6

Mask Bits X 14.3.2.7

Pending Bits X 14.3.2.8

613875-009 2557

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.2.1 Capability ID Register (0x50; RO)

This field equals 0x05, indicating that the linked list item as being the MSI registers.

14.3.2.2 Next Pointer Register (0x51; RO)

This field provides an offset to the next capability item in the capability list. See Table 14-11 for possible
values of the next pointer register.

14.3.2.3 Message Control Register (0x52; RW)

14.3.2.4 Message Address Low Register (0x54; RW)

Written by the system to indicate the lower 32 bits of the address to use for the MSI memory write
transaction. The lower two bits always return 0b regardless of the write operation.

14.3.2.5 Message Address High Register (0x58; RW)

Written by the system to indicate the upper 32 bits of the address to use for the MSI memory write
transaction.

14.3.2.6 Message Data Register (0x5C; RW)

Written by the system to indicate the lower 16 bits of the data written in the MSI memory write DWord
transaction. The upper 16 bits of the transaction are written as 0b.

Bits Init. Type Description

0 0b RW MSI Enable
1b = Message Signaled Interrupts — The E810 generates an MSI for interrupt assertion instead of

INTx signaling.

3:1 000b RO Multiple Messages Capable
The E810 indicates a single requested message per function.

6:4 000b RW Multiple Message Enable
Software writes to this field to indicate the number of allocated vectors.
Since the E810 requests a single vector in the Multiple Message Capable field, software is expected to
write 000b to this field.

7 1b RO 64-bit Capable
1b = Indicates that the E810 is capable of generating 64-bit message addresses.

8 1b1

1. Value loaded from the NVM.

RO MSI per-vector masking
0b = Indicates that the E810 is not capable of per-vector masking.
1b = Indicates that the E810 is capable of per-vector masking.

15:9 0x0 RO Reserved. Reads as 0x0.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2558 613875-009

14.3.2.7 Mask Bits Register (0x60; RW)

The Mask Bits and Pending Bits registers enable software to disable or defer message sending on a
per-vector basis. Because the E810 only supports one message, only bit 0 of these registers are
implemented.

14.3.2.8 Pending Bits Register (0x64; RW)

14.3.3 MSI-X Capability

More than one MSI-X capability structure per function is prohibited, though a function is permitted to
have both an MSI and an MSI-X capability structure.

In contrast to the MSI capability structure, which directly contains all of the control/status information
for the function's vectors, the MSI-X capability structure instead points to an MSI-X table structure and
an MSI-X Pending Bit Array (PBA) structure, each residing in memory space.

A BAR is allocated for the MSI-X structures, described in Section 14.2.6. A BAR Indicator Register (BIR)
indicates which BAR, and a QWord-aligned offset indicates where the structure begins relative to the-
base address associated with the BAR. The BAR is 64 bits.

The number of MSI-X vectors per PF (denoted as N) varies with the number of physical and virtual
functions as set from NVM.

The MSI-X BAR is 32 KB long.

The location and size of the MSI-X vector table and the MSI-X pending bits table are determined as
follows:

• MSI-X vector table:

— The MSI-X table structure (Section 14.3.3.2) typically contains multiple entries, each consisting
of several fields: Message Address, Message Upper Address, Message Data, and Vector Control.
Each entry is capable of specifying a unique vector.

— Starts at offset 0x0000 from start of BAR.

— Contains the MSI-X vectors for the PF. The number of entries in the table (N) is set from NVM.
The maximum value of N is 2048 per PF.

— The vectors start with the Vector 0 (one per PF), followed by the other vectors allocated to the
PF.

Bits Init. Type Description

0 0b RW MSI Vector 0 Mask
If set, the E810 is prohibited from sending MSI messages.

31:1 0x0 RO Reserved.

Bits Init. Type Description

0 0b RO MSI Message
If set, the E810 has a pending MSI message.

31:1 0x0 RO Reserved.

613875-009 2559

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

• MSI-X Pending Bits table:

— The PBA structure (Section 14.3.3.2.2) contains the function's pending bits, one per table
entry, organized as a packed array of bits within QWords. The last QWord is not necessarily fully
populated.

— Starts at offset 0x8000 (32 KB) from start of BAR.

— Contains the pending bits for the PF. The PF can be allocated a multiple of 64-bit registers. The
total number of 32-bit registers is per the number of MSI-X vectors. The maximum number of
registers is 8 (for the case of 256 vectors).

— The bits start with the Vector 0 bit (one per PF), followed by bits for the other vectors allocated
to the PF.

To request service using a given MSI-X table entry, a function performs a DWord memory write
transaction using:

• The contents of the Message Data field entry for data.

• The contents of the Message Upper Address field for the upper 32 bits of the address.

• The contents of the Message Address field entry for the lower 32 bits of the address.

A memory read transaction from the address targeted by the MSI-X message produces undefined
results.

The MSI-X table and MSI-X PBA are permitted to co-reside within a naturally aligned 4 KB address
range, though they must not overlap with each other.

14.3.3.1 Capability Structure

Table 14-17 lists configuration sharing of the MSI-X capability registers among the different PCI
functions.

Table 14-16. MSI-X Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x70 Message Control (0x00090) Next Pointer Capability ID (0x11)

0x74 Table Offset

0x78 PBA Offset

Table 14-17. Configuration Sharing of the MSI-X Capability

Field Sub-Field Shared? Replicated? Comments Section
Reference

Capability ID X 14.3.3.1.1

Next Pointer X 14.3.3.1.2

Message Control Table Size X 14.3.3.1.3

Function Mask X

MSI-X Enable X

MSI-X Table Offset
Table BIR X

14.3.3.1.4
Table Offset X

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2560 613875-009

14.3.3.1.1 Capability ID Register (0x70; RO)

This field equals 0x11, indicating that the linked list item as being the MSI-X registers.

14.3.3.1.2 Next Pointer Register (0x71; RO)

This field provides an offset to the next capability item in the capability list. See Table 14-11 for possible
values of the next pointer register.

14.3.3.1.3 Message Control Register (0x72; RW)

14.3.3.1.4 MSI-X Table Offset Register (0x74; RW)

MSI-X Pending Bit Array
PBA BIR X

14.3.3.1.5
PBA Offset X

MSI-X Table X 14.3.3.2.1

MSI-X PBA Structure X 14.3.3.2.2

Bits Init. Type Description

10:0 0xFF
(256 vectors)

RO Table Size
System software reads this field to determine the MSI-X Table Size N, which is encoded as N-1.
This field is loaded from the NVM. It is reflected in the GLPCI_CNF2.MSI_X_PF_N CSR field.

13:11 000b RO Reserved. Always returns 000b on a read. A write operation has no effect.

14 0b RW Function Mask
0b = Each vector’s Mask bit determines whether the vector is masked or not.
1b = All of the vectors associated with the function are masked, regardless of their per-vector

Mask bit states.
Setting or clearing the MSI-X Function Mask bit has no effect on the state of the per-vector
Mask bits.

15 0b RW MSI-X Enable
0b = The function is prohibited from using MSI-X to request service.
1b = If 1b and the MSI Enable bit in the MSI Message Control register is 0b, the function is

permitted to use MSI-X to request service and is prohibited from using its INTx# pin.
System configuration software sets this bit to enable MSI-X. A device driver is prohibited from
writing this bit to mask a function’s service request.

Bits Init. Type Description

2:0 0x3 RO Table BIR
Indicates which one of a function’s BARs, beginning at 0x10 in the configuration space, is used to map
the function’s MSI-X table into the memory space. While BIR values 0...5 correspond to BARs
0x10:0x24, respectively.

31:3 0x000 RO Table Offset
Used as an offset from the address contained in one of the function’s BARs to point to the base of the
MSI-X table. The lower three Table BIR bits are masked off (set to 0b) by software to form a 32-bit
QWord-aligned offset.
Note: This field is read only.

Table 14-17. Configuration Sharing of the MSI-X Capability [continued]

Field Sub-Field Shared? Replicated? Comments Section
Reference

613875-009 2561

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.3.1.5 MSI-X Pending Bit Array - PBA Offset (0x78; RW)

14.3.3.2 PF MSI-X Table Structure

The MSI-X table is made of two structures:

• MSI-X Vector Table

• MSI-X Pending Bits Table

Both are described in the sections that follow and in more detail in Chapter 13.

14.3.3.2.1 MSI-X Vector Table

14.3.3.2.2 MSI-X Pending Bits Table

Bits Init. Type Description

2:0 0x3 RO PBA BIR
Indicates which one of a function’s BARs, beginning at 0x10 in the configuration space, is used to map
the function’s MSI-X PBA into the memory space. While BIR values: 0...5 correspond to BARs
0x10:0x24, respectively.

31:3 0x200 RO PBA Offset
Used as an offset from the address contained in one of the functions BARs to point to the base of the
MSI-X PBA. The lower three PBA BIR bits are masked off (set to 0b) by software to form a 32-bit
QWord-aligned offset.
Note: This field is read only.

DWord3 -
MSIXTVCTRL

DWord2 -
MSIXTMSG

DWord1 -
MSIXTUADD

DWord0 -
MSIXTADD

Entry
Number BAR 3 - Offset

Vector Control Msg Data Msg Upper Address Msg Lower Address 0 Base (0x0000)

Vector Control Msg Data Msg Upper Address Msg Lower Address 1 Base + 1*16

Vector Control Msg Data Msg Upper Address Msg Lower Address 2 Base + 2*16

… … … … …

Vector Control Msg Data Msg Upper Address Msg Lower Address (N-1) Base + (N-1)*16

Field Bits Init. Description

PENBIT 31:0 0x0 MSI-X Pending Bits
Each bit is set to 1b when the appropriate interrupt request is set and cleared to 0b when the
appropriate interrupt request is cleared. See Section 9.1.1.3 for more details.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2562 613875-009

14.3.4 VPD Capability

The E810 supports access to a VPD structure stored in the NVM using the following set of registers. A
single VPD structure is provided, accessible through any of the physical functions.

Initial values of the configuration registers are marked in parenthesis.

14.3.4.1 Capability ID Register (0xE0; RO)

This field equals 0x3, indicating the linked list item as being the VPD registers.

14.3.4.2 Next Pointer Register (0xE1; RO)

Offset to the next capability item in the capability list. See Table 14-11 for possible values of the next
pointer register.

14.3.4.3 VPD Address Register (0xE2; RW)

Word-aligned byte address of the VPD area in the NVM to be accessed. The register is read/write, and
the initial value at power-up is indeterminate.

14.3.4.4 VPD Data Register (0xE4; RW)

VPD read/write data.

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0xE0 VPD Address Next Pointer Capability ID (0x03)

0xE4 VPD Data

Bits Init. Type Description

14:0 X RW Address
DWord-aligned byte address of the VPD area in the NVM to be accessed. The register is read/write,
and the initial value at power-up is indeterminate. The two LSBs are RO as zero.

15 0b RW F
A flag used to indicate when the transfer of data between the VPD Data register and the storage
component completes. The Flag register is written when the VPD Address register is written.

0b = Read. Set by hardware when data is valid.
1b = Write. Cleared by hardware when data is written to the NVM.

The VPD address and data should not be modified before the action is done.

Bits Init. Type Description

31:0 X RW VPD Data
VPD data can be read or written through this register. The LSB of this register (at offset 4 in this
capability structure) corresponds to the byte of VPD at the address specified by the VPD Address
register. The data read from or written to this register uses the normal PCI byte transfer capabilities.
Four bytes are always transferred between this register and the VPD storage component. Reading or
writing data outside of the VPD space in the storage component is not allowed.
In a write access, the data should be set before the address and the flag is set.

613875-009 2563

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.5 PCIe Capability Structure

The E810 implements the PCIe capability structure linked to the legacy PCI capability list for endpoint
devices as follows:

Table 14-19 lists configuration sharing of the PCIe Capability registers among the different PCI
functions.

Table 14-18. PCIe Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0xA0 PCIe Capabilities Register (0x0002) Next Pointer Capability ID (0x10)

0xA4 Device Capabilities

0xA8 Device Status Device Control

0xAC Link Capabilities

0xB0 Link Status Link Control

0xB4 Reserved

0xB8 Reserved Reserved

0xBC Reserved

0xC0 Reserved Reserved

0xC4 Device Capabilities 2

0xC8 Reserved Device Control 2

0xCC Link Capabilities 2 Register

0xD0 Link Status 2 Link Control 2

0xD4 Reserved

0xD8 Reserved Reserved

Table 14-19. Configuration Sharing of the PCIe Capability

Field Sub-Field Shared? Replicated? Comments Section
Reference

Capability ID X 14.3.5.1

Next Pointer X 14.3.5.2

PCIe Capabilities X 14.3.5.3

Device Capabilities

Max Payload Size
Supported X

14.3.5.4

Phantom Functions
Supported X Not supported.

Extended Tag Field
Supported X

Endpoint L0s Acceptable
Latency X

Endpoint L1 Acceptable
Latency X

Function Level Reset
Capability X

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2564 613875-009

Device Control

Correctable Error
Reporting Enable X

14.3.5.5

Non-Fatal Error Reporting
Enable X

Fatal Error Reporting
Enable X

Unsupported Request
Reporting Enable X

Enable Relaxed Ordering X

Max Payload Size X
Use minimum of all configured
values. In ARI mode, use value in
Function 0.

Extended Tag Field Enable X

Auxiliary Power PM Enable X Same policy for all PFs (Logical OR of
the PF’s bits)

Enable No Snoop X

Max Read Request Size X Use minimum of all configured
values.

Initiate Function Level
Reset X

Device Status

Correctable Detected X

14.3.5.6

Non-Fatal Error Detected X

Fatal Error Detected X

Unsupported Request
Detected X

Aux Power Detected X

Transactions Pending X

Link Capabilities

Supported Link Speeds X

14.3.5.7

Max Link Width X

Active State Link PM
Support X

L0s Exit Latency X

L1 Exit Latency X

Clock Power Management X

Port Number X

Table 14-19. Configuration Sharing of the PCIe Capability [continued]

Field Sub-Field Shared? Replicated? Comments Section
Reference

613875-009 2565

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.5.1 Capability ID Register (0xA0; RO)

This field equals 0x10, indicating that the linked list item as being the PCIe Capabilities registers.

14.3.5.2 Next Pointer Register (0xA1; RO)

Offset to the next capability item in the capability list. See Table 14-11 for possible values of the next
pointer register.

Link Control

Active State Link PM
Control X

Same policy for all PFs (Logical AND
of the PF’s bits). In ARI mode, use
value in Function 0.

14.3.5.8

Read Completion
Boundary (RCB) X

Common Clock
Configuration X

Same policy for all PFs (Logical AND
of the PF’s bits) In ARI mode, use
value in Function 0.

Extended Sync X Same policy for all PFs (Logical OR of
the PF’s bits).

Link Status

Current Link Speed X

14.3.5.9Negotiated Link Width X

Slot Clock Configuration X

Device Capabilities 2

Completion Timeout
Ranges Supported X

14.3.5.10

Completion Timeout
Disable Supported X

TPH Completer Supported X

Extended Fmt Field
Supported X

OBFF Supported X

Device Control 2

Completion Timeout Value X
Completion timeout decision per PF
or use the largest configured value
among PFs.

14.3.5.11
Completion Timeout
Disable X Completion timeout mechanism

enabled per PF.

IDO Request Enable X

IDO Completion Enable X

OBFF Enable X PF0 only. RsvdP on other functions.

Link Capabilities 2 X 14.3.5.12

Link Control 2 X PF0 only. RsvdP on other functions. 14.3.5.13

Link Status 2 X 14.3.5.14

Table 14-19. Configuration Sharing of the PCIe Capability [continued]

Field Sub-Field Shared? Replicated? Comments Section
Reference

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2566 613875-009

14.3.5.3 PCIe Capabilities Register (0xA2; RO)

The PCIe Capabilities register identifies PCIe device type and associated capabilities.

14.3.5.4 Device Capabilities Register (0xA4; RO)

This register identifies the PCIe device-specific capabilities.

Bits Init. Type Description

3:0 0x2 RO Capability Version
Indicates the PCIe capability structure version. The E810 supports PCIe version 2 (loaded from
NVM). It is reflected in the GLPCI_CAPSUP register.

7:4 0x0/0x9 RO Device/Port Type
Indicates the type of PCIe functions.
All functions are native PCI functions with a value of 0x0 if strap_gbe_pci_endpoint_type strap is set
to native, and Root Complex Integrated Endpoint is set to RCIE.

8 0b RO Slot Implemented
The E810 does not implement slot options. Therefore, this field is hard-wired to 0b.

13:9 0x0 RO Interrupt Message Number
This field is hard-wired to 0x0 and is assumed to be irrelevant for endpoints.

15:14 00b RO Reserved.

Bits Init. Type Description

2:0 010b RO Max Payload Size Supported
This field indicates the maximum payload that the E810 can support for TLPs.
Set according to the strap_gbe_imps strap. If strap_gbe_imps strap = 111b, the default is 000b (128
bytes)

4:3 00b RO Phantom Function Supported
Not supported by the E810.

5 1b RO Extended Tag Field Supported
Maximum supported size of the Tag field. The E810 supports an 8-bit Tag field for all functions.

8:6 011b RO Endpoint L0s Acceptable Latency
This field indicates the acceptable latency that the E810 can withstand due to the transition from L0s
state to the L0 state. All functions share the same value loaded from the NVM.
The default value of 011b denotes a maximum 512 ns.

11:9 110b RO Endpoint L1 Acceptable Latency
This field indicates the acceptable latency that the E810 can withstand due to the transition from L1
state to the L0 state.
The default value of 110b denotes a maximum of 64 µs.
All functions share the same value loaded from the NVM. It is reflected in the GLPCI_PMSUP register.

12 0b RO Hard-wired in the E810 to 0b for all functions.

13 0b RO Hard-wired in the E810 to 0b for all functions.

14 0b RO Hard-wired in the E810 to 0b for all functions.

15 1b RO Role Based Error Reporting
Hard-wired in the E810 to 1b for all functions.

17:16 00b RO Reserved.

25:18 0x0 RO Slot Power Limit Value
Hard-wired in the E810 to 0x0 for all functions.

27:26 00b RO Slot Power Limit Scale
Hard-wired in the E810 to 0b for all functions.

28 1b RO Function Level Reset Capability
A value of 1b indicates the Function supports the optional Function Level Reset (FLR) mechanism.

613875-009 2567

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.5.5 Device Control Register (0xA8; RW)

This register controls the PCIe-specific parameters.

31:29 000b RO Reserved.

Bits Init. Type Description

0 0b RW Correctable Error Reporting Enable
Enable error report.

1 0b RW Non-Fatal Error Reporting Enable
Enable error report.

2 0b RW Fatal Error Reporting Enable
Enable error report.

3 0b RW Unsupported Request Reporting Enable
Enable error report.

4 1b RW Enable Relaxed Ordering
If this bit is set, the E810 is permitted to set the Relaxed Ordering bit in the Attribute field of
write transactions that do not need strong ordering. Refer to Section 3.1.2.7.2 for more details.

7:5 000b
(128 bytes)

RW Max Payload Size
This field sets the maximum TLP payload size for E810 functions. As a receiver, the E810 must
handle TLPs as large as the set value. As a transmitter, the E810 must not generate TLPs
exceeding the set value.
In ARI mode, Max Payload Size is determined solely by the field in Function 0 (even when it is a
dummy function), while it is meaningless in the other function(s).

8 1b RW Extended Tag Field Enable
The E810 uses 8-bit tags when this bit is set, and a 5-bit tag when disabled.

9 0b RO Phantom Functions Enable
Not implemented in the E810.

10 0b RWS Auxiliary Power PM Enable
When set, enables the E810 to draw AUX power independent of PME AUX power. The E810 is a
multi-function device, and is therefore allowed to draw AUX power if at least one of the functions
has this bit set.

11 0b RO Enable No Snoop
Hard-wired to 0b, as the E810 never sets the no snoop attribute in a TLP.

14:12 010b RW Max Read Request Size
This field sets maximum read request size for the E810 as a requester.

000b = 128 bytes
001b = 256 bytes
010b = 512 bytes
011b = 1024 bytes
100b = 2048 bytes
101b = 4096 bytes
110b = Reserved
111b = Reserved

15 0b RW Initiate FLR
A write of 1b initiates FLR to the function. The value read by software from this bit is always 0b.

Bits Init. Type Description

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2568 613875-009

14.3.5.6 Device Status Register (0xAA; RW1C)

This register provides information about PCIe device-specific parameters.

14.3.5.7 Link Capabilities Register (0xAC; RO)

This register identifies PCIe link-specific capabilities.

Bits Init. Type Description

0 0b RW1C Correctable Detected
Indicates status of correctable error detection.

1 0b RW1C Non-Fatal Error Detected
Indicates status of non-fatal error detection.

2 0b RW1C Fatal Error Detected
Indicates status of fatal error detection.

3 0b RW1C Unsupported Request Detected
Indicates that the E810 received an unsupported request. This field is separate per PF. However, in
the case where an error cannot be associated with a PF, this bit is set in all PFs and VFs.

4 0b RO Aux Power Detected
If Aux Power is detected, this field is set to 1b. It is a strapping signal from the periphery and is
identical for all functions. Resets on LAN Power Good and PE_RST_N only.

5 0b RO Transaction Pending
Indicates whether the E810 has ANY transactions pending. Transactions include completions for any
outstanding non-posted requests for all used traffic classes.

6 0b RO Emergency Power Reduction Detected
Not supported in the E810.

15:7 0x0 RsvdZ Reserved.

Bits Init. Type Description

3:0 0x4 RO Maximum Link Speed
This field indicates the supported Link speed of the associated port.
The encoding is the binary value of the bit location in the supported link speeds vector (in the Link
Capabilities 2 register) that corresponds to the maximum link speed.
For example, a value of 0011b in this field indicates that the maximum link speed is that
corresponding to bit 2 in the supported link speeds vector, which is 8.0 GT/s.
Multi-function devices associated with an upstream port must report the same value in this field for
all functions.

9:4 0x10 RO Maximum Link Width
Indicates the maximum link width. The E810 supports x1, x4, x8, and x16 link width. This field is
loaded from the NVM and is reflected in the GLPCI_LINKCAP register.
Defined encoding:

000000b = Reserved
000001b = x1
000010b = Reserved
000100b = x4
001000b = x8
001100b = x12
010000b = x16
100000b = x32

613875-009 2569

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

11:10 10b RO Active State Link PM Support
Indicates the level of the active state of power management supported in the E810.
Defined encodings are:

00b = No ASPM support.
01b = L0s Entry supported.
10b = L1 supported.
11b = L0s and L1 supported.

All functions share the same value loaded from the NVM.

14:12 100b RO L0s Exit Latency
Indicates the exit latency from L0s to L0 state.

000b = Less than 64 ns.
001b = 64 ns – 128 ns
010b = 128 ns – 256 ns
011b = 256 ns – 512 ns
100b = 512 ns – 1 μs
101b = 1 μs – 2 μs
110b = 2 μs – 4 μs
111b = Reserved.

All functions share the same value loaded from the NVM.

17:15 010b RO L1 Exit Latency
Indicates the exit latency from L1 to L0 state.

000b = Less than 1 μs
001b = 1 μs - 2 μs
010b = 2 μs - 4 μs
011b = 4 μs - 8 μs
100b = 8 μs - 16 μs
101b = 16 μs - 32 μs
110b = 32 μs - 64 μs
111b = More than 64 μs

All functions share the same value loaded from the NVM.

18 0b RO Clock Power Management
Not supported.

19 0b RO Surprise Down Error Reporting Capable
Hard-wired to 0b.

20 0b RO Data Link Layer Link Active Reporting Capable

21 0b RO Link Bandwidth Notification Capability
Hard-wired to 0b (not applicable to end-points).

22 1b HwInit ASPM Optionality Compliance
Software is permitted to use the value of this bit to help determine whether to enable ASPM or to run
ASPM compliance tests.

23 0b RO Reserved.

31:24 0x0 HwInit Port Number
The PCIe port number for the given PCIe link. This field is set in the link training phase.
The field is set through the gbe_DeviceNumberN strap.

Bits Init. Type Description

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2570 613875-009

14.3.5.8 Link Control Register (0xB0; RO)

This register controls PCIe link-specific parameters.

Bits Init. Type Description

1:0 00b RW Active State Link PM Control
This field controls the active state PM enabled on the link. Link PM functionality is determined by
the lowest common denominator of all functions.
Defined encodings are:

00b = PM Disabled.
01b = L0s Entry Supported.
10b = L1 Entry Enabled.
11b = L0s and L1 Supported.

In ARI mode, the ASPM is determined solely by the field in Function 0 (even when it is a dummy
function), while it is meaningless in the other function(s)

2 0b RsvdP Reserved.

3 0b RW Read Completion Boundary

4 0b RO Link Disable
Reserved for endpoint devices. Hard-wired to 0b.

5 0b RO Retrain Link
Not applicable for endpoint devices. Hard-wired to 0b.

6 0b RW Common Clock Configuration
When set, indicates that the E810 and the component at the other end of the link are operating
with a common reference clock. A value of 0b indicates that they are operating with an
asynchronous clock. This parameter affects the L0s exit latencies.
In ARI mode, the common clock configuration is determined solely by the field in Function 0 (even
when it is a dummy function), while it is meaningless in the other function(s).

7 0b RW Extended Sync
When set, this bit forces the transmission of additional ordered sets when exiting the L0s state and
when in the recovery state.
For multi-function devices, if any function has this bit set, the component must transmit the
additional ordered sets when exiting L0s or when in recovery.

8 0b RO Enable Clock Power Management
Not supported. Hard-wired to 0b.

9 0b RO/RsvdP Hardware Autonomous Width Disable
When set to 1b, this bit disables hardware from changing the link width for reasons other than
attempting to correct an unreliable link operation by reducing link width.
Not supported - Function 0 is hard-wired to 0b (RO). Other functions are RsvdP.

10 0b RO Link Bandwidth Management Interrupt Enable
Not applicable to endpoints. Hard-wired to 0b.

11 0b RO Link Autonomous Bandwidth Interrupt Enable
Not applicable to endpoints. Hard-wired to 0b.

13:12 00b RsvdP Reserved.

15:14 00b RO DRS Signaling Control
Not applicable to endpoints. Hard-wired to 0b.

613875-009 2571

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.5.9 Link Status Register (0xB2; RO)

This register provides information about PCIe link-specific parameters.

The following registers are supported only if the capability version is two and above.

Bits Init. Type Description

3:0 Undefined RO Current Link Speed
This field indicates the negotiated link speed of the given PCIe link.
The encoded value specifies a bit location in the supported link speeds vector (in the Link
Capabilities 2 register) that corresponds to the current link speed.
For example, a value of 0010b in this field indicates that the current Link speed is that
corresponding to bit 1 in the supported link speeds vector, which is 5.0 GT/s.

9:4 Undefined RO Negotiated Link Width
Indicates the negotiated width of the link.
Relevant encodings for the E810 are:

000001b = x1
000010b = x2
000100b = x4
001000b = x8
010000b = x16

10 0b RO Undefined.

11 0b RO Link Training
Indicates that link training is in progress.
This field is not applicable, is reserved for endpoint devices, and is hard-wired to 0b.

12 1b HwInit Slot Clock Configuration
When set, indicates that the E810 uses the physical reference clock that the platform provides at
the connector. This bit must be cleared if the E810 uses an independent clock. The Slot Clock
Configuration bit is loaded from the NVM.

13 0b RO Data Link Layer Link Active
Not supported in the E810. Hard-wired to 0b.

14 0b RO Link Bandwidth Management Status
Not supported in the E810. Hard-wired to 0b.

15 0b RO Link Autonomous Bandwidth Status
This bit is not applicable and is reserved for endpoints.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2572 613875-009

14.3.5.10 Device Capabilities 2 Register (0xC4; RO)

This register identifies the PCIe device-specific capabilities.

Bits Init. Type Description

3:0 0x3 RO Completion Timeout Ranges Supported
This field indicates the E810’s support for the optional completion timeout programmability
mechanism.
Four time value ranges are defined:
• Range A: 50 μs to 10 ms
• Range B: 10 ms to 250 ms
• Range C: 250 ms to 4 s
• Range D: 4 s to 64 s

Bits are set according to the following values to show the timeout value ranges that the E810
supports.

0000b = Completion timeout programming not supported. The E810 must implement a timeout
value in the range of 50 μs to 50 ms.

0001b = Range A.
0010b = Range B.
0011b = Ranges A and B.
0110b = Ranges B and C.
0111b = Ranges A, B and C.
1110b = Ranges B, C and D.
1111b = Ranges A, B, C and D.
All other values are reserved.

4 1b RO Completion Timeout Disable Supported
Note: For dummy functionality, a completion timeout is not relevant as a dummy function because

it never sends non-posted requests.

5 0b RO ARI Forwarding Supported
Applicable only to Switch Downstream Ports and Root Ports. Must be 0b for other function types.

10:6 0x0 RO Not supported
Hard-wired to 0x0.

11 0b RO LTR Mechanism Supported
A value of 1b indicates support for the optional Latency Tolerance Reporting (LTR) mechanism.
For a multi-Function device associated with an Upstream Port, each Function must report the same
value for this bit.
Note: Value loaded from NVM as 0b (LTR is not supported by this product). It is reflected in the

GLPCI_CAPSUP register.

13:12 00b RO TPH Completer Supported
Value indicates Completer support for TPH or Extended TPH.
This capability is not supported.

15:14 00b R0 LN System CLS
Applicable only to Root Ports and RCRBs. Must be 00b for all other Function types.

16 1b RO 10-Bit Tag Completer Supported
0b = The Function does not support 10-Bit Tag Completer capability.
1b = The Function supports 10-Bit Tag Completer capability.

Supported by the E810.

17 0b RO 10-Bit Tag Requester Supported
0b = The Function does not support 10-Bit Tag Requester capability.
1b = The Function supports 10-Bit Tag Requester capability.

Not supported by the E810.

613875-009 2573

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.5.11 Device Control 2 Register (0xC8; RW)

This register controls the PCIe-specific parameters.

19:18 00b HwInit OBFF Supported
00b = OBFF not supported.
01b = OBFF supported using Message signaling only.
10b = OBFF supported using WAKE# signaling only.
11b = OBFF supported using WAKE# and Message signaling.

Loaded from NVM with a value of 00b (OBBF is not supported in this product). The value loaded from
NVM is reflected in the GLPCI_PMSUP register.

20 1b RO Extended Fmt Field Supported
0b = The Function supports a 2-bit definition of the Fmt field.
1b = The Function supports the 3-bit definition of the Fmt field.

21 1b RO End-End TLP Prefix Supported
Indicates whether End-End TLP Prefix support is offered by a Function.

23:22 1b RsvdP Max End-End TLP Prefixes
Indicates the maximum number of End-End TLP Prefixes supported by this Function.

25:24 00b RO Emergency Power Reduction Supported
Not supported in the E810.

26 0b RO Emergency Power Reduction Initialization Required
N/A for the E810.

31:27 0x0 RsvdP Reserved.

Bits Init. Type Description

3:0 0x0 RW Completion Timeout Value
For devices that support completion timeout programmability, this field enables system software to
modify the completion timeout value.
Defined encodings:

0000b = Default range: 50 μs to 50 ms.
Note: It is strongly recommended that the completion timeout mechanism not expire in less

than 10 ms.
Values available if Range A (50 μs to 10 ms) programmability range is supported:

0001b = 50 μs to 100 μs.
0010b = 1 ms to 10 ms.

Values available if Range B (10 ms to 250 ms) programmability range is supported:
0101b = 16 ms to 55 ms.
0110b = 65 ms to 210 ms.

Values available if Range C (250 ms to 4 s) programmability range is supported:
1001b = 260 ms to 900 ms.
1010b = 1 s to 3.5 s.

Values available if the Range D (4 s to 64 s) programmability range is supported:
1101b = 4 s to 13 s.
1110b = 17 s to 64 s.

Values not defined are reserved.
Software is permitted to change the value of this field at any time. For requests already pending
when the completion timeout value is changed, hardware is permitted to use either the new or the
old value for the outstanding requests and is permitted to base the start time for each request
either on when this value was changed or on when each request was issued. Specifically, FLR
clears this field to its default, so that completions are expected to return by the default time.
Note: For dummy function, this field is RO - zero.

Bits Init. Type Description

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2574 613875-009

14.3.5.12 Link Capabilities 2 Register (0xCC; RO)

4 0b RW Completion Timeout Disable
When set to 1b, this bit disables the completion timeout mechanism.
Software is permitted to set or clear this bit at any time. When set, the completion timeout
detection mechanism is disabled. If there are outstanding requests when the bit is cleared, it is
permitted but not required for hardware to apply the completion timeout mechanism to the
outstanding requests. If this is done, it is permitted to base the start time for each request on
either the time this bit was cleared or the time each request was issued.
Note: For dummy function, this field is RO - zero.

5 0b RO ARI Forwarding Enable
Applicable only to switch devices.

7:6 00b RO Not supported. Hard-wired to 00b.

8 0b RW IDO Request Enable
If this bit is Set, the Function is permitted to set the ID-Based Ordering (IDO) bit (Attribute[2]) of
Requests it initiates.

9 0b RW IDO Completion Enable
If this bit is Set, the Function is permitted to set the ID-Based Ordering (IDO) bit (Attribute[2]) of
Completions it returns

10 0b RO LTR Mechanism Enable
When Set to 1b, this bit enables Upstream Ports to send LTR messages.
For a multi-function device, the bit in Function 0 is RW, and only Function 0 controls the
component’s Link behavior. In all other Functions of that device, this bit is RsvdP.
If LTR is not supported, this bit is RO with a value of 0b.

11 00b RO Emergency Power Reduction Request
Not supported by the E810.

12 0b RW 10-bit Tag Requester Enable

14:13 00b RW/RsvdP OBFF Enable
00b = Disabled.
01b = Enabled using Message signaling [Variation A].
10b = Enabled using Message signaling [Variation B].
11b = Enabled using WAKE# signaling.

For a multi-function device, the field in Function 0 is of type RW, and only Function 0 controls the
component’s behavior. In all other Functions of that device, this field is of type RsvdP.

15 0b RsvdP End-End TLP Prefix Blocking
Not applicable to endpoints (RsvdP).

Bits Init. Type Description

0 0b RsvdP Reserved.

7:1 0x01 RO Supported Link Speeds Vector
This field indicates the supported Link speed(s) of the associated Port. For each bit, a value of 1b
indicates that the corresponding Link speed is supported. Otherwise, the Link speed is not supported.
Bit definitions are:

Bit 0 = 2.5 GT/s
Bit 1 = 5.0 GT/s
Bit 2 = 8.0 GT/s
Bit 3 = 16 GT/s
Bit 4 = 32 GT/s
Bits 7:5 = RsvdP

Multi-function devices associated with the same Upstream Port must report the same value in this
field for all Functions. This field is loaded from NVM and is reflected in the GLPCI_LINKCAP register.

Bits Init. Type Description

613875-009 2575

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

8 0b RO Crosslink Supported
When set to 1b, this bit indicates that the associated Port supports crosslinks.
It is recommended that this bit be Set in any Port that supports crosslinks even though doing so is
only required for Ports that also support operating at 8.0 GT/s or higher Link speeds.

15:9 0x0 RO Lower SKP OS Generation Supported Speeds Vector
If this field is non-zero, it indicates that the Port, when operating at the indicated speed(s), supports
SRIS and also supports software control of the SKP Ordered Set transmission scheduling rate.
Bit definitions within this field are:

Bit 0 = 2.5 GT/s
Bit 1 = 5.0 GT/s
Bit 2 = 8.0 GT/s
Bit 3 = 16 GT/s
Bit 4 = 32 GT/s
Bits 7:5 = RsvdP

22:16 0x0 RO Lower SKP OS Reception Supported Speeds Vector
If this field is non-zero, it indicates that the Port, when operating at the indicated speed(s), supports
SRIS and also supports receiving SKP OS at the rate defined for SRNS while running in SRIS.
Bit definitions within this field are:

Bit 0 = 2.5 GT/s
Bit 1 = 5.0 GT/s
Bit 2 = 8.0 GT/s
Bit 3 = 16 GT/s
Bit 4 = 32 GT/s
Bits 7:5 = RsvdP

23 1b RO Re-timer Presence Detect Supported
When set to 1b, this bit indicates that the associated Port supports detection and reporting of re-timer
presence.
This bit must be set to 1b in a Port when the Supported Link Speeds Vector of the Link Capabilities 2
register indicates support for a Link speed of 16.0 GT/s or higher.
It is permitted to be set to 1b regardless of the supported Link speeds.

24 1b RO Two Re-timers Presence Detect Supported
When set to 1b, this bit indicates that the associated Port supports detection and reporting of two
re-timers presence.
This bit must be set to 1b in a Port when the Supported Link Speeds Vector of the Link Capabilities 2
register indicates support for a Link speed of 16.0 GT/s or higher.
It is permitted to be set to 1b regardless of the supported Link speeds if the Re-timer Presence Detect
Supported bit is also set to 1b.

30:25 0x0 RsvdP Reserved.

31 0b RO DRS Supported
When set, indicates support for the optional Device Readiness Status (DRS) capability.
Not supported by the E810.

Bits Init. Type Description

0 0b RsvdP Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2576 613875-009

14.3.5.13 Link Control 2 Register (0xD0; RWS)

Bits Init. Type Description

3:0 0x4 (Func 0)
0x0 (else)

RWS (Func 0)
RsvdP (else)

Target Link Speed
This field is used to set the target compliance mode speed when software is using the
Enter Compliance bit to force a link into compliance mode.
The encoding is the binary value of the bit in the Supported Link Speeds Vector (in the
Link Capabilities 2 register) that corresponds to the desired target Link speed. All other
encodings are Reserved.
For example, 5.0 GT/s corresponds to bit 1 in the Supported Link Speeds Vector, so the
encoding for a 5.0 GT/s target Link speed in this field is 0010b
If a value is written to this field that does not correspond to a speed included in the
Supported Link Speeds field, the result is undefined.
The default value of this field is the highest link speed supported by the E810 (as reported
in the Supported Link Speeds field of the Link Capabilities register).

4 0b RWS (Func 0)
RsvdP (else)

Enter Compliance
Software is permitted to force a link to enter compliance mode at the speed indicated in
the Target Link Speed field by setting this bit to 1b in both components on a link and then
initiating a hot reset on the link.
The default value of this field following a fundamental reset is 0b.

5 0b RWS (Func 0)
RsvdP (else)

Hardware Autonomous Speed Disable
When set to 1b, this bit disables hardware from changing the link speed for reasons other
than attempting to correct unreliable link operation by reducing link speed.

6 0b RO Selectable De-Emphasis
This bit is not applicable and reserved for endpoints.

9:7 000b RWS (Func 0)
RsvdP (else)

Transmit Margin
This field controls the value of the non-de-emphasized voltage level at the Transmitter
pins.
Encodings:

000b = Normal operating range.
001b = 800-1200 mV for full swing and 400-700 mV for half-swing.
010b = (n-1) — Values must be monotonic with a non-zero slope. The value of n must be

greater than 3 and less than 7. At least two of these must be below the normal
operating range of n: 200-400 mV for full-swing and 100-200 mV for half-swing.

111b = (n) Reserved.

10 0b RWS (Func 0)
RsvdP (else)

Enter Modified Compliance
When this bit is set to 1b, the device transmits modified compliance pattern if the LTSSM
enters Polling.Compliance state.
The default value of this bit is 0b.

11 0b RWS (Func 0)
RsvdP (else)

Compliance SOS
When set to 1b, the LTSSM is required to send SOS periodically in between the (modified)
compliance patterns.
This bit is applicable when the Link is operating at 2.5 GT/s or 5 GT/s data rates only.
The default value of this bit is 0b.

15:12 0x0 RWS (Func 0)
RsvdP (else)

Compliance Preset/De-Emphasis
For 8.0 GT/s Data Rate:

This field sets the Transmitter Preset in Polling.Compliance state if the entry occurred
due to the Enter Compliance bit being 1b.

For 5.0 GT/s Data Rate:
This field sets the de-emphasis level in Polling.Compliance state if the entry occurred due
to the Enter Compliance bit being 1b.

When the Link is operating at 2.5 GT/s, the setting of this bit field has no effect.
Defined Encodings are:

0001b -3.5 dB
0000b -6 dB

For a multi-function device associated with an Upstream Port, the bit field in Function 0 is
of type RWS, and only Function 0 controls the component’s Link behavior. In all other
Functions of that device, this bit field is of type RsvdP.
This bit field is intended for debug, and compliance testing purposes.
The default value of this field is 0000b.

613875-009 2577

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.3.5.14 Link Status 2 Register (0xD2; RW)

Bits Init. Type Description

0 0b RO Current De-emphasis Level
When the link is operating at 5 GT/s speed, this bit reflects the level of de-emphasis. It is
undefined when the Link is not operating at 5.0 GT/s speed.
Encodings:

0b = -6 dB
1b = -3.5 dB

Note: Same value must be reported for all functions.

1 0b ROS/RsvdZ Equalization Complete
When set to 1b, this bit indicates that the Transmitter Equalization procedure has completed.
Note: This bit must be implemented in Function 0 and RsvdZ in other Functions.

2 0b ROS/RsvdZ Equalization Phase 1 Successful
When set to 1b, this bit indicates that Phase 1 of the Transmitter Equalization procedure has
successfully completed.
Note: This bit must be implemented in Function 0 and RsvdZ in other Functions.

3 0b ROS/RsvdZ Equalization Phase 2 Successful
When set to 1b, this bit indicates that Phase 2 of the Transmitter Equalization procedure has
successfully completed.
Note: This bit must be implemented in Function 0 and RsvdZ in other Functions.

4 0b ROS/RsvdZ Equalization Phase 3 Successful
When set to 1b, this bit indicates that Phase 3 of the Transmitter Equalization procedure has
successfully completed.
Note: This bit must be implemented in Function 0 and RsvdZ in other Functions.

5 0b RW1C/RsvdZ Link Equalization Request
This bit is Set by hardware to request the Link equalization process to be performed on the Link.
Note: This bit must be implemented in Function 0 and RsvdZ in other Functions.

6 0b RWS (Func 0)
RsvdZ (else)

Re-timer Presence Detected

7 0b RWS (Func 0)
RsvdZ (else)

Two Re-timer Presence Detected

9:8 00b RO Crosslink Resolution

15:10 0x0 RsvdZ Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2578 613875-009

14.4 PCIe Extended Configuration Space

PCIe configuration space is located in a flat memory-mapped address space. PCIe extends the
configuration space beyond the 256 bytes available for PCI to 4096 bytes. The E810 decodes an
additional four bits (bits 27:24) to provide the additional configuration space as shown. PCIe reserves
the remaining four bits (bits 31:28) for future expansion of the configuration space beyond 4096 bytes.

The configuration address for a PCIe device is computed using a PCI-compatible bus, device, and
function numbers as follows:

PCIe extended configuration space is allocated using a linked list of optional or required PCIe extended
capabilities following a format resembling PCI capability structures. The first PCIe extended capability is
located at offset 0x100 in the device configuration space. The first DWord of the capability structure
identifies the capability/version and points to the next capability.

The E810 supports the following PCIe extended capabilities:

31 28 27 20 19 15 14 12 11 2 1 0

0000b Bus # Device # Fun # Register Address (offset) 00b

Table 14-20. Extended Capabilities List

Address Range Item Cases Where Capability Does Not Exist Next Pointer Section
Reference

0x100 - 0x144 Advanced Error
Reporting (AER)

• None (always present). Any of the below /
0x000 14.4.1

0x150 - 0x158 Device Serial Number • NVM is not valid. Any of the below /
0x000 14.4.2

0x148 - 0x14C Alternative RID
Interpretation (ARI)

• ARI Enabled bit in NVM is set to 0b Any of the below /
0x000 14.4.3

0x160 - 0x19C Single Root I/O
Virtualization (SR-IOV)

• The global SR-IOV Enable bit in NVM is set to
0b (exposed via the GLPCI_CAPSUP.IOV_EN
bit).

• This is a dummy function.
• The per-PF SR-IOV Enable bit is set to 0b

(PF_VT_PFALLOC.VALID is cleared).

Any of the below /
0x000 14.4.4

0x1A0 - 0x1A8 TPH Requester
• TPH Enabled bit in NVM is set to 0b.
• This is a dummy function.

Any of the below /
0x000 14.4.5

0x1B0 - 0x1B4 Access Control
Services (ACS)

• ACS Enabled bit in NVM is set to 0b.
• A single PF is enabled and SR-IOV is

disabled.

Any of the below /
0x000 14.4.6

0x1C0 - 0x1C4 Reserved.

0x1D0 - 0x1FA Secondary PCI Express
• Secondary PCIe Enabled bit in NVM is set to

0b.
• Function is not Function 0.

0x200 / 0x000 14.4.7

0x200 - 0x208 Data Link Feature • GLPCI_CAPSUP.DLFE_EN is cleared. 0x210 / 0x000 14.4.8

0x210 - 0x23C
Physical Layer
16.0 GT/s Extended
Capability

• GLPCI_CAPSUP.GEN4_EXT_EN is cleared.
• Function is not function 0. 0x250 / 0x000 14.4.10

0x250 - 0x294 Lane Margining at the
Receiver Capability

• GLPCI_CAPSUP.GEN4_MARG_EN is cleared.
• Function is not function 0.

0x2D0 / 0x000 14.4.11

0x2D0 - 0x2D4 PASID
• GLPCI_CAPSUP.PASID_EN is cleared.
• This is a dummy function.

Any of the below /
0x000 14.4.9

613875-009 2579

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.1 Advanced Error Reporting (AER) Capability

The PCIe advanced error reporting capability is an optional extended capability to support advanced
error reporting. The tables that follow list the PCIe advanced error reporting extended capability
structure for PCIe devices.

Table 14-22 summarizes configuration sharing of the AER Capability registers among the different PCI
functions.

Table 14-21. AER Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x100 Next Capability Pointer Version
(0x1) AER Capability ID (0x0001)

0x104 Uncorrectable Error Status

0x108 Uncorrectable Error Mask

0x10C Uncorrectable Error Severity

0x110 Correctable Error Status

0x114 Correctable Error Mask

0x118 Advanced Error Capabilities and Control Register

0x11C - 0x128 Header Log

0x12C RsvdP (Root Error Command)

0x130 RsvdZ (Root Error Status)

0x134 RsvdP (Error Source Identification Register)

0x138 - 0x144 TLP Prefig Log Registers = 0x0 (not implemented)

Table 14-22. Configuration Sharing of the AER Capability

Field Sub-Field Shared? Replicated? Comments Section
Reference

Enhanced Capability Header
Register

Extended Capability ID X

14.4.1.1Capability Version X

Next Capability Offset X

Uncorrectable Error Status X 14.4.1.2

Uncorrectable Error Mask X 14.4.1.3

Uncorrectable Error Severity X 14.4.1.4

Correctable Error Status X 14.4.1.5

Correctable Error Mask X 14.4.1.6

Advanced Error Capabilities
and Control

First Error Pointer X

14.4.1.7

ECRC Generation Capable X

ECRC Generation Enable X ECRC insertion is per PF.

ECRC Check Capable X

ECRC Check Enable X See Section 3.1.2.9.

Header Log X 14.4.1.8

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2580 613875-009

14.4.1.1 Advanced Error Reporting Enhanced Capability Header
Register (0x100; RO)

14.4.1.2 Uncorrectable Error Status Register (0x104; RW1CS)

The Uncorrectable Error Status register reports error status of individual uncorrectable error sources on
a PCIe device. An individual error status bit that is set to 1b indicates that a particular error occurred.
Software can clear an error status by writing a 1b to the respective bit. Register is cleared by
LAN_PWR_GOOD.

Bits Init. Type Description

15:0 0x1 RO Extended Capability ID
PCIe extended capability ID indicating advanced error reporting capability.

19:16 0x2 RO Version Number
PCIe advanced error reporting extended capability version number.

31:20 See
description

RO Next Capability Offset
Next PCIe extended capability offset.
See Table 14-20 for possible values of the next capability offset.

Bits Init. Type Description

0 0b RO Reserved.

3:1 000b RsvdZ Reserved.

4 0b RW1CS Data Link Protocol Error Status

5 0b RO Surprise Down Error Status

11:6 0x0 RsvdZ Reserved.

12 0b RW1CS Poisoned TLP Received Status

13 0b RW1CS Flow Control Protocol Error Status

14 0b RW1CS Completion Timeout Status

15 0b RW1CS Completer Abort Status

16 0b RW1CS Unexpected Completion Status

17 0b RW1CS Receiver Overflow Status

18 0b RW1CS Malformed TLP Status.

19 0b RW1CS ECRC Error Status

20 0b RW1CS Unsupported Request Error Status

21 0b RO ACS Violation Status
Not supported. Hard-wired to 0b.

22 0b RO Uncorrectable Internal Error Status
Not supported. Hard-wired to 0b.

23 0b RO Multicast Blocked TLP Error Status
Not supported. Hard-wired to 0b.

24 0b RO AtomicOp Egress Blocked Status
Not supported. Hard-wired to 0b.

25 0b RO TLP Prefix Blocked Error Status
Not supported. Hard-wired to 0b.

26 0b RO Poisoned TLP Egress Blocked Error Status
Not supported. Hard-wired to 0b.

31:27 0x0 RsvdP Reserved.

613875-009 2581

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.1.3 Uncorrectable Error Mask Register (0x108; RWS)

The Uncorrectable Error Mask register controls reporting of individual uncorrectable errors by device to
the host bridge via a PCIe error message. A masked error (respective bit set in mask register) is not
reported to the host bridge by an individual device. Note that there is a mask bit per bit of the
Uncorrectable Error Status register.

Bits Init. Type Description

0 0b RO Reserved.

3:1 000b RsvdP Reserved.

4 0b RWS Data Link Protocol Error Mask

5 0b RO Reserved.

11:6 0x0 RsvdP Reserved.

12 0b RWS Poisoned TLP Received Mask

13 0b RWS Flow Control Protocol Error Mask

14 0b RWS Completion Timeout Mask

15 0b RWS Completer Abort Mask

16 0b RWS Unexpected Completion Mask

17 0b RWS Receiver Overflow Mask

18 0b RWS Malformed TLP Mask

19 0b RWS ECRC Error Mask

20 0b RWS Unsupported Request Error Mask

21 0b RO ACS Violation Mask
Not supported. Hard-wired to 0b.

22 0b RO Uncorrectable Internal Error Mask
Not supported. Hard-wired to 0b.

23 0b RO Multicast Blocked TLP Error Mask
Not supported. Hard-wired to 0b.

24 0b RO AtomicOp Egress Blocked Mask
Not supported. Hard-wired to 0b.

25 0b RO TLP Prefix Blocked Error Mask
Not supported. Hard-wired to 0b.

26 0b RO Poisoned TLP Egress Blocked Error Mask
Not supported. Hard-wired to 0b.

31:27 0x0 RsvdP Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2582 613875-009

14.4.1.4 Uncorrectable Error Severity Register (0x10C; RWS)

The Uncorrectable Error Severity register controls whether an individual uncorrectable error is reported
as a fatal error. An uncorrectable error is reported as fatal when the corresponding error bit in the
severity register is set. If the bit is cleared, the corresponding error is considered non-fatal.

Bits Init. Type Description

0 0b RO Reserved.

3:1 000b RsvdP Reserved.

4 1b RWS Data Link Protocol Error Severity

5 0b RO Reserved.

11:6 0x0 RsvdP Reserved.

12 0b RWS Poisoned TLP Received Severity

13 1b RWS Flow Control Protocol Error Severity

14 0b RWS Completion Timeout Severity

15 0b RWS Completer Abort Severity

16 0b RWS Unexpected Completion Severity

17 1b RWS Receiver Overflow Severity

18 1b RWS Malformed TLP Severity

19 0b RWS ECRC Error Severity

20 0b RWS Unsupported Request Error Severity

21 0b RO ACS Violation Severity
Not supported. Hard-wired to 0b.

22 0b RO Uncorrectable Internal Error Severity
Not supported. Hard-wired to 0b.

23 0b RO Multicast Blocked TLP Error Severity
Not supported. Hard-wired to 0b.

24 0b RO AtomicOp Egress Blocked Severity
Not supported. Hard-wired to 0b.

25 0b RO TLP Prefix Blocked Error Severity
Not supported. Hard-wired to 0b.

26 0b RO Poisoned TLP Egress Blocked Error Severity
Not supported. Hard-wired to 0b.

31:27 0x0 RsvdP Reserved.

613875-009 2583

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.1.5 Correctable Error Status Register (0x110; RW1CS)

The Correctable Error Status register reports error status of individual correctable error sources on a
PCIe device. When an individual error status bit is set to 1b it indicates that a particular error occurred.
Software can clear an error status by writing a 1b to the respective bit. Register is cleared by
LAN_PWR_GOOD.

14.4.1.6 Correctable Error Mask Register (0x114; RWS)

The Correctable Error Mask register controls reporting of individual correctable errors by device to the
host bridge via a PCIe error message. A masked error (respective bit set in mask register) is not
reported to the host bridge by an individual device. There is a mask bit per bit in the Correctable Error
Status register.

Bits Init. Type Description

0 0b RW1CS Receiver Error Status

5:1 0x0 RsvdZ Reserved.

6 0b RW1CS Bad TLP Status

7 0b RW1CS Bad DLLP Status

8 0b RW1CS REPLAY_NUM Rollover Status

11:9 000b RsvdZ Reserved.

12 0b RW1CS Replay Timer Timeout Status

13 0b RW1CS Advisory non-Fatal Error Status

15:14 00b RO Reserved.

31:16 0x0 RsvdZ Reserved.

Bits Init. Type Description

0 0b RWS Receiver Error Mask

5:1 0x0 RsvdP Reserved.

6 0b RWS Bad TLP Mask

7 0b RWS Bad DLLP Mask

8 0b RWS REPLAY_NUM Rollover Mask

11:9 000b RsvdP Reserved.

12 0b RWS Replay Timer Timeout Mask

13 1b RWS Advisory non-Fatal Error Mask

15:14 00b RO Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2584 613875-009

14.4.1.7 Advanced Error Capabilities and Control Register
(0x118; RO)

14.4.1.8 Header Log Register (0x11C - 0x128; ROS)

The Header Log register captures the header for the transaction that generated an error. This register is
16 bytes.

Bits Init. Type Description

4:0 0x0 ROS Vector
Vector pointing to the first recorded error in the Uncorrectable Error Status register. This is a
read-only field that identifies the bit position of the first uncorrectable error reported in the
Uncorrectable Error Status register.

5 1b RO ECRC Generation Capable
If set, this bit indicates that the function is capable of generating ECRC.
This bit is loaded from NVM. It is reflected in the GLPCI_CAPSUP register.

6 0b RWS ECRC Generation Enable
When set, ECRC generation is enabled.

7 1b RO ECRC Check Capable
If set, this bit indicates that the function is capable of checking ECRC.
This bit is loaded from NVM. It is reflected in the GLPCI_CAPSUP register.

8 0b RWS ECRC Check Enable
When set, ECRC checking is enabled.

9 0b RO Multiple Header Recording Capable
Not Supported. Hard-wired to 0b.

10 0b RO Multiple Header Recording Enable
Not Supported. Hard-wired to 0.

11 0b RsvdP TLP Prefix Log Present
Not supported. Hard-wired to 0b.

12 0b RO Completion Timeout Prefix/Header Log Capable
Not supported in the E810.

15:13 000b RsvdP Reserved.

Bits Init. Type Description

127:0 0x0 ROS Header Log Register
Header of the packet in error.

613875-009 2585

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.2 Serial Number

The PCIe device serial number capability is an optional extended capability that can be implemented by
any PCIe device. The device serial number is a read-only 64-bit value that is unique for a given PCIe
device.

Serial Number capability is implemented for Function 0; all other functions return the same device
serial number value as that reported by Function 0.

The capability is disabled when the MAC Address in the GLPCI_SERL and GLPCI_SERH registers is
0x00...0 (indicating that the NVM is not valid or a proper MAC Address was not loaded).

Table 14-24 summarizes configuration sharing of the Serial Number Capability registers among the
different PCI functions.

14.4.2.1 Device Serial Number Enhanced Capability Header
Register (0x150; RO)

Table 14-23. Serial Number Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x150 Next Capability Pointer Version
(0x1) Serial ID Capability ID (0x0003)

0x154 Serial Number Register (Lower DWord)

0x158 Serial Number Register (Upper DWord)

Table 14-24. Configuration Sharing of the Serial Number Capability

Field Sub-Field Shared? Replicated? Comments Section
Reference

Enhanced Capability
Header Register

Extended Capability ID X

14.4.2.1Capability Version X

Next Capability Offset X

Serial Number Registers X See comment above. 14.4.2.2

Bits Init. Type Description

15:0 0x3 RO PCIe Extended Capability ID
This field is a PCI-SIG defined ID number that indicates the nature and format of the extended
capability.
The extended capability ID for the device serial number capability is 0x0003.

19:16 0x1 RO Capability Version
This field is a PCI-SIG defined version number that indicates the version of the capability
structure present.
Note: Must be set to 0x1 for this version of the specification.

31:20 See
description

RO Next Capability Offset
This field contains the offset to the next PCIe capability structure or 0x000 if no other items exist
in the linked list of capabilities.
See Table 14-20 for possible values of the next capability offset.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2586 613875-009

14.4.2.2 Serial Number Registers (0x154 - 0x158; RO)

The Serial Number register is a 64-bit field that contains the IEEE defined 64-bit Extended Unique
Identifier (EUI-64). The register at offset 0x154 holds the lower 32 bits and the register at offset 0x158
holds the higher 32 bits. The following figure details the allocation of register fields in the Serial Number
register. The table that follows provides the respective bit definitions.

The serial number uses the Ethernet MAC Address according to the following definition:

The serial number can be constructed from the 48-bit Ethernet MAC Address in the following form:

In this case, the MAC label is 0xFFFF.

For example, assume that the Company ID is (Intel) 00-A0-C9 and the Extension Identifier is 23-45-67
(MAC Address of 00-A0-C9-23-45-67). In this case, the 64-bit serial number is:

The Ethernet MAC Address for the Serial Number capability is loaded from NVM (not the same field that
is loaded from NVM into the Station MAC Address registers). It is reflected in the GLPCI_SERL and
GLPCI_SERH registers. In the above example:

• GLPCI_SERL = C9-23-45-67

• GLPCI_SERH = 00-00-00-A0

Note: The official document that defines EUI-64 is:
 http://standards.ieee.org/regauth/oui/tutorials/EUI64.html

Bits Type Description

63:0 RO PCIe Device Serial Number
This field contains the IEEE defined 64-bit EUI-64. This identifier includes a 24-bit company ID value assigned
by IEEE registration authority and a 40-bit extension identifier assigned by the manufacturer.

Field Company ID Extension Identifier

Order Addr+0 Addr+1 Addr+2 Addr+3 Addr+4 Addr+5 Addr+6 Addr+7

Most Significant Byte
Most Significant Bit

Least Significant Byte
Least Significant Bit

Field Company ID MAC Label Extension identifier

Order Addr+0 Addr+1 Addr+2 Addr+3 Addr+4 Addr+5 Addr+6 Addr+7

Most Significant Bytes
Most Significant Bit

Least Significant Byte
Least Significant Bit

Field Company ID MAC Label Extension Identifier

Order Addr+0 Addr+1 Addr+2 Addr+3 Addr+4 Addr+5 Addr+6 Addr+7

00 A0 C9 FF FF 23 45 67

Most Significant Byte
Most Significant Bit

Least Significant Byte
Least Significant Bit

http://standards.ieee.org/regauth/oui/tutorials/EUI64.htm

613875-009 2587

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.3 Alternate Routing ID Interpretation (ARI)
Capability Structure

To allow more than eight functions per endpoint without requesting an internal switch, as is usually
needed in virtualization scenarios, the PCI-SIG defines a new capability that allows a different
interpretation of the Bus, Device, and Function fields. The capability is exposed when the
GLPCI_CAPSUP.ARI_EN bit is set from NVM.

This capability should not be exposed in Root Complex Integrated endpoints, and the
GLPCI_CAPSUP.ARI_EN bit should be set accordingly.

The ARI capability structure is as follows:

Table 14-26 summarizes configuration sharing of the ARI Capability registers among the different PCI
functions.

14.4.3.1 PCIe ARI Header Register (0x148; RO)

Table 14-25. ARI Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x148 Next Capability Pointer Version
(0x1) ARI Capability ID (0x000E)

0x14C ARI Control Register ARI Capability Register

Table 14-26. Configuration Sharing of the ARI Capability

Field Sub-Field Shared? Replicated? Comments Section
Reference

Enhanced Capability
Header Register

Extended Capability ID X

14.4.3.1Capability Version X

Next Capability Offset X

ARI capability Register Next Function Pointer X 14.4.3.2

Field Bits Init. Type Description

ID 15:0 0xE RO PCIe Extended Capability ID
PCIe extended capability ID for the alternative RID interpretation.

Version 19:16 0x1 RO Capability Version
This field is a PCI-SIG defined version number that indicates the version of the
capability structure present.
Must be 0x1 for this version of the specification.

Next Capability
Offset

31:20 See
description

RO Next Capability Offset
This field contains the offset to the next PCIe extended capability structure.
See Table 14-20 for possible values of the next capability offset.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2588 613875-009

14.4.3.2 PCIe ARI Capability Register (0x14C; RO)

Field Bits Init. Type Description

M 0 0b RO MFVC Function Groups Capability (M)
Applicable only for Function 0. Must be 0b for all other Functions. If 1b, indicates
that the ARI Device supports Function Group level arbitration via its
Multi-Function Virtual Channel (MFVC) Capability structure.
Not supported in the E810.

A 1 0b RO ACS Function Groups Capability (A)
Applicable only for Function 0. Must be 0b for all other functions. If 1b, indicates
that the ARI device supports function group level granularity for ACS P2P Egress
Control via its ACS capability structures.
Not supported in the E810.

Reserved 7:2 0x0 RsvdP Reserved.

NFN 15:8 See
description1

1. If function zero is a dummy function, this register should keep its attributes according to the function number. Disabled functions
are skipped.

RO Next Function Number
This field contains the pointer to the next physical function configuration space
or 0x0000 if no other items exist in the linked list of functions. Function 0 is the
start of the link list of functions.
Functions can be disabled during the Power-On-Reset flow (through strapping
pins, SMASH/CLP commands, NC-SI commands) affecting this field.

M_EN 16 0b RO MFVC Function Groups Enable (M)
Applicable only for Function 0. Must be hard-wired to 0b for all other Functions.
When set, the ARI Device must interpret entries in its Function Arbitration Table
as Function Group Numbers rather than Function Numbers.
Not supported in the E810.

A_EN 17 0b RO ACS Function Groups Enable (A)
Applicable only for Function 0. Must be hard-wired to 0b for all other Functions.
When set, each Function in the ARI Device must associate bits within its Egress
Control Vector with Function Group Numbers rather than Function Numbers.
Not supported in the E810.

Reserved 19:18 00b RO Reserved.

FGN 22:20 000b RO Function Group Number
Not supported in the E810.

Reserved 31:23 0x0 RsvdP Reserved.

613875-009 2589

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.4 SR-IOV Capability Structure

This is a structure used to support the SR-IOV capabilities reporting and control. The capability is
exposed when the GLPCI_CAPSUP.IOV_EN bit is set from NVM and the PF_VT_PFALLOC.VALID is set.

The following tables shows the implementation of this structure in the E810.

Table 14-28 summarizes configuration sharing of the SR-IOV Capability registers among the different
PCI functions.

Table 14-27. SR-IOV Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x160 Next Capability Offset Version
(0x1) SR-IOV Capability ID (0x0010)

0x164 SR-IOV Capabilities

0x168 SR-IOV Status SR-IOV Control

0x16C Total VFs (RO) Initial VFs (RO)

0x170 Reserved Function Dependency Link
(RO) Num VFs (RW)

0x174 VF Stride (RO) First VF Offset (RO)

0x178 VF Device ID Reserved

0x17C Supported Page Size (0x553)

0x180 System Page Size (RW)

0x184 VF BAR0 - Low (RW)

0x188 VF BAR0 - High (RW)

0x18C VF BAR2 (RO)

0x190 VF BAR3 - Low (RW)

0x194 VF BAR3 - High (RW)

0x198 VF BAR5 (RO)

0x19C VF Migration State Array Offset (RO)

Table 14-28. Configuration Sharing of the SR-IOV Capability

Field Sub-Field Shared? Replicated? Comments Section
Reference

Enhanced Capability
Header Register

Extended Capability ID X

14.4.4.1Capability Version X

Next Capability Offset X

SR-IOV Capabilities

VF Migration Capable X Not supported.

14.4.4.2
ARI Capable Hierarchy
Preserved X PF0 only. RO zero in all other

functions.

VF Migration Interrupt
Message Number Not supported.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2590 613875-009

14.4.4.1 PCIe SR-IOV Header Register (0x160; RO)

14.4.4.2 PCIe SR-IOV Capabilities Register (0x164; RO)

SR-IOV Control

VF Enable X

14.4.4.3Memory Space Enable X

ARI Capable Hierarchy X PF0 only. RO zero in all other
functions.

Initial VFs X
14.4.4.4

Total VFs X

Num VFs X 14.4.4.5

Function Dependency
Link X Each PF indicates its PF number here.

First VF Offset X
14.4.4.6

VF Stride X

VF Device ID X 14.4.4.7

Supported Page Size X 14.4.4.8

System Page Size X 14.4.4.9

VF BARs X
14.4.4.10
through

14.4.4.15

Field Bits Init. Type Description

ID 15:0 0x10 RO PCIe Extended Capability ID
PCIe extended capability ID for the SR-IOV capability.

Version 19:16 0x1 RO Capability Version
This field is a PCI-SIG defined version number that indicates the version of the
capability structure present.
Must be 0x1 for this version of the specification.

Next Pointer 31:20 0x0 RO Next Capability Offset
This field contains the offset to the next PCIe extended capability structure or
0x000 if no other items exist in the linked list of capabilities.
See Table 14-20 for possible values of the next capability offset.

Field Bits Init. Type Description

VFMC 0 0b RO VF Migration Capable
Migration Capable Device running under Migration Capable MR-PCIM.
RO as zero in the E810. Not supported in the E810.

ARI CHP 1 1b (lowest SR-IOV-
enabled function)

 0b (else)

RO ARI Capable Hierarchy Preserved
If set, the ARI Capable Hierarchy bit is preserved across certain power
state transitions.
Only present in lowest SR-IOV-enabled function. Read-only zero in other
PFs.

Table 14-28. Configuration Sharing of the SR-IOV Capability [continued]

Field Sub-Field Shared? Replicated? Comments Section
Reference

613875-009 2591

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.4.3 PCIe SR-IOV Control Register (0x168; RW)

VF10B 2 0x0 RO VF 10-Bit
VF 10-Bit Tag Requester Supported - not supported.

Reserved 20:3 0x0 RO Reserved.

IMN 31:21 0x0 RO VF Migration Interrupt Message Number
Indicates the MSI/MSI-X vector used for the interrupts.
Not supported in the E810.

Field Bits Init. Type Description

VFE 0 0b RW VF Enable
Manages the assignment of VFs to the associated PF. If VF Enable is set to
1b, VFs must be enabled, associated with the PF, and exists in the PCIe
fabric. When enabled, VFs must respond to and can issue PCIe
transactions following all other rules for PCIe functions.
If set to 0b, VFs must be disabled and not visible in the PCIe fabric; VFs
cannot respond to or issue PCIe transactions. In addition, if VF Enable is
cleared after having been set, all of the VFs must no longer:
• Issue PCIe transactions
• Respond to configuration space or memory space accesses.

The behavior must be as if an FLR was issued to each of the VFs.
Specifically, VFs must not retain any context after VF Enable has been
cleared. Any errors already logged via PF error reporting registers, remain
logged. However, no new VF errors are logged after VF Enable is cleared.

VF ME 1 0b RO VF Migration Enable
Enables/Disables VF Migration Support.
Not supported in the E810.

VF MIE 2 0b RO VF Migration Interrupt Enable
Enables/Disables VF Migration State Change Interrupt
Not supported in the E810.

VF MSE 3 0b RW Memory Space Enable for Virtual Functions
VF MSE controls memory space enable for all VFs associated with this PF
as with the Memory Space Enable bit in a functions PCI command register.
The default value for this bit is 0b.
When VF Enable is 1b, virtual function memory space access is permitted
only when VF MSE is set. VFs must follow the same error reporting rules
as defined in the base specification if an attempt is made to access a
virtual functions memory space when VF Enable is 1b and VF MSE is zero.
Note: Virtual functions memory space cannot be accessed when VF

Enable is zero. Thus, VF MSE is “don't care” when VF Enable is
zero. However, software can choose to set VF MSE after
programming the VF BARn registers, prior to setting VF Enable to
1b.

VF ARI 4 0b RW (lowest SR-IOV-
enabled function)

ROS (else)

ARI Capable Hierarchy
The E810 can locate VFs in function numbers 8 to 255 of the captured bus
number.
If either ARI Capable Hierarchy Preserved or No_Soft_Reset are set, a
power state transition of this PF from D3hot to D0 does not affect the
value of this bit

Reserved 15:5 0x0 RO Reserved.

VFMIS 16 0b RO VF Migration Status
Indicates a VF Migration In or Migration Out Request has been issued by
MR-PCIM. To determine the cause of the event, software can scan the VF
State Array.
Not implemented in the E810.

Reserved 31:17 0x0 RO Reserved.

Field Bits Init. Type Description

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2592 613875-009

14.4.4.4 PCIe SR-IOV Initial/Total VFs Register (0x16C; RO)

14.4.4.5 PCIe SR-IOV Num VFs Register (0x170; RW)

14.4.4.6 PCIe SR-IOV VF RID Mapping Register (0x174; RO)

Field Bits Init. Type Description

InitialVFs 15:0 See
Section 14.5.1.1

RO Initial VFs
Indicates the number of VFs that are initially associated with the PF. If VF
Migration Capable is cleared, this field must contain the same value as
TotalVFs.
In the E810 this parameter is equal to the TotalVFs in this register.

TotalVFs 31:16 See
Section 14.5.1.1

RO Total VFs
Defines the maximum number of VFs that can be associated with the PF. This
field is derived from the PF_VT_PFALLOC.FIRSTVF and PF_VT_PFALLOC
register fields loaded from NVM.

Field Bits Init. Type Description

NumVFs 15:0 0x0 RW Num VFs
Defines the number of VFs software has assigned to the PF. Software sets
NumVFs to any value between one and the TotalVFs as part of the process of
creating VFs. NumVFs VFs must be visible in the PCIe fabric after both NumVFs
is set to a valid value and VF Enable is set to 1b.

FDL 23:16 0x0 (Func 0)1

0x1 (Func 1)
...

0xn (Func n)

1. Applies to dummy function as well.

RO Function Dependency Link
Defines dependencies between physical functions allocation. In the E810 there
are no constraints.

Reserved 31:24 0x0 RO Reserved.

Field Bits Init. Type Description

FVO 15:0 0x100 +
FirstVF -

PF#

RO First VF offset
Defines the Requester ID (RID) offset of the first VF that is associated with the PF that
contains this capability structure. The first VFs 16-bit RID is calculated by adding the
contents of this field to the RID of the PF containing this field.
The content of this field is valid only when VF Enable is set. If VF Enable is 0b, the
contents are undefined.
If the VF ARI bit is set, this field changes to 0x8 + FirstVF - PF#.
This field is derived from the PF_VT_PFALLOC.FIRSTVF register field loaded from NVM.

VFS 31:16 0x11

1. See Section 14.5.1.1.

RO VF stride
Defines the Requester ID (RID) offset from one VF to the next one for all VFs
associated with the PF that contains this capability structure. The next VFs 16-bit RID
is calculated by adding the contents of this field to the RID of the current VF.
The contents of this field is valid only when VF Enable is set and NumVFs is non-zero.
If VF Enable is 0b or if NumVFs is zero, the contents are undefined.

613875-009 2593

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.4.7 PCIe SR-IOV VF Device ID Register (0x178; RO)

All Virtual functions have the same default value of 0x1889, and can be auto-loaded from the NVM.

The VF Device ID is loaded from NVM according to the following rules:

• Device ID is loaded from NVM if the GLPCI_CAPSUP.LOAD_DEV_ID bit is set.

• The Device ID value of all VFs associated with a given PF is loaded to the respective
PFPCI_DEVID.VF_DEV_ID field.

14.4.4.8 PCIe SR-IOV Supported Page Size Register (0x17C; RO)

14.4.4.9 PCIe SR-IOV System Page Size Register (0x180; RW)

Figure 14-1. VF Stride

Field Bits Init. Type Description

Supported Page Size 31:0 0x553 RO Supported Page Size
For PFs that support the stride-based BAR mechanism, this field defines the
supported page sizes. This PF supports a page size of 2^(n+12) if bit n is set.
For example, if bit 0 is set, the Endpoint (EP) supports 4 KB page sizes.
Endpoints are required to support 4 KB, 8 KB, 64 KB, 256 KB, 1 MB, and 4 MB
page sizes. All other page sizes are optional.

Field Bits Init. Type Description

Page Size 31:0 0x1 RW System Page Size
This field defines the page size the system uses to map the VFs' memory addresses.
Software must set the value of the System Page Size to one of the page sizes set in the
Supported Page Size field. As with Supported Page Sizes, if bit n is set in System Page
Size, the VFs are required to support a page size of 2^(n+12). For example, if bit 1 is
set, the system is using an 8 KB page size. The results are undefined if more than one
bit is set in System Page Size. The results are undefined if a bit is set in System Page
Size that is not set in Supported Page Size.
When System Page Size is set, the VFs are required to align all BAR resources on a
System Page Size boundary. Each BAR size, including VF BARn Size (described later)
must be aligned on a System Page Size boundary. Each BAR size, including VF BARn
Size must be sized to consume a multiple of System Page Size bytes. All fields requiring
page size alignment within a function must be aligned on a System Page Size boundary.
VF Enable must be zero when System Page Size is set. The results are undefined if
System Page Size is set when VF Enable is set.

VF #1 VF #2 VF #3

First VF Offset VF Stride VF Stride VF Stride

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2594 613875-009

14.4.4.10 PCIe SR-IOV BAR 0 - Low Register (0x184; RW)

14.4.4.11 PCIe SR-IOV BAR 0 - High Register (0x188; RW)

14.4.4.12 PCIe SR-IOV BAR 2 Register (0x18C; RO)

14.4.4.13 PCIe SR-IOV BAR 3 - Low Register (0x190; RW)

Field Bits Init. Type Description

Mem 0 0b RO Memory
0b = Indicates memory space.

Mem Type 2:1 10b RO Memory Type
Indicates the address space size.

10b = 64-bit.
This bit is loaded from the NVM. It is reflected in the GLPCI_VFSUP register.

Prefetch Mem 3 0b RO Prefetch Memory
0b = Non-prefetchable space.
1b = Prefetchable space.

This bit is loaded from the NVM. It is reflected in the GLPCI_VFSUP register.

Memory Address
Space

31:4 0x0 RW Memory Address Space
Which bits are RW bits and which are RO to 0x0 depend on the memory mapping
window size.

Field Bits Init. Type Description

BAR0 - MSB 31:0 0x0 RW BAR0 MSB
MSB part of BAR0.

Field Bits Init. Type Description

BAR2 31:0 0x0 RO BAR2
This BAR is not used.

Field Bits Init. Type Description

Mem 0 0b RO Memory
0b = Indicates memory space.

Mem Type 2:1 10b RO Memory Type
Indicates the address space size.

10b = 64-bit.
This bit is loaded from the NVM. It is reflected in the GLPCI_VFSUP register.

Prefetch Mem 3 0b RO Prefetch Memory
0b = Non-prefetchable space.
1b = Prefetchable space.

This bit is loaded from the NVM. It is reflected in the GLPCI_VFSUP register.

Memory Address
Space

31:4 0x0 RW Memory Address Space
Which bits are RW bits and which are RO to 0x0 depend on the memory mapping
window size. The size is a maximum between 16 KB and the page size.

613875-009 2595

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.4.14 PCIe SR-IOV BAR 3 - High Register (0x194; RW)

14.4.4.15 PCIe SR-IOV BAR 5 Register (0x198; RO)

14.4.4.16 PCIe SR-IOV VF Migration State Array Offset Register
(0x19C; RO)

Field Bits Init. Type Description

BAR4 - MSB 31:0 0x0 RW BAR4 MSB
MSB part of BAR3.

Field Bits Init. Type Description

BAR5 31:0 0x0 RO BAR5
This BAR is not used.

Field Bits Init. Type Description

BIR 2:0 000b RO BIR
Indicates which PF BAR contains the VF Migration State Array.
Not implemented in the E810.

Offset 31:3 0x0 RO Offset
Offset, relative to the beginning of the BAR of the start of the migration array.
Not implemented in the E810.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2596 613875-009

14.4.5 TPH Requester Capability

The TPH Requester capability is an optional extended capability to support TLP Processing Hints. The
capability is exposed when the GLPCI_CAPSUP.TPH_EN bit is set from NVM.

Table 14-29 lists the TPH extended capability structure for PCIe devices.

Table 14-30 summarizes configuration sharing of the TPH Requester Capability registers among the
different PCI functions.

14.4.5.1 TPH Requester Extended Capability Header (0x1A0; RO)

Table 14-29. TPH Requester Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x1A0 PCI Express Extended Capability Header

0x1A4 TPH Requester Capability Register

0x1A8 TPH Requester Control Register

Table 14-30. Configuration Sharing of the TPH Requester Capability

Field Sub-field Shared? Replicated? Comments Section
Reference

Enhanced Capability
Header Register

Extended Capability ID X

14.4.5.1Capability Version X

Next Capability Offset X

TPH Requester
Capability X 14.4.5.2

TPH Requester Control X 14.4.5.3

TPH ST Table X The Steering Table Upper fields are not
supported.

Bits Init. Type Description

15:0 0x17 RO Extended Capability ID
PCIe extended capability ID indicating TPH capability.

19:16 0x1 RO Capability Version
PCIe TPH extended capability version number.

31:20 See
description

RO Next Capability Offset
This field contains the offset to the next PCIe capability structure.
See Table 14-20 for possible values of the next capability offset.

613875-009 2597

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.5.2 TPH Requester Capability Register (0x1A4; RO)

14.4.5.3 TPH Requester Control Register (0x1A8; RW)

Bits Init. Type Description

0 1b RO No ST Mode Supported
If set indicates that the Function supports the No ST Mode of operation.

1 0b RO Interrupt Vector Mode Supported
Cleared to indicates that the E810 does not support Interrupt Vector Mode of operation.

2 1b RO Device Specific Mode
Set to indicate that the E810 supports Device Specific Mode of operation.

7:3 RsvdP RO Reserved.

8 0b RO Extended TPH Requester Supported
Cleared to indicate that the function is not capable of generating requests with Extended TPH TLP
Prefix

10:9 00b RO ST Table Location
Value indicates if and where the ST Table is located.
Defined Encodings are:

00b = ST Table is not present.
01b = ST Table is located in the TPH Requester Capability structure.
10b = ST Table is located in the MSI-X Table structure.
11b = Reserved.

ST Table is not supported.

15:11 0x0 RsvdP Reserved.

26:16 0x0 RO ST Table Size
System software reads this field to determine the ST_Table_Size N, which is encoded as N-1. For
example, a returned value of 00000000011b indicates a table size of 4.
The value in this field is undefined since the E810 does not support an ST Table

31:27 0x0 RsvdP Reserved.

Bits Init. Type Description

2:0 000b RW ST Mode Select
Indicates the ST mode of operation selected.
Defined encodings are:

000b = No Table Mode
001b = Interrupt Vector Mode (not supported by the E810)
010b = Device Specific Mode
All other values are reserved.

The default value of 000b indicates No Table mode of operation.

7:3 0x0 RsvdP Reserved.

9:8 00b RW TPH Requester Enable
Controls the ability to issue Request TLPs using either TPH or Extended TPH.
Defined Encodings are:

00b = The E810 is not permitted to issue transactions with TPH or Extended TPH as Requester.
01b = The E810 is permitted to issue transactions with TPH as Requester and is not permitted to

issue transactions with Extended TPH as Requester.
10b = Reserved.
11b = The E810 is permitted to issue transactions with TPH and Extended TPH as Requester (the

E810 does not issue transactions with Extended TPH).
The default value of this field is 00b.

31:10 0x0 RsvdP Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2598 613875-009

14.4.6 ACS Extended Capability Structure

The ACS Extended Capability defines a set of control points within a PCI Express topology to determine
whether a TLP should be routed normally, blocked, or redirected. The capability is exposed when the
GLPCI_CAPSUP.ACS_EN bit is set from NVM.

The ACS Capability structure is shared and exposed to all PFs.

Table 14-31 lists the PCIe ACS extended capability structure for PCIe devices.

14.4.6.1 ACS Extended Capability Header (0x1B0; RO)

14.4.6.2 ACS Capability Register (0x1B4; RO)

Table 14-31. ACS Extended Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x1B0 PCI Express Extended Capability Header

0x1B4 ACS Control Register (0x0) ACS Capability Register (0x0)

Bits Init. Type Description

15:0 0x0D RO PCI Express Extended Capability ID
PCIe extended capability ID indicating ACS capability.

19:16 0x1 RO Capability Version
PCIe ACS extended capability version number.

31:20 See
description

RO Next Capability Offset
See Table 14-20 for possible values of the next capability offset.

Bits Init. Type Description

0 0b RO ACS Source Validation (V)
Hard-wired to zero, not supported in the E810.

1 0b RO ACS Translation Blocking (B)
Hard-wired to zero, not supported in the E810.

2 0b RO ACS P2P Request Redirect (R)
Hard-wired to zero, not supported in the E810.

3 0b RO ACS P2P Completion Redirect (C)
Hard-wired to zero, not supported in the E810.

4 0b RO ACS Upstream Forwarding (U)
Hard-wired to zero, not supported in the E810.

5 0b RO ACS P2P Egress Control (E)
Hard-wired to zero, not supported in the E810.

6 0b RO ACS Direct Translated P2P (T)
Hard-wired to zero, not supported in the E810.

7 0b RsvdP Reserved.

15:8 0x0 RO Egress Control Vector Size
Hard-wired to zero, not supported in the E810.

613875-009 2599

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.6.3 ACS Control Register (0x1B6; RO)

Bits Init. Type Description

0 0b RO ACS Source Validation Enable (V)
Hard-wired to zero, not supported in the E810.

1 0b RO ACS Translation Blocking Enable (B)
Hard-wired to zero, not supported in the E810.

2 0b RO ACS P2P Request Redirect Enable (R)
Hard-wired to zero, not supported in the E810.

3 0b RO ACS P2P Completion Redirect Enable (C)
Hard-wired to zero, not supported in the E810.

4 0b RO ACS Upstream Forwarding Enable (U)
Hard-wired to zero, not supported in the E810.

5 0b RO ACS P2P Egress Control Enable (E)
Hard-wired to zero, not supported in the E810.

6 0b RO ACS Direct Translated P2P Enable (T)
Hard-wired to zero, not supported in the E810.

15:7 0x0 RsvdP Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2600 613875-009

14.4.7 Secondary PCI Express Extended Capability

The Secondary PCI Express Extended Capability structure is required for all Ports and RCRBs that
support a Link speed of 8.0 GT/s or higher. For Multi-Function Upstream Ports, this capability must be
implemented in Function 0 and must not be implemented in other Functions. The capability is exposed
when the GLPCI_CAPSUP.SEC_EN bit is set from NVM.

Table 14-32 lists the Secondary PCI Express extended capability structure for PCIe devices.

14.4.7.1 Secondary PCIe Extended Capability Header (0x1D0;
RO)

14.4.7.2 Link Control 3 Register (0x1D4; RW)

Table 14-32. Secondary PCI Express Extended Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x1D0 PCI Express Extended Capability Header

0x1D4 Link Control 3 Register

0x1D8 Lane Error Status Register

0x1DC Equalization Control Register (Sized by Maximum Link Width)

--- ...

0x1FA ...

Bits Init. Type Description

15:0 0x19 RO PCI Express Extended Capability ID
This field is a PCI-SIG defined ID number that indicates the nature and format of the Extended
Capability.
PCI Express Extended Capability ID for the Secondary PCI Express Extended Capability is 0019h.

19:16 0x1 RO Capability Version
This field is a PCI-SIG defined version number that indicates the version of the Capability
structure present.
Must be 1h for this version of the specification.

31:20 See
description

RO Next Capability Offset
See Table 14-20 for possible values of the next capability offset.

Bits Init. Type Description

0 0b RsvdP Perform Equalization
When this bit is 1b and a 1b is written to the Link Retrain register with Target Link Speed set to 8.0
GT/s, the Downstream Port must perform Transmitter Equalization.
This bit is RW for Upstream Ports when Crosslink Supported is 1b. This bit is not applicable and is
RsvdP for Upstream Ports when the Crosslink Supported bit is 0b.
The default value is 0b.

1 0b RsvdP Link Equalization Request Interrupt Enable
When Set, this bit enables the generation of interrupt to indicate that the Link Equalization
Request bit has been set.
This bit is RW for Upstream Ports when Crosslink Supported is 1b. This bit is not applicable and is
RsvdP for Upstream Ports when the Crosslink Supported bit is 0b.
The default value for this bit is 0b.

8:2 0x0 RsvdP Reserved.

613875-009 2601

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.7.3 Lane Error Status Register (0x1D8; RW1CS)

The Lane Error Status register consists of a 32-bit vector, where each bit indicates if the corresponding
PCI Express Lane detected an error.

14.4.7.4 Lane Equalization Control Register (0x1DC - 0x1FA; RO)

The Equalization Control register consists of control fields required for per Lane equalization and
number of entries in this register are sized by Maximum Link Width.

Lane ((Maximum Link Width – 1):0) Equalization Control Register:

15:9 0x0 RW Enable Lower SKP OS Generation Vector
When the Link is in L0 and the bit in this field corresponding to the current Link speed is set, SKP
Ordered Sets are scheduled at the rate defined for SRNS, overriding the rate required based on the
clock tolerance architecture.
Bit definitions within this field are:

Bit 0 = 2.5 GT/s
Bit 1 = 5.0 GT/s
Bit 2 = 8.0 GT/s
Bit 3 = 16 GT/s
Bit 4 = 32 GT/s
Bits 6:5 = RsvdP

31:16 0x0 RsvdP Reserved.

Bits Init. Type Description

7:0 0x0 RW1CS Lane Error Status Bits
Each bit indicates if the corresponding Lane detected a Lane-based error. A value of 1b indicates
that a Lane based-error was detected on the corresponding Lane Number.
The default value of this field is 0b.
This field is intended for debug purposes only.

31:8 0x0 RsvdZ Reserved.

15 0

Lane (0) Equalization Control Register

Lane (1) Equalization Control Register

...

Lane (Maximum Link Width - 1) Equalization Control Register

Bits Init. Type Description

3:0 0x0 RsvdP Downstream Port Transmitter Preset
For an Upstream Port if Crosslink Supported is 0b, this field is RsvdP.

6:4 000b RsvdP Downstream Port Receiver Preset Hint
For an Upstream Port if Crosslink Supported is 0b, this field is RsvdP.

7 0b Rsvd Reserved.

Bits Init. Type Description

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2602 613875-009

14.4.8 Data Link Feature Extended Capability

Note: This feature should be enabled only in stand alone devices where there is a direct connection
to Gen4 PCIe interface.

14.4.8.1 Data Link Feature Extended Capability Header (0x200;
RO)

14.4.8.2 Data Link Feature Capabilities Register (0x204; RO)

11:8 0xF RO Upstream Port Transmitter Preset
Field contains the Transmit Preset value sent or received during Link Equalization.
Since crosslink is not supported, the field is intended for debug and diagnostics. It contains the
value captured from the associated Lane during Link Equalization. Field is RO.
The default value is 1111b.

14:12 111b HwInit/RO Upstream Port Receiver Preset Hint
Field contains the Receiver Preset Hint value sent or received during Link Equalization. Field
usage varies as follows:
Since crosslink is not supported, the field is intended for debug and diagnostics. It contains the
value captured from the associated Lane during Link Equalization. Field is RO.
The default value is 111b.

15 0b Rsvd Reserved.

Table 14-33. Data Link Feature Extended Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x200 Data Link Feature - Extended Capability Header

0x204 Data Link Feature - Capabilities Register

0x208 Data Link Feature - Status Register

Bits Init. Type Description

15:0 0x0025 RO PCI Express Extended Capability ID
PCIe extended capability ID indicating Data Link feature capability.

19:16 0x1 RO Capability Version
PCIe Data Link feature extended capability version number.

31:20 See
description

RO Next Capability Offset
See Table 14-20 for possible values of the next capability offset.

Bits Init. Type Description

22:0 0x1 RO Local Data Link Feature Supported
This field contains the Feature Supported value used when this Port sends a Data Link Feature DLLP.
Defined features are:

Bit 0 = Local Scaled Flow Control Supported
This bit indicates that this Port supports the Scaled Flow Control Feature.

Bits 22:1 = RsvdP

30:23 0x1 RO Reserved.

31 1b RO Data Link Feature Exchange Enable
If Set, this bit indicates that this Port will enter the DL_Feature negotiation state.

Bits Init. Type Description

613875-009 2603

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.8.3 Data Link Feature Status Register (0x208; RO)

14.4.9 PASID Capability

Note: When PASID is enabled, SR-IOV is disabled (no support for concurrent PASID and SRIOV in
the same system).

Note: PASID capability is not exposed in dummy functions.

14.4.9.1 PASID Extended Capability Header (0x2D0; RO)

Bits Init. Type Description

22:0 0x0 RO Remote Data Link Feature Supported
These bits indicate that the Remote Port supports the corresponding Data Link Feature. These bits
capture all information from the Feature Supported field of the Data Link Feature DLLP even when this
Port does not support the corresponding feature.
This field is Cleared on entry to state DL_Inactive.
Features currently defined are:

Bit 0 = Remote Scaled Flow Control Supported
This bit indicates that the Remote Port supports the Scaled Flow Control Feature.

Bits 22:1 = Undefined.

23 0b RO Remote Data Link Feature Ack
This bit indicates that the Remote Port has received this Port's Data Link Feature DLLP. This bit
captures the Feature Ack bit of the Data Link Feature DLLP.
This bit is Cleared on entry to state DL_Inactive.

30:24 0x1 RO Reserved.

31 1b RO Remote Data Link Feature Supported Valid
This bit indicates that the Port has received a Data Link Feature DLLP in state DL_Feature and that the
Remote Data Link Feature Supported and Remote Data Link Feature Ack fields are meaningful.
This bit is Cleared on entry to state DL_Inactive

Table 14-34. PASID Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x2D0 PASID Extended Capability Header

0x2D4 PASID - Capabilities Register PASID - Control Register

Bits Init. Type Description

15:0 0x1B RO PCI Express Extended Capability ID
PCIe extended capability ID indicating PASID capability.

19:16 0x1 RO Capability Version
PCIe PASID extended capability version number.

31:20 See
description

RO Next Capability Offset
See Table 14-20 for possible values of the next capability offset.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2604 613875-009

14.4.9.2 PASID Capabilities Register (0x2D4; RO)

14.4.9.3 PASID Control Register (0x2D6; RW)

Bits Init. Type Description

0 0b RsvdP Reserved.

1 0b RO Execute Permission Supported
0b = The Endpoint never sets the Execute Requested bit.
1b = The Endpoint supports sending TLPs that have the Execute Requested bit set.

Set to zero.

2 0b RO Privileged Mode Supported
0b = The Endpoint never sets the Privileged Mode Requested bit.
1b = The Endpoint supports operating in Privileged and Non-Privileged modes, and supports

sending requests that have the Privileged Mode Requested bit set.
Set to zero.

7:3 0x0 RsvdP Reserved.

12:8 0x14
(20d)

RO Max PASID Width
Indicates the width of the PASID field supported by the Endpoint. The value n indicates support for
PASID values 0 through 2n-1 (inclusive). The value 0 indicates support for a single PASID (0). The
value 20 indicates support for all PASID values (20 bits).
This field must be between 0 and 20 (inclusive).

15:13 0x0 RsvdP Reserved.

Bits Init. Type Description

0 0b RW PASID Enable
0b = The Endpoint is not permitted to do so.
1b = The Endpoint is permitted to send and receive TLPs that contain a PASID TLP Prefix.

1 0b RsvdP Execute Permission Enable
Ignored, as Execute Permission Supported bit is cleared.

2 0b RsvdP Privileged Mode Enable
Ignored, as Privileged Mode Supported bit is cleared.

15:3 0x0 RsvdP Reserved.

613875-009 2605

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.10 Physical Layer 16.0 GT/s Capability

14.4.10.1 Physical Layer 16.0 GT/s Extended Capability Header
(0x210; RO)

14.4.10.2 Physical Layer 16.0 GT/s Capabilities Register (0x214;
RsvdP)

14.4.10.3 Physical Layer 16.0 GT/s Control Register (0x218;
RsvdP)

Table 14-35. Physical Layer 16.0 GT/s Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x210 Physical Layer 16.0 GT/s Extended Capability Header

0x214 Physical Layer 16.0 GT/s - Capabilities Register

0x218 Physical Layer 16.0 GT/s - Control Register

0x21C Physical Layer 16.0 GT/s - Status Register

0x220 16.0 GT/s Local Data Parity Mismatch Status Register

0x224 16.0 GT/s First Re-timer Data Parity Mismatch Status Register

0x228 16.0 GT/s Second Re-timer Data Parity Mismatch Status Register

0x22C Spare

16.0 GT/s Lane Equalization Control Registers

0x230 Lane 3 Lane 2 Lane 1 Lane 0

0x234 Lane 7 Lane 6 Lane 5 Lane 4

0x238 Lane 11 Lane 10 Lane 9 Lane 8

0x23C Lane 15 Lane 14 Lane 13 Lane 12

Bits Init. Type Description

15:0 0x0026 RO PCI Express Extended Capability ID
PCIe extended capability ID indicating Physical Layer 16.0 GT/s Extended capability.

19:16 0x1 RO Capability Version
PCIe Data Link feature extended capability version number.

31:20 See
description

RO Next Capability Offset
See Table 14-20 for possible values of the next capability offset.

Bits Init. Type Description

31:0 0x0 RsvdP Reserved.

Bits Init. Type Description

31:0 0x0 RsvdP Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2606 613875-009

14.4.10.4 Physical Layer 16.0 GT/s Status Register (0x21C;
RW1CS)

This register is valid only in function 0, and returns zero in other functions.

14.4.10.5 16.0 GT/s Local Data Parity Mismatch Status Register
(0x220; RW1CS)

14.4.10.6 16.0 GT/s First Re-timer Data Parity Mismatch Status
Register (0x224; RW1CS)

14.4.10.7 16.0 GT/s Second Re-timer Data Parity Mismatch Status
Register (0x228; RW1CS)

Bits Init. Type Description

0 0b ROS Equalization 16.0 GT/s Complete

1 0b ROS Equalization 16.0 GT/s Phase 1 Successful

2 0b ROS Equalization 16.0 GT/s Phase 2 Successful

3 0b ROS Equalization 16.0 GT/s Phase 3 Successful

4 0b RW1CS Link Equalization Request 16.0 GT/s

31:5 0x0 RsvdZ Reserved.

Bits Init. Type Description

15:0 0x0 RW1CS Local Data Parity Mismatch Status
Each bit indicates if the corresponding lane detected a data parity mismatch. A value of 1b indicates
that a mismatch was detected on the corresponding lane.

31:16 0x0 RsvdZ Reserved.

Bits Init. Type Description

15:0 0x0 RW1CS First Re-timer Data Parity Mismatch Status
Each bit indicates if the corresponding lane detected a data parity mismatch. A value of 1b indicates
that a mismatch was detected on the corresponding lane.

31:16 0x0 RsvdZ Reserved.

Bits Init. Type Description

15:0 0x0 RW1CS Second Re-timer Data Parity Mismatch Status
Each bit indicates if the corresponding lane detected a data parity mismatch. A value of 1b indicates
that a mismatch was detected on the corresponding lane.

31:16 0x0 RsvdZ Reserved.

613875-009 2607

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.4.10.8 Physical Layer 16.0 GT/s Status 2 Register (0x22C;
RsvdZ)

14.4.10.9 16.0 GT/s Lane Equalization Control Register (0x230 -
0x23C; HWInit)

The values returned by these registers are read from address 0x430 - 0x43C in the LCB address space.
These registers define the control fields required for per-lane 16.0 GT/s equalization. A byte is allocated
to each lane as follows:

Each byte is defined as follows:

14.4.11 Lane Margining at the Receiver Capability

14.4.11.1 Lane Margining at the Receiver Capability Header
(0x250; RO)

Bits Init. Type Description

31:0 0x0 RsvdZ Reserved.

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x230 Lane 3 Lane 2 Lane 1 Lane 0

0x234 Lane 7 Lane 6 Lane 5 Lane 4

0x238 Lane 11 Lane 10 Lane 9 Lane 8

0x23C Lane 15 Lane 14 Lane 13 Lane 12

Bits Init. Type Description

3:0 0xF HwInit Downstream Port 16.0 GT/s Transmitter Preset

7:4 0xF HwInit Upstream Port 16.0 GT/s Transmitter Preset

Table 14-36. Lane Margining at the Receiver Capability Structure

Byte Offset Byte 3 Byte 2 Byte 1 Byte 0

0x250 Lane Margining at the Receiver Extended Capability Header

0x254 Capabilities Register Status Register

0x258 - 0x294 Lane n - Status Register Lane n - Control Register

Bits Init. Type Description

15:0 0x0027 RO PCI Express Extended Capability ID
PCIe extended capability ID indicating Lane Margining at the Receiver Capability.

19:16 0x1 RO Capability Version
PCIe Data Link feature extended capability version number.

31:20 See
description

RO Next Capability Offset
See Table 14-20 for possible values of the next capability offset.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2608 613875-009

14.4.11.2 Lane Margining at the Receiver Capabilities Register
(0x254; RO)

14.4.11.3 Lane Margining at the Receiver Status Register (0x256;
RO)

14.4.11.4 Margining Lane #n Control Register (0x258 + 4*n; RW)

14.4.11.5 Margining Lane #n Status Register (0x25A + 4*n; RO)

Bits Init. Type Description

0 HwInit RO Margining uses Driver Software

15:1 0x0 RsvdP Reserved.

Bits Init. Type Description

0 HwInit RO Margining Ready

1 HwInit RO Margining Software Ready

15:2 0x0 RsvdP Reserved.

Bits Init. Type Description

2:0 000b RW Receiver Number

5:3 111b RW Margin Type

6 0b RW Usage Model

7 0b RO Reserved.

15:8 0x9C RW Margin Payload

Bits Init. Type Description

2:0 000b RO Receiver Number Status

5:3 000b RO Margin Type Status

6 0b RO Usage Model Status

7 0b RO Reserved.

15:8 0x0 RO Margin Payload Status

613875-009 2609

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.5 Virtual Functions

14.5.1 Overview

14.5.1.1 VF to PF Allocation

The E810 supports up to 256 VFs. These VFs can be distributed arbitrarily among the different PFs. The
distribution is done by NVM settings as the TotalVFs parameter should be stable at enumeration time.

For each of the potential Physical Functions (PFs), the following parameters are defined in the NVM:

• PCIe Configuration Space Control 1.SR-IOV enable — Should SR-IOV be exposed for this function?

• Per PF, First VF and Last VF — What is the first VF and the last VF allocated to each function (out of
256). Can be any number between 0 and 256-1.

From these parameters the following parameters are derived in the SR-IOV capability structure (see
Section 14.4.4 for details):

• The SR-IOV structure is part of the configuration space of a PF only if the GLPCI_CAPSUP.IOV_EN
bit is set in the NVM and PF_VT_PFALLOC.VALID field is set for this function.

• InitialVFs = TotalVFs = PF_VT_PFALLOC.LASTVF[n] - PF_VT_PFALLOC.FIRSTVF [n] +1

• First VF Offset = PF_VT_PFALLOC.FIRSTVF [n]+ 8 - PF# for ARI mode and
PF_VT_PFALLOC.FIRSTVF [n]+ 256 - PF# for non ARI mode.

Note: The First VF offset formula is defined so that the RID of a VF is fixed no matter which PF it
belongs to.

• VF stride = 1

The First VF and last VF allocated to a PF can be read from the PF_VT_PFALLOC registers.

14.5.1.2 Bus-Device-Function Layout

The Requester ID allocation of the VF is done using the First VF Offset field and the VF stride in the IOV
structure and is used to do the enumeration of the VFs.

14.5.1.2.1 ARI Mode

The ARI capability allows interpretation of the “Device” part of the Requester ID as part of the
“Function” part.

The allocation of VFs to PF is flexible, there is no relationship between the PF RID and the associated
VFs RID.

When the hierarchy is ARI-capable (VF ARI in SR-IOV Control register is set), the allocation is as
follows:

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2610 613875-009

14.5.1.2.2 Non-ARI Mode

When the hierarchy is not ARI-capable (VF ARI in SR-IOV Control register is cleared), a non-zero PCI
Device Number in the first bus can not be used. Thus, a second bus is needed to provide enough
Requester IDs. In this mode the RID layout is as follows:

Table 14-37. RID per VF - ARI Mode

VF#/PF# B,D,F Binary Notes

PF 0 B,0,0 B,00000,000

PF 1 B,0,1 B,00000,001

PF 2 B,0,2 B,00000,010

...

PF 7 B,0,7 B,00000,111

VF 0 B,1,0 B,00001,000

VF 1 B,1,1 B,00001,001

VF 2 B,1,2 B,00001,010

...

VF 247 B,31,7 B,11111,111

VF 248 B+1.0.0 B+1,0000,000

...

VF 255 B+1,0,7 B+1,00000,111

Table 14-38. RID per VF - non-ARI Mode

VF#/PF# B,D,F Binary Notes

PF 0 B,0,0 B,00000,000

PF 1 B,0,1 B,00000,001

PF 2 B,0,2 B,00000,010

...

PF 7 B,0,7 B,00000,111

VF 0 B+1,0,0 B+1,00000,000

VF 1 B+1,0,1 B+1,00000,001

VF 2 B+1,0,2 B+1,00000,010

...

VF 255 B+1,31,7 B+1,11111,111

613875-009 2611

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.5.1.3 Configuration Space Overview

The configuration space reflected to each of the VF is a sparse version of the physical function
configuration space. Table 14-39 describes the behavior of each register in the VF configuration space.

Table 14-39. VF PCIe Configuration Space

Section Offset Name VF behavior Notes

PCI Mandatory
Registers

0 Vendor ID RO — 0xFFFF

2 Device ID RO — 0xFFFF

4 Command Per VF See Section 14.5.2.3.

6 Status Per VF See Section 14.5.2.4.

8 RevisionID RO as PF

9 Class Code RO as PF

C Cache Line Size RO — 0x0

D Latency Timer RO — 0x0

E Header Type RO — 0x0

F Reserved RO — 0x0

10 — 27 BARs RO — 0x0 Emulated by VMM.

28 CardBus CIS RO — 0x0 Not used.

2C Sub Vendor ID RO as PF

2E Sub System RO — Same value for all
VFs of each PF See Section 14.5.2.5.

30 Expansion ROM RO — 0x0 Emulated by VMM.

34 Cap Pointer RO — 0x70 Next = MSI-X capability.

3C Int Line RO — 0x0

3D Int Pin RO — 0x0

3E Max Lat/Min Gnt RO — 0x0

MSI-X
Capability

70 MSI-X Header RO — 0xA011 Next = PCIe capability.

72 MSI-X Message Control Per VF See Section 14.5.3.1.1.

74 MSI-X Table Address RO See Section 14.5.3.1.2

78 MSI-X PBA Address RO See Section 14.5.3.1.3

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2612 613875-009

14.5.2 Mandatory Configuration Space

The IOV specification defines the configuration space of the Virtual functions as a mirror of the Physical
function configuration space with the exception of some fields that are implemented per VF.

This section describes the expected handling of the different part of the configuration space for virtual
functions. It deals only with the parts relevant to the E810 and describes only changes that are not a
trivial implementation of the specification.

PCIe Capability

A0 PCIe Header RO — 0x0010 Next = Last capability.

A2 PCIe Capabilities RO — as PF

A4 PCIe Dev Cap RO — as PF

A8 PCIe Dev Ctrl RW As PF apart from FLR — See
Section 14.5.3.2.1.

AA PCIe Dev Status Per VF See Section 14.5.3.2.2.

AC PCIe Link Cap RO — as PF

B0 PCIe Link Ctrl RO — 0x0

B2 PCIe Link Status RO — 0x0

C4 PCIe Dev Cap 2 RO — as PF

C8 PCIe Dev Ctrl 2 RO — 0x0

D0 PCIe Link Ctrl 2 RO — 0x0

D2 PCIe Link Status 2 RO — 0x0

AER Capability

100 AER — Header RO — 0x15010002 Next = ARI structure.

104 AER — Uncorr Status Per VF See Section 14.5.3.3.1.

108 AER — Uncorr Mask RO — 0x0

10C AER — Uncorr Severity RO — 0x0

110 AER — Corr Status Per VF See Section 14.5.3.3.2.

114 AER — Corr Mask RO — 0x0

118 AER — Cap/Ctrl RO See Section 14.5.3.3.3.

11C - 128 AER — Error Log Shared two logs for all
VFs

Same structure as in PF. In case of
overflow, the header log is filled with ones.

ARI Capability
150 ARI — Header 0x1A01000E Next = TPH Structure.

154 ARI — Cap/Ctrl RO — 0X0

TPH Requester
Capability

1A0 TPH - Header 0x1D010017 Next = ACS Structure.

1A4 TPH - Capability RO — 0x00000005 No table reported..

1A8 TPH - Control Per VF Same structure as in PF.

ACS Capability
1D0 ACS - Header RO — 0x0001000D Next = Last extended capability.

1D4 ACS - Capability RO — 0x00000000

Table 14-39. VF PCIe Configuration Space [continued]

Section Offset Name VF behavior Notes

613875-009 2613

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.5.2.1 Legacy PCI Configuration Space

The legacy configuration space is allocated to the PF only and emulated for the VFs. A separate set of
BARs and one Bus master enable bit is allocated to the whole set of VFs.

All the legacy error reporting bits are emulated for the VF.

14.5.2.2 Memory BARs Assignment

The IOV specification defines a fixed stride for all the VF BARs, so that each VF can be allocated part of
the memory BARs at a fixed stride from the a basic set of BARs. In this method only two decoders per
replicated BAR per PF are required, and the BARs reflected to the VF are emulated by the VMM.

The only BARs that are useful for the VFs are BAR0 and BAR3, thus only those are replicated.

Table 14-40 describes the BARs and the stride used for the VFs:

14.5.2.3 VF Command Register (0x4; RW)

Table 14-40. VF BARs in the E810

BAR Type Usage Requested Size per VF

0 Mem CSR space See Section 13.1.2.2

1 Mem High word of CSR space address N/A

2 N/A Not used N/A

3 Mem MSI-X max (16K, page size)

4 Mem High word of MSI-X space address N/A

5 N/A Not used N/A

Bits Init. Type Description

0 0b RO IOAE
I/O Access Enable. RO as zero field.

1 0b RO MAE
Memory Access Enable. RO as zero field.

2 0b RW BME
Bus Master Enable.
Disabling this bit prevents the associated VF from issuing any memory or I/O requests. Note that as
MSI/MSI-X interrupt messages are in-band memory writes, disabling the bus master enable bit
disables MSI/MSI-X interrupt messages as well.
Requests other than memory or I/O requests are not controlled by this bit.
Note: The state of active transactions is not specified when this bit is disabled after being enabled.

The device can choose how it behaves when this condition occurs. Software cannot count on
the device retaining state and resuming without loss of data when the bit is re-enabled.

Transactions for a VF that has its Bus Master Enable set must not be blocked by transactions for VFs
that have their Bus Master Enable cleared.

3 0b RO SCM
Special Cycle Enable. Hard-wired to 0b

4 0b RO MWIE
MWI Enable. Hard-wired to 0b.

5 0b RO PSE
Palette Snoop Enable. Hard-wired to 0b.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2614 613875-009

14.5.2.4 VF Status Register (0x6; RW)

14.5.2.5 VF Subsystem ID (0x2E; RO)

This value is loaded from NVM if the GLPCI_CAPSUP.LOAD_SUBSYS_ID bit is set. Each VF is loaded
from the respective PF's NVM PFPCI_SUBSYSID.VF_SUB_ID field (in other words, all VFs of a specific PF
share the same value).

6 0b RO PER
Parity Error Response. Zero for VFs.

7 0b RO WCE
Wait Cycle Enable. Hard-wired to 0b.

8 0b RO SERRE
SERR# Enable. Zero for VFs.

9 0b RO FB2BE
Fast Back-to-Back Enable. Hard-wired to 0b.

10 0b RO INTD
Interrupt Disable. Hard-wired to 0b.

15:11 0x0 RO Reserved.

Bits Init. Type Description

2:0 0x0 RO Reserved.

3 0b RO IS
Interrupt Status. Hard-wired to 0b.

4 1b RO NC
New Capabilities.
Indicates that the E810 VFs implement extended capabilities. E810 VFs implement a capabilities list,
to indicate that it supports MSI-X and PCIe extensions.

5 0b RO 66E
66 MHz Capable. Hard-wired to 0b.

6 0b RO Reserved.

7 0b RO FB2BC
Fast Back-to-Back Capable. Hard-wired to 0b.

8 0b RW1C MPERR
Data Parity Reported.

10:9 00b RO DEVSEL
DEVSEL Timing. Hard-wired to 0b.

11 0b RW1C STA
Signaled Target Abort.

12 0b RW1C RTA
Received Target Abort.

13 0b RW1C RMA
Received Master Abort.

14 0b RW1C SSERR
Signaled System Error.

15 0b RW1C DSERR
Detected Parity Error.

Bits Init. Type Description

613875-009 2615

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.5.3 PCI and PCIe Capabilities

The following capability structures are partially replicated in VFs configuration space:

• PCIe capability structure

• MSI-X capability structure

The following extended capability structures are partially replicated in VFs config space:

14.5.3.1 MSI-X Capability

The MSI-X BAR size is max(16K, page size).

The location and size of the MSI-X vector table and the MSI-X Pending Bits table are determined as
follows:

• MSI-X vector table

— The MSI-X table structure (Section 14.3.3.2) typically contains multiple entries, each consisting
of several fields: Message Address, Message Upper Address, Message Data, and Vector Control.
Each entry is capable of specifying a unique vector.

— Starts at offset 0x0000 from start of BAR.

— Contains the MSI-X vectors for the VF. The number of entries in the table (N) is set from NVM.
The maximum value of N is 65.

— The vectors start with the “Vector 0” (one per VF), followed by the other vectors allocated to
the VF.

• MSI-X Pending Bits table

— The PBA structure (Section 14.3.3.2.2) contains the function's pending bits, one per table
entry, organized as a packed array of bits within QWords. The last QWord is not necessarily fully
populated.

— Starts at half the BAR size (default is offset 0x2000 - 8 KB from start of BAR).

— Contains the pending bits for the VF. The VF is allocated one 64-bit register for a maximum of
17 bits.

— The bits start with the “Vector 0” bit (one per VF), followed by bits for the other vectors
allocated to the VF.

Table 14-41. Extended Capabilities List

Address Range Item Cases Where Capability Does Not
Exist Next Pointer

0x100 - 0x128 Advanced Error Reporting (AER) None (always present) Any of the below / 0x000

0x148 - 0x14C Alternative RID Interpretation (ARI) ARI Enabled bit in NVM is set to 0b Any of the below / 0x000

0x1A0 - 0x1A8 TPH Requester TPH Enabled bit in NVM is set to 0b Any of the below / 0x000

0x1B0 - 0x1B4 Access Control Services (ACS) ACS Enabled bit in NVM is set to 0b 0x000

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2616 613875-009

14.5.3.1.1 VF MSI-X Control Register (0x72; RW)

14.5.3.1.2 MSI-X Address Register (0x74; RO)

14.5.3.1.3 MSI-X PBA Register (0x78; RO)

Bits Init. Type Description

10:0 0x40
(65 vectors)

RO TS
Table Size (N-1).
N varies with the number of virtual functions as set from NVM.
This field is loaded from NVM.
It is generated from the VPINT_ALLOC[VF#].LAST - VPINT_ALLOC[VF#].FIRST fields.

13:11 000b RO Reserved.

14 0b RW Mask
Function Mask.

15 0b RW En
MSI-X Enable.

Bits Init. Type Description

2:0 011b RO Table BIR
Indicates which one of a function’s BARs, beginning at 0x10 in the configuration space, is used to map
the function’s MSI-X table into the memory space. BIR values: 0...5 correspond to BARs 0x10…0x24,
respectively.

31:3 0x0 RO Table Offset
Used as an offset from the address contained in one of the function’s BARs to point to the base of the
MSI-X vectors address. The lower three Table BIR bits are masked off (set to 0b) by software to form
a 32-bit QWord-aligned offset.

Bits Init. Type Description

2:0 0x3 RO PBA BIR
Indicates which one of a function’s BARs, located beginning at 0x10 in configuration space, is used to
map the function’s MSI-X PBA into memory space.
A BIR value of three indicates that the PBA is mapped in BAR 3.

31:3 0x400 RO PBA Offset
Used as an offset from the address contained by one of the function’s BARs to point to the base of the
MSI-X PBA. The lower three PBA BIR bits are masked off (set to zero) by software to form a 32-bit
QWord-aligned offset.
This value is changed by hardware to be half of the requested BAR size.

613875-009 2617

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.5.3.2 PCIe Capability Registers

The Device Control and Device Status registers have some fields that are specific per VF.

14.5.3.2.1 VF Device Control Register (0xA8; RW)

14.5.3.2.2 VF Device Status Register (0xAA; RO)

Bits Init. Type Description

0 0b RO Correctable Error Reporting Enable
Zero for VFs.

1 0b RO Non-Fatal Error Reporting Enable
Zero for VFs.

2 0b RO Fatal Error Reporting Enable
Zero for VFs.

3 0b RO Unsupported Request Reporting Enable
Zero for VFs.

4 0b RO Enable Relaxed Ordering
Zero for VFs.

7:5 000b RO Max Payload Size
Zero for VFs.

8 0b RO Extended Tag field Enable

9 0b RO Phantom Functions Enable
Not implemented in the E810.

10 0b RO Auxiliary Power PM Enable
Zero for VFs.

11 0b RO Enable No Snoop
Zero for VFs.

14:12 000b RO Max Read Request Size
Zero for VFs.

15 0b RW Initiate Function Level Reset
Specific to each VF.

Bits Init. Type Description

0 0b RW1C Correctable Detected
Indicates status of correctable error detection.

1 0b RW1C Non-Fatal Error Detected
Indicates status of non-fatal error detection.

2 0b RW1C Fatal Error Detected
Indicates status of fatal error detection.

3 0b RW1C Unsupported Request Detected
Indicates that the E810 received an unsupported request. This field is separate per VF. However, in
the case where an error cannot be associated with a VF, this bit is set in all PFs and VFs.

4 0b RO Aux Power Detected
Zero for VFs.

5 0b RO Transaction Pending
Specific per VF. When set, indicates that a particular function (PF or VF) has issued non-posted
requests that have not been completed. A function reports this bit cleared only when all completions
for any outstanding non-posted requests have been received.

15:6 0x0 RO Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2618 613875-009

14.5.3.3 AER Registers

The following registers in the AER capability have a different behavior in a VF function.

Note: Unlike the PF AER registers, these registers are not sticky since the VF is reset on FLR and on
in-band reset.

14.5.3.3.1 Uncorrectable Error Status Register (0x104; RW1C)

Bits Init. Type Description

3:0 0x0 RO Reserved.

4 0b RO Data Link Protocol Error Status
Hard-wired to 0b.

5 0b RO Surprise Down Error Status
Hard-wired to 0b.

11:6 0x0 RO Reserved.

12 0b RW1C Poisoned TLP Status

13 0b RO Flow Control Protocol Error Status
Hard-wired to 0b

14 0b RW1C Completion Timeout Status

15 0b RW1C Completer Abort Status

16 0b RW1C Unexpected Completion Status

17 0b RO Receiver Overflow Status
Hard-wired to 0b

18 0b RO Malformed TLP Status
Hard-wired to 0b

19 0b RO ECRC Error Status
Hard-wired to 0b

20 0b RW1C Unsupported Request Error Status
When caused by a function that claims a TLP.

21 0b RO ACS Violation Status
Hard-wired to 0b

31:22 0x0 RO Reserved.

613875-009 2619

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

14.5.3.3.2 Correctable Error Status Register (0x110; RW1C)

The Correctable Error Status register reports error status of individual correctable error sources on a
PCIe device. When an individual error status bit is set to 1b, it indicates that a particular error occurred.
Software can clear an error status by writing a 1b to the respective bit.

14.5.3.3.3 Advanced Error Capabilities and Control Register (0x118;
RO)

Bits Init. Type Description

0 0b RO Receiver Error Status
Hard-wired to 0b

5:1 0x0 RO Reserved.

6 0b RO Bad TLP Status
Hard-wired to 0b

7 0b RO Bad DLLP Status
Hard-wired to 0b

8 0b RO REPLAY_NUM Rollover Status
Hard-wired to 0b

11:9 000b RO Reserved.

12 0b RO Replay Timer Timeout Status
Hard-wired to 0b

13 0b RW1C Advisory non-Fatal Error Status

31:14 0x0 RO Reserved.

Bits Init. Type Description

4:0 0x0 ROS First Recorded Error
Vector pointing to the first recorded error in the Uncorrectable Error Status register. This is a
read-only field that identifies the bit position of the first uncorrectable error reported in the
Uncorrectable Error Status register.

5 0b RO ECRC Generation Capable
If set, this bit indicates that the function is capable of generating ECRC.
This bit is loaded from NVM. It is reflected in the GLPCI_CAPSUP register

6 0b RO ECRC Generation Enable
When set, ECRC generation is enabled. Hard-wired to 0b. The PF setting applies to the VF.

7 0b RO ECRC Check Capable
If set, this bit indicates that the function is capable of checking ECRC.
This bit is loaded from NVM. It is reflected in the GLPCI_CAPSUP register.

8 0b RO ECRC Check Enable
When set, ECRC checking is enabled. Hard-wired to 0b. The PF setting applies to the VF.

9 0b RO Multiple Header Recording Capable.
Not supported. Hard-wired to 0b.

10 0b RO Multiple Header Recording Enable
Not supported. Hard-wired to 0b.

11 0b RsvdP TLP Prefix Log Present
Not supported. Hard-wired to 0b.

15:12 0x0 RO Reserved.

Intel® Ethernet Controller E810 Datasheet
PCIe Programming Interface

2620 613875-009

NOTE: This page intentionally left blank.

613875-009 2621

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

Chapter 15 Reliability, Diagnostics, and
Testability

15.1 Reliability

15.1.1 ECC Support and ECC Error Flow

Memories in the E810 are protected by ECC (ECC bits are added to the memory on write and compare
on read). There are two types of ECC errors:

• Correctable ECC error — When the memory line has a single bit error, the ECC mechanism
corrects it. This is done within the memory shell/wrapper and the flow continues as normal.

• Uncorrectable ECC error — When the memory line read has more than a single ECC error, it
cannot be recovered by the ECC mechanism. The text that follows describes how the E810 reacts to
such an event.

Uncorrectable errors are handled as follows:

• Device blocks data from going to an external link and blocks any new PCIe master transaction, but
the erroneous transaction might reach host memory.

• Recovery then depends on the memory where the error happens:

— An error takes place in the core or global domains.

• If the GLGEN_RSTCTL.ECC_RST_ENA bit is set to 1b, the E810 generates a GLOBR reset.

— An error takes place in NVM (Shadow RAM).

• An ECC error check in the Shadow RAM is enabled via the Shadow RAM ECC Enable bit in
the NVM.

• The E810 reloads the Shadow RAM from the NVM.

• If the GLGEN_RSTCTL.ECC_RST_ENA bit is set to 1b, the E810 generates a GLOBR reset
(which in turn reloads the relevant sections into hardware).

— An error takes place in the PCIe domain.

• If an error is in data to be sent out, the TLP is sent with an EDB. Else, the link goes to a
link-down state.

• If the GLMNG_WD_ENA.ECC_RST_ENA bit is set to 1b, the EMP generates an EMPR reset.

• Else, if the GLGEN_RSTCTL.ECC_RST_EN bit is set to 1b, the E810 generates a GLOBR
reset.

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

2622 613875-009

15.2 Link Loopback Operations

Loopback operations are supported by the E810 to assist with system and device debug. Loopback
operation can be used to test transmit and receive aspects of software device drivers, as well as to
verify electrical integrity of the connections between the E810 and the system (such as PCIe bus
connections, and so on).

15.3 Device Diagnostics

15.3.1 Firmware Logging Overview

Firmware logging is a set of commands to retrieve logging information gathered by firmware during its
normal operation. The gathering of the information is based on different modules and severity.

The available modules are described below divided by information types. The software controlling the
logs can expose an API that allows the user to gather information per information type. For example by
using a command of the form:

fw_log_severity_config --option=XLR -log_level=3
The software can then instruct the Firmware to change the logging settings using the Set Firmware
Logging Configuration (0xFF30) AQ command.

Table 15-1. Information Types

Information Types Module Name Module #

Initialization
CTRL 0x1

XLR 0xD

NVM

NVM 0xF

Authentication 0x10

VPD 0x11

IO

I2C 0x5

SDP 0x6

MDIO 0x7

Link Management

Link Management 0x2

Link Topology Detection 0x3

Dreadnought Lake 0x4

Rx

Parser 0x13

Switch 0x14

ACL 0x17

Post 0x18

Tx
Scheduler 0x15

Tx Queue Management 0x16

613875-009 2623

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

The following severity levels are defined:

• No Log

• Error

• Warning

• Normal

• Verbose

The default types of information gathered is defined in the NVM in the Firmware Logging Defaults
Section in the PFA. The default values are described in Section 15.3.1.1.

AQ Interface
Admin Queue 0x8

HDMA 0x9

Manageability Manageability 0x1B

Protocols
LLDP 0xA

DCBx 0xB

Infrastructure

Watchdog 0x19

Task Dispatcher 0x1A

Generic 0x0

IOSF 0x12

XLR

XLR 0xD

Parser 0x13

Switch 0x14

Scheduler 0x15

Tx Queue Management 0x16

ACL 0x17

Post 0x18

QoS
DCB 0xC

Tx Queue Management 0x16

Table 15-1. Information Types [continued]

Information Types Module Name Module #

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

2624 613875-009

15.3.1.1 NVM Default Firmware Log Configuration

The NVM enables the default configuration as described in Table 15-2. The software base drivers
provide the ability to override these defaults: ON=1, OFF=0.

Table 15-2 describes NVM default configuration expected values:

Table 15-2. NVM Default Firmware Log Configuration

Module # NVM Word
Numbering Module Name Error Warning Normal Verbose

0x0

N=0

General ON ON OFF OFF

0x1 Control (Resets + Autoload) ON ON ON OFF

0x2 Link Management ON OFF ON OFF

0x3 Link Topology Detection ON OFF OFF OFF

0x4

N=1

Dreadnought Lake ON OFF OFF OFF

0x5 I2C OFF OFF OFF OFF

0x6 SDP OFF OFF OFF OFF

0x7 MDIO OFF OFF OFF OFF

0x8

N=2

Admin Queue ON OFF OFF OFF

0x9 HDMA OFF OFF OFF OFF

0xA LLDP ON OFF OFF OFF

0xB DCBx ON OFF OFF OFF

0xC

N=3

DCB ON OFF OFF OFF

0xD NetProxy ON ON ON OFF

0xE NVM ON OFF OFF OFF

0xF Authentication ON OFF OFF OFF

0x10

N=4

VPD ON OFF OFF OFF

0x11 IOSF ON OFF OFF OFF

0x12 Parser ON OFF OFF OFF

0x13 Switch ON OFF OFF OFF

0x14

N=5

Scheduler ON OFF OFF OFF

0x15 Tx Queue Management ON OFF OFF OFF

0x16 ACL ON OFF OFF OFF

0x17 Post ON OFF OFF OFF

0x18

N=6

Watchdog ON OFF OFF OFF

0x19 Task Dispatcher ON OFF OFF OFF

0x1A Manageability ON OFF OFF OFF

0x1B SynceE ON OFF OFF OFF

0x1C

N=7

Health ON OFF OFF OFF

0x1D Time Sync ON OFF OFF OFF

0x1E PF Registration ON OFF OFF OFF

0x1F Module Version ON OFF OFF OFF

613875-009 2625

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

15.3.1.2 Persistent Crash Log

To provide ability to diagnose firmware crash situations, when firmware is reset as a result of Watchdog
expiration or other unrecoverable error, it provides pre-EMPR log information that was stored. Pre-EMPR
log information is provided to the software driver on the next boot. To support that, firmware copies at
least 256 bytes of latest logs to EMPR persistent memory (a memory that is not cleared during EMPR)
inside watchdog exception handler, just before EMPR is triggered.

15.3.2 Health Status Commands

Table 15-3 list the available Health Status commands.

Table 15-3. Health Status Admin Commands

Command Name Opcode Type Section Reference

Set Health Status Configuration 0xFF20 Direct 15.3.2.1

Get Supported Health Status Codes 0xFF21 Direct 15.3.2.2

Get Health Status Event 0xFF22 Direct 15.3.2.3

Clear Health Status 0xFF23 Direct 15.3.2.4

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

2626 613875-009

15.3.2.1 Set Health Status Configuration (0xFF20)

For user-visible events (like “Link configuration mismatch detected”) offering actionable feedback,
firmware sends events to PFs subscribed to Health Status messages. These messages come in two
varieties:

• PF Health Status

• Global Health Status

PF Health Status events are specific only to one PF and not to the global device configuration. For
example, a specific port issue is only reported to the PF connected to that port, and only if that PF has
enabled PF Health Status. Firmware does a Port-to-PF lookup to pick the appropriate PF. If, for any
reason, the Port-to-PF lookup fails, firmware issues the event as a Global Health Status. Software can
optionally listen to PF Health Status across all PFs by setting the Enable All PF Health.

Global Health Status are events that affect the global device configuration. For example, a specific data
path issue shall be reported to all PFs that have enabled Global Health Status.

The Health Status Configuration for a PF always resets to “Disabled” for both PF Health Status and
Global Health Status during PFR and other High Resets, while existing error statuses remain in firmware
memory and are not cleared.

Following the PF's registration, firmware pushes existing Device Health Data to the registering PF
through an AQ event.

Table 15-4. Set Health Status Configuration Command and Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 and Section 9.5.5.1.2 for details.

Opcode 2-3 0xFF20 Command opcode.

Datalen 4-5 0

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.
Firmware returns EPERM when Tools Q enables PF Health Status.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Enable PF Health Status 16.0 If this bit is set, PF-specific Health Status is enabled for this PF.

Enable All PF Health Status 16.1 If this bit is set, all PF-specific Health Status is enabled for this PF.

Enable Global Health Status 16.2 If this bit is set, Global Health Status is enabled for this PF.

Disable Status History 16.3 0b = Firmware legacy behavior — Events are stored internally and reported
to the driver.

1b = Firmware only reports and does not store events internally in cyclic
buffer.

Default: 0, history enabled.

Reserved 16.4-31 Reserved. Ignored by firmware.

613875-009 2627

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

15.3.2.2 Get Supported Health Status Codes (0xFF21)

Software can request a list of all supported Health Status Codes by issuing this command.

The response buffer for this command contains a Health Status Code Count number of Health Status
Codes.

Table 15-5. Get Supported Health Status Log Events Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 for details.

Opcode 2-3 0xFF21 Command opcode.

Datalen 4-5 0

Return Value 6-7 Return value. Zeroed by driver. Written by firmware.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-23 Reserved. Ignored by firmware.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

Table 15-6. Get Supported Health Status Log Events Response

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.2 for details.

Opcode 2-3 0xFF21 Command opcode.

Datalen 4-5 0

Return Value 6-7 Status of request.
SUCCESS - Firmware has provided the supported Health Status Codes.
ENOMEM - Buffer provided by Software was too small. Software can use the

Health Status Code Count field to calculate the necessary buffer to
call this command again.

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Health Status Code
Count

16-17 Written by firmware to indicate the number of Health Status Codes supported
by firmware.

Reserved 18-23 Reserved. Ignored by firmware.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

Table 15-7. Set Firmware Configuration Command Buffer

Bytes Remarks

0-1 Health Status Code

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

2628 613875-009

15.3.2.3 Get Health Status Event (0xFF22)

This Admin Queue event provides the Health Status information for both PF Health Status and Global
Health Status.

Software subscribed to these events is expected to translate the Health Status Code and additional
parameters (as required) into user-visible information. If software does not know how to interpret a
Health Status Code, it can inform the user or silently discard the message. The structure below
describes both AQ Command and Event structure, which has is same format.

“Internal Data” fields from AQ command are defined per Health Status Code (similar to Device
Capabilities AQ command).

In case of multiple statuses at the same time, smaller index in buffer status array - older status.

Following the AQ command, existing all PFs, current PFs, and Global Errors are reported according to PF
configured/registered policy. For tools AQ, only all PFs Statuses and Global are reported. Each reported
error is cleared in firmware.

The Internal Data Code is optional and can be omitted from any and all user-facing status reports.

The Internal Data Code can be anything. It is intended to be used to aide in differentiating between
identical events generated at differing positions in code. For example, this can be a line number or
internal variable information. It is not intended to be used for parameters. All parameters associated
with a Health Status Code must be provided in the response buffer.

Table 15-8. Get Health Status Event/Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 and Section 9.5.5.1.2 for details.

Opcode 2-3 0xFF22 Command opcode.

Datalen 4-5 Number of bytes delivered in this event, if any.

Return Value 6-7 0

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Health Status Code
Count

16-17 Command: Reserved
Event/Response: Number of Health Status Code provided in Buffer.

Reserved 18-23 Reserved. Ignored by firmware.

Data Address High 24-27 Buffer Address High bits of the buffer address.

Data Address Low 28-31 Buffer Address Low bits of the buffer address.

Table 15-9. Get Health Status Event Response Buffer

Bytes Value Remarks

0-1 Health Status Code Health Status Code that resulted in the generation of this event.

2-3

Event Source Indicator as to the potential source of this event.
1 = For PF Health Status. PF ID shall be set to the PF number of the PF associated with this

event in upcoming parameters.
2 = For Port Health status.
3 = For Global Health Status. Rest: Reserved.

4-7 Internal Data 1 This code represents additional data associated with the source of this event. When this field
is set to 0xDEADBEEF, no Internal Data Code has been provided.8-11 Internal Data 2

613875-009 2629

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

15.3.2.4 Clear Health Status (0xFF23)

This Admin Queue Command Clears firmware internally stored Health Status.

15.3.3 Health Status Codes

Table 15-10. Clear Health Status Event/Command

Name Byte.Bit Value Remarks

Flags 0-1 See Section 9.5.5.1.1 and Section 9.5.5.1.2 for details.

Opcode 2-3 0xFF23 Command opcode.

Datalen 4-5 Number of bytes delivered in this event, if any.

Return Value 6-7 0

Cookie High 8-11 Cookie Opaque value copied by the firmware into the completion of this command.

Cookie Low 12-15 Cookie Opaque value copied by the firmware into the completion of this command.

Reserved 16-31 Reserved.

Table 15-11. Health Status Codes

Info Description

AQ
Command:

Health
Status
Code

AQ Command:
Additional Data 1

AQ Command:
Additional Data 2

Recovery Mode Firmware is in recovery mode. 0x500 FWSM.EXT_ERR_IND -
Failure module
information

Reset Counters Firmware experience resets in loop. 0x1000 GLGEN_RSTAT
information for EMPR/
CORER/GLOBR.
EMPR Reason (WD,
Exception, ECC etc.)

PFR failure Firmware failed to execute PF reset
because of failure in module X.

0x1001 PF_ID

Firmware boot problem Firmware load did not succeed, N/A FWSM - boot stages

PCIe status PCIe IF problem. N/A Open - Need to define
info

Flash access failure Firmware cannot access flash. Possible
broken chip.

0x501 Access Type
0- Read
1- Write
2 - Erase

NVM image broken NVM image broken. Authentication
failed.

0x502 None

OROM image broken Authentication failed. 0x503 None

Package image broken Authentication failed. 0x504 None

NVM image
incompatible

Incompatible device or module ID. 0x505 Expected device ID Expected module ID

OROM incompatible Incompatible device or module ID. 0x506 Expected device ID Expected module ID

NVM Security version
violation

Non-permitted Security version
downgrade attempt.

0x507 Minimal Security
version expected

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

2630 613875-009

OROM Security version
violation

Non-permitted Security version
downgrade attempt.

0x508 Minimal Security
version expected

DCBx Reverted to
default

DCBx MIBs are reverted to default,
following bad MIB received.

0x509 Port # MIB ID

Last failed AQ
command since last
software API call

Tells us which software driver API was
invoked during the last AQ command
failure and tells us which AQ command
failed in the same flow, if any.

0x1002 Failed AQ Opcode PF_ID

MNG timeout TBD 0x50A

Reset command
received from BMC

Reset Was triggered by Manageability. 0x50B Reset Type: TBD

Last failed MNG
command

Manageability command failed. 0x50C MNG type Failed Opcode

Resource allocation
failure

Information about last case firmware
reject PF driver resource request.

0x50D Resource type PF_ID

Module Error Unspecified/Unknown Module, strict
mode.

0x101 Port #

Module type not supported. 0x102 Port #

Module not qualified. 0x103 Port #

Module communication error. 0x104 Port #

Unresolved module conflict. 0x105 Port #

Module not present. 0x106 Port #

Module Info Underutilized module. 0x107 Port #

Unspecified/Unknown Module, lenient
mode.

0x108 Port #

Module diagnostic feature not
implemented.

0x109 Port #

Configuration Error Unsupported loopback. 0x10A Port #

Invalid Link Configuration. 0x10B Port #

Temporary hardware access error. 0x10C Port #

Unreachable port. 0x10D Port #

Configuration Info Port Speed limited due to module. 0x10F Port #

Parallel Fault detected. 0x110 Port #

Underutilized port. 0x111 Port #

Fatal Error LOM Topology Netlist corrupted. 0x112

Unrecoverable netlist error. 0x113 Port #

Topology conflict. 0x114 Port #

Hardware access error. 0x115 Port #

Unrecoverable runtime error. 0x116 Port #

DNL initialization failure. 0x117

Netlist Image Broken Authentication failed. 0x510 None

Table 15-11. Health Status Codes [continued]

Info Description

AQ
Command:

Health
Status
Code

AQ Command:
Additional Data 1

AQ Command:
Additional Data 2

613875-009 2631

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

15.4 Firmware Recovery Mode

15.4.1 Overview

Recovery mode is intended to recover from a fatal failure scenario in which the device is not accessible
to the host, meaning firmware is non-responsive.

A PDoS scenario might occur by a misconfiguration done by a malicious software that corrupts
device-specific information that is vital for firmware operation and/or its enumeration over the PCIe.

The purpose of the Firmware Recovery mode is to enable the software tools to update or rollback the
firmware and/or device configuration so that the fatal error is resolved.

15.4.1.1 Supported Failure Scenarios by Firmware

Possible supported failure scenarios that are covered by firmware:

• Firmware boot failure (for example, fails to authenticate NVM bank).

• Firmware initialization failure on POR/EMPR.

• CORER/GLOBR firmware flow failure.

• Repeated Watchdog reset.

• Repeated Memory exception.

• Incompatible Netlist configuration

15.4.1.2 Dependencies for Recovery Firmware

Firmware does not run Recovery mode in cases where the error is in one of following firmware
components:

• ROM firmware.

• Mini-loader firmware (boot loader).

• Recovery firmware section corrupted or erroneous.

In case any of the above scenarios occur, the device enters Blank Flash Mode (BFP) in which security is
off and the entire NVM can be directly accessed by software via CSRs.

Netlist Image
Incompatible

Unsigned netlist update when netlist
signing is opted in,

0x511 None

Netlist Security Version
Violation

Non-permitted Security version
downgrade attempt.

0x512 Minimal Security
version expected.

Table 15-11. Health Status Codes [continued]

Info Description

AQ
Command:

Health
Status
Code

AQ Command:
Additional Data 1

AQ Command:
Additional Data 2

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

2632 613875-009

15.4.2 Recovery Flows

When firmware detects a failure scenario, it first attempts to automatically rollback to the non-active
NVM bank (see Section 15.4.2.1).

If rollback fails or the non-active bank is not valid, firmware attempts recovery (see Section 15.4.2.2).
Both flows are run automatically by firmware. Software has no ability to trigger these flows.

Exit from a recovery flow to normal operation mode can be done following successful NVM update flow
triggered by the software tool or POR. In normal operation mode, device runs the firmware from the
valid NVM bank.

In case of exception or Watchdog timeout, each recovery flow is attempted up to a pre-defined amount
of times (3) before firmware decides to try the next recovery flow. Before every attempt, firmware
restarts the EMP firmware by issuing a graceful EMPR. Firmware restarts the counting in case firmware
is running successfully for a pre-defined (hard-coded) time (five hours).

15.4.2.1 Automatic Rollback

Firmware automatically tries to rollback to “old” operational firmware located in the invalid NVM bank in
cases where operational firmware from the valid NVM bank repeatedly enters a PDoS scenario. The
invalid NVM bank must pass authentication and other security checks, such as SREV downgrade
protection.

After rollback is successful, the banks are swapped, and the “rollback” bank becomes the active bank
for the next reset.

15.4.2.2 Recovery Firmware

Recovery firmware is a standalone bank that contains basic functionality to allow software tools to
update firmware/NVM and/or device configuration.

The recovery firmware section is separately signed and is upgradeable as part of full NVM bank.

Recovery firmware is invoked automatically by mini-loader firmware in cases where Rollback firmware
repeatedly enters a failure scenario.

Recovery firmware is run from the latest active bank disregarding rollback attempt.

15.4.2.2.1 Recovery Firmware Supported Features

15.4.2.2.1.1 Recovery Mode Admin Commands

Recovery firmware supports a reduced set of admin commands, as listed below. Other commands are
rejected with BAD_OPCODE error. Admin commands are only supported from PF0 and the “CSR-Based
Firmware Admin Queue for Tools” (see Section 9.5.12).

• Section 9.5.13.1, “Get Version (0x0001)”

• Section 9.5.13.4, “Set PF Context (0x0004)”

• Section 9.5.13.5, “Request Resource Ownership (0x0008)”

• Section 9.5.13.6, “Release Resource Ownership (0x0009)”

• Section 3.4.10.1, “NVM Read (0x0701)”

613875-009 2633

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

• Section 3.4.10.2, “NVM Erase (0x0702)”

• Section 3.4.10.3, “NVM Write (0x0703)”

• Section 3.4.10.8, “NVM Write Activate (0x0707)”

15.4.2.2.1.2 Recovery Mode Admin Command Usage Guidelines

Usage guidelines are as follows:

• The NVM Update and NVM Erase commands support only NVM bank and extended TLV bank.

• The NVM Activate command does not support selected preservation (01) of the PFA.

• The NVM Read command supports NVM bank, Extended TLV bank, and read of the entire flash in
flat mode (0x0).

• The NVM update tools can read the EETRACK ID using the NVM Read AQC (0x701). The EETRACK
ID is not available in Shadow RAM during recovery.

• Resource request and release commands support only NVM resource (0x1).

• Set PF context supports only PF0.

15.4.2.2.2 Reset Flows

15.4.2.2.2.1 CORER/GLOBR

Recovery firmware performs CORER/GLOBR with no auto-load or initializations.

Firmware acknowledges to software that reset is done and AL is done, as it does in operational
firmware.

15.4.2.2.2.2 PFR

Recovery firmware does not perform any device initialization related to data path, and only
acknowledges to software that the reset is done, as it does in operational firmware.

15.4.2.2.2.3 PCIR/PERST

Recovery firmware performs minimal configuration to enable AQ communications.

Recovery firmware auto-loads PCIe registers from the PFA inside the “Factory Settings” section instead
of active PFA in the SR bank and from the signed EML section.

Firmware acknowledges to software that the reset is done and AL is done, as it does in operational
firmware. PCIR registers AL is checked against a allowlist that is loaded from the signed EML section.

15.4.2.2.2.4 POR/EMPR

Recovery firmware auto-loads POR registers from PFA inside “Factory Settings” section of active PFA in
the SR bank and from the signed EML section.

POR registers AL is checked against a allowlist that is loaded from the signed EML section.

Intel® Ethernet Controller E810 Datasheet
Reliability, Diagnostics, and Testability

2634 613875-009

15.4.2.2.3 Unsupported Features

Recovery firmware does not support:

• Link

• Traffic

• Manageability (BMC)

Recovery firmware only supports firmware update flows from host.

15.4.3 Operation Mode Software Identification

Firmware indicates operation mode via the FW_MODES field (Bits 2:0) in the GL_MNG_FWSM CSR (see
Section 13.2.2.29.7). Bits are exclusive.

• Bit 0 = Debug mode indication (0:non-debug mode, 1:debug mode)

• Bit 1 = Recovery mode indication (0:normal mode, 1:recovery mode)

• Bit 2 = Rollback indication (0:normal mode, 1:rollback mode)

• Rollback and recovery indications are valid until next firmware update or next POR. Following
firmware update or POR, they are cleared.

613875-009 2635

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

Chapter 16 Electrical/Mechanical
Specification

16.1 Introduction

This section describes electrical and mechanical characteristics of the E810, including: Operating
Conditions, Power Delivery, Power Dissipation, DC/AC Specifications, Package, and Supported Devices.

16.2 Operating Conditions

16.2.1 Absolute Maximum Ratings

16.2.2 Recommended Operating Conditions

Table 16-1. Absolute Maximum Ratings

Symbol Parameter Min Max Units

Tj Junction Temperature Under Bias -0 115 °C

Tstorage Storage Temperature Range -40 115 °C

Vi 3.3V I/O Input Voltage VSS-0.3 VDDIO33+0.3 V

VDDIO33 3.3V Digital I/O Supply Voltage VSS-0.3 3.645 V

Notes:
• Stresses above those listed in the table can cause permanent device damage. These values should not be used as limits for

normal device operation. Exposure to absolute maximum rating conditions for an extended period of time can affect device
reliability.

• Maximum Tj of 125 °C is allowed up to 4% of the time without affecting device reliability.

Table 16-2. Recommended Operating Conditions

Symbol Parameter Min Typical Max Units

Tj Junction Temperature 0 105 °C

Notes:
• For normal device operation, adhere to the limits in this table. Sustained operation of a device at conditions exceeding these

values, even if they are within the absolute maximum rating limits, can result in permanent device damage or impaired device
reliability.

• Device functionality is not guaranteed if conditions exceed recommended operating conditions.
• External Heat Sink (EHS) is needed for most applications.
• Refer to Chapter 18, “Thermal Design Considerations” for a description of the allowable thermal environment.
• Thermal design power (TDP) is specified at 105 °C junction temperature.

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2636 613875-009

16.3 Power Delivery

16.3.1 Power Supply Specification

Table 16-3. 3.3 V Power Supply Specification

VDDIO33 (3.3V) Parameters

Title Description Min Max Units

Rise Time Time from 10% to 90% mark. 0.1 10 ms

Monotonicity Voltage dip allowed in ramp. N/A 0 mV

Slope
Ramp rate at any given time between 10% and 90%.

Min: 0.8*V (min)/rise time (max)
Max: 0.8*V (max)/rise time (min)

24 28,800 V/s

Operational Range Voltage range for normal operating conditions (+5%, -10%). 2.97 3.465 V

Ripple Maximum voltage ripple (peak-to-peak). N/A VDDIO33
±200 mV

Overshoot Maximum overshoot allowed. N/A 100 mV

Overshoot Settling Time
Maximum overshoot allowed duration.
(At that time delta voltage should be lower than 5 mV from
steady state voltage.)

N/A 0.05 ms

Note: If ViH tolerance to 3.6 V is required, maintain VDDIO33 between 3.3 V to 3.465 V (3.38 ±2.5%).

Table 16-4. 1.8 V VDDH Power Supply Specification

VDDH Parameters

Title Description Min Max Units

Rise Time Time from 10% to 90% mark. 0.1 10 ms

Monotonicity Voltage dip allowed in ramp. N/A 0 mV

Slope
Ramp rate at any given time between 10% and 90%.

Min: 0.8*V (min)/rise time (max)
Max: 0.8*V (max)/rise time (min)

0.33 7120 V/s

Operational Range Voltage range for normal operating conditions (±10%). 1.62 1.98 V

Ripple Maximum voltage ripple (peak-to-peak). N/A 20 mV

Overshoot Maximum overshoot allowed. N/A 50 mV

Overshoot Duration
Maximum overshoot allowed duration.
(At that time delta voltage should be lower than 5 mV from
steady state voltage.)

0 0.05 ms

613875-009 2637

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

Table 16-5. 1.1 V AVDDH Power Supply Specification

AVDDH Parameters

Title Description Min Max Units

Rise Time Time from 10% to 90% mark. 0.1 10 ms

Monotonicity Voltage dip allowed in ramp. N/A 0 mV

Slope
Ramp rate at any given time between 10% and 90%.

Min: 0.8*V (min)/rise time (max)
Max: 0.8*V (max)/rise time (min)

0.33 7120 V/S

Operational Range Voltage range for normal operating conditions (±5%)/ 1.045 1.155 V

Ripple
Maximum voltage ripple (peak-to-peak).

600 KHz to 20 MHz
N/A 10 mV

Overshoot Maximum overshoot allowed. N/A 50 mV

Overshoot Duration
Maximum overshoot allowed duration.
(At that time delta voltage should be lower than 5 mV from
steady state voltage.)

0 0.05 ms

Table 16-6. 0.9 V AVDD_ETH and AVDD_PCIE Power Supply Specification

AVDD (AVDD_PCIE/AVDD_ETH) Parameters

Title Description Min Max Units

Rise Time Time from 10% to 90% mark. 0.1 10 ms

Monotonicity Voltage dip allowed in ramp. N/A 0 mV

Slope
Ramp rate at any given time between 10% and 90%.

Min: 0.8*V (min)/rise time (max)
Max: 0.8*V (max)/rise time (min)

0.33 7120 V/S

Operational Range Voltage range for normal operating conditions (±5%). 0.855 0.945 V

Ripple
Maximum voltage ripple (peak to peak).

600 KHz to 20 MHz
N/A 2.0 mV

Overshoot Maximum overshoot allowed. N/A 50 mV

Overshoot Duration
Maximum overshoot allowed duration.
(At that time delta voltage should be lower than 5 mV from
steady state voltage.)

0 0.05 ms

Note: In the E810-CAM2/CAM1, AVDD is split for the PCIe and Ethernet interfaces. In the E810-XXVAM2, a single AVDD supplies
both interfaces.

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2638 613875-009

16.3.1.1 Power On/Off Sequence

The following relationships between the application of the different power supplies should be
maintained to avoid risk of either latch-up or forward-biased internal diodes:

• The E810 provides an internal Power-On Reset (POR). An alternate external POR
(LAN_POWER_GOOD) can be used to extend the reset if necessary.

• The E810 initialization budgets 35 ms from system power-on to LAN_POWER_GOOD (or internal
POR) completion. Remaining 65 ms (for the PCIe spec 100 ms system power to PERST# inactive) is
allocated to internal initialization.

• The internal POR function monitors VDDH and VDD only. Internal POR signal is held active for
7-10 ms after these supplies reach ~50%.

• Application of power should begin with the 3.3 V (VDDIO33) and 1.8 V (VDDH) supplies at the
same time. After 3.3 V reaches 80% of its final value, the digital core 0.8 V supply (VDD) should
be enabled and reach its final value within 10 ms.

• 156.25 MHz REFCLK oscillator should be powered with same VDDIO33 used for the E810, but the
oscillator’s output enable should be held inactive until VDDH is on. Suggest asserting REFCLK OE at
the same time as VDD regulator is enabled. This sequence avoids driving a signal into the
un-powered clock buffer while enabling REFCLK prior to any analog supply. Allow 10 ms oscillator
startup time from 3.3 V to analog supplies enable.

• AVDD_ETH, AVDD_PLL, and REFCLK should be active within 7 ms of VDD regulator enabling to
insure that internal clock is active prior to internal POR complete. If this cannot be met, the
LAN_POWER_GOOD signal should be used to extend reset. The 35 ms budget must still be met for
PCIe timing.

• Use slow rise time on AVDD_ETH to minimize power-on current spike (~3 ms). This allows internal
clock and reset to propagate before AVDD has reached its final value.

• AVDD_PCIE and AVDDH can be enabled with AVDD_ETH, or after a slight delay. A small delay
(1-3 ms) will mitigate turn on current spikes from these supplies.

• AVDD_PLL should always be sequenced with AVDD_ETH.

Table 16-7. 0.8 V VDD Power Supply Specification

VDD Parameters

Title Description Min Max Units

Rise Time Time from 10% to 90% mark. 0.1 10 ms

Monotonicity Voltage dip allowed in ramp. N/A 0 mV

Slope
Ramp rate at any given time between 10% and 90%.

Min: 0.8*V (min)/rise time (max)
Max: 0.8*V (max)/rise time (min)

0.33 7120 V/S

Operational Range Voltage range for normal operating conditions (0.8 V ±5%). 0.76 0.84 V

Ripple Maximum voltage ripple (peak to peak). N/A 20 mV

Overshoot Maximum overshoot allowed. N/A 50 mV

Overshoot Duration
Maximum overshoot allowed duration.
(At that time delta voltage should be lower than 5 mV from
steady state voltage.)

0 0.05 ms

613875-009 2639

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

Figure 16-1 illustrates a power supply turn-on order with timing that meets the system power-on to
PERST# inactive timing in the PCIe CEM specification. Of the 100 ms budget, 65 ms is reserved for
internal initialization activity. Power supply delays and rise times are approximate. The key requirement
is for power-on reset (whether from the internal POR or LAN_POWER_GOOD) to be complete in 35 ms
from system power stable.

For power down, it is recommended to turn off all rails at the same time and allow voltage to decay.

16.3.2 In-Rush Current

Max Load Step (A):

• AVDD = 0.9

• VDD = 5.0

Max Slew Rate (A/μs):

• AVDD = 0.2

• VDD = 2.0

Figure 16-1. Power Supply Sequence

VDDH,
VDDIO33

AVDD_ETH

REFCLK output enable
VDD 0.8V

3ms

3ms

3ms

System power stable to
LAN_POWER_GOOD asserted <35msec

Internal POR

>1ms

4ms

7-10ms

System power
(i.e., +12V, 12VSTBY)

156.25MHz REFCLK

3ms

System main power stable to
PERST# inactive >100msPERST#

Power on reset inactive to
PERST# inactive <65ms

LAN_POWER_GOOD

(REFCLK output disabled)

AVDDH, AVDD_PCIE
opitional delay to avoid high current

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2640 613875-009

16.4 Power Dissipation

The following tables list the targets for device power consumption. The numbers listed apply to device
current and power, and do not include power losses on external components.

Power consumption is listed separately for the E810-CAM2/CAM1 versus the E810-XXVAM2.

Power numbers are provides in two modes:

• MAX-Power (TDP): Power consumption of the device specified at maximum recommended
operating junction temperature on fast silicon process corner, and nominal power supply voltage.
This power should be used for thermal and power supply design.

• Typical-Power: Power consumption of the device at nominal operation conditions: typical silicon,
nominal power supply voltage, and Tj = 80 °C.

16.4.1 Max Power (TDP) - E810-CAM2/CAM1

Table 16-8. E810-CAM2/CAM1 MAX Power - PCIe Gen 4 and PCIe Gen 3

Link Speed

2x100G
PCIe Gen4x16

1x100G/
2x50G/

4x25G/8x10G
PCIe Gen4x16

2x25G
PCIe Gen4x8

2x100G
PCIe Gen3x16

1x100G/
2x50G/

4x25G/8x10G
PCIe Gen3x16

2x25G
PCIe Gen3x8

VDDIO33 (A) 0.02 0.02 0.02 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02 0.02 0.02 0.02

AVDDH (A) 0.80 0.50 0.20 0.80 0.50 0.20

AVDD_ETH (A) 3.00 1.80 0.90 3.00 1.80 0.90

AVDD_PCIE (A) 3.904 3.90 2.00 2.60 2.60 1.40

VDD (A) 10.60 10.00 8.80 10.30 9.70 8.50

Power (W) 15.67 13.78 9.97 14.26 12.37 9.19

Notes:
• VCCIO33 current includes on-chip power dissipation only for TDP calculation. System power supply should account for external

3.3 V powered devices, such as LEDs, flash, oscillator, and pluggable modules.
• AVDD_ETH current includes 0.02A for the AVDD_PLL supply.

613875-009 2641

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

16.4.2 Typical Power - E810-CAM2/CAM1

Table 16-9. E810-CAM2/CAM1 Typical Active Power - PCIe Gen 4 and PCIe Gen 3

Link Speed

2x100G
PCIe Gen4x16

1x100G/
2x50G/

4x25G/8x10G
PCIe Gen4x16

2x25G
PCIe Gen4x8

2x100G
PCIe Gen3x16

1x100G/
2x50G/

4x25G/8x10G
PCIe Gen3x16

2x25G
PCIe Gen3x8

VDDIO33 (A) 0.02 0.02 0.02 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02 0.02 0.02 0.02

AVDDH (A) 0.70 0.50 0.20 0.70 0.50 0.20

AVDD_ETH (A) 2.80 1.60 0.70 2.70 1.50 0.80

AVDD_PCIE (A) 3.70 3.70 1.80 2.30 2.20 1.20

VDD (A) 7.60 7.00 6.10 7.00 6.40 5.60

Power (W) 12.80 11.00 7.45 11.00 9.10 6.60

Note: Typical conditions: typical material, TJ = 80 °C, nominal voltages. and continuous network traffic at link speed.

Table 16-10. E810-CAM2/CAM1 Typical Idle Power - PCIe Gen 4 and PCIe Gen 3

Link Speed

2x100G
PCIe Gen4x16

1x100G/
2x50G/4x25G
PCIe Gen4x16

2x25G
PCIe Gen4x8

2x100G
PCIe Gen3x16

1x100G/
2x50G/4x25G
PCIe Gen3x16

2x25G
PCIe Gen3x8

VDDIO33 (A) 0.02 0.02 0.02 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02 0.02 0.02 0.02

AVDDH (A) 0.70 0.50 0.20 0.70 0.50 0.20

AVDD_ETH (A) 2.80 1.60 0.70 2.70 1.50 0.80

AVDD_PCIE (A) 3.70 3.70 1.80 2.30 2.20 1.20

VDD (A) 6.40 6.00 5.30 6.10 5.60 5.00

Power (W) 11.84 10.22 6.81 10.25 8.46 6.12

Note: Typical conditions: typical material, TJ = 80 °C, nominal voltages. and no traffic.

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2642 613875-009

Table 16-11. E810-CAM2/CAM1 Typical D3 with Wake-Up Enabled - Tj = 80 °C

Link Speed

2x100G 1x100G/2x50G/4x25G 2x25G

VDDIO33 (A) 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02

AVDDH (A) 0.70 0.50 0.20

AVDD_ETH (A) 2.80 1.60 0.70

AVDD_PCIE (A) 0.10 0.10 0.10

VDD (A) 6.40 6.00 5.30

Power (W) 8.60 7.00 5.28

Table 16-12. E810-CAM2/CAM1 Typical D3 with Wake-Up Enabled - Tj = 25 °C

Link Speed

2x100G 1x100G/2x50G/4x25G 2x25G

VDDIO33 (A) 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02

AVDDH (A) 0.70 0.50 0.20

AVDD_ETH (A) 3.00 1.70 0.80

AVDD_PCIE (A) 0.10 0.10 0.10

VDD (A) 6.00 5.40 4.90

Power (W) 8.46 6.60 5.00

Table 16-13. E810-CAM2/CAM1 Typical D3 with Wake-Up Disabled - Tj = 25 °C

Link Speed

2x100G 1x100G/2x50G/4x25G 2x25G

VDDIO33 (A) 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02

AVDDH (A) 0.70 0.50 0.20

AVDD_ETH (A) 0.40 0.40 0.40

AVDD_PCIE (A) 0.10 0.10 0.10

VDD (A) 6.00 5.40 4.90

Power (W) 6.10 5.40 4.70

613875-009 2643

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

16.4.3 Max Power (TDP) - E810-XXVAM2

16.4.4 Typical Power - E810-XXVAM2

Table 16-14. E810-XXVAM2 MAX Power - PCIe Gen 4 and PCIe Gen 3

Link Speed

2x25G
PCIe Gen4x8

1x25G
PCIe Gen4x8

1x10G
PCIe Gen4x8

2x25G
PCIe Gen3x8

1x25G
PCIe Gen3x8

1x10G
PCIe Gen3x8

VDDIO33 (A) 0.02 0.02 0.02 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02 0.02 0.02 0.02

AVDD (A) 2.7 2.5 2.4 2.1 1.9 1.8

VDD (A) 10.0 9.6 9.3 9.7 9.3 9.0

Power (W) 10.53 10.03 9.7 9.75 9.25 8.92

Table 16-15. E810-XXVAM2 Typical Active Power - PCIe Gen 4 and PCIe Gen 3

Link Speed

2x25G
PCIe Gen4x8

1x25G
PCIe Gen4x8

1x10G
PCIe Gen4x8

2x25G
PCIe Gen3x8

1x25G
PCIe Gen3x8

1x10G
PCIe Gen3x8

VDDIO33 (A) 0.02 0.02 0.02 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02 0.02 0.02 0.02

AVDD (A) 2.4 2.1 2.0 1.9 1.6 1.6

VDD (A) 6.1 5.6 5.3 5.8 5.5 5.1

Power (W) 7.1 6.5 6.1 6.5 5.9 5.6

Note: Typical conditions: typical material, TJ = 80 °C, nominal voltages. and continuous network traffic at link speed.

Table 16-16. E810-XXVAM2 Typical Idle Power - PCIe Gen 4 and PCIe Gen 3

Link Speed

2x25G
PCIe Gen4x8

1x25G
PCIe Gen4x8

1x10G
PCIe Gen4x8

2x25G
PCIe Gen3x8

1x25G
PCIe Gen3x8

1x10G
PCIe Gen3x8

VDDIO33 (A) 0.02 0.02 0.02 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02 0.02 0.02 0.02

AVDD (A) 2.4 2.1 2.0 1.9 1.6 1.6

VDD (A) 5.3 4.8 4.5 5.0 4.7 4.3

Power (W) 6.5 5.8 5.5 5.8 5.3 5.0

Note: Typical conditions: typical material, TJ = 80 °C, nominal voltages. and no traffic.

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2644 613875-009

Table 16-17. E810-XXVAM2 Typical D3 with Wake-Up Enabled - Tj = 25 °C

Link Speed

2x25G 2x10G 2x1G

VDDIO33 (A) 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02

AVDD (A) 0.7 0.4 0.2

VDD (A) 4.5 4.3 4.2

Power (W) 4.3 4.9 3.6

Table 16-18. E810-XXVAM2 Typical D3 with Wake-Up Disabled - Tj = 25 °C

Link Speed

2x25G 2x10G 2x1G

VDDIO33 (A) 0.02 0.02 0.02

VDDH (A) 0.02 0.02 0.02

AVDD (A) 0.05 0.05 0.05

VDD (A) 4.2 4.2 4.2

Power (W) 3.5 3.5 3.5

613875-009 2645

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

16.5 DC/AC Specification

16.5.1 Digital I/O DC Specifications

16.5.1.1 Open Drain I/O DC Specification

This section applies to SMBD, SMBCLK, SMBALRT _N, PE_WAKE_N.

Table 16-19. Digital Functional 3.3V I/O DC Electrical Characteristics

Symbol Parameter Conditions Min Max Units

VOH Output High Voltage 2.4 V

VOL Output Low Voltage 0.4 V

IOH Output High Current 12 mA

IOL Output Low Current 12 mA

VIH Input High Voltage 2.0 VDDIO33+300 mV V

VIL Input Low Voltage -0.3 0.8 V

Iil Input Current1

1. Input Leakage Current

VI=3.3 V / 0V 10 μA

PU Internal pull-up 10 20 KΩ

Table 16-20. Open Drain I/O DC Characteristics

Symbol Parameter Condition Min Max Units

Vih Input High Voltage 2.0 VDDIO33 +0.3 V

Vil Input Low Voltage -0.2 0.8 V

Ileakage Output Leakage Current1

1. Device meets this specification whether powered or un-powered.

0 ≤ Vin ≤ VDDIO33 max 100 μA

Vol Output Low Voltage @ Ipullup = 4 mA 0.4 V

Cin Input Pin Capacitance pF

Ioffsmb Input leakage Current1 VDDIO33 off or floating 100 μA

IOL Output Current Low 6 mA

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2646 613875-009

16.5.1.2 NC-SI I/O DC Specification

16.5.2 Digital I/F AC Specifications

16.5.2.1 Digital I/O AC Specifications

Table 16-21. NC-SI I/O DC Characteristics

Symbol Parameter Conditions Min Typical Max Units

Vref1

1. Vref = Bus high reference level. This parameter replaces the term “supply voltage” since actual devices might have internal
mechanisms that determine the operating reference for the sideband interface that are different from the devices overall power
supply inputs. Vref is a reference point that is used for measuring parameters such as overshoot and undershoot and for
determining limits on signal levels that are generated by a device. In order to facilitate system implementations, a device must
provide a mechanism (e.g. a power supply pin, internal programmable reference, or reference level pin) to allow Vref to be set to
within 20 mV of any point in the specified Vref range. This is to enable a system integrator to establish an interoperable Vref level
for devices on the sideband interface. Although the NC-SI spec define the Vrefmax up to 3.6 V, the E810 supports the Vrefmax up
to 3.46 V (3.3 V +5%).

Bus High Reference 3.0 3.3 3.6 V

Vabs Signal Voltage Range -0.3 3.765 V

Vil Input Low Voltage 0.8 V

Vih Input High Voltage 2.0 V

Vol Output Low Voltage Iol = 4 mA, Vref = Vrefmin 0 0.4 V

Voh Output High Voltage Iol = -4 mA, Vref = Vrefmin 2.4 Vref V

Iih Input High Current Vin = 3.6 V, Vref = 3.6 V 0 200 μA

Iil Input Low Current
Vin = 0 V
Vref = Vrefmin to Vrefmax

-20 0 μA

Ioh Input High Current 12 mA

Iol Input Low Current 12 mA

Vckm Clock Midpoint Reference Level 1.4 V

Pin
Capacitance Cin 1.5 1.7 pF

Iz Leakage Current for Output
Signals in High-Impedance State

0 ≤ Vin ≤ Vihmax
Vref = Vrefmax

-20 20 μA

Table 16-22. Digital 3.3 V I/O AC Electrical Characteristics

Parameters Description Min Max Condition

Fmax Maximum Operating Frequency 100 MHz,
300 MHz

100 MHz at 25 pF load.
300 MHz at 8 pF load.

Tor Output Rise Time 0.5 ns 6 ns

Tof Output Fall Time 0.5 ns 6 ns

Note: Does not apply to open drain outputs.

613875-009 2647

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

16.5.2.2 SMBus and I2C AC Specifications

The E810 meets the SMBus AC specification as defined in the System Management Bus (SMBus)
Specification, Version 2, Section 3.1.1 (http://www.smbus.org/specs/index.html) and the I2C
specification.

The E810 also supports a 400 KHz SMBus and I2C (as a secondary), and meets the specifications listed
in Table 16-23:

Table 16-23. Support for 400 KHz SMBus

Symbol Parameter Min Typical Max Units

FSMB SMBus Frequency 10 400 KHz

TBUF Time Between Stop and Start 1.44 μs

THD,STA
Hold Time After Start Condition. After This Period, the First
Clock is Generated. 0.48 μs

TSU,STA Start Condition Setup Time 1.6 μs

TSU,STO Stop Condition Setup Time 1.76 μs

THD,DAT Data in Hold Time 0.32 μs

TSU,DAT Data in Setup Time 0.1 μs

TLOW SMBClk Low Time 0.8 μs

THIGH SMBClk High Time 1.44 μs

Figure 16-2. SMBus I/F Timing Diagram

http://www.smbus.org/specs/index.html

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2648 613875-009

16.5.2.3 FLASH AC Specification

The E810 is designed to support a serial Flash. Applicable over recommended operating range with
Cload = 16 pF (unless otherwise noted). For Flash I/F timing specifications, see Table 16-24 and
Figure 16-3.

Note: Table 16-24 applies to FLSH_SI, FLSH_SO, FLSH_SCK and FLSH_CE_N.

Table 16-24. Flash I/F Timing Parameters

Symbol Parameter Min Typical Max Units

tSCK FLSH_SCK Clock Frequency1

1. Nominal 40%:60% high:low duty cycle.

0 50 MHz

tRI FLSH_SO Rise Time 3 ns

tFI FLSH_SO Fall Time 3 ns

tWH FLSH_SCK High Time2

2. Measured at VDDIO33/2.

8 ns

tWL FLSH_SCK Low Time2 12 ns

tCS FLSH_CE_N High Time 10 ns

tCSS FLSH_CE_N Setup Time 5 ns

tCSH FLSH_CE_N Hold Time 5 ns

tSU Data-in Setup Time 2 ns

tH Data-in Hold Time 3 ns

tV Output Valid 7 ns

tHO Output Hold Time 2 ns

tDIS Output Disable Time 7 ns

Figure 16-3. Flash I/F Timing Diagram

FLSH_CE_N

VIH

VIL

VIH

VIL

V IH

VIL

tcss

tW H tW L

tCSH

tCS

FLSH _SCK

VALID IN

tSU tH

FLSH _SI

VO H

VO L

HI-Z H I-Z

tHO tDIS

FLSH _SO

tv

613875-009 2649

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

16.5.2.4 NC-SI AC Specifications

The E810 supports the NC-SI standard as defined in the DMTF Network Controller Sideband Interface
(NC_SI) Specification. The NC-SI timing specifications can be found in Table 16-25 and Figure 16-4.

Table 16-25. NC-SI Interface AC Specifications

Symbol Parameter Min. Typical Max Units

REF_CLK Frequency 50 50+100
ppm MHz

REF_CLK Duty Cycle1

1. REF_CLK duty cycle measurements are made from Vckm to Vckm. Clock skew Tskew is measured from Vckm to Vckm of two NC-SI
devices and represents maximum clock skew between any two devices in the system.

35 65 %

Tco
Clock-to-Out2,3
(10 pF ≤ Cload ≤ 50 pF)

2. This timing relates to the output pins timing while Tsu and Thd relate to timing at the input pins.
3. All timing measurements are made between Vckm and Vm. All output timing parameters are measured with a capacitive load

between 10 pF and 50 pF.

2.5 12.5 ns

Tskew Skew Between Clocks 1.5 ns

Tsu
TXD[1:0], TX_EN, RXD[1:0], CRS_DV, RX_ER Data Setup to
REF_CLK Rising Edge3 3 ns

Thd
TXD[1:0], TX_EN, RXD[1:0], CRS_DV, RX_ER Data Hold From
REF_CLK Rising Edge3 1 ns

Tr/Tf Signal Rise/Fall Time4

4. Rise and fall time are measured between points that cross 10% and 90% of Vref (see Table 16-21). The middle points (50% of
Vref) are marked as Vckm and Vm for clock and data, respectively.

1 6 ns

Tckr/Tckf REF_CLK Rise/Fall Time5

5. A serial 33 Ω resistor might be required in case of very short trace on the board.

0.5 3.5 ns

Tpwrz Interface Power-Up High Impedance Interval 2 μs

Tpwrt Power Up Transient Interval (recommendation) 100 ns

Vpwrt Power Up Transient Level (recommendation) -200 200 mV

Tpwre Interface Power-Up Output Enable Interval 10 ms

Tclkstrt EXT_CLK Startup Interval 100 ms

Figure 16-4. NC-SI AC Timing Diagram

Tsu
90%

10%

90%

10%

Vckm

Thd

SIGNALS

REF_CLK

gray = signals changing

GND

GND
Tco

Tck

Vm

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2650 613875-009

16.5.2.5 JTAG AC Specification

The E810 is designed to support the IEEE 1149.1 standard. The following timing specifications are
applicable over recommended operating range. For JTAG I/F timing specifications, see Table 16-26 and
Figure 16-5.

Table 16-26. JTAG I/F Timing Parameters

Symbol Parameter Min Typical Max Units

tJCLK JTCK Clock Frequency 10 MHz

tJH JTMS and JTDI Hold Time 10 ns

tJSU JTMS and JTDI Setup Time 10 ns

tJPR JTDO Propagation Delay 15 ns

Notes:
• Table 16-26 applies to JTCK, JTMS, JTDI and JTDO.
• Timing measured relative to JTCK reference voltage of VDDIO33/2.

Figure 16-5. JTAG AC Timing Diagram

Tjsu

JTM S
JTDI

JTDO

Tjh

Tjclk

JTCK

Tjpr

613875-009 2651

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

16.5.2.6 MDIO AC Specification

The E810 is designed to support the MDIO specifications defined in IEEE 802.3 clauses 22 and 45. The
following timing specifications are applicable over recommended operating range with Cload = 16 pF
(unless otherwise noted). For MDIO I/F timing specifications, see Table 16-27, Figure 16-6, and
Figure 16-7.

Table 16-27. MDIO I/F Timing Parameters

Symbol Parameter Min Typical Max Units

tMCLK MDC Clock Frequency 2.4 24 MHz

tMH MDIO Hold Time 10 ns

tMSU MDIO Setup Time 10 ns

tMPR MDIO Propagation Delay 10 30 ns

Notes:
• Table 16-27 applies to MDIO0, MDC0, MDIO1 and MDC1.
• Timing measured relative to MDC reference voltage of 2.0 V (Vih).

Figure 16-6. MDIO Input AC Timing Diagram

Figure 16-7. MDIO Output AC Timing Diagram

Tmsu Tmh

Tmclk

Tmpr

MDIO

Tmclk

MDC

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2652 613875-009

16.5.2.7 Reset Signals

For power-on indication, the E810 can either use an internal power-on circuit that monitors the VDD
and VDDH power supplies, or an external reset using the LAN_PWR_GOOD pin. The POR_BYPASS pin
defines the reset source. When asserting the POR_BYPASS pin, the E810 uses the LAN_PWR_GOOD pin
as power-on indication. Otherwise, the E810 uses a logical OR of the internal power on detection circuit
and the LAN_PWR_GOOD pin to generate the internal power-on reset signal.

Note: The timing between the power up sequence and the different reset signals is described in
Section 16.3.1.1.

16.5.3 PCIe Interface AC/DC Specification

The E810 PCIe interface supports the PCIe Gen 4.0 electrical specification defined in:

• PCIe Express Base Specification, Revision 4.0

• PCI Express Card Electromechanical Specification, Revision 4.0

16.5.4 Network Interface AC/DC Specification

The E810 Ethernet interface supports a variety of operating modes, as defined in Section 3.2.2.

16.5.5 Reference Clock Specification

The E810 requires a 156.25 MHz differential reference clock input. The REFCLK input buffer supports
HCSL voltage levels and contains internal AC coupling capacitors and 50 Ω termination. Best
performance can be achieved by using an HCSL drive oscillator with direct connections to the REFCLK
inputs (no other component connected on the circuit board).

Figure 16-8 shows a typical input waveform expected from a 1.8 V HCSL driver.

The input HCSL signal needs to stay between GND (0 V) and VDDH (1.8 V) range at all times. If the
HCSL oscillator logic low VOL = 0 V, the common mode voltage (Vcm) measured with respect to GND is
half of the differential swing Vdiff:

Vcm = 0.5 * Vdiff

Figure 16-8. Typical HCSL Waveform

613875-009 2653

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

This allows for the HCSL oscillator VOL to be higher than 0 V if needed, but then the max differential
swing Vdiff will need to be reduced:

• If the differential swing Vdiff = max allowed = 1.2 V, the HCSL oscillator VOL needs to = 0 V.

• If the differential swing Vdiff < 1.2 V, the HCSL oscillator VOL is allowed to be > 0 V

For example:

If Vdiff = 800 mV and Vcm = 400 mV, the HCSL oscillator VOL max allowed = 200 mV and HCSL
oscillator VOH max allowed = 1.0 V.

Figure 16-9. Differential Swing Vdiff

Table 16-28. Input Reference Clock Electrical Characteristics

Symbol Parameter Min Typical Max Unit Comments

f Frequency 156.25 MHz

Δf Frequency Variation -50 +50 ppm

DC Duty Cycle 45 55 %

Tr Rise Time (10% - 90%) 40 120 1000 ps

Tf Fall Time (90% - 10%) 40 120 1000 ps

Vdiff Differential Peak-to-Peak Amplitude 400 1200 mV

Vcm Common mode input voltage 150 600 mV

Start-Up time 10 ms

Phase Jitter 0.2 0.3 ps rms 12 KHz - 20 MHz

Phase Noise

-110 dBc/Hz 10 KHz

-130 dBc/Hz 100 KHz

-150 dBc/Hz 1 MHz

-150 dBc/Hz 10 MHz

-150 dBc/Hz 20 MHz

-150 dBc/Hz 100 MHz

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2654 613875-009

16.6 Package Characteristics

16.6.1 Mechanical Configuration

The E810 is assembled in 25x25 mm and 21x21 mm FCGBA package with 10-layer substrates. Refer to
Section 16.7 for the package mechanical drawings.

16.6.2 Heat Sink Mechanical Load Limits

This section presents guidelines for the maximum loads associated with heat sink to PCB attachment.

For the E810-CAM2/CAM1 (25x25 mm lidded package), loads are applied on the entire raised portion of
the lid by a rigid heat sink or rigid actuator that is parallel to the lid plane.

For the E810-XXVAM2 (21x21 mm bare-die package), the heat sink or actuator contact surface is
parallel to the die backside surface. Heat sink or actuator touchdown on the die edge or corner is
prohibited. Short-term loads act on both the die backside and the exposed substrate. Long-term (heat
sink) loads may act solely on the die. A compliant material is used between the heat sink or actuator
and the die.

Short-term and long-term loads are applied slowly to prevent dynamic loads from being created. The
maximum permissible BGA compression is 15% of the assembled BGA height.

Table 16-29. Package Specifications

SKU Body Size Ball Count Ball Pitch Ball Matrix Substrate

E810-CAM2/CAM1 25 x 25 mm 668 1 mm 48 x 28 4-2-4

E810-XXVAM2 21 x 21 mm 456 1 mm 40 x 23 4-2-4

Table 16-30. Mechanical Load Limits

Maximum Load E810-CAM2/CAM1 E810-XXVAM2

Short-term compressive load (applied for
up to two minutes)

30 gm per solder ball.
65 psi on the raised portion of the lid.

30 gm per solder ball.
40 psi on the die and substrate.

Long-term compressive load
15 gm per solder ball.
30 psi on the raised portion of the lid.

15 gm per solder ball.
20 psi on the die.

Dynamic load 30g shock per MIL-STD-810F, Method
516.5 Procedure II.

30g shock per MIL-STD-810F, Method
516.5 Procedure II

613875-009 2655

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

16.6.3 Thermal

For complete E810 package thermals, refer to the Flotherm models and Chapter 18, “Thermal Design
Considerations”.

16.6.4 Electrical

Package electrical models are part of the IBIS files.

Table 16-31. Typical Thermal Resistance Parameters

Parameter E810-CAM2/CAM1 E810-XXVAM2

Thermal resistance, junction to case, Rjc 0.69 C/W 0.15 C/W

Thermal resistance, junction to PCB, Rjb 4.3 C/W 7.4 C/W

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2656 613875-009

16.7 Package Mechanical Drawings

16.7.1 Tolerance Information

The tolerance information in Table 16-32 applies to all mechanical drawings for the E810-CAM2/CAM1
and the E810-XXVAM2. Unless otherwise specified, all dimensions are in millimeters.

16.7.2 E810-CAM2/CAM1

Table 16-32. Tolerance Information

Decimal Angular

X.X ±0.1
X.XX ±0.05
X.XXX ±0.030

±1°

Figure 16-10. E810-CAM2/CAM1 Mechanical Package Diagram (Top View)

613875-009 2657

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

Figure 16-11. E810-CAM2/CAM1 Mechanical Package Diagram (Side View)

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2658 613875-009

Figure 16-12. E810-CAM2/CAM1 Mechanical Package Diagram (Bottom View)

613875-009 2659

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

16.7.3 E810-XXVAM2

Figure 16-13. E810-XXVAM2 Mechanical Package Diagram (Top View)

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2660 613875-009

Figure 16-14. E810-XXVAM2 Mechanical Package Diagram (Side View)

613875-009 2661

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

Figure 16-15. E810-XXVAM2 Mechanical Package Diagram (Bottom View)

Intel® Ethernet Controller E810 Datasheet
Electrical/Mechanical Specification

2662 613875-009

16.8 Devices Supported

16.8.1 Flash

The E810 requires Flash devices with the following characteristics:

• Quad SPI interface

• 24-bits address size

• Nominal 3.3 V power supply and I/O voltage levels

• Max frequency equal or above 66MHz

• Supports Serial Flash Discoverable Parameters (SFDP)

• Minimum density: 16 MB

• Quad Enable bit set in the status register by default, or set during the initial programming along
with the Flash descriptor.

Table 16-33. Supported Flash Parts

Manufacturer 128 Mbit (16 MB)

Adesto (formerly Atmel) AT25QF128A

Winbond W25Q128JV-xx-xx

Micron MT25QL128ABA

Macronix MX25L12873F

GigaDevice Semiconductor GD25B127DS

613875-009 2663

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

Chapter 17 Design Guidelines

17.1 Introduction

The section shows the Ethernet side interface design requirements for systems using the Intel®
Ethernet Controller E810 (E810). The E810 is an integrated device that includes a 100G MAC, a x16
PCIe Gen4 block for upstream connectivity to the host processor, and eight Physical Medium Dependent
(PMD) lanes capable of up to 50 Gb/s each. All speeds are dependent on the device SKU, PMD lane, and
port configurations.

The E810 topologies support a variety of system configurations for native Ethernet interfaces. This
section defines the supported configurations and the information required to design an E810-based
system, including pin implementation and electrical specifications.

The E810 architecture allows for 2-port, 4-port, and 8-port mode configurations. These modes connect
the root complex to eight PMD lanes accessible downstream. Supported E810 topology configurations
are discussed in the sections that follow.

This section shows all of the supported and validated designs for the E810 topology.

Figure 17-1. E810 Functional Block Diagram

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2664 613875-009

17.2 Defined Topologies

The specific product SKU used in the system determines the various configuration options, max device
bandwidth, and the number of PMD lanes available. This section shows the permissible E810-CAM2
Dual 100G product configurations using eight PMD lanes with a 100G total bandwidth allocated through
the device at any given time. Refer to the E810 SKU offerings for more information.

In the context of this section, groups of four PMDs make up a single “site”, and each site is configured
based on the chosen E810 Ethernet topology. These are referred to by the configuration names shown
in Section 17.2.1.

This section defines “common” topologies. The common configurations represent those that can be
implemented natively using the I/O directly from the E810 (for example, 2xSFP28 (50GBASE-R),
4xSFP28 (25GBASE-R), 1xQSFP28 (100GBASE-R4), and 2xQSFP28 (100GBASE-R4)). Within these
topologies, the port rates can be individually configured to any lower supported rate.

Following is a summary of the Ethernet interfaces that the E810 provides:

• PMD lanes:

— Each lane includes differential pairs for Tx and Rx, for a total of four pins per lane.

— Eight PMD lanes (up to two sites).

• Up to eight PMD lanes are available for use depending on the product SKU.

• The maximum throughput of 100G (Topology restrictions apply. Refer to details in
Section 17.2.1.)

• The PMD lanes are denoted as [0..3] for Site 0, and [4..7] for Site 1. For a 2-port
configuration with quad lane PMD modes, the Auto-Negotiation (AN) lanes exist on Lane 0,
and Lane 4 by default. For single-lane configurations (e.g. 4-port and 8-port modes), the
AN lanes are on a per-lane basis.

Figure 17-2. E810 Topology Components

613875-009 2665

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

• Five MDIO/I2C buses (MDIO/I2C[0:4]) from the E810 that can be independently configured as
MDIO or I2C. For this section, the buses are assigned as shown below. The buses are shown in
Section 17.2.2 for each I/O configuration.

— MDC0_SCL0 / MDIO0_SDA0 - I2C management clock and data for QSFP 0 or SFP 0.

— MDC1_SCL1 / MDIO1_SDA1 - I2C management clock and data for QSFP 1 or SFP 1.

— MDC2_SCL2 / MDIO2_SDA2 - I2C management clock and data for SFP 2.

— MDC3_SCL3 / MDIO3_SDA3 - I2C management clock and data for SFP 3.

— MDC4_SCL4 / MDIO4_SDA4 - I2C management PCA9575 I/O Expander.

• 24 Software Defined Pins (SDP):

— 24 general purpose software definable pins are driven via the internal I/O Widget in the E810.

— Application of these pins are defined by the link topology netlist but in general is defined as
follows within this section:

• SDP[0:7] are used as eight GPIOs.

• SDP[8:19] are generally used as LED pins with a few crossing over for GPIO functions.

• SDP[20:23] can be used for IEEE 1588 connections.

A summary of the I/O types that the E810 supports is presented below (see Section 17.2.3 for more
information on the specific protocols supported on each I/O type):

• I/O Types:

— SFP (Includes SFP+ and SFP28)

— QSFP (Includes QSFP+ and QSFP28)

17.2.1 E810 Host Topology Overview

This section shows the most common host topologies that are expected to be used. Table 17-1 provides
a high-level summary of the supported common configurations, and Section 17.2.2 provides the
overview of each configuration.

The E810 can support up to two quads, with four PMD lanes per quad. Each quad supports multiple
speed and multi-lane port configurations using 25G/lane SerDes (1x100G-R4 / 1x50G-R2 / 4x25G /
4x10G / 4x1G), or 50G/lane SerDes (1x100G-R2 / 1x50G-R). The supported common topologies are
2xSFP28 (2x50GBASE-R), 4xSFP28 (4x25GBASE-R), 1xQSFP28, and 2xQSFP28.

Implementations can use a subset of I/Os (for example, 2xSFP28 or 1xQSFP28) as a design option and
is described in Section 17.3.1. A 4xSFP28 implementation also supports 2xSFP with 2x50GBASE-R
lanes. PMD lanes 0 and 2 must be used for connections supporting 50GBASE-R. A 2xQSFP28 design is a
superset of a 1xQSFP28 implementation with breakout capability. A design implementing 2xQSFP28 can
still use the breakout capability as long as Site 1 is disabled.

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2666 613875-009

For each validated E810 configuration above, each PMD lane can be configured with the following speed
and port width configurations when using appropriate cable combinations, as depicted in Table 17-2.
The E810 supports up to 2x50G PAM4 serial lanes as well as QSFP breakout modes. For details, refer to
Section 17.2.2 for configuration options.

Ports shown here with different port counts are supported by the same physical implementation from a
hardware perspective, but might require a reboot and/or different NVM or netlist configuration.

Table 17-1. Supported E810 Common Configurations

Configuration

PMD Lane Speed 4x SFP 2x QSFP

Site 0

0 25G

4x SFP (25G) or 2x SFP (50G)
on Lane 0 and 2

1x QSFP and Breakout mode
(Site 1 disabled for breakout mode)

1 25G

2 25G

3 25G

Site 1

4 25G

1x QSFP
5 25G

6 25G

7 25G

4-port 2-port, 4-port, 8-port

Key: SFP LOM Design QSFP LOM Design Not supported in the configuration

Note: The bold lane numbers show the auto-negotiation lane for quad lane modes. The E810 supports auto-negotiation on lanes
0 and 4. System designers need to ensure these lanes are mapped to “lane 0” of the QSFP module or link partner to
ensure proper connections of the AN channels. For single-lane modes, auto-negotiation occurs on all active lanes.

Table 17-2. Supported E810 PMD Lanes and Rates for Supported Configuration Topologies

Site #/PMD#/Supported PMD Rates

Site Site 0 Site 1

P
o

rt
 M

o
d

e

Notes/LimitationsPMD 0* 1 2 3 4* 5 6 7

QSFP
Lane 1 2 3 4 1 2 3 4

4
x

S
FP

50G 50G 2 Configuration: 4xSFP (2-port and
4-port modes)
Note: The 4x SFP implementation

also supports 2x50GBASE-R
on PMD lane 0 and 2. This
configuration multiplexes the
Site 1 serial lanes to Site 0.

25G 25G 25G 25G 4

10G 10G 10G 10G 4

1G 1G 1G 1G 4

100M 100M 100M 100M 4

613875-009 2667

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

The associated PMD lanes for each mode are called out above. Note that lanes from Quad 1 can be
multiplexed over to Quad 0 when the E810 is operating in a 4-port configuration to allow a single QSFP
breakout mode. Take note of the following lane speed and port capabilities:

• All 1x50G serial ports are capable of supporting 50G, 25G, 10G, 1G and 100Mb.

• All 1x25G serial ports are capable of supporting 25G, 10G, 1G and 100Mb.

• All 1x10G serial ports are capable of supporting 10G, 1G, and 100Mb.

• QSFP cable configuration support:

— For 50G/lane configurations, 1x100GBASE-R2 and 2x50GBASE-R breakout are supported.

— For 25G/lane configurations, 1x100GBASE-R4, 2x50GBASE-R2 and 4x25GBASE-R breakout are
supported.

2
x

Q
S

FP

100G-R4 100G-R4 2 Configuration: 2xQSFP (2-port, 4-port,
and 8-port modes)
Note: For the noted PMD lanes (Note

1), the configuration is only
supported with topology
resolution when breakout
cables are plugged in. This
would force the E810 to be
configured in a 4-port/8-port
mode configuration.

100G-R2 100G-R2 2

50G-R2 50G-R2 2

50G 50G 2

25G 25G1 25G 25G1 4

10G 10G1 10G1 10G1 10G 10G1 10G1 10G1 8

1G 1G1 1G1 1G1 1G 1G1 1G1 1G1 8

100M 100M1 100M1 100M1 100M 100M1 100M1 100M1 8

50G-R2 50G-R21 2

50G 50G1 2

25G 25G1 25G1 25G1 4

10G 10G1 10G1 10G1 4

1G 1G1 1G1 1G1 4

100M 100M1 100M1 100M1 4

Key: 100G (BASE-R4/-R2) 50G (BASE-R2/-R) 25G 10G 1G/100Mb

Notes:
• All sites can be independently configured for speed and port width based on the supported mode list above via software

control.
• Lane numbers denoted with an asterisk (*) show the auto-negotiation lane for quad lane modes. The E810 supports auto-

negotiation on lanes 0 and 4. System designers need to ensure these lanes are mapped to “lane 0” of the QSFP module or link
partner to ensure proper connections of the AN channels. For single-lane modes, auto-negotiation occurs on all active lanes.

Table 17-2. Supported E810 PMD Lanes and Rates for Supported Configuration Topologies

Site #/PMD#/Supported PMD Rates

Site Site 0 Site 1

P
o

rt
 M

o
d

e

Notes/LimitationsPMD 0* 1 2 3 4* 5 6 7

QSFP
Lane 1 2 3 4 1 2 3 4

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2668 613875-009

17.2.2 Configuration Topologies

This section presents the supported common configurations for the E810.

17.2.2.1 Configuration - 4x SFP Native

This configuration uses PMD lanes 0 through 3 to drive four SFP connectors on the host system. A direct
I2C connection as well as Module Absent, LOS, Rate Select, and TX Disable connections are required to
each of the SFP connectors. A subset of these signals is supported on the PCA9575 I/O Expander. The
link status of each port is indicated by up to three LEDs, for a total of 12 LEDs on the host system (see
Section 17.5 for LED usage).

The host supports native SFI, so the E810 PMD lanes can be connected directly to the SFP connector, as
shown in Figure 17-3. This figure is provided as a high-level example only, and all connection and
design requirements stated within this section must be followed. All other connection requirements,
such as pull-up/pull-down resistors, power/ground, LEDs, and so on are detailed in Section 17.3
through Section 17.6.

A 2x50G serial solution can also be implemented. In this case, PMD lane 0 and PMD lane 2 have the
50G serial support (SFP0 and SFP2) and must be used. Lane assignment and low-speed I/O
connections for 4x25G and 2x50G modes are shown in Table 17-3.

Figure 17-3. Configuration - 4x SFP Native

613875-009 2669

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

Table 17-3. PMD Lane Assignment and Low-Speed I/O for 4x25G and 2x50G Modes

Config Port
No.

Ethernet
PMD I2C

E810 SDP/GPIO Name
or

Port Expander Pin Name

E810 SDP/GPIO
Function

or
I/O Expander

Function

E810
SDP/LED

Name
E810 SDP/LED

Function

4x25G

Port 0 L0 I2C_MDIO_CLK0/DAT0

SDP00 SFP_0_MOD_ABS SDP08 P0_SPD_A_LED

Port Expander I/O P1_0 SFP_0_RX_LOS SDP09 P0_SPD_B_LED

Port Expander I/O P0_0 SFP_0_RS0_RS1 SDP10 P0_ACT_LED

Port Expander I/O P0_4 SFP_0_TX_DISABLE - -

Port 1 L1 I2C_MDIO_CLK1/DAT1

SDP01 SFP_1_MOD_ABS SDP11 P1_SPD_A_LED

Port Expander I/O P1_1 SFP_1_RX_LOS SDP12 P1_SPD_B_LED

Port Expander I/O P0_1 SFP_1_RS0_RS1 SDP13 P1_ACT_LED

Port Expander I/O P0_5 SFP_1_TX_DISABLE - -

Port2 L2 I2C_MDIO_CLK2/DAT2

SDP02 SFP_2_MOD_ABS SDP14 P2_SPD_A_LED

Port Expander I/O P1_2 SFP_2_RX_LOS SDP15 P2_SPD_B_LED

Port Expander I/O P0_2 SFP_2_RS0_RS1 SDP16 P2_ACT_LED

Port Expander I/O P0_6 SFP_2_TX_DISABLE - -

Port3 L3 I2C_MDIO_CLK3/DAT3

SDP03 SFP_3_MOD_ABS SDP17 P3_SPD_A_LED

Port Expander I/O P1_3 SFP_3_RX_LOS SDP18 P3_SPD_B_LED

Port Expander I/O P0_3 SFP_3_RS0_RS1 SDP19 P3_ACT_LED

Port Expander I/O P0_7 SFP_3_TX_DISABLE - -

2x50G

Port 0 L0 I2C_MDIO_CLK0/DAT0

SDP00 SFP_0_MOD_ABS SDP08 P0_SPD_A_LED

SDP02 SFP_0_RX_LOS SDP09 P0_SPD_B_LED

SDP05, SDP18 SFP_0_RS0_RS1 SDP10 P0_ACT_LED

SDP14 SFP_0_TX_DISABLE - -

Port 1 L2 I2C_MDIO_CLK2/DAT2

SDP01 SFP_1_MOD_ABS SDP11 P1_SPD_A_LED

SDP03 SFP_1_RX_LOS SDP12 P1_SPD_B_LED

SDP06, SDP19 SFP_1_RS0_RS1 SDP13 P1_ACT_LED

SDP15 SFP_1_TX_DISABLE - -

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2670 613875-009

17.2.2.2 Configuration - 2x QSFP Native

This configuration uses PMD lanes 0 through 7 to drive two QSFP connections on the host system. The
link status of each QSFP connection is indicated by three LEDs per port by default, for a total of six LEDs
on the host system (see Section 17.5 for LED usage).

The E810 can drive a variety of QSFP protocols, so they can be connected directly to the QSFP
connectors, as shown in Figure 17-4. This figure is provided as a high-level example only, and all
requirements stated within this document must be followed. All connection requirements, such as
pull-up/pull-down resistors, power/ground, LEDs, and so on, are detailed in Section 17.3 through
Section 17.6.

This configuration supports a variety of link types, and the number of ports is dependent on the link
type, since both serial and parallel link modes are available. Each PMD can operate as a single port in a
serial link mode, supporting speeds of 10G and 25G, creating four ports from a single site. If the site is
in a four-lane parallel link mode, all four PMDs are used to create a single port capable of 100G QSFP
protocols. The device also supports the use of one 50G port per quad, with two PMDs supporting this
speed. Section 17.2.3 details the variety of link modes available for QSFP connections. This
configuration uses all PMD lanes available for E810 systems.

Figure 17-4. Configuration - 2x QSFP Native

613875-009 2671

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

17.2.3 Supported Link Modes and Breakout Modes

The topology configurations presented in the previous section require a wide variety of native link
modes from the E810. Table 17-4 provides a high-level summary of the topologies and speeds
supported, including the interface to be used in each mode. Table 17-5 provides the supported QSFP
breakout modes.

For QSFP implementations, the following breakout cases are supported:

17.2.4 Supported Modules

Refer to Section 3.2.3, “Link Management” for details on specification compliant modules.

Table 17-4. Supported Ethernet Link Modes

Topology Speed Native I/F

SFP+

100M SGMII

1G SGMII

10G SFI

SFP28

25G 25G AUI C2M

25G 25GBASE-CR/CR1

50G 50GBASE-CR

QSFP28

10G SFI

25G 25G AUI C2M

25G 25GBASE-CR/CR1

50G 50GBASE-CR/CR2

50G 50G LAUI-2

100G CAUI-4

100G 100GBASE-CR2/CR4

Table 17-5. Supported QSFP Breakout Modes

Breakout Lane Speed Native I/F

4 x 10G 10 Gb/s SFI

4 x 25G 25 Gb/s 25GBASE-CR/CR1

2 x 50G 25 Gb/s 50GBASE-CR2

2 x 50G 50 Gb/s 50GBASE-CR

2 x 100G 50 Gb/s 100GBASE-CR2

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2672 613875-009

17.3 E810 Ethernet Signal Descriptions

The tables in this section show the Ethernet signal assignments on the E810. Annotations are provided
where required. This section color codes the I/O pin groups associated with a function and are provided
for a quick visual reference only. The color coding is as follows:

17.3.1 E810 High-Speed Serial

This section dictates the PMD connections between the host and the I/O.

• For all the supported implementations, the PMD connections always start with “lane 0” regardless of
the number of sites implemented in the design.

• A designer might choose to implement a subset of supported sites in a given configuration. In that
event, sites are removed, in order, starting with the highest numbered site.

• A designer might also choose to implement a subset of supported lanes for a given configuration.

— For example, a 4xSFP design requiring only two SFP modules can only implement connectivity
on PMD0, and PMD1.

— The exception is when a designer is implementing two 50GBASE-R interfaces on Site 0 (See the
4xSFP column). In this case, the implemented PMD lanes are 0 and 2 per the E810 architectural
definition.

• Sites can directly target an on-board I/O connector (SFP/QSFP).

• Lane numbering for each site is denoted as [0..3] for Site 0, and [4..7] for Site 1.

— Lane and polarity swapping is dependent on the physical E810 implementation and details are
not covered in this section.

— This section assumes that both lane and polarity swapping are not implemented.

Color Code Definition

SFP High-Speed Serial (SFP+ and SFP28) related pins.

QSFP QSFP+ and QSFP28 related pins

Table 17-6. Host High-Speed Interface

PMD[Lane] 4x SFP 2x QSFP

Site 0

PMD[0] SFP0

QSFP0
PMD[1] SFP1

PMD[2] SFP2

PMD[3] SFP3

Site 1

PMD[4]

QSFP1
PMD[5]

PMD[6]

PMD[7]

Note: The bold lane numbers show the auto-negotiation lane for quad lane modes. The E810 supports auto-negotiation on lanes
0 and 4. System designers need to ensure these lanes are mapped to “lane 0” of the QSFP module or link partner to
ensure proper connections of the AN channels. For single-lane modes, auto-negotiation occurs on all active lanes.

613875-009 2673

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

— The lane and polarity swaps are supported in the Link Topology netlist (see Section 3.3.8).
Refer to Section 3.2.3, “Link Management” for details.

17.3.2 E810 Management Connections

The following table shows the I2C and MDIO connection targets across all of the supported topologies.

The I2C SCL/SDA pins are open drain and need to be pulled up to VCC3P3 on the host system using
3.3 KΩ resistors.

A total of five configurable MDIO/I2C buses are provided by the E810. The following MDIO and I2C
mapping are used:

• MDIO0_I2C0 bus is defined as a dedicated I2C bus for QSFP 0 or SFP 0.

• MDIO1_I2C1 bus is defined as a dedicated I2C bus for QSFP 1 or SFP 1.

• MDIO2_I2C2 bus is defined as a dedicated I2C bus for SFP 2.

• MDIO3_I2C3 bus is defined as a dedicated I2C bus for SFP 3.

• MDIO4_I2C4 bus is not used and is left as a no connect.

Example - E810 2x QSFP design:

QSFP0 is implemented on PMD lanes 0..3 (Site 0), and QSFP1 is implemented on PMD lanes 4..7
(Site 1). MDIO0_I2C0 is routed to QSFP0, and MDIO1_I2C1 is routed to QSFP1. Both interfaces
operate in I2C mode for module management.

Table 17-7. Host Management Connections

Pin Name Ball # 4x SFP 2x QSFP

MDC0_SCL0
MDIO0_SDA0

AB38
AC45

SFP0 QSFP0

MDC1_SCL1
MDIO1_SDA1

Y38
AB42

SFP1 QSFP1

MDC2_SCL2
MDIO2_SDA2

AA39
AB48

SFP2

MDC3_SCL3
MDIO3_SDA3

AB40
AA45

SFP3

MDC4_SCL4
MDIO4_SDA4

Y40
Y48

Note: Table 17-7 shows the superset of pins defined for the host management connections for the E810.

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2674 613875-009

17.3.3 E810 SDP[0:7] (GPIO) Connections

The E810 SDP [0:7] assignments share a common pin-out between all of the supported topologies and
are dedicated for GPIO only. All E810 SDP [0:7] pins are defined as push-pull when used as an output.

The pins noted in Table 17-8 have specific pull-up and pull-down requirements. These requirements are
noted in Table 17-9.

• SFP Module Present signals are located on SDP [0..3] for a 4x SFP implementation.

• I/O Expander Reset_N signal is located on SDP5 for a 4x SFP implementation.

• oI/O Expander Int_N signal is located on SDP6 for a 4x SFP implementation.

• QSFP Reset, Interrupt, and Present pins are assigned in that particular order and are grouped to
maximize consistency across QSFP locations.

— QSFP0 signals use SDP[0..2].

— QSFP1 signals use SDP[3..5].

Table 17-8. Host SDP [0:7] Connections

Pin Name Ball # 4x SFP 2x QSFP

SDP0 V4 SFP_ModPresN_0 QSFP_ResetN_0

SDP1 T10 SFP_ModPresN_1 QSFP_IntN_0

SDP2 U3 SFP_ModPresN_2 QSFP_PresentN_0

SDP3 U7 SFP_ModPresN_3 QSFP_ResetN_1

SDP4 U11 QSFP_IntN_1

SDP5 W3 PCA9575_Reset_N QSFP_PresentN_1

SDP6 Y4 PCA9575_Int_N

SDP7 V10

Table 17-9. Host SDP[0:7] Pull-Up/Pull-Down Requirements

Signal Name Host Requirements Notes

SFP_ModPresN_* 10 KΩ pull up to VCC3P3 SFP ModPresN is tied to GND in the module to indicate presence.

PCA9575_Reset_N 10 KΩ pull-down to GND Use pull-down on PCA9575 I/O Reset_N to keep I/O Expander in reset until
ready to be configured.

PCA9575_Int_N 1 KΩ pull-up to VCC3P3 PCA9575 I/O Expander open drain interrupt pin requires pull-up to VCC3P3.

QSFP_ResetN_* None No external pull up resistor required. QSFP reset pin is internally pulled up to
VCC3P3 in the module.

QSFP_IntN_* 10 KΩ pull up to VCC3P3 Interrupt pins are open drain and require a pull up.

QSFP_PresentN_* 10 KΩ pull up to VCC3P3 QSFP Present is tied to GND in the module to indicate module presence.

613875-009 2675

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

17.3.4 E810 SDP[8:19] (LED) Connections

The E810 has 12 additional SDPs (SDP[8:19]) for mixed function usage (LED and GPIO) between
supported configurations. LED assignments share a common pin-out between the supported
configurations, but be aware that the LED pins are not exclusively used for the LED function. These pins
are also capable of being defined as GPIO pins. Pin configurations are noted in Table 17-10.

When the pin is used as an LED function, the connection must be connected as open drain with a
pull-up on the LED, and the firmware must also be configured as open drain for LED applications. Refer
to Section 17.5 for connection details. When the pin is used as a GPIO, the GPIO connection must be
configured as push-pull in the firmware.

The pins noted in Table 17-10 have specific pull-up and pull-down requirements. These requirements
are noted in Table 17-11.

The pin-out description in this section assumes that the default case where three LEDs per LOM port are
being used. There is the option to only use two LEDs per port, in which case the LEDn_2_act pin is not
used. See Section 17.5 for more information on LED configuration and behavior options.

• SDP [8:10] are associated with QSFP 0, SFP 0.

• SDP [11:13] are associated with QSFP 1, SFP 1.

• SDP [14:16] are associated with SFP2.

• SDP [17:19] are associated with SFP3.

Table 17-10. Host SDP [8:19] Connections

Pin Name Ball # 4x SFP 2x QSFP

SDP8 U9 LED0_0_spd_a LED0_0_spd_ a

SDP9 W7 LED0_1_spd_b LED0_1_spd_b

SDP10 W9 LED0_2_act LED0_2_act

SDP11 V8 LED1_0_spd_a LED1_0_spd_a

SDP12 Y8 LED1_1_spd_b LED1_1_spd_b

SDP13 W11 LED1_2_act LED1_2_act

SDP14 AA3 LED2_0_spd_a

SDP15 Y10 LED2_1_spd_b

SDP16 AA7 LED2_2_act

SDP17 AB4 LED3_0_spd_a

SDP18 V38 LED3_1_spd_b

SDP19 W39 LED3_2_act

Table 17-11. Host SDP[8:19] Pull-Up/Pull-Down Requirements

Signal Name Host Requirements Notes

LED* LEDs are connected as active low and are connected to VCC3P3 on the host
through a current limiting resistor.

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2676 613875-009

17.3.5 E810 SDP[20:23] (IEEE 1588) Connections

The E810 has four additional SDPs (SDP[20:23]) for IEEE 1588 timing applications. These pins can be
used for custom implementations and can be routed out to a header. These pins are not used in
standard SFP and QSFP implementations.

17.4 Signal Descriptions

The following sections describe the functional blocks and logical connections. Refer to the block
diagrams in Section 17.2.2 for overall connection topologies. Refer to the appropriate sections for
details applicable to your design.

17.4.1 High-Speed Serial

This section describes the application of the high-speed serial signals for a SFP/QSFP application.

17.4.1.1 PDM Lanes - Transmit

The transmit PMD signal names are referenced from the host side. Thus, the lane direction is directed
towards the connector. This includes the following lanes:

• TX[0:3]_p / TX[0:3]_n

• TX[4:7]_p / TX[4:7]_n

For SFP/QSFP implementations, no series capacitor is required on the board as it is located within the
I/O module.

17.4.1.2 PDM Lanes - Receive

The receive PMD signal names are referenced from the host side. Thus, the lane direction is directed
towards the E810. This includes the following lanes:

• RX[0:3]_p / RX[0:3]_n

• RX[4:7]_p / RX[4:7]_n

For SFP/QSFP implementations, no series capacitor is required on the board as it is located within the
I/O module.

17.4.1.3 SFP High-Speed Serial

For a LOM SFP design, connect the differential signals as follows:

• TX_L0 is connected to SFP0 TD.

• RX_L0 is connected to SFP0 RD.

• TX_L1 is connected to SFP1 TD.

• RX_L1 is connected to SFP1 RD.

613875-009 2677

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

• TX_L2 is connected to SFP2 TD.

• RX_L2 is connected to SFP2 RD.

• TX_L3 is connected to SFP3 TD.

• RX_L3 is connected to SFP3 RD.

Take note of the proper polarity connections (positive-to-positive, and negative-to-negative), as shown
in Figure 17-5.

17.4.1.4 QSFP High-Speed Serial

For a LOM QSFP design, connect the differential signals as follows:

• TX_L[0:3] connects to QSFP TX[1:4]

• RX_L[0:3] connects to QSFP RX[1:4]

• TX_L[4:7] connects to QSFP TX[1:4]

• RX_L[4:7] connects to QSFP RX[1:4]

Take note of the proper polarity and lane order connections, as shown in Figure 17-6.

Figure 17-5. LOM SFP High Speed

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2678 613875-009

17.4.2 SFP and QSFP I/O Module Connections

This section presents the connection guidelines for configurations that implement a SFP or QSFP
module(s).

17.4.2.1 SFP Cage Connections

The following connections are required for designs with SFP+/SFP28 cages. This information applies to
all SFP designs. Refer to SFF-8431 for more details and specifics about the SFP form factor. Signal
directions in this table are from the E810 perspective.

Figure 17-6. LOM QSFP High Speed

Table 17-12. SFP Interface

Pin Name SFP
Pin # Type Description

TD+/- 18, 19 A-out Transmitter data output (towards module/link partner).

RD+/- 12, 13 A-in Receiver data input (towards the E810).

I2C_SCL 5 Out, Pu,
o/d

2-wire serial interface clock.
Connect this pin directly to the E810 SCL pin appropriate for the SFP instance. Pull up
to VCC3P3 on the host using a 10 KΩ resistor.

I2C_SDA 4 Inout, Pu,
o/d

2-wire serial interface data.
Connect this pin directly to the E810 SDA pin appropriate for the SFP instance. Pull up
to VCC3P3 on the host using a 10 KΩ resistor.

Mod_ABS 6 In Module Absent (active high). Grounded in module to indicate module presence.
Connect directly between the E810 GPIO pins as defined in Section 17.3 and the SFP
connector. This pin must be pulled up to VCC3P3 on the host. This pin must be
connected for proper SFP operation in the E810 topology.
This pin is akin to the Module Present (active low) signal in the QSFP pin-out.

613875-009 2679

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

17.4.2.2 QSFP Cage Connections

The following connections are required for designs with QSFP+/QSFP28 cages. This information applies
to all QSFP implementations. Refer to SFF-8665 for more details and specifics about the QSFP form
factor. Signal directions in this table are from the E810 perspective.

TX Fault 2 Pu, o/d TX Fault. When high, a laser fault of some kind is detected. Low indicates normal
operation.
The TX Fault pin is not used in the E810 topology and must be pulled up to VCC3P3
using a 10 KΩ resistor. If the module supports it, the TX Fault feature is available as an
optional soft function to control over I2C. Refer to SFF-8472 Address A0h, Byte 93 for
details.

TX Disable 3 Out TX disable. When high, module transmitter is disabled. When low, module transmitter
is enabled. This pin is internally held high to VCC3P3 on the module.
This pin must be connected for proper SFP operation in the E810 topology. If the
module supports it, the TX Disable feature is also available as an optional soft function
to control over I2C. Refer to SFF-8472 Address A0h, Byte 93 for details.

Rate Select (0,1) 7, 9 Pu Optional pin in the SFP specification. For dual rate modules, this pin defines module
bandwidth control. Low indicates reduced bandwidth, while high indicates full
bandwidth.
This pin must be connected for proper SFP operation in the E810 topology. The pin is
pulled down to ground inside the module. If the module supports it, the Rate Select
feature is available as an optional soft function to control over I2C. Refer to SFF-8472
Address A0h, Byte 93 for details.

LOS 8 Pu, o/d Loss of signal. When high, indicates loss of signal. Normal operation when low.
This pin must be connected for proper SFP operation in the E810 topology and must be
pulled up to VCC3P3 using a 10 KΩ resistor. If the module supports it, the LOS the
feature is available as an optional soft function to control over I2C. Refer to SFF-8472
Address A0h, Byte 93 for details.

Table 17-13. QSFP Interface

Pin Name QSFP
Pin # Type Description

TX[1..4]p/n 36, 37,
2, 3, 33,
34, 5, 6

A-out Transmitter data output (towards module/link partner).

RX[1..4]p/n 17, 18,
21, 22,
14, 15,
24, 25

A-in Receiver data output (towards the E810).

I2C_SCL 11 Out, o/d 2-wire serial interface clock. Pull up to VCC3P3 on the host using a 10 KΩ resistor.
Connect this pin directly between the E810 and the QSFP connector.

I2C_SDA 12 Inout, o/d 2-wire serial interface data. Pull up to VCC3P3 on the host using a 10 KΩ resistor.
Connect this pin directly between the E810 and the QSFP connector.

ModSelL 8 Out, Pu Module select. Module responds to host commands when asserted low by the host.
For all QSFP designs, ModSelL must be statically held low on the host. Pull down to
GND on the host using a 1 KΩ resistor. QSFP modules are required to have a dedicated
I2C connection in the E810 topology. Asserting ModSelL low does not create I2C
addressing conflicts.

ResetL 9 Pu, o/d Module reset. Module is in reset when held low by the host. ResetL is connected to the
host GPIO and described in Section 17.3.3. This pin is internally held high to VCC3P3
on the module. No external pull-up resistor is required.

Table 17-12. SFP Interface [continued]

Pin Name SFP
Pin # Type Description

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2680 613875-009

17.4.3 Reset, Interrupt, and Present

A reset, interrupt, and present pin are presented towards the SFP/QSFP modules to enable device
reset, interrupt detection, and presence detection. This section details the connections of the three
pins.

17.4.3.1 ResetN

ResetN is an output pin that is driven by the host. ResetN drives the reset logic on a QSFP. The host
must implement a 10 KΩ pull-down resistor on the ResetN line to ensure the device is in reset until the
host is ready to initialize the downstream module or PHY.

Note: This signal is not applicable for use on SFP applications.

ModPrsL 27 Out Module present. Grounded in module to indicate module presence. ModPrsL is
connected to the host GPIO and described in Section 17.3.3. Pull up to VCC3P3 using a
10 KΩ resistor.

IntL 28 Pu Module interrupt. IntL is connected to the host GPIO and described in Section 17.3.3.
Pull up to VCC3P3 using a 10 KΩ resistor.

LPMode 31 Pu, o/d Low power mode. Module in low power mode when pin is high. Module in high power
mode when pin is low. Pin is internally pulled up to VCC3P3 in the module and defaults
to low power mode.
This pin is not connected on the host, and modules default to low power mode. To
enable high power mode, the host must access the module EEPROM interface via I2C
writes. No external pull-up resistor is required.

Figure 17-7. Reset, Interrupt, and Present Connection Details for SFP/QSFP Modules

Table 17-13. QSFP Interface [continued]

Pin Name QSFP
Pin # Type Description

613875-009 2681

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

17.4.3.2 InterruptN

InterruptN is an input pin to the E810 that is driven low by a QSFP. This pin is asserted low when an
interrupt event is detected. This pin is open drain and must be pulled up to VCC3P3 with a 10 KΩ
resistor on the host.

Note: This signal is not applicable for use on SFP applications.

17.4.3.3 PresentN

PresentN is an input pin to the E810. The host must pull the pin to VCC3P3 using a 10 KΩ pull-up
resistor. This pin serves as a SFP/QSFP module presence indication. When PresentN is high, no module
is installed. When PresentN is low, a module is installed.

17.4.4 Management Interfaces

An I2C bus is provided for low speed module identification and configuration for each site. The I2C bus
is a 1:1 mapping between the E810 and each module. Modules do not share an I2C bus in this topology.
The following sections describe the functionality of each of these devices and how they are connected in
the E810 architecture.

Each site uses the same basic I2C device architecture and is presented in Figure 17-8.

The E810 Ethernet Hardware Topology defines an I2C bus for managing SFP and QSFP modules. Per the
I2C bus specification, the SCL and SDA pins are open drain and require a pull up on the host to operate
correctly. Pull up the SCL and SDA signals to VCC3P3 through a 3.3 KΩ resistor. The E810 I2C bus
architecture can operate at frequencies of 100 KHz, 400 KHz and 1 MHz at VCC3P3 voltage levels. Refer
to the I2C bus specification for the timing requirements. All SFP and QSFP modules respond to the
write/read address pair of 0xA0/0xA1 (8-bit).

Figure 17-8. Management Interface Connection Details

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2682 613875-009

17.5 LED Configuration and Behavior

This section defines the default LED configuration and behavior for the various E810 architectures.
There are two main design factors to take into consideration regarding LED behavior.

• Link type.
• The number of LEDs per port.

A summary of the available Link Type options is shown in Table 17-14.

In general, the default LED configuration has three discrete LEDs per port. There are two speed LEDs
and a single link/activity LED. This configuration is discussed in Section 17.5.1.

This section defines the LED colors and implementations that have been designed in and validated on
Intel platforms. Refer to the Section 3.2.3, “Link Management” and contact your local Intel PAE
representative for support and details on permissible LED configurations.

Up to 24 discrete LEDs can be implemented for any given E810 topology. The total is the sum of LEDs
implemented via the E810 LED pins plus any LEDs implemented via LED drivers within a system. This
constraint is based on a blink rate of 200 ms on, 200 ms off.

17.5.1 Default LED Behavior - Discrete LED
Implementation

The default LED behavior is defined by using three LEDs per port. Native implementations support a
three LED configuration (two speed LEDs, and one link/activity LED). A description of each pin is shown
in Table 17-15. This implementation works well for the 4xSFPs and is implemented as shown in
Table 17-16.

Table 17-14. Link Type Options

Link Type Lanes per Port Supported Modes

Single PMD 1 1G/10G/25G serial link mode.

Dual PMD 2 50G parallel link mode.

Quad PMD 4 100G parallel link mode.

Table 17-15. Default LED Configurations - Discrete LED Implementation

LED Pin LED Color Description

Port[0:3]_Spd_A Green

This active low bi-color LED is used as a link and link speed indicator. The expressed color
indicates the port link speed. The default color coding is as follows:

Speed

Max speed

Not Max speed

Color

Green

Yellow

613875-009 2683

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

Port[0:3]_Spd_B Yellow

The Spd_B indicator is also used for port identification through diagnostic software.
When the link is up, this LEDs shall be lit and solid. This indicates that the link is established,
there are no local or remote faults, and the link is ready for data packet transmission/
reception.
For all single port cage implementations (SFP, QSFP), the LED indication shall operate as
follows:
• The LED is Green when the port is linked at its maximum speed.
• The LED is Yellow when the port is linked but not operating at the highest speed.
• The LED is off when no link is present.

When a multi-lane cage is configured for dual port or quad port operation (e.g., QSFP
breakout), the LED indication shall operate as follows:
• The LED is Green when all ports of the multi-lane cage are linked at its maximum speed.
• The LED is Yellow when one or more ports of the multi-lane cage are linked, but not

operating at the highest speed, or one or more ports are down.
• The LED is off when no link is present on all ports of the multi-lane cage.

Port[0:3]_Act Green

Active low. The LED is illuminated when the signal is low.
For all single port cage implementations (SFP, QSFP), the LED indication shall operate as
follows:
• The LED is off when there is no activity.
• The LED should blink when there is activity.

When a multi-lane cage is configured for dual port or quad port operation (e.g., QSFP
breakout), the LED indication shall operate as follows:
• The LED is off when there is no activity on all ports of the multi-lane cage.
• The LED should blink when there is activity on one or more ports of the multi-lane cage

Table 17-16. Default LED Configurations - Discrete LED Behavior Matrix

Speed Indication - 2 LED Pins

Max Speed Not Max Speed Link Activity - 1 LED Pin

Port Configuration Spd_A
(Green)

Spd_B
(Yellow)

Spd_A
(Green)

Spd_B
(Yellow)

Link
(Green)

No Link
(Off)

Activity
(Green)

2xSFP (2x50G max) On
(50G) Off Off On

(<50G) Off Off Blink

4xSFP28 (4x25G max) On
(25G) Off Off On

(<25G) Off Off Blink

1xQSFP28 (1x100G max) On
(100G) Off Off On

(<100G) Off Off Blink

1xQSFP28 (1x50G max) On
(50G) Off Off On

(<50G) Off Off Blink

4x10GBASE-T (4x10G max) On
(10G) Off Off On

(<10G) Off Off Blink

1x1000BASE-T (1x1G max) On
(1G) Off Off On

(<1G) Off Off Blink

Table 17-15. Default LED Configurations - Discrete LED Implementation [continued]

LED Pin LED Color Description

Intel® Ethernet Controller E810 Datasheet
Design Guidelines

2684 613875-009

17.6 Electrical Specifications

17.6.1 Pull-Up/Pull-Down Requirements

The host and site implementations must use pull-up and pull-down resistors on I/O pins to ensure
inputs and open drain I/O are in their default states. Refer to the individual signal descriptions shown in
Section 17.3, and Section 17.4 for details.

For I2C and MDIO buses, system designers need to ensure that the pull-up and pull-down values are
sufficient for their implementation and that the buses do not exceed the maximum pin bus capacitance
values as stated in the respective specifications.

613875-009 2685

Intel® Ethernet Controller E810 Datasheet
Thermal Design Considerations

Chapter 18 Thermal Design Considerations

18.1 Introduction

This chapter can be used as an aid when designing a thermal solution for systems implementing the
Intel® Ethernet Controller E810-CAM1, the Intel® Ethernet Controller E810-CAM2, and the Intel®
Ethernet Controller E810-XXVAM2. This is collectively referred to as the E810 in this chapter unless
specific SKU call outs are required.

Properly designed solutions provide adequate cooling to maintain the E810 product case temperature
Tcase (or junction) at or below thermal specifications. The E810 should function properly if case
temperatures are kept at or below those presented. Ideally this is accomplished by providing a low local
ambient temperature airflow and creating a minimal thermal resistance to that local ambient
temperature.

By maintaining the case (or junction) temperature at or below the specified limits, a system designer
can ensure the proper functionality, performance, and reliability of the E810. Operation outside the
functional limits can cause data corruption or permanent damage to the E810.

The simplest and most cost-effective method to improve the inherent system cooling characteristics is
through careful chassis design and placement of fans, vents, and ducts. When additional cooling is
required, component thermal solutions can be implemented in conjunction with system thermal
solutions. The size of the fan or heat sink can be varied to balance size and space constraints with
acoustic noise.

18.2 Measuring the Thermal Conditions

This section provides a method for determining the operating temperature of the E810 in a specific
system based on the junction and case temperature. Case temperature is a function of the local
ambient and internal temperatures of the E810. The junction temperature can be read with the Intel
software tools. This document specifies a maximum allowable TJ-MAX and TC-MAX values for the E810.
Refer to Section 18.6 for conversion formula details.

Intel® Ethernet Controller E810 Datasheet
Thermal Design Considerations

2686 613875-009

18.3 Thermal Considerations

In a system environment, the temperature of a component is a function of both the system and
component thermal characteristics. System-level thermal constraints consist of the local ambient
temperature at the component, the airflow over the component and surrounding board, and the
physical constraints at, above, and surrounding the component that might limit the size of a thermal
enhancement (heat sink).

The component's case/die temperature depends on:

• Component power dissipation

• Size

• Packaging materials (effective thermal conductivity)

• Type of interconnection to the substrate and motherboard

• Presence of a thermal cooling solution

• Power density of the substrate, nearby components, and motherboard

All these parameters are pushed by the continued trend of technology to increase performance levels
(higher operating speeds, MHz) and power density (more transistors). As operating frequencies
increase and packaging size decreases, the power density increases, and the thermal cooling solution
space and airflow become more constrained. The result is an increased emphasis on system design to
ensure that thermal design requirements are met for each component in the system.

18.4 Importance of Thermal Management

The thermal management objective is to ensure that all system component temperatures are
maintained within functional limits. The functional temperature limit is the range in which the electrical
circuits are expected to meet specified performance requirements. Operation outside the functional
limit can degrade system performance, cause logic errors, or cause device and/or system damage.

Temperatures exceeding the maximum operating limits might result in irreversible changes in the
device operating characteristics.

Note: The E810 has temperature sensors internal to the package, and automatically forces all
Ethernet links down when the upper fatal temperature threshold (115 °C) is reached.

Also note that sustained operation at component maximum temperature limit might affect long-term
device reliability.

613875-009 2687

Intel® Ethernet Controller E810 Datasheet
Thermal Design Considerations

18.5 Packaging Terminology

Table 18-1. Packaging Terminology

Item Description

BLT Bond Line Thickness — Final settled thickness of the Thermal Interface Material (TIM) after installation of the
heat sink.

CTE Coefficient of Thermal Expansion — The relative rate a material expands during a thermal event.

FCBGA Flip Chip Ball Grid Array package — A surface-mount package using a combination of flip chip and BGA
structure whose PCB-interconnect method consists of Pb-free solder ball array on the interconnect side of the
package. The die is flipped and connected to an organic build-up substrate with C4 bumps.
The E810-CAM2/CAM1 package is covered with a lid to protect the on-package capacitors. The E810-XXVAM2 is
an exposed die.

Junction Refers to a P-N junction on the silicon. In this document, it is used as a temperature reference point (for
example, ΘJB refers to the “junction” to ambient thermal resistance).

Ambient Refers to local ambient temperature of the bulk air approaching the component. It can be measured by placing
a thermocouple approximately 1 inch upstream from the component edge.

LFM Linear Feet per Minute — Airflow.

TA Local ambient temperature.

TC Case temperature — Temperature at geometric center of dies or over mold top surface.

TJ Junction temperature – Maximum temperature of die active surface, i.e. hot spot.

TDP Thermal Design Power — The estimated maximum possible/expected power generated in a component by a
realistic application. Thermal solutions should be designed to dissipate this power level. TDP is not the peak
power that the component can dissipate.

TIM Thermal Interface Material — A conductive material used between the component and heat sink to improve
thermal conduction.

ΘJB (Theta JB) Thermal resistance junction-to-board, °C/W.

ΘJC (Theta JB) Thermal resistance junction-to-case, °C/W.

ΨJC (Psi JC) Junction-to-case (top of package) thermal characteristic parameter, defined by (TJ - TC) / TDP.
ΨJC does not represent thermal resistance, but instead is a characteristic parameter that can be used to convert
between TJ and TC when knowing the total TDP. This parameter can vary by environment conditions like heat
sink and airflow.

Intel® Ethernet Controller E810 Datasheet
Thermal Design Considerations

2688 613875-009

18.6 Thermal Specifications

The following considerations should be made when designing a proper thermal solution for the E810:

• To ensure proper operation of the E810, the thermal solution must maintain a junction temperature
at or below 105 °C for functionality, and meet the TDP power specs. The device is tested to 105 °C.

• The E810 is designed to work at up to 115 °C with no reliability issues. However, functionality is not
tested and the TDP may exceed the published values. Normal operation is expected to resume
when the silicon returns to a max junction temperature of 105 °C.

• The E810 might experience temperature excursions to 125 °C for no more than 4% of the
operating lifetime of the product. Functionality is not tested at this temperature, but there is no
reliability impact if the device stays within these boundaries. Normal operation is expected to
resume when the silicon returns to a max junction temperature of 105 °C.

System-level or component-level thermal enhancements are required to dissipate the generated heat
to ensure the junction temperature never exceeds the maximum temperature.

A good heat sink design and system airflow are critical to dissipate the E810's high power. To develop a
reliable, cost-effective thermal solution, all the system variables must be considered. Use system-level
thermal characteristics and simulations to account for individual component thermal requirements.
Good Thermal Interface Material (TIM) between the heat sink and die must be applied correctly. The
E810-CAM2/CAM1 and E810-XXVAM2 FloTherm thermal models can be downloaded from rdc.intel.com.

Keep the following in mind when reviewing the data that is included in this document:

• All data is preliminary and is not validated against physical samples.

• Your system design might be significantly different.

• A larger board with more layers might improve the E810 thermal performance.

The relationship between the parameters in Table 18-2 are as follows:

ΨJC = (TJ - TC) / TDP

 TC-MAX = TJ-MAX - (ΘJC * TDP)

Table 18-2. E810 Thermal Specifications

Parameter E810-CAM2 E810-CAM1 E810-XXVAM2 Notes

TJ-MAX 105 °C 105 °C 105 °C

TDP 15.7 W 13.8 W 10.8 W
Max TDP; characterized at TJ = 105 °C. Refer to
Section 16.4, “Power Dissipation” for a power down
by each power rail and operational conditions.

ΘJC 0.69 °C /W 0.69 °C /W 0.15 °C /W Thermal resistance junction-to-case.

ΘJB 4.3 °C /W 4.3 °C /W 7.4 °C /W Thermal resistance junction-to-board.

rdc.intel.com

613875-009 2689

Intel® Ethernet Controller E810 Datasheet
Thermal Design Considerations

18.7 Package Mechanical Attributes

The E810 comes in two package sizes:

• E810-CAM2/CAM1 — 25x25 mm FCBGA with integrated heat spreader (lid).

• E810-XXVAM2 — 21x21 mm FCBGA with exposed die.

Note: Make sure official drawings are used for your detailed design.

Refer to Section 16.6.2, “Heat Sink Mechanical Load Limits” for the maximum loads for heat sink to PCB
attachment.

Figure 18-1. E810-CAM2/CAM1 FCBGA Mechanical Illustration

Intel® Ethernet Controller E810 Datasheet
Thermal Design Considerations

2690 613875-009

Figure 18-2. E810-XXVAM2 FCBGA Mechanical Illustration

X Y Z
HE IG HT

C1 -0.7 00 8.700 0.35 0 0 204
C2 2.300 8 .7 00 0.35 0 0 204
C3 0.300 -8.70 0 0.35 0 0 204
C4 -2.8 00 -8.6 00 0.35 0 0 204

DISC RE TE CO MP ON EN TS

Item No. C OMPO NE NT TY PE
CO MP ON EN T

613875-009 2691

Intel® Ethernet Controller E810 Datasheet
Glossary and Acronyms

Chapter 19 Glossary and Acronyms

This section defines terms and acronyms commonly used throughout this specification. Another source
for this type information is Section 1.6, which contains some of the acronyms defined in the industry
standards (For example, MII, MPA, Verbs, NC-SI, and so on).

Table 19-1. Definition of Terms

Term Definition

AN Auto-Negotiation — An IEEE Ethernet method for exchanging PHY layer parameters, such as speed and
duplex mode, between link partners.

BAR Base Address Register — Standard registers defined in PCI Config space that define how an I/O
adapter responds to host memory-mapped I/O requests.

BER Bit Error Rate — The number of bits received in error, divided by the total number of bits received.

BFP Blank Flash Programming

BMC
Baseboard Management Controller — A BMC is a specialized embedded processor, typically integrated
on a server motherboard, that reports the state of the server to the system administrator independent of
the state of the server OS.

CEQ Completion Event Queue — The E810 writes Completion events to this shared queue to make it easy
for software to determine which CQ has new CQEs.

Completed, Completes,
and so on

Completion — When an RNIC has performed all functions specified for a given WQ operation, including
Placement and Delivery, that WQ operation is said to be “completed”. This can be determined by the
Consumer through a Work Completion for Signaled Work Requests.

Connection Context
The information needed by the E810 Protocol Engine to track the state of a connection. This can include
TCP- and iWARP-related information. The information includes things such as pointers to buffers, pointers
to queues, pointers to CQs, sequence numbers, and so on.

Consumer A software process that communicates with the E810. The Consumer typically consists of an application
program or an OS adaptation layer that provides some OS-specific API.

CQ

Completion Queue — A sharable queue that can contain one or more Completion Queue Entries. A
Completion Queue is used to create a single point of completion notification for multiple Work Queues.
The Work Queues associated with a Completion Queue might be from different QPs and of differing queue
types (SQs or RQs).

CQE Completion Queue Entry — Info that the E810 writes onto a Completion Queue during the process of
performing a Completion.

CRC Cyclic Redundancy Check — An error detecting code commonly used to protect network transmissions.

CSR Control/Status Register — I/O adapter registers typically accessed by the host using memory-mapped
I/O requests.

CSS Intel Code Signing System

DSI Dataplane Switch-mode Interface — A software API for dataplane applications to allow direct attach
of multiple users to device resources.

DMTF Distributed Management Task Force

ECC Error-Correcting Code — A code commonly used to protect network transmissions, which allows both
detection and recovery from errors.

EMP
Embedded Management Processor — An E810 embedded processor that handles device initialization
and also device configuration based on commands received from an Admin Queue, a management
interface (like NC-SI), or from a network port.

EMPR Embedded Management Processor Reset

FIPS Federal Information Processing Standard — Published by NIST.

FLR
Function-Level Reset — A capability defined in the PCI Express Base Specification that enables
software to quiesce and reset a particular PCI Function in a MFD, without affecting the other PCI functions
therein.

Intel® Ethernet Controller E810 Datasheet
Glossary and Acronyms

2692 613875-009

FPDU Framed Protocol Data Unit — The unit of data created by an MPA sender.

FPM

Function Private Memory — The E810 uses host memory as backing store for a number of context
objects, such as queue state and iWARP objects. These objects are cached in the E810 Host Memory
Cache (HMC). Each E810 PF or VF driver allocates host pages for this backing store according to its
needs. Host pages are mapped into a virtually contiguous Private Memory address space that the HMC
uses for object access. A contiguous portion of Private Memory address space is allocated for each PCI
Function, and is referred to as that PCI Function’s Function Private Memory (FPM). All of the host pages
allocated by a given PF or VF driver are mapped into its FPM.

Frame A unit composed of headers, data, and footers that are sent or received by a device. Also known as a
Packet.

FSI

Financial Services Industry — The Financial Services Industry includes a broad range of organizations
that deal with the management of money, including banks, credit card companies, insurance companies,
consumer finance companies, stock brokerages, investment funds, and so on. FSI organizations often
require ultra-low-latency access to financial market data such as stock feeds. Market data is typically
streamed to, and distributed within these organizations using a publish/subscribe messaging model built
on UDP/IP multicast transport.

HPC High Performance Computing — A common term for the compute market of high performance
applications.

IFP In-Field Programmable

IPG Inter Packet Gap — A set of idle signals sent over the network to separate packets

IRD Inbound RDMA Read Queue Depth — The maximum number of incoming outstanding RDMA Read
Request Messages an E810 QP can handle. The E810 allows IRD to vary on a per QP basis.

ITR Interrupt Throttling — A method of interrupt moderation that guarantees a minimum gap between two
consecutive interrupts.

KVM Keyboard, Video, Mouse — Standard bundle of computer user I/O devices.

LACP Link Aggregation Control Protocol — The IEEE protocol that enables the formation of Link
Aggregation Groups (aggregation of one or more Ethernet links into a single logical link).

LLDP Link Layer Discovery Protocol — The IEEE protocol that enables a server to advertise its identity,
capabilities, and interconnections to other entities on an Ethernet fabric.

LLP

Lower Layer Protocol — The protocol layer beneath the protocol layer currently being referenced.
For example:
• For TCP, the LLP is IP.
• For RDMA, the LLP is DDP.
• and so on.

LOM LAN on Motherboard — When the E810 is integrated on a server motherboard, it qualifies as a LOM
NIC.

LS Least Significant — Lowest order (for example: LS bit = Least significant bit)

MDIO Management Data Input/Output Interface — A standard interface to connect a MAC to a PHY, used
to access PHY registers.

MFD Multi-Function Device — A PCI Device with more than one PCI function.

MFP Multi-Function per Port — A PCI Device is classified as an MFP Device when it can support more than
one PCI Physical Function bound to a single network port. See also Single-Function per Port (SFP).

ML
Mini-Loader — EMP firmware executed out of EMP internal SRAM and responsible for bringing up PCIe
interface within PCIe specification's 100 ms time limit, then authenticating and launching the main EMP
NVM firmware.

MR

Memory Region — An area of memory that the RDMA Consumer wants the E810 to be able to (locally or
locally and remotely) access directly in a logically contiguous fashion. A Memory Region is identified by an
STag, a Base TO, and a length. A Memory Region is associated with a Physical Buffer List through the
STag.

MSS Maximum Segment Size — The largest amount of data that a network device can handle in a single,
unfragmented piece.

Table 19-1. Definition of Terms [continued]

Term Definition

613875-009 2693

Intel® Ethernet Controller E810 Datasheet
Glossary and Acronyms

MW
Memory Window — A subset of a Memory Region, which can be remotely accessed in a logically
contiguous fashion. A Memory Window is identified by an STag, a Base TO, and a length, but also
references an underlying Memory Region and has Access Rights.

Nearest Bridge
Address A multicast MAC Address used for DCBx exchange.

NIC Network Interface Controller — An I/O adapter that enables a computer to communicate over a
network.

NIST National Institute of Standards and Technology — United States government commerce agency
which defines security standards.

NSA National Security Agency

NVM Non-Volatile Memory

OEM Original Equipment Manufacturer

ORD
Outbound RDMA Read Queue Depth — The maximum number of outstanding RDMA Read Request
Messages that the E810 can initiate from a SQ at the Data Sink. The E810 allows ORD to vary on a per QP
basis.

OTP One-Time Programmable

Packet A unit composed of headers, data, and footers that are sent or received by a device. Also known as a
Frame.

Page List

A list of physical addresses describing a set of memory pages, which specifies the page size, list of
physical addresses, and offset to the start of the memory region within the first page. The starting
physical addresses of each page are aligned on power-of-two addresses, and the size of the page is a
power of two. Note that it is possible for the starting offset to be an offset into the first page and to be of
a byte granularity, and the entire list might have an arbitrary length.

PBL
Physical Buffer List — In iWARP terminology, a Physical Buffer List can either be a Block List or a Page
List. The E810 does not support Block Lists, so in the context of the E810, PBLs and Page Lists are the
same thing.

PD
Protection Domain — A mechanism the Protocol Engine uses for tracking the association of Queue
Pairs, Memory Windows, and Memory Regions. PDs are intended to be set by a Privileged Consumer to
provide protection of one process from accessing another’s memory, using the E810 as a proxy.

PF Physical Function — A PCI Function that supports the PCI-SIG Single Root I/O Virtualization and
Sharing Specification.

PFA Preserved Field Area — NVM section used to store run-time configuration data that is not overwritten
when the EMP firmware image is updated.

PHY Core The 10/25/40/50/100G PHY connected to the E810.

PLDM Platform Level Data Model

QP

Queue Pair — A pair of queues that allow a Consumer to interact with the E810. The two queues are the
Send Queue (sometimes called a Transmit Queue or TQ) and the Receive Queue. Each queue stores a
Work Queue Element from the time it is posted until the time it is completed. The E810 LAN Engine and
Protocol Engine all use QPs to interact with their various Consumers. Work Queue Elements processed by
the different engines can be quite different (for example, LAN packet vs. RDMA message).

Quad In this document, the term “quad” is defined as the set containing {source IP Address, dest IP Address,
source port, dest port} taken from a TCP/IP packet.

Quanta A configurable amount of bytes consisting of one or more packets.

RAD Required Authorization for Debug

Registration, Register
Memory Registration — The mechanism used to enable direct (local or local and remote) access by the
E810 of an RDMA Consumer’s Memory Region. The memory registration operation associates a Physical
Buffer List to the Steering Tag (STag) returned.

RNG Random Number Generator

RNIC RDMA Network Interface Controller — The generic term for a device that implements iWARP verbs
functionality. The E810 is an RNIC.

Table 19-1. Definition of Terms [continued]

Term Definition

Intel® Ethernet Controller E810 Datasheet
Glossary and Acronyms

2694 613875-009

ROM Read-Only Memory

RQ
Receive Queue — One of the two Work Queues associated with a Queue Pair. The Receive Queue
contains Work Queue Elements that describe the Buffers into which data from incoming Send Operation
Types is placed.

RSA Rivest Shamir Adleman — Asymmetric cryptographic algorithm. The acronym comes from the
surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who publicly described the algorithm in 1977.

RSS

Receive Side Scaling — A feature of Microsoft Windows OS that distributes receive packet processing to
the different processors in a multi-processor system. Received packets are classified by the E810 under
OS control into groups of conversations. Each group of conversations is assigned its own receive queue
and receiving processor.

Scheduler Quanta A “quanta” is a configurable amount of bytes consisting of one or more packets. The Scheduler schedules
a “quanta” in each scheduling decision.

SDPs Software Definable Pins — E810 device pins that have a high degree of software configurability and
programmability. Also called General purpose I/Os (GPIOs).

SFP Single-Function per Port — A PCI Device is classified as an SFP device when it can support only one
PCI Physical Function bound to a single network port. See also Multi-Function per Port (MFP).

SFP
Small Form-factor Pluggable — A small form-factor pluggable (SFP or SFP+) module is a compact,
hot-pluggable transceiver that interfaces a network device like the E810 to a fiber optic or copper
networking cable.

SHA Secure Hash Algorithm

SQ
Send Queue — One of the two Work Queues associated with a Queue Pair. The Send Queue contains
PostSQ Work Queue Elements that have specific operation types, such as Send Type, RDMA Write, or
RDMA Read Type Operations, as well as STag operations such as Bind and Invalidate.

TAP Test Access Port

TLV

Type, Length, Value — A technique used to encode messages in a data communication protocol. Each
message is comprised of three sequential fields:
• A Type field, fixed in size and typically ~1 byte, which identifies the specific type of message and the

format of information in the Value field.
• A Length field, fixed in size and typically ~1 byte, which defines the length of the Value field in

octets.
• A Value field, variable in size, which contains all of the data specific to this message type.

A protocol relevant to the E810 that uses TLV encoding is IEEE Link Layer Discovery Protocol (LLDP).

TOE TCP Offload Engine — The E810 Protocol Engine integrates a TOE, which provides complete TCP/IP
transport processing for RDMA connections.

TSO
Transmit Segmentation Offload — Also known as Large Send Offload (LSO). This high performance
NIC feature allows the host OS to pass large chunks of data payload to the NIC with instructions on how
to segment the payload into multiple packets for transmission.

UDA

Userspace Direct Access — A feature to enable network protocol processing performed by userspace
software. a device can be programmed to direct a specific flow (e.g., a TCP connection or a UDP
conversation) to a particular userspace process via an QP-style hardware interface. UDA is implemented
only for iWARP to use for connection setup and error handling. It is not available for applications to use.

ULP

Upper Layer Protocol — The protocol layer above the protocol layer currently being referenced.
For example:
• For IP, the ULP is TCP.
• For RDMA verbs, an example ULP is SDP.
• and so on.

VEB Virtual Ethernet Bridge — This is an IEEE EVB term. A VEB is a VLAN Bridge internal to the E810 that
bridges the traffic of multiple VSIs over an internal virtual network.

VEPA
Virtual Ethernet Port Aggregator — This is an IEEE EVB term. A VEPA multiplexes the traffic of one or
more VSIs onto a single E810 Ethernet port. The biggest difference between a VEB and a VEPA is that a
VEB can switch packets internally between VSIs, whereas a VEPA cannot.

Table 19-1. Definition of Terms [continued]

Term Definition

613875-009 2695

Intel® Ethernet Controller E810 Datasheet
Glossary and Acronyms

VF

Virtual Function — A VF is a PCI Function that supports the PCI-SIG Single Root I/O Virtualization and
Sharing Specification. One or more VFs are associated with a single PF. The group of VFs/PFs shares one
or more physical resources, such as an Ethernet port. A VF is designed to be programmed by a Virtual
Machine, whereas a PF is designed to be programmed by a higher-privileged entity, such as a Hypervisor.

VMDq

Virtual Machine Devices queues — A collection of NIC features designed to offload the hypervisor
from performing classification and distribution of received packets to the Virtual Machines under its
control. There are two versions of VMDq: VMDq1 and VMDq2. VMDq2 is a superset of VMDq1. Its major
new features are: internal switching from a Transmit Queue to a Receive Queue, the ability to replicate
received multicast and broadcast packets to multiple Receive Queues, the ability to sort received packets
based on a combination VLAN tag and MAC Address filter, and anti-spoofing transmit filters.

VMM
Virtual Machine Monitor — A software component that allocates/exports/isolates server resources to
the Virtual Machines (or System Images). Other terms for VMM in this specification: Hypervisor,
Virtualization Intermediary (VI).

VPD

Vital Product Data — VPD is defined in the PCI Local Bus Specification (this is the conventional PCI
specification, not PCIe). VPD is information that uniquely identifies hardware and software elements of a
server. The VPD provides a server OS with information on various Field Replaceable Units such as part
number, serial number, and so on.

VSI

Virtual Station Interface — This is an IEEE EVB term that defines the properties of a virtual machine’s
(or a physical machine’s) connection to the network. Each downstream v-port on an E810 VEB or VEPA
defines a VSI. A standards-based definition of VSI properties enables network management tools to
perform virtual machine migration and associated network reconfiguration in a vendor-neutral manner.

WoL
Wake on LAN — An Ethernet technology that enables a computer to power on or “wake up” upon receipt
of a network message, often called a “Magic Packet”. Newer specifications in this area call WoL Advanced
Power Management Wake-Up.

WQ Work Queue — One of either a Send Queue or Receive Queue.

WQE Work Queue Element — A Work Request transformed by software into E810-specific format, and
enqueued on a Work Queue.

WR Work Request — A request to the E810 by the Consumer to perform some operation. Gets transformed
by software into a Work Queue Element.

WRR
Weighted Round-Robin — A scheduling or arbitration algorithm that selects amongst requesters in a
round-robin fashion, and in which each requester can be programmed to receive a different percentage
share of resource bandwidth.

WSP Weighted Strict Priority — A scheduling or arbitration algorithm which selects the requester with
highest priority that has not exhausted its programmed percentage share of resource bandwidth.

Table 19-1. Definition of Terms [continued]

Term Definition

Intel® Ethernet Controller E810 Datasheet
Glossary and Acronyms

2696 613875-009

NOTE: This page intentionally left blank.

613875-009 2697

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

Appendix A Factory Parsing Program

A.1 General

The following section describes the factory parsing program embedded into the E810 NVM, in particular
the factory-programmed:

• Parse graph

• Protocols and frame formats

• Packet Types

The E810 factory parsing program includes a large set of frame formats that are common in various
networking applications. These formats are stored in NVM as the default device programming.

Note: The factory parsing program can be modified or replaced by reprogramming the E810 parser.
The device provides reprogramming of any aspect of the parsing policy, including the parse
graph, frame formats, and packet types.

A.1.1 Supported Header Length

In general, the device parses headers up to the minimum of first 504 bytes of the packet, or up to 16
detected protocol headers, including payload (hereafter the “parsing depth”).

Packets with headers that extend beyond the parsing depth are handled depending on the case:

• When the “next header” is located beyond the parsing depth, the packet is reported as a “partially
analyzed” packet.

• When a header is chopped at the parsing depth boundary, the packet is reported as an “abort”
(0xFF).

Note: Some types of headers must have a consecutive header (for example, MPLS or VLAN). For
such headers, the packet is reported as an abort if there is no trailing header. The last
detected protocol will always be reported as “payload”.

A.2 Parse Graph

The factory parse graph represents protocol sequences supported by the factory parsing program.
Nodes on the parse graph normally correspond to protocol headers such as VLAN, MPLS, IPv4, IPv6,
TCP, UDP, VXLAN, and so on. Arcs on the parse graph connect nodes. Traversal over an arc from one
node to another node is either unconditional (for example, L2 MAC always after VXLAN) or conditional
(for example, IPv4 after L2 MAC if ETYPE = 0x0800).

The factory parse graph supports multiple overlay and tunneling technologies, including:

• MAC-in-MAC

• VXLAN, VXLAN-GPE

• Geneve

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2698 613875-009

• GRE

• NSH (Service Chaining Header)

• MPLSoGRE, MPLSoUDP

Figure A-1 illustrate the E810 factory parse graph.

Figure A-1. Factory Parse Graph: L2+ Sections

ETYPE

VLAN
8100

VLAN
8100

IPv4/opt

ETYPE

LAA

ETYPE

VLAN
8100

S-TAG
88a8

VLAN
8100

ETYPE

LAA

VLAN
9100

VLAN
8100

ETYPE

LAA

LLLAN VVVV

MPLS

MPLS

IPv6

MAC

ATAoE

LLDP

Control

ECP

ARP

EAPoL

NSH*

MAC

ETYPE

AGGN
00
NVLAN

81008100
LLLLANV

88

*Enforce Single NSH:
Stop parsing

on 2nd occurrence

PTP

B-VLAN
88a8

I-TAG
88e7

ETYPE

TAA

B
MAC-in-MAC

Root

PFC
op 0x0101

PAUSE
op 0x0001

613875-009 2699

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

Note: The parse graph illustrated in Figure A-1 shows the VLAN support for double VLAN mode.
When supporting a single VLAN, the second occurrence of a VLAN is omitted from the parse
graph.

Figure A-2. Factory Parse Graph: L3+ and Inner Sections

SCTP

IPv4/optIPv6

TCPUDP GRE

VXLAN VXLANgpe

MAC

VLAN
8100

IPv4/opt

ETYPE

IPv6

TCPUDPSCTP

ETYPE

NSH*

MPLS

RoCEv2*

ICMPICMPv6

GTPu/c* Geneve

IPv6 EH

gpee

SMPLS

Post-ESP EH:
DO

ICMP

Pre-ESP EH
Processing

IPv6 Post Junction

SP E

IPv4 Post Junction

ICMPv6

OSPF

VRRP

Check
DIP=224.0.0.18 (MC)

*Enforce Single NSH:
Stop pars ing

on 2nd occurrence

*RoCE:
(1) PPRS enforces RoCEv2 only for
[MAC-{0,1,2xVLAN}-IPv4/IPv6-UDP-RoCEv2]
RCU Parser reports RoCE according to this
graph (2) RoCE (2 x UDP.DstPorts per Eth port)

ESP*

ESP*

*Enforce Single ESP:
Stop parsing

on 2nd occurrence

* RH (Routing Header)

* HbH (Hop-by-Hop) must be 1st If present

Fragment
Header

EH={DO,RH,MH}

EH=DO

EH=ESP

EH=ESP

EH={HbH,DO,RH,MH}

Else

Fragment
Header

EH={DO,RH,MH}

* DO (Destination Options)

* FH (Fragment Header)
* MH (Mobility Header)

*NAT-T:
Up to 8 x UDP.DstPorts total

IPv4 Fragment

IPv4 Fragment

EHs:

EH={HbH,DO,R

MAC

YYYPEYPE

L
11
AN

100100
NNN

ETYPEETYPE

EEETYETY

VL
88

*GTPu:
Up to 4 x UDP.DstPorts total

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2700 613875-009

Notes:

• The Factory Parse graph represents a superset of multiple common use cases. Some of the
sequences listed on the graph are technically feasible but practically non-relevant (for example,
MAC-in-MAC with STAG).

• LSO is not supported for GTPu, VRRP, OSPF packets.

• Inner VLAN insertion is not supported with inner MPLS headers.

A.3 PTYPEs

The E810 provides up to 1K programmable PTYPEs (Packet Types) for enumerating traversals over the
parse graph. For example, traversal of protocol header sequences such as MAC, IPv6, IPv6, TCP, PAY4
(Payload L4). The PTYPE association of a packet is used by subsequent functions in the pipeline. For
example, the ACL classifier might use the PTYPE for selecting a lookup key.

The factory-programmed PTYPEs are detailed in Table A-1.

Notes:

• Unless specifically mentioned, the packet description relates to the inner header structure.

• Table A-1 should not used to deduce which protocol IDs are generated for each PTYPE. The protocol
IDs are specified in Table A-2.

Table A-1. Factory-Programmed PTYPEs

PTYPE
(Dec)

PTYPE
(Hex) Packet Description Backward Compatible to

X710/XXV710/XL710

L2 Packet Types

0 0x000 Reserved No

1 0x001 MAC, PAY Yes

2 0x002 Reserved No

3 0x003 Reserved No

4 0x004 Reserved Yes

5 0x005 Reserved Yes

6 0x006 MAC, LLDP Yes

7 0x007 MAC, ECP Yes

8 0x008 Reserved Yes

9 0x009 Reserved Yes

10 0x00A MAC, EAPOL Yes

11 0x00B MAC, ARP Yes

12 0x00C Reserved No

13 0x00D Reserved No

14 0x00E Reserved No

15 0x00F Reserved No

16 0x010 Reserved No

17 0x011 Reserved No

613875-009 2701

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

18 0x012 Reserved No

19 0x013 Reserved No

20 0x014 Reserved No

21 0x015 Reserved No

Non-Tunneled IPv4

22 0x016 MAC, IPv4FRAG, PAY Yes

23 0x017 MAC, IPv4, PAY Yes

24 0x018 MAC, IPv4, UDP, PAY Yes

25 0x019 Reserved No

26 0x01A MAC, IPv4, TCP, PAY Yes

27 0x01B MAC, IPv4, SCTP, PAY Yes

28 0x01C MAC, IPv4, ICMP, PAY Yes

IPv4 --> IPv4

29 0x01D MAC, IPv4, IPv4FRAG, PAY Yes

30 0x01E MAC, IPv4, IPv4, PAY Yes

31 0x01F MAC, IPv4, IPv4, UDP, PAY Yes

32 0x020 Reserved No

33 0x021 MAC, IPv4, IPv4, TCP, PAY Yes

34 0x022 MAC, IPv4, IPv4, SCTP, PAY Yes

35 0x023 MAC, IPv4, IPv4, ICMP, PAY Yes

IPv4 --> IPv6

36 0x024 MAC, IPv4, IPv6+IPv6FRAG, PAY Yes

37 0x025 MAC, IPv4, IPv6, PAY Yes

38 0x026 MAC, IPv4, IPv6, UDP, PAY Yes

39 0x027 Reserved No

40 0x028 MAC, IPv4, IPv6, TCP, PAY Yes

41 0x029 MAC, IPv4, IPv6, SCTP, PAY Yes

42 0x02A MAC, IPv4, IPv6, ICMP, PAY Yes

IPv4 --> GRE/GENEVE/VXLAN

43 0x02B MAC, IPv4, GRENAT, PAY Yes

IPv4 --> GRE/GENEVE/VXLAN --> IPv4

44 0x02C MAC, IPv4, GRENAT, IPv4FRAG, PAY Yes

45 0x02D MAC, IPv4, GRENAT, IPv4, PAY Yes

46 0x02E MAC, IPv4, GRNAT, IPv4, UDP, PAY Yes

47 0x02F Reserved No

48 0x030 MAC, IPv4, GRENAT, IPv4, TCP, PAY Yes

49 0x031 MAC, IPv4, GRENAT, IPv4, SCTP, PAY Yes

Table A-1. Factory-Programmed PTYPEs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Packet Description Backward Compatible to

X710/XXV710/XL710

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2702 613875-009

50 0x032 MAC, IPv4, GRENAT, IPv4, ICMP, PAY Yes

IPv4 --> GRE/GENEVE/VXLAN --> IPv6

51 0x033 MAC, IPv4, GRENAT, IPv6+IPv6FRAG, PAY Yes

52 0x034 MAC, IPv4, GRENAT, IPv6, PAY Yes

53 0x035 MAC, IPv4, GRNAT, IPv6, UDP, PAY Yes

54 0x036 Reserved No

55 0x037 MAC, IPv4, GRENAT, IPv6, TCP, PAY Yes

56 0x038 MAC, IPv4, GRENAT, IPv6, SCTP, PAY Yes

57 0x039 MAC, IPv4, GRENAT, IPv6, ICMP, PAY Yes

IPv4 --> GRE/GENEVE/VXLAN --> MAC

58 0x03A MAC, IPv4, GRENAT, MAC, PAY Yes

IPv4 --> GRE/GENEVE/VXLAN --> MAC --> IPv4

59 0x03B MAC, IPv4, GRENAT, MAC, IPv4FRAG, PAY Yes

60 0x03C MAC, IPv4, GRENAT, MAC, IPv4, PAY Yes

61 0x03D MAC, IPv4, GRENAT, MAC, IPv4, UDP, PAY Yes

62 0x03E Reserved No

63 0x03F MAC, IPv4, GRENAT, MAC, IPv4, TCP, PAY Yes

64 0x40 MAC, IPv4, GRENAT, MAC, IPv4, SCTP, PAY Yes

65 0x41 MAC, IPv4, GRENAT, MAC, IPv4, ICMP, PAY Yes

IPv4 --> GRE/GENEVE/VXLAN --> MAC --> IPv6

66 0x42 MAC, IPv4, GRENAT, MAC, IPv6+IPv6FRAG, PAY Yes

67 0x43 MAC, IPv4, GRENAT, MAC, IPv6, PAY Yes

68 0x44 MAC, IPv4, GRENAT, MAC, IPv6, UDP, PAY Yes

69 0x45 Reserved No

70 0x46 MAC, IPv4, GRENAT, MAC, IPv6, TCP, PAY Yes

71 0x47 MAC, IPv4, GRENAT, MAC, IPv6, SCTP, PAY Yes

72 0x48 MAC, IPv4, GRENAT, MAC, IPv6, ICMP, PAY Yes

IPv4 --> GRE/GENEVE/VXLAN --> MAC/VLAN

73 0x49 MAC, IPv4, GRENAT, MACVLAN, PAY Yes

IPv4 --> GRE/GENEVE/VXLAN --> MAC/VLAN --> IPv4

74 0x4A MAC, IPv4, GRENAT, MACVLAN, IPv4FRAG, PAY Yes

75 0x4B MAC, IPv4, GRENAT, MACVLAN, IPv4, PAY Yes

76 0x4C MAC, IPv4, GRENAT, MACVLAN, IPv4, UDP, PAY Yes

77 0x4D Reserved No

78 0x4E MAC, IPv4, GRENAT, MACVLAN, IPv4, TCP, PAY Yes

79 0x4F MAC, IPv4, GRENAT, MACVLAN, IPv4, SCTP, PAY Yes

80 0x50 MAC, IPv4, GRENAT, MACVLAN, IPv4, ICMP, PAY Yes

Table A-1. Factory-Programmed PTYPEs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Packet Description Backward Compatible to

X710/XXV710/XL710

613875-009 2703

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

IPv4 --> GRE/GENEVE/VXLAN --> MAC/VLAN --> IPv6

81 0x51 MAC, IPv4, GRENAT, MACVLAN, IPv6+IPv6FRAG, PAY Yes

82 0x52 MAC, IPv4, GRENAT, MACVLAN, IPv6, PAY Yes

83 0x53 MAC, IPv4, GRENAT, MACVLAN, IPv6, UDP, PAY Yes

84 0x54 Reserved No

85 0x55 MAC, IPv4, GRENAT, MACVLAN, IPv6, TCP, PAY Yes

86 0x56 MAC, IPv4, GRENAT, MACVLAN, IPv6, SCTP, PAY Yes

87 0x57 MAC, IPv4, GRENAT, MACVLAN, IPv6, ICMP, PAY Yes

Non-Tunneled IPv6

88 0x58 MAC, IPv6+IPv6FRAG, PAY Yes

89 0x59 MAC, IPv6, PAY Yes

90 0x5A MAC, IPv6, UDP, PAY Yes

91 0x5B Reserved No

92 0x5C MAC, IPv6, TCP, PAY Yes

93 0x5D MAC, IPv6, SCTP, PAY Yes

94 0x5E MAC, IPv6, ICMP, PAY Yes

IPv6 --> IPv4

95 0x5F MAC, IPv6, IPv4FRAG, PAY Yes

96 0x60 MAC, IPv6, IPv4, PAY Yes

97 0x61 MAC, IPv6, IPv4, UDP, PAY Yes

98 0x62 Reserved No

99 0x63 MAC, IPv6, IPv4, TCP, PAY Yes

100 0x64 MAC, IPv6, IPv4, SCTP, PAY Yes

101 0x65 MAC, IPv6, IPv4, ICMP, PAY Yes

IPv6 --> IPv6

102 0x66 MAC, IPv6, IPv6+IPv6FRAG, PAY Yes

103 0x67 MAC, IPv6, IPv6, PAY Yes

104 0x68 MAC, IPv6, IPv6, UDP, PAY Yes

105 0x69 Reserved No

106 0x6A MAC, IPv6, IPv6, TCP, PAY Yes

107 0x6B MAC, IPv6, IPv6, SCTP, PAY Yes

108 0x6C MAC, IPv6, IPv6, ICMP, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN

109 0x6D MAC, IPv6, GRENAT, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN --> IPv4

110 0x6E MAC, IPv6, GRENAT, IPv4FRAG, PAY Yes

111 0x6F MAC, IPv6, GRENAT, IPv4, PAY Yes

Table A-1. Factory-Programmed PTYPEs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Packet Description Backward Compatible to

X710/XXV710/XL710

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2704 613875-009

112 0x70 MAC, IPv6, GRENAT, IPv4, UDP, PAY Yes

113 0x71 Reserved No

114 0x72 MAC, IPv6, GRENAT, IPv4, TCP, PAY Yes

115 0x73 MAC, IPv6, GRENAT, IPv4, SCTP, PAY Yes

116 0x74 MAC, IPv6, GRENAT, IPv4, ICMP, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN --> IPv6

117 0x75 MAC, IPv6, GRENAT, IPv6+IPv6FRAG, PAY Yes

118 0x76 MAC, IPv6, GRENAT, IPv6, PAY Yes

119 0x77 MAC, IPv6, GRENAT, IPv6, UDP, PAY Yes

120 0x78 Reserved No

121 0x79 MAC, IPv6, GRENAT, IPv6, TCP, PAY Yes

122 0x7A MAC, IPv6, GRENAT, IPv6, SCTP, PAY Yes

123 0x7B MAC, IPv6, GRENAT, IPv6, ICMP, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN --> MAC

124 0x7C MAC, IPv6, GRENAT, MAC, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN --> MAC --> IPv4

125 0x7D MAC, IPv6, GRENAT, MAC, IPv4FRAG, PAY Yes

126 0x7E MAC, IPv6, GRENAT, MAC, IPv4, PAY Yes

127 0x7F MAC, IPv6, GRENAT, MAC, IPv4, UDP, PAY Yes

128 0x80 Reserved No

129 0x81 MAC, IPv6, GRENAT, MAC, IPv4, TCP, PAY Yes

130 0x82 MAC, IPv6, GRENAT, MAC, IPv4, SCTP, PAY Yes

131 0x83 MAC, IPv6, GRENAT, MAC, IPv4, ICMP, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN --> MAC --> IPv6

132 0x84 MAC, IPv6, GRENAT, MAC, IPv6+IPv6FRAG, PAY Yes

133 0x85 MAC, IPv6, GRENAT, MAC, IPv6, PAY Yes

134 0x86 MAC, IPv6, GRENAT, MAC, IPv6, UDP, PAY Yes

135 0x87 Reserved No

136 0x88 MAC, IPv6, GRENAT, MAC, IPv6, TCP, PAY Yes

137 0x89 MAC, IPv6, GRENAT, MAC, IPv6, SCTP, PAY Yes

138 0x8A MAC, IPv6, GRENAT, MAC, IPv6, ICMP, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN --> MAC/VLAN

139 0x8B MAC, IPv6, GRENAT, MAC/VLAN, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN --> MAC/VLAN --> IPv4

140 0x8C MAC, IPv6, GRENAT, MACVLAN, IPv4FRAG, PAY Yes

141 0x8D MAC, IPv6, GRENAT, MACVLAN, IPv4, PAY Yes

142 0x8E MAC, IPv6, GRENAT, MACVLAN, IPv4, UDP, PAY Yes

Table A-1. Factory-Programmed PTYPEs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Packet Description Backward Compatible to

X710/XXV710/XL710

613875-009 2705

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

143 0x8F Reserved No

144 0x90 MAC, IPv6, GRENAT, MACVLAN, IPv4, TCP, PAY Yes

145 0x91 MAC, IPv6, GRENAT, MACVLAN, IPv4, SCTP, PAY Yes

146 0x92 MAC, IPv6, GRENAT, MACVLAN, IPv4, ICMP, PAY Yes

IPv6 --> GRE/GENEVE/VXLAN --> MAC/VLAN --> IPv6

147 0x93 MAC, IPv6, GRENAT, MACVLAN, IPv6+IPv6FRAG, PAY Yes

148 0x94 MAC, IPv6, GRENAT, MACVLAN, IPv6, PAY Yes

149 0x95 MAC, IPv6, GRENAT, MACVLAN, IPv6, UDP, PAY Yes

150 0x96 Reserved No

151 0x97 MAC, IPv6, GRENAT, MACVLAN, IPv6, TCP, PAY Yes

152 0x98 MAC, IPv6, GRENAT, MACVLAN, IPv6, SCTP, PAY Yes

153 0x99 MAC, IPv6, GRENAT, MACVLAN, IPv6, ICMP, PAY Yes

154-254 0x09A-0x0FE Reserved Yes

255 0x0FF Parser Aborted Yes

IPv4-UDP-GTP

256 0x100 MAC, IPv4, GTP-C, with TEID NO

257 0x101 MAC, IPv4, GTP-C, with/out TEID NO

258 0x102 MAC, IPv4, GTP-U, Message Type = 0xFF NO

259 0x103 MAC, IPv4, GTP-U, Message Type ≠ 0xFF NO

260 0x104 Reserved for more IPv4-GTP NO

261 0x105 Reserved for more IPv4-GTP NO

262 0x106 Reserved for more IPv4-GTP NO

263 0x107 Reserved for more IPv4-GTP NO

IPv6-UDP-GTP

26 0x108 MAC, IPv6, GTP-C, with TEID NO

26 0x109 MAC, IPv6, GTP-C, with/out TEID NO

26 0x10A MAC, IPv6, GTP-U, Service Type = 0xFF NO

26 0x10B MAC, IPv6, GTP-U, Service Type ≠ 0xFF NO

26 0x10C Reserved for more IPv6-GTP NO

26 0x10D Reserved for more IPv6-GTP NO

270 0x10E Reserved for more IPv6-GTP NO

271 0x10F Reserved for more IPv6-GTP NO

Other

272 0x110 MAC, IPv4, VRRP NO

273 0x111 MAC, IPv4, OSPF NO

274 0x112 MAC, IPv6, VRRP NO

275 0x113 MAC, IPv6, OSPF NO

Table A-1. Factory-Programmed PTYPEs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Packet Description Backward Compatible to

X710/XXV710/XL710

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2706 613875-009

A.4 Protocol IDs

The E810 provides up to 256 programmable Protocol IDs (Protocol Identification) for enumerating
protocol headers or other points of interest in the parse graph.

The factory-programmed Protocol IDs are detailed in Table A-2.

276 0x114 MAC, ATAoE NO

277 0x115 Reserved NO

278 0x116 MAC, Control ETYPE 0x8808 (PAUSE, PFC, other control frames) NO

279-1023 Reserved No

Notes:
• “GRENAT” means GRE or any UDP tunnel other than UDP-NAT-ESP. This means that several different traversal paths on the

parse graph might result in the same PTYPE, yet will each have a different composition of protocol IDs and flags.
• “MAC” is the first MAC protocol in packet.

Table A-2. Factory-Programmed Protocol IDs

PTYPE
(Dec)

PTYPE
(Hex) Mnemonic Protocol Layer Position Description

0 0x000 Reserved ----- ----- ----- Reserved.

1 0x001 MAC.o.[1] MAC Outer 1st Outer or single MAC.

2 0x002 MAC.o.[2] MAC Outer 2nd Outer 2nd MAC (can exist only if inner
exists).

3 0x003 Reserved ----- ----- ----- Reserved.

4 0x004 MAC.i.[L] MAC Inner Last Inner Last MAC.

5 0x005 Reserved ----- ----- ----- Reserved.

6 0x006 Reserved ----- ----- ----- Reserved.

7 0x007 MAC-in-
MAC.o.[1]

MAC-in-MAC Outer 1st Outer 1st MAC-in-MAC.
Note: This is reported when

“STAG+ITAG” (MAC-in-MAC)
found. In this case, STAG protID
is not reported (even though an
“STAG” is found in the pkt).

8 0x008 Reserved ----- ----- ----- Reserved

9 0x009 ETYPE.o.[L] ETYPE Outer Last Outer Last ETYPE.
Note: The offset points to the ETYPE

field.

10 0x00A ETYPE.i.[L] ETYPE Inner Last Inner Last ETYPE.
Notes: The offset points to the ETYPE

field

11 0x00B Reserved ----- ----- ----- Reserved.

12 0x00C Reserved ----- ----- ----- Reserved.

13 0x00D Reserved ----- ----- ----- Reserved.

14 0x00E Reserved ----- ----- ----- Reserved.

Table A-1. Factory-Programmed PTYPEs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Packet Description Backward Compatible to

X710/XXV710/XL710

613875-009 2707

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

15 0x00F Payload ----- ----- ----- Payload.
Note: Will be reported even if no

payload in the pkt.

16 0x010 VLAN.o.[1] VLAN Outer 1st Outer external VLAN.
Note: This is EVLAN (0x8100 or

0x9100) or STAG (0x88a8) (flags
distinguish between them)

17 0x011 VLAN.o.[2] VLAN Outer 2nd Outer VLAN.
Note: This is always VLAN (0x8100).

18 0x012 VLAN.i.[1] VLAN Inner 1st Inner 1st VLAN.

19 0x013 Reserved ----- ----- ----- Reserved.

20 0x014 Reserved ----- ----- ----- Reserved.

21 0x015 Reserved ----- ----- ----- Reserved.

22 0x016 Reserved ----- ----- ----- Reserved.

23 0x017 Reserved ----- ----- ----- Reserved.

24 0x018 Reserved ----- ----- ----- Reserved.

25 0x019 Reserved ----- ----- ----- Reserved.

26 0x01A Reserved ----- ----- ----- Reserved.

27 0x01B MPLS.o.[L-1] MPLS Outer Last-1 Outer Last-1 MPLS.

28 0x01C MPLS.o.[L] MPLS Outer Last Outer Last MPLS.
Note: Outer last or outer single.

29 0x01D MPLS.i.[L] MPLS Inner Last Inner Last MPLS.

30 0x01E Reserved ----- ----- ----- Reserved.

31 0x01F Reserved ----- ----- ----- Reserved.

32 0x020 IPv4.o.[1] IPv4 Outer 1st Outer 1st IPv4.
Note: Outer or single.

33 0x021 IPv4.i.[L] IPv4 Inner Last Inner Last IPv4.
• Only in tunneled packets.

34 0x022 Reserved ----- ----- ----- Reserved.

35 0x023 Reserved ----- ----- ----- Reserved.

36 0x024 Reserved ----- ----- ----- Reserved.

37 0x025 Reserved ----- ----- ----- Reserved.

38 0x026 Reserved ----- ----- ----- Reserved.

39 0x027 Reserved ----- ----- ----- Reserved.

40 0x028 IPv6.o.[1] IPv6 Outer 1st Outer 1st IPv6.
Note: Outer or single.

41 0x029 IPv6.i.[L] IPv6 Inner Last Inner Last IPv6.
Note: Only in tunneled packets.

42 0x02A Reserved ----- ----- ----- Reserved.

43 0x02B Reserved ----- ----- ----- Reserved.

44 0x02C Reserved ----- ----- ----- Reserved.

Table A-2. Factory-Programmed Protocol IDs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Mnemonic Protocol Layer Position Description

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2708 613875-009

45 0x02D Reserved ----- ----- ----- Reserved.

46 0x02E Reserved ----- ----- ----- Reserved.

47 0x02F IPv6FRAG.o.[1] IPv6FRAG ----- 1st 1st IPv6 Frag.

48 0x030 Reserved ----- ----- ----- Reserved.

49 0x031 TCP.i.[L] TCP Inner Last Inner Last TCP.

50 0x032 Reserved ----- ----- ----- Reserved.

51 0x033 Reserved ----- ----- ----- Reserved.

52 0x034 UDP.o.[1] UDP Outer 1st Outer 1st UDP.
Note: Only in tunneled packets.

53 0x035 UDP.i.[L] UDP Inner Last Inner Last UDP.
Note: Inner UDP in tunneled packets or

single UDP in non-tunneled
packets.

54 0x036 Reserved ----- ----- ----- Reserved.

55 0x037 Reserved ----- ----- ----- Reserved.

56 0x038 Reserved ----- ----- ----- Reserved.

57 0x039 Reserved ----- ----- ----- Reserved.

58 0x03Q Reserved ----- ----- ----- Reserved.

59 0x03B Reserved ----- ----- ----- Reserved.

60 0x03C Reserved ----- ----- ----- Reserved.

61 0x03D Reserved ----- ----- ----- Reserved.

62 0x03E Reserved ----- ----- ----- Reserved.

63 0x03F Reserved ----- ----- ----- Reserved.

64 0x40 GRE.o.[1] GRE Outer 1st Outer 1st GRE.

65 0x41 Reserved ----- ----- ----- Reserved.

66 0x42 Reserved ----- ----- ----- Reserved.

67 0x43 Reserved ----- ----- ----- Reserved.

68 0x44 Reserved ----- ----- ----- Reserved.

69 0x45 Reserved ----- ----- ----- Reserved.

70 0x46 Reserved ----- ----- ----- Reserved.

71 0x47 Reserved ----- ----- ----- Reserved.

72 0x48 Reserved ----- ----- ----- Reserved.

73 0x49 Reserved ----- ----- ----- Reserved.

74 0x4A Reserved ----- ----- ----- Reserved.

75 0x4B Reserved ----- ----- ----- Reserved.

76 0x4C Reserved ----- ----- ----- Reserved.

77 0x4D Reserved ----- ----- ----- Reserved.

78 0x4E Reserved ----- ----- ----- Reserved.

79 0x4F Reserved ----- ----- ----- Reserved.

Table A-2. Factory-Programmed Protocol IDs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Mnemonic Protocol Layer Position Description

613875-009 2709

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

80 0x50 Reserved ----- ----- ----- Reserved.

81 0x51 Reserved ----- ----- ----- Reserved.

82 0x52 Reserved ----- ----- ----- Reserved.

83 0x53 Reserved ----- ----- ----- Reserved.

84 0x54 NSH.[1] NSH N/A 1st 1st NSH.

85 0x55 Reserved ----- ----- ----- Reserved.

86 0x56 Reserved ----- ----- ----- Reserved.

87 0x57 Reserved ----- ----- ----- Reserved.

88 0x58 ESP.[1] ESP N/A 1st 1st ESP.

89 0x59 Reserved ----- ----- ----- Reserved.

90 0x5A Reserved ----- ----- ----- Reserved.

91 0x5B Reserved ----- ----- ----- Reserved.

92 0x5C Reserved ----- ----- ----- Reserved.

93 0x5D Reserved ----- ----- ----- Reserved.

94 0x5E Reserved ----- ----- ----- Reserved.

95 0x5F Reserved ----- ----- ----- Reserved.

96 0x60 SCTP.i.[L] SCTP Inner Last Inner Last SCTP.

97 0x61 Reserved ----- ----- ----- Reserved.

98 0x62 ICMP.i.[L] ICMP Inner Last Inner Last ICMP.

99 0x63 Reserved ----- ----- ----- Reserved.

100 0x64 ICMPv6.i.[L] ICMPv6 Inner Last Inner Last ICMPv6.

101 0x65 VRRP VRRP N/A 1st 1st VRRP.

102 0x66 OSPF OSPF N/A 1st 1st OSPF.

103 0x67 Reserved ----- ----- ----- Reserved.

104 0x68 Reserved ----- ----- ----- Reserved.

105 0x69 Reserved ----- ----- ----- Reserved.

106 0x6A Reserved ----- ----- ----- Reserved.

107 0x6B Reserved ----- ----- ----- Reserved.

108 0x6C Reserved ----- ----- ----- Reserved.

109 0x6D Reserved ----- ----- ----- Reserved.

110 0x6E Reserved ----- ----- ----- Reserved.

111 0x6F Reserved ----- ----- ----- Reserved.

112 0x70 Reserved ----- ----- ----- Reserved.

113 0x71 Reserved ----- ----- ----- Reserved.

114 0x72 ATAoE.o.[1] ATAoE Outer 1st Outer 1st ATAoE.

115 0x73 Reserved ----- ----- ----- Reserved.

116 0x74 CONTROL.o.[1] Control Outer 1st Outer 1st control.

Table A-2. Factory-Programmed Protocol IDs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Mnemonic Protocol Layer Position Description

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2710 613875-009

A.5 Frame Formats

The following section details the factory programmed frame formats in the E810.

A.5.1 Layer 2

The following section details the L2 Native Frame formats.

A.5.1.1 Ethernet II (DIX)

The Ethernet II (DIX) frame format is illustrated in Figure A-3.

117 0x75 LLDP.o.[1] LLDP Outer 1st Outer 1st LLDP.

118 0x76 ARP.o.[1] ARP Outer 1st Outer 1st ARP.

119 0x77 TIMESYNC.o.[1] TIMESYNC Outer 1st Outer 1st TIMESYNC.

120 0x78 EAPOL.[1] EAPOL Outer 1st Outer 1st EAPOL.

121 0x79 Reserved ----- ----- ----- Reserved.

122 0x7A Reserved ----- ----- ----- Reserved.

123 0x7B Reserved ----- ----- ----- Reserved.

124 0x7C Reserved ----- ----- ----- Reserved.

125 0x7D Reserved ----- ----- ----- Reserved.

126 0x7E Reserved ----- ----- ----- Reserved.

127 0x7F Reserved ----- ----- ----- Reserved.

128-254 0x80-0xFE Reserved ----- ----- ----- Reserved.

255 0XFF Not a protocol ----- ----- ----- signals that this is not a valid protocol.

Table A-2. Factory-Programmed Protocol IDs [continued]

PTYPE
(Dec)

PTYPE
(Hex) Mnemonic Protocol Layer Position Description

613875-009 2711

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.1.2 EtherTypes (L2 Tags)

Table A-3 lists the factory preset EtherType headers.

Figure A-3. Ethernet II (DIX) Frame Format

Table A-3. Factory Preset EtherTypes

EtherType Protocol Notes

0x88A8 B-VLAN (MAC-in-MAC) Followed by ITag. Note that B-VLAN ETYPE is identical to STag ETYPE.

0x894F NSHoE NSH over Ethernet in the outer L2 section of the packet.

0x88A8 STag IEEE 802.1Q clause 9

0x88E7 ITag IEEE 802.1Q clause 9.7

0x8100 VLAN IEEE 802.1Q clause 9

0x9100 VLAN IEEE 802.1Q clause 9

0x8808 Ethernet Flow Control PAUSE, PFC

0x8809 LACP Link Aggregation Control Protocol

0x88F7 PTP (1588)
Precision Time Protocol (PTP)
This packet type is not present in the factory parse graph.

0x88CC LLDP IEEE P802.1AB

0x8940 ECP IEEE 802.1Qbg

0x0806 ARP See Section A.5.3.8.

0x8863 PPPoE (Discovery stage)

0x8864 PPPoE (Session stage)

0x888E EAPoL IEEE 802.1X

0x88A2 ATAoE AoE (ATA over Ethernet)

3210
0 1 2 443 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1
0
0

First on the wire

Destination MAC Address (48b)

Source MAC Address (48b)

EtherType (16b)EtherType (16b) Payload

Ethernet CRC (32b)

EtherType Headers

ooo

AAA

eee

CC

6

ppp

CCC

12B

EtheEtheEtherTyprTyprType He HeHeaderaderaderssseee

Ethernet II (DIX)

EtherType (16b)

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2712 613875-009

A.5.1.3 ATA over Ethernet (AoE)

AoE is used to achieve a very basic level RPC mechanism between a client and an ATA device server.
The server accepts commands and generates responses based on a command code in the AoE header.

AoE is not a connection based protocol. Each message sent to a server should be considered unique and
unreliable.

The AoE packet format is illustrated in Figure A-4.

Note: Reserved fields have to be set to zero in all messages sent.

The AoE frame follows the standard Ethernet MAC header for IEEE 802.3 Ethernet.

• EtherType — 16-bit field. AoE has a registered Ethernet type of 0x88A2.

• Version — 4-bit field which defines the AoE header format and also command codes. This field
must be set to 0x1.

• Flags:

— R — 1-bit flag that is set for a response message.

— E — 1-bit flag that is set for a response message if the associated command message
generated an AoE protocol error.

0x8847 MPLS (Unicast) According to RFC 5332, this EtherType is also used for MPLS multi-cast packets when
the top label was downstream assigned.

0x0800 IPv4 See Section A.5.3.1.

0x86DD IPv6 See Section A.5.3.2.

Figure A-4. AoE Frame Format

Table A-3. Factory Preset EtherTypes [continued]

EtherType Protocol Notes

1 2 3
0 0 0

R E
Major Minor Command

Tag

Arg/Data (variable size)

DA SA
SA

Ether ype = 0x88A2 Version
Flags

Error
Z

6 7 8 9 1
DA

9 1 2 3 4 53 4 5 6 7 86 7 8 9 1 20 1 2 3 4 5

Transmission order

Transm
ission order

613875-009 2713

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

— Z — 2-bit field that is reserved and therefore must be set to zero.

• Error — 8-bit field. Only relevant when E flag is set:

— Error 1: Unrecognized command code.

— Error 2: Bad argument parameter.

— Error 3: Device unavailable – The server can no longer accept ATA commands.

— Error 4: Config string present – The server cannot set the config string because it is not empty.

— Error 5: Unsupported version – The server does not recognize the version specified in the
Version field.

— Error 6: Target is reserved – Thus, the command cannot be completed.

• Major, Minor — Each AoE server has a Major (16-bit) and a Minor (8-bit) address. Before
processing the header Command, the server must validate its major and minor address with the
Major and Minor fields of the header. To accept to process a command message, these conditions
must be valid. The Major (minor) field in the header must be equal to the server Major (minor)
address, or be a suite of ones: 0xffff (0xff). If they are not true, the command messages must be
ignored by the server. The server has to supply its major and minor address in every response.

• Command — 8-bit field that contains the command code for the message. Four commands are
defined for this specific version:

— Command 0: Issue ATA Command

— Command 1: Query Config Information

— Command 2: MAC Mask List

— Command 3: Reserve/Release

— Commands codes number 240-255 (0xf0-0xff) are reserved for vendor-specific use.

• Tag — 32-bit field that provides a client with the means to correlate responses with their
appropriate commands. It is copied into the response message by the server and otherwise is
ignored.

• Arg/Data — Variable size field. It content serves as an input for the command code.

A.5.1.4 Link Aggregation Control Protocol (LACP)

The Link Aggregation Control Protocol (LACP) provides a standardized method to control the bundling of
several ports to form a single logical channel.

The destination address is the Slow Protocols Multicast address (01-80-C2-00-00-02).

The source address in LACP PDUs is the individual MAC Address associated with the port from which the
PDU is transmitted.

There are two versions of LACP frames. The first version of the LACP packet format is illustrated in
Figure A-5, and the second version frame format is illustrated in Figure A-6.

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2714 613875-009

Figure A-5. LACP Version 1 Frame Format

1 2 3
0 0 020 1 2 3 4 5 6 7 8 9 1 4 5 6 7 8

SA

6 7 8 9 1
DA

9 1 2 3 4 53

Actor tate Reserved

Actor ystem

Subtype = 0x01 Version=1Ether ype = 0x8809
TLV ype=0x01 TLV ength=0x14 Actor ystem riority

Actor ey
Actor ort riority

Actor ort

TLV ype=0x02 TLV ength=0x14 Partner ystem riority
Partner ystem (6 Bytes)

Partner ey

FCS

Partner ort riority
Partner ort

Partner tate Reserved
TLV ype=0x03 TLV ength=0x10 Collector ax elay

Reserved (12 Bytes)

TLV ype=0x00 TLV ength=0x0

Reserved (50 Bytes)

Transmission order
Transm

ission order

613875-009 2715

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

• EtherType — The EtherType used by LACP is 0x8809.

• Subtype — 8-bit field that identifies the specific Slow Protocol being encapsulated. The subtype
value is: 0x01.

• Version — 4 bit field. The first version of the LACP standard carries the value 0x01, the second one
0x02.

Figure A-6. LACP Version 2 Frame Format

1 2 3
0 0 09 1 20 1 2 3 4 5

DA
9 1 2 3 4 53 4 5 6 7 86 7 8 6 7 8 9 1

SA
Ether ype = 0x8809 Subtype = 0x01 Version=2

TLV ype=0x01 TLV ength=0x14 Actor ystem riority
Actor ystem

Actor ey
Actor ort riority

Actor ort
Actor tate Reserved

TLV ype=0x02 TLV ength=0x14 Partner ystem riority

TLV ype=0x03 TLV ength=0x10 Collector ax lay

Reserved (12 Bytes)

Partner ystem (6 Bytes)
Partner ey

Partner ort riority
Partner ort

Partner tate Reserved

FCS

TLV ype=0x00 TLV ength=0x0

Other ptional TLVs (L Bytes, L<=50)

Optional ero adding (50-L bytes)

Transmission order
Transm

ission order

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2716 613875-009

• TLV Type (corresponds to the Actor Information) — 8-bit field that indicates the nature of the
information carried in this TLV-tuple. It is fixed to the value of 0x01.

• TLV Length (of the Actor information) — 8-bit field that indicates the length in bytes of the
TLV-tuple. Actor information uses a length value of 20. Thus, TLV Length is fixed to 0x14.

• Actor System Priority — 16-bit (unsigned integer) field that indicates the priority of this System.

• Actor System — 48-bit address that indicates the MAC Address component of Actor’s System ID.

• Actor Key — 16-bit (unsigned integer) field that indicates the operational key value assigned to
the Aggregation Port by the actor.

• Actor Port Priority — 32-bit (unsigned integer) field that indicates the priority assigned to this
Aggregation Port by the Actor (the system sending the PDU; assigned by management or
administration policy).

• Actor Port — 32-bit (unsigned integer) field that indicates the port number assigned to the
Aggregation Port by the Actor (the system sending the PDU).

• Actor State — 8-bit field (see Figure A-7) that defines the Actor’s state variables for the
Aggregation Port, encoded as individual bits within a single octet.

— LACP_Activity — Indicates the Activity control value. For an Active LACP, the flag is set.
Otherwise, the flag is cleared (0).

— LACP_timeout — Indicates the timeout control value. For short timeout, the flag is set.
Otherwise, the flag is cleared (0).

— Aggregation — If the flag is set, the system considers this link to be Aggregable, and it is a
potential candidate for aggregation. Otherwise, the link is considered to be Individual, and it
can be operated only as an individual link.

— Synchronization — If the flag is set, the system considers this link to be IN_SYNC (it has been
allocated to the correct LAG, the group has been associated with a compatible Aggregator, and
the identity of the LAG is consistent with the System ID and operational Key information
transmitted). Otherwise, this link is currently OUT_OF_SYNC (it is not in the right LAG).

— Collecting — If the flag is set, collection of incoming frames on this link is definitely enabled
and it is not expected to be disabled in absence of administrative changes in received protocol
information. Otherwise, the flag is cleared (0).

— Distributing — If the flag is 0, the distribution of outgoing frames in this link is currently
disabled and it is not expected to be enabled in absence of administrative changes or changes
in received protocol information. Otherwise, the flag is set (1).

— Defaulted — If the flag is set, it indicates that the Actor’s Receive machine is using defaulted
operational partner information, administratively configured for the partner. Otherwise, the
operational partner information in use has been received in a LACPDU.

— Expired — If the flag is set, it indicates that the Actor’s received machine is in the EXPIRED
state. Otherwise, it is not.

Note: The received values of Defaulted and Expired State (Bits 6 and 7) are not used by
LACP, but their values can be useful for diagnosing protocol problems.

Figure A-7. State Variables

613875-009 2717

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

• Reserved — 24-bit field that is not used in the actual protocol (it is reserved for the future
extensions of the protocol). On receipt, should be ignored. On transmission, should be set to zeros.

• TLV Type (corresponds to the Partner information) — 8-bit field that indicates the nature of the
information. Set to the value of 0x02.

• TLV Length (of the Partner information) — 8-bit field that indicates the length in bytes of the
TLV-tuple. Actor information uses a length value of 20. Thus, TLV Length is fixed to 0x14.

• Partner System Priority — 16-bit (unsigned integer) field that indicates the priority of the Partner
System.

• Partner System — 48-bit address that indicates the MAC Address component of Partner’s System
ID.

• Partner Key — 16-bit (unsigned integer) field that indicates the operational key value assigned to
the Aggregation Port associated with this link by the partner.

• Partner Port Priority — 32-bit (unsigned integer) field that indicates the priority assigned to this
Aggregation port by the partner.

• Partner Port — 32-bit (unsigned integer) field that indicates the port number assigned to the
Aggregation Port by the Partner.

• Partner State — 8 bit field (see Figure A-7) that defines the partners state variables for the
Aggregation Port, encoded as individual bits within a single octet, as defined for Actor State.

• Reserved — 24-bit field that is not used in the actual protocol (it is reserved for the future
extensions of the protocol). On receipt, should be ignored. On transmission, should be set to zeros.

• TLV Type (corresponds to the Collector Information) — 8-bit field that indicates the nature of the
information carried in this TLV-tuple. It is fixed to the value of 0x03.

• TLV Length (of the Collector information) — 8-bit field that indicates the length in bytes of the
TLV-tuple. Actor information uses a length value of 16. Thus, TLV Length is fixed to 0x10.

• Collector Max Delay — 16-bit (unsigned integer) field that contains the Collector Max Delay value
of the station that transmits the LACPDU. In tens of microseconds. The range of value is 0 to
63,535 tens of microseconds (0.65535s).

• Reserved — 12-byte field that is not used in the actual protocol (it is reserved for the future
extensions of the protocol). On receipt, should be ignored. On transmission, should be set to zeros.

• Other Optional TLVs — Exists only for the second version of the protocol. Up to 50-byte field. the
length is defined in byte by L.

Note: For Long LACPDUs, L can be up to 1438. However, the E810 supports headers up to 504
bytes, and therefore does not support Long LACPDUs.

• TLV Type (corresponds to the Terminator Information) — 8-bit field that indicates the nature of the
Terminator information (end of the message) carried in this TLV-tuple. It is fixed to the value of
0x00.

• TLV Length (of the Terminator information) — 8-bit field that indicates the length in bytes of the
TLV-tuple. Terminator information uses a length value of 0. Thus, TLV Length is fixed to 0x00. The
use of a Terminator Length of 0 is intentional.

• Reserved — 50 bytes for the first version. On receipt, should be ignored. On transmission, should
be set to zeros. This field is not use for Long LACPDUs.

• Optional Zero Padding — For the second version, it is a 50–L bytes field.

• FCS — Frame Check Sequence.

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2718 613875-009

A.5.1.5 Point-to-Point Protocol over Ethernet (PPPoE)

The PPPoE frame format is illustrated in Figure A-8.

• Destination and Source Address — 48-bit addresses.

The destination address contains either a unicast Ethernet destination address, or the Ethernet
broadcast address (0xFFFFFFFF). For Discovery packets, the value is either a unicast or broadcast
address. For PPP session traffic, this field has to contain the peer’s unicast address.

The source address has to contain the Ethernet MAC Address of the source device.

• EtherType — 16 bit field that is set to 0x8863 in the case of Discovery Stage or 0x8864 for PPP
Session stage.

• Version — 4-bit field that must be set to 0x1 for this version of the PPPoE specification.

• Type — 4-bit field that must be set to 0x1 for this version of the PPPoE specification.

• Code — 8-bit field. May be set to different values (0x09, 0x07, 0x19, 0x65, 0xa7) depending on
the type of Discovery packet.

• Session ID — 16-bit (unsigned) field in network byte order. Session ID takes the value of 0x0000
if the session has not yet been established. Otherwise, it is set to a unique value generated for the
current session. For a given PPP session, this value is fixed. For future use, the value 0xffff is
reserved.

• Length — 16-bit field in network byte order which indicates the length of the payload.

• Payload — Its length depends of the Length field.

Figure A-8. PPPoE Frame Format

1 2 3
0 0 0

Ether ype = 0x8863/0x8864 Version Type Code
Length

5 6 18 9 1 2 3 4 5 6 7 8 99 1 2 3 45

Session ID

Payload

DA
DA SA

SA

0 1 2 3 4 76 7 8

Transmission order

Transm
ission order

613875-009 2719

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.1.6 Link Layer Discovery Protocol (LLDP)

The general structure of an LLDP (Link Layer Discovery Protocol) packet is depicted in Figure A-9.

The LLDPDU contains an ordered sequence of three mandatory TLVs followed by zero or more optional
TLVs, plus an End of LLDPDU TLV, as shown in Figure A-10.

Each TLV has the structure depicted in Figure A-11.

Figure A-9. Structure of LLDP Frame

Figure A-10. Structure of LLDP PDU

Figure A-11. Structure of an LLDP TLV

3210
0 1 2 43 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

First on the wire

Destination MAC Address (48b)
= LLDP MC Address

Source MAC Address (48b)

LLDPDU

Ethernet CRC (32b)

AAA

PPP

CCC

12B
=== LLDP MC AddressLLDPLLDP MC MC AddrAddressess

LLDP

EtherType (16b) = 0x88CC

CCC
CCCCCCCCCCCC

666

IEEE 802.1AB-2005

Chassis ID
TLV

Port ID
TLV

Time o Live
TLV

Optional
TLV …. Optional

TLV

M M M M

End f
LLDPU TLV

M (Mandatory TLV)

TLV Type TLV Information
String Length

7b 9b

TLV Information String

0 <= n <= 511 Octets

TLV Header

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2720 613875-009

The basic format for Organizationally Specific TLVs is shown in Figure A-12.

Table A-4 lists the applicable Organizationally Specific TLVs:

Note: The E810 does not parse the TLV sections on LLDP

A.5.1.7 Magic Packets

Magic packets are described in Section 5.3.1.

A.5.1.8 Link Control Packets

Link Control packets are described in Section 3.2.1.5.1. Such packets do not include any L2 tags other
than those described therein.

A.5.2 Layer 2.5

A.5.2.1 Multi-Protocol Label Switching (MPLS)

The general structure of an MPLS header is illustrated in Figure A-13.

Figure A-12. Structure of LLDP Organizationally Specific TLVs

Table A-4. List of Organizationally Specific TLVs

TLV OUI Value Subtype Value

DCBx 00-80-C2 09, 0A, 0B, 0C

EEE 00-12-0F 05

Figure A-13. Structure of MPLS Header

TLV Type = 127 TLV Information
String Length

7b 9b

Organizationaly Defined
Information String

TLV Header TLV Information String
4-511 Octets

Organizationaly
Unique Identifier

(OUI)

Organizationaly
Defined Subtype

3 Octets 1 Octet

3210
0 1 2 43 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1

Label

First on the wire

MPLS

Exp

RFC 3031, Multiprotocol Label Switching Architecture, Jan 2001

4B

RFC 3032, MPLS Label Stack Encoding, Jan 2001

TTLS

613875-009 2721

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

An MPLS header contains one or more repeating sections of:

• Label (20 bits) — Label value.

• Exp (3 bits) — QoS TC (Traffic Class) and ECN (Explicit Congestion Notification).

• S (1 bit) — Bottom-of-Stack flag, if set indicates the last label in the stack.

• TTL (8 bits) — Time-to-Live.

An MPLS header normally follows the L2 section of the frame, preceding the L3 section (the IP header).
The L3 protocol following the last MPLS label is identified by the first nibble as either IPv4 (nibble equals
“4”) or IPv6 (nibble equals “6”).

On top of outer MPLS, the E810 supports MPLSoGRE (MPLS over GRE) and MPLSoUDP (MPLS over
UDP).

A.5.3 Layer 3

A.5.3.1 IPv4

The frame format of an IPv4 datagram is illustrated in Figure A-14.

• Ver (Version) (4 bits) — The Version field is set to 0x4 for IPv4 header.

• HLen (Header Length) (4 bits) — The length of the IP header defined in DWord units.

• TOS (Type of Service) (6 bits) — The TOS field is used to indicate the quality of service.

• IP Congestion Flags (2 bits): CE, ECT

• Total Length (16 bits) — The Total Length is the size of the IP datagram (IP header and payload)
in byte units.

Figure A-14. IPv4 Header Format

Ver (4b) HLen (4b)

3210
0 1 2 4443 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 18 4

TOS (6b)

ECT
CE Total Length (16b)

Identification (16b) 0 DF
M

F Fragment Offset (13b)

TTL (8b) Protocol (8b) Header Checksum (16b)

Source IP Address (32b)

Destination IP Address (32b)

Options

Payload

Padding

20B

First on the wire

IPv4
RFC 791, Internet Protocol, Sep 1981

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2722 613875-009

• Identification (16 bits) — The Identification field identifies a specific IP packet sent between a
source and destination node. The sending host sets the Identification field's value, and the field is
incremented for successive IP datagrams. The Identification field is used to identify multiple
fragments of an original IP datagram.

• Fragment Parameters (3 bits):

— O (Fragment Offset) flag

— DF (Disable Fragmentation) flag

— MF (More Fragments) flag

• TTL (Time-to-Live) (8 bits)— The TTL field indicates the number of links that this IP datagram can
travel before an IP router discards it.

• Protocol (Next Header) (8 bits) — The Protocol field indicates the next protocol encapsulated
within the IP layer.

• Header Checksum (16 bits) — The Header Checksum field is a 16-bit one's complement of the
one's complement sum of all 16-bit words in the IP header.

• Source and Destination IP Addresses — 2 x 32 bit IP Addresses.

Table A-5 describes the processing done to validate IPv4 packets:

Table A-5. IPv4 Packet Structure Validation

Field Value Action Comment

Version/HDR Length 0x4 Check Check IPv4.

Type of Service - Ignore

Packet Length - Ignore

Identification - Ignore

Fragment Info - Ignore

Time-to-Live - Ignore

Protocol Multiple Compare By the parse graph.

Header Checksum - Ignore Protocol validation does not depend on the header checksum.

Source IP Address - Ignore

Destination IP Address - Ignore

613875-009 2723

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.3.2 IPv6

The frame format of an IPv6 datagram is illustrated in Figure A-15.

• Ver (Version) (4 bits) — The Version field is set to 0x6 for IPv6 header.

• Traffic Class (8 bits)— The Traffic Class is used for QOS support.

• Flow Label (20 bits) — The Flow Label is used for QOS support.

• Payload Length (16 bits) — The length of the IPv6 payload. That is, the rest of the packet
following the IPv6 header, in byte units. Note that any IPv6 extension headers are considered part
of the payload.

• Next Header (Protocol) (8 bits) — The Next Header field indicates the next protocol encapsulated
within the IP layer.

• Hop Limit (TTL) (8 bits) — The Hop Limit indicates the number of links that this IP datagram can
travel before an IP router discards it.

• Source and Destination IP Addresses — 2 x 128 bit IP Addresses.

Figure A-15. IPv6 Header Format

Ver(4b)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1
0
0

Flow Label (20b)

Payload Length (16b)

Traffic Class (8b)

Source IP Address (128b)

Payload

First on the wire

40B

Next Header (8b) Hop Limit (8b)

Destination IP Address (128b)

IPv6 Extension Headers (Optional)

IPv6
RFC 2460, Internet Protocol, Version 6 (IPv6), Dec 1998

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2724 613875-009

Table A-6 describes the processing done to validate IPv6 packets:

A.5.3.3 IPv6 Extension Headers

The IPv4 option headers that are included as part of the IP header are replaced in IPv6 by separate
extension headers per option. Table A-7 lists those most used IPv6 extension and their recommended
ordering in the packet. Then these extension headers are illustrated in Figure A-16 through Figure A-
21.

Table A-6. IPv6 Packet Structure Validation

Field Value Action Comment

Version 0x6 Check Check IPv6.

Traffic Class - Ignore

Flow Label - Ignore

Payload Length - Ignore

Next Header Multiple Compare By the parse graph.

Hop Limit - Ignore

Source IP Address - Ignore

Destination IP Address - Ignore

Table A-7. IPv6 Extension Headers and Their Recommended Ordering

Header (Protocol) Next Header
Value Header Length and Header Length Field Offset

Hop-by-Hop Options 0 Variable length field defined in 8-byte units excluding the first 8 bytes.

Routing Header 43 Variable length field defined in 8-byte units excluding the first 8 bytes.

Fragment Header 44 Length is always 8 bytes. The E810 does not continue to parse the rest of the
packet.

Encapsulating Security Payload 50
Length is 8 bytes plus variable length of Initial Value plus a trailer. When this
header is found, the E810 does not continue to parse the rest of the packet.
Applicable to IPv4 as well.

Destination Options 60 Variable length field defined in 8-byte units excluding the first 8 bytes.

Mobility Header 135 Variable length field defined in 8-byte units excluding the first 8 bytes.

No Next Header 59 When no next header type is found, the rest of the packet is not processed.

613875-009 2725

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

Figure A-16. IPv6 Hop-by-Hop Extension Header

Figure A-17. IPv6 Routing Header

Figure A-18. IPv6 Fragment Header

Hdr Ext Len (8b)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

First on the wire

Next Header (8b)

IPv6 Hop-by-Hop Options Header
RFC 2460, Internet Protocol, Version 6 (IPv6), Dec 1998

Options

Next Header = 0

Hdr Ext Len (8b)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

First on the wire

Next Header (8b)

IPv6 Routing Header
RFC 2460, Internet Protocol, Version 6 (IPv6), Dec 1998

Next Header = 43

Routing Type (8b) Segments Left (8b)

Type-Specific Data

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Identification (32b)

First on the wire

Next Header (8b) Reserved (8b)

IPv6 Fragment Header
RFC 2460, Internet Protocol, Version 6 (IPv6), Dec 1998

Fragment Offset (13b) Res
(2b) M

Payload / Upper Layer Protocol

Next Header = 44

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2726 613875-009

Figure A-19. Encapsulating Security Payload (ESP)

Figure A-20. IPv6 Destination Options

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

First on the wire

Security Parameters Index (SPI) (32b)

Sequence Number (SN) (32b)

ESP
RFC 4303, IP Encapsulating Security Payload , Dec 2005

Next Header = 50

Pad Length (8b) Next Header (8b)

Payload Data (Variable)

Padding (0-255 Bytes)

Integrity Check Value (ICV) (Variable)

Hdr Ext Len (8b)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

First on the wire

Next Header (8b)

IPv6 Destination Options Header
RFC 2460, Internet Protocol, Version 6 (IPv6), Dec 1998

Options

Next Header = 60

613875-009 2727

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.3.3.1 Protocol Headers (Next Header)

Table A-8 lists the encoding of the Next Header Type field and information on determining each header
type's length recognized by the E810.

Figure A-21. IPv6 Mobility Header

Table A-8. Header Type Encoding and Lengths

Header (Protocol) Next Header
Value Header Length and Header Length Field Offset

IPv4 4 Length Field is at bits[7:4], defined in 4-byte units.

IPv6 41 Length is always 40 bytes.

Encapsulating Security Payload 50 Length is 8 bytes plus variable length of Initial Value plus a trailer.

TCP 6 Length field is at Byte 12, Bits [7:4], defined in 4-byte units.

UDP 17 Length is always 8 bytes.

ICMP 1 Length is always 8 bytes.

ICMPv6 58 Length is always 4 bytes.

SCTP 132 Length is always 12 bytes.

VRRP 112
Virtual Router Redundancy Protocol
Note: In Factory Parse Graph only over IPv4.

OSPFv3 89
Open Shortest Path First Version 3 (covered in RFC 5340)
Note: In Factory Parse Graph only over IPv4.

No Next Header 59 When no next header type is found, the rest of the packet is not processed.

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Checksum (16b)

First on the wire

Payload Proto (8b) Header Len (8b)

IPv6 Mobility Header
RFC 6275, Mobility Support in IPv6, Jul 2011

Next Header = 135

MH Type (8b) Reserved (8b)

Message Data

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2728 613875-009

A.5.3.4 Internet Control Message Protocol (ICMP)

ICMP packets are used as part of the manageability filtering. The ICMP header structure is illustrated in
Figure A-22.

Note: The E810 parser does not parse into the ICMP header and only detects the IPv4 Next Protocol
as ICMP.

A.5.3.5 ICMPv6

ICMPv6 packets are used as part of the manageability filtering and as part of proxy capabilities. The
ICMPv6 header structure is illustrated in Figure A-23.

Figure A-22. ICMP Header Structure

Table A-9. ICMP Packet Structure and Processing

Field Value Action Comment

Preceding Protocol Header IPv4 Check Enforced by the parse graph.

ICMP type - Ignore

ICMP Code - Ignore

ICMP Header Checksum - Ignore

ICMP Payload - Ignore

Figure A-23. ICMPv6 Header Structure

Type (8b)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Checksum (16b)

Payload

First on the wire

ICMP
RFC 792, Internet Control Message Protocol, Sep 1981

Code (8b)

Type (8b)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Checksum (16b)

Message Body

First on the wire

ICMPv6
RFC 4443, Internet Control Message Protocol (ICMPv6)

for the Internet Protocol Version 6 (IPv6) Specifications, Mar 2006

Code (8b)

613875-009 2729

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

Note: The E810 parser detects ICMPv6 by evaluating the Next Header field following IPv6 header
with optionally more Extension Headers.

The E810 supports the following ICMPv6 packets:

• Neighbor Discovery packets:

— 0x86 (134d) - Router Advertisement.

— 0x87 (135d) - Neighbor Solicitation.

— 0x88 (136d) - Neighbor Advertisement.

— 0x89 (137d) - Redirect.

• MLD packets:

— 0x82 (130d) - MLD Query

— 0x83 (131d) - MLDv1 Report

— 0x84 (132d) - MLD Done

— 0x8F (143d) - MLDv2 Report

Table A-10 describes the processing done to validate ICMPv6 packets:

A.5.3.6 Virtual Router Redundancy Protocol (VRRP)

Virtual Router Redundancy Protocol (VRRP), defined in RFC 5798, specifies an election protocol that
dynamically assigns responsibility to one of the VRRP routers on a LAN. The “master” router controls
the IP Address(es) associated with a virtual router. Forwarded packets are sent to these IP Addresses.
VRRP provides a higher availability and reliability of default path without requiring configuration of
dynamic routing or router discovery protocols on every end-host.

The purpose of the VRRP packet is to communicate to all VRRP routers the priority and the state of the
Master router associated with the Virtual Router ID. VRRP packets are sent encapsulated in IP packets.

• The IPv4 multicast address assigned for VRRP is 224.0.0.18.

• The IPv6 multicast address assigned for VRRP is FF02:00:00:00:00:00:00:12.

• The TTL must be set to 255.

Note: A VRRP router receiving a packet with the TTL not equal to 255 MUST discard the packet.

• The IPv4 protocol number/IPv6 Next Header protocol assigned to VRRP is 112.

Table A-10. ICMPv6 Packet Structure and Processing

Field Value Action Comment

Preceding L3 Protocol Header IPv6 Check Enforced by the parse graph.

Type

0x82, 0x83,
0x84, 0x86,
0x87, 0x88,

0x89, or 0x8F

Compare Multicast Listener Discovery (MLD) or Neighbor Discovery types.

Code 0x0 Ignore

Checksum Ignore

Message Body Ignore

https://tools.ietf.org/html/rfc5798

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2730 613875-009

Note: The factory parsing configuration must use the next protocol as the only means of detecting a
VRRP header and must not perform any validation checks on the header or preceding header
related to this protocol.

The VRRP packet format is illustrated in Figure A-24.

• Version — 4-bit field that specifies the VRRP protocol version of the packet. This specification
describes version 3.

• Type — 4-bit field that specifies the type of the packet. In this version (2), only type number one
(ADVERSTISEMENT) is defined. A packet with another type number has to be discarded.

• Virtual Router ID — 8-bit field that identifies the virtual router this packet is reporting status for.
This is a configurable item in the range of 1-255 (decimal). There is no default value.

• Priority — 8-bit (unsigned integer) field that specifies the sending VRRP router’s priority for the
virtual router. The higher the value, the higher the priority. For the VRRP router that owns the IP
Address(es) associated with the virtual router, priority is 255 (decimal value). This is the “Master”.

— VRRP routers backing up a virtual router must use priority values, between 1 to 254 (decimal).
The default priority value is in this case 100 (decimal).

— The priority value zero means that the current Master has stopped participating in VRRP. It is
used to effectuate quickly the exchange of master. (We do not have to wait for the current
Master to timeout).

• Count IP Address — 8-bit field that indicates the number of IP Addresses contained in this VRRP
advertisement.

• Authentication Type — 8-bit (unsigned integer) field that identifies the authentication method
used. Authentication type is unique on a Virtual Router basis. If a packet has an unknown
authentication type or does not match the local authentication, it must be discarded.

The authentication methods currently defined are:

— 0 = No Authentication — VRRP protocol exchanges are not authenticated. The Authentication
Data field should be set to zero on transmission and ignored on reception.

— 1 = Reserved.

— 2 = Reserved.

Types number 1 and 2 are reserved to maintain backward-compatibility with earlier version of VPPR
(RFC 2338).

Figure A-24. VRRP Header

1 2 3
0 0 0

Virtual Router ID Priority Count IP ddress
Checksum

Version Type
Reserved Max Adver Interval

Authentication
Authentication

IP ddress (1)
:

IP ddress (n)

6 7 8 9 153 4 5 6 7 8 9 1 2 3 420 1 2 3 4 5 6 7 8 9 1

Transmission order

Transm
ission order

https://tools.ietf.org/html/rfc2338

613875-009 2731

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

• Max Advertisement Interval (Adver Int) — 12-bit field that indicates the time interval (in
centiseconds) between ADVERTISEMENTS. The default value is 100 centisecond (1 second). It is
used for troubleshooting mis-configured routers.

• Checksum — 16-bit field that is used to detect data corruption in the VRRP message. It is the
complement of complement sum of the entire VRRP message starting with the Version field (for
computing the checksum, the Checksum field is set to zero).

• IP Address(es) — There are one or more IP Addresses associated with the virtual router. Each
address length depends on whether it is an IPv4 or IPv6 Address. The number of IP Addresses is
specified by the Count IP Address field. A mix of IPv4 and IPv6 Addresses is not allowed in the
same VRRP header

• Authentication Data — Two strings of 32 bits each. Currently only used to maintain
backward-compatibility with RFC 2338. It should be set to 0 on transmission and ignored at
reception.

A.5.3.7 Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) runs directly over the IP network layer. Thus, OSPF packets are
encapsulated just by IP and local data-link headers.

OSPF does not define how to fragment its packets. Rather, it depends on IP fragmentation when
transmitting the packets. Therefore, it is recommended to limit the size of packets sent over virtual
links to 576 bytes (if it is necessary, can be up to 65,535 bytes, including the IP header).

• One of the important feature of OSPF’s IP encapsulation is the use of IP multicast. For that matter,
two different IP multicast addresses are used:

— AllSPFRouters (value address: 224.0.0.5) — Every router running OSPF should be prepared to
receive packets from this address. (Hello packets, one of the five types of OSPF packets, are
always sent to this destination).

— AllDRouters (value address: 224.0.0.6) — Designated and Backup Designated Router must be
prepared to receive packets destined to this address. Also, certain OSPF packets are sent to
those addresses during the flooding procedure.

Packets sent to multicast addresses are meant to travel a single hop only (IP TTL= 1).

• The IP protocol number assigned to OSPF is 89.

• Routing protocol packets are sent with IP TOS of 0. The OSPF protocol supports TOS-based routing.
All OSPF routing protocol packets are sent using the normal service TOS value of binary 0000.

• OSPF protocol packets should be given precedence over regular IP data traffic (in sending and
receiving). Setting the IP Precedence field in the IP header to Internetwork Control helps implement
this objective.

There are five types of OSPF packets. All of them starts start with a common 24-byte header.

The OSPF header format is illustrated in Figure A-25.

https://tools.ietf.org/html/rfc2338

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2732 613875-009

• Version — 8-bit field that indicates the version of the protocol. This section describes version 2,
which is the only one supported in the factory configuration and is only relevant for IPv4.

• Type — The type of the OSPF packet: number 1 to 5.

— 1 = Hello

— 2 = Database Description

— 3 = Link State Request

— 4 = Link State Update

— 5 = Link State Acknowledgment

• Packet Length — 20-bits field used for the length in bytes of the packet. It includes the standard
the standard OSPF header.

• Router ID — 32-bit field that indicates the Router ID of the packet’s source. It is important
because in OSPF, source and destination of a routing packet are the two ends of an (potential)
adjacency.

• Area ID — 32 -bit field identifying the area that this packet belongs to. OSPF are associated with a
single area. If packets are traveling over a virtual link, the area ID is 0.0.0.0.

• Checksum — 16-bit that indicates the standard IP checksum of the all packets. It starts with the
OSPF packet header and excludes the 64-bit Authentication field. It is calculated as the complement
of the complement sum of the 16-bit words in the packet (except authentication field). The packet
is padded with a zero byte if the packet’s length is not an integral number of 16-bit words before
summing.

• AuType — 16-bit field that indicates the authentication scheme.

• Authentication — 64-bit field used by the authentication scheme.

Figure A-25. OSPF Header Format

1 2 3
0 0 0

Version Type Packet ength
Router ID

AuType
Authentication
Authentication

Area ID
Checksum

6 7 8 9 19 1 2 3 4 53 4 5 6 7 820 1 2 3 4 5 6 7 8 9 1

Transmission order
Transm

ission order

613875-009 2733

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.3.8 Address Resolution Protocol (ARP)

ARP packets are used as part of the manageability filtering and as part of the proxy capabilities.

Figure A-26 describes the ARP packets structure.

Note: The Parser identifies ARP by its ETYPE. Further validation is performed by firmware when
processing the ARP packet.

Figure A-26. ARP Packet Structure

Table A-11. ARP Packet Structure and Processing

Field Value Action Comment

Preceding EtherType 0x0806 Compare ARP.

Hardware Type 0x0001 Compare
(by firmware) Ethernet Hardware type.

Protocol Type 0x0800 Compare
(by firmware) IPv4 Protocol.

Hardware Size 0x06 Compare
(by firmware) MAC Address size in bytes.

Protocol Address Length 0x04 Compare
(by firmware) IPv4 Address size in bytes.

Operation 0x0001/0x0002 Compare
(by firmware)

0x0001 = Request
0x0002 = Response

Sender Hardware Address - Ignore

Sender IP Address - Ignore

Target Hardware Address - Ignore

Target IP Address IP4AT Compare
(by firmware) Use to decide of an IP match of ARP packets.

3210
0 1 2 443 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1
0
0 6

Protocol Type (16b)

Operation Code (16b)Hardware Address
Len (8b)

Protocol Address
Len (8b)

First on the wire

20B

ARP

H dH dH d AddAddAdd P tP tP lll AddAddAdd

RFC 826, Address Resolution Protocol, Nov 1982

Hardware Type (16b)

Sender Hardware Address (MAC Address)
(48b) Sender Protocol Address H (IP) (16b)

Sender Protocol Address L (IP) (16b) Target Hardware Address (MAC Address)
(48b)

Target Protocol Address (IP) (32b)

(((484888bbbb)))

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2734 613875-009

A.5.4 Layer 4

A.5.4.1 User Datagram Protocol (UDP)

The UDP header structure is illustrated in Figure A-27.

• Source Port (16 bits) — Source port number.

• Destination Port (16 bits) — Destination port number.

• UDP Length (16 bits) — The length of the entire UDP datagram, including both header and Data
fields defined in byte units.

• UDP Checksum (16 bits) — An optional one's complement of the one's complement sum of all
16-bit words in the header and payload and a “pseudo header” illustrated in the figures above.

On the transmit flow, the OS stack provides the “pseudo header” checksum in the UDP Checksum field
when requesting from the NIC to offload the checksum calculation.

Table A-13 lists the factory preset UDP Destination Port values.

Figure A-27. UDP Packet Format

Table A-12. UDP Header Structure

Field Value Action Comment

Source UDP Port XXXX Ignore Source UDP port number could be any value.

Destination UDP Port VXLAN Port Compare Per the list of supported protocols over UDP.

UDP Length XXXX Ignore Length of the entire datagram including the UDP header.

UDP Checksum XXXX Check Provide an indication if the checksum equals to zero (i.e., no checksum).

Table A-13. Factory Preset UDP Destination Port Values

UDP Destination
Port Protocol Notes

4789 VXLAN

4790 VXLAN-gpe

6081 Geneve

2152 GTPu (GTPv1-U)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Source Port (16b)

First on the wire

UDP
RFC 768, User Datagram Protocol, 28 Aug 1980

Destination Port (16b)
8B

UDP Length (16b) UDP Checksum (16b)

Payload

613875-009 2735

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.4.1.1 UDP Pseudo-Header

The UDP pseudo-header structure is illustrated in Figure A-28 and Figure A-29.

4791 RoCEv2

IANA assigned
The factory parsing program supports up to two configurable UDP ports per physical
port for identifying RoCEv2 packets. The value mentioned in this table is the IANA
assigned port but the software might use an additional and/or different number (for
example, 1021 - the legacy RoCEv2 port).

6635 MPLS over UDP Covered in RFC 7510

Figure A-28. IPv4 Pseudo-Header for UDP Checksum

Figure A-29. IPv6 Pseudo-Header for UDP Checksum

Table A-13. Factory Preset UDP Destination Port Values [continued]

UDP Destination
Port Protocol Notes

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Protocol (8b)

Source Address (32b)

Destination Address (32b)

UDP LengthZero (“00”)

UDP (IPv4 Pseudo Header)
RFC 768, User Datagram Protocol, 28 Aug 1980

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Source IP Address (128b)

First on the wire

40B
Destination IP Address (128b)

UDP (IPv6 Pseudo Header)

UDP LengthZero (“00”)

Next Header (8b)Zero (“00”)

https://tools.ietf.org/html/rfc7510

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2736 613875-009

A.5.4.2 Transmission Control Protocol (TCP)

The TCP header structure is illustrated in Figure A-30.

• Source Port (16 bits) — Source port number.

• Destination Port (16 bits) — Destination port number.

• Sequence Number (32 bits) — The sequence number of the first data octet in this segment
(except when SYN is present). If SYN is present the sequence number is the initial sequence
number (ISN) and the first data octet is ISN+1.

• Acknowledgment Number (32 bits) — If the ACK control bit is set, this field contains the value of
the next sequence number the sender of the segment is expecting to receive. Once a connection is
established this is always sent.

• Window Size (16 bits) — The number of data octets beginning with the one indicated in the
Acknowledgment field which the sender of this segment is willing to accept.

• TCP Flags (9 bits) — FIN, SYN, RST, PSH, ACK, URG, ECE, CWR, NS.

• Header Length (4 bits) — The number of DWords in the TCP Header. This indicates where the data
begins. The TCP header (including TCP options) is always an integral number of 32 bits long.

• Urgent Pointer (16 bits) — This field communicates the current value of the urgent pointer as a
positive offset from the sequence number in this segment. The Urgent Pointer points to the
sequence number of the octet following the urgent data. This field is only be interpreted in
segments with the URG control bit set.

• TCP Checksum (16 bits) — The Checksum field is the 16-bit one's complement of the one's
complement sum of all 16-bit words in the header and payload and the “pseudo header” illustrated
in the figures above.

Note: On the transmit flow, the OS stack provides the “pseudo header” checksum in the TCP
Checksum field when requesting from the NIC to offload the checksum calculation.

Figure A-30. TCP Packet Format

3210
0 1 2 43 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1

Source Port (16b)

First on the wire

TCP
RFC 793, Transmission Control Protocol, Sep 1981

Destination Port (16b)

20B

Urgent Pointer (16b)

Sequence Number (32b)

Checksum (16b)

Options

Data

Padding

Acknowledgment Number (32b)

Data
Offset

Rsv
(3b)

U
RG

ACK
PSH
RST
SYN
FIN Window (16b)D tD t RR

U
RG

ECEC
ECE

CW
R

CCW
R

CW
R

CCN
S

613875-009 2737

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.4.2.1 TCP Pseudo-Header

The TCP pseudo-header structure is illustrated in Figure A-31 and Figure A-32.

Figure A-31. IPv4 Pseudo-Header for TCP Checksum

Figure A-32. IPv6 Pseudo-Header for TCP Checksum

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Protocol (8b)

Source Address (32b)

Destination Address (32b)

TCP LengthZero (“00”)

TCP (IPv4 Pseudo Header)
RFC 793, Transmission Control Protocol, Sep 1981

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Source IP Address (128b)

First on the wire

40B
Destination IP Address (128b)

TCP (IPv6 Pseudo Header)

TCP LengthZero (“00”)

Next Header (8b)Zero (“00”)

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2738 613875-009

A.5.4.3 Stream Control Transmission Protocol (SCTP)

The SCTP header structure is illustrated in Figure A-33.

• Source Port (16 bits) — Source port number.

• Destination Port (16 bits) — Destination port number.

• Verification Tag (32 bits) — Random value selected by each endpoint in an association during
setup. It is used to discriminate between two successive associations, as well as a protection
mechanism against blind attackers.

• CRC Integrity — CRC32c integrity checksum covering the entire SCTP packet (SCTP header and all
chunks). the CRC32c is the same polynomial used for iSCSI as follow: 1 + x + x2 + x4 + x5 + x7 +
x8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32. The CRC bytes are transmitted on the network
in big endian ordering while the MS bytes is first on the wire.

A.5.5 Tunneling and Overlay Networks

The factory parsing program in the E810 supports the following tunneling and overlay networks
formats:

• MAC-in-MAC

• IP-in-IP: IPv4/IPv4, IPv4/IPv6, IPv6/IPv4, IPv6/IPv6

• NSH (Service Chaining): NSHoE, NSHoGRE, NSHoVXLANgpe

• VXLAN (MAC-in-UDP), VXLAN-gpe

• GRE

• Geneve

• MPLSoGRE, MPLSoUDP

• IPSEC NAT-T

• GTP

Figure A-33. SCTP Packet Structure

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Source Port (16b)

First on the wire

SCTP
RFC 4960, Stream Control Transmission Protocol, Sep 2007

Destination Port (16b)

Verification Tag (32b)

SCTP Chunks

CRC 32c Checksum (32b)

613875-009 2739

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.5.1 Generic Routing Encapsulation (GRE)

The GRE header structure is illustrated in Figure A-34.

The GRE header is indicated by IP protocol equals to 47 (0x2F). The GRE headers supported by the
E810 can be 1, 2, 3 or 4 DWords depending on the flags in the first byte.

• C (Checksum Present) (1 bit) — When set, it indicates that the Checksum field is present and
contains valid information. If either the Checksum Present bit or the Routing Present bit are set, the
Checksum and Offset fields are both present.

• R (Routing Present) (1 bit) — GRE header with routing header is not supported by the E810. If this
flag is found active the header is not recognized by the device.

• K (Key Present) (1 bit) — If set, the Key field is present and contains valid information.

• S (Sequence Number) (1 bit) — If set then the Sequence Number field is present and contains valid
information. The E810 ignores this flag other than an indication for the length of this header.

• s (Strict Source Route) (1 bit) — It is recommended that this bit only be set if all of the Routing
Information consists of Strict Source Routes. The E810 ignores this flag.

• Recur (Recursion Control) (3 bits) — Contains the number of additional encapsulations that are
permitted. The E810 supports only GRE header with no recursion headers (Recursion Control equal
to zero).

• Ver (Version) (3 bits) — GRE protocol version. Zero value identifies a GRE header version zero. The
E810 supports only zero value. (Note that version 1 is used for PPP protocol.)

• Protocol Type (16 bits) — Contains the protocol type of the payload packet. In general, the value
is the Ethernet Protocol Type field for the packet. The following values are supported by the E810.
Packet parsing that might have other protocol values is undefined.

— IPv4 0x0800

— IPv6 0x86DD

— MPLS 0x8847 (unicast MPLS)

— MAC 0x6558 (MAC-in-GRE)

Figure A-34. GRE Header Structure (RFC 1701)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Recur

First on the wire

GRE

Ver

Checksum (Optional) Offset (Optional)

Protocol Type

RFC 1701, Generic Routing Encapsulation (GRE), Oct 1994

C K SR s Flags

Key (Optional)

Sequence Number (Optional)

Routing (Optional)

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2740 613875-009

— NSHoGRE 0x894F

• Checksum (16 bits) — Contains the IP (one's complement) checksum of the GRE header and the
payload packet. This field is not processed by the E810.

• Offset (16 bits) — Indicates the byte offset from the start of the Routing field to the first byte of
the active Source Route Entry to be examined. This field is not processed by the E810.

• Key (32 bits) — Contains a number that was inserted by the encapsulator. It can be used by the
receiver to authenticate the source of the packet. The GRE Key is used for VSI classification if
enabled by the switch filters.

• Sequence Number (32 bits) — Contains a number that is inserted by the encapsulator. It can be
used by the receiver to establish the order in which packets have been transmitted from the
encapsulator to the receiver. This field is not processed by the E810.

• Routing (variable length) — This field is a list of SREs and is not supported by the E810.

A.5.5.2 Virtual Extensible Local Area Network (VXLAN)

The VXLAN header format is illustrated in Figure A-35.

VXLAN comes on top of a UDP header with reserved destination port = 4789 (0x12B5). The E810 allows
programming of the VXLAN port.

Figure A-35. VXLAN Header Structure

R

3210
0 1 2 43 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1

First on the wire

VXLAN
RFC 7348

(Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized
Layer 2 Networks over Layer 3 Networks)

Aug 2014

ReservedR R R
8B

VXLAN Network Identifier (VNI) Reserved

I R R R

613875-009 2741

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.5.3 Generic Protocol Extension for VXLAN (VXLAN-GPE)

The VXLAN-GPE header format is illustrated in Figure A-37.

VXLAN-GPE comes on top of a UDP header with reserved destination port = 4790 (0x12B6). The E810
allows programming of the VXLAN-GPE port.

Figure A-36. VXLAN over UDP

Table A-14. VXLAN Header Structure

Field Value Action Comment

Destination UDP Port VXLAN Port Compare The reserved VXLAN port number is programmed by the Add “Tunneling
UDP” admin command.

Flags 0x08 Ignore I = VNI valid indication.

Reserved XXXX Ignore Reserved.

VXLAN Network Identifier XXXX Compare Tenant identifier (used in classification).

Figure A-37. VXLAN-GPE Header Structure

Source Port Destination Port = 4789 (0x12B5)

UDP Length UDP Checksum

R ReservedR R R

VXLAN Network Identifier (VNI) Reserved

I R R R

UDP

VXLAN

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

First on the wire

VXLAN
(with Preceding UDP Header)

First on the wire

VXLAN-

draft-quinn-vxlan-gpe-04
(Generic Protocol Extension for VXLAN)

2 Oct 2014 (Expires: 5 Apr 2015)

8B

0
0 1 2 3

1
4 5 6 7 8 9 0 1 2 3

2
4 5 6 7 8 9 0 1 2 3

3
4 5 6 7 8 9 0 1

R ReservedR

VXLAN Network Identifier (VNI) Reserved

I P R O Next Protocol Ver

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2742 613875-009

Figure A-38. VXLAN-GPE over UDP

Table A-15. VXLAN-GPE Header Structure

Field Value Action Comment

Destination UDP Port VXLAN-GPE Port Compare The reserved VXLAN port number is programmed by the Add
“Tunneling UDP” admin command.

Flags

Ver=0
I=1
P=1

O=Ignore

Compare
Ver = Version = 0
I (Instance) = VNI valid indication = 1
P (Next Protocol) = 1
O (OAM) = Ignore

Reserved XXXX Ignore Reserved.

Next Protocol XXXX Check

Next Protocol (according to IETF draft vxlan-gpe-03)
0x1 = IPv4
0x2 = IPv6
0x3 = Ethernet
0x4 = NSH
0x5 = MPLS

VXLAN Network Identifier XXXX Compare Tenant identifier (used in classification).

Source Port Destination Port = 4790 (0x12B6)

UDP Length UDP Checksum
UDP

First on the wire

0
0 1 2 3

1
4 5 6 7 8 9 0 1 2 3

2
4 5 6 7 8 9 0 1 2 3

3
4 5 6 7 8 9 0 1

VXLAN
gpe

R ReservedR

VXLAN Network Identifier (VNI) Reserved

I P R O Next Protocol Ver

VXLAN
(with Preceding UDP Header)

613875-009 2743

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.5.4 Generic Network Virtualization Encapsulation (Geneve)

The Geneve header format is illustrated in Figure A-39.

Geneve comes on top of a UDP header with destination port = 6081 (0x17C1).

Figure A-39. Geneve Header Structure

Figure A-40. Geneve over UDP

First on the wire

Geneve

draft-gross-geneve-02
(Geneve: Generic Network Virtualization Encapsulation)

25 Oct 2014 (Expires: 28 Apr 2015)

0
0 1 2 3

1
4 5 6 7 8 9 0 1 2 3

2
4 5 6 7 8 9 0 1 2 3

3
4 5 6 7 8 9 0 1

8B
Ver Opt Len O C Reserved Protocol Type

Virtual Network Identifier (VNI) Reserved

Variable Length Options

Ver Opt Len O C Reserved Protocol Type

Virtual Network Identifier (VNI) Reserved

Variable Length Options

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 443 5 6 7 8 9 0 1

UDP Source Port (16b) = xxxx

First on the wire

UDP Destination Port (16b)
= 6081 (0x17C1) UDP

UDP Length (16b) UDP Checksum (16b)

Geneve
(with Preceding UDP Header)

Geneve

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2744 613875-009

A.5.5.5 RDMA over Converged Ethernet v2 (RoCEv2)

The RoCEv2 packet format is illustrated in Figure A-41.

The E810 identifies RoCEv2 packets based on their UDP destination port number. Two UDP port
numbers are provided per each of the physical Ethernet ports).

Table A-16. Geneve Header Structure

Field Value Action Comment

Source UDP Port XXXX Ignore Source UDP port number could be any value.

Destination UDP Port Geneve Port Compare Geneve port number.

UDP Length xxxx Ignore Length of the entire datagram including the UDP header.

UDP Checksum xxxx Check Checksum integrity indication.

Version 00b Ignore Geneve version.

O (OAM Frame) 0b Ignore

Option Length Variable Check
Defines the length of the options fields in 4 byte units.
The Parser is using the option length to calculate the total Geneve
header length.

C (Critical Options Present) Variable Ignore Expected to be processed by the software stack.

Protocol Type Variable Check Next protocol.

VNI Variable Compare Tenant identifier (used in classification).

Variable Length Options Variable Ignore Length of the Options field is defined by the Option Length field in this
header.

Figure A-41. RoCEv2 Packet Format

613875-009 2745

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.5.6 Network Service Header (NSH)

A Network Service Header (NSH) is used to create network service paths. In addition to path
information, this header also carries metadata used by network devices and/or network services.

The NSH basic header structure is shown in Figure A-42.

The NSH header is composed of the following fields:

• Base Header — Provides information about the service header and service path identification:

— Version.

— O bit – Indicates that this packet is an operations and management (OAM) packet.

— C bit – Context headers MUST be present. When C is set, one or more contexts are in use (that
is, a value placed in a context is significant). The C bit specifies that their ordering and sizing is
as specified:

• Network Platform (32 bits)

• Network Shared (32 bits)

• Service Platform (32 bits)

• Service Shared (32 bits).

A C bit equal to zero indicates that no contexts are in use (although they MUST be present to
ensure a fixed size header) and that they can be ignored. If a context header is not in use, the
value of that context header MUST be zero.

— R bit – All other flag fields are reserved.

— Protocol - Indicates the next protocol:

• 0 = Reserved

Figure A-42. NSH Basic Header Structure

3210
0 1 2 443 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

First on the wire

NSH

draft-quinn-sfc-nsh-04
(Network Service Header)

26 Nov 2014 (Expires: 30 May 2015)

Base Header

24B

Service Path Header

Mandatory Context Header

Mandatory Context Header

Mandatory Context Header

Mandatory Context Header

Optional Variable Length Context Headers

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2746 613875-009

• 1 = IPv4

• 2 = IPv6

• 3 = Ethernet

• 4..253 = Unassigned

• Service Index — TTL functionality and location within the service path. Service index MUST be
decremented by service nodes after performing required services. MAY be used in conjunction with
service path for path selection.

• Service Path — Identifies a service path. Participating node MUST use this identifier for path
selection.

• Context Headers — Carry opaque metadata.

— Network platform context – Provides platform-specific metadata shared between network
nodes.

— Network shared context – Metadata relevant to any network node such as the result of edge
classification.

— Service platform context – provides service platform specific metadata shared between service
functions.

— Service shared context – Metadata relevant to, and shared, between service functions.

• TLV section — Additional variable-size metadata.

Detailed NSH header structure is shown in Figure A-43.

Note: The E810 supports only fixed-length NSHoE in the outer L2 section of the packet. Variable
length NSH header with TLV extensions is not supported in this section.

Figure A-43. Detailed NSH Header Structure

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

O C R R R R Next Protocol (8b)MD Type (8b)Length (6b)OVer
(2b) R RV

Service Path ID (24b)

Network Platform Context (32b)

Network Shared Context (32b)

Service Platform Context (32b)

Service Shared Context (32b)

Service Index (8b)

Len (5b)Type (8b)TLV Class (16b) R RR

Variable Metadata

24B

NSH

draft-quinn-sfc-nsh-04
(Network Service Header)

613875-009 2747

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

A.5.5.7 IPSEC NAT-T

IPSEC NAT-T is identified by 1 of 8 programmable UDP destination port numbers.

The E810 does not provide checksum offload for the NAT header.

The ESP NAT-T header structure is shown in Figure A-44.

A.5.5.8 GPRS Tunneling Protocol (GTP)

The GPRS Tunneling Protocol is specified by 3GPP.

The E810 factory parsing program supports two versions of the GTP header: GTPv1 and GTPv2,
described in sections Section A.5.5.8.1 and Section A.5.5.8.2, respectively.

The protocol is transferred over IP/UDP (see Section A.5.4.1) and has distinct flavors:

• GTP-C packets, used for control, and are identified by UDP port 2123.

• GTP-U packets, used for user data, and are identified by UDP port 2152.

Note: The mentioned UDP port number must be used as the destination port for request messages
and as the source port for response messages. There is no GTP-U flavor for GTPv2.

For GTP-U packets, the E810 factory parsing program also identifies whether the packet carries a user
data message (G-PDU) or not.

Note: The support provided by the factory parsing program of the E810 for GTP provides the ability
of detecting the GTP headers supported in accordance to the overlaying protocols and the
Version field in the header itself (see each detailed header format sections for details). The
E810 does not provide any validity check for the headers themselves, and it is the relevant
software client’s responsibility to implement the protocol validity checks and relevant error
handling suite as mandated by the specifications.

Figure A-44. ESP NAT-T Header Structure

Security Parameters Index (SPI) (32b)

Sequence Number (SN) (32b)

Pad Length (8b) Next Header (8b)

Payload Data (Variable)

Padding (0-255 Bytes)

Integrity Check Value (ICV) (Variable)

3210
0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1 2 43 5 6 7 8 9 0 1

Source Port (16b) Destination Port (16b)

UDP Length (16b) UDP Checksum (16b)

ESP with NAT-T
RFC 3948, UDP Encapsulation of IPsec ESP Packets, Jan 2005

First on the wire

ESP

UDP

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2748 613875-009

A.5.5.8.1 GTPv1

GTPv1 is specified in 3GPP TS 29.060, and the information below is based on version 14.2.0 published
in December, 2016.

The frame format for GTPv1 is described in Figure A-45.

The following fields are always present fields in GTPv1 header:

• Version — This field is used to determine the version of the GTP protocol. The version number
must be set to “1”.

• PT (Protocol Type) — This bit is used as a protocol discriminator between GTP (when PT is “1”) and
GTP' (when PT is “0”). GTP is described in 3GPP TS 29.060 and the GTP' protocol in 3GPP TS
32.295.

• E (Extension Header) — This flag indicates the presence of a meaningful value of the Next
Extension Header field.

— 0 = The Next Extension Header field is either not present, or, if present, must not be
interpreted.

— 1 = The Next Extension Header field is present, and must be interpreted, as described below in
this section.

• S (Sequence Number) — This flag indicates the presence of a meaningful value of the Sequence
Number field.

— 0 = The Sequence Number field is either not present, or, if present, must not be interpreted.

— 1 = The Sequence Number field is present, and must be interpreted, as described below in this
section.

• PN (N-PDU Number) — This flag indicates the presence of a meaningful value of the N-PDU Number
field.

— 0 = The N-PDU Number field is either not present, or, if present, must not be interpreted.

— 1 = The N-PDU Number field is present, and must be interpreted, as described below in this
section.

• Message Type — This field indicates the type of GTP message. The E810 factory parsing program
indicates if the Message Type field value is equal to 255 (0xFF) which means the packet is carrying
user data (G-PDU).

Figure A-45. GTPv1 Header Format

1 2 3
0 0 0

PT * E S PN Length

Sequence umber (S=1) N-PDU umber (PN=1)
Tunnel Endpoint ID

Variable sized next extension header(s) (E=1)

6 7 8 9 1
Version Message Type

9 1 2 3 4 53 4 5 6 7 86 7 8 9 1 250 1 2 3 4

Transm
ission order

Transmission order

613875-009 2749

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

• Length — This field indicates the length in octets of the payload. That is, the rest of the packet
following the mandatory part of the GTP header (that is the first 8 octets). The Sequence Number,
the N-PDU Number or any Extension headers must be considered to be part of the payload (in other
words, included in the length count).

• Tunnel Endpoint ID (TEID) — This field unambiguously identifies a tunnel endpoint in the
receiving GTP-U or GTP-C protocol entity. The receiving end side of a GTP tunnel locally assigns the
TEID value the transmitting side has to use. The TEID values are exchanged between tunnel
endpoints using GTP-C (or RANAP, over the Iu) messages.

The following fields are optional fields in GTPv1 header:

• Sequence Number — This field is an optional field in G-PDUs. It is used as a transaction identity
for signaling messages having a response message defined for a request message, that is, the
Sequence Number value is copied from the request to the response message header. In the user
plane, an increasing sequence number for T-PDUs is transmitted via GTP-U tunnels, when
transmission order must be preserved.

• N-PDU Number — This field is used at the Inter SGSN Routing Area Update procedure and some
inter-system handover procedures (for example, between 2G and 3G radio access networks). This
field is used to coordinate the data transmission for acknowledged mode of communication between
the MS and the SGSN. The exact meaning of this field depends upon the scenario. For example, for
GSM/GPRS to GSM/GPRS, the SNDCP N-PDU number is present in this field.

• Next Extension Header Type — This field defines the type of Extension Header that follows this
field in the GTP-PDU.

A.5.5.8.2 GTPv2

GTPv2 is specified in 3GPP TS 29.274 and the information below is based on version 14.2.0 published in
December, 2016.

The frame format for GTPv2 is described in Figure A-46.

Note: GTPv2 is only specified for GTP-C packets.

The following fields are always present fields in GTPv2 header:

• Version — This field is used to determine the version of the GTP protocol. The version number
must be set to “2”.

• P (Piggybacking) — When set, another GTPv2-C message is present at the end of this one.

• T (TEID) — Is set when the header includes a TEID field.

• MP — When this flag is set, the GTPv2-C header includes a priority field.

• Spare — Unused. Must be set to “0” by the sender and be ignored by the receiver.

Figure A-46. GTPv2 Header Format

1 2 3
0 0 0

P T MP

Priority Spare

Spare
20 1 2 3 4 5 6 7 8 9 1 4 53 4 5 6 7 8

Tunnel Endpoint ID (T=1)
Sequence Number

6 7 8 9 1
Version Message Type Length

9 1 2 3

Transm
ission order

Transmission order

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

2750 613875-009

• Message Type — Set to the unique value for each type of control plane message.

• Message Length — This field must indicate the length of the message in octets excluding the
mandatory part of the GTP-C header (the first 4 octets). The TEID (if present) and the Sequence
Number must be included in the length count.

A piggybacked initial message and the preceding triggered response message present in the
common IP/UDP packet must have their own length and sequence number in their respective GTP-
C headers. The overall length of the IP/UDP packet must indicate the total length of the two GTP-C
messages.

• Tunnel Endpoint ID (TEID) (only exists when T=1) — This field unambiguously identifies a tunnel
endpoint in the receiving GTP-C entity. The Tunnel Endpoint ID is set by the sending entity in the
GTP header of all control plane messages to the TEID value provided by the corresponding receiving
entity. If a peer's TEID is not available, the TEID field must be present in a GTPv2-C header, but its
value must be set to “0”.

Note: The TEID in the GTP header of a Triggered (or Triggered Reply) message is set to the
TEID value provided by the corresponding receiving entity regardless of whether the
source IP Address of the initial (or triggered) message and the IP Destination Address
provided by the receiving entity for subsequent control plane Initial messages are the
same.

• Sequence Number — Same as in GTPv1.

• Priority — Relative priority of the GTP-C message. Only relevant if the MP flag is set to 1). It must
be encoded as the binary value of the Message Priority and it can take any value between 0 and 15,
where 0 corresponds to the highest priority and 15 to the lowest priority.

If the MP flag is set to “0” in Octet 1, bits 8 to 5 of octet 12 must be set to “0” by the sending entity
and ignored by the receiving entity.

• Spare — Spare bits. The sending entity must set them to “0” and the receiving entity must ignore
them.

613875-009 2751

Intel® Ethernet Controller E810 Datasheet
Factory Parsing Program

NOTE: This page intentionally left blank.

2752 613875-009

LEGAL

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

This document (and any related software) is Intel copyrighted material, and your use is governed by the express license under which
it is provided to you. Unless the license provides otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit
this document (and related materials) without Intel's prior written permission. This document (and related materials) is provided as
is, with no express or implied warranties, other than those that are expressly stated in the license.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

This document contains information on products, services and/or processes in development. All information provided here is subject
to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications.

Copies of documents that are referenced in this document can be obtained by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Other names and brands may be claimed as the property of others.

© 2020-2024 Intel Corporation.

www.intel.com/design/literature.htm
http://ifcollaborate.intel.com/ifc/getdoc.aspx?docbase=InfoFactoryKB&chronid=09005ffd8005f5f4&ver=CURRENT&qepop=false
http://ifcollaborate.intel.com/ifc/getdoc.aspx?docbase=InfoFactoryKB&chronid=09005ffd8005f5f4&ver=CURRENT&qepop=false

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Intel:

 EZE810CAM1 S LNFW EZE810CAM2 S LNFX EZE810CAM2 S LNFY EZE810CAM1 S LNFV EYE810XXVAM2 S

LNFZ EYE810XXVAM2 S LNG2 E810CQDA2TGG1 E810XXVDA2OCP3G E810XXVDA2OCP3L

E810XXVDA4LG1P5 E810XXVDA2G1P5 E810CQDA2TG1 E810XXVDA4G2P5

https://www.mouser.com/intel
https://www.mouser.com/access/?pn=EZE810CAM1 S LNFW
https://www.mouser.com/access/?pn=EZE810CAM2 S LNFX
https://www.mouser.com/access/?pn=EZE810CAM2 S LNFY
https://www.mouser.com/access/?pn=EZE810CAM1 S LNFV
https://www.mouser.com/access/?pn=EYE810XXVAM2 S LNFZ
https://www.mouser.com/access/?pn=EYE810XXVAM2 S LNFZ
https://www.mouser.com/access/?pn=EYE810XXVAM2 S LNG2
https://www.mouser.com/access/?pn=E810CQDA2TGG1
https://www.mouser.com/access/?pn=E810XXVDA2OCP3G
https://www.mouser.com/access/?pn=E810XXVDA2OCP3L
https://www.mouser.com/access/?pn=E810XXVDA4LG1P5
https://www.mouser.com/access/?pn=E810XXVDA2G1P5
https://www.mouser.com/access/?pn=E810CQDA2TG1
https://www.mouser.com/access/?pn=E810XXVDA4G2P5

	Intel® Ethernet Controller E810
	Revision History
	Contents
	Chapter 1 Introduction
	1.1 Overview
	1.2 E810 Full Chip Block Diagram
	1.3 Controller Core Block Diagram
	1.3.1 LAN Traffic Tx Flow
	1.3.2 LAN Traffic Rx Flow
	1.3.3 Management Flows

	1.4 Functional Blocks
	1.4.1 Host Interface
	1.4.2 Host Memory Objects
	1.4.3 LAN Engine
	1.4.4 Protocol Engine
	1.4.5 Transmit Scheduler
	1.4.6 Tx and Rx Modifiers
	1.4.7 Ethernet Media Access Controller (MAC)
	1.4.8 Packet Parser
	1.4.9 VEB Switch (a.k.a. Binary Classifier)
	1.4.10 Access Control Lists (ACLs)
	1.4.11 Classification Filters
	1.4.12 Embedded Management Processor (EMP)
	1.4.12.1 Protect, Detect, and Recover

	1.4.13 Host Memory Cache (HMC)
	1.4.14 Various Interfaces
	1.4.14.1 Shared Serial Flash Interface
	1.4.14.2 SMBus Interface
	1.4.14.3 NC-SI Interface
	1.4.14.4 High-Speed SDPs

	1.5 Conventions
	1.5.1 Numbers and Number Bases
	1.5.2 Byte Ordering

	1.6 Support Documents

	Chapter 2 Pin Interface
	2.1 Pin Descriptions
	2.2 Pin Assignments and Descriptions
	2.2.1 PCIe Interface Pins
	2.2.2 Ethernet Interface Pins
	2.2.3 NC-SI Interface Pins
	2.2.4 SMBus Interface Pins
	2.2.5 Serial Flash Memory Interface Pins
	2.2.6 General Purpose I/O (GPIO) Pins
	2.2.7 Miscellaneous Pins
	2.2.8 Testability and Debug Pins
	2.2.9 Reserved and No-Connect Pins
	2.2.10 Power Supply Pins
	2.2.11 Pull-Up and Pull-Down Resistors

	2.3 Package Layout

	Chapter 3 Interconnects
	3.1 PCI Express (PCIe)
	3.1.1 Features
	3.1.2 Transaction Layer
	3.1.2.1 Transactions Accepted by the E810
	3.1.2.2 Size of Target Accesses
	3.1.2.2.1 Memory Accesses

	3.1.2.3 I/O Accesses
	3.1.2.3.1 Messages

	3.1.2.4 Transactions Initiated by the E810
	3.1.2.4.1 Data Alignment

	3.1.2.5 Messages
	3.1.2.5.1 VDM
	3.1.2.5.1.1 MCTP VDMs

	3.1.2.6 Transaction Attributes
	3.1.2.6.1 Traffic Class (TC) and Virtual Channels (VC)
	3.1.2.6.2 TLP Processing Hints (TPH)
	3.1.2.6.2.1 Steering Tag and Processing Hint Programming

	3.1.2.6.3 PASID Prefix

	3.1.2.7 Device Ordering Rules
	3.1.2.7.1 Processing of Target Accesses
	3.1.2.7.2 Relaxed Ordering
	3.1.2.7.3 ID-Based Ordering (IDO)

	3.1.2.8 Flow Control
	3.1.2.8.1 Flow Control Rules
	3.1.2.8.2 Flow Control Timeout Mechanism

	3.1.2.9 End-to-End CRC (ECRC)

	3.1.3 Link Layer
	3.1.3.1 ACK/NAK Scheme
	3.1.3.2 Supported DLLPs
	3.1.3.3 Transmit EDB Nullifying (End Bad)
	3.1.3.4 Retry Buffer

	3.1.4 Physical Layer
	3.1.4.1 Link Speed
	3.1.4.2 Link Width
	3.1.4.3 Lane Configurations
	3.1.4.4 Receiver Framing Requirements

	3.1.5 Error Events and Error Reporting
	3.1.5.1 General Description
	3.1.5.2 Error Events
	3.1.5.3 Completion Timeout Mechanism
	3.1.5.4 Error Forwarding (TLP Poisoning)
	3.1.5.5 Completion with Unsuccessful Completion Status
	3.1.5.6 Error Pollution
	3.1.5.7 Blocking on Upper Address

	3.1.6 Performance and Statistics Counters
	3.1.6.1 Event Counters - Transaction Layer
	3.1.6.1.1 Count Mode
	3.1.6.1.2 Leaky Bucket Mode

	3.1.6.2 Event Counters - Link and Physical Layers
	3.1.6.2.1 Bandwidth Counters

	3.2 Ethernet Interconnect
	3.2.1 Media Access Control (MAC) Layer
	3.2.1.1 MAC Features
	3.2.1.2 MAC Speed Configuration
	3.2.1.3 Transmit Padding
	3.2.1.4 Jumbo Frame Support
	3.2.1.5 Ethernet Flow Control (FC)
	3.2.1.5.1 MAC Control Frames and Reception of Flow Control Frames
	3.2.1.5.1.1 MAC Control Frame — Other Than FC
	3.2.1.5.1.1.1 MAC Control Frame Receive Identification

	3.2.1.5.1.2 Structure of 802.3x FC Packets
	3.2.1.5.1.2.1 802.3x Frame Receive Identification

	3.2.1.5.1.3 Priority Flow Control (PFC)
	3.2.1.5.1.3.1 PFC Frame Receive Identification

	3.2.1.5.1.4 Operation and Rules
	3.2.1.5.1.5 Timing Considerations

	3.2.1.5.2 Transmitting PAUSE Frames
	3.2.1.5.2.1 PFC
	3.2.1.5.2.2 Operation and Rules

	3.2.1.6 Inter Packet Gap (IPG) Control and Pacing
	3.2.1.7 MAC Speed Change at Different Power Modes
	3.2.1.8 MAC Errors
	3.2.1.8.1 MAC Error Counters

	3.2.2 Physical Layer Interface
	3.2.2.1 Introduction
	3.2.2.2 MAC/PHY Interface
	3.2.2.2.1 MAC/PHY Interface Mapping

	3.2.2.3 Port and PMD Mapping
	3.2.2.3.1 Port and PMD Nomenclature
	3.2.2.3.2 Port Mapping
	3.2.2.3.3 Port Mapping - E810-XXVAM2 SKU

	3.2.2.4 PHY Lane Mapping per Port Mode

	3.2.3 Link Management
	3.2.3.1 Link Management Interfaces
	3.2.3.2 Link Management Topologies
	3.2.3.2.1 The E810’s SFP+ Connectivity Scheme (Up to 4 Ports Topologies)
	3.2.3.2.2 The E810’s QSFP+ Connectivity Scheme (Up to 8 Ports Topologies)
	3.2.3.2.3 The E810’s BASE-T Connectivity Scheme

	3.2.4 Link Configuration Admin Commands
	3.2.4.1 Link Configuration Commands
	3.2.4.1.1 Set PHY Config (0x0601)
	3.2.4.1.2 Set MAC Config (0x0603)
	3.2.4.1.3 Setup Link and Restart Auto-Negotiation (0x0605)
	3.2.4.1.4 Get PHY Abilities (0x0600)
	3.2.4.1.5 Get Link Status (0x0607)
	3.2.4.1.6 Link Status Event (0x0607)
	3.2.4.1.7 Set Event Mask (0x0613)

	3.2.5 SyncE Flows
	3.2.5.1 Overview
	3.2.5.2 Resets
	3.2.5.3 Initialization
	3.2.5.4 Configuration Flow
	3.2.5.4.1 Link Status Changes
	3.2.5.4.2 Reference Input Changes

	3.2.6 SyncE Commands
	3.2.6.1 Overview
	3.2.6.1.1 SyncE Commands Summary

	3.2.6.2 Set PHY Recovered Clock Configuration (0x0630)
	3.2.6.2.1 Set PHY Recovered Clock Configuration Command
	3.2.6.2.2 Set PHY Recovered Clock Configuration Command Response
	3.2.6.2.3 Set PHY Recovered Clock Configuration Command Errors

	3.2.6.3 Get PHY Recovered Clock Configuration (0x0631)
	3.2.6.3.1 Get PHY Recovered Clock Configuration Command
	3.2.6.3.2 Get PHY Recovered Clock Configuration Command Response
	3.2.6.3.3 Get PHY Recovered Clock Configuration Command Errors

	3.2.6.4 Get CCU Capabilities (0x0C61)
	3.2.6.4.1 Get CCU Capabilities Command
	3.2.6.4.2 Get CCU Capabilities Command Response
	3.2.6.4.3 Get CCU Capabilities Command Errors

	3.2.6.5 Set CCU Input Configuration (0x0C62)
	3.2.6.5.1 Set CCU Input Configuration Command
	3.2.6.5.2 Set CCU Input Configuration Command Response
	3.2.6.5.3 Set CCU Input Configuration Command Errors

	3.2.6.6 Get CCU Input Configuration (0x0C63)
	3.2.6.6.1 Get CCU Input Configuration Command
	3.2.6.6.2 Get CCU Input Configuration Command Response
	3.2.6.6.3 Get CCU Input Configuration Command Errors

	3.2.6.7 Set CCU Output Configuration (0x0C64)
	3.2.6.7.1 Set CCU Output Configuration Command
	3.2.6.7.2 Set CCU Output Configuration Command Response
	3.2.6.7.3 Set CCU Output Configuration Command Errors

	3.2.6.8 Get CCU Output Configuration (0x0C65)
	3.2.6.8.1 Get CCU Output Configuration Command
	3.2.6.8.2 Get CCU Output Configuration Command Response
	3.2.6.8.3 Get CCU Output Configuration Command Errors

	3.2.6.9 Get CCU DPLL Status (0x0C66)
	3.2.6.9.1 Get CCU DPLL Status Command
	3.2.6.9.2 Get CCU DPLL Status Command Response
	3.2.6.9.3 Get CCU DPLL Status Command Errors

	3.2.6.10 Set CCU DPLL Configuration (0x0C67)
	3.2.6.10.1 Set CCU DPLL Configuration Command
	3.2.6.10.2 Set CCU DPLL Configuration Command Response
	3.2.6.10.3 Set CCU DPLL Configuration Command Errors

	3.2.6.11 Set CCU Reference Priority (0x0C68)
	3.2.6.11.1 Set CCU Reference Priority Command
	3.2.6.11.2 Set CCU Reference Priority Command Response
	3.2.6.11.3 Set CCU Reference Priority Command Errors

	3.2.6.12 Get CCU Reference Priority (0x0C69)
	3.2.6.12.1 Get CCU Reference Priority Command
	3.2.6.12.2 Get CCU Reference Priority Command Response
	3.2.6.12.3 Get CCU Reference Priority Command Errors

	3.2.6.13 Get CCU Info (0x0C6A)
	3.2.6.13.1 Get CCU Info Command
	3.2.6.13.2 Get CCU Info Command Response
	3.2.6.13.3 Get CCU Info Command Errors

	3.2.6.14 Get Input Frequency List (0x0C6C)
	3.2.6.14.1 Get Input Frequency List Command
	3.2.6.14.2 Get Input Frequency List Command Response

	3.2.6.15 Get Output Frequency List (0x0C6D)
	3.2.6.15.1 Get Output Frequency List Command
	3.2.6.15.2 Get Output Frequency List Command Response

	3.3 Link Topology
	3.3.1 Overview
	3.3.2 Link Topology Definition
	3.3.3 Topology Structures
	3.3.3.1 High-Speed PHY Chain
	3.3.3.2 PHY Capabilities Structures
	3.3.3.2.1 Extended PHY Capabilities 128-Bit Word Structure
	3.3.3.2.2 Basic PHY Capabilities 64-Bit Word Structure

	3.3.3.3 Link Modes Adaptive NVM Features Tables
	3.3.3.4 Link Topology Netlist
	3.3.3.5 MD Link Topology NVM Section

	3.3.4 Link Default Override Mask NVM Section
	3.3.5 Link Topology Use Cases
	3.3.5.1 NIC Use Case

	3.3.6 Topology Device Loading and Programming
	3.3.6.1 Topology Device NVM Image
	3.3.6.2 External Topology Device NVM Section Format

	3.3.7 Block Access to External PHY During Its NVM Programming
	3.3.8 Topology Netlist
	3.3.8.1 Topology Netlist Header
	3.3.8.1.1 Module Length (0x0000)
	3.3.8.1.2 Node Count (0x0001)
	3.3.8.1.3 Netlist Map Version and CRC (0x0002)
	3.3.8.1.4 Netlist Version (0x0003)
	3.3.8.1.5 Node Handle (0x0004 + n*2)
	3.3.8.1.6 Node Block Offset (0x0005 + n*2)
	3.3.8.1.7 Module ID - Netlist Identifier Block Offset + 0x0000
	3.3.8.1.8 Module Length - Netlist Identifier Block Offset + 0x0001
	3.3.8.1.9 Base Release Version: Major Low Word - Netlist Identifier Block Offset + 0x0002
	3.3.8.1.10 Base Release Version: Major High Word - Netlist Identifier Block Offset + 0x0003
	3.3.8.1.11 Base Release Version: Minor Low Word - Netlist Identifier Block Offset + 0x0004
	3.3.8.1.12 Base Release Version: Minor High Word - Netlist Identifier Block Offset + 0x0005
	3.3.8.1.13 Base Release Version: Type Low Word - Netlist Identifier Block Offset + 0x0006
	3.3.8.1.14 Base Release Version: Type High Word - Netlist Identifier Block Offset + 0x0007
	3.3.8.1.15 Base Release Version: Revision Low Word - Netlist Identifier Block Offset + 0x0008
	3.3.8.1.16 Base Release Version: Revision High Word - Netlist Identifier Block Offset + 0x0009
	3.3.8.1.17 Netlist Binary Hash Word: Netlist Identifier Block Offset + 0x000A-0x0019
	3.3.8.1.18 Netlist Origin Flags Low: Netlist Identifier Block Offset + 0x001A
	3.3.8.1.19 Netlist Origin Flags High: Netlist Identifier Block Offset + 0x001B
	3.3.8.1.20 Netlist Modification Date: Year - Netlist Identifier Block Offset + 0x001C
	3.3.8.1.21 Netlist Modification Date: Day/Month - Netlist Identifier Block Offset + 0x001D
	3.3.8.1.22 Netlist Modification Date: Time - Netlist Identifier Block Offset + 0x001E
	3.3.8.1.23 ETT Version Used for Netlist Compile: Major - Netlist Identifier Block Offset + 0x001F
	3.3.8.1.24 ETT Version Used for Netlist Compile: Minor - Netlist Identifier Block Offset + 0x0020
	3.3.8.1.25 ETT Version Used for Netlist Compile: Revision - Netlist Identifier Block Offset + 0x0021
	3.3.8.1.26 ETT Version Used for Netlist Compile: Patch - Netlist Identifier Block Offset +0x0022
	3.3.8.1.27 Full git Netlist SHA-1 Hash Word - Netlist Identifier Block Offset + 0x0023-0x002C
	3.3.8.1.28 Customer IANA: Low Word - Netlist Identifier Block Offset + 0x002D
	3.3.8.1.29 Customer IANA: High Word - Netlist Identifier Block Offset + 0x002E
	3.3.8.1.30 Customer Netlist Version Word - Netlist Identifier Block Offset + 0x0002F

	3.3.8.2 Node Header Section
	3.3.8.2.1 Node Type and Section Length (0x0000)
	3.3.8.2.2 Node Handle (0x0001)
	3.3.8.2.3 Node Address (0x0002)
	3.3.8.2.4 Node Part Number and Node Options (0x0003)
	3.3.8.2.5 Node I/O Section Pointer (0x0004)
	3.3.8.2.6 Node Port Options Section Pointer (0x0005)
	3.3.8.2.7 Node PMD Line Analog Section Pointer (0x0006)
	3.3.8.2.8 Node PMD Host Analog Section Pointer (0x0007)

	3.3.8.3 Node I/O Section
	3.3.8.3.1 Driving Node Handle (0x0000 + n*2)
	3.3.8.3.2 I/O Type and Driving Interface (0x0001 + n*2)

	3.3.8.4 Node Port Option Pointer Section
	3.3.8.4.1 Node Port Option Pointer (0x0000 + n)

	3.3.8.5 Node Port Option Header Section
	3.3.8.5.1 Adaptive NVM Global (per Port Option) Super Configuration ID (0x0000)
	3.3.8.5.2 Adaptive NVM PHY (per Innermost PHY) Super Configuration ID (0x0001)
	3.3.8.5.3 Minimum SKU (0x0002)
	3.3.8.5.4 Adaptive NVM PF-to-Port Mapping Configuration ID (0x0003)
	3.3.8.5.5 PMD Count and PHY Capabilities Pointer (0x0004)
	3.3.8.5.6 Capabilities Pointer (0x0005 + n - 1)

	3.3.8.6 Node PHY Capabilities Section
	3.3.8.6.1 Per-Port Adaptive NVM Configuration ID (0x0000)
	3.3.8.6.2 Per-Function Adaptive NVM Configuration ID (0x0001)
	3.3.8.6.3 Per-Port/Function Adaptive NVM Feature ID (0x0002)
	3.3.8.6.4 PMD Width (0x0003)
	3.3.8.6.5 Link Options 0 (0x0004)
	3.3.8.6.6 Link Options 1 (0x0005)
	3.3.8.6.7 EEE Options 0 (0x0006)
	3.3.8.6.8 EEE Options 1 (0x0007)
	3.3.8.6.9 Host Side PMD Capabilities 0 (0x0008)
	3.3.8.6.10 Host Side PMD Capabilities 1 (0x0009)
	3.3.8.6.11 Host Side PMD Capabilities 2 (0x000A)
	3.3.8.6.12 Host Side PMD Capabilities 3 (0x000B)
	3.3.8.6.13 Line Side PHY Capabilities (PHY Types) 0 (0x000C)
	3.3.8.6.14 Line Side PHY Capabilities (PHY Types) 1 (0x000D)
	3.3.8.6.15 Line Side PHY Capabilities (PHY Types) 2 (0x000E)
	3.3.8.6.16 Line Side PHY Capabilities (PHY Types) 3 (0x000F)
	3.3.8.6.17 Line Side PHY Capabilities (PHY Types) 4 (0x0010)
	3.3.8.6.18 Line Side PHY Capabilities (PHY Types) 5 (0x0011)
	3.3.8.6.19 Line Side PHY Capabilities (PHY Types) 6 (0x0012)
	3.3.8.6.20 Line Side PHY Capabilities (PHY Types) 7 (0x0013)

	3.3.8.7 Node PMD Analog Section
	3.3.8.7.1 1G/5G C2C Coefficients Low (0x0000 + n*14)
	3.3.8.7.2 Polarity and 1G/5G C2C Coefficients High (0x0001 + n*14)
	3.3.8.7.3 10G C2C Coefficients Low (0x0002 + n*14)
	3.3.8.7.4 10G C2C Coefficients High (0x0003 + n*14)
	3.3.8.7.5 10G C2M Coefficients Low (0x0004 + n*14)
	3.3.8.7.6 10G C2M Coefficients High (0x0005 + n*14)
	3.3.8.7.7 25G C2C Coefficients Low (0x0006 + n*14)
	3.3.8.7.8 25G C2C Coefficients High (0x0007 + n*14)
	3.3.8.7.9 25G C2M Coefficients Low (0x0008 + n*14)
	3.3.8.7.10 25G C2M Coefficients High (0x0009 + n*14)
	3.3.8.7.11 50G C2C Coefficients Low (0x000A + n*14)
	3.3.8.7.12 50G C2C Coefficients High (0x000B + n*14)
	3.3.8.7.13 50G C2M Coefficients Low (0x000C + n*14)
	3.3.8.7.14 50G C2M Coefficients High (0x000D + n*14)

	3.3.8.8 Node PMD Analog Misc Section
	3.3.8.8.1 PMD Analog Misc Length (0x0000)
	3.3.8.8.2 Auto-Neg LESM Timeout (0x0001)
	3.3.8.8.3 1G/5G/10G Serial AUI LESM Timeout (0x0002)
	3.3.8.8.4 25G/50G Serial AUI LESM Timeout (0x0003)

	3.3.8.9 Node LED Configuration Section
	3.3.8.9.1 Port Option Port Affinity Low (0x0000)
	3.3.8.9.2 Port Option Port Affinity High (0x0001)
	3.3.8.9.3 Port Option Color and Condition [n] (0x0004 + n*1)

	3.3.8.10 Node Thermal Configuration Section
	3.3.8.10.1 Min and Max Readable Value (0x0000)
	3.3.8.10.2 Tolerance and Hysteresis (0x0001)
	3.3.8.10.3 Resolution Low (0x0002)
	3.3.8.10.4 Resolution High (0x0003)
	3.3.8.10.5 Offset Low (0x0004)
	3.3.8.10.6 Offset High (0x0005)
	3.3.8.10.7 Normal Max and Warning High Thresholds (0x0006)
	3.3.8.10.8 Critical High and Fatal High Thresholds (0x0007)
	3.3.8.10.9 Accuracy (0x0008)
	3.3.8.10.10 Reserved (0x0009)
	3.3.8.10.11 Temperature Sensor Port Affinity Low (0x000A + n*2)
	3.3.8.10.12 Temperature Sensor Port Affinity High (0x000B + n*2)

	3.3.8.11 Node Clock Configuration Header Section
	3.3.8.11.1 Node Clock Input Configuration Section Pointer (0x0000)
	3.3.8.11.2 Node Clock Output Configuration Section Pointer (0x0001)
	3.3.8.11.3 Node DPLL Configuration Section Pointer (0x0002)
	3.3.8.11.4 Reserved (0x0003)

	3.3.8.12 Node Clock Input Configuration Section
	3.3.8.12.1 Clock Input Mode (0x0000)
	3.3.8.12.2 Frequency Option Count and Clock I/O Number (0x0001)
	3.3.8.12.3 Phase Offset Compensation Lo (0x0002)
	3.3.8.12.4 Phase Offset Compensation Hi (0x0003)
	3.3.8.12.5 Max Phase Offset Compensation Lo (0x0004)
	3.3.8.12.6 Max Phase Offset Compensation Hi (0x0005)
	3.3.8.12.7 Option[n] Frequency Lo (0x0006 + n*2)
	3.3.8.12.8 Option[n] Frequency Hi (0x0007 + n*2)

	3.3.8.13 Node Clock Output Configuration Section
	3.3.8.13.1 Clock Output Mode and Source Select (0x0000)
	3.3.8.13.2 Frequency Option Count and Clock I/O Number (0x0001)
	3.3.8.13.3 Phase Offset Compensation Lo (0x0002)
	3.3.8.13.4 Phase Offset Compensation Hi (0x0003)
	3.3.8.13.5 Max Phase Offset Compensation Lo (0x0004)
	3.3.8.13.6 Max Phase Offset Compensation Hi (0x0005)
	3.3.8.13.7 Option[n] Frequency Lo (0x0006 + n*2)
	3.3.8.13.8 Option[n] Frequency Hi (0x0007 + n*2)

	3.3.8.14 Node Recovered Clock Output Configuration Section
	3.3.8.14.1 Clock Output Mode and Source Select (0x0000)
	3.3.8.14.2 Frequency Option Count and Clock I/O Number (0x0001)
	3.3.8.14.3 Reserved (0x0002 - 0x0005)
	3.3.8.14.4 Option[n] Frequency Lo (0x0006 + n*2)
	3.3.8.14.5 Option[n] Frequency Hi (0x0007 + n*2)

	3.3.8.15 Node Clock DPLL Configuration Section
	3.3.8.15.1 DPLL Mode and Reference Select (0x0000)
	3.3.8.15.2 Source Type and EEC Mode (0x0001)
	3.3.8.15.3 Synthesizer Frequency Lo (0x0002)
	3.3.8.15.4 Synthesizer Frequency Hi (0x0003)
	3.3.8.15.5 Reference Priority (0x0004 + n)

	3.3.8.16 Node Parent Section
	3.3.8.16.1 Parent Node Handle (0x0000)
	3.3.8.16.2 Reserved (0x0001)

	3.3.8.17 Node Scratch Section
	3.3.8.17.1 Scratch 0 (0x0000)
	3.3.8.17.2 Scratch 1 (0x0001)
	3.3.8.17.3 Scratch 2 (0x0002)
	3.3.8.17.4 Scratch 3 (0x0003)
	3.3.8.17.5 Scratch 4 (0x0004)
	3.3.8.17.6 Scratch 5 (0x0005)

	3.3.8.18 PHY Node
	3.3.8.19 GPIO Controller Node
	3.3.8.20 MUX Controller Node
	3.3.8.21 LED Controller Node
	3.3.8.22 LED Node
	3.3.8.23 Temperature Sensor Node
	3.3.8.24 ID EEPROM Node
	3.3.8.25 Cage Node
	3.3.8.26 Mezzanine Connector Node
	3.3.8.27 Clock Controller Node
	3.3.8.28 Clock MUX Node
	3.3.8.29 GPS Node

	3.3.9 Topology Netlist Constraints and Conventions
	3.3.9.1 Netlist Size Constraints
	3.3.9.2 Node Constraints
	3.3.9.3 Node I/O Constraints
	3.3.9.4 Node I/O Conventions
	3.3.9.4.1 I/O Widget
	3.3.9.4.2 PCA9545A
	3.3.9.4.3 PCA9575
	3.3.9.4.4 PCA9685
	3.3.9.4.5 C827
	3.3.9.4.6 Generic Clock Mux

	3.3.9.5 PHY Node Constraints
	3.3.9.6 GPIO Controller Node Constraints
	3.3.9.7 LED Node Constraints
	3.3.9.8 Temperature Node Constraints
	3.3.9.9 Cage Node Constraints

	3.3.10 Link Topology Admin Commands
	3.3.10.1 Set GPIO by Function (0x06E6)
	3.3.10.2 Get GPIO by Function (0x06E7)
	3.3.10.3 Set Port Identification LED (0x06E9)
	3.3.10.4 Read/Write SFF EEPROM (0x06EE)
	3.3.10.5 Program Topology Device NVM (0x06F2)
	3.3.10.5.1 Response Buffer Format
	3.3.10.5.2 Using the Program Topology Device NVM Admin Command

	3.4 Non-Volatile Memory (NVM)
	3.4.1 General Overview
	3.4.1.1 Requirements on NVM Access
	3.4.1.2 Operational Limitations

	3.4.2 External Flash
	3.4.2.1 E810 NVM Regions

	3.4.3 Shadow RAM
	3.4.4 NVM Access Modes
	3.4.4.1 Normal Mode
	3.4.4.1.1 Normal Read Access
	3.4.4.1.2 Normal Write Access

	3.4.4.2 Blank Flash Programming Mode

	3.4.5 NVM Update Flows
	3.4.5.1 Flash High-Level Map
	3.4.5.2 Generic Flows
	3.4.5.2.1 Shadow Ram Dump

	3.4.5.3 VPD Update
	3.4.5.3.1 First VPD Area Programming
	3.4.5.3.2 VPD Area Update from PCIe Configuration Space

	3.4.5.4 Updating Items in the Preserved Fields Area (PFA)
	3.4.5.4.1 Limitations on PFA Updates/Handling

	3.4.5.5 Scratch Pads Update
	3.4.5.6 Updating a Double Bank Module
	3.4.5.6.1 GFID Handling
	3.4.5.6.2 Recovery from Reset During Flash Update

	3.4.5.7 Flash Wear-Out Protection
	3.4.5.8 Save Factory Settings AQC
	3.4.5.8.1 Save Factory Settings Flow

	3.4.6 NVM Clients and Low-Level Interfaces
	3.4.6.1 Memory-Mapped Host Interface

	3.4.7 Flash Access Contention
	3.4.8 NVM Access Procedures
	3.4.8.1 Auto-Load
	3.4.8.1.1 EMP Firmware Init Flow
	3.4.8.1.2 Firmware Measurement for Remote Attestation

	3.4.8.2 VPD Accesses

	3.4.9 NVM Authentication Procedure
	3.4.9.1 Digital Signature Algorithm Details
	3.4.9.2 Intel Key Generation and Intel Code Signing System
	3.4.9.3 Netlist Authentication During Update
	3.4.9.4 Protected Modules
	3.4.9.5 Software Requirements
	3.4.9.6 Manufacturing Requirements
	3.4.9.6.1 Factory Settings Preservation Flow
	3.4.9.6.2 End-of-Line Verification

	3.4.10 NVM Access Admin Commands and Events
	3.4.10.1 NVM Read (0x0701)
	3.4.10.2 NVM Erase (0x0702)
	3.4.10.3 NVM Write (0x0703)
	3.4.10.4 NVM Config Read (0x0704)
	3.4.10.5 NVM Config Write (0x0705)
	3.4.10.6 NVM Config Read/Write Command Buffer
	3.4.10.7 NVM Update Checksum (0x0706)
	3.4.10.8 NVM Write Activate (0x0707)
	3.4.10.9 Save Factory Settings (0x0708)
	3.4.10.10 NVM Update EMPR (0x0709)
	3.4.10.11 Set Package Data (0x070A)
	3.4.10.11.1 Buffer of NVM Set Package Data Command

	3.4.10.12 Pass Component Table (0x070B)
	3.4.10.12.1 Buffer of NVM Pass Component Table Command

	3.4.11 VPD Support

	3.5 General Purpose I/O (GPIO) and LED
	3.5.1 E810 I/O Widget SDP and LED
	3.5.1.1 E810 GPIO Pin Names

	Chapter 4 Initialization
	4.1 Reset Operation
	4.1.1 Reset Sources
	4.1.2 Hardware Reset Flows
	4.1.2.1 POR Flow
	4.1.2.2 Primary Reset and In-Band PCI Reset Flow
	4.1.2.3 Core, Global, and EMP Reset Flows
	4.1.2.3.1 Software and Firmware Interface
	4.1.2.3.2 CORER Flow
	4.1.2.3.3 GLOBR Flow
	4.1.2.3.4 EMPR Flow

	4.1.3 Function-Level Reset Flows
	4.1.3.1 PFR Flow
	4.1.3.2 FLR Flow
	4.1.3.3 VFR/VFLR Flows
	4.1.3.3.1 VF Reset Request by the VF Driver
	4.1.3.3.2 VF Reset Request by the Operating System (VFLR)
	4.1.3.3.3 VF Reset Flow by the PF Software Driver

	4.1.3.4 VMR Flow

	4.2 Power-On and Reset
	4.2.1 Auto-Load Shadow RAM
	4.2.1.1 Auto-Load into Device Units
	4.2.1.2 Firmware Initialization
	4.2.1.3 MAC Address Initialization
	4.2.1.3.1 Manage MAC Address Read Command (0x0107)
	4.2.1.3.1.1 Manage MAC Address Read Response (0x0107)

	4.2.1.3.2 Manage MAC Addresses Write Command (0x0108)
	4.2.1.3.2.1 Manage MAC Address Write Response (0x0108)

	4.2.1.4 Power-On Device State

	4.3 BIOS Initialization
	4.3.1 Initial State
	4.3.2 Non-Persistent Configuration
	4.3.2.1 Alternate RAM Structure
	4.3.2.1.1 Per-PF Sections
	4.3.2.1.1.1 Current LAN MAC Address (Offset 0x0, 0x1)
	4.3.2.1.1.2 RDMA (Offset 0x19)

	4.3.2.2 AQ Commands
	4.3.2.2.1 Write Alternate - Direct Command (0x0900)
	4.3.2.2.2 Write Alternate - Indirect Command (0x0901)
	4.3.2.2.3 Read Alternate - Direct Command (0x0902)
	4.3.2.2.4 Read Alternate - Indirect Command (0x0903)
	4.3.2.2.5 Done Alternate Write Command (0x0904)
	4.3.2.2.6 Clear Port Alternate Write Command (0x0906)

	4.3.2.3 Example of a SMASH/CLP Flow - Legacy BIOS
	4.3.2.4 Example of a SMASH/CLP Flow - UEFI
	4.3.2.5 Processing the Alternate Structure

	4.3.3 Network Boot
	4.3.4 Device State
	4.3.4.1 Switch/Tx-Scheduler
	4.3.4.2 LAN
	4.3.4.3 Interrupts

	4.4 Driver Load
	4.4.1 Introduction
	4.4.1.1 Driver Load (non-Virtualized)
	4.4.1.2 Driver Load (SR-IOV)
	4.4.1.2.1 PF Initialization Details
	4.4.1.2.2 VF Initialization Details
	4.4.1.2.2.1 Software Reset
	4.4.1.2.2.2 Request Resources and Create/Initialize Data Queues

	4.5 Device/Port/Function Configuration
	4.5.1 General
	4.5.1.1 Port-to-Function Mapping

	4.5.2 Disable Through Strapping Pins
	4.5.3 Port and Device Disable
	4.5.3.1 Dynamic Port Shutdown

	4.5.4 Function Disable
	4.5.4.1 Dummy Function

	4.5.5 Port Enable and Disable from BIOS (HII)
	4.5.6 Event Flow for Enable/Disable Ports and PCI Functions
	4.5.6.1 Multi-Function Advertisement
	4.5.6.2 Legacy Interrupts Use
	4.5.6.3 Power Reporting

	4.6 Shared Resource Management
	4.6.1 Resource Profiles

	Chapter 5 Power Management
	5.1 PCIe Power Management
	5.1.1 Auxiliary Power Usage
	5.1.2 PCIe Link Power Management
	5.1.3 Power States
	5.1.3.1 D0uninitialized (D0u) State
	5.1.3.1.1 Entry to a D0u State

	5.1.3.2 D0active (D0a) State
	5.1.3.2.1 Entry to a D0a State

	5.1.3.3 D3 State (PCI-PM D3hot)
	5.1.3.3.1 Entry to D3 State
	5.1.3.3.2 Exit from D3 State

	5.1.3.4 Dr State (D3cold)
	5.1.3.4.1 Dr Disable Mode
	5.1.3.4.2 Entry to Dr State

	5.1.3.5 Protocol Engine Power Save Modes

	5.2 Network Interfaces Power Management
	5.2.1 Low Power Link Up (LPLU)
	5.2.1.1 LPLU-Related Link Speed Change

	5.3 Wake-Up
	5.3.1 Advanced Power Management Wake-Up
	5.3.2 ACPI Power Management Wake-Up
	5.3.3 Wake-Up Filters
	5.3.3.1 Wake-Up Filter Types
	5.3.3.1.1 Magic Packet

	5.3.4 Wake-Up and Virtualization
	5.3.5 Wake-Up Flows
	5.3.5.1 Wake-Up Enable Flow
	5.3.5.2 Wake-Up Disable Flow
	5.3.5.3 ACPI Wake-Up Flow

	Chapter 6 Non-Volatile Memory Map
	6.1 NVM Organization
	6.1.1 NVM Map High Level
	6.1.2 NVM Header
	6.1.3 Structure of NVM Modules
	6.1.3.1 Type 1 Module
	6.1.3.2 Type 2 Module
	6.1.3.3 Type 3 Module
	6.1.3.4 Type 4 Module
	6.1.3.5 Type 5 Module
	6.1.3.6 Type F Module
	6.1.3.7 Format of the Hardware Modules in Flash
	6.1.3.8 Auto-Generated Pointers

	6.1.4 NVM Integrity Checks by Software
	6.1.4.1 Software Checksum

	6.1.5 Header of NVM Modules
	6.1.5.1 Header of All NVM Modules Mapped to Shadow RAM
	6.1.5.2 Header of Authenticated NVM Modules
	6.1.5.3 Module TypeIDs
	6.1.5.4 Preserved Fields Area Structure

	6.1.6 Adaptive NVM Structures
	6.1.6.1 Metadata Structure
	6.1.6.1.1 Feature Fields Module
	6.1.6.1.1.1 Features Header Array
	6.1.6.1.1.2 Features Configuration Option Array
	6.1.6.1.1.3 Feature Field Descriptor Array – Case 1
	6.1.6.1.1.4 Feature Field Descriptor Array – Case 2 (Generic)
	6.1.6.1.1.5 Feature Field Descriptor Array – Case 2
	6.1.6.1.1.6 Feature Data Array

	6.1.6.1.2 Super-Feature Fields Module Structure
	6.1.6.1.2.1 Super-Feature Header Array
	6.1.6.1.2.2 Super-Feature Configuration Option Array
	6.1.6.1.2.3 Super-Feature Data Array

	6.1.6.1.3 Immediate Fields Module
	6.1.6.1.4 Description Text Module

	6.1.6.2 Feature Configuration
	6.1.6.3 Immediate Field Values

	6.2 PLDM Header
	6.2.1 PLDM Header Section
	6.2.1.1 PackageHeaderIdentifier_0 (0x0000)
	6.2.1.2 PackageHeaderIdentifier_1 (0x0001)
	6.2.1.3 PackageHeaderIdentifier_2 (0x0002)
	6.2.1.4 PackageHeaderIdentifier_3 (0x0003)
	6.2.1.5 PackageHeaderIdentifier_4 (0x0004)
	6.2.1.6 PackageHeaderIdentifier_5 (0x0005)
	6.2.1.7 PackageHeaderIdentifier_6 (0x0006)
	6.2.1.8 PackageHeaderIdentifier_7 (0x0007)
	6.2.1.9 FormatRevision_HeaderSize_LSB (0x0008)
	6.2.1.10 Headersize_MSB (0x0009)
	6.2.1.11 ReleaseDateTime_0 (0x000A)
	6.2.1.12 ReleaseDateTime_1 (0x000B)
	6.2.1.13 ReleaseDateTime_2 (0x000C)
	6.2.1.14 ReleaseDateTime_3 (0x000D)
	6.2.1.15 ReleaseDateTime_4 (0x000E)
	6.2.1.16 ReleaseDateTime_5 (0x000F)
	6.2.1.17 ComponentBitmapBitLength (0x0010)
	6.2.1.18 PackageVersionStringType_Length (0x0011)
	6.2.1.19 PackageVersionString_0 (0x0012)
	6.2.1.20 PackageVersionString_1 (0x0013)
	6.2.1.21 PackageVersionString_2 (0x0014)
	6.2.1.22 PackageVersionString_3 (0x0015)
	6.2.1.23 PackageVersionString_4 (0x0016)
	6.2.1.24 PackageVersionString_5 (0x0017)
	6.2.1.25 PackageVersionString_6 (0x0018)
	6.2.1.26 PackageVersionString_7 (0x0019)
	6.2.1.27 PackageVersionString_8 (0x001A)
	6.2.1.28 DeviceIDRecordCount and Last Byte of PackageVersionString (0x001B)
	6.2.1.29 Recordlength (0x0x001C)
	6.2.1.30 DescriptorCount and DeviceUpdateOptionFlags LSB (0x001D)
	6.2.1.31 DeviceUpdateOptionFlags - Middle (0x001E)
	6.2.1.32 DeviceUpdateOptionFlags - MSB and String Type (0x001F)
	6.2.1.33 ComponentImageSetVersionStringLength and FirmwareDevicePackageDataLength - LSB (0x0020)
	6.2.1.34 FirmwareDevicePackageDataLength - MSB and ApplicableComponents (0x0021)
	6.2.1.35 ComponentImageSetVersionString_0 (0x0022)
	6.2.1.36 ComponentImageSetVersionString_1 (0x0023)
	6.2.1.37 ComponentImageSetVersionString_2 (0x0024)
	6.2.1.38 ComponentImageSetVersionString_3 (0x0025)
	6.2.1.39 ComponentImageSetVersionString_4 (0x0026)
	6.2.1.40 ComponentImageSetVersionString_5 (0x0027)
	6.2.1.41 ComponentImageSetVersionString_6 (0x0028)
	6.2.1.42 ComponentImageSetVersionString_7 (0x0029)
	6.2.1.43 ComponentImageSetVersionString_8 (0x002A)
	6.2.1.44 InitialDescriptorType (0x002B)
	6.2.1.45 InitialDescriptorLength (0x002C)
	6.2.1.46 InitialDescriptorData (0x002D)
	6.2.1.47 AdditionalDescriptorType - DeviceID (0x002E)
	6.2.1.48 AdditionalDescriptorLength - DeviceID (0x002F)
	6.2.1.49 AdditionalDescriptorIdentifierData - Device ID (0x0030)
	6.2.1.50 AdditionalDescriptorType - SubVendorID (0x0031)
	6.2.1.51 AdditionalDescriptorLength - SubVendorID (0x0032)
	6.2.1.52 AdditionalDescriptorIdentifierData - SubVendorID (0x0033)
	6.2.1.53 AdditionalDescriptorType - SubSystemD (0x0034)
	6.2.1.54 AdditionalDescriptorLength - SubSystemD (0x0035)
	6.2.1.55 AdditionalDescriptorIdentifierData - SubSystemD (0x0036)
	6.2.1.56 FirmwareDevicePackageData - Header (0x0037)
	6.2.1.57 FirmwareDevicePackageData - GFID TLV Type (0x0038)
	6.2.1.58 FirmwareDevicePackageData - GFID TLV Length (0x0039)
	6.2.1.59 FirmwareDevicePackageData - GFID TLV Value - Current GFID IANA (0x003A)
	6.2.1.60 FirmwareDevicePackageData - GFID TLV Value - Current GFID DeviceID (0x003B)
	6.2.1.61 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros (0x003C)
	6.2.1.62 FirmwareDevicePackageData - GFID TLV Value - Current GFID.SOFTFUSE (0x003D)
	6.2.1.63 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros1 (0x003E)
	6.2.1.64 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros2 (0x003F)
	6.2.1.65 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros3 (0x0040)
	6.2.1.66 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros4 (0x0041)
	6.2.1.67 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros5 (0x0042)
	6.2.1.68 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros6 (0x0043)
	6.2.1.69 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros7 (0x0044)
	6.2.1.70 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros8 (0x0045)
	6.2.1.71 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros9 (0x0046)
	6.2.1.72 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros10 (0x0047)
	6.2.1.73 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros11 (0x0048)
	6.2.1.74 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros12 (0x0049)
	6.2.1.75 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros13 (0x004A)
	6.2.1.76 FirmwareDevicePackageData - GFID TLV Value - Current GFID Zeros14 (0x004B)
	6.2.1.77 FirmwareDevicePackageData - GFID TLV Value - Current GFID IANA (0x004C)
	6.2.1.78 FirmwareDevicePackageData - GFID TLV Value - Current GFID DeviceID (0x004D)
	6.2.1.79 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros (0x004E)
	6.2.1.80 FirmwareDevicePackageData - GFID TLV Value - Original GFID.SOFTFUSE (0x004F)
	6.2.1.81 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros1 (0x0050)
	6.2.1.82 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros2 (0x0051)
	6.2.1.83 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros3 (0x0052)
	6.2.1.84 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros4 (0x0053)
	6.2.1.85 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros5 (0x0054)
	6.2.1.86 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros6 (0x0055)
	6.2.1.87 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros7 (0x0056)
	6.2.1.88 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros8 (0x0057)
	6.2.1.89 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros9 (0x0058)
	6.2.1.90 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros10 (0x0059)
	6.2.1.91 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros11 (0x005A)
	6.2.1.92 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros12 (0x005B)
	6.2.1.93 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros13 (0x005C)
	6.2.1.94 FirmwareDevicePackageData - GFID TLV Value - Original GFID Zeros14 (0x005D)
	6.2.1.95 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - Update Type (0x005E)
	6.2.1.96 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - Update Length (0x005F)
	6.2.1.97 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - TLV Type (0x0060)
	6.2.1.98 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - Update Offset (0x0061)
	6.2.1.99 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - Data Length (0x0062)
	6.2.1.100 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_0 (0x0063)
	6.2.1.101 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_1 (0x0064)
	6.2.1.102 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_2 (0x0065)
	6.2.1.103 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_3 (0x0066)
	6.2.1.104 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_4 (0x0067)
	6.2.1.105 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_5 (0x0068)
	6.2.1.106 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_6 (0x0069)
	6.2.1.107 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_7 (0x006A)
	6.2.1.108 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_8 (0x006B)
	6.2.1.109 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_9 (0x006C)
	6.2.1.110 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_10 (0x006D)
	6.2.1.111 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_11 (0x006E)
	6.2.1.112 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_12 (0x006F)
	6.2.1.113 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_13 (0x0070)
	6.2.1.114 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_14 (0x0071)
	6.2.1.115 FirmwareDevicePackageData - Additional TLVs - PLDM TLV - ComponentImageSetVersionString_15 (0x0072)
	6.2.1.116 FirmwareDevicePackageData - Additional TLVs - PXE TLV - Update Type (0x0073)
	6.2.1.117 FirmwareDevicePackageData - Additional TLVs - PXE TLV - Update Length (0x0074)
	6.2.1.118 FirmwareDevicePackageData - Additional TLVs - PXE TLV - TLV Type (0x0075)
	6.2.1.119 FirmwareDevicePackageData - Additional TLVs - PXE TLV - Update Offset (0x0076)
	6.2.1.120 FirmwareDevicePackageData - Additional TLVs - PXE TLV - Data Length (0x0077)
	6.2.1.121 FirmwareDevicePackageData - Additional TLVs - PXE TLV - Version (0x0078)
	6.2.1.122 FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Update Type (0x0079)
	6.2.1.123 FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Update Length (0x007A)
	6.2.1.124 FirmwareDevicePackageData - Additional TLVs - CIVD TLV - TLV Type (0x007B)
	6.2.1.125 FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Update Offset (0x007C)
	6.2.1.126 FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Data Length (0x007D)
	6.2.1.127 FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Version High (0x007E)
	6.2.1.128 FirmwareDevicePackageData - Additional TLVs - CIVD TLV - Version Low (0x007F)
	6.2.1.129 Reserved (0x0080 - 0x00A8)
	6.2.1.130 FirmwareDevicePackageData - Additional TLVs - VPD Update - Update Type (0x00A9)
	6.2.1.131 FirmwareDevicePackageData - Additional TLVs - VPD Update - Update Length (0x00AA)
	6.2.1.132 FirmwareDevicePackageData - Additional TLVs - VPD Update - VPD V0 Key (0x00AB)
	6.2.1.133 FirmwareDevicePackageData - Additional TLVs - VPD Update - Data Length (0x00AC)
	6.2.1.134 FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 0 (0x00AD)
	6.2.1.135 FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 1 (0x00AE)
	6.2.1.136 FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 2 (0x00AF)
	6.2.1.137 FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 3 (0x00B0)
	6.2.1.138 FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 4 (0x00B1)
	6.2.1.139 FirmwareDevicePackageData - Additional TLVs - VPD Update - V0 Key Data 5 (0x00B2)
	6.2.1.140 FirmwareDevicePackageData - Additional TLVs (0x00B3)
	6.2.1.141 FirmwareDevicePackageData - Additional TLVs - IBA TLV - Update Type (0x00B4)
	6.2.1.142 FirmwareDevicePackageData - Additional TLVs - IBA TLV - Update Length (0x00B5)
	6.2.1.143 FirmwareDevicePackageData - Additional TLVs - IBA TLV - TLV Type (0x00B6)
	6.2.1.144 FirmwareDevicePackageData - Additional TLVs - IBA TLV - Update Offset (0x00B7)
	6.2.1.145 FirmwareDevicePackageData - Additional TLVs - IBA TLV - Data Length (0x00B8)
	6.2.1.146 FirmwareDevicePackageData - Additional TLVs - IBA TLV - Version (0x00B9)
	6.2.1.147 ComponentImageCount (0x00BA)
	6.2.1.148 ComponentClassification (0x00BB)
	6.2.1.149 ComponentIdentifier (0x00BC)
	6.2.1.150 ComponentComparisonStamp LSB (0x00BD)
	6.2.1.151 ComponentComparisonStamp MSB (0x00BE)
	6.2.1.152 ComponentOptions (0x00BF)
	6.2.1.153 RequestedComponentActivationMethod (0x00C0)
	6.2.1.154 ComponentLocationOffset LSB (0x00C1)
	6.2.1.155 ComponentLocationOffset MSB (0x00C2)
	6.2.1.156 ComponentSize LSB (0x00C3)
	6.2.1.157 ComponentSize MSB (0x00C4)
	6.2.1.158 ComponentVersionStringTypeAndLength (0x00C5)
	6.2.1.159 ComponentVersionString- Dev Starter Major (0x00C6)
	6.2.1.160 ComponentVersionString - Dev Starter Minor (0x00C7)
	6.2.1.161 ComponentVersionString - EETRACK-ID MSB (0x00C8)
	6.2.1.162 ComponentVersionString - EETRACK-ID LSB (0x00C9)
	6.2.1.163 ComponentVersionString - Dot and Srev Byte 7 (0x00CA)
	6.2.1.164 ComponentVersionString - Srev Bytes 6-5 (0x00CB)
	6.2.1.165 ComponentVersionString - Srev Bytes 4-3 (0x00CC)
	6.2.1.166 ComponentVersionString - Srev Bytes 2-1 (0x00CD)
	6.2.1.167 ComponentVersionString - Srev Byte 0 and Null (0x00CE)
	6.2.1.168 ComponentClassification (0x00CF)
	6.2.1.169 ComponentIdentifier (0x00D0)
	6.2.1.170 ComponentComparisonStamp LSB (0x00D1)
	6.2.1.171 ComponentComparisonStamp MSB (0x00D2)
	6.2.1.172 ComponentOptions (0x00D3)
	6.2.1.173 RequestedComponentActivationMethod (0x00D4)
	6.2.1.174 ComponentLocationOffset LSB (0x00D5)
	6.2.1.175 ComponentLocationOffset MSB (0x00D6)
	6.2.1.176 ComponentSize LSB (0x00D7)
	6.2.1.177 ComponentSize MSB (0x00D8)
	6.2.1.178 ComponentVersionStringTypeAndLength (0x00D9)
	6.2.1.179 ComponentVersionString- CIVD High MSB (0x00DA)
	6.2.1.180 ComponentVersionString - CIVD High LSB (0x00DB)
	6.2.1.181 ComponentVersionString - CIVD Low MSB (0x00DC)
	6.2.1.182 ComponentVersionString - CIVD Low LSB (0x00DD)
	6.2.1.183 ComponentVersionString - Dot and Srev Byte 7 (0x00DE)
	6.2.1.184 ComponentVersionString - Srev Bytes 6-5 (0x00DF)
	6.2.1.185 ComponentVersionString - Srev Bytes 4-3 (0x00E0)
	6.2.1.186 ComponentVersionString - Srev Bytes 2-1 (0x00E1)
	6.2.1.187 ComponentVersionString - Srev Byte 0 and Null (0x00E2)
	6.2.1.188 ComponentClassification (0x00E3)
	6.2.1.189 ComponentIdentifier (0x00E4)
	6.2.1.190 ComponentComparisonStamp LSB (0x00E5)
	6.2.1.191 ComponentComparisonStamp MSB (0x00E6)
	6.2.1.192 ComponentOptions (0x00E7)
	6.2.1.193 RequestedComponentActivationMethod (0x00E8)
	6.2.1.194 ComponentLocationOffset LSB (0x00E9)
	6.2.1.195 ComponentLocationOffset MSB (0x00EA)
	6.2.1.196 ComponentSize LSB (0x00EB)
	6.2.1.197 ComponentSize MSB (0x00EC)
	6.2.1.198 ComponentVersionStringTypeAndLength (0x00ED)
	6.2.1.199 ComponentVersionString- ReleaseVersion Major Bytes 7-6 (0x00EE)
	6.2.1.200 ComponentVersionString - ReleaseVersion Major Bytes 5-4 (0x00EF)
	6.2.1.201 ComponentVersionString - ReleaseVersion Major Bytes 3-2 (0x00F0)
	6.2.1.202 ComponentVersionString - ReleaseVersion Major Bytes 1-0 (0x00F1)
	6.2.1.203 ComponentVersionString - Dot and ReleaseVersion Minor Byte 7 (0x00F2)
	6.2.1.204 ComponentVersionString - ReleaseVersion Minor Bytes 6-5 (0x00F3)
	6.2.1.205 ComponentVersionString - ReleaseVersion Minor Bytes 4-3 (0x00F4)
	6.2.1.206 ComponentVersionString - ReleaseVersion Minor Bytes 2-1 (0x00F5)
	6.2.1.207 ComponentVersionString - ReleaseVersion Minor Byte 0 and Dot (0x00F6)
	6.2.1.208 ComponentVersionString - ReleaseVersion Type Bytes 7-6 (0x00F7)
	6.2.1.209 ComponentVersionString - ReleaseVersion Type Bytes 5-4 (0x00F8)
	6.2.1.210 ComponentVersionString - ReleaseVersion Type Bytes 3-2 (0x00F9)
	6.2.1.211 ComponentVersionString - ReleaseVersion Type Bytes 0-1 (0x00FA)
	6.2.1.212 ComponentVersionString - Dot and Customer Netlist IANA Byte 7 (0x00FB)
	6.2.1.213 ComponentVersionString - Customer Netlist IANA Bytes 6-5 (0x00FC)
	6.2.1.214 ComponentVersionString - Customer Netlist IANA Bytes 4-3 (0x00FD)
	6.2.1.215 ComponentVersionString - Customer Netlist IANA Bytes 2-1 (0x00FE)
	6.2.1.216 ComponentVersionString - Customer Netlist IANA Byte 0 and Dot (0x00FF)
	6.2.1.217 ComponentVersionString - Customer Netlist Version Bytes 3-2 (0x0100)
	6.2.1.218 ComponentVersionString - Customer Netlist Version Bytes 1-0 (0x0101)
	6.2.1.219 ComponentVersionString - Nulls (0x0102)
	6.2.1.220 PackageHeaderChecksum - LSB (0x0103)
	6.2.1.221 PackageHeaderChecksum - MSB (0x0104)

	6.3 NVM Content
	6.3.1 NVM General Summary
	6.3.2 SPI Descriptor Section
	6.3.2.1 SPI Flash Descriptor (0x0000)

	6.3.3 Init Module Section
	6.3.3.1 NVM Control Word 1 (0x0000)
	6.3.3.2 Non-Persistent End Pointer (0x0001)
	6.3.3.3 Last PFA Word Pointer (0x0002)
	6.3.3.4 GFID Pointer (0x0003)
	6.3.3.5 Reserved (0x0004 - 0x0006)
	6.3.3.6 Auto-Generated Pointers Pointer (0x0007)
	6.3.3.7 Reserved (0x0008)
	6.3.3.8 EMP Global Module Pointer (0x0009)
	6.3.3.9 Guarded Zone Pointer (0x000A)
	6.3.3.10 EMP Image Pointer (0x000B)
	6.3.3.11 Reserved (0x000C - 0x000D)
	6.3.3.12 Manageability Module Pointer (0x000E)
	6.3.3.13 EMP Settings Module Pointer (0x000F)
	6.3.3.14 SW Compatibility Word 1 (0x0010)
	6.3.3.15 SW Compatibility Word 2 (0x0011)
	6.3.3.16 SW Compatibility Word 3 (0x0012)
	6.3.3.17 SW Compatibility Word 4 (0x0013)
	6.3.3.18 SW Compatibility Word 5 (0x0014)
	6.3.3.19 Reserved (0x0015 - 0x0016)
	6.3.3.20 Reserved - Boot Block Virtual Pointer (0x0017)
	6.3.3.21 Software Reserved Word 1 - Dev Starter Version (0x0018)
	6.3.3.22 Software Reserved Word 2 (0x0019)
	6.3.3.23 Software Reserved Word 3 (0x001A)
	6.3.3.24 Software Reserved Word 4 - OEM Product Version Address Block Pointer (0x001B)
	6.3.3.25 Software Reserved Word 5 (0x001C)
	6.3.3.26 Software Reserved Word 6 (0x001D)
	6.3.3.27 Software Reserved Word 7 (0x001E)
	6.3.3.28 Software Reserved Word 8 (0x001F)
	6.3.3.29 Software Reserved Word 9 (0x0020)
	6.3.3.30 Software Reserved Word 10 (0x0021)
	6.3.3.31 Software Reserved Word 11 (0x0022)
	6.3.3.32 Software Reserved Word 12 (0x0023)
	6.3.3.33 Software Reserved Word 13 (0x0024)
	6.3.3.34 Software Reserved Word 14 (0x0025)
	6.3.3.35 Software Reserved Word 15 (0x0026)
	6.3.3.36 Software Reserved Word 16 (0x0027)
	6.3.3.37 Software Reserved Word 17 (0x0028)
	6.3.3.38 Software Reserved Word 18 - Map Version (0x0029)
	6.3.3.39 Software Reserved Word 19 - NVM Image Version (0x002A)
	6.3.3.40 Software Reserved Word 20 - NVM Structure Version (0x002B)
	6.3.3.41 Software Reserved Word 21 - FCoE Offload (0x002C)
	6.3.3.42 Software Reserved Word 22 - EETRACK ID 1 (0x002D)
	6.3.3.43 Software Reserved Word 23 - EETRACK ID 2 (0x002E)
	6.3.3.44 Reserved (0x002F)
	6.3.3.45 Reserved - PXE Configuration Virtual Pointer (0x0030)
	6.3.3.46 Reserved - PXE Configuration Customization Virtual Pointer (0x0031)
	6.3.3.47 Reserved - PXE Version Virtual Word (0x0032)
	6.3.3.48 Reserved (0x033)
	6.3.3.49 Software Reserved Word 24 - Original EETRACK ID 1 (0x0034)
	6.3.3.50 Software Reserved Word 25 - Original EETRACK ID 2 (0x0035)
	6.3.3.51 Reserved (0x0036)
	6.3.3.52 Reserved - VLAN Configuration Block Virtual Pointer (0x0037)
	6.3.3.53 Reserved (0x0038 - 0x003A)
	6.3.3.54 GLOBR Registers Auto-Load Pointer (0x003B)
	6.3.3.55 CORER Registers Auto-Load Pointer (0x003C)
	6.3.3.56 PHY Configuration Scripts (DNL) Pointer (0x003D)
	6.3.3.57 Reserved (0x003E)
	6.3.3.58 Reserved - Checksum (0x003F)
	6.3.3.59 Preserved Field Area Pointer (0x0040)
	6.3.3.60 HLP SR Module Pointer (0x0041)
	6.3.3.61 1st NVM Bank Pointer (0x0042)
	6.3.3.62 NVM Bank Area Size (0x0043)
	6.3.3.63 1st OROM Bank Pointer (0x0044)
	6.3.3.64 OROM Bank Area Size (0x0045)
	6.3.3.65 1st TLV Extension Bank Pointer (0x0046)
	6.3.3.66 TLV Extension Bank Area Size (0x0047)
	6.3.3.67 EMP SR Settings Pointer (0x0048)
	6.3.3.68 Reserved (0x0049)
	6.3.3.69 PE CORER Registers Auto-Load Pointer (0x004A)
	6.3.3.70 Link Topology Scratch Pad Area Pointer (0x004B)
	6.3.3.71 Link Topology Scratch Pad Area Size (0x004C)
	6.3.3.72 Configuration Metadata Pointer (0x004D)
	6.3.3.73 Reserved (0x004E - 0x004F)
	6.3.3.74 FW Scratch Pad Area Pointer (0x0050)
	6.3.3.75 FW Scratch Pad Area Size (0x0051)
	6.3.3.76 Reserved (0x0052 - 0x0053)
	6.3.3.77 Analog PHY Configuration Module Pointer (0x0054)
	6.3.3.78 Soft SKUs (0x0055)
	6.3.3.79 Extended CORER Registers Auto-Load Pointer (0x0056)
	6.3.3.80 Recovery Firmware Pointer (0x0057)
	6.3.3.81 Control Pipe Package Pointer (0x0058)
	6.3.3.82 Reserved (0x0059 - 0x005A)
	6.3.3.83 DCB Rx Module Pointer (0x005B)
	6.3.3.84 DCB Tx Module Pointer (0x005C)
	6.3.3.85 Allowlist Pointer (0x005D)
	6.3.3.86 Sideband Auto-Load Pointer (0x005E)
	6.3.3.87 RDE Dictionaries Pointer (0x005F)
	6.3.3.88 Reserved (0x0060 - 0x0061)
	6.3.3.89 Factory Settings Size (0x0062)
	6.3.3.90 Mailbox Register Auto-Load Pointer (0x0063)
	6.3.3.91 QoS DCB Auto-Load Section Pointer (0x0064)
	6.3.3.92 QoS no-DCB Auto-Load Section Pointer (0x0065)
	6.3.3.93 Spare NVM Header Words1 (0x0066)
	6.3.3.94 Spare NVM Header Words2 (0x0067)
	6.3.3.95 External Topology Device Image 0 Pointer (0x0068)
	6.3.3.96 External Topology Device Image 1 Pointer (0x0069)
	6.3.3.97 External Topology Device Image 2 Pointer (0x006A)
	6.3.3.98 External Topology Device Image 3 Pointer (0x006B)
	6.3.3.99 Spare NVM Header Words[n] (0x006C + 1*n, n=7...154)

	6.3.4 PFA Header Section
	6.3.4.1 PFA Length (0x0000)

	6.3.5 PFA Features Module Section
	6.3.5.1 Sub Module Type - Features (0x0101)

	6.3.6 Feature Configuration Padding Module Section
	6.3.6.1 Sub Module Type - Padding (0x0000)
	6.3.6.2 Length (0x0001)
	6.3.6.3 Padding (0x0002)

	6.3.7 PFA Immediate Values Module Section
	6.3.7.1 Sub Module Type - Immediate (0x0901)

	6.3.8 Immediate Fields Padding Module Section
	6.3.8.1 Sub Module Type Padding (0x0000)
	6.3.8.2 Length (0x0001)
	6.3.8.3 Padding (0x0002)

	6.3.9 PFA VPD Module Section
	6.3.9.1 Sub Module Type - VPD (0x0F01)
	6.3.9.2 Length (0x0F02)
	6.3.9.3 VPD Data (0x0F03)

	6.3.10 PFA MNG Filter Section
	6.3.10.1 Sub Module Type - MNG Filter (0x0000)
	6.3.10.2 Section Length (0x0001)
	6.3.10.3 Flexible Filter Data (0x0002)

	6.3.11 PFA PT Configuration 0 Section
	6.3.11.1 Sub Module Type PT Module 0 (0x0000)
	6.3.11.2 Section Length (0x0001)
	6.3.11.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n, n=0...3)
	6.3.11.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n, n=0...3)
	6.3.11.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)
	6.3.11.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n, n=0...15)
	6.3.11.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)
	6.3.11.8 LAN MANC Value LSB (0x0032)
	6.3.11.9 LAN MANC Value MSB (0x0033)
	6.3.11.10 Receive Enable 1 - LRXEN1 (0x0034)
	6.3.11.11 Receive Enable 2 - LRXEN2 (0x0035)
	6.3.11.12 LAN MNGONLY LSB (0x0036)
	6.3.11.13 LAN MNGONLY MSB (0x0037)
	6.3.11.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n, n=0...6)
	6.3.11.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n, n=0...6)
	6.3.11.16 Manageability Extended Decision Filters LSB[n] (0x003A + 4*n, n=0...6)
	6.3.11.17 Manageability Extended Decision Filters MSB[n] (0x003B + 4*n, n=0...6)
	6.3.11.18 Manageability EtherType Filter (METF) LSB[n] (0x0054 + 2*n, n=0...3)
	6.3.11.19 Manageability EtherType Filter (METF) MSB[n] (0x0055 + 2*n, n=0...3)
	6.3.11.20 ARP Response IPv4 Address LSB (0x005C)
	6.3.11.21 ARP Response IPv4 Address MSB (0x005D)
	6.3.11.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)
	6.3.11.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)
	6.3.11.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)
	6.3.11.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)
	6.3.11.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)
	6.3.11.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)
	6.3.11.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)
	6.3.11.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)
	6.3.11.30 Manageability Special Modifiers LSB (0x007E)
	6.3.11.31 Manageability Special Modifiers MSB (0x007F)

	6.3.12 PFA PT Configuration 1 Section
	6.3.12.1 Sub Module Type PT Module 1 (0x0000)
	6.3.12.2 Section Length (0x0001)
	6.3.12.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n, n=0...3)
	6.3.12.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n, n=0...3)
	6.3.12.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)
	6.3.12.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n, n=0...15)
	6.3.12.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)
	6.3.12.8 LAN MANC Value LSB (0x0032)
	6.3.12.9 LAN MANC Value MSB (0x0033)
	6.3.12.10 Receive Enable 1 - LRXEN1 (0x0034)
	6.3.12.11 Receive Enable 2 - LRXEN2 (0x0035)
	6.3.12.12 LAN MNGONLY LSB (0x0036)
	6.3.12.13 LAN MNGONLY MSB (0x0037)
	6.3.12.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n, n=0...6)
	6.3.12.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n, n=0...6)
	6.3.12.16 Manageability Extended Decision Filters LSB[n] (0x003A + 4*n, n=0...6)
	6.3.12.17 Manageability Extended Decision Filters MSB[n] (0x003B + 4*n, n=0...6)
	6.3.12.18 Manageability EtherType Filter (METF) LSB[n] (0x0054 + 2*n, n=0...3)
	6.3.12.19 Manageability EtherType Filter (METF) MSB[n] (0x0055 + 2*n, n=0...3)
	6.3.12.20 ARP Response IPv4 Address LSB (0x005C)
	6.3.12.21 ARP Response IPv4 Address MSB (0x005D)
	6.3.12.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)
	6.3.12.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)
	6.3.12.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)
	6.3.12.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)
	6.3.12.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)
	6.3.12.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)
	6.3.12.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)
	6.3.12.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)
	6.3.12.30 Manageability Special Modifiers LSB (0x007E)
	6.3.12.31 Manageability Special Modifiers MSB (0x007F)

	6.3.13 PFA PT Configuration 2 Section
	6.3.13.1 Sub Module Type PT Module 2 (0x0000)
	6.3.13.2 Section Length (0x0001)
	6.3.13.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n, n=0...3)
	6.3.13.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n, n=0...3)
	6.3.13.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)
	6.3.13.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n, n=0...15)
	6.3.13.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)
	6.3.13.8 LAN MANC Value LSB (0x0032)
	6.3.13.9 LAN MANC Value MSB (0x0033)
	6.3.13.10 Receive Enable 1 - LRXEN1 (0x0034)
	6.3.13.11 Receive Enable 2 - LRXEN2 (0x0035)
	6.3.13.12 LAN MNGONLY LSB (0x0036)
	6.3.13.13 LAN MNGONLY MSB (0x0037)
	6.3.13.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n, n=0...6)
	6.3.13.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n, n=0...6)
	6.3.13.16 Manageability Extended Decision Filters LSB[n] (0x003A + 4*n, n=0...6)
	6.3.13.17 Manageability Extended Decision Filters MSB[n] (0x003B + 4*n, n=0...6)
	6.3.13.18 Manageability EtherType Filter (METF) LSB[n] (0x0054 + 2*n, n=0...3)
	6.3.13.19 Manageability EtherType Filter (METF) MSB[n] (0x0055 + 2*n, n=0...3)
	6.3.13.20 ARP Response IPv4 Address LSB (0x005C)
	6.3.13.21 ARP Response IPv4 Address MSB (0x005D)
	6.3.13.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)
	6.3.13.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)
	6.3.13.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)
	6.3.13.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)
	6.3.13.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)
	6.3.13.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)
	6.3.13.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)
	6.3.13.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)
	6.3.13.30 Manageability Special Modifiers LSB (0x007E)
	6.3.13.31 Manageability Special Modifiers MSB (0x007F)

	6.3.14 PFA PT Configuration 3 Section
	6.3.14.1 Sub Module Type PT Module 3 (0x0000)
	6.3.14.2 Section Length (0x0001)
	6.3.14.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n, n=0...3)
	6.3.14.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n, n=0...3)
	6.3.14.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)
	6.3.14.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n, n=0...15)
	6.3.14.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)
	6.3.14.8 LAN MANC Value LSB (0x0032)
	6.3.14.9 LAN MANC Value MSB (0x0033)
	6.3.14.10 Receive Enable 1 - LRXEN1 (0x0034)
	6.3.14.11 Receive Enable 2 - LRXEN2 (0x0035)
	6.3.14.12 LAN MNGONLY LSB (0x0036)
	6.3.14.13 LAN MNGONLY MSB (0x0037)
	6.3.14.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n, n=0...6)
	6.3.14.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n, n=0...6)
	6.3.14.16 Manageability Extended Decision Filters LSB[n] (0x003A + 4*n, n=0...6)
	6.3.14.17 Manageability Extended Decision Filters MSB[n] (0x003B + 4*n, n=0...6)
	6.3.14.18 Manageability EtherType Filter (METF) LSB[n] (0x0054 + 2*n, n=0...3)
	6.3.14.19 Manageability EtherType Filter (METF) MSB[n] (0x0055 + 2*n, n=0...3)
	6.3.14.20 ARP Response IPv4 Address LSB (0x005C)
	6.3.14.21 ARP Response IPv4 Address MSB (0x005D)
	6.3.14.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)
	6.3.14.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)
	6.3.14.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)
	6.3.14.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)
	6.3.14.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)
	6.3.14.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)
	6.3.14.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)
	6.3.14.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)
	6.3.14.30 Manageability Special Modifiers LSB (0x007E)
	6.3.14.31 Manageability Special Modifiers MSB (0x007F)

	6.3.15 PFA PT Configuration 4 Section
	6.3.15.1 Sub Module Type PT Module 4 (0x0000)
	6.3.15.2 Section Length (0x0001)
	6.3.15.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n, n=0...3)
	6.3.15.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n, n=0...3)
	6.3.15.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)
	6.3.15.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n, n=0...15)
	6.3.15.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)
	6.3.15.8 LAN MANC Value LSB (0x0032)
	6.3.15.9 LAN MANC Value MSB (0x0033)
	6.3.15.10 Receive Enable 1 - LRXEN1 (0x0034)
	6.3.15.11 Receive Enable 2 - LRXEN2 (0x0035)
	6.3.15.12 LAN MNGONLY LSB (0x0036)
	6.3.15.13 LAN MNGONLY MSB (0x0037)
	6.3.15.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n, n=0...6)
	6.3.15.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n, n=0...6)
	6.3.15.16 Manageability Extended Decision Filters LSB[n] (0x003A + 4*n, n=0...6)
	6.3.15.17 Manageability Extended Decision Filters MSB[n] (0x003B + 4*n, n=0...6)
	6.3.15.18 Manageability EtherType Filter (METF) LSB[n] (0x0054 + 2*n, n=0...3)
	6.3.15.19 Manageability EtherType Filter (METF) MSB[n] (0x0055 + 2*n, n=0...3)
	6.3.15.20 ARP Response IPv4 Address LSB (0x005C)
	6.3.15.21 ARP Response IPv4 Address MSB (0x005D)
	6.3.15.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)
	6.3.15.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)
	6.3.15.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)
	6.3.15.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)
	6.3.15.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)
	6.3.15.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)
	6.3.15.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)
	6.3.15.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)
	6.3.15.30 Manageability Special Modifiers LSB (0x007E)
	6.3.15.31 Manageability Special Modifiers MSB (0x007F)

	6.3.16 PFA PT Configuration 5 Section
	6.3.16.1 Sub Module Type PT Module 5 (0x0000)
	6.3.16.2 Section Length (0x0001)
	6.3.16.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n, n=0...3)
	6.3.16.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n, n=0...3)
	6.3.16.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)
	6.3.16.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n, n=0...15)
	6.3.16.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)
	6.3.16.8 LAN MANC Value LSB (0x0032)
	6.3.16.9 LAN MANC Value MSB (0x0033)
	6.3.16.10 Receive Enable 1 - LRXEN1 (0x0034)
	6.3.16.11 Receive Enable 2 - LRXEN2 (0x0035)
	6.3.16.12 LAN MNGONLY LSB (0x0036)
	6.3.16.13 LAN MNGONLY MSB (0x0037)
	6.3.16.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n, n=0...6)
	6.3.16.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n, n=0...6)
	6.3.16.16 Manageability Extended Decision Filters LSB[n] (0x003A + 4*n, n=0...6)
	6.3.16.17 Manageability Extended Decision Filters MSB[n] (0x003B + 4*n, n=0...6)
	6.3.16.18 Manageability EtherType Filter (METF) LSB[n] (0x0054 + 2*n, n=0...3)
	6.3.16.19 Manageability EtherType Filter (METF) MSB[n] (0x0055 + 2*n, n=0...3)
	6.3.16.20 ARP Response IPv4 Address LSB (0x005C)
	6.3.16.21 ARP Response IPv4 Address MSB (0x005D)
	6.3.16.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)
	6.3.16.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)
	6.3.16.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)
	6.3.16.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)
	6.3.16.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)
	6.3.16.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)
	6.3.16.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)
	6.3.16.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)
	6.3.16.30 Manageability Special Modifiers LSB (0x007E)
	6.3.16.31 Manageability Special Modifiers MSB (0x007F)

	6.3.17 PFA PT Configuration 6 Section
	6.3.17.1 Sub Module Type PT Module 6 (0x0000)
	6.3.17.2 Section Length (0x0001)
	6.3.17.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n, n=0...3)
	6.3.17.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n, n=0...3)
	6.3.17.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)
	6.3.17.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n, n=0...15)
	6.3.17.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)
	6.3.17.8 LAN MANC Value LSB (0x0032)
	6.3.17.9 LAN MANC Value MSB (0x0033)
	6.3.17.10 Receive Enable 1 - LRXEN1 (0x0034)
	6.3.17.11 Receive Enable 2 - LRXEN2 (0x0035)
	6.3.17.12 LAN MNGONLY LSB (0x0036)
	6.3.17.13 LAN MNGONLY MSB (0x0037)
	6.3.17.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n, n=0...6)
	6.3.17.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n, n=0...6)
	6.3.17.16 Manageability Extended Decision Filters LSB[n] (0x003A + 4*n, n=0...6)
	6.3.17.17 Manageability Extended Decision Filters MSB[n] (0x003B + 4*n, n=0...6)
	6.3.17.18 Manageability EtherType Filter (METF) LSB[n] (0x0054 + 2*n, n=0...3)
	6.3.17.19 Manageability EtherType Filter (METF) MSB[n] (0x0055 + 2*n, n=0...3)
	6.3.17.20 ARP Response IPv4 Address LSB (0x005C)
	6.3.17.21 ARP Response IPv4 Address MSB (0x005D)
	6.3.17.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)
	6.3.17.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)
	6.3.17.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)
	6.3.17.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)
	6.3.17.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)
	6.3.17.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)
	6.3.17.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)
	6.3.17.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)
	6.3.17.30 Manageability Special Modifiers LSB (0x007E)
	6.3.17.31 Manageability Special Modifiers MSB (0x007F)

	6.3.18 PFA PT Configuration 7 Section
	6.3.18.1 Sub Module Type PT Module 7 (0x0000)
	6.3.18.2 Section Length (0x0001)
	6.3.18.3 LAN IPv4 Address (LSB) MIPAF0[n] (0x0002 + 2*n, n=0...3)
	6.3.18.4 LAN IPv4 Address (MSB) MIPAF0[n] (0x0003 + 2*n, n=0...3)
	6.3.18.5 LAN Flexible Filter Port[n] (0x000A + 2*n, n=0...15)
	6.3.18.6 LAN Flexible Filter Port - Modifiers[n] (0x000B + 2*n, n=0...15)
	6.3.18.7 LAN VLAN Filter[n] (0x002A + 1*n, n=0...7)
	6.3.18.8 LAN MANC Value LSB (0x0032)
	6.3.18.9 LAN MANC Value MSB (0x0033)
	6.3.18.10 Receive Enable 1 - LRXEN1 (0x0034)
	6.3.18.11 Receive Enable 2 - LRXEN2 (0x0035)
	6.3.18.12 LAN MNGONLY LSB (0x0036)
	6.3.18.13 LAN MNGONLY MSB (0x0037)
	6.3.18.14 Manageability Decision Filters LSB[n] (0x0038 + 4*n, n=0...6)
	6.3.18.15 Manageability Decision Filters MSB[n] (0x0039 + 4*n, n=0...6)
	6.3.18.16 Manageability Extended Decision Filters LSB[n] (0x003A + 4*n, n=0...6)
	6.3.18.17 Manageability Extended Decision Filters MSB[n] (0x003B + 4*n, n=0...6)
	6.3.18.18 Manageability EtherType Filter (METF) LSB[n] (0x0054 + 2*n, n=0...3)
	6.3.18.19 Manageability EtherType Filter (METF) MSB[n] (0x0055 + 2*n, n=0...3)
	6.3.18.20 ARP Response IPv4 Address LSB (0x005C)
	6.3.18.21 ARP Response IPv4 Address MSB (0x005D)
	6.3.18.22 IPv6 Address Bytes 0-1[n] (0x005E + 8*n, n=0...3)
	6.3.18.23 IPv6 Address Bytes 2-3[n] (0x005F + 8*n, n=0...3)
	6.3.18.24 IPv6 Address Bytes 4-5[n] (0x0060 + 8*n, n=0...3)
	6.3.18.25 IPv6 Address Bytes 6-7[n] (0x0061 + 8*n, n=0...3)
	6.3.18.26 IPv6 Address Bytes 8-9[n] (0x0062 + 8*n, n=0...3)
	6.3.18.27 IPv6 Address Bytes 10-11[n] (0x0063 + 8*n, n=0...3)
	6.3.18.28 IPv6 Address Bytes 12-13[n] (0x0064 + 8*n, n=0...3)
	6.3.18.29 IPv6 Address Bytes 14-15[n] (0x0065 + 8*n, n=0...3)
	6.3.18.30 Manageability Special Modifiers LSB (0x007E)
	6.3.18.31 Manageability Special Modifiers MSB (0x007F)

	6.3.19 Original EETrack ID Section
	6.3.19.1 Sub Module Type - Original EETrackID (0x0000)
	6.3.19.2 Length (0x0001)
	6.3.19.3 Original EETrackID MSB (0x0002)
	6.3.19.4 Original EETrackID LSB (0x0003)

	6.3.20 IBA Capabilities Module Section
	6.3.20.1 Sub Module Type - IBA Capabilities (0x0000)
	6.3.20.2 Length (0x0001)
	6.3.20.3 IBA Capabilities (0x0002)

	6.3.21 PXE Setup Options Module Section
	6.3.21.1 Sub Module Type - PXE Setup (0x0000)
	6.3.21.2 Length (0x0001)
	6.3.21.3 Setup Options PCI Function[n] (0x0002 + 1*n, n=0...7)

	6.3.22 PXE Configuration Customization Options Module Section
	6.3.22.1 Sub Module Type - PXE Configuration Customization Options (0x0000)
	6.3.22.2 Length (0x0001)
	6.3.22.3 Configuration Customization Options PCI Function[n] (0x0002 + 1*n, n=0...7)

	6.3.23 PXE Version Module Section
	6.3.23.1 Sub Module Type - PXE Version (0x0000)
	6.3.23.2 Length (0x0001)
	6.3.23.3 PXE Version (0x0002)

	6.3.24 VLAN Module Section
	6.3.24.1 Sub Module Type - VLAN (0x0000)
	6.3.24.2 Length (0x0001)
	6.3.24.3 VLAN Block Signature (0x0002)
	6.3.24.4 Structure Version and Size (0x0003)
	6.3.24.5 Port 0 VLAN Tag (0x0004)
	6.3.24.6 Port 1 VLAN Tag (0x0005)
	6.3.24.7 Port 2 VLAN Tag (0x0006)
	6.3.24.8 Port 3 VLAN Tag (0x0007)
	6.3.24.9 Port 4 VLAN Tag (0x0008)
	6.3.24.10 Port 5 VLAN Tag (0x0009)
	6.3.24.11 Port 6 VLAN Tag (0x000A)
	6.3.24.12 Port 7 VLAN Tag (0x000B)

	6.3.25 Boot Configuration Block Section
	6.3.25.1 Sub Module Type (0x0000)
	6.3.25.2 Length (0x0001)
	6.3.25.3 Combo Image Version High (0x0002)
	6.3.25.4 Combo Image Version Low (0x0003)

	6.3.26 PBA Header Section
	6.3.26.1 Sub Module Type - PBA (0x0000)
	6.3.26.2 Length (0x0001)

	6.3.27 PBA Block Section
	6.3.27.1 PBA Section Length (0x0000)
	6.3.27.2 Word1 (0x0001)
	6.3.27.3 Word2 (0x0002)
	6.3.27.4 Word3 (0x0003)
	6.3.27.5 Word4 (0x0004)
	6.3.27.6 Word5 (0x0005)

	6.3.28 PCIR Registers PFA Auto-Load Module Section
	6.3.28.1 PCIR Registers Auto-Load Type (0x0000)
	6.3.28.2 Module Length (0x0001)
	6.3.28.3 PFINT_ALLOC_PCI (0x0002 - 0x0014)
	6.3.28.3.1 Starting Address Low at PFINT_ALLOC_PCI (0x0002)
	6.3.28.3.2 Starting Address High at PFINT_ALLOC_PCI (0x0003)
	6.3.28.3.3 Attributes at PFINT_ALLOC_PCI (0x0004)
	6.3.28.3.4 Data Low of PFINT_ALLOC_PCI[PF] (0x0005 + 2*PF, PF=0...7)
	6.3.28.3.5 Data High of PFINT_ALLOC_PCI[PF] (0x0006 + 2*PF, PF=0...7)

	6.3.28.4 PFPCI_SUBSYSID (0x0015 - 0x0027)
	6.3.28.4.1 Starting Address Low at PFPCI_SUBSYSID (0x0015)
	6.3.28.4.2 Starting Address High at PFPCI_SUBSYSID (0x0016)
	6.3.28.4.3 Attributes at PFPCI_FUNC2[PF] (0x0017)
	6.3.28.4.4 Data Low of PFPCI_SUBSYSID[PF] (0x0018 + 2*PF, PF=0...7)
	6.3.28.4.5 Data High of PFPCI_SUBSYSID[PF] (0x0019 + 2*PF, PF=0...7)

	6.3.28.5 PF_VT_PFALLOC_HIF (0x0028 - 0x003A)
	6.3.28.5.1 Starting Address Low at PF_VT_PFALLOC_HIF (0x0028)
	6.3.28.5.2 Starting Address High at PF_VT_PFALLOC_HIF (0x0029)
	6.3.28.5.3 Attributes at PF_VT_PFALLOC_HIF (0x002A)
	6.3.28.5.4 Data Low of PF_VT_PFALLOC_HIF[PF] (0x002B + 2*PF, PF=0...7)
	6.3.28.5.5 Data High of PF_VT_PFALLOC_HIF[PF] (0x002C + 2*PF, PF=0...7)

	6.3.28.6 PFPCI_DEVID (0x003B - 0x004D)
	6.3.28.6.1 Starting Address Low at PFPCI_DEVID (0x003B)
	6.3.28.6.2 Starting Address High at PFPCI_DEVID (0x003C)
	6.3.28.6.3 Attributes at PFPCI_DEVID (0x003D)
	6.3.28.6.4 Data Low of PFPCI_DEVID[PF] (0x003E + 2*PF, PF=0...7)
	6.3.28.6.5 Data High of PFPCI_DEVID[PF] (0x003F + 2*PF, PF=0...7)

	6.3.28.7 GLPCI_CAPCTRL (0x004E - 0x0052)
	6.3.28.7.1 Starting Address Low at GLPCI_CAPCTRL (0x004E)
	6.3.28.7.2 Starting Address High at GLPCI_CAPCTRL (0x004F)
	6.3.28.7.3 Attributes at GLPCI_CAPCTRL (0x0050)
	6.3.28.7.4 Data Low of GLPCI_CAPCTRL (0x0051)
	6.3.28.7.5 Data High of GLPCI_CAPCTRL (0x0052)

	6.3.28.8 GLPCI_CAPSUP (0x0053 - 0x0054)
	6.3.28.8.1 Data Low of GLPCI_CAPSUP (0x0053)
	6.3.28.8.2 Data High of GLPCI_CAPSUP (0x0054)

	6.3.28.9 GLPCI_LINKCAP (0x0055 - 0x0056)
	6.3.28.9.1 Data Low of GLPCI_LINKCAP (0x0055)
	6.3.28.9.2 Data High of GLPCI_LINKCAP (0x0056)

	6.3.28.10 GLPCI_VENDORID (0x0057 - 0x005A)
	6.3.28.10.1 Address Low at GLPCI_VENDORID (0x0057)
	6.3.28.10.2 Address High at GLPCI_VENDORID (0x0058)
	6.3.28.10.3 Data Low of GLPCI_VENDORID (0x0059)
	6.3.28.10.4 Data High of GLPCI_VENDORID (0x005A)

	6.3.28.11 GLPCI_SUBVENID (0x005B - 0x005E)
	6.3.28.11.1 Address Low at GLPCI_SUBVENID (0x005B)
	6.3.28.11.2 Address High at GLPCI_SUBVENID (0x005C)
	6.3.28.11.3 Data Low of GLPCI_SUBVENID (0x005D)
	6.3.28.11.4 Data High of GLPCI_SUBVENID (0x005E)

	6.3.28.12 PFPCI_CNF (0x005F - 0x0071)
	6.3.28.12.1 Starting Address Low at PFPCI_CNF (0x005F)
	6.3.28.12.2 Starting Address High at PFPCI_CNF (0x0060)
	6.3.28.12.3 Attributes at PFPCI_CNF (0x0061)
	6.3.28.12.4 Data Low of PFPCI_CNF[PF] (0x0062 + 2*PF, PF=0...7)
	6.3.28.12.5 Data High of PFPCI_CNF[PF] (0x0063 + 2*PF, PF=0...7)

	6.3.28.13 Reserved (0x0072 - 0x0075)
	6.3.28.14 PF_VT_PFALLOC_PCIE (0x0076 - 0x0088)
	6.3.28.14.1 Starting Address Low at PF_VT_PFALLOC_PCIE (0x0076)
	6.3.28.14.2 Starting Address High at PF_VT_PFALLOC_PCIE (0x0077)
	6.3.28.14.3 Attributes at PF_VT_PFALLOC_PCIE (0x0078)
	6.3.28.14.4 Data Low of PF_VT_PFALLOC_PCIE[PF] (0x0079 + 2*PF, PF=0...7)
	6.3.28.14.5 Data High of PF_VT_PFALLOC_PCIE[PF] (0x007A + 2*PF, PF=0...7)

	6.3.29 POR Registers PFA Auto-Load Module Section
	6.3.29.1 POR Registers Auto-Load Type (0x0000)
	6.3.29.2 Module Length (0x0001)
	6.3.29.3 GLGEN_GPIO_CTL (0x0002 - 0x0012)
	6.3.29.3.1 Starting Address Low at GLGEN_GPIO_CTL (0x0002)
	6.3.29.3.2 Starting Address High at GLGEN_GPIO_CTL (0x0003)
	6.3.29.3.3 Attributes at GLGEN_GPIO_CTL (0x0004)
	6.3.29.3.4 Data Low of GLGEN_GPIO_CTL[n] (0x0005 + 2*n, n=0...6)
	6.3.29.3.5 Data High of GLGEN_GPIO_CTL[n] (0x0006 + 2*n, n=0...6)

	6.3.29.4 PFPCI_FUNC (0x0013 - 0x0025)
	6.3.29.4.1 Starting Address Low at PFPCI_FUNC (0x0013)
	6.3.29.4.2 Starting Address High at PFPCI_FUNC (0x0014)
	6.3.29.4.3 Attributes at PFPCI_FUNC (0x0015)
	6.3.29.4.4 Data Low of PFPCI_FUNC[PF] (0x0016 + 2*PF, PF=0...7)
	6.3.29.4.5 Data High of PFPCI_FUNC[PF] (0x0017 + 2*PF, PF=0...7)

	6.3.29.5 PFPM_WUC (0x0026 - 0x0038)
	6.3.29.5.1 Starting Address Low at PFPM_WUC 0x0026)
	6.3.29.5.2 Starting Address High at PFPM_WUC (0x0027)
	6.3.29.5.3 Attributes at PFPM_WUC - 0x0028
	6.3.29.5.4 Data Low of PFPM_WUC[PF] (0x0029 + 2*PF, PF=0...7)
	6.3.29.5.5 Data High of PFPM_WUC[PF] (0x002A + 2*PF, PF=0...7)

	6.3.29.6 GLPCI_LBARCTRL (0x0039 - 0x003C)
	6.3.29.6.1 Address Low at GLPCI_LBARCTRL (0x0039)
	6.3.29.6.2 Address High at GLPCI_LBARCTRL (0x003A)
	6.3.29.6.3 Data Low of GLPCI_LBARCTRL (0x003B)
	6.3.29.6.4 Data High of GLPCI_LBARCTRL (0x003C)

	6.3.29.7 GLPCI_CNF (0x003D - 0x0040)
	6.3.29.7.1 Address Low at GLPCI_CNF (0x003D)
	6.3.29.7.2 Address High at GLPCI_CNF (0x003E)
	6.3.29.7.3 Data Low of GLPCI_CNF (0x003F)
	6.3.29.7.4 Data High of GLPCI_CNF (0x0040)

	6.3.29.8 GL_MNG_HWARB_CTRL (0x0041 - 0x0044)
	6.3.29.8.1 Address Low at GL_MNG_HWARB_CTRL (0x0041)
	6.3.29.8.2 Address High at GL_MNG_HWARB_CTRL (0x0042)
	6.3.29.8.3 Data Low of GL_MNG_HWARB_CTRL (0x0043)
	6.3.29.8.4 Data High of GL_MNG_HWARB_CTRL (0x0044)

	6.3.29.9 Reserved (0x0045 - 0x0057)
	6.3.29.10 PFPM_APM (0x0058 - 0x006A)
	6.3.29.10.1 Starting Address Low at PFPM_APM (0x0058)
	6.3.29.10.2 Starting Address High at PFPM_APM (0x0059)
	6.3.29.10.3 Attributes at PFPM_APM (0x005A)
	6.3.29.10.4 Data Low of PFPM_APM[PF] (0x005B + 2*PF, PF=0...7)
	6.3.29.10.5 Data High of PFPM_APM[PF] (0x005C + 2*PF, PF=0...7)

	6.3.29.11 PRTGEN_CNF (0x006B - 0x007D)
	6.3.29.11.1 Starting Address Low at PRTGEN_CNF (0x006B)
	6.3.29.11.2 Starting Address High at PRTGEN_CNF (0x006C)
	6.3.29.11.3 Attributes at PRTGEN_CNF (0x006D)
	6.3.29.11.4 Data Low of PRTGEN_CNF[PRT] (0x006E + 2*PRT, PRT=0...7)
	6.3.29.11.5 Data High of PRTGEN_CNF[PRT] (0x006F + 2*PRT, PRT=0...7)

	6.3.29.12 Reserved (0x007E - 0x008D)
	6.3.29.13 PRTGEN_CNF2 (0x008E - 0x009D)
	6.3.29.13.1 Data Low of PRTGEN_CNF2[PRT] (0x008E + 2*PRT, PRT=0...7)
	6.3.29.13.2 Data High of PRTGEN_CNF2[PRT] (0x008F + 2*PRT, PRT=0...7)

	6.3.29.14 Reserved (0x009E - 0x00A8)
	6.3.29.15 GL_PWR_MODE_CTL (0x00A9 - 0x00AC)
	6.3.29.15.1 Address Low at GL_PWR_MODE_CTL (0x00A9)
	6.3.29.15.2 Address High at GL_PWR_MODE_CTL (0x00AA)
	6.3.29.15.3 Data Low of GL_PWR_MODE_CTL (0x00AB)
	6.3.29.15.4 Data High of GL_PWR_MODE_CTL (0x00AC)

	6.3.30 PSM Preserved Section
	6.3.30.1 PSM Preserved Type (0x0000)
	6.3.30.2 PSM Preserved Length (0x0001)
	6.3.30.3 Logical Layer Config (0x0002)
	6.3.30.4 Logical Layer Structure[n] (0x0003 + 1*n, n=0...8)
	6.3.30.5 Max_RDMA_Qsets (0x000C)
	6.3.30.6 Logical L2/L3 CIR/EIR[n] (0x000D + 4*n, n=0...7)
	6.3.30.7 Logical L4/L5 CIR/EIR[n] (0x000E + 4*n, n=0...7)
	6.3.30.8 Logical L6/L7 CIR/EIR[n] (0x000F + 4*n, n=0...7)
	6.3.30.9 Logical L8/L9 CIR/EIR[n] (0x0010 + 4*n, n=0...7)
	6.3.30.10 Node Allocation per Layer[n] (0x002D + 1*n, n=0...7)

	6.3.31 MinSrev Section
	6.3.31.1 MinSrev Module Type (0x0000)
	6.3.31.2 Length (0x0001)
	6.3.31.3 Validity (0x0002)
	6.3.31.4 NVM MinSrev LSB (0x0003)
	6.3.31.5 NVM MinSrev MSB (0x0004)
	6.3.31.6 OROM MinSrev LSB (0x0005)
	6.3.31.7 OROM MinSrev MSB (0x0006)

	6.3.32 PF MAC Address Section
	6.3.32.1 PCI Serial ID MAC Address Module Type (0x0000)
	6.3.32.2 Length (0x0001)
	6.3.32.3 GLPCI_SERL0 (0x0002)
	6.3.32.4 GLPCI_SERL1 (0x00023)
	6.3.32.5 GLPCI_SERH0 (0x0004)
	6.3.32.6 GLPCI_SERH1 (0x0005)
	6.3.32.7 PF MAC Address Module Type (0x0006)
	6.3.32.8 Section Header (0x0007)
	6.3.32.9 PFPM_SAL0[n] (0x0008 + 4*n, n=0...7)
	6.3.32.10 PFPM_SAL1[n] (0x0009 + 4*n, n=0...7)
	6.3.32.11 PFPM_SAH0[n] (0x000A + 4*n, n=0...7)
	6.3.32.12 PFPM_SAH1[n] (0x000B + 4*n, n=0...7)

	6.3.33 MNG MAC Address Section
	6.3.33.1 MNG MAC Address Module Type (0x0000)
	6.3.33.2 Section Header - Length (0x0001)
	6.3.33.3 LAN Ethernet MAC Address (LSB) MMAL[n] (0x0002 + 3*n, n=0...31)
	6.3.33.4 LAN Ethernet MAC Address (Mid) MMAL[n] (0x0003 + 3*n, n=0...31)
	6.3.33.5 LAN Ethernet MAC Address (MSB) MMAH[n] (0x0004 + 3*n, n=0...31)

	6.3.34 FW Logging Defaults Section
	6.3.34.1 Sub Module Type (0x0000)
	6.3.34.2 Section Length (0x0001)
	6.3.34.3 UART Control (0x0002)
	6.3.34.4 Module Logging Enable [n=0] (0x0003)
	6.3.34.5 Module Logging Enable [n=1] (0x0004)
	6.3.34.6 Module Logging Enable [n=2] (0x0005)
	6.3.34.7 Module Logging Enable [n=3] (0x0006)
	6.3.34.8 Module Logging Enable [n=4] (0x0007)
	6.3.34.9 Module Logging Enable [n=5] (0x0008)
	6.3.34.10 Module Logging Enable [n=6] (0x0009)
	6.3.34.11 Module Logging Enable [n=7] (0x000A)

	6.3.35 1588 Parameters Section
	6.3.35.1 Type (0x0000)
	6.3.35.2 Length (0x0001)
	6.3.35.3 1588 Timer Ownership (0x0002)
	6.3.35.4 1588 Functionality Enablement 0-7 (0x0003)
	6.3.35.5 1588 Functionality Enablement 8-15 (0x0004)
	6.3.35.6 1588 Functionality Enablement 16-19 (0x0005)

	6.3.36 MD Link Topology Section
	6.3.36.1 FW MNG Link Topology Module Type (0x0000)
	6.3.36.2 FW MNG Link Topology Module Length (0x0001)
	6.3.36.3 Generic Info (0x0002)
	6.3.36.4 Netlist Version (0x0003)
	6.3.36.5 Pair PHY Type[n] (0x0004 + 1*n, n=0...15)
	6.3.36.6 Port Bitmap 0 (0x0014)
	6.3.36.7 Port Bitmap 1 (0x0015)

	6.3.37 LLDP Preserved Section
	6.3.37.1 Type (0x0000)
	6.3.37.2 Length (0x0001)
	6.3.37.3 LLDP Admin Status 0 (0x0002)
	6.3.37.4 LLDP Admin Status 1 (0x0003)

	6.3.38 RDE Module Section
	6.3.38.1 Type (0x0000)
	6.3.38.2 Length (0x0001)
	6.3.38.3 AssetTag[n] (0x0002 + 1*n, n=0...31)

	6.3.39 Identical Content as PLDM Header ComponentImageSetVersionString Section
	6.3.39.1 Sub Module Type (0x0000)
	6.3.39.2 Length (0x0001)
	6.3.39.3 ComponentImageSetVersionString_0 (0x0002)
	6.3.39.4 ComponentImageSetVersionString_1 (0x0003)
	6.3.39.5 ComponentImageSetVersionString_2 (0x0004)
	6.3.39.6 ComponentImageSetVersionString_3 (0x0005)
	6.3.39.7 ComponentImageSetVersionString_4 (0x0006)
	6.3.39.8 ComponentImageSetVersionString_5 (0x0007)
	6.3.39.9 ComponentImageSetVersionString_6 (0x0008)
	6.3.39.10 ComponentImageSetVersionString_7 (0x0009)
	6.3.39.11 ComponentImageSetVersionString_8 (0x000A)
	6.3.39.12 ComponentImageSetVersionString_9 (0x000B)
	6.3.39.13 ComponentImageSetVersionString_10 (0x000C)
	6.3.39.14 ComponentImageSetVersionString_11 (0x000D)
	6.3.39.15 ComponentImageSetVersionString_12 (0x000E)
	6.3.39.16 ComponentImageSetVersionString_13 (0x000F)
	6.3.39.17 ComponentImageSetVersionString_14 (0x0010)
	6.3.39.18 ComponentImageSetVersionString_15 (0x0011)

	6.3.40 Software Checksum Module Section
	6.3.40.1 Sub Module Type - Checksum (0x0000)
	6.3.40.2 Checksum Module Length (0x0001)
	6.3.40.3 Checksum (0x0002)

	6.3.41 RDMA Control Section
	6.3.41.1 RDMA Control Module Type (0x0000)
	6.3.41.2 Length (0x0001)
	6.3.41.3 RDMA Control Settings (0x0002)

	6.3.42 Link Default Override Mask Section
	6.3.42.1 Link Default Override Mask Type (0x0000)
	6.3.42.2 Length (0x0001)
	6.3.42.3 Port Options 0[n] (0x0002 + 10*n, n=0...7)
	6.3.42.4 Port Options 1[n] (0x0003 + 10*n, n=0...7)
	6.3.42.5 Port PHY Types 0[n] (0x0004 + 10*n, n=0...7)
	6.3.42.6 Port PHY Types 1[n] (0x0005 + 10*n, n=0...7)
	6.3.42.7 Port PHY Types 2[n] (0x0006 + 10*n, n=0...7)
	6.3.42.8 Port PHY Types 3[n] (0x0007 + 10*n, n=0...7)
	6.3.42.9 Port PHY Types 4[n] (0x0008 + 10*n, n=0...7)
	6.3.42.10 Port PHY Types 5[n] (0x0009 + 10*n, n=0...7)
	6.3.42.11 Port PHY Types 6[n] (0x000A + 10*n, n=0...7)
	6.3.42.12 Port PHY Types 7[n] (0x000B + 10*n, n=0...7)

	6.3.43 RDE Ethernet MTU Section
	6.3.43.1 RDE Ethernet MTU Type (0x0000)
	6.3.43.2 Length (0x0001)
	6.3.43.3 Ethernet MTU Size[n] (0x0002 + 1*n, n=0...7)

	6.3.44 Default DCB Parameters Section
	6.3.44.1 Default DCB Parameters Type (0x0000)
	6.3.44.2 Length (0x0001)
	6.3.44.3 Ports 0-3 Mode (0x0002)
	6.3.44.4 Ports 4-7 Mode (0x0003)

	6.3.45 Current DCB Parameters Section
	6.3.45.1 Current DCB Parameters Type (0x0000)
	6.3.45.2 Length (0x0001)
	6.3.45.3 Ports 0-3 Mode (0x0002)
	6.3.45.4 Ports 4-7 Mode (0x0003)

	6.3.46 HII Port Disable by Function Section
	6.3.46.1 Type (0x0000)
	6.3.46.2 Length (0x0001)
	6.3.46.3 HII Port Disable by Function (0x0002)

	6.3.47 NetlistMinSrev Section
	6.3.47.1 NetlistMinSrev Module Type (0x0000)
	6.3.47.2 Length (0x0001)
	6.3.47.3 Validity (0x0002)
	6.3.47.4 Netlist MinSrev LSB (0x0003)
	6.3.47.5 Netlist MinSrev MSB (0x0004)

	6.3.48 Tx-Scheduler Topology User Selection Section
	6.3.48.1 Tx Scheduler Topology User Selection Module Type (0x0000)
	6.3.48.2 Length (0x0001)
	6.3.48.3 Data (0x0002)

	6.3.49 LLDP Preserved 2 Section
	6.3.49.1 LLDP Preserved 2 Module Type (0x0000)
	6.3.49.2 Length (0x0001)
	6.3.49.3 LLDP Control 0 (0x0002)
	6.3.49.4 LLDP Control 1 (0x0003)
	6.3.49.5 Port 0 - Chassis ID Subtype & Chassis ID length (0x0004)
	6.3.49.6 Port 0 - Chassis ID[n] (0x0005 + 1*n, n=0...15)
	6.3.49.7 Port 0 - Port ID Subtype & Port ID Length (0x0015)
	6.3.49.8 Port 0 - Port ID[n] (0x0016 + 1*n, n=0...15)
	6.3.49.9 Port 0 - Management Address IPv4[n] (0x0026 + 1*n, n=0...1)
	6.3.49.10 Port 0 - Management Address IPv6[n] (0x0028 + 1*n, n=0...7)
	6.3.49.11 Port 0 - Management Address MAC[n] (0x0030 + 1*n, n=0...2)
	6.3.49.12 Port 0 - Management VLAN ID (0x0033)
	6.3.49.13 Port 1 - Chassis ID Subtype & Chassis ID length (0x0034)
	6.3.49.14 Port 1 - Chassis ID[n] (0x0035 + 1*n, n=0...15)
	6.3.49.15 Port 1 - Port ID Subtype & Port ID Length (0x0045)
	6.3.49.16 Port 1 - Port ID[n] (0x0046 + 1*n, n=0...15)
	6.3.49.17 Port 1 - Management Address IPv4[n] (0x0056 + 1*n, n=0...1)
	6.3.49.18 Port 1 - Management Address IPv6[n] (0x0058 + 1*n, n=0...7)
	6.3.49.19 Port 1 - Management Address MAC[n] (0x0060 + 1*n, n=0...2)
	6.3.49.20 Port 1 - Management VLAN ID (0x0063)
	6.3.49.21 Port 2 - Chassis ID Subtype & Chassis ID length (0x0064)
	6.3.49.22 Port 2 - Chassis ID[n] (0x0065 + 1*n, n=0...15)
	6.3.49.23 Port 2 - Port ID Subtype & Port ID Length (0x0075)
	6.3.49.24 Port 2 - Port ID[n] (0x0076 + 1*n, n=0...15)
	6.3.49.25 Port 2 - Management Address IPv4[n] (0x0086 + 1*n, n=0...1)
	6.3.49.26 Port 2 - Management Address IPv6[n] (0x0088 + 1*n, n=0...7)
	6.3.49.27 Port 2 - Management Address MAC[n] (0x0090 + 1*n, n=0...2)
	6.3.49.28 Port 2 - Management VLAN ID (0x0093)
	6.3.49.29 Port 3 - Chassis ID Subtype & Chassis ID length (0x0094)
	6.3.49.30 Port 3 - Chassis ID[n] (0x0095 + 1*n, n=0...15)
	6.3.49.31 Port 3 - Port ID Subtype & Port ID Length (0x00A5)
	6.3.49.32 Port 3 - Port ID[n] (0x00A6 + 1*n, n=0...15)
	6.3.49.33 Port 3 - Management Address IPv4[n] (0x00B6 + 1*n, n=0...1)
	6.3.49.34 Port 3 - Management Address IPv6[n] (0x00B8 + 1*n, n=0...7)
	6.3.49.35 Port 3 - Management Address MAC[n] (0x00C0 + 1*n, n=0...2)
	6.3.49.36 Port 3 - Management VLAN ID (0x00C3)
	6.3.49.37 Port 4 - Chassis ID Subtype & Chassis ID length (0x00C4)
	6.3.49.38 Port 4 - Chassis ID[n] (0x00C5 + 1*n, n=0...15)
	6.3.49.39 Port 4 - Port ID Subtype & Port ID Length (0x00D5)
	6.3.49.40 Port 4 - Port ID[n] (0x00D6 + 1*n, n=0...15)
	6.3.49.41 Port 4 - Management Address IPv4[n] (0x00E6 + 1*n, n=0...1)
	6.3.49.42 Port 4 - Management Address IPv6[n] (0x00E8 + 1*n, n=0...7)
	6.3.49.43 Port 4 - Management Address MAC[n] (0x00F0 + 1*n, n=0...2)
	6.3.49.44 Port 4 - Management VLAN ID (0x00F3)
	6.3.49.45 Port 5 - Chassis ID Subtype & Chassis ID length (0x00F4)
	6.3.49.46 Port 5 - Chassis ID[n] (0x00F5 + 1*n, n=0...15)
	6.3.49.47 Port 5 - Port ID Subtype & Port ID Length (0x0105)
	6.3.49.48 Port 5 - Port ID[n] (0x0106 + 1*n, n=0...15)
	6.3.49.49 Port 5 - Management Address IPv4[n] (0x0116 + 1*n, n=0...1)
	6.3.49.50 Port 5 - Management Address IPv6[n] (0x0118 + 1*n, n=0...7)
	6.3.49.51 Port 5 - Management Address MAC[n] (0x0120 + 1*n, n=0...2)
	6.3.49.52 Port 5 - Management VLAN ID (0x0123)
	6.3.49.53 Port 6 - Chassis ID Subtype & Chassis ID length (0x00124)
	6.3.49.54 Port 6 - Chassis ID[n] (0x0125 + 1*n, n=0...15)
	6.3.49.55 Port 6 - Port ID Subtype & Port ID Length (0x0135)
	6.3.49.56 Port 6 - Port ID[n] (0x0136 + 1*n, n=0...15)
	6.3.49.57 Port 6 - Management Address IPv4[n] (0x0146 + 1*n, n=0...1)
	6.3.49.58 Port 6 - Management Address IPv6[n] (0x0148 + 1*n, n=0...7)
	6.3.49.59 Port 6 - Management Address MAC[n] (0x0150 + 1*n, n=0...2)
	6.3.49.60 Port 6 - Management VLAN ID (0x0153)
	6.3.49.61 Port 7 - Chassis ID Subtype & Chassis ID length (0x00154)
	6.3.49.62 Port 7 - Chassis ID[n] (0x0155 + 1*n, n=0...15)
	6.3.49.63 Port 7 - Port ID Subtype & Port ID Length (0x0165)
	6.3.49.64 Port 7 - Port ID[n] (0x0166 + 1*n, n=0...15)
	6.3.49.65 Port 7 - Management Address IPv4[n] (0x0176 + 1*n, n=0...1)
	6.3.49.66 Port 7 - Management Address IPv6[n] (0x0178 + 1*n, n=0...7)
	6.3.49.67 Port 7 - Management Address MAC[n] (0x0180 + 1*n, n=0...2)
	6.3.49.68 Port 7 - Management VLAN ID (0x0183)
	6.3.49.69 Reserved[n] (0x0184 + 1*n, n=0...123)

	6.3.50 WA Enable TLV Section
	6.3.50.1 Type (0x0000)
	6.3.50.2 Length (0x0001)
	6.3.50.3 WA Enable Flags (0x0002)

	6.3.51 FRU Data Section
	6.3.51.1 Type (0x0000)
	6.3.51.2 Length (0x0001)
	6.3.51.3 Actual Section Length (0x0002)
	6.3.51.4 Board Serial Number Size (0x0003)
	6.3.51.5 Board Serial Number[n] (0x0004 + 1*n, n=0...6)
	6.3.51.6 Board Part Number Size (0x000B)
	6.3.51.7 Board Part Number[n] (0x000C + 1*n, n=0...4)
	6.3.51.8 Board Product Name Size (0x0011)
	6.3.51.9 Board Product Name[n] (0x0012 + 1*n, n=0...15)
	6.3.51.10 Board Manufacturing Date Size (0x0022)
	6.3.51.11 Board Manufacturing Date[n] (0x0023 + 1*n, n=0...1)
	6.3.51.12 Reserved[n] (0x0025 + 1*n, n=0...474)

	6.3.52 SyncE DPLL Input Settings Section
	6.3.52.1 Sub Module Type SyncE DPLL Input (0x0000)
	6.3.52.2 Section Length (0x0001)
	6.3.52.3 Entry Count and Version (0x0002)
	6.3.52.4 Control Flags (0x0003)
	6.3.52.5 Frequency LSB 0 (0x0004)
	6.3.52.6 Frequency MSB 0 (0x0005)
	6.3.52.7 Input and DPLL Index 0 (0x0006)
	6.3.52.8 Node Part Number and Parameter Type 0 (0x0007)
	6.3.52.9 Parameter Value 0 (0x0008)
	6.3.52.10 Frequency LSB 1 (0x0009)
	6.3.52.11 Frequency MSB 1 (0x000A)
	6.3.52.12 Input and DPLL Index 1 (0x000B)
	6.3.52.13 Node Part Number and Parameter Type 1 (0x000C)
	6.3.52.14 Parameter Value 1 (0x000D)
	6.3.52.15 Frequency LSB 2 (0x000E)
	6.3.52.16 Frequency MSB 2 (0x000F)
	6.3.52.17 Input and DPLL Index 2 (0x0010)
	6.3.52.18 Node Part Number and Parameter Type 2 (0x0011)
	6.3.52.19 Parameter Value 2 (0x0012)
	6.3.52.20 Frequency LSB 3 (0x0013)
	6.3.52.21 Frequency MSB 3 (0x0014)
	6.3.52.22 Input and DPLL Index 3 (0x0015)
	6.3.52.23 Node Part Number and Parameter Type 3 (0x0016)
	6.3.52.24 Parameter Value 3 (0x0017)
	6.3.52.25 Frequency LSB 4 (0x0018)
	6.3.52.26 Frequency MSB 4 (0x0019)
	6.3.52.27 Input and DPLL Index 4 (0x001A)
	6.3.52.28 Node Part Number and Parameter Type 4 (0x001B)
	6.3.52.29 Parameter Value 4 (0x001C)
	6.3.52.30 Frequency LSB 5 (0x001D)
	6.3.52.31 Frequency MSB 5 (0x001E)
	6.3.52.32 Input and DPLL Index 5 (0x001F)
	6.3.52.33 Node Part Number and Parameter Type 5 (0x0020)
	6.3.52.34 Parameter Value 5 (0x0021)
	6.3.52.35 Frequency LSB 6 (0x0022)
	6.3.52.36 Frequency MSB 6 (0x0023)
	6.3.52.37 Input and DPLL Index 6 (0x0024)
	6.3.52.38 Node Part Number and Parameter Type 6 (0x0025)
	6.3.52.39 Parameter Value 6 (0x0026)
	6.3.52.40 Frequency LSB 7 (0x0027)
	6.3.52.41 Frequency MSB 7 (0x0028)
	6.3.52.42 Input and DPLL Index 7 (0x0029)
	6.3.52.43 Node Part Number and Parameter Type 7 (0x002A)
	6.3.52.44 Parameter Value 7 (0x002B)
	6.3.52.45 Frequency LSB 8 (0x002C)
	6.3.52.46 Frequency MSB 8 (0x002D)
	6.3.52.47 Input and DPLL Index 8 (0x002E)
	6.3.52.48 Node Part Number and Parameter Type 8 (0x002F)
	6.3.52.49 Parameter Value 8 (0x0030)
	6.3.52.50 Frequency LSB 9 (0x0031)
	6.3.52.51 Frequency MSB 9 (0x0032)
	6.3.52.52 Input and DPLL Index 9 (0x0033)
	6.3.52.53 Node Part Number and Parameter Type 9 (0x0034)
	6.3.52.54 Parameter Value 9 (0x0035)
	6.3.52.55 Frequency LSB 10 (0x0036)
	6.3.52.56 Frequency MSB 10 (0x0037)
	6.3.52.57 Input and DPLL Index 10 (0x0038)
	6.3.52.58 Node Part Number and Parameter Type 10 (0x0039)
	6.3.52.59 Parameter Value 10 (0x003A)
	6.3.52.60 Frequency LSB 11 (0x003B)
	6.3.52.61 Frequency MSB 11 (0x003C)
	6.3.52.62 Input and DPLL Index 11 (0x003D)
	6.3.52.63 Node Part Number and Parameter Type 11 (0x003E)
	6.3.52.64 Parameter Value 11 (0x003F)
	6.3.52.65 Frequency LSB 12 (0x0040)
	6.3.52.66 Frequency MSB 12 (0x0041)
	6.3.52.67 Input and DPLL Index 12 (0x0042)
	6.3.52.68 Node Part Number and Parameter Type 12 (0x0043)
	6.3.52.69 Parameter Value 12 (0x0044)
	6.3.52.70 Frequency LSB 13 (0x0045)
	6.3.52.71 Frequency MSB 13 (0x0046)
	6.3.52.72 Input and DPLL Index 13 (0x0047)
	6.3.52.73 Node Part Number and Parameter Type 13 (0x0048)
	6.3.52.74 Parameter Value 13 (0x0049)
	6.3.52.75 Frequency LSB 14 (0x004A)
	6.3.52.76 Frequency MSB 14 (0x004B)
	6.3.52.77 Input and DPLL Index 14 (0x004C)
	6.3.52.78 Node Part Number and Parameter Type 14 (0x004D)
	6.3.52.79 Parameter Value 14 (0x004E)
	6.3.52.80 Frequency LSB 15 (0x004F)
	6.3.52.81 Frequency MSB 15 (0x0050)
	6.3.52.82 Input and DPLL Index 15 (0x0051)
	6.3.52.83 Node Part Number and Parameter Type 15 (0x0052)
	6.3.52.84 Parameter Value 15 (0x0053)
	6.3.52.85 Frequency LSB 16 (0x0054)
	6.3.52.86 Frequency MSB 16 (0x0055)
	6.3.52.87 Input and DPLL Index 16 (0x0056)
	6.3.52.88 Node Part Number and Parameter Type 16 (0x0057)
	6.3.52.89 Parameter Value 16 (0x0058)
	6.3.52.90 Frequency LSB 17 (0x0059)
	6.3.52.91 Frequency MSB 17 (0x005A)
	6.3.52.92 Input and DPLL Index 17 (0x005B)
	6.3.52.93 Node Part Number and Parameter Type 17 (0x005C)
	6.3.52.94 Parameter Value 17 (0x005D)
	6.3.52.95 Frequency LSB 18 (0x005E)
	6.3.52.96 Frequency MSB 18 (0x005F)
	6.3.52.97 Input and DPLL Index 18 (0x0060)
	6.3.52.98 Node Part Number and Parameter Type 18 (0x0061)
	6.3.52.99 Parameter Value 18 (0x0062)
	6.3.52.100 Frequency LSB 19 (0x0063)
	6.3.52.101 Frequency MSB 19 (0x0064)
	6.3.52.102 Input and DPLL Index 19 (0x0065)
	6.3.52.103 Node Part Number and Parameter Type 19 (0x0066)
	6.3.52.104 Parameter Value 19 (0x0067)
	6.3.52.105 Frequency LSB 20 (0x0068)
	6.3.52.106 Frequency MSB 20 (0x0069)
	6.3.52.107 Input and DPLL Index 20 (0x006A)
	6.3.52.108 Node Part Number and Parameter Type 20 (0x006B)
	6.3.52.109 Parameter Value 20 (0x006C)
	6.3.52.110 Frequency LSB 21 (0x006D)
	6.3.52.111 Frequency MSB 21 (0x006E)
	6.3.52.112 Input and DPLL Index 21 (0x006F)
	6.3.52.113 Node Part Number and Parameter Type 21 (0x0070)
	6.3.52.114 Parameter Value 21 (0x0071)
	6.3.52.115 Frequency LSB 22 (0x0072)
	6.3.52.116 Frequency MSB 22 (0x0073)
	6.3.52.117 Input and DPLL Index 22 (0x0074)
	6.3.52.118 Node Part Number and Parameter Type 22 (0x0075)
	6.3.52.119 Parameter Value 22 (0x0076)
	6.3.52.120 Frequency LSB 23 (0x0077)
	6.3.52.121 Frequency MSB 23 (0x0078)
	6.3.52.122 Input and DPLL Index 23 (0x0079)
	6.3.52.123 Node Part Number and Parameter Type 23 (0x007A)
	6.3.52.124 Parameter Value 23 (0x007B)
	6.3.52.125 Frequency LSB 24 (0x007C)
	6.3.52.126 Frequency MSB 24 (0x007D)
	6.3.52.127 Input and DPLL Index 24 (0x007E)
	6.3.52.128 Node Part Number and Parameter Type 24 (0x007F)
	6.3.52.129 Parameter Value 24 (0x0080)
	6.3.52.130 Frequency LSB 25 (0x0081)
	6.3.52.131 Frequency MSB 25 (0x0082)
	6.3.52.132 Input and DPLL Index 25 (0x0083)
	6.3.52.133 Node Part Number and Parameter Type 25 (0x0084)
	6.3.52.134 Parameter Value 25 (0x0085)
	6.3.52.135 Frequency LSB 26 (0x0086)
	6.3.52.136 Frequency MSB 26 (0x0087)
	6.3.52.137 Input and DPLL Index 26 (0x0088)
	6.3.52.138 Node Part Number and Parameter Type 26 (0x0089)
	6.3.52.139 Parameter Value 26 (0x008A)
	6.3.52.140 Frequency LSB 27 (0x008B)
	6.3.52.141 Frequency MSB 27 (0x008C)
	6.3.52.142 Input and DPLL Index 27 (0x008D)
	6.3.52.143 Node Part Number and Parameter Type 27 (0x008E)
	6.3.52.144 Parameter Value 27 (0x008F)
	6.3.52.145 Frequency LSB 28 (0x0090)
	6.3.52.146 Frequency MSB 28 (0x0091)
	6.3.52.147 Input and DPLL Index 28 (0x0092)
	6.3.52.148 Node Part Number and Parameter Type 28 (0x0093)
	6.3.52.149 Parameter Value 28 (0x0094)
	6.3.52.150 Frequency LSB 29 (0x0095)
	6.3.52.151 Frequency MSB 29 (0x0096)
	6.3.52.152 Input and DPLL Index 29 (0x0097)
	6.3.52.153 Node Part Number and Parameter Type 29 (0x0098)
	6.3.52.154 Parameter Value 29 (0x0099)
	6.3.52.155 Frequency LSB 30 (0x009A)
	6.3.52.156 Frequency MSB 30 (0x009B)
	6.3.52.157 Input and DPLL Index 30 (0x009C)
	6.3.52.158 Node Part Number and Parameter Type 30 (0x009D)
	6.3.52.159 Parameter Value 30 (0x009E)
	6.3.52.160 Frequency LSB 31 (0x009F)
	6.3.52.161 Frequency MSB 31 (0x00A0)
	6.3.52.162 Input and DPLL Index 31 (0x00A1)
	6.3.52.163 Node Part Number and Parameter Type 31 (0x00A2)
	6.3.52.164 Parameter Value 31 (0x00A3)
	6.3.52.165 Frequency LSB 32 (0x00A4)
	6.3.52.166 Frequency MSB 32 (0x00A5)
	6.3.52.167 Input and DPLL Index 32 (0x00A6)
	6.3.52.168 Node Part Number and Parameter Type 32 (0x00A7)
	6.3.52.169 Parameter Value 32 (0x00A8)
	6.3.52.170 Frequency LSB 33 (0x00A9)
	6.3.52.171 Frequency MSB 33 (0x00AA)
	6.3.52.172 Input and DPLL Index 33 (0x00AB)
	6.3.52.173 Node Part Number and Parameter Type 33 (0x00AC)
	6.3.52.174 Parameter Value 33 (0x00AD)
	6.3.52.175 Frequency LSB 34 (0x00AE)
	6.3.52.176 Frequency MSB 34 (0x00AF)
	6.3.52.177 Input and DPLL Index 34 (0x00B0)
	6.3.52.178 Node Part Number and Parameter Type 34 (0x00B1)
	6.3.52.179 Parameter Value 34 (0x00B2)
	6.3.52.180 Frequency LSB 35 (0x00B3)
	6.3.52.181 Frequency MSB 35 (0x00B4)
	6.3.52.182 Input and DPLL Index 35 (0x00B5)
	6.3.52.183 Node Part Number and Parameter Type 35 (0x00B6)
	6.3.52.184 Parameter Value 35 (0x00B7)
	6.3.52.185 Frequency LSB 36 (0x00B8)
	6.3.52.186 Frequency MSB 36 (0x00B9)
	6.3.52.187 Input and DPLL Index 36 (0x00BA)
	6.3.52.188 Node Part Number and Parameter Type 36 (0x00BB)
	6.3.52.189 Parameter Value 36 (0x00BC)
	6.3.52.190 Frequency LSB 37 (0x00BD)
	6.3.52.191 Frequency MSB 37 (0x00BE)
	6.3.52.192 Input and DPLL Index 37 (0x00BF)
	6.3.52.193 Node Part Number and Parameter Type 37 (0x00C0)
	6.3.52.194 Parameter Value 37 (0x00C1)
	6.3.52.195 Frequency LSB 38 (0x00C2)
	6.3.52.196 Frequency MSB 38 (0x00C3)
	6.3.52.197 Input and DPLL Index 38 (0x00C4)
	6.3.52.198 Node Part Number and Parameter Type 38 (0x00C5)
	6.3.52.199 Parameter Value 38 (0x00C6)
	6.3.52.200 Frequency LSB 39 (0x00C7)
	6.3.52.201 Frequency MSB 39 (0x00C8)
	6.3.52.202 Input and DPLL Index 39 (0x00C9)
	6.3.52.203 Node Part Number and Parameter Type 39 (0x00CA)
	6.3.52.204 Parameter Value 39 (0x00CB)
	6.3.52.205 Frequency LSB 40 (0x00CC)
	6.3.52.206 Frequency MSB 40 (0x00CD)
	6.3.52.207 Input and DPLL Index 40 (0x00CE)
	6.3.52.208 Node Part Number and Parameter Type 40 (0x00CF)
	6.3.52.209 Parameter Value 40 (0x00D0)
	6.3.52.210 Frequency LSB 41 (0x00D1)
	6.3.52.211 Frequency MSB 41 (0x00D2)
	6.3.52.212 Input and DPLL Index 41 (0x00D3)
	6.3.52.213 Node Part Number and Parameter Type 41 (0x00D4)
	6.3.52.214 Parameter Value 41 (0x00D5)
	6.3.52.215 Frequency LSB 42 (0x00D6)
	6.3.52.216 Frequency MSB 42 (0x00D7)
	6.3.52.217 Input and DPLL Index 42 (0x00D8)
	6.3.52.218 Node Part Number and Parameter Type 42 (0x00D9)
	6.3.52.219 Parameter Value 42 (0x00DA)
	6.3.52.220 Frequency LSB 43 (0x00DB)
	6.3.52.221 Frequency MSB 43 (0x00DC)
	6.3.52.222 Input and DPLL Index 43 (0x00DD)
	6.3.52.223 Node Part Number and Parameter Type 43 (0x00DE)
	6.3.52.224 Parameter Value 43 (0x00DF)
	6.3.52.225 Frequency LSB 44 (0x00E0)
	6.3.52.226 Frequency MSB 44 (0x00E1)
	6.3.52.227 Input and DPLL Index 44 (0x00E2)
	6.3.52.228 Node Part Number and Parameter Type 44 (0x00E3)
	6.3.52.229 Parameter Value 44 (0x00E4)
	6.3.52.230 Frequency LSB 45 (0x00E5)
	6.3.52.231 Frequency MSB 45 (0x00E6)
	6.3.52.232 Input and DPLL Index 45 (0x00E7)
	6.3.52.233 Node Part Number and Parameter Type 45 (0x00E8)
	6.3.52.234 Parameter Value 45 (0x00E9)
	6.3.52.235 Frequency LSB 46 (0x00EA)
	6.3.52.236 Frequency MSB 46 (0x00EB)
	6.3.52.237 Input and DPLL Index 46 (0x00EC)
	6.3.52.238 Node Part Number and Parameter Type 46 (0x00ED)
	6.3.52.239 Parameter Value 46 (0x00EE)
	6.3.52.240 Frequency LSB 47 (0x00EF)
	6.3.52.241 Frequency MSB 47 (0x00F0)
	6.3.52.242 Input and DPLL Index 47 (0x00F1)
	6.3.52.243 Node Part Number and Parameter Type 47 (0x00F2)
	6.3.52.244 Parameter Value 47 (0x00F3)
	6.3.52.245 Frequency LSB 48 (0x00F4)
	6.3.52.246 Frequency MSB 48 (0x00F5)
	6.3.52.247 Input and DPLL Index 48 (0x00F6)
	6.3.52.248 Node Part Number and Parameter Type 48 (0x00F7)
	6.3.52.249 Parameter Value 48 (0x00F8)
	6.3.52.250 Frequency LSB 49 (0x00F9)
	6.3.52.251 Frequency MSB 49 (0x00FA)
	6.3.52.252 Input and DPLL Index 49 (0x00FB)
	6.3.52.253 Node Part Number and Parameter Type 49 (0x00FC)
	6.3.52.254 Parameter Value 49 (0x00FD)
	6.3.52.255 Frequency LSB 50 (0x00FE)
	6.3.52.256 Frequency MSB 50 (0x00FF)
	6.3.52.257 Input and DPLL Index 50 (0x0100)
	6.3.52.258 Node Part Number and Parameter Type 50 (0x0101)
	6.3.52.259 Parameter Value 50 (0x0102)
	6.3.52.260 Frequency LSB 51 (0x0103)
	6.3.52.261 Frequency MSB 51 (0x0104)
	6.3.52.262 Input and DPLL Index 51 (0x0105)
	6.3.52.263 Node Part Number and Parameter Type 51 (0x0106)
	6.3.52.264 Parameter Value 51 (0x0107)
	6.3.52.265 Frequency LSB 52 (0x0108)
	6.3.52.266 Frequency MSB 52 (0x0109)
	6.3.52.267 Input and DPLL Index 52 (0x010A)
	6.3.52.268 Node Part Number and Parameter Type 52 (0x010B)
	6.3.52.269 Parameter Value 52 (0x010C)
	6.3.52.270 Frequency LSB 53 (0x010D)
	6.3.52.271 Frequency MSB 53 (0x010E)
	6.3.52.272 Input and DPLL Index 53 (0x010F)
	6.3.52.273 Node Part Number and Parameter Type 53 (0x0110)
	6.3.52.274 Parameter Value 53 (0x0111)
	6.3.52.275 Frequency LSB 54 (0x0112)
	6.3.52.276 Frequency MSB 54 (0x0113)
	6.3.52.277 Input and DPLL Index 54 (0x0114)
	6.3.52.278 Node Part Number and Parameter Type 54 (0x0115)
	6.3.52.279 Parameter Value 54 (0x0116)
	6.3.52.280 Frequency LSB 55 (0x0117)
	6.3.52.281 Frequency MSB 55 (0x0118)
	6.3.52.282 Input and DPLL Index 55 (0x0119)
	6.3.52.283 Node Part Number and Parameter Type 55 (0x011A)
	6.3.52.284 Parameter Value 55 (0x011B)
	6.3.52.285 Frequency LSB 56 (0x011C)
	6.3.52.286 Frequency MSB 56 (0x011D)
	6.3.52.287 Input and DPLL Index 56 (0x011E)
	6.3.52.288 Node Part Number and Parameter Type 56 (0x011F)
	6.3.52.289 Parameter Value 56 (0x0120)
	6.3.52.290 Frequency LSB 57 (0x0121)
	6.3.52.291 Frequency MSB 57 (0x0122)
	6.3.52.292 Input and DPLL Index 57 (0x0123)
	6.3.52.293 Node Part Number and Parameter Type 57 (0x0124)
	6.3.52.294 Parameter Value 57 (0x0125)
	6.3.52.295 Frequency LSB 58 (0x0126)
	6.3.52.296 Frequency MSB 58 (0x0127)
	6.3.52.297 Input and DPLL Index 58 (0x0128)
	6.3.52.298 Node Part Number and Parameter Type 58 (0x0129)
	6.3.52.299 Parameter Value 58 (0x012A)
	6.3.52.300 Frequency LSB 59 (0x012B)
	6.3.52.301 Frequency MSB 59 (0x012C)
	6.3.52.302 Input and DPLL Index 59 (0x012D)
	6.3.52.303 Node Part Number and Parameter Type 59 (0x012E)
	6.3.52.304 Parameter Value 59 (0x012F)
	6.3.52.305 Frequency LSB 60 (0x0130)
	6.3.52.306 Frequency MSB 60 (0x0131)
	6.3.52.307 Input and DPLL Index 60 (0x0132)
	6.3.52.308 Node Part Number and Parameter Type 60 (0x0133)
	6.3.52.309 Parameter Value 60 (0x0134)
	6.3.52.310 Frequency LSB 61 (0x0135)
	6.3.52.311 Frequency MSB 61 (0x0136)
	6.3.52.312 Input and DPLL Index 61 (0x0137)
	6.3.52.313 Node Part Number and Parameter Type 61 (0x0138)
	6.3.52.314 Parameter Value 61 (0x0139)
	6.3.52.315 Frequency LSB 62 (0x013A)
	6.3.52.316 Frequency MSB 62 (0x013B)
	6.3.52.317 Input and DPLL Index 62 (0x013C)
	6.3.52.318 Node Part Number and Parameter Type 62 (0x013D)
	6.3.52.319 Parameter Value 62 (0x013E)
	6.3.52.320 Frequency LSB 63 (0x013F)
	6.3.52.321 Frequency MSB 63 (0x0140)
	6.3.52.322 Input and DPLL Index 63 (0x0141)
	6.3.52.323 Node Part Number and Parameter Type 63 (0x0142)
	6.3.52.324 Parameter Value 63 (0x0143)

	6.3.53 Padding Module Section
	6.3.53.1 Sub Module Type - Padding (0x0000)
	6.3.53.2 Length (0x0001)
	6.3.53.3 Padding (0x0002)

	6.3.54 PCIR Type 1/2 Section
	6.3.54.1 GLPCI_PWRDATA (0x0000 - 0x00003)
	6.3.54.1.1 Address Low at GLPCI_PWRDATA (0x0000)
	6.3.54.1.2 Address High at GLPCI_PWRDATA (0x000‘)
	6.3.54.1.3 Data Low of GLPCI_PWRDATA (0x0002)
	6.3.54.1.4 Data High of GLPCI_PWRDATA (0x0003)

	6.3.54.2 GLPCI_PMSUP (0x0004 - 0x0008)
	6.3.54.2.1 Starting Address Low at GLPCI_PMSUP (0x0004)
	6.3.54.2.2 Starting Address High at GLPCI_PMSUP (0x0005)
	6.3.54.2.3 Attributes at GLPCI_PMSUP (0x0006)
	6.3.54.2.4 Data Low of GLPCI_PMSUP (0x0007)
	6.3.54.2.5 Data High of GLPCI_PMSUP (0x0008)

	6.3.54.3 GLPCI_REVID (0x0009 - 0x000A)
	6.3.54.3.1 Data Low of GLPCI_REVID (0x0009)
	6.3.54.3.2 Data High of GLPCI_REVID (0x000A)

	6.3.54.4 Reserved (0x000B - 0x000E)

	6.3.55 POR Type 1/2 Section
	6.3.55.1 Reserved (0x0000 - 0x0021)

	6.3.56 CORER Registers Auto-Load Module Section
	6.3.56.1 Module Length (0x0000)
	6.3.56.2 PRT_TDPUL2TAGSEN (0x0001 - 0x0013)
	6.3.56.2.1 Starting Address Low at PRT_TDPUL2TAGSEN (0x0001)
	6.3.56.2.2 Starting Address High at PRT_TDPUL2TAGSEN (0x0002)
	6.3.56.2.3 Attributes at PRT_TDPUL2TAGSEN (0x0003)
	6.3.56.2.4 Data Low of PRT_TDPUL2TAGSEN[PRT] (0x0004 + 2*PRT, PRT=0...7)
	6.3.56.2.5 Data High of PRT_TDPUL2TAGSEN[PRT] (0x0005 + 2*PRT, PRT=0...7)

	6.3.56.3 GL_SWT_L2TAGTXIB (0x0014 - 0x0026)
	6.3.56.3.1 Starting Address Low at GL_SWT_L2TAGTXIB (0x0014)
	6.3.56.3.2 Starting Address High at GL_SWT_L2TAGTXIB (0x0015)
	6.3.56.3.3 Attributes at GL_SWT_L2TAGTXIB (0x0016)
	6.3.56.3.4 Data Low of GL_SWT_L2TAGTXIB[n] (0x0017 + 2*n, n=0...7)
	6.3.56.3.5 Data High of GL_SWT_L2TAGTXIB[n] (0x0018 + 2*n, n=0...7)

	6.3.56.4 GL_SWT_L2TAGRXEB (0x0027 - 0x0039)
	6.3.56.4.1 Starting Address Low at GL_SWT_L2TAGRXEB (0x0027)
	6.3.56.4.2 Starting Address High at GL_SWT_L2TAGRXEB (0x0028)
	6.3.56.4.3 Attributes at GL_SWT_L2TAGRXEB (0x0029)
	6.3.56.4.4 Data Low of GL_SWT_L2TAGRXEB[n] (0x002A + 2*n, n=0...7)
	6.3.56.4.5 Data High of GL_SWT_L2TAGRXEB[n] (0x002B + 2*n, n=0...7)

	6.3.56.5 GL_RDPU_CNTRL (0x003A - 0x003D)
	6.3.56.5.1 Address Low at GL_RDPU_CNTRL (0x003A)
	6.3.56.5.2 Address High at GL_RDPU_CNTRL (0x003B)
	6.3.56.5.3 Reserved (0x003C - 0x003D)

	6.3.56.6 PFLAN_DB_QALLOC (0x003E - 0x0050)
	6.3.56.6.1 Starting Address Low at PFLAN_DB_QALLOC (0x003E)
	6.3.56.6.2 Starting Address High at PFLAN_DB_QALLOC (0x003F)
	6.3.56.6.3 Attributes at PFLAN_DB_QALLOC (0x0040)
	6.3.56.6.4 Data Low of PFLAN_DB_QALLOC[PF] (0x0041 + 2*PF, PF=0...7)
	6.3.56.6.5 Data High of PFLAN_DB_QALLOC[PF] (0x0042 + 2*PF, PF=0...7)

	6.3.56.7 PFLAN_CP_QALLOC (0x0051 - 0x0063)
	6.3.56.7.1 Starting Address Low at PFLAN_CP_QALLOC (0x0051)
	6.3.56.7.2 Starting Address High at PFLAN_CP_QALLOC (0x0052)
	6.3.56.7.3 Attributes at PFLAN_CP_QALLOC (0x0053)
	6.3.56.7.4 Data Low of PFLAN_CP_QALLOC[PF] (0x0054 + 2*PF, PF=0...7)
	6.3.56.7.5 Data High of PFLAN_CP_QALLOC[PF] (0x0055 + 2*PF, PF=0...7)

	6.3.56.8 GLDCB_GENC (0x0064 - 0x0067)
	6.3.56.8.1 Address Low at GLDCB_GENC (0x0064)
	6.3.56.8.2 Address High at GLDCB_GENC (0x0065)
	6.3.56.8.3 Data Low of GLDCB_GENC (0x0066)
	6.3.56.8.4 Data High of GLDCB_GENC (0x0067)

	6.3.56.9 Reserved (0x0068 - 0x018F)
	6.3.56.10 GLTSYN_SYNC_DLAY (0x0190 - 0x0194)
	6.3.56.10.1 Starting Address Low at GLTSYN_SYNC_DLAY (0x0190)
	6.3.56.10.2 Starting Address High at GLTSYN_SYNC_DLAY (0x0191)
	6.3.56.10.3 Attributes at GLTSYN_SYNC_DLAY (0x0192)
	6.3.56.10.4 Data Low of GLTSYN_SYNC_DLAY (0x0193)
	6.3.56.10.5 Data High of GLTSYN_SYNC_DLAY (0x0194)

	6.3.56.11 GLTSYN_HH_DLAY (0x0195 - 0x0196)
	6.3.56.11.1 Data Low of GLTSYN_HH_DLAY (0x0195)
	6.3.56.11.2 Data High of GLTSYN_HH_DLAY (0x0196)

	6.3.56.12 GLTPB_PACING_25G (0x0197 - 0x019B)
	6.3.56.12.1 Starting Address Low at GLTPB_PACING_25G (0x0197)
	6.3.56.12.2 Starting Address High at GLTPB_PACING_25G (0x0198)
	6.3.56.12.3 Attributes at GLTPB_PACING_25G (0x0199)
	6.3.56.12.4 Data Low of GLTPB_PACING_25G (0x019A)
	6.3.56.12.5 Data High of GLTPB_PACING_25G (0x019B)

	6.3.56.13 GLTPB_PACING_10G (0x019C - 0x019D)
	6.3.56.13.1 Data Low of GLTPB_PACING_10G (0x019C)
	6.3.56.13.2 Data High of GLTPB_PACING_10G (0x019D)

	6.3.56.14 GLTPB_PORT_PACING_SPEED (0x019E - 0x019F)
	6.3.56.14.1 Data Low of GLTPB_PORT_PACING_SPEED (0x019E)
	6.3.56.14.2 Data High of GLTPB_PORT_PACING_SPEED (0x019F)

	6.3.56.15 Reserved (0x01A0 - 0x01A7)
	6.3.56.16 GLRPB_DHW (0x01A8 - 0x01CA)
	6.3.56.16.1 Starting Address Low at GLRPB_DHW (0x01A8)
	6.3.56.16.2 Starting Address High at GLRPB_DHW (0x01A9)
	6.3.56.16.3 Attributes at GLRPB_DHW (0x01AA)
	6.3.56.16.4 Data Low of GLRPB_DHW[n] (0x01AB + 2*n, n=0...15)
	6.3.56.16.5 Data High of GLRPB_DHW[n] (0x01AC + 2*n, n=0...15)

	6.3.56.17 GLRPB_DLW (0x01CB - 0x01ED)
	6.3.56.17.1 Starting Address Low at GLRPB_DLW (0x01CB)
	6.3.56.17.2 Starting Address High at GLRPB_DLW (0x01CC)
	6.3.56.17.3 Attributes at GLRPB_DLW (0x01CD)
	6.3.56.17.4 Data Low of GLRPB_DLW[n] (0x01CE + 2*n, n=0...15)
	6.3.56.17.5 Data High of GLRPB_DLW[n] (0x01CF + 2*n, n=0...15)

	6.3.56.18 GLRPB_DPS (0x01EE - 0x020D)
	6.3.56.18.1 Data Low of GLRPB_DPS[n] (0x01EE + 2*n, n=0...15)
	6.3.56.18.2 Data High of GLRPB_DPS[n] (0x01EF + 2*n, n=0...15)

	6.3.56.19 GLRPB_SPS (0x020E - 0x021D)
	6.3.56.19.1 Data Low of GLRPB_SPS[n] (0x020E + 2*n, n=0...7)
	6.3.56.19.2 Data High of GLRPB_SPS[n] (0x020F + 2*n, n=0...7)

	6.3.56.20 GLRPB_SHW (0x021E - 0x0230)
	6.3.56.20.1 Starting Address Low at GLRPB_SHW (0x021E)
	6.3.56.20.2 Starting Address High at GLRPB_SHW (0x021F)
	6.3.56.20.3 Attributes at GLRPB_SHW (0x0220)
	6.3.56.20.4 Data Low of GLRPB_SHW[n] (0x0221 + 2*n, n=0...7)
	6.3.56.20.5 Data High of GLRPB_SHW[n] (0x0222 + 2*n, n=0...7)

	6.3.56.21 GLRPB_SLW (0x0231 - 0x0240)
	6.3.56.21.1 Data Low of GLRPB_SLW[n] (0x0231 + 2*n, n=0...7)
	6.3.56.21.2 Data High of GLRPB_SLW[n] (0x0232 + 2*n, n=0...7)

	6.3.56.22 Reserved (0x0241 - 0x0244)
	6.3.56.23 GLRPB_TCHW (0x0245 - 0x0287)
	6.3.56.23.1 Starting Address Low at GLRPB_TCHW (0x0245)
	6.3.56.23.2 Starting Address High at GLRPB_TCHW (0x0246)
	6.3.56.23.3 Attributes at GLRPB_TCHW (0x0247)
	6.3.56.23.4 Data Low of GLRPB_TCHW[n] (0x0248 + 2*n, n=0...31)
	6.3.56.23.5 Data High of GLRPB_TCHW[n] (0x0249 + 2*n, n=0...31)

	6.3.56.24 GLRPB_TCLW (0x0288 - 0x02C7)
	6.3.56.24.1 Data Low of GLRPB_TCLW[n] (0x0288 + 2*n, n=0...31)
	6.3.56.24.2 Data High of GLRPB_TCLW[n] (0x0289 + 2*n, n=0...31)

	6.3.56.25 PRTDCB_TCUPM_REG_PE_HB_DTHR (0x02C8 - 0x02DA)
	6.3.56.25.1 Starting Address Low at PRTDCB_TCUPM_REG_PE_HB_DTHR (0x02C8)
	6.3.56.25.2 Starting Address High at PRTDCB_TCUPM_REG_PE_HB_DTHR (0x02C9)
	6.3.56.25.3 Attributes at PRTDCB_TCUPM_REG_PE_HB_DTHR (0x02CA)
	6.3.56.25.4 Data Low of PRTDCB_TCUPM_REG_PE_HB_DTHR[PRT] (0x02CB + 2*PRT, PRT=0...7)
	6.3.56.25.5 Data High of PRTDCB_TCUPM_REG_PE_HB_DTHR[PRT] (0x02CC + 2*PRT, PRT=0...7)

	6.3.56.26 PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x02DB - 0x02ED)
	6.3.56.26.1 Starting Address Low at PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x02DB)
	6.3.56.26.2 Starting Address High at PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x02DC)
	6.3.56.26.3 Attributes at PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x02DD)
	6.3.56.26.4 Data Low of PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR[PRT] (0x02DE + 2*PRT, PRT=0...7)
	6.3.56.26.5 Data High of PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR[PRT] (0x02DF + 2*PRT, PRT=0...7)

	6.3.56.27 TCDCB_TCUPM_WAIT_PE_HB_DTHR (0x02EE - 0x0330)
	6.3.56.27.1 Starting Address Low at TCDCB_TCUPM_WAIT_PE_HB_DTHR (0x02EE)
	6.3.56.27.2 Starting Address High at TCDCB_TCUPM_WAIT_PE_HB_DTHR (0x02EF)
	6.3.56.27.3 Attributes at TCDCB_TCUPM_WAIT_PE_HB_DTHR (0x02F0)
	6.3.56.27.4 Data Low of TCDCB_TCUPM_WAIT_PE_HB_DTHR[n] (0x02F1 + 2*n, n=0...31)
	6.3.56.27.5 Data High of TCDCB_TCUPM_WAIT_PE_HB_DTHR[n] (0x02F2 + 2*n, n=0...31)

	6.3.56.28 GLDCB_TCUPM_NO_EXCEED_DIS (0x0331 - 0x0335)
	6.3.56.28.1 Starting Address Low at GLDCB_TCUPM_NO_EXCEED_DIS (0x0331)
	6.3.56.28.2 Starting Address High at GLDCB_TCUPM_NO_EXCEED_DIS (0x0332)
	6.3.56.28.3 Attributes at GLDCB_TCUPM_NO_EXCEED_DIS (0x0333)
	6.3.56.28.4 Data Low of GLDCB_TCUPM_NO_EXCEED_DIS (0x0334)
	6.3.56.28.5 Data High of GLDCB_TCUPM_NO_EXCEED_DIS (0x0335)

	6.3.56.29 GLDCB_TCUPM_WB_DIS (0x0336 - 0x0337)
	6.3.56.29.1 Data Low of GLDCB_TCUPM_WB_DIS (0x0336)
	6.3.56.29.2 Data High of GLDCB_TCUPM_WB_DIS (0x0337)

	6.3.56.30 GLHMC_PFPESDPART_FPMAT (0x0338 - 0x034A)
	6.3.56.30.1 Starting Address Low at GLHMC_PFPESDPART_FPMAT (0x0338)
	6.3.56.30.2 Starting Address High at GLHMC_PFPESDPART_FPMAT (0x0339)
	6.3.56.30.3 Attributes at GLHMC_PFPESDPART_FPMAT (0x033A)
	6.3.56.30.4 Data Low of GLHMC_PFPESDPART_FPMAT[n] (0x033B + 2*n, n=0...7)
	6.3.56.30.5 Data High of GLHMC_PFPESDPART_FPMAT[n] (0x033C + 2*n, n=0...7)

	6.3.56.31 GLHMC_VFSDPART_FPMAT (0x034B - 0x038D)
	6.3.56.31.1 Starting Address Low at GLHMC_VFSDPART_FPMAT (0x034B)
	6.3.56.31.2 Starting Address High at GLHMC_VFSDPART_FPMAT (0x034C)
	6.3.56.31.3 Attributes at GLHMC_VFSDPART_FPMAT (0x034D)
	6.3.56.31.4 Data Low of GLHMC_VFSDPART_FPMAT[n] (0x034E + 2*n, n=0...31)
	6.3.56.31.5 Data High of GLHMC_VFSDPART_FPMAT[n] (0x034F + 2*n, n=0...31)

	6.3.56.32 GLDCB_RETSTCC (0x038E - 0x03D0)
	6.3.56.32.1 Starting Address Low at GLDCB_RETSTCC (0x038E)
	6.3.56.32.2 Starting Address High at GLDCB_RETSTCC (0x038F)
	6.3.56.32.3 Attributes at GLDCB_RETSTCC (0x0390)
	6.3.56.32.4 Data Low of GLDCB_RETSTCC[n] (0x0391 + 2*n, n=0...31)
	6.3.56.32.5 Data High of GLDCB_RETSTCC[n] (0x0392 + 2*n, n=0...31)

	6.3.56.33 PRTDCB_RPPMC (0x03D1 - 0x03E3)
	6.3.56.33.1 Starting Address Low at PRTDCB_RPPMC (0x03D1)
	6.3.56.33.2 Starting Address High at PRTDCB_RPPMC (0x03D2)
	6.3.56.33.3 Attributes at PRTDCB_RPPMC (0x03D3)
	6.3.56.33.4 Data Low of PRTDCB_RPPMC[PRT] (0x03D4 + 2*PRT, PRT=0)
	6.3.56.33.5 Data High of PRTDCB_RPPMC[PRT] (0x03D5 + 2*PRT, PRT=0)

	6.3.56.34 GLDCB_RSPMC (0x03E4 - 0x03E8)
	6.3.56.34.1 Starting Address Low at GLDCB_RSPMC (0x03E4)
	6.3.56.34.2 Starting Address High at GLDCB_RSPMC (0x03E5)
	6.3.56.34.3 Attributes at GLDCB_RSPMC (0x03E6)
	6.3.56.34.4 Data Low of GLDCB_RSPMC (0x03E7)
	6.3.56.34.5 Data High of GLDCB_RSPMC (0x03E8)

	6.3.56.35 GLDCB_RMPMC (0x03E9 - 0x03EA)
	6.3.56.35.1 Data Low of GLDCB_RMPMC (0x03E9)
	6.3.56.35.2 Data High of GLDCB_RMPMC (0x03EA)

	6.3.56.36 Reserved (0x03EB - 0x03F1)
	6.3.56.37 PFINT_TSYN_MSK (0x03F2 - 0x0404)
	6.3.56.37.1 Starting Address Low at PFINT_TSYN_MSK (0x03F2)
	6.3.56.37.2 Starting Address High at PFINT_TSYN_MSK (0x03F3)
	6.3.56.37.3 Attributes at PFINT_TSYN_MSK (0x03F4)
	6.3.56.37.4 Data Low of PFINT_TSYN_MSK[PF] (0x03F5 + 2*PF, PF=0...7)
	6.3.56.37.5 Data High of PFINT_TSYN_MSK[PF] (0x03F6 + 2*PF, PF=0...7)

	6.3.56.38 GLINT_CTL (0x0405 - 0x0408)
	6.3.56.38.1 Address Low at GLINT_CTL (0x0405)
	6.3.56.38.2 Address High at GLINT_CTL (0x0406)
	6.3.56.38.3 Data Low of GLINT_CTL (0x0407)
	6.3.56.38.4 Data High of GLINT_CTL (0x0408)

	6.3.56.39 PFGEN_PORTNUM (0x0409 - 0x041B)
	6.3.56.39.1 Starting Address Low at PFGEN_PORTNUM (0x0409)
	6.3.56.39.2 Starting Address High at PFGEN_PORTNUM (0x040A)
	6.3.56.39.3 Attributes at PFGEN_PORTNUM (0x040B)
	6.3.56.39.4 Data Low of PFGEN_PORTNUM[PF] (0x040C + 2*PF, PF=0...7)
	6.3.56.39.5 Data High of PFGEN_PORTNUM[PF] (0x040D + 2*PF, PF=0...7)

	6.3.56.40 PF_VT_PFALLOC (0x041C - 0x042E)
	6.3.56.40.1 Starting Address Low at PF_VT_PFALLOC (0x041C)
	6.3.56.40.2 Starting Address High at PF_VT_PFALLOC (0x041D)
	6.3.56.40.3 Attributes at PF_VT_PFALLOC (0x041E)
	6.3.56.40.4 Data Low of PF_VT_PFALLOC[PF] (0x041F + 2*PF, PF=0...7)
	6.3.56.40.5 Data High of PF_VT_PFALLOC[PF] (0x0420 + 2*PF, PF=0...7)

	6.3.56.41 PFLAN_RX_QALLOC (0x042F - 0x0441)
	6.3.56.41.1 Starting Address Low at PFLAN_RX_QALLOC (0x042F)
	6.3.56.41.2 Starting Address High at PFLAN_RX_QALLOC (0x0430)
	6.3.56.41.3 Attributes at PFLAN_RX_QALLOC (0x0431)
	6.3.56.41.4 Data Low of PFLAN_RX_QALLOC[PF] (0x0432 + 2*PF, PF=0...7)
	6.3.56.41.5 Data High of PFLAN_RX_QALLOC[PF] (0x0433 + 2*PF, PF=0...7)

	6.3.56.42 PFLAN_TX_QALLOC (0x0442 - 0x0454)
	6.3.56.42.1 Starting Address Low at PFLAN_TX_QALLOC (0x0442)
	6.3.56.42.2 Starting Address High at PFLAN_TX_QALLOC (0x0443)
	6.3.56.42.3 Attributes at PFLAN_TX_QALLOC (0x0444)
	6.3.56.42.4 Data Low of PFLAN_TX_QALLOC[PF] (0x0445 + 2*PF, PF=0...7)
	6.3.56.42.5 Data High of PFLAN_TX_QALLOC[PF] (0x0446 + 2*PF, PF=0...7)

	6.3.56.43 PFINT_ALLOC (0x0455 - 0x0467)
	6.3.56.43.1 Starting Address Low at PFINT_ALLOC (0x0455)
	6.3.56.43.2 Starting Address High at PFINT_ALLOC (0x0456)
	6.3.56.43.3 Attributes at PFINT_ALLOC (0x0457)
	6.3.56.43.4 Data Low of PFINT_ALLOC[PF] (0x0458 + 2*PF, PF=0...7)
	6.3.56.43.5 Data High of PFINT_ALLOC[PF] (0x0459 + 2*PF, PF=0...7)

	6.3.56.44 GL_SWT_L2TAGCTRL (0x0468 - 0x047A)
	6.3.56.44.1 Starting Address Low at GL_SWT_L2TAGCTRL (0x0468)
	6.3.56.44.2 Starting Address High at GL_SWT_L2TAGCTRL (0x0469)
	6.3.56.44.3 Attributes at GL_SWT_L2TAGCTRL (0x046A)
	6.3.56.44.4 Data Low of GL_SWT_L2TAGCTRL[n] (0x046B + 2*n, n=0...7)
	6.3.56.44.5 Data High of GL_SWT_L2TAGCTRL[n] (0x046C + 2*n, n=0...7)

	6.3.56.45 GLDCB_PRS_RETSTCC (0x047B - 0x04BD)
	6.3.56.45.1 Starting Address Low at GLDCB_PRS_RETSTCC (0x047B)
	6.3.56.45.2 Starting Address High at GLDCB_PRS_RETSTCC (0x047C)
	6.3.56.45.3 Attributes at GLDCB_PRS_RETSTCC (0x047D)
	6.3.56.45.4 Data Low of GLDCB_PRS_RETSTCC[n] (0x047E + 2*n, n=0...31)
	6.3.56.45.5 Data High of GLDCB_PRS_RETSTCC[n] (0x047F + 2*n, n=0...31)

	6.3.56.46 GLDCB_PRS_RSPMC (0x04BE - 0x04C1)
	6.3.56.46.1 Address Low at GLDCB_PRS_RSPMC (0x04BE)
	6.3.56.46.2 Address High at GLDCB_PRS_RSPMC (0x04BF)
	6.3.56.46.3 Data Low of GLDCB_PRS_RSPMC (0x04C0)
	6.3.56.46.4 Data High of GLDCB_PRS_RSPMC (0x04C1)

	6.3.56.47 GLRPRS_PMCFG_DPS (0x04C2 - 0x04E4)
	6.3.56.47.1 Starting Address Low at GLRPRS_PMCFG_DPS (0x04C2)
	6.3.56.47.2 Starting Address High at GLRPRS_PMCFG_DPS (0x04C3)
	6.3.56.47.3 Attributes at GLRPRS_PMCFG_DPS (0x04C4)
	6.3.56.47.4 Data Low of GLRPRS_PMCFG_DPS[n] (0x04C5 + 2*n, n=0...15)
	6.3.56.47.5 Data High of GLRPRS_PMCFG_DPS[n] (0x04C6 + 2*n, n=0...15)

	6.3.56.48 GLRPRS_PMCFG_DHW (0x04E5 - 0x0507)
	6.3.56.48.1 Starting Address Low at GLRPRS_PMCFG_DHW (0x04E5)
	6.3.56.48.2 Starting Address High at GLRPRS_PMCFG_DHW (0x04E6)
	6.3.56.48.3 Attributes at GLRPRS_PMCFG_DHW (0x04E7)
	6.3.56.48.4 Data Low of GLRPRS_PMCFG_DHW[n] (0x04E8 + 2*n, n=0...15)
	6.3.56.48.5 Data High of GLRPRS_PMCFG_DHW[n] (0x04E9 + 2*n, n=0...15)

	6.3.56.49 GLRPRS_PMCFG_DLW (0x0508 - 0x0527)
	6.3.56.49.1 Data Low of GLRPRS_PMCFG_DLW[n] (0x0508 + 2*n, n=0...15)
	6.3.56.49.2 Data High of GLRPRS_PMCFG_DLW[n] (0x0509 + 2*n, n=0...15)

	6.3.56.50 GLRPRS_PMCFG_SPS (0x0528 - 0x0537)
	6.3.56.50.1 Data Low of GLRPRS_PMCFG_SPS[n] (0x0528 + 2*n, n=0...7)
	6.3.56.50.2 Data High of GLRPRS_PMCFG_SPS[n] (0x0529 + 2*n, n=0...7)

	6.3.56.51 GLRPRS_PMCFG_SHW (0x0538 - 0x054A)
	6.3.56.51.1 Starting Address Low at GLRPRS_PMCFG_SHW (0x0538)
	6.3.56.51.2 Starting Address High at GLRPRS_PMCFG_SHW (0x0539)
	6.3.56.51.3 Attributes at GLRPRS_PMCFG_SHW (0x053A)
	6.3.56.51.4 Data Low of GLRPRS_PMCFG_SHW[n] (0x053B + 2*n, n=0...7)
	6.3.56.51.5 Data High of GLRPRS_PMCFG_SHW[n] (0x053C + 2*n, n=0...7)

	6.3.56.52 GLRPRS_PMCFG_SLW (0x054B - 0x055A)
	6.3.56.52.1 Data Low of GLRPRS_PMCFG_SLW[n] (0x054B + 2*n, n=0...7)
	6.3.56.52.2 Data High of GLRPRS_PMCFG_SLW[n] (0x054C + 2*n, n=0...7)

	6.3.56.53 GLRPRS_PMCFG_TCHW (0x055B - 0x059D)
	6.3.56.53.1 Starting Address Low at GLRPRS_PMCFG_TCHW (0x055B)
	6.3.56.53.2 Starting Address High at GLRPRS_PMCFG_TCHW (0x055C)
	6.3.56.53.3 Attributes at GLRPRS_PMCFG_TCHW (0x055D)
	6.3.56.53.4 Data Low of GLRPRS_PMCFG_TCHW[n] (0x055E + 2*n, n=0...31)
	6.3.56.53.5 Data High of GLRPRS_PMCFG_TCHW[n] (0x055F + 2*n, n=0...31)

	6.3.56.54 GLRPRS_PMCFG_TCLW (0x059E - 0x05DD)
	6.3.56.54.1 Data Low of GLRPRS_PMCFG_TCLW[n] (0x059E + 2*n, n=0...31)
	6.3.56.54.2 Data High of GLRPRS_PMCFG_TCLW[n] (0x059F + 2*n, n=0...31)

	6.3.56.55 GL_SWT_LAT_SINGLE (0x05DE - 0x05E2)
	6.3.56.55.1 Starting Address Low at GL_SWT_LAT_SINGLE (0x05DE)
	6.3.56.55.2 Starting Address High at GL_SWT_LAT_SINGLE (0x05DF)
	6.3.56.55.3 Attributes at GL_SWT_LAT_SINGLE (0x05E0)
	6.3.56.55.4 Data Low of GL_SWT_LAT_SINGLE (0x05E1)
	6.3.56.55.5 Data High of GL_SWT_LAT_SINGLE (0x05E2)

	6.3.56.56 GL_SWT_LAT_DOUBLE (0x05E3 - 0x05E4)
	6.3.56.56.1 Data Low of GL_SWT_LAT_DOUBLE (0x05E3)
	6.3.56.56.2 Data High of GL_SWT_LAT_DOUBLE (0x05E4)

	6.3.56.57 GL_SWT_LAT_QUAD (0x05E5 - 0x05E6)
	6.3.56.57.1 Data Low of GL_SWT_LAT_QUAD (0x05E5)
	6.3.56.57.2 Data High of GL_SWT_LAT_QUAD (0x05E6)

	6.3.56.58 Reserved (0x05E7 - 0x06FF)
	6.3.56.59 GLDCB_SWT_RETSTCC (0x0700 - 0x0742)
	6.3.56.59.1 Starting Address Low at GLDCB_SWT_RETSTCC (0x0700)
	6.3.56.59.2 Starting Address High at GLDCB_SWT_RETSTCC (0x0701)
	6.3.56.59.3 Attributes at GLDCB_SWT_RETSTCC (0x0702)
	6.3.56.59.4 Data Low of GLDCB_SWT_RETSTCC[n] (0x0703 + 2*n, n=0...31)
	6.3.56.59.5 Data High of GLDCB_SWT_RETSTCC[n] (0x0704 + 2*n, n=0...31)

	6.3.56.60 GL_PSTEXT_FORCE_PID (0x0743 - 0x074B)
	6.3.56.60.1 Starting Address Low at GL_PSTEXT_FORCE_PID (0x0743)
	6.3.56.60.2 Starting Address High at GL_PSTEXT_FORCE_PID (0x0744)
	6.3.56.60.3 Attributes at GL_PSTEXT_FORCE_PID (0x0745)
	6.3.56.60.4 Data Low of GL_PSTEXT_FORCE_PID[n] (0x0746 + 2*n, n=0...2)
	6.3.56.60.5 Data High of GL_PSTEXT_FORCE_PID[n] (0x0747 + 2*n, n=0...2)

	6.3.56.61 GL_PREEXT_FORCE_PID (0x074C - 0x0754)
	6.3.56.61.1 Starting Address Low at GL_PREEXT_FORCE_PID (0x074C)
	6.3.56.61.2 Starting Address High at GL_PREEXT_FORCE_PID (0x074D)
	6.3.56.61.3 Attributes at GL_PREEXT_FORCE_PID (0x074E)
	6.3.56.61.4 Data Low of GL_PREEXT_FORCE_PID[n] (0x074F + 2*n, n=0...2)
	6.3.56.61.5 Data High of GL_PREEXT_FORCE_PID[n] (0x0750 +2*n, n=0...2)

	6.3.56.62 GL_ACLEXT_FORCE_PID (0x0755 - 0x075D)
	6.3.56.62.1 Starting Address Low at GL_ACLEXT_FORCE_PID (0x0755)
	6.3.56.62.2 Starting Address High at GL_ACLEXT_FORCE_PID (0x0756)
	6.3.56.62.3 Attributes at GL_ACLEXT_FORCE_PID (0x0757)
	6.3.56.62.4 Data Low of GL_ACLEXT_FORCE_PID[n] (0x0758 + 2*n, n=0...2)
	6.3.56.62.5 Data High of GL_ACLEXT_FORCE_PID[n] (0x0759 + 2*n, n=0...2)

	6.3.56.63 GL_SWT_SWIDFVIDX (0x075E - 0x0761)
	6.3.56.63.1 Address Low at GL_SWT_SWIDFVIDX (0x075E)
	6.3.56.63.2 Address High at GL_SWT_SWIDFVIDX (0x075F)
	6.3.56.63.3 Data Low of GL_SWT_SWIDFVIDX (0x0760)
	6.3.56.63.4 Data High of GL_SWT_SWIDFVIDX (0x0761)

	6.3.56.64 GLLAN_RCTL_1 (0x0762 - 0x0765)
	6.3.56.64.1 Address Low at GLLAN_RCTL_1 (0x0762)
	6.3.56.64.2 Address High at GLLAN_RCTL_1 (0x0763)
	6.3.56.64.3 Data Low of GLLAN_RCTL_1 (0x0764)
	6.3.56.64.4 Data High of GLLAN_RCTL_1 (0x0765)

	6.3.56.65 GLLAN_PF_RECIPE (0x0766 - 0x0778)
	6.3.56.65.1 Starting Address Low at GLLAN_PF_RECIPE (0x0766)
	6.3.56.65.2 Starting Address High at GLLAN_PF_RECIPE (0x0767)
	6.3.56.65.3 Attributes at GLLAN_PF_RECIPE (0x0768)
	6.3.56.65.4 Data Low of GLLAN_PF_RECIPE[n] (0x0769 + 2*n, n=0...7)
	6.3.56.65.5 Data High of GLLAN_PF_RECIPE[n] (0x076A + 2*n, n=0...7)

	6.3.56.66 VPDSI_TX_QTABLE_PQM (0x0779 - 0x09A8)
	6.3.56.66.1 Starting Address Low at VPDSI_TX_QTABLE_PQM (0x0779)
	6.3.56.66.2 Starting Address High at VPDSI_TX_QTABLE_PQM (0x077A)
	6.3.56.66.3 Attributes at VPDSI_TX_QTABLE_PQM (0x077B)

	6.3.56.67 VPLAN_DSI_VF_MODE (0x097C - 0x099B)
	6.3.56.67.1 Data Low of VPLAN_DSI_VF_MODE[VP16] (0x097C + 2*VP16, VP16=0...15)
	6.3.56.67.2 Data High of VPLAN_DSI_VF_MODE[VP16] (0x097D + 2*VP16, VP16=0...15)

	6.3.56.68 GLCOMM_QUANTA_PROF (0x099C - 0x09BE)
	6.3.56.68.1 Starting Address Low at GLCOMM_QUANTA_PROF (0x099C)
	6.3.56.68.2 Starting Address High at GLCOMM_QUANTA_PROF (0x099D)
	6.3.56.68.3 Attributes at GLCOMM_QUANTA_PROF (0x099E)
	6.3.56.68.4 Data Low of GLCOMM_QUANTA_PROF[n] (0x099F + 2*n, n=0...15)
	6.3.56.68.5 Data High of GLCOMM_QUANTA_PROF[n] (0x09A0+ 2*n, n=0...15)

	6.3.56.69 GLCOMM_PKT_SHAPER_PROF (0x09BF - 0x09CE)
	6.3.56.69.1 Data Low of GLCOMM_PKT_SHAPER_PROF[n] (0x09BF + 2*n, n=0...7)
	6.3.56.69.2 Data High of GLCOMM_PKT_SHAPER_PROF[n] (0x09C0 + 2*n, n=0...7)

	6.3.56.70 Reserved (0x09CF - 0x09DD)
	6.3.56.71 GL_MDCK_CFG1_TX_PQM (0x09DE - 0x09E2)
	6.3.56.71.1 Starting Address Low at GL_MDCK_CFG1_TX_PQM (0x09DE)
	6.3.56.71.2 Starting Address High at GL_MDCK_CFG1_TX_PQM (0x09DF)
	6.3.56.71.3 Attributes at GL_MDCK_CFG1_TX_PQM (0x09E0)
	6.3.56.71.4 Data Low of GL_MDCK_CFG1_TX_PQM (0x09E1)
	6.3.56.71.5 Data High of GL_MDCK_CFG1_TX_PQM (0x09E2)

	6.3.56.72 Reserved (0x09E3 - 0x09E4)
	6.3.56.73 GL_MDCK_EN_TX_PQM (0x09E5 - 0x09E6)
	6.3.56.73.1 Data Low of GL_MDCK_EN_TX_PQM (0x09E5)
	6.3.56.73.2 Data High of GL_MDCK_EN_TX_PQM (0x09E6)

	6.3.56.74 Reserved (0x0E7 - 0x2A2B)
	6.3.56.75 GLQF_FD_SIZE (0x2A2C - 0x2A2F)
	6.3.56.75.1 Address Low at GLQF_FD_SIZE (0x2A2C)
	6.3.56.75.2 Address High at GLQF_FD_SIZE (0x2A2D)
	6.3.56.75.3 Data Low of GLQF_FD_SIZE (0x2A2E)
	6.3.56.75.4 Data High of GLQF_FD_SIZE (0x2A2F)

	6.3.56.76 GLHMC_PFPESDPART (0x2A30 - 0x2A42)
	6.3.56.76.1 Starting Address Low at GLHMC_PFPESDPART (0x2A30)
	6.3.56.76.2 Starting Address High at GLHMC_PFPESDPART (0x2A41)
	6.3.56.76.3 Attributes at GLHMC_PFPESDPART (0x2A32)
	6.3.56.76.4 Data Low of GLHMC_PFPESDPART[n] (0x2A33 + 2*n, n=0...7)
	6.3.56.76.5 Data High of GLHMC_PFPESDPART[n] (0x2A34 + 2*n, n=0...7)

	6.3.56.77 Reserved (0x2A43 - 0x2A46)
	6.3.56.78 GLHMC_VFSDPART (0x2A47 - 0x2A89)
	6.3.56.78.1 Starting Address Low at GLHMC_VFSDPART (0x2A47)
	6.3.56.78.2 Starting Address High at GLHMC_VFSDPART (0x2A48)
	6.3.56.78.3 Attributes at GLHMC_VFSDPART (0x2A49)
	6.3.56.78.4 Data Low of GLHMC_VFSDPART[n] (0x2A4A + 2*n, n=0...31)
	6.3.56.78.5 Data High of GLHMC_VFSDPART[n] (0x2A4B + 2*n, n=0...31)

	6.3.56.79 GLCOMM_MIN_MAX_PKT (0x2A8A - 0x2A8D)
	6.3.56.79.1 Address Low at GLCOMM_MIN_MAX_PKT (0x2A8A)
	6.3.56.79.2 Address High at GLCOMM_MIN_MAX_PKT (0x2A8B)
	6.3.56.79.3 Data Low of GLCOMM_MIN_MAX_PKT (0x2A8C)
	6.3.56.79.4 Data High of GLCOMM_MIN_MAX_PKT (0x2A8D)

	6.3.56.80 Reserved (0x2A8E - 0x2A8F)
	6.3.56.81 DPU_IMEM Attributes (0x2A90)
	6.3.56.82 Reserved (0x2A91 - 0x2A92)
	6.3.56.83 DPU_IMEM Data (0x2A93)
	6.3.56.84 Reserved (0x4A93 - 0x4A94)
	6.3.56.85 DPU_RECIPE_ADDRESS Attributes (0x4A95)
	6.3.56.86 Reserved (0x4A96 - 0x4C97)
	6.3.56.87 DPU_RECIPE_ADDRESS Data (0x4A98)
	6.3.56.88 Reserved (0x4C98 - 0x4C99)
	6.3.56.89 DPU_RECIPE_CAM Attributes (0x4C9A)
	6.3.56.90 Reserved (0x4C9B - 0x4C9C)
	6.3.56.91 DPU_RECIPE_CAM Data (0x4C9D)
	6.3.56.92 Reserved (0x509D - 0x509E)
	6.3.56.93 DPU_RECIPE_MASK Attributes (0x509F)
	6.3.56.94 Reserved (0x50A0 - 0x50A1)
	6.3.56.95 DPU_RECIPE_MASK Data (0x50A2)
	6.3.56.96 Reserved (0x50C2 - 0x50C3)
	6.3.56.97 ANA_IMEM Attributes (0x50C4)
	6.3.56.98 Reserved (0x50C5 - 0x50C6)
	6.3.56.99 ANA_IMEM Data (0x50C7)
	6.3.56.100 Reserved (0x5167 - 0x5168)
	6.3.56.101 ANA_NH Attributes (0x5169)
	6.3.56.102 Reserved (0x516A - 0x516B)
	6.3.56.103 ANA_NH Data (0x516C)
	6.3.56.104 Reserved (0x51BC - 0x51BD)
	6.3.56.105 ANA_SKIP Attributes (0x51BE)
	6.3.56.106 Reserved (0x51BF - 0x51C0)
	6.3.56.107 ANA_SKIP Data (0x51C1)
	6.3.56.108 Reserved (0x5211 - 0x5212)
	6.3.56.109 ANA_REPLACE Attributes (0x5213)
	6.3.56.110 Reserved (0x5214 - 0x5215)
	6.3.56.111 ANA_REPLACE Data (0x5216)
	6.3.56.112 Reserved (0x5266 - 0x5267)
	6.3.56.113 ANA_MERGE Attributes (0x5268)
	6.3.56.114 Reserved (0x5269 - 0x526A)
	6.3.56.115 ANA_MERGE Data (0x526B)

	6.3.57 Mailbox Register Auto-Load Module Section
	6.3.57.1 Module Length (0x0000)
	6.3.57.2 Address Low at PF0_SB_HLP_REM_DEV_CTL (0x0001)
	6.3.57.3 Address High at PF0_SB_HLP_REM_DEV_CTL (0x0002)
	6.3.57.4 Data Low of PF0_SB_HLP_REM_DEV_CTL (0x0003)
	6.3.57.5 Data High of PF0_SB_HLP_REM_DEV_CTL (0x0004)
	6.3.57.6 Address Low at PF_SB_REM_DEV_CTL (0x0005)
	6.3.57.7 Address High at PF_SB_REM_DEV_CTL (0x0006)
	6.3.57.8 Data Low of PF_SB_REM_DEV_CTL (0x0007)
	6.3.57.9 Data High PF_SB_REM_DEV_CTL (0x0008)
	6.3.57.10 Address Low at PF0_SB_CPM_REM_DEV_CTL (0x0009)
	6.3.57.11 Address High at PF0_SB_CPM_REM_DEV_CTL (0x000A)
	6.3.57.12 Data Low of PF0_SB_CPM_REM_DEV_CTL (0x000B)
	6.3.57.13 Data High of PF0_SB_CPM_REM_DEV_CTL (0x000C)
	6.3.57.14 Address Low at VF_SB_CPM_REM_DEV_CTL (0x000D)
	6.3.57.15 Address High at VF_SB_CPM_REM_DEV_CTL (0x000E)
	6.3.57.16 Data Low of VF_SB_CPM_REM_DEV_CTL (0x000F)
	6.3.57.17 Data High of VF_SB_CPM_REM_DEV_CTL (0x0010)
	6.3.57.18 Starting Address Low at MBX_PF_VT_PFALLOC, for PF[0] (0x0011)
	6.3.57.19 Starting Address High at MBX_PF_VT_PFALLOC, for PF[0] (0x0012)
	6.3.57.20 Attributes at MBX_PF_VT_PFALLOC, for PF[0] (0x0013)
	6.3.57.21 Data Low of MBX_PF_VT_PFALLOC, for PF[0] (0x0014)
	6.3.57.22 Data High of MBX_PF_VT_PFALLOC, for PF[0] (0x0015)
	6.3.57.23 Data Low of MBX_PF_VT_PFALLOC, for PF[1] (0x0016)
	6.3.57.24 Data High of MBX_PF_VT_PFALLOC, for PF[1] (0x0017)
	6.3.57.25 Data Low of MBX_PF_VT_PFALLOC, for PF[2] (0x0018)
	6.3.57.26 Data High of MBX_PF_VT_PFALLOC, for PF[2] (0x0019)
	6.3.57.27 Data Low of MBX_PF_VT_PFALLOC, for PF[3] (0x001A)
	6.3.57.28 Data High of MBX_PF_VT_PFALLOC, for PF[3] (0x001B)
	6.3.57.29 Data Low of MBX_PF_VT_PFALLOC, for PF[4] (0x001C)
	6.3.57.30 Data High of MBX_PF_VT_PFALLOC, for PF[4] (0x001D)
	6.3.57.31 Data Low of MBX_PF_VT_PFALLOC, for PF[5] (0x001E)
	6.3.57.32 Data High of MBX_PF_VT_PFALLOC, for PF[5] (0x001F)
	6.3.57.33 Data Low of MBX_PF_VT_PFALLOC, for PF[6] (0x0020)
	6.3.57.34 Data High of MBX_PF_VT_PFALLOC, for PF[6] (0x0021)
	6.3.57.35 Data Low of MBX_PF_VT_PFALLOC, for PF[7] (0x0022)
	6.3.57.36 Data High of MBX_PF_VT_PFALLOC, for PF[7] (0x0023)

	6.3.58 GLOBR Registers Auto-Load Module Section
	6.3.58.1 Module Length (0x0000)
	6.3.58.2 GLGEN_MAC_LINK_TOPO (0x0001 - 0x0004)
	6.3.58.2.1 Address Low at GLGEN_MAC_LINK_TOPO (0x0001)
	6.3.58.2.2 Address High at GLGEN_MAC_LINK_TOPO (0x0002)
	6.3.58.2.3 Data Low of GLGEN_MAC_LINK_TOPO (0x0003)
	6.3.58.2.4 Data High of GLGEN_MAC_LINK_TOPO (0x0004)

	6.3.58.3 Reserved (0x0005 - 0x0017)
	6.3.58.4 PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x0018 - 0x002A)
	6.3.58.4.1 Starting Address Low at PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x0018)
	6.3.58.4.2 Starting Address High at PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x0019)
	6.3.58.4.3 Attributes at PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x001A)
	6.3.58.4.4 Data Low of PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE[PRT] (0x001B + 2*PRT, PRT=0...7)
	6.3.58.4.5 Data High of PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE[PRT] (0x001C + 2*PRT, PRT=0...7)

	6.3.58.5 PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE (0x002B - 0x003A)
	6.3.58.5.1 Data Low of PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE[PRT] (0x002B + 2*PRT, PRT=0...7)
	6.3.58.5.2 Data High of PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE[PRT] (0x002C + 2*PRT, PRT=0...7)

	6.3.58.6 PRTMAC_HSEC_CTL_RX_ENABLE_GCP (0x003B - 0x004A)
	6.3.58.6.1 Data Low of PRTMAC_HSEC_CTL_RX_ENABLE_GCP[PRT] (0x003B + 2*PRT, PRT=0...7)
	6.3.58.6.2 Data High of PRTMAC_HSEC_CTL_RX_ENABLE_GCP[PRT] (0x003C + 2*PRT, PRT=0...7)

	6.3.58.7 PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP (0x004B - 0x005D)
	6.3.58.7.1 Starting Address Low at PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP (0x004B)
	6.3.58.7.2 Starting Address High at PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP (0x004C)
	6.3.58.7.3 Attributes at PRTMAC_HSEC_CTL_RX_CHECK_UCAST_GCP (0x004D)
	6.3.58.7.4 Reserved (0x004E - 0x005D)

	6.3.58.8 PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART 1 (0x005E - 0x006D)
	6.3.58.8.1 Data Low of PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART1[PRT] (0x005E + 2*PRT, PRT=0...7)
	6.3.58.8.2 Data High of PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART1[PRT] (0x005F + 2*PRT, PRT=0...7)

	6.3.58.9 PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART 2 (0x006E - 0x007D)
	6.3.58.9.1 Data Low of PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART2[PRT] (0x006E + 2*PRT, PRT=0...7)
	6.3.58.9.2 Data High of PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART2[PRT] (0x006F + 2*PRT, PRT=0...7)

	6.3.58.10 Reserved (0x007E - 0x00E6)
	6.3.58.11 PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x00E7 - 0x00F9)
	6.3.58.11.1 Starting Address Low at PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x00E7)
	6.3.58.11.2 Starting Address High at PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x00E8)
	6.3.58.11.3 Attributes at PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x00E9)
	6.3.58.11.4 Data Low of PRTMAC_HSEC_CTL_RX_ENABLE_GPP[PRT] (0x00EA + 2*PRT, PRT=0...7)
	6.3.58.11.5 Data High of PRTMAC_HSEC_CTL_RX_ENABLE_GPP[PRT] (0x00EB + 2*PRT, PRT=0...7)

	6.3.58.12 Reserved (0x00FA - 0x010C)
	6.3.58.13 PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x010D - 0x011F)
	6.3.58.13.1 Starting Address Low at PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x010D)
	6.3.58.13.2 Starting Address High at PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x010E)
	6.3.58.13.3 Attributes at PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x010F)
	6.3.58.13.4 Data Low of PRTMAC_HSEC_CTL_RX_ENABLE_PPP[PRT] (0x0110 + 2*PRT, PRT=0...7)
	6.3.58.13.5 Data High of PRTMAC_HSEC_CTL_RX_ENABLE_PPP[PRT] (0x0111 + 2*PRT, PRT=0...7)

	6.3.58.14 Reserved (0x0120 - 0x0132)
	6.3.58.15 PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL (0x0133 - 0x0145)
	6.3.58.15.1 Starting Address Low at PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL (0x0133)
	6.3.58.15.2 Starting Address High at PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL (0x0134)
	6.3.58.15.3 Attributes at PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL 0x0135)
	6.3.58.15.4 Data Low of PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL[PRT] (0x0136 + 2*PRT, PRT=0...7)
	6.3.58.15.5 Data High of PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL[PRT] (0x0137 + 2*PRT, PRT=0...7)

	6.3.58.16 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA (0x0146 - 0x01D5)
	6.3.58.16.1 Data Low of PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA[n,PRT] (0x0146 + 16*n + 2*PRT, n=0...8, PRT=0...7)
	6.3.58.16.2 Data High of PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA[n,PRT] (0x0147 + 16*n + 2*PRT, n=0...8, PRT=0...7)

	6.3.58.17 PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER (0x01D6 - 0x0265)
	6.3.58.17.1 Data Low of PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER[n,PRT] (0x01D6 + 16*n + 2*PRT, n=0...8, PRT=0...7)
	6.3.58.17.2 Data High of PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER[n,PRT] (0x01D7 + 16*n + 2*PRT, n=0...8, PRT=0...7)

	6.3.58.18 PRTMAC_HSEC_CTL_TX_SA_PART1 (0x0266 - 0x0278)
	6.3.58.18.1 Starting Address Low at PRTMAC_HSEC_CTL_TX_SA_PART1 (0x0266)
	6.3.58.18.2 Starting Address High at PRTMAC_HSEC_CTL_TX_SA_PART1 (0x0267)
	6.3.58.18.3 Attributes at PRTMAC_HSEC_CTL_TX_SA_PART1 (0x0268)
	6.3.58.18.4 Data Low of PRTMAC_HSEC_CTL_TX_SA_PART1[PRT] (0x0269 + 2*PRT, PRT=0...7)
	6.3.58.18.5 Data High of PRTMAC_HSEC_CTL_TX_SA_PART1[PRT] (0x026A + 2*PRT, PRT=0...7)

	6.3.58.19 PRTMAC_HSEC_CTL_TX_SA_PART2 (0x0279 - 0x0288)
	6.3.58.19.1 Data Low of PRTMAC_HSEC_CTL_TX_SA_PART2[PRT] (0x0279 + 2*PRT, PRT=0...7)
	6.3.58.19.2 Data High of PRTMAC_HSEC_CTL_TX_SA_PART2[PRT] (0x027A + 2*PRT, PRT=0...7)

	6.3.58.20 Reserved (0x0289 - 0x02E6)
	6.3.58.21 PRTPM_EEER (0x02E7 - 0x02F9)
	6.3.58.21.1 Starting Address Low at PRTPM_EEER (0x02E7)
	6.3.58.21.2 Starting Address High at PRTPM_EEER (0x02E8)
	6.3.58.21.3 Attributes at PRTPM_EEER (0x02E9)
	6.3.58.21.4 Data Low of PRTPM_EEER[PRT] (0x02EA + 2*PRT, PRT=0...7)
	6.3.58.21.5 Data High of PRTPM_EEER[PRT] (0x02EB + 2*PRT, PRT=0...7)

	6.3.58.22 PRTPM_EEEC (0x02FA - 0x0309)
	6.3.58.22.1 Data Low of PRTPM_EEEC[PRT] (0x02FA + 2*PRT, PRT=0...7)
	6.3.58.22.2 Data High of PRTPM_EEEC[PRT] (0x02FB + 2*PRT, PRT=0...7)

	6.3.58.23 PRTDCB_FCTTVN (0x030A - 0x0355)
	6.3.58.23.1 Starting Address Low at PRTDCB_FCTTVN (0x030A)
	6.3.58.23.2 Starting Address High at PRTDCB_FCTTVN (0x030B)
	6.3.58.23.3 Attributes at PRTDCB_FCTTVN (0x030C)
	6.3.58.23.4 Data Low of PRTDCB_FCTTVN[n,PRT] (0x030D + 19*n + 2*PRT, n=0...3, PRT=0...7)
	6.3.58.23.5 Data High of PRTDCB_FCTTVN[n,PRT] (0x030E + 19*n + 2*PRT, n=0...3, PRT=0...7)

	6.3.58.24 PRTDCB_FCRTV (0x034D - 0x035C)
	6.3.58.24.1 Data Low of PRTDCB_FCRTV[PRT] (0x034D + 2*PRT, PRT=0...7)
	6.3.58.24.2 Data High of PRTDCB_FCRTV[PRT] (0x034E + 2*PRT, PRT=0...7)

	6.3.58.25 PRTDCB_FCCFG (0x035D - 0x036F)
	6.3.58.25.1 Starting Address Low at PRTDCB_FCCFG (0x035D)
	6.3.58.25.2 Starting Address High at PRTDCB_FCCFG (0x035E)
	6.3.58.25.3 Attributes at PRTDCB_FCCFG (0x035F)
	6.3.58.25.4 Data Low of PRTDCB_FCCFG[PRT] (0x0360 + 2*PRT, PRT=0...7)
	6.3.58.25.5 Data High of PRTDCB_FCCFG[PRT] (0x0361 + 2*PRT, PRT=0...7)

	6.3.58.26 Reserved (0x0370 - 0x039F)
	6.3.58.27 Attributes at PRTGEN_CNF2, for PRT[0] (0x03A0)
	6.3.58.28 Data Low of PRTGEN_CNF2, for PRT[0] (0x03A1)
	6.3.58.29 Data High of PRTGEN_CNF2, for PRT[0] (0x03A2)
	6.3.58.30 Data Low of PRTGEN_CNF2, for PRT[1] (0x03A3)
	6.3.58.31 Data High of PRTGEN_CNF2, for PRT[1] (0x03A4)
	6.3.58.32 Data Low of PRTGEN_CNF2, for PRT[2] (0x03A5)
	6.3.58.33 Data High of PRTGEN_CNF2, for PRT[2] (0x03A6)
	6.3.58.34 Data Low of PRTGEN_CNF2, for PRT[3] (0x03A7)
	6.3.58.35 Data High of PRTGEN_CNF2, for PRT[3] (0x03A8)
	6.3.58.36 Data Low of PRTGEN_CNF2, for PRT[4] (0x03A9)
	6.3.58.37 Data High of PRTGEN_CNF2, for PRT[4] (0x03AA)
	6.3.58.38 Data Low of PRTGEN_CNF2, for PRT[5] (0x03AB)
	6.3.58.39 Data High of PRTGEN_CNF2, for PRT[5] (0x03AC)
	6.3.58.40 Data Low of PRTGEN_CNF2, for PRT[6] (0x03AD)
	6.3.58.41 Data High of PRTGEN_CNF2, for PRT[6] (0x03AE)
	6.3.58.42 Data Low of PRTGEN_CNF2, for PRT[7] (0x03AF)
	6.3.58.43 Data High of PRTGEN_CNF2, for PRT[7] (0x03B0)

	6.3.59 PE CORER Registers Section
	6.3.59.1 Module Length (0x0000)
	6.3.59.2 Reserved (0x0001 - 0x0017)

	6.3.60 Sideband Bus Auto-Load Section
	6.3.60.1 Module Length (0x0000)
	6.3.60.2 CDF CFIO West - Type F Word 0 (0x0001)
	6.3.60.3 CDF CFIO West - Type F Word 1 (0x0002)
	6.3.60.4 CDF CFIO West - Type F Word 2 (0x0003)
	6.3.60.5 GBE_SDP_TIMESYNC0 Address Low (0x0004)
	6.3.60.6 GBE_SDP_TIMESYNC0 Address High (0x0005)
	6.3.60.7 GBE_SDP_TIMESYNC0 Data Low (0x0006)
	6.3.60.8 GBE_SDP_TIMESYNC0 Data High (0x0007)
	6.3.60.9 GBE_SDP_TIMESYNC1 Address Low (0x0008)
	6.3.60.10 GBE_SDP_TIMESYNC1 Address High (0x0009)
	6.3.60.11 GBE_SDP_TIMESYNC1 Data Low (0x000A)
	6.3.60.12 GBE_SDP_TIMESYNC1 Data High (0x000B)
	6.3.60.13 GBE_SDP_TIMESYNC2 Address Low (0x000C)
	6.3.60.14 GBE_SDP_TIMESYNC2 Address High (0x000D)
	6.3.60.15 GBE_SDP_TIMESYNC2 Data Low (0x000E)
	6.3.60.16 GBE_SDP_TIMESYNC2 Data High (0x000F)
	6.3.60.17 GBE_SDP_TIMESYNC3 Address Low (0x0010)
	6.3.60.18 GBE_SDP_TIMESYNC3 Address High (0x0011)
	6.3.60.19 GBE_SDP_TIMESYNC3 Data Low (0x0012)
	6.3.60.20 GBE_SDP_TIMESYNC3 Data High (0x0013)
	6.3.60.21 GBE0_I2C_CLK Address Low (0x0014)
	6.3.60.22 GBE0_I2C_CLK Address High (0x0015)
	6.3.60.23 GBE0_I2C_CLK Data Low (0x0016)
	6.3.60.24 GBE0_I2C_CLK Data High (0x0017)
	6.3.60.25 GBE0_I2C_DATA Address Low (0x0018)
	6.3.60.26 GBE0_I2C_DATA Address High (0x0019)
	6.3.60.27 GBE0_I2C_DATA Data Low (0x001A)
	6.3.60.28 GBE0_I2C_DATA Data High (0x001B)
	6.3.60.29 GBE1_I2C_CLK Address Low (0x001C)
	6.3.60.30 GBE1_I2C_CLK Address High (0x001D)
	6.3.60.31 GBE1_I2C_CLK Data Low (0x001E)
	6.3.60.32 GBE1_I2C_CLK Data High (0x001F)
	6.3.60.33 GBE1_I2C_DATA Address Low (0x0020)
	6.3.60.34 GBE1_I2C_DATA Address High (0x0021)
	6.3.60.35 GBE1_I2C_DATA Data Low (0x0022)
	6.3.60.36 GBE1_I2C_DATA Data High (0x0023)
	6.3.60.37 GBE2_I2C_CLK Address Low (0x0024)
	6.3.60.38 GBE2_I2C_CLK Address High (0x0025)
	6.3.60.39 GBE2_I2C_CLK Data Low (0x0026)
	6.3.60.40 GBE2_I2C_CLK Data High (0x0027)
	6.3.60.41 GBE2_I2C_DATA Address Low (0x0028)
	6.3.60.42 GBE2_I2C_DATA Address High (0x0029)
	6.3.60.43 GBE2_I2C_DATA Data Low (0x002A)
	6.3.60.44 GBE2_I2C_DATA Data High (0x002B)
	6.3.60.45 GBE3_I2C_CLK Address Low (0x002C)
	6.3.60.46 GBE3_I2C_CLK Address High (0x002D)
	6.3.60.47 GBE3_I2C_CLK Data Low (0x002E)
	6.3.60.48 GBE3_I2C_CLK Data High (0x002F)
	6.3.60.49 GBE3_I2C_DATA Address Low (0x0030)
	6.3.60.50 GBE3_I2C_DATA Address High (0x0031)
	6.3.60.51 GBE3_I2C_DATA Data Low (0x0032)
	6.3.60.52 GBE3_I2C_DATA Data High (0x0033)
	6.3.60.53 GBE0_LED0 Address Low (0x0034)
	6.3.60.54 GBE0_LED0 Address High (0x0035)
	6.3.60.55 GBE0_LED0 Data Low (0x0036)
	6.3.60.56 GBE0_LED0 Data High (0x0037)
	6.3.60.57 GBE0_LED1 Address Low (0x0038)
	6.3.60.58 GBE0_LED1 Address High (0x0039)
	6.3.60.59 GBE0_LED1 Data Low (0x003A)
	6.3.60.60 GBE0_LED1 Data High (0x003B)
	6.3.60.61 GBE0_LED2 Address Low (0x003C)
	6.3.60.62 GBE0_LED2 Address High (0x003D)
	6.3.60.63 GBE0_LED2 Data Low (0x003E)
	6.3.60.64 GBE0_LED2 Data High (0x003F)
	6.3.60.65 GBE1_LED0 Address Low (0x0040)
	6.3.60.66 GBE1_LED0 Address High (0x0041)
	6.3.60.67 GBE1_LED0 Data Low (0x0042)
	6.3.60.68 GBE1_LED0 Data High (0x0043)
	6.3.60.69 GBE1_LED1 Address Low (0x0044)
	6.3.60.70 GBE1_LED1 Address High (0x0045)
	6.3.60.71 GBE1_LED1 Data Low (0x0046)
	6.3.60.72 GBE1_LED1 Data High (0x0047)
	6.3.60.73 GBE1_LED2 Address Low (0x0048)
	6.3.60.74 GBE1_LED2 Address High (0x0049)
	6.3.60.75 GBE1_LED2 Data Low (0x004A)
	6.3.60.76 GBE1_LED2 Data High (0x004B)
	6.3.60.77 GBE2_LED0 Address Low (0x004C)
	6.3.60.78 GBE2_LED0 Address High (0x004D)
	6.3.60.79 GBE2_LED0 Data Low (0x004E)
	6.3.60.80 GBE2_LED0 Data High (0x004F)
	6.3.60.81 GBE2_LED1 Address Low (0x0050)
	6.3.60.82 GBE2_LED1 Address High (0x0051)
	6.3.60.83 GBE2_LED1 Data Low (0x0052)
	6.3.60.84 GBE2_LED1 Data High (0x0053)
	6.3.60.85 GBE2_LED2 Address Low (0x0054)
	6.3.60.86 GBE2_LED2 Address High (0x0055)
	6.3.60.87 GBE2_LED2 Data Low (0x0056)
	6.3.60.88 GBE2_LED2 Data High (0x0057)
	6.3.60.89 GBE3_LED0 Address Low (0x0058)
	6.3.60.90 GBE3_LED0 Address High (0x0059)
	6.3.60.91 GBE3_LED0 Data Low (0x005A)
	6.3.60.92 GBE3_LED0 Data High (0x005B)
	6.3.60.93 GBE3_LED1 Address Low (0x005C)
	6.3.60.94 GBE3_LED1 Address High (0x005D)
	6.3.60.95 GBE3_LED1 Data Low (0x005E)
	6.3.60.96 GBE3_LED1 Data High (0x005F)
	6.3.60.97 GBE3_LED2 Address Low (0x0060)
	6.3.60.98 GBE3_LED2 Address High (0x0061)
	6.3.60.99 GBE3_LED2 Data Low (0x0062)
	6.3.60.100 GBE3_LED2 Data High (0x0063)
	6.3.60.101 GBE_SMB_CLK Address Low (0x0064)
	6.3.60.102 GBE_SMB_CLK Address High (0x0065)
	6.3.60.103 GBE_SMB_CLK Data Low (0x0066)
	6.3.60.104 GBE_SMB_CLK Data High (0x0067)
	6.3.60.105 GBE_SMB_DATA Address Low (0x0068)
	6.3.60.106 GBE_SMB_DATA Address High (0x0069)
	6.3.60.107 GBE_SMB_DATA Data Low (0x006A)
	6.3.60.108 GBE_SMB_DATA Data High (0x006B)
	6.3.60.109 GBE_SMB_ALRT_N Address Low (0x006C)
	6.3.60.110 GBE_SMB_ALRT_N Address High (0x006D)
	6.3.60.111 GBE_SMB_ALRT_N Data Low (0x006E)
	6.3.60.112 GBE_SMB_ALRT_N Data High (0x006F)
	6.3.60.113 UART1_RXD Address Low (0x0070)
	6.3.60.114 UART1_RXD Address High (0x0071)
	6.3.60.115 UART1_RXD Data Low (0x0072)
	6.3.60.116 UART1_RXD Data High (0x0073)
	6.3.60.117 UART1_TXD Address Low (0x0074)
	6.3.60.118 UART1_TXD Address High (0x0075)
	6.3.60.119 UART1_TXD Data Low (0x0076)
	6.3.60.120 UART1_TXD Data High (0x0077)
	6.3.60.121 CPU_GP_0 Address Low (0x0078)
	6.3.60.122 CPU_GP_0 Address High (0x0079)
	6.3.60.123 CPU_GP_0 Data Low (0x007A)
	6.3.60.124 CPU_GP_0 Data High (0x007B)
	6.3.60.125 GBE_MNG_I2C_CLK Address Low (0x007C)
	6.3.60.126 GBE_MNG_I2C_CLK Address High (0x007D)
	6.3.60.127 GBE_MNG_I2C_CLK Data Low (0x007E)
	6.3.60.128 GBE_MNG_I2C_CLK Data High (0x007F)
	6.3.60.129 GBE_MNG_I2C_DATA Address Low (0x0080)
	6.3.60.130 GBE_MNG_I2C_DATA Address High (0x0081)
	6.3.60.131 GBE_MNG_I2C_DATA Data Low (0x0082)
	6.3.60.132 GBE_MNG_I2C_DATA Data High (0x0083)
	6.3.60.133 NCSI_RXD0 Address Low (0x0084)
	6.3.60.134 NCSI_RXD0 Address High (0x0085)
	6.3.60.135 NCSI_RXD0 Data Low (0x0086)
	6.3.60.136 NCSI_RXD0 Data High (0x0087)
	6.3.60.137 NCSI_RXD1 Address Low (0x0088)
	6.3.60.138 NCSI_RXD1 Address High (0x0089)
	6.3.60.139 NCSI_RXD1 Data Low (0x008A)
	6.3.60.140 NCSI_RXD1 Data High (0x008B)
	6.3.60.141 NCSI_CRS_DV Address Low (0x008C)
	6.3.60.142 NCSI_CRS_DV Address High (0x008D)
	6.3.60.143 NCSI_CRS_DV Data Low (0x008E)
	6.3.60.144 NCSI_CRS_DV Data High (0x008F)
	6.3.60.145 NCSI_ARB_IN Address Low (0x0090)
	6.3.60.146 NCSI_ARB_IN Address High (0x0091)
	6.3.60.147 NCSI_ARB_IN Data Low (0x0092)
	6.3.60.148 NCSI_ARB_IN Data High (0x0093)
	6.3.60.149 NCSI_TX_EN Address Low (0x0094)
	6.3.60.150 NCSI_TX_EN Address High (0x0095)
	6.3.60.151 NCSI_TX_EN Data Low (0x0096)
	6.3.60.152 NCSI_TX_EN Data High (0x0097)
	6.3.60.153 NCSI_TXD0 Address Low (0x0098)
	6.3.60.154 NCSI_TXD0 Address High (0x0099)
	6.3.60.155 NCSI_TXD0 Data Low (0x009A)
	6.3.60.156 NCSI_TXD0 Data High (0x009B)
	6.3.60.157 NCSI_TXD1 Address Low (0x009C)
	6.3.60.158 NCSI_TXD1 Address High (0x009D)
	6.3.60.159 NCSI_TXD1 Data Low (0x009E)
	6.3.60.160 NCSI_TXD1 Data High (0x009F)
	6.3.60.161 NCSI_ARB_OUT Address Low (0x00A0)
	6.3.60.162 NCSI_ARB_OUT Address High (0x00A1)
	6.3.60.163 NCSI_ARB_OUT Data Low (0x00A2)
	6.3.60.164 NCSI_ARB_OUT Data High (0x00A3)
	6.3.60.165 CPU_GP_1 Address Low (0x00A4)
	6.3.60.166 CPU_GP_1 Address High (0x00A5)
	6.3.60.167 CPU_GP_1 Data Low (0x00A6)
	6.3.60.168 CPU_GP_1 Data High (0x00A7)
	6.3.60.169 NAC_GBE_GPIO0 Address Low (0x00A8)
	6.3.60.170 NAC_GBE_GPIO0 Address High (0x00A9)
	6.3.60.171 NAC_GBE_GPIO0 Data Low (0x00AA)
	6.3.60.172 NAC_GBE_GPIO0 Data High (0x00AB)
	6.3.60.173 NAC_GBE_GPIO1 Address Low (0x00AC)
	6.3.60.174 NAC_GBE_GPIO1 Address High (0x00AD)
	6.3.60.175 NAC_GBE_GPIO1 Data Low (0x00AE)
	6.3.60.176 NAC_GBE_GPIO1 Data High (0x00AF)
	6.3.60.177 NAC_GBE_GPIO2 Address Low (0x00B0)
	6.3.60.178 NAC_GBE_GPIO2 Address High (0x00B1)
	6.3.60.179 NAC_GBE_GPIO2 Data Low (0x00B2)
	6.3.60.180 NAC_GBE_GPIO2 Data High (0x00B3)
	6.3.60.181 NAC_GBE_GPIO3 Address Low (0x00B4)
	6.3.60.182 NAC_GBE_GPIO3 Address High (0x00B5)
	6.3.60.183 NAC_GBE_GPIO3 Data Low (0x00B6)
	6.3.60.184 NAC_GBE_GPIO3 Data High (0x00B7)
	6.3.60.185 CDF CFIO East - Type F Word 0 - 0x00B8
	6.3.60.186 CDF CFIO East - Type F Word 1 - 0x00B9
	6.3.60.187 CDF CFIO East - Type F Word 2 - 0x00BA
	6.3.60.188 GPIO0 Address Low (0x00BB)
	6.3.60.189 GPIO0 Address High (0x00BC)
	6.3.60.190 GPIO0 Data Low (0x00BD)
	6.3.60.191 GPIO0 Data High (0x00BE)
	6.3.60.192 GPIO1 Address Low (0x00BF)
	6.3.60.193 GPIO1 Address High (0x00C0)
	6.3.60.194 GPIO1 Data Low (0x00C1)
	6.3.60.195 GPIO1 Data High (0x00C2)
	6.3.60.196 GPIO2 Address Low (0x00C3)
	6.3.60.197 GPIO2 Address High (0x00C4)
	6.3.60.198 GPIO2 Data Low (0x00C5)
	6.3.60.199 GPIO2 Data High (0x00C6)
	6.3.60.200 GPIO3 Address Low (0x00C7)
	6.3.60.201 GPIO3 Address High (0x00C8)
	6.3.60.202 GPIO3 Data Low (0x00C9)
	6.3.60.203 GPIO3 Data High (0x00CA)
	6.3.60.204 GPIO4 Address Low (0x00CB)
	6.3.60.205 GPIO4 Address High (0x00CC)
	6.3.60.206 GPIO4 Data Low (0x00CD)
	6.3.60.207 GPIO4 Data High (0x00CE)
	6.3.60.208 GPIO5 Address Low (0x00CF)
	6.3.60.209 GPIO5 Address High (0x00D0)
	6.3.60.210 GPIO5 Data Low (0x00D1)
	6.3.60.211 GPIO5 Data High (0x00D2)
	6.3.60.212 GPIO6 Address Low (0x00D3)
	6.3.60.213 GPIO6 Address High (0x00D4)
	6.3.60.214 GPIO6 Data Low (0x00D5)
	6.3.60.215 GPIO6 Data High (0x00D6)
	6.3.60.216 GPIO7 Address Low (0x00D7)
	6.3.60.217 GPIO7 Address High (0x00D8)
	6.3.60.218 GPIO7 Data Low (0x00D9)
	6.3.60.219 GPIO7 Data High (0x00DA)
	6.3.60.220 GPIO8 Address Low (0x00DB)
	6.3.60.221 GPIO8 Address High (0x00DC)
	6.3.60.222 GPIO8 Data Low (0x00DD)
	6.3.60.223 GPIO8 Data High (0x00DE)
	6.3.60.224 GPIO9 Address Low (0x00DF)
	6.3.60.225 GPIO9 Address High (0x00E0)
	6.3.60.226 GPIO9 Data Low (0x00E1)
	6.3.60.227 GPIO9 Data High (0x00E2)
	6.3.60.228 GPIO10 Address Low (0x00E3)
	6.3.60.229 GPIO10 Address High (0x00E4)
	6.3.60.230 GPIO10 Data Low (0x00E5)
	6.3.60.231 GPIO10 Data High (0x00E6)
	6.3.60.232 GPIO11 Address Low (0x00E7)
	6.3.60.233 GPIO11 Address High (0x00E8)
	6.3.60.234 GPIO11 Data Low (0x00E9)
	6.3.60.235 GPIO11 Data High (0x00EA)
	6.3.60.236 GPIO12 Address Low (0x00EB)
	6.3.60.237 GPIO12 Address High (0x00EC)
	6.3.60.238 GPIO12 Data Low (0x00ED)
	6.3.60.239 GPIO12 Data High (0x00EE)
	6.3.60.240 Manual Additions (0x00EF)

	6.3.61 EMP SR Settings Module Header Section
	6.3.61.1 Section Header (0x0000)
	6.3.61.2 SMBus Secondary Addresses (0x0001)
	6.3.61.3 SMBus Secondary Addresses 2 (0x0002)
	6.3.61.4 SMBus Secondary Addresses 3 (0x0003)
	6.3.61.5 SMBus Secondary Addresses 4 (0x0004)
	6.3.61.6 OEM Capabilities (0x0005)
	6.3.61.7 OEM Technologies Enabled (0x0006)
	6.3.61.8 SR PF Allocations Pointer (0x0007)
	6.3.61.9 Max PF and VF per Port (0x0008)
	6.3.61.10 PF LAN Device ID (0x0009)
	6.3.61.11 PF SAN Device ID (0x000A)
	6.3.61.12 PF iSCSI Device ID (0x000B)
	6.3.61.13 PF RDMA Device ID (0x000C)
	6.3.61.14 VF LAN Device ID (0x000D)
	6.3.61.15 VF SAN Device ID (0x000E)
	6.3.61.16 VF iSCSI Device ID (0x000F)
	6.3.61.17 VF RDMA Device ID (0x0010)
	6.3.61.18 PF LAN Subsystem ID (0x0011)
	6.3.61.19 PF SAN Subsystem ID (0x0012)
	6.3.61.20 PF iSCSI Subsystem ID (0x0013)
	6.3.61.21 PF RDMA Subsystem ID (0x0014)
	6.3.61.22 VF LAN Subsystem ID (0x0015)
	6.3.61.23 VF SAN Subsystem ID (0x0016)
	6.3.61.24 VF iSCSI Subsystem ID (0x0017)
	6.3.61.25 VF RDMA Subsystem ID (0x0018)
	6.3.61.26 PFGEN_STATE[n] (0x0019 + 1*n, n=0...7)
	6.3.61.27 Reserved - OEM Current Settings Pointer (0x0021)
	6.3.61.28 Features Enable (0x0022)
	6.3.61.29 LLDP Configuration Pointer (0x0023)
	6.3.61.30 Allowed SB Targets (0x0024)
	6.3.61.31 Allow 64 Bits Transactions (0x0025)
	6.3.61.32 Allowed Opcodes (0x0026)
	6.3.61.33 RX Hang Workaround Control 0 (0x0027)
	6.3.61.34 RX Hang Workaround Control 1 (0x0028)

	6.3.62 SR PF Allocations Section
	6.3.62.1 Header (0x0000)
	6.3.62.2 PF Flags[n] (0x0001 + 2*n, n=0...7)
	6.3.62.3 PF BW[n] (0x0002 + 2*n, n=0...7)
	6.3.62.4 PF Allocations - Type[n] (0x0011 + 2*n, n=0...23)
	6.3.62.5 PF Allocations - Value[n] (0x0012 + 2*n, n=0...23)

	6.3.63 LLDP Configuration Section
	6.3.63.1 Section Length (0x0000)
	6.3.63.2 LLDP Admin Status 0 (0x0001)
	6.3.63.3 LLDP Admin Status 1 (0x0002)
	6.3.63.4 msgFastTx (0x0003)
	6.3.63.5 msgTxInterval (0x0004)
	6.3.63.6 LLDP Tx Parameters (0x0005)
	6.3.63.7 LLDP Initialization Timers (0x0006)
	6.3.63.8 ENDLESS_XOFF_THRESH (0x0007)
	6.3.63.9 DCBx Mode 0 (0x0008)
	6.3.63.10 DCBx Mode 1 (0x0009)

	6.3.64 GFID Module Section
	6.3.64.1 Length (0x0000)
	6.3.64.2 GFID (0x0001)
	6.3.64.3 GFID0 (0x0002)
	6.3.64.4 GFID1 (0x0003)
	6.3.64.5 GFID.SOFTFUSE (0x0004)
	6.3.64.6 GFID3 (0x0005)
	6.3.64.7 GFID4 (0x0006)
	6.3.64.8 GFID5 (0x0007)
	6.3.64.9 GFID6 (0x0008)
	6.3.64.10 GFID7 (0x0009)
	6.3.64.11 GFID8 (0x000A)
	6.3.64.12 GFID9 (0x000B)
	6.3.64.13 GFID10 (0x000C)
	6.3.64.14 GFID11 (0x000D)
	6.3.64.15 GFID12 (0x000E)
	6.3.64.16 GFID13 (0x000F)
	6.3.64.17 GFID14 (0x0010)
	6.3.64.18 GFID15 (0x0011)
	6.3.64.19 GFID16 (0x0012)
	6.3.64.20 Original GFID (0x0013)
	6.3.64.21 Original GFID0 (0x0014)
	6.3.64.22 Original GFID1 (0x0015)
	6.3.64.23 Original GFID.SOFTFUSE (0x0016)
	6.3.64.24 Original GFID3 (0x0017)
	6.3.64.25 Original GFID4 (0x0018)
	6.3.64.26 Original GFID5 (0x0019)
	6.3.64.27 Original GFID6 (0x001A)
	6.3.64.28 Original GFID7 (0x001B)
	6.3.64.29 Original GFID8 (0x001C)
	6.3.64.30 Original GFID9 (0x001D)
	6.3.64.31 Original GFID10 (0x001E)
	6.3.64.32 Original GFID11 (0x001F)
	6.3.64.33 Original GFID12 (0x0020)
	6.3.64.34 Original GFID13 (0x0021)
	6.3.64.35 Original GFID14 (0x0022)
	6.3.64.36 Original GFID15 (0x0023)
	6.3.64.37 Original GFID16 (0x0024)

	6.3.65 Manageability Module Header Section
	6.3.65.1 Section Length (0x0000)
	6.3.65.2 Common Manageability Parameters (0x0001)
	6.3.65.3 Common Manageability Parameters 2 (0x0002)
	6.3.65.4 PLDM Control Word (0x0003)
	6.3.65.5 RDE Control Word (0x0004)
	6.3.65.6 OCP NIC Parameters Obsolete (0x0005)
	6.3.65.7 OCP NIC Parameters 2 (0x0006)
	6.3.65.8 Sideband Configuration Pointer (0x0007)
	6.3.65.9 Reserved (0x0008)
	6.3.65.10 Traffic Types Parameters (0x0009)
	6.3.65.11 OEM Section Pointer (0x000A)

	6.3.66 Sideband Configuration Structure Section
	6.3.66.1 Section Length (0x0000)
	6.3.66.2 SMBus Maximum Fragment Size (0x0001)
	6.3.66.3 SMBus Notification Timeout and Flags (0x0002)
	6.3.66.4 NC-SI Configuration 1 (0x0003)
	6.3.66.5 NC-SI Configuration 2 (0x0004)
	6.3.66.6 NC-SI Flow Control XOFF (0x0005)
	6.3.66.7 NC-SI Flow Control XON (0x0006)
	6.3.66.8 NC-SI HW Arbitration Configuration (0x0007)
	6.3.66.9 Reserved (0x0008 - 0x000C)
	6.3.66.10 OEM IANA (0x000D)
	6.3.66.11 NC-SI over MCTP Message Types (0x000E)
	6.3.66.12 NC-SI over MCTP Configuration (0x000F)
	6.3.66.13 MCTP Rate Limiter Config 1 (0x0010)
	6.3.66.14 MCTP Rate Limiter Config 2 (0x0011)
	6.3.66.15 Port to MDEF Mapping 0 (0x0012)
	6.3.66.16 Port to MDEF Mapping 1 (0x0013)
	6.3.66.17 Port to MDEF Mapping 2 (0x0014)

	6.3.67 OEM Section
	6.3.67.1 Section Length (0x0000)
	6.3.67.2 OEM Header (0x0001)
	6.3.67.3 Reserved (0x0002)

	6.3.68 Auto-Generated Pointers Module Section
	6.3.68.1 Module Length (0x0000)
	6.3.68.2 Pointer to PFPM_APM Section (0x0001)
	6.3.68.3 Pointer to Pfpm_apm Offset (0x0002)
	6.3.68.4 Pointer to PRTPM_GC Section (0x0003)
	6.3.68.5 Pointer to PRTPM_GC Offset (0x0004)
	6.3.68.6 Pointer to GLPCI_CAPSUP Section (0x0005)
	6.3.68.7 Pointer to GLPCI_CAPSUP Offset (0x0006)
	6.3.68.8 Pointer to PRTDCB_FCCFG Section (0x0007)
	6.3.68.9 Pointer to PRTDCB_FCCFG Offset (0x0008)
	6.3.68.10 Pointer to PFGEN_PORTNUM Section (0x0009)
	6.3.68.11 Pointer to PFGEN_PORTNUM Offset (0x000A)
	6.3.68.12 Pointer to PFPCI_FUNC2 Section (0x000B)
	6.3.68.13 Pointer to PFPCI_FUNC2 Offset (0x000C)
	6.3.68.14 Pointer to PF_VT_PFALLOC_PCIE Section (0x000D)
	6.3.68.15 Pointer to PF_VT_PFALLOC_PCIE Offset (0x000E)
	6.3.68.16 Pointer to PF_VT_PFALLOC Section (0x000F)
	6.3.68.17 Pointer to PF_VT_PFALLOC Offset (0x0010)
	6.3.68.18 Pointer to GLPCI_REVID Section (0x0011)
	6.3.68.19 Pointer to GLPCI_REVID Offset (0x0012)
	6.3.68.20 Pointer to PFPCI_DEVID Section (0x0013)
	6.3.68.21 Pointer to PFPCI_DEVID Offset (0x0014)
	6.3.68.22 Pointer to GLPCI_SUBVENID Section (0x0015)
	6.3.68.23 Pointer to GLPCI_SUBVENID Offset (0x0016)
	6.3.68.24 Pointer to PFPCI_SUBSYSID Section (0x017)
	6.3.68.25 Pointer to PFPCI_SUBSYSID Offset (0x0018)
	6.3.68.26 Pointer to GLPCI_VENDORID Section (0x0019)
	6.3.68.27 Pointer to GLPCI_VENDORID Offset (0x001A)
	6.3.68.28 Pointer to PFPCI_FUNC Section (0x001B)
	6.3.68.29 Pointer to PFPCI_FUNC Offset (0x001C)
	6.3.68.30 Pointer to PFPCI_CNF Section (0x001D)
	6.3.68.31 Pointer to PFPCI_CNF Offset (0x001E)
	6.3.68.32 Pointer to GLPCI_CAPCTRL Section (0x001F)
	6.3.68.33 Pointer to GLPCI_CAPCTRL Offset (0x0020)
	6.3.68.34 Pointer to PFGEN_PORTNUM_CAR Section (0x0021)
	6.3.68.35 Pointer to PFGEN_PORTNUM_CAR Offset (0x0022)
	6.3.68.36 Pointer to GLFOC_CACHE_CTL Section (0x0023)
	6.3.68.37 Pointer to GLFOC_CACHE_CTL Offset (0x0024)
	6.3.68.38 Pointer to PRTGEN_CNF Section (0x0025)
	6.3.68.39 Pointer to PRTGEN_CNF Offset (0x0026)
	6.3.68.40 Pointer to PF_VT_PFALLOC_HIF Section (0x0027)
	6.3.68.41 Pointer to PF_VT_PFALLOC_HIF Offset (0x0028)
	6.3.68.42 Pointer to PRTMAC_HSECTL1 Section (0x0029)
	6.3.68.43 Pointer to PRTMAC_HSECTL1 Offset (0x002A)
	6.3.68.44 Pointer to PRT_TDPUL2TAGSEN Section (0x002B)
	6.3.68.45 Pointer to PRT_TDPUL2TAGSEN Offset (0x002C)
	6.3.68.46 Pointer to GLGEN_MAC_LINK_TOPO Section (0x002D)
	6.3.68.47 Pointer to GLGEN_MAC_LINK_TOPO Offset (0x002E)

	6.3.69 NVM Image CSS Header Section
	6.3.69.1 moduleTypeL (0x0000)
	6.3.69.2 moduleTypeH (0x0001)
	6.3.69.3 headerLenL (0x0002)
	6.3.69.4 headerLenH (0x0003)
	6.3.69.5 headerVersionL (0x0004)
	6.3.69.6 headerVersionH (0x0005)
	6.3.69.7 moduleIDL (0x0006)
	6.3.69.8 moduleIDH (0x0007)
	6.3.69.9 moduleVendorL (0x0008)
	6.3.69.10 moduleVendorH (0x0009)
	6.3.69.11 dateL (0x000A)
	6.3.69.12 dateH (0x000B)
	6.3.69.13 sizeL (0x000C)
	6.3.69.14 sizeH (0x000D)
	6.3.69.15 keySizeL (0x000E)
	6.3.69.16 keySizeH (0x000F)
	6.3.69.17 modulusSizeL (0x0010)
	6.3.69.18 modulusSizeH (0x0011)
	6.3.69.19 exponentSizeL (0x0012)
	6.3.69.20 exponentSizeH (0x0013)
	6.3.69.21 lad_srevL (0x0014)
	6.3.69.22 lad_srevH (0x0015)
	6.3.69.23 Reserved (0x0016 - 0x0017)
	6.3.69.24 lad_fw_entry_offsetL (0x0018)
	6.3.69.25 lad_fw_entry_offsetH (0x0019)
	6.3.69.26 Reserved (0x001A - 0x001B)
	6.3.69.27 lad_image_unique_idL (0x001C)
	6.3.69.28 lad_image_unique_idH (0x001D)
	6.3.69.29 lad_module_idL (0x001E)
	6.3.69.30 lad_module_idH (0x001F)
	6.3.69.31 Reserved (0x0020)

	6.3.70 NVM Key and Signature Section
	6.3.70.1 RSA Public Key[n] (0x0000 + 1*n, n=0...127)
	6.3.70.2 RSA ExponentL (0x0080)
	6.3.70.3 RSA ExponentH (0x0081)
	6.3.70.4 Encrypted SHA256 Hash[n] (0x0082 + 1*n, n=0...127)

	6.3.71 NVM Image Auth Header Section
	6.3.71.1 Device Blank NVM Device ID (0x0000)
	6.3.71.2 Max Module AreaL (0x0001)
	6.3.71.3 Max Module AreaH (0x0002)
	6.3.71.4 Current Module AreaL (0x0003)
	6.3.71.5 Current Module AreaH (0x0004)
	6.3.71.6 Reserved (0x0005)
	6.3.71.7 Code Revision (0x0006)
	6.3.71.8 Reserved Spare Word (0x0007)

	6.3.72 SR1 - Should Be Copy of Shadow RAM: Section Clone
	6.3.73 ML CSS Header Section
	6.3.73.1 moduleTypeL (0x0000)
	6.3.73.2 moduleTypeH (0x0001)
	6.3.73.3 headerLenL (0x0002)
	6.3.73.4 headerLenH (0x0003)
	6.3.73.5 headerVersionL (0x0004)
	6.3.73.6 headerVersionH (0x0005)
	6.3.73.7 moduleIDL (0x0006)
	6.3.73.8 moduleIDH (0x0007)
	6.3.73.9 moduleVendorL (0x0008)
	6.3.73.10 moduleVendorH (0x0009)
	6.3.73.11 dateL (0x000A)
	6.3.73.12 dateH (0x000B)
	6.3.73.13 sizeL (0x000C)
	6.3.73.14 sizeH (0x000D)
	6.3.73.15 keySizeL (0x000E)
	6.3.73.16 keySizeH (0x000F)
	6.3.73.17 modulusSizeL (0x0010)
	6.3.73.18 modulusSizeH (0x0011)
	6.3.73.19 exponentSizeL (0x0012)
	6.3.73.20 exponentSizeH (0x0013)
	6.3.73.21 lad_srevL (0x0014)
	6.3.73.22 lad_srevH (0x0015)
	6.3.73.23 Reserved (0x0016 - 0x0017)
	6.3.73.24 lad_fw_entry_offsetL (0x0018)
	6.3.73.25 lad_fw_entry_offsetH (0x0019)
	6.3.73.26 Reserved (0x001A - 0x001B)
	6.3.73.27 lad_image_unique_idL (0x001C)
	6.3.73.28 lad_image_unique_idH (0x001D)
	6.3.73.29 lad_module_idL (0x001E)
	6.3.73.30 lad_module_idH (0x001F)
	6.3.73.31 Reserved[n] (0x0020 + 1*n, n=0...31)

	6.3.74 ML Key and Signature Section
	6.3.74.1 RSA Public Key[n] (0x0000 + 1*n, n=0...127)
	6.3.74.2 RSA ExponentL (0x0080)
	6.3.74.3 RSA ExponentH (0x0081)
	6.3.74.4 Encrypted SHA256 Hash[n] (0x0082 + 1*n, n=0...127)

	6.3.75 ML Auth Header Section
	6.3.75.1 Device Blank NVM Device ID (0x0000)
	6.3.75.2 Max Module AreaL (0x0001)
	6.3.75.3 Max Module AreaH (0x0002)
	6.3.75.4 Current Module AreaL (0x0003)
	6.3.75.5 Current Module AreaH (0x0004)
	6.3.75.6 Reserved (0x0005)
	6.3.75.7 Code Revision (0x0006)
	6.3.75.8 Reserved Spare Word (0x0007)

	6.3.76 Extended ML Header Section
	6.3.76.1 Reserved (0x0000)
	6.3.76.2 Analog PHY pre PLL Configuration Pointer (0x0001)
	6.3.76.3 CSR Protected List Pointer (0x0002)
	6.3.76.4 PCIe Analog Pointer (0x0003)
	6.3.76.5 PCIR Fixed Auto-Load Pointer (0x0004)
	6.3.76.6 POR Fixed Auto-Load Pointer (0x0005)
	6.3.76.7 PCIR PFA Auto-Load Allowlist Pointer (0x0006)
	6.3.76.8 POR PFA Auto-Load Allowlist Pointer (0x0007)
	6.3.76.9 Reserved (0x0008)
	6.3.76.10 1st NVM Bank Pointer (0x0009)
	6.3.76.11 NVM Bank Area Size (0x000A)
	6.3.76.12 1st OROM Bank Pointer (0x000B)
	6.3.76.13 OROM Bank Area Size (0x000C)
	6.3.76.14 1st TLV Extension Bank Pointer (0x000D)
	6.3.76.15 TLV Extension Bank Area Size (0x000E)
	6.3.76.16 Preserved Field Area Pointer (0x000F)
	6.3.76.17 Recovery Firmware Pointer (0x0010)
	6.3.76.18 Reserved (0x0011)
	6.3.76.19 Factory Settings Size (0x0012)
	6.3.76.20 Last PFA Word Pointer (0x0013)
	6.3.76.21 LVK Hashes Pointer (0x0014)
	6.3.76.22 Reserved (0x0015)
	6.3.76.23 PCIe Config Group 1 Hash Low (0x0016)
	6.3.76.24 PCIe Config Group 1 Hash High (0x0017)
	6.3.76.25 CPK PCIe Config Group 1 Hash Low (0x0018)
	6.3.76.26 CPK PCIe Config Group 1 Hash High (0x0019)

	6.3.77 ML Image Section
	6.3.78 Analog PHY pre PLL Configuration Section
	6.3.78.1 Section Length (0x0000)
	6.3.78.2 Reg Write Indirect List (0x0001)

	6.3.79 CSR Protected List Section
	6.3.79.1 Module Length (0x0000)
	6.3.79.2 Reserved (0x0001 - 0x000C)
	6.3.79.3 GLGEN_STAT (0x000D - 0x0010)
	6.3.79.3.1 Address Low at GLGEN_STAT (0x000D)
	6.3.79.3.2 Address High at GLGEN_STAT (0x000E)
	6.3.79.3.3 Data Low of GLGEN_STAT (0x000F)
	6.3.79.3.4 Data High of GLGEN_STAT (0x0010)

	6.3.79.4 GLNVM_ALTIMERS (0x0011 - 0x0014)
	6.3.79.4.1 Address Low at GLNVM_ALTIMERS (0x0011)
	6.3.79.4.2 Address High at GLNVM_ALTIMERS (0x0012)
	6.3.79.4.3 Data Low of GLNVM_ALTIMERS (0x0013)
	6.3.79.4.4 Data High of GLNVM_ALTIMERS (0x0014)

	6.3.79.5 Reserved (0x0015 - 0x0018)
	6.3.79.6 GLNVM_PROTCSR (0x0019 - 0x0093)
	6.3.79.6.1 Starting Address Low at GLNVM_PROTCSR (0x0019)
	6.3.79.6.2 Starting Address High at GLNVM_PROTCSR (0x001A)
	6.3.79.6.3 Attributes at GLNVM_PROTCSR (0x001B)
	6.3.79.6.4 Data Low of GLNVM_PROTCSR[n] (0x001C + 2*n, n=0...59)
	6.3.79.6.5 Data High of GLNVM_PROTCSR[n] (0x001D + 2*n, n=0...59)

	6.3.80 PCIe Analog Module Section
	6.3.80.1 Module Length (0x0000)
	6.3.80.2 PCIe Analog Data (0x0001)

	6.3.81 PCIR Registers Auto-Load Module Section
	6.3.81.1 Module Length (0x0000)
	6.3.81.2 GLPCI_PWRDATA (0x0001 - 0x0004)
	6.3.81.2.1 Address Low at GLPCI_PWRDATA (0x0001)
	6.3.81.2.2 Address High at GLPCI_PWRDATA (0x0002)
	6.3.81.2.3 Data Low of GLPCI_PWRDATA (0x0003)
	6.3.81.2.4 Data High of GLPCI_PWRDATA (0x0004)

	6.3.81.3 GLPCI_PMSUP (0x0005 - 0x0009)
	6.3.81.3.1 Starting Address Low at GLPCI_PMSUP (0x0005)
	6.3.81.3.2 Starting Address High at GLPCI_PMSUP (0x0006)
	6.3.81.3.3 Attributes at GLPCI_PMSUP (0x0007)
	6.3.81.3.4 Data Low of GLPCI_PMSUP (0x0008)
	6.3.81.3.5 Data High of GLPCI_PMSUP (0x0009)

	6.3.81.4 GLPCI_REVID (0x000A - 0x000B)
	6.3.81.4.1 Data Low of GLPCI_REVID (0x000A)
	6.3.81.4.2 Data High of GLPCI_REVID (0x000B)

	6.3.81.5 Reserved (0x000C - 0x0013)

	6.3.82 POR Registers Auto-Load Module Section
	6.3.82.1 Module Length (0x0000)

	6.3.83 PCIR_PFA Auto-Load Allowlist Module Section
	6.3.83.1 Module Length (0x0000)
	6.3.83.2 PFINT_ALLOC_PCI (0x0001 - 0x0013)
	6.3.83.2.1 Starting Address Low at PFINT_ALLOC_PCI (0x0001)
	6.3.83.2.2 Starting Address High at PFINT_ALLOC_PCI (0x0002)
	6.3.83.2.3 Attributes at PFINT_ALLOC_PCI (0x0003)
	6.3.83.2.4 Data Low of PFINT_ALLOC_PCI[PF] (0x0004 + 2*PF, PF=0...7)
	6.3.83.2.5 Data High of PFINT_ALLOC_PCI[PF] (0x0005 + 2*PF, PF=0...7)

	6.3.83.3 PFPCI_SUBSYSID (0x0014 - 0x0026)
	6.3.83.3.1 Starting Address Low at PFPCI_SUBSYSID (0x0014)
	6.3.83.3.2 Starting Address High at PFPCI_SUBSYSID (0x0015)
	6.3.83.3.3 Attributes at PFPCI_SUBSYSID (0x0016)
	6.3.83.3.4 Data Low of PFPCI_SUBSYSID[PF] (0x0017 + 2*PF, PF=0...7)
	6.3.83.3.5 Data High of PFPCI_SUBSYSID[PF] (0x0018 + 2*PF, PF=0...7)

	6.3.83.4 PF_VT_PFALLOC_HIF (0x0027 - 0x0039)
	6.3.83.4.1 Starting Address Low at PF_VT_PFALLOC_HIF (0x0027)
	6.3.83.4.2 Starting Address High at PF_VT_PFALLOC_HIF (0x0028)
	6.3.83.4.3 Attributes at PF_VT_PFALLOC_HIF (0x0029)
	6.3.83.4.4 Data Low of PF_VT_PFALLOC_HIF[PF] (0x002A + 2*PF, PF=0...7)
	6.3.83.4.5 Data High of PF_VT_PFALLOC_HIF[PF] (0x002B + 2*PF, PF=0...7)

	6.3.83.5 PFPCI_DEVID (0x003A - 0x004C)
	6.3.83.5.1 Starting Address Low at PFPCI_DEVID (0x003A)
	6.3.83.5.2 Starting Address High at PFPCI_DEVID (0x003B)
	6.3.83.5.3 Attributes at PFPCI_DEVID (0x003C)
	6.3.83.5.4 Data Low of PFPCI_DEVID[PF] (0x003D + 2*PF, PF=0...7)
	6.3.83.5.5 Data High of PFPCI_DEVID[PF] (0x003E + 2*PF, PF=0...7)

	6.3.83.6 GLPCI_CAPCTRL (0x004D - 0x0051)
	6.3.83.6.1 Starting Address Low at GLPCI_CAPCTRL (0x004D)
	6.3.83.6.2 Starting Address High at GLPCI_CAPCTRL (0x004E)
	6.3.83.6.3 Attributes at GLPCI_CAPCTRL (0x004F)
	6.3.83.6.4 Data Low of GLPCI_CAPCTRL (0x0050)
	6.3.83.6.5 Data High of GLPCI_CAPCTRL (0x0051)

	6.3.83.7 GLPCI_CAPSUP (0x0052 - 0x0053)
	6.3.83.7.1 Data Low of GLPCI_CAPSUP (0x0052)
	6.3.83.7.2 Data High of GLPCI_CAPSUP (0x0053)

	6.3.83.8 GLPCI_LINKCAP (0x0054 - 0x0055)
	6.3.83.8.1 Data Low of GLPCI_LINKCAP (0x0054)
	6.3.83.8.2 Data High of GLPCI_LINKCAP (0x0055)

	6.3.83.9 GLPCI_VENDORID (0x0056 - 0x0059)
	6.3.83.9.1 Address Low at GLPCI_VENDORID (0x0056)
	6.3.83.9.2 Address High at GLPCI_VENDORID (0x0057)
	6.3.83.9.3 Data Low of GLPCI_VENDORID (0x0058)
	6.3.83.9.4 Data High of GLPCI_VENDORID (0x0059)

	6.3.83.10 GLPCI_SUBVENID (0x005A - 0x005D)
	6.3.83.10.1 Address Low at GLPCI_SUBVENID (0x005A)
	6.3.83.10.2 Address High at GLPCI_SUBVENID (0x005B)
	6.3.83.10.3 Data Low of GLPCI_SUBVENID (0x005C)
	6.3.83.10.4 Data High of GLPCI_SUBVENID (0x005D)

	6.3.83.11 PFPCI_CNF (0x005E - 0x0070)
	6.3.83.11.1 Starting Address Low at PFPCI_CNF (0x005E)
	6.3.83.11.2 Starting Address High at PFPCI_CNF (0x005F)
	6.3.83.11.3 Attributes at PFPCI_CNF (0x0060)
	6.3.83.11.4 Data Low of PFPCI_CNF[PF] (0x0061 + 2*PF, PF=0...7)
	6.3.83.11.5 Data High of PFPCI_CNF[PF] (0x0062 + 2*PF, PF=0...7)

	6.3.83.12 Reserved (0x0071 - 0x0074)
	6.3.83.13 PF_VT_PFALLOC_PCIE (0x0075 - 0x0087)
	6.3.83.13.1 Starting Address Low at PF_VT_PFALLOC_PCIE (0x0075)
	6.3.83.13.2 Starting Address High at PF_VT_PFALLOC_PCIE (0x0076)
	6.3.83.13.3 Attributes at PF_VT_PFALLOC_PCIE (0x0077)
	6.3.83.13.4 Data Low of PF_VT_PFALLOC_PCIE[PF] (0x0078 + 2*PF, PF=0...7)
	6.3.83.13.5 Data High of PF_VT_PFALLOC_PCIE[PF] (0x0079 + 2*PF, PF=0...7)

	6.3.84 POR_PFA Auto-Load Allowlist Module Section
	6.3.84.1 Module Length (0x0000)
	6.3.84.2 GLGEN_GPIO_CTL (0x0001 - 0x0011)
	6.3.84.2.1 Starting Address Low at GLGEN_GPIO_CTL (0x0001)
	6.3.84.2.2 Starting Address High at GLGEN_GPIO_CTL (0x0002)
	6.3.84.2.3 Attributes at GLGEN_GPIO_CTL (0x0003)
	6.3.84.2.4 Data Low of GLGEN_GPIO_CTL[n] (0x0004 + 2*n, n=0...6)
	6.3.84.2.5 Data High of GLGEN_GPIO_CTL[n] (0x0005 + 2*n, n=0...6)

	6.3.84.3 PFPCI_FUNC (0x0012 - 0x0024)
	6.3.84.3.1 Starting Address Low at PFPCI_FUNC (0x0012)
	6.3.84.3.2 Starting Address High at PFPCI_FUNC (0x0013)
	6.3.84.3.3 Attributes at PFPCI_FUNC (0x0014)
	6.3.84.3.4 Data Low of PFPCI_FUNC[PF] (0x0015 + 2*PF, PF=0...7)
	6.3.84.3.5 Data High of PFPCI_FUNC[PF] (0x0016 + 2*PF, PF=0...7)

	6.3.84.4 PFPM_WUC (0x0025 - 0x0037)
	6.3.84.4.1 Starting Address Low at PFPM_WUC (0x0025)
	6.3.84.4.2 Starting Address High at PFPM_WUC (0x0026)
	6.3.84.4.3 Attributes at PFPM_WUC (0x0027)
	6.3.84.4.4 Data Low of PFPM_WUC[PF] (0x0028 + 2*PF, PF=0...7)
	6.3.84.4.5 Data High of PFPM_WUC[PF] (0x0029 + 2*PF, PF=0...7)

	6.3.84.5 GLPCI_LBARCTRL (0x0038 - 0x003B)
	6.3.84.5.1 Address Low at GLPCI_LBARCTRL (0x0038)
	6.3.84.5.2 Address High at GLPCI_LBARCTRL (0x0039)
	6.3.84.5.3 Data Low of GLPCI_LBARCTRL (0x003A)
	6.3.84.5.4 Data High of GLPCI_LBARCTRL (0x003B)

	6.3.84.6 GLPCI_CNF (0x003C - 0x003F)
	6.3.84.6.1 Address Low at GLPCI_CNF (0x003C)
	6.3.84.6.2 Address High at GLPCI_CNF (0x003D)
	6.3.84.6.3 Data Low of GLPCI_CNF (0x003E)
	6.3.84.6.4 Data High of GLPCI_CNF (0x003F)

	6.3.84.7 GL_MNG_HWARB_CTRL (0x0040 - 0x0043)
	6.3.84.7.1 Address Low at GL_MNG_HWARB_CTRL (0x0040)
	6.3.84.7.2 Address High at GL_MNG_HWARB_CTRL (0x0041)
	6.3.84.7.3 Data Low of GL_MNG_HWARB_CTRL (0x0042)
	6.3.84.7.4 Data High of GL_MNG_HWARB_CTRL (0x0043)

	6.3.84.8 Reserved (0x0044 - 0x0056)
	6.3.84.9 PFPM_APM (0x0057 - 0x0069)
	6.3.84.9.1 Starting Address Low at PFPM_APM (0x0057)
	6.3.84.9.2 Starting Address High at PFPM_APM (0x0058)
	6.3.84.9.3 Attributes at PFPM_APM (0x0059)
	6.3.84.9.4 Data Low of PFPM_APM[PF] (0x005A + 2*PF, PF=0...7)
	6.3.84.9.5 Data High of PFPM_APM[PF] (0x005B + 2*PF, PF=0...7)

	6.3.84.10 PRTGEN_CNF (0x006A - 0x007C)
	6.3.84.10.1 Starting Address Low at PRTGEN_CNF (0x006A)
	6.3.84.10.2 Starting Address High at PRTGEN_CNF (0x006B)
	6.3.84.10.3 Attributes at PRTGEN_CNF (0x006C)
	6.3.84.10.4 Data Low of PRTGEN_CNF[PRT] (0x006D + 2*PRT, PRT=0...7)
	6.3.84.10.5 Data High of PRTGEN_CNF[PRT] (0x006E + 2*PRT, PRT=0...7)

	6.3.84.11 Reserved (0x007D - 0x008C)
	6.3.84.12 PRTGEN_CNF2 (0x008D - 0x009C)
	6.3.84.12.1 Data Low of PRTGEN_CNF2[PRT] (0x008D + 2*PRT, PRT=0...7)
	6.3.84.12.2 Data High of PRTGEN_CNF2[PRT] (0x008E + 2*PRT, PRT=0...7)

	6.3.84.13 Reserved (0x009D - 0x00A7)
	6.3.84.14 GL_PWR_MODE_CTL (0x00A8 - 0x00AB)
	6.3.84.14.1 Address Low at GL_PWR_MODE_CTL (0x00A8)
	6.3.84.14.2 Address High at GL_PWR_MODE_CTL (0x00A9)
	6.3.84.14.3 Data Low of GL_PWR_MODE_CTL (0x00AA)
	6.3.84.14.4 Data High of GL_PWR_MODE_CTL (0x00AB)

	6.3.85 LVK Hashes Section
	6.3.85.1 Length (0x0000)
	6.3.85.2 NVM Bank Key Hash[n] (0x0001 + 1*n, n=0...15)
	6.3.85.3 OS Package Key Hash[n] (0x0011 + 1*n, n=0...15)
	6.3.85.4 OROM Key Hash[n] (0x0021 + 1*n, n=0...15)
	6.3.85.5 Netlist Key Hash[n] (0x0031 + 1*n, n=0...15)

	6.3.86 Recovery FW CSS Header Section
	6.3.86.1 moduleTypeL (0x0000)
	6.3.86.2 moduleTypeH (0x0001)
	6.3.86.3 headerLenL (0x0002)
	6.3.86.4 headerLenH (0x0003)
	6.3.86.5 headerVersionL (0x0004)
	6.3.86.6 headerVersionH (0x0005)
	6.3.86.7 moduleIDL (0x0006)
	6.3.86.8 moduleIDH (0x0007)
	6.3.86.9 moduleVendorL (0x0008)
	6.3.86.10 moduleVendorH (0x0009)
	6.3.86.11 dateL (0x000A)
	6.3.86.12 dateH (0x000B)
	6.3.86.13 sizeL (0x000C)
	6.3.86.14 sizeH (0x000D)
	6.3.86.15 keySizeL (0x000E)
	6.3.86.16 keySizeH (0x000F)
	6.3.86.17 modulusSizeL (0x0010)
	6.3.86.18 modulusSizeH (0x0011)
	6.3.86.19 exponentSizeL (0x0012)
	6.3.86.20 exponentSizeH (0x0013)
	6.3.86.21 lad_srevL (0x0014)
	6.3.86.22 lad_srevH (0x0015)
	6.3.86.23 Reserved (0x0016 - 0x0017)
	6.3.86.24 lad_fw_entry_offsetL (0x0018)
	6.3.86.25 lad_fw_entry_offsetH (0x0019)
	6.3.86.26 Reserved (0x001A - 0x001B)
	6.3.86.27 lad_image_unique_idL (0x001C)
	6.3.86.28 lad_image_unique_idH (0x001D)
	6.3.86.29 lad_module_idL (0x001E)
	6.3.86.30 lad_module_idH (0x001F)
	6.3.86.31 Reserved[n] (0x0020 + 1*n, n=0...31)

	6.3.87 Recovery FW Key and Signature Section
	6.3.87.1 RSA Public Key[n] (0x0000 + 1*n, n=0...127)
	6.3.87.2 RSA ExponentL (0x0080)
	6.3.87.3 RSA ExponentH (0x0081)
	6.3.87.4 Encrypted SHA256 Hash[n] (0x0082 + 1*n, n=0...127)

	6.3.88 Recovery FW Auth Header Section
	6.3.88.1 Device Blank NVM Device ID (0x0000)
	6.3.88.2 Max Module AreaL (0x0001)
	6.3.88.3 Max Module AreaH (0x0002)
	6.3.88.4 Current Module AreaL (0x0003)
	6.3.88.5 Current Module AreaH (0x0004)
	6.3.88.6 Reserved (0x0005)
	6.3.88.7 Code Revision (0x0006)
	6.3.88.8 Reserved Spare Word (0x0007)

	6.3.89 DCB Rx Module Section
	6.3.90 DCB Tx Module Section
	6.3.91 QoS DCB Auto-Load Section
	6.3.92 QoS no-DCB Auto-Load Section
	6.3.93 Ext. CORER Registers Auto-Load Module Section
	6.3.93.1 ModuleLenL (0x0000)
	6.3.93.2 ModuleLenH (0x0001)

	6.3.94 EMP Global Module Section
	6.3.94.1 Section Length (0x0000)
	6.3.94.2 Number of Qualified Modules (0x0001)
	6.3.94.3 Module OUI Bytes 0-1[n] (0x0002 + 12*n, n=0...15)
	6.3.94.4 Module OUI Byte 2[n] (0x0003 + 12*n, n=0...15)
	6.3.94.5 Vendor Part Number Bytes 0-1[n] (0x0004 + 12*n, n=0...15)
	6.3.94.6 Vendor Part Number Bytes 2-3[n] (0x0005 + 12*n, n=0...15)
	6.3.94.7 Vendor Part Number Bytes 4-5[n] (0x0006 + 12*n, n=0...15)
	6.3.94.8 Vendor Part Number Bytes 6-7[n] (0x0007 + 12*n, n=0...15)
	6.3.94.9 Vendor Part Number Bytes 8-9[n] (0x0008 + 12*n, n=0...15)
	6.3.94.10 Vendor Part Number Bytes 10-11[n] (0x0009 + 12*n, n=0...15)
	6.3.94.11 Vendor Part Number Bytes 12-13[n] (0x000A + 12*n, n=0...15)
	6.3.94.12 Vendor Part Number Bytes 14-15[n] (0x000B + 12*n, n=0...15)
	6.3.94.13 Module Revision Number Bytes 0-1[n] (0x000C + 12*n, n=0...15)
	6.3.94.14 Module Revision Number Bytes 2-3[n] (0x000D + 12*n, n=0...15)

	6.3.95 EMP Settings Module Header Section
	6.3.95.1 Section Length (0x0000)
	6.3.95.2 Common Firmware Parameters (0x0001)
	6.3.95.3 FW Misc (0x0002)
	6.3.95.4 EEE Variables (0x0003)
	6.3.95.5 Maximal Wear-Out Value (0x0004)
	6.3.95.6 Initial Wear-Out Value (0x0005)
	6.3.95.7 Staggering Delay (0x0006)
	6.3.95.8 PXE PFC Timer Value (0x0007)
	6.3.95.9 PXE GPC High Threshold Value (0x0008)
	6.3.95.10 PXE GPC Low Threshold Value (0x0009)
	6.3.95.11 Internal Thermal Sensor Maximum Secured Value (0x000A)
	6.3.95.12 Internal Thermal Sensor Minimum Secured Value (0x000B)
	6.3.95.13 MAX_LL_AQ_CREDITS (0x000C)
	6.3.95.14 MAX_PWR_LMT (0x000D)

	6.3.96 DL Scripts Section
	6.3.97 Allowlist Section
	6.3.98 Analog PHY Configuration Section
	6.3.98.1 Section Length Low (0x0000)
	6.3.98.2 Section Length High (0x0001)
	6.3.98.3 Reg Write Indirect List (0x0002)
	6.3.98.4 Reg Write Indirect List 2 (0x0003)

	6.3.99 Configuration Metadata Section
	6.3.100 Control Pipe Package Section
	6.3.100.1 ModuleLenL (0x0000)
	6.3.100.2 ModuleLenH (0x0001)
	6.3.100.3 Package Raw (0x0002)

	6.3.101 EMP Image Section
	6.3.101.1 EMP Image Raw Data (0x0000)

	6.3.102 RDE Dictionaries Section
	6.3.102.1 Dictionaries (0x0000)

	6.3.103 External Topology Device Image 0 Section
	6.3.103.1 Section Length Low (0x0000)
	6.3.103.2 Section Length High (0x0001)
	6.3.103.3 Topology Device Image Version Number High 0 (0x0002)
	6.3.103.4 Topology Device Image Version Number High 1 (0x0003)
	6.3.103.5 Topology Device Image Version Number Low 0 (0x0004)
	6.3.103.6 Topology Device Image Version Number Low 1 (0x0005)
	6.3.103.7 Flags and Device Part Number (0x0006)
	6.3.103.8 Number of Sub-Sections (0x0007)
	6.3.103.9 External Topology Device Image (0x0008)

	6.3.104 External Topology Device Image 1 Section
	6.3.104.1 Section Length Low (0x0000)
	6.3.104.2 Section Length High (0x0001)
	6.3.104.3 Topology Device Image Version Number High 0 (0x0002)
	6.3.104.4 Topology Device Image Version Number High 1 (0x0003)
	6.3.104.5 Topology Device Image Version Number Low 0 (0x0004)
	6.3.104.6 Topology Device Image Version Number Low 1 (0x0005)
	6.3.104.7 Flags and Device Part Number (0x0006)
	6.3.104.8 Number of Sub-Sections (0x0007)
	6.3.104.9 External Topology Device Image (0x0008)

	6.3.105 External Topology Device Image 2 Section
	6.3.105.1 Section Length Low (0x0000)
	6.3.105.2 Section Length High (0x0001)
	6.3.105.3 Topology Device Image Version Number High 0 (0x0002)
	6.3.105.4 Topology Device Image Version Number High 1 (0x0003)
	6.3.105.5 Topology Device Image Version Number Low 0 (0x0004)
	6.3.105.6 Topology Device Image Version Number Low 1 (0x0005)
	6.3.105.7 Flags and Device Part Number (0x0006)
	6.3.105.8 Number of Sub-Sections (0x0007)
	6.3.105.9 External Topology Device Image (0x0008)

	6.3.106 External Topology Device Image 3 Section
	6.3.106.1 Section Length Low (0x0000)
	6.3.106.2 Section Length High (0x0001)
	6.3.106.3 Topology Device Image Version Number High 0 (0x0002)
	6.3.106.4 Topology Device Image Version Number High 1 (0x0003)
	6.3.106.5 Topology Device Image Version Number Low 0 (0x0004)
	6.3.106.6 Topology Device Image Version Number Low 1 (0x0005)
	6.3.106.7 Flags and Device Part Number (0x0006)
	6.3.106.8 Number of Sub-Sections (0x0007)
	6.3.106.9 External Topology Device Image (0x0008)

	6.3.107 NVM Provisioning Area Section
	6.3.107.1 Raw Data (0x21D000)

	6.3.108 OROM Section
	6.3.108.1 OROM Data (0x0000)
	6.3.108.2 moduleTypeL (0x0001)
	6.3.108.3 moduleTypeH (0x0002)
	6.3.108.4 headerLenL (0x0003)
	6.3.108.5 headerLenH (0x0004)
	6.3.108.6 headerVersionL (0x0005)
	6.3.108.7 headerVersionH (0x0006)
	6.3.108.8 moduleIDL (0x0007)
	6.3.108.9 moduleIDH (0x0008)
	6.3.108.10 moduleVendorL (0x0009)
	6.3.108.11 moduleVendorH (0x000A)
	6.3.108.12 dateL (0x000B)
	6.3.108.13 dateH (0x000C)
	6.3.108.14 sizeL (0x000D)
	6.3.108.15 sizeH (0x000E)
	6.3.108.16 keySizeL (0x000F)
	6.3.108.17 keySizeH (0x0010)
	6.3.108.18 modulusSizeL (0x0011)
	6.3.108.19 modulusSizeH (0x0012)
	6.3.108.20 exponentSizeL (0x0013)
	6.3.108.21 exponentSizeH (0x0014)
	6.3.108.22 lad_srevL (0x0015)
	6.3.108.23 lad_srevH (0x0016)
	6.3.108.24 Reserved (0x0017 - 0x0018)
	6.3.108.25 lad_fw_entry_offsetL (0x0019)
	6.3.108.26 lad_fw_entry_offsetH (0x001A)
	6.3.108.27 Reserved (0x001B - 0x001C)
	6.3.108.28 lad_image_unique_idL (0x001D)
	6.3.108.29 lad_image_unique_idH (0x001E)
	6.3.108.30 lad_module_idL (0x001F)
	6.3.108.31 lad_module_idH (0x0020)
	6.3.108.32 Reserved (0x0021)
	6.3.108.33 RSA Public Key (0x0022)
	6.3.108.34 RSA ExponentL (0x0023)
	6.3.108.35 RSA ExponentH (0x0024)
	6.3.108.36 Encrypted SHA256 Hash (0x0025)
	6.3.108.37 Device Blank NVM Device ID (0x0026)
	6.3.108.38 Max Module AreaL (0x0027)
	6.3.108.39 Max Module AreaH (0x0028)
	6.3.108.40 Current Module AreaL (0x0029)
	6.3.108.41 Current Module AreaH (0x002A)
	6.3.108.42 Reserved (0x002B)
	6.3.108.43 Code Revision (0x002C)
	6.3.108.44 Reserved Spare Word (0x002D)

	6.3.109 OROM Provisioning Area Section
	6.3.109.1 Raw Data (0x0000)

	6.3.110 Link Topology Netlist Raw Data Section
	6.3.110.1 Link Topology Netlist Header (0x0000)
	6.3.110.2 Length (0x0001)
	6.3.110.3 Link Topology Netlist Data (0x0002)

	6.3.111 Link Topology Netlist CSS Header Section
	6.3.111.1 moduleTypeL (0x0000)
	6.3.111.2 moduleTypeH (0x0001)
	6.3.111.3 headerLenL (0x0002)
	6.3.111.4 headerLenH (0x0003)
	6.3.111.5 headerVersionL (0x0004)
	6.3.111.6 headerVersionH (0x0005)
	6.3.111.7 moduleIDL (0x0006)
	6.3.111.8 moduleIDH (0x0007)
	6.3.111.9 moduleVendorL (0x0008)
	6.3.111.10 moduleVendorH (0x0009)
	6.3.111.11 dateL (0x000A)
	6.3.111.12 dateH (0x000B)
	6.3.111.13 sizeL (0x000C)
	6.3.111.14 sizeH (0x000D)
	6.3.111.15 keySizeL (0x000E)
	6.3.111.16 keySizeH (0x000F)
	6.3.111.17 modulusSizeL (0x0010)
	6.3.111.18 modulusSizeH (0x0011)
	6.3.111.19 exponentSizeL (0x0012)
	6.3.111.20 exponentSizeH (0x0013)
	6.3.111.21 lad_srevL (0x0014)
	6.3.111.22 lad_srevH (0x0015)
	6.3.111.23 Reserved (0x0016 - 0x0017)
	6.3.111.24 lad_fw_entry_offsetL (0x0018)
	6.3.111.25 lad_fw_entry_offsetH (0x0019)
	6.3.111.26 Reserved (0x001A - 0x001B)
	6.3.111.27 lad_image_unique_idL (0x001C)
	6.3.111.28 lad_image_unique_idH (0x001D)
	6.3.111.29 lad_module_idL (0x001E)
	6.3.111.30 lad_module_idH (0x001F)
	6.3.111.31 Reserved[n] (0x0020 + 1*n, n=0...31)

	6.3.112 Link Topology Netlist Key and Signature Section
	6.3.112.1 RSA Public Key[n] (0x0000 + 1*n, n=0...127)
	6.3.112.2 RSA ExponentL (0x0080)
	6.3.112.3 RSA ExponentH (0x0081)
	6.3.112.4 Encrypted SHA256 Hash[n] (0x0082 + 1*n, n=0...127)

	6.3.113 Link Topology Netlist Auth Header Section
	6.3.113.1 Device Blank NVM Device ID (0x0000)
	6.3.113.2 Max Module AreaL (0x0001)
	6.3.113.3 Max Module AreaH (0x0002)
	6.3.113.4 Current Module AreaL (0x0003)
	6.3.113.5 Current Module AreaH (0x0004)
	6.3.113.6 Reserved (0x0005)
	6.3.113.7 Code Revision (0x0006)
	6.3.113.8 Reserved Spare Word (0x0007)

	6.3.114 TLV Extension Provisioning Area Section
	6.3.114.1 Sub Module Type - Padding (0x0000)
	6.3.114.2 Length (0x0001)

	6.3.115 Link Topology Scratch Pad Area Section
	6.3.115.1 [New Word] (0x0000)

	6.3.116 FW Scratch Pad Area Section
	6.3.116.1 [New Word] (0x0000)

	6.3.117 Factory Settings Header Section
	6.3.117.1 Actual Size L (0x0000)
	6.3.117.2 Actual Size H (0x0001)
	6.3.117.3 Password (0x0002)
	6.3.117.4 TLV Extension Offset (0x0003)
	6.3.117.5 TLV Extension Size (0x0004)
	6.3.117.6 PCIR AL Offset (0x0005)
	6.3.117.7 POR AL Offset (0x0006)
	6.3.117.8 PCI Serial ID MAC Address Offset (0x0007)
	6.3.117.9 Reserved (0x0008)

	6.3.118 Factory Settings Area Section
	6.3.118.1 Reserved[n] (0x0000)

	6.3.119 Guarded Zone Section
	6.3.119.1 [New Word] (0x0000)

	Chapter 7 Packet Processing
	7.1 Introduction
	7.2 FlexiPipe Processing Pipeline
	7.2.1 Rx and Tx Pipeline Structure
	7.2.2 Pipeline Virtualization

	7.3 Priority Resolver
	7.3.1 MDID Override
	7.3.2 Programming the Priority Resolver

	7.4 FlexActions
	7.5 Extractor
	7.5.1 Programming the Extraction Logic
	7.5.1.1 Programming Flow
	7.5.1.2 Querying Flow

	7.6 Receive Descriptor Builder
	7.6.1 Overview
	7.6.2 Legacy Descriptor Format
	7.6.2.1 PTYPE Translation

	7.6.3 Flex Descriptor Format
	7.6.3.1 Status/Error.0 Field
	7.6.3.2 Status/Error.1 Field
	7.6.3.3 ExtStat Field (FlexiFlags.1 Status Overlay)

	7.6.4 RXDID Descriptor Builder Profiles
	7.6.4.1 Programming RXDID Receive Descriptor Profiles

	7.6.5 Receive Flex Queue Context
	7.6.5.1 Programming the Receive Queue Context for Flex Descriptors

	7.6.6 Timestamp Overlay
	7.6.7 Field Extraction into the Flex Descriptor
	7.6.8 Pointers to Location of Interest

	7.7 Programmable Parser
	7.7.1 Introduction
	7.7.1.1 Parsing Policy - Parse Graph
	7.7.1.2 Parsing Depth
	7.7.1.3 Parsing Profiles
	7.7.1.4 PTYPE Generation
	7.7.1.5 Programming Flow
	7.7.1.5.1 Initialization
	7.7.1.5.2 Configuration Access to Parser Resources
	7.7.1.5.2.1 Write Sequence
	7.7.1.5.2.2 Read Sequence

	7.7.1.5.3 In-Service Programmability
	7.7.1.5.3.1 Add/Remove of PG Arc
	7.7.1.5.3.2 Add/Remove of TCAM Entry
	7.7.1.5.3.3 Entry Change in Profile Table

	7.8 Switch (Binary Classifier)
	7.8.1 Features
	7.8.2 Binary Classifier (Switch) Block Diagram
	7.8.3 Control Domain and Profile Selection
	7.8.4 Ingress Pre-Processing
	7.8.4.1 Field Extractor
	7.8.4.2 Switch ID Creation

	7.8.5 Switching Engine
	7.8.5.1 Switching Recipes and Key Generation (KeyGen)
	7.8.5.1.1 Inverse Action
	7.8.5.1.2 Sample Recipes

	7.8.5.2 Lookup Table
	7.8.5.3 Actions
	7.8.5.3.1 Single Action
	7.8.5.3.2 Large Actions
	7.8.5.3.3 Default Actions
	7.8.5.3.4 Valid = 0 Action
	7.8.5.3.5 Forwarding Actions
	7.8.5.3.5.1 Forwarding Actions Priorities

	7.8.5.3.6 Event-Based Mirroring Action
	7.8.5.3.7 Prune Action
	7.8.5.3.8 Generic Value Action
	7.8.5.3.9 Statistics Actions
	7.8.5.3.9.1 Statistics Registers
	7.8.5.3.9.2 Association of VEB Statistic Block to a VEB

	7.8.5.3.10 VSI Bitmaps

	7.8.5.4 Post Processing Actions
	7.8.5.4.1 Port-Based Mirroring

	7.8.6 Egress Post Processing Actions
	7.8.6.1 Actions Merging and Priorities
	7.8.6.1.1 Actions Limitations

	7.8.6.2 Bypassing Actions
	7.8.6.3 Storm Control
	7.8.6.3.1 Storm Control Functionality
	7.8.6.3.2 Storm Control Programming

	7.8.6.4 Packets Replication
	7.8.6.5 Post-Replication Actions

	7.8.7 Manageability Filtering
	7.8.7.1 Manageability Configuration

	7.8.8 Virtual Station Interfaces
	7.8.8.1 Egress VSI Context
	7.8.8.2 Ingress VSI Context
	7.8.8.3 Queue Context

	7.8.9 Classifier Performance
	7.8.10 Resource Allocation
	7.8.10.1 Shared Resources
	7.8.10.2 Initial Resource Allocations

	7.8.11 Binary Classifier Configuration
	7.8.11.1 Overview
	7.8.11.2 Parameters Summary
	7.8.11.3 NVM Loaded POR
	7.8.11.3.1 Default Profiles
	7.8.11.3.2 Default Field Vector
	7.8.11.3.3 Default Recipes

	7.8.11.4 Resets

	7.8.12 Software Programming Model
	7.8.12.1 Switch Configuration Admin Commands Summary
	7.8.12.2 Generic Commands (0x020x)
	7.8.12.2.1 Get Switch Configuration (0x0200)
	7.8.12.2.2 Set Port Parameters (0x0203)
	7.8.12.2.3 Get Resource Allocation (0x0204)
	7.8.12.2.4 Allocate Resource (0x0208)
	7.8.12.2.5 Free Resource (0x0209)
	7.8.12.2.6 Get Allocated Resource Descriptors (0x020A)
	7.8.12.2.7 Change Resource Ownership Type (0x020B)
	7.8.12.2.8 Set VLAN Mode Parameters (0x020C)
	7.8.12.2.9 Get VLAN Mode Parameters (0x020D)

	7.8.12.3 VSI Commands (0x021x)
	7.8.12.3.1 Add VSI (0x0210)
	7.8.12.3.2 Update VSI (0x0211)
	7.8.12.3.3 Get VSI Parameters (0x0212)
	7.8.12.3.4 Free VSI (0x0213)
	7.8.12.3.5 Set DMA PASID IDX Map (0x0214)
	7.8.12.3.6 Get DMA PASID IDX Map (0x0215)

	7.8.12.4 Storm Control Commands (0x028x)
	7.8.12.4.1 Set Storm Control Configuration (0x0280)
	7.8.12.4.2 Get Storm Control Configuration (0x0281)

	7.8.12.5 Switch Recipes Configuration (0x029x)
	7.8.12.5.1 Add Recipe (x0x290)
	7.8.12.5.2 Set Recipes-to-Profile Association (0x0291)
	7.8.12.5.3 Get Recipe (0x0292)
	7.8.12.5.4 Get Recipes-to-Profile Association (0x0293)

	7.8.12.6 Switch Rules Population Commands (0x02Ax)
	7.8.12.6.1 Add Switch Rules (0x02A0)
	7.8.12.6.1.1 Add Switch Rules Buffer Format
	7.8.12.6.1.2 Population Example

	7.8.12.6.2 Update Switch Rules (0x02A1)
	7.8.12.6.3 Remove Switch Rules (0x02A2)
	7.8.12.6.4 Get Switch Rules (0x02A3)
	7.8.12.6.5 Clear PF Configuration (0x02A4)

	7.8.12.7 Mirroring Commands (Opcode 0x026x)
	7.8.12.7.1 Add/Update Mirror Rule (0x0260)
	7.8.12.7.2 Delete Mirror Rule (0x0261)

	7.8.12.8 Default Configuration at Init Time

	7.9 ACL (Ternary Classifier)
	7.9.1 Overview
	7.9.1.1 General
	7.9.1.2 Features
	7.9.1.3 Basic Operation and Terms
	7.9.1.4 Table Configuration Options
	7.9.1.4.1 General
	7.9.1.4.2 Table Sizing Support
	7.9.1.4.2.1 TCAM Cascade
	7.9.1.4.2.2 TCAM Stacking

	7.9.1.4.3 Concurrent Table Support
	7.9.1.4.4 Non-Concurrent Table Support

	7.9.1.5 Actions
	7.9.1.5.1 General
	7.9.1.5.2 Aggregation and Prioritization
	7.9.1.5.3 Action Memories
	7.9.1.5.4 Default Action
	7.9.1.5.5 VSI Reassignment

	7.9.1.6 Counters
	7.9.1.6.1 General
	7.9.1.6.2 Counting Drops
	7.9.1.6.3 Counter Banks
	7.9.1.6.4 Counters Read and Reset
	7.9.1.6.5 Supported Count Actions

	7.9.1.7 Key Selection
	7.9.1.7.1 General
	7.9.1.7.2 Selection Base
	7.9.1.7.2.1 Selection Base Vectors
	7.9.1.7.2.2 Range Checkers
	7.9.1.7.2.3 Fixed Fields and Restrictions

	7.9.1.7.3 TCAM Key Byte Selection

	7.9.1.8 The Scenario Mechanism

	7.9.2 ACL Programming
	7.9.2.1 General
	7.9.2.2 Configuration Sources
	7.9.2.3 TCAM Entry Configuration
	7.9.2.4 Action Memory Entry Configuration
	7.9.2.5 Scenario-Dependent Configuration
	7.9.2.5.1 Scenario Configuration per TCAM
	7.9.2.5.2 Action Memories-to-TCAM Association

	7.9.2.6 General Profile-Dependent Configuration
	7.9.2.7 Range Checkers Profile-Dependent Configuration
	7.9.2.8 Default Action Programming
	7.9.2.9 VSI Count Programming
	7.9.2.10 Reset and Initialization
	7.9.2.10.1 Reset Sources
	7.9.2.10.2 Initialization
	7.9.2.10.2.1 Initial State and Reset Values
	7.9.2.10.2.2 Allocated Resources Initialization

	7.9.3 ACL Operation and Management
	7.9.3.1 General
	7.9.3.2 Resource Allocation
	7.9.3.2.1 Tables and Actions Allocation and Programming
	7.9.3.2.2 Profile Allocation and ACL-Related Configuration
	7.9.3.2.3 Scenario Allocation and Programming
	7.9.3.2.4 Counters Allocation

	7.9.3.3 Software Flows
	7.9.3.3.1 Initialization
	7.9.3.3.2 General Table Allocation Flow
	7.9.3.3.3 Action Pair Allocation Flow
	7.9.3.3.4 Table Entries Addition Flow
	7.9.3.3.5 Table Entries Removal Flow
	7.9.3.3.6 Table Removal Flow
	7.9.3.3.7 Scenario Removal Flow

	7.9.3.4 ACL Block Admin Queue Commands
	7.9.3.4.1 General
	7.9.3.4.2 Resource Allocation Commands
	7.9.3.4.2.1 allocate_acl_table (0x0C10)
	7.9.3.4.2.2 deallocate_acl_table (0x0C11)
	7.9.3.4.2.3 allocate_acl_actionpair (0x0C12)
	7.9.3.4.2.4 deallocate_acl_actionpair (0x0C13)
	7.9.3.4.2.5 allocate_acl_scenario (0x0C14)
	7.9.3.4.2.6 deallocate_acl_scenario (0x0C15)
	7.9.3.4.2.7 allocate_acl_counters (0x0C16)
	7.9.3.4.2.8 deallocate_acl_counters (0x0C17)
	7.9.3.4.2.9 deallocate_acl_resources (0x0C1A)
	7.9.3.4.2.10 Generic Allocate Resource Command
	7.9.3.4.2.11 Generic Free Resource Command

	7.9.3.4.3 Programming/Update Commands
	7.9.3.4.3.1 update_acl_scenario (0x0C1B)
	7.9.3.4.3.2 program_acl_actionpair (0x0C1C)
	7.9.3.4.3.3 program_acl_profile_extraction (0x0C1D)
	7.9.3.4.3.4 program_acl_profile_ranges (0x0C1E)
	7.9.3.4.3.5 program_acl_entry (0x0C20)

	7.9.3.4.4 Query Commands
	7.9.3.4.4.1 query_acl_profile (0x0C21)
	7.9.3.4.4.2 query_acl_profile_ranges (0x0C22)
	7.9.3.4.4.3 query_acl_scenario (0x0C23)
	7.9.3.4.4.4 query_acl_entry (0x0C24)
	7.9.3.4.4.5 query_acl_actionpair (0x0C25)
	7.9.3.4.4.6 query_acl_counter (0x0C27)
	7.9.3.4.4.7 Generic Get Resource Allocation Command

	7.9.4 ACL Configuration Example
	7.9.4.1 Requested Scenario
	7.9.4.2 Configuration Flow
	7.9.4.2.1 Assumptions

	7.10 Receive Classification Filters
	7.10.1 Introduction
	7.10.1.1 Association with a Packet Engine
	7.10.1.2 Receive Classification Filters Priority and Usage
	7.10.1.3 Resource Allocation
	7.10.1.4 Filter’s Candidacy Rules
	7.10.1.5 Filter’s Candidacy Exceptions
	7.10.1.6 Configuration and Filter Programming Rates
	7.10.1.7 Receive Queue Index
	7.10.1.8 Initialization
	7.10.1.8.1 Function Private Memory Allocation
	7.10.1.8.2 Queue Allocation
	7.10.1.8.3 Profile Allocation
	7.10.1.8.4 Static Classification Filters Registers
	7.10.1.8.5 Dynamic Classification Filters Registers

	7.10.2 Block Diagram
	7.10.3 Profile Chooser
	7.10.3.1 Settings for the Classification Filters

	7.10.4 Input Sets Generator
	7.10.4.1 Generating PE Input Set from the Field Vector
	7.10.4.2 Generating FD Input Set from the Field Vector
	7.10.4.3 Generating Hash Input Set from the Field Vector

	7.10.5 Switch Filters
	7.10.6 ACL Filters
	7.10.7 Hash Filter
	7.10.8 Flow Director (FD) Filter
	7.10.8.1 Statistic Counters
	7.10.8.2 Performance
	7.10.8.2.1 Programming and Removal Performance Targets

	7.10.9 Protocol Engine (PE) Filters
	7.10.9.1 PE Quad Hash Filter (QH filter)
	7.10.9.1.1 Performance
	7.10.9.1.1.1 Programming and Removal Performance Targets
	7.10.9.1.1.2 Buckets Length Impact on Filter Search Performance

	7.10.10 Hash Functions
	7.10.10.1 Microsoft Toeplitz-Based Hash
	7.10.10.1.1 Pseudo-Code Examples
	7.10.10.1.2 RSS Verification Suite

	7.10.10.2 Symmetric Hash
	7.10.10.2.1 Symmetric Hash Example for IPv4 with TCP

	7.10.11 Receive Filters Admin Commands
	7.10.11.1 Set RSS Key (0x0B02)
	7.10.11.2 Set RSS LUT (0x0B03)
	7.10.11.3 Get RSS Key (0x0B04)
	7.10.11.4 Get RSS LUT (0x0B05)

	7.10.12 Filter Clearing Commands and Flows
	7.10.12.1 Clear FD Table (0x0B06)
	7.10.12.1.1 FD Table Clearing Flow
	7.10.12.1.1.1 Clearing the FD Filter Flow

	7.10.12.2 QH Table Clearing
	7.10.12.2.1 QH Table Clearing Flow

	7.10.13 Default Extractor Configuration
	7.10.13.1 Profiles, Field Vector, and Input Sets

	7.11 Packages and Configuration
	7.11.1 Introduction
	7.11.2 Overriding the Default Package
	7.11.3 Endianness
	7.11.4 Version Numbers
	7.11.5 Package Format
	7.11.5.1 Global Metadata Segment
	7.11.5.2 Package Notes Segment
	7.11.5.3 Configuration Data Segment
	7.11.5.4 Package Buffers

	7.11.6 Section Type Enumeration
	7.11.7 Segment Metadata Section
	7.11.8 Segment Security Manifest
	7.11.8.1 Security Manifest Overview
	7.11.8.2 Protection Provided by a Segment Security Manifest
	7.11.8.3 Segment Security Requirements
	7.11.8.3.1 Development Mode
	7.11.8.3.2 NVM Packages

	7.11.8.4 Security Manifest Section Numbers
	7.11.8.5 Security Manifest Header Section
	7.11.8.6 Security Manifest Section
	7.11.8.7 Security Manifest Section Location in the ICE Segment

	7.11.9 Package Configuration Admin Commands
	7.11.9.1 Download Package Command (0x0C40)
	7.11.9.2 Upload Section Command (0x0C41)
	7.11.9.3 Update Package Command (0x0C42)
	7.11.9.4 Get Package Info List Command (0x0C43)

	7.11.10 Uniform TCAM Key Encoding
	7.11.10.1 Example 1
	7.11.10.2 Example 2

	7.11.11 Ownership Configuration
	7.11.12 Common Packet Profile Commands
	7.11.12.1 Introduction
	7.11.12.2 Package Buffer Formats
	7.11.12.2.1 Package Format for CDID Key Builder Tables
	7.11.12.2.2 Package format of the XLT0 Table
	7.11.12.2.3 CDID Redirection Table
	7.11.12.2.4 Package Format of XLT Key Builder Tables
	7.11.12.2.5 Package Format of XLT1 Tables
	7.11.12.2.6 Package Format of XLT2 Tables
	7.11.12.2.7 Package Format of Profile ID TCAMs
	7.11.12.2.8 Package Format of Profile ID Redirection Tables

	7.11.12.3 Dynamic Configuration of Profile IDs
	7.11.12.3.1 Field Vector Extraction Table

	7.11.12.4 VSI Lists
	7.11.12.5 Recipe Configuration
	7.11.12.6 Recipe-to-Profile Associations
	7.11.12.6.1 Miscellaneous Profile and Control Domain Configuration
	7.11.12.6.2 Mask Select Filters
	7.11.12.6.3 Quad Hash Control Table

	7.11.13 Parser Configuration
	7.11.13.1 Introduction
	7.11.13.2 Parse Graph
	7.11.13.2.1 CAM Entry Algorithm
	7.11.13.2.2 Determining CAM Entry Index
	7.11.13.2.2.1 CAM Entry Index Examples

	7.11.13.2.3 Determining CAM Slice
	7.11.13.2.4 Package Format of the Parse Graph CAM
	7.11.13.2.5 Package Format of the Parse Graph No-Match CAM

	7.11.13.3 PG Spill CAM
	7.11.13.4 Parse Graph No-Match Spill CAM
	7.11.13.5 Node PTYPE Table
	7.11.13.6 Marker PTYPE TCAM
	7.11.13.7 IMEM
	7.11.13.7.1 IMEM Section
	7.11.13.7.2 ALU Instructions
	7.11.13.7.3 Parse Graph Key Build
	7.11.13.7.4 Next Protocol Key Build
	7.11.13.7.5 PG Priority Control
	7.11.13.7.6 Boost Key Build
	7.11.13.7.7 Boost Master

	7.11.13.8 Boost TCAM
	7.11.13.9 Protocol Group Table
	7.11.13.10 Marker Group Table
	7.11.13.11 Parser XLT0 Key Builder Table
	7.11.13.12 Package Format of the Parser XLT0 Table
	7.11.13.13 Initialization ID Redirection Table
	7.11.13.14 Metadata Initialization Table
	7.11.13.15 Last Protocol Table
	7.11.13.16 Miscellaneous Parser Configuration
	7.11.13.17 Flags Redirection Table

	7.11.14 HIF Block Programming
	7.11.14.1 Introduction
	7.11.14.2 Flex Descriptor Table

	7.11.15 RDPU Block Configuration
	7.11.15.1 Introduction
	7.11.15.2 PTYPE Translation Table
	7.11.15.3 PROTOCOL Table

	7.12 L2 Packet Processing
	7.12.1 CRC Handling
	7.12.1.1 Ethernet CRC Insertion
	7.12.1.2 Ethernet CRC Stripping

	7.12.2 L2 Padding
	7.12.3 L2 Tag Handling
	7.12.3.1 Overview
	7.12.3.2 Transmit Tag Handling
	7.12.3.2.1 Software-Based Tag Insertion Rules
	7.12.3.2.1.1 Single Tag Handling
	7.12.3.2.1.2 Double Tag Handling

	7.12.3.2.2 Port (VSI) Based Tag Handling
	7.12.3.2.2.1 Accept Rules
	7.12.3.2.2.2 Port-Based Tag Insertion Mechanism
	7.12.3.2.2.3 Queue-Based Tag Insertion

	7.12.3.3 Received Tag Extraction Rules
	7.12.3.4 Tag Handling - Programming Interface
	7.12.3.5 L2 Tags Default Configuration

	7.12.4 VLAN Handling
	7.12.4.1 Transmit Flow
	7.12.4.1.1 Tag Insertion
	7.12.4.1.2 VLAN Anti-Spoofing
	7.12.4.1.3 VLAN Filtering

	7.12.4.2 Receive Flow
	7.12.4.2.1 VLAN Filtering
	7.12.4.2.2 VLAN Extraction

	7.12.4.3 VLAN in Tunnel Packets
	7.12.4.3.1 Insertion of Tunneled VLAN from Descriptor
	7.12.4.3.2 Extraction of Tunneled VLAN to Descriptor
	7.12.4.3.3 Tunneled VLAN in Pass-Through Traffic

	7.12.4.4 Port-Based VLAN

	7.12.5 Outer Tag Handling
	7.12.5.1 Transmit Flow
	7.12.5.1.1 Tag Insertion

	7.12.5.2 Receive Flow
	7.12.5.2.1 STag Extraction

	7.12.6 User Priority Bits (802.1p) Handling
	7.12.6.1 Transmit Functionality
	7.12.6.1.1 Transmit Outer Tag User Priority

	7.12.6.2 Receive Functionality
	7.12.6.2.1 VLAN UP Translation
	7.12.6.2.2 VLAN UP Exposure to Device Driver

	Chapter 8 Quality of Service (QoS)
	8.1 E810 Usage Models: Number of Ports and Number of Congestion Domains
	8.2 E810 QoS and DCB Support
	8.2.1 Receive Path QoS
	8.2.1.1 Rx-Pipe Congestions, Arbitration, and Priority Support - Overview
	8.2.1.1.1 Pipe Monitor (PM) and Arbiter Pairs

	8.2.1.2 Rx QoS Units Overview
	8.2.1.2.1 Packet’s Congestion Domain Mapping in Receive - Overview
	8.2.1.2.2 Remapping of the UP Field in Receive
	8.2.1.2.3 Rx Ports and ETS Arbiters - Overview

	8.2.1.3 Rx QoS Blocks, Implementation Details and Programming
	8.2.1.3.1 Packet’s Congestion Domain Mapping in Receive - Implementation Details and Programming
	8.2.1.3.1.1 Packet CoS Classification Flow in “VLAN PFC” Mode
	8.2.1.3.1.2 Packet CoS Classification Flow in “DSCP PFC” Mode

	8.2.1.4 Rx-Pipe, Port, and CGD Configuration per Each Usage Model and CGD Type
	8.2.1.4.1 Issuing XOFF and XON

	8.2.2 Transmit Path QoS
	8.2.2.1 Transmit Path Enhanced Transmission Selection (ETS)

	8.2.3 Tx-Pipe Overview
	8.2.3.1 Tx Flow - Starting from Scheduling

	8.2.4 Tx-Pipe QoS Next Level of Details
	8.2.4.1 CoS Translation and Enforcement
	8.2.4.1.1 Remapping of the UP Field in Transmit
	8.2.4.1.2 Mapping of UP to TC in Transmit
	8.2.4.1.3 UP Tag Enforcement in Transmit
	8.2.4.1.4 DSCP Tag Enforcement in Transmit

	8.2.4.2 Transmit Flow for ETS
	8.2.4.2.1 Pipe Monitor (PM) and Arbiter Pairs

	8.2.4.3 Tx Port and CGD Configuration per Each Usage Model and CGD Type
	8.2.4.3.1 CGD Mode of Operation Configuration Parameters
	8.2.4.3.2 Tx-Pipe Arbiters and PM Configuration
	8.2.4.3.2.1 Pipe Monitors and Arbiters Configuration per Use Case

	8.2.4.4 Transmit Path Priority Flow Control (PFC)
	8.2.4.4.1 PFC Dead-Lock Prevention

	8.2.4.5 Data Center Bridging Exchange Protocol (DCBx)
	8.2.4.5.1 DCBx/LLDP Ownership
	8.2.4.5.2 DCBx Version
	8.2.4.5.2.1 CEE vs. IEEE DCBx

	8.2.4.5.3 DCBx Managed Objects

	8.2.4.6 DCB Configuration Using MIB TLVs
	8.2.4.6.1 UP-to-TC Mapping Configuration
	8.2.4.6.2 DSCP-to-UP - Subtype 0x41 or 0x45
	8.2.4.6.3 DSCP Enforcement - Subtype 0x42 or 0x48
	8.2.4.6.4 DSCP Bandwidth per TC and TC Priority 0x43, 0x46, or 0x49
	8.2.4.6.5 PFC per UP/TC 0x44, 0x47, or 0x4A

	8.2.5 DCB Admin Commands
	8.2.5.1 PFC Ignore (0x0301)
	8.2.5.2 Query PFC Mode (0x0302)
	8.2.5.3 Set PFC Mode (0x0303)
	8.2.5.4 Set DCB Parameters (0x0306)

	8.2.6 LLDP/DCBx Admin Commands
	8.2.6.1 LAN Queue Overflow Event (0x1001)

	8.3 Transmit Scheduling
	8.3.1 Hierarchical Scheduling
	8.3.2 Hierarchical Scheduling Concept
	8.3.2.1 Abstract Scheduling Tree
	8.3.2.2 Scheduling Configuration Terms
	8.3.2.2.1 Scheduling Quanta
	8.3.2.2.2 Configured Quanta vs. Actual Quanta Size
	8.3.2.2.3 Bandwidth Allocation, Minimum Bandwidth Guarantee, and Bandwidth Limit

	8.3.2.3 Arbitration Schemes within a Sibling Group
	8.3.2.4 Credit Update
	8.3.2.4.1 Four-Level Packet Adjustment Credit Update - Requirements
	8.3.2.4.2 Four-Level Packet Adjustment Credit Update - Implementation
	8.3.2.4.2.1 PAC - Adjustment Profile (AP) Association
	8.3.2.4.2.2 AP Profile Structure and Flow
	8.3.2.4.2.2.1 Adjustment Profiles Properties

	8.3.2.4.2.3 Packets Adjustment Examples

	8.3.2.4.3 Four-Level Packet Adjustment Credit Update - Programming Registers

	8.3.3 Network Topologies in Tx-Scheduler
	8.3.3.1 ETS-Based Scheduler Configuration
	8.3.3.1.1 Shared RL in ETS-Based Scheduler Configuration

	8.3.3.2 VNet-Based Scheduler Configuration
	8.3.3.3 VNet and ETS Topologies Support by One General Purpose Tree Structure in the E810
	8.3.3.4 Tx-Scheduler Configuration Process
	8.3.3.4.1 Tx-Scheduler Configuration and Management Principles

	8.3.4 Flows
	8.3.4.1 Tx-Scheduler Initialization Flow
	8.3.4.1.1 Hardware Initialization
	8.3.4.1.2 EMP Initial Topology Configuration

	8.3.4.2 Resets Flows
	8.3.4.2.1 Power On Reset (POR), Core Reset (CORER), or Global Reset (GLOBR)
	8.3.4.2.2 EMP Reset (EMPR)
	8.3.4.2.3 Function-Level Reset (FLR), PF Reset (PFR), VM Reset (VMR), VF Reset (VFR), or VFLR
	8.3.4.2.4 PCIe Reset (PERST) or In-Band Reset (PCIR)
	8.3.4.2.4.1 Single-Home Device

	8.3.4.3 Tx-Scheduler Configuration Process
	8.3.4.3.1 Scheduling Structure Representation
	8.3.4.3.2 Scheduler Configuration Tables
	8.3.4.3.3 Firmware Scheduler Interface
	8.3.4.3.3.1 Immediate Command Interface
	8.3.4.3.3.2 Batched Command Interface

	8.3.4.3.4 LAN Queue or RDMA Queue Set Assignment
	8.3.4.3.5 Releasing of Scheduling Elements
	8.3.4.3.6 Admin Queue Commands
	8.3.4.3.6.1 Query Default Scheduling Tree Topology (0x0400)
	8.3.4.3.6.2 Query Scheduling Elements Configuration (0x0404)
	8.3.4.3.6.3 Add Scheduling Elements (0x0401)
	8.3.4.3.6.4 Configure Scheduling Elements (0x0403)
	8.3.4.3.6.5 Move Scheduling Elements (0x0408)
	8.3.4.3.6.6 Suspend Nodes (0x0409)
	8.3.4.3.6.7 Resume Nodes (0x040A)
	8.3.4.3.6.8 Query Port ETS (0x040E)
	8.3.4.3.6.9 Delete Scheduling Elements (0x040F)
	8.3.4.3.6.10 Query Node-to-Root Topology (0x0413)
	8.3.4.3.6.11 Set Tx-Scheduler Topology (0x0417)
	8.3.4.3.6.12 Get Tx-Scheduler Topology (0x0418)

	8.3.4.3.7 Tx-Scheduler Resource Allocation and Management
	8.3.4.3.7.1 Query Scheduler Resource Allocation (0x0412)
	8.3.4.3.7.2 Add RL Profiles (0x0410)
	8.3.4.3.7.3 Query RL Profiles (0x0411)
	8.3.4.3.7.4 Remove RL Profiles (0x0415)

	8.3.4.3.8 Common Processing and Error Handling

	Chapter 9 Device Services
	9.1 Interrupts
	9.1.1 Interrupt Signaling
	9.1.1.1 Interrupt Enable Procedure
	9.1.1.2 Pending Interrupt Array - PBA
	9.1.1.3 Interrupt Sequence

	9.1.2 Interrupt Causes
	9.1.2.1 LAN Transmit Queues
	9.1.2.1.1 Transmit Descriptors Write-Back and Interrupts

	9.1.2.2 LAN Receive Queues
	9.1.2.2.1 Receive Descriptors Write-Back and Interrupts

	9.1.2.3 Protocol Engine Queues
	9.1.2.3.1 CEQ Write-Back and Interrupts

	9.1.2.4 Admin Queues
	9.1.2.5 Other Interrupt Causes
	9.1.2.6 Software Initiated Interrupt
	9.1.2.7 Interrupt Status Registers

	9.1.3 Interrupt Linked List
	9.1.3.1 Interrupt Linked List Management
	9.1.3.1.1 Initial Linked List Setting and Adding Interrupt Causes
	9.1.3.1.2 Removing an Interrupt Cause from an Active Interrupt
	9.1.3.1.3 Migrating a Queue Between Interrupt Vectors

	9.1.4 Interrupt Moderation
	9.1.4.1 Interrupt Throttling (ITR)
	9.1.4.2 Interrupt Rate Limiting (INTRL)
	9.1.4.3 INTRL/ITR Timing Granularity

	9.2 Virtualization
	9.2.1 Overview
	9.2.1.1 Direct Assignment Model
	9.2.1.1.1 Rationale

	9.2.1.2 Virtualized System Overview
	9.2.1.3 Virtualization Supported Features
	9.2.1.3.1 Enablement of Virtualization Features

	9.2.2 SR-IOV Implementation
	9.2.2.1 IOV Concepts
	9.2.2.2 IOV Control
	9.2.2.2.1 Interrupt on Misbehavior of VM (Malicious Driver Detection)
	9.2.2.2.1.1 Tx Data Checks (GL_MDCK_TX _TDPU Register)
	9.2.2.2.1.2 Tx Descriptor Validity Checks (GL_MDCK_TCMD Register)
	9.2.2.2.1.3 Tx Checks (GL_MCK_EN_TX_PQM)
	9.2.2.2.1.4 Rx Checks (GL_MDCK_RX Register)

	9.2.2.3 Hardware Resources Not Assigned to VFs
	9.2.2.4 Hardware Resources Assignment to VFs

	9.2.3 Scalable I/O and PASID
	9.2.3.1 Assumptions
	9.2.3.2 PASID
	9.2.3.2.1 PASID Context
	9.2.3.2.2 PASID Stop Mechanism

	9.2.3.3 Assignable Device Interface

	9.3 Host Memory Cache
	9.3.1 Host Memory Usage
	9.3.2 Object Caches
	9.3.3 Private Memory Space Profiles
	9.3.4 Host HMC Resource Partitioning
	9.3.5 Default HMC Profile Equations
	9.3.5.1 SR-IOV VF Primary HMC Profile Equations
	9.3.5.2 SR-IOV Even Distribution HMC Profile Equations

	9.3.6 Function Private Memory Space
	9.3.6.1 Programming the HMC FPM Base Registers

	9.3.7 Populating HMC Backing Pages
	9.3.8 De-Populating HMC Backing Pages
	9.3.8.1 Removing a Backing Page
	9.3.8.2 Removing a Page Descriptor Page

	9.3.9 Special Cases for Protocol Engine Objects
	9.3.9.1 Virtual Function Support

	9.3.10 HMC Error Reporting

	9.4 Quad Hash Host Memory Cache
	9.4.1 Cache Replication
	9.4.2 Function Private Memory Space Configuration
	9.4.2.1 Programming the HMC FPM Base Registers

	9.4.3 Populating HMC Backing Pages
	9.4.4 Register Naming in Quad Hash HMC Relative to PE HMC

	9.5 Control Queues
	9.5.1 Preface
	9.5.2 Queue Structure
	9.5.2.1 Control Queue CSRs
	9.5.2.1.1 Control Queues CSRs Mapping

	9.5.2.2 Control Queue Interrupts

	9.5.3 Initialization
	9.5.3.1 Receive Queue Element Initialization by Driver

	9.5.4 Driver Unload and Queue Shutdown
	9.5.5 Command Descriptions
	9.5.5.1 Direct Command
	9.5.5.1.1 Direct Admin Command
	9.5.5.1.2 Direct Command Completion

	9.5.5.2 Indirect Command
	9.5.5.2.1 Indirect Admin Command
	9.5.5.2.2 Indirect Command Completion

	9.5.6 Firmware Command Fetch and Verification
	9.5.7 Mailbox and Sideband Command Fetch and Verification
	9.5.8 Non-Completion Events
	9.5.9 Error Handling
	9.5.10 Error Codes
	9.5.10.1 Critical Error Indication

	9.5.11 Command Opcodes
	9.5.12 CSR-Based Firmware Admin Queue for Tools
	9.5.12.1 CSR-Based Firmware Queue Hardware Implementation
	9.5.12.2 Firmware and Software Interaction Using the CSR-Based Admin Queue

	9.5.13 Generic Firmware Admin Commands
	9.5.13.1 Get Version (0x0001)
	9.5.13.2 Driver Version (0x0002)
	9.5.13.3 Queue Shutdown (0x0003)
	9.5.13.4 Set PF Context (0x0004)
	9.5.13.5 Request Resource Ownership (0x0008)
	9.5.13.6 Release Resource Ownership (0x0009)
	9.5.13.7 Discover Function/Device Capabilities (0x000A/ 0x000B)
	9.5.13.8 VF/VM Reset (0x0C31)
	9.5.13.8.1 Software Activities Prior to Calling VM/VF Reset
	9.5.13.8.2 Software Activities After VM/VF Reset AQ Completed

	9.5.13.9 Set/Get Shared Driver Parameters (0x0C90)

	9.5.14 Mailbox Commands
	9.5.14.1 Send Message to PF (0x0801)
	9.5.14.2 Send Message to VF (0x0802)

	9.6 Statistics
	9.6.1 Counter Implementation
	9.6.2 Statistics Sample Points
	9.6.3 Statistics Consistency Rules
	9.6.4 Supported MIBs
	9.6.5 Interface Statistics at VSIs and Logical Interfaces
	9.6.5.1 MAC or Physical Uplink Interface Statistics
	9.6.5.2 VEB Statistics
	9.6.5.3 ACL Statistics
	9.6.5.4 Flow Director Statistics
	9.6.5.5 Statistics Resources

	9.6.6 RDMA/RoCE Statistics

	9.7 TimeSync (IEEE1588 and 802.1AS)
	9.7.1 Overview
	9.7.2 Time Synchronization - Background
	9.7.2.1 Time Synchronization Flow
	9.7.2.2 Initialization Phase
	9.7.2.3 Time Synchronization Phase
	9.7.2.3.1 Clocks Calibration
	9.7.2.3.2 Time Synchronization Phase
	9.7.2.3.3 PDelay Flow for Dynamic Primary Selection

	9.7.3 1588 Clock and Timer Registers
	9.7.3.1 1588 Primary Timer Enable
	9.7.3.2 Initialization
	9.7.3.2.1 Firmware-Related Initialization
	9.7.3.2.1.1 Timer Ownership
	9.7.3.2.1.2 Association of Timer to PHY(s)
	9.7.3.2.1.3 Association of GPIOs to Timers
	9.7.3.2.1.4 1588 Source Clock

	9.7.3.2.2 Software-Related Initialization

	9.7.3.3 1588 Timer Registers

	9.7.4 Programming the 1588 Timers
	9.7.4.1 Semaphore Scheme Enabling Atomic Sequences
	9.7.4.2 Shadow Registers for Timer Programming
	9.7.4.3 Initializing the 1588 Timers and the INCVAL
	9.7.4.4 Adjust the Timer by ‘N’
	9.7.4.5 Adjust the Timer by ‘N’ at Time
	9.7.4.6 Read the Timer Values

	9.7.5 Timestamp Indication
	9.7.5.1 Transmit Timestamp
	9.7.5.2 Receive Timestamp

	9.7.6 Synchronized Auxiliary Events
	9.7.6.1 Auxiliary 1588 I/O Signals

	9.7.7 Synchronization with Host Timer
	9.7.7.1 Reading and Sampling the 1588 Primary Timers

	9.7.8 Interrupts
	9.7.9 1588 Initialization Flow
	9.7.10 Software Timer

	9.8 LLDP Protocol
	9.8.1 Introduction
	9.8.2 Scope
	9.8.3 LLDP Agent
	9.8.4 LLDP Processing
	9.8.4.1 LLDPDU Addressing and Forwarding
	9.8.4.1.1 Egress Rules
	9.8.4.1.2 Ingress Rules

	9.8.4.2 Supported TLV
	9.8.4.3 LLDPDU Transmission and Reception
	9.8.4.4 LLDP Protocol Variables
	9.8.4.5 LLDP Data Store

	9.8.5 Initialization and Configuration
	9.8.5.1 Initialization
	9.8.5.2 LLDP Configuration
	9.8.5.2.1 LLDP Protocol Variables
	9.8.5.2.2 LLDP Admin Queue Commands
	9.8.5.2.2.1 Get LLDP MIB (0x0A00)
	9.8.5.2.2.2 Configure LLDP MIB Change Event (0x0A01)
	9.8.5.2.2.2.1 LLDP MIB Change Event

	9.8.5.2.2.3 Add LLDP TLV (0x0A02)
	9.8.5.2.2.4 Update LLDP TLV (0x0A03)
	9.8.5.2.2.5 Delete LLDP TLV (0x0A04)
	9.8.5.2.2.6 Stop LLDP Agent (0x0A05)
	9.8.5.2.2.7 Start LLDP Agent (0x0A06)
	9.8.5.2.2.8 Get CEE DCBx OPER CFG (0x0A07)
	9.8.5.2.2.9 Set Local LLDP MIB (0x0A08)
	9.8.5.2.2.10 Stop/Start a Specific LLDP Agent (0x0A09)
	9.8.5.2.2.11 LLDP Filter Control (0x0A0A)
	9.8.5.2.2.12 Execute Pending LLDP MIB (0x0A0B)

	Chapter 10 LAN Engine
	10.1 Introduction
	10.2 Queues Allocation and Management
	10.2.1 LAN Receive Queue Allocation
	10.2.1.1 Software Access to the Queues of the Functions
	10.2.1.2 Associating Received Packets to VSI Queues
	10.2.1.3 LAN Receive Queue Allocation Example
	10.2.1.4 LAN Receive Initialization Flow

	10.2.2 LAN Transmit Queue Allocation
	10.2.2.1 Software Access to the Queues of the Functions

	10.2.3 Dynamic Queue Allocation in Rx and Tx
	10.2.4 LAN Transmit Completion Queue and Doorbell Queue Allocation
	10.2.4.1 Software Access to the Queues of the Functions

	10.3 Steering Tag and Processing Hint Support for LAN Engine Traffic (TPH)
	10.4 LAN Receive Data-Path
	10.4.1 Receive Packet in System Memory
	10.4.1.1 Receive Descriptor Cache
	10.4.1.1.1 Descriptor Fetch Policy

	10.4.2 LAN Receive Descriptors
	10.4.2.1 Receive Descriptor - Read Format
	10.4.2.1.1 16-Byte Receive Descriptors Read Format
	10.4.2.1.2 32-Byte Receive Descriptors Read Format

	10.4.2.2 Receive Descriptor - Write-Back Format
	10.4.2.2.1 16-Byte Legacy Receive Descriptors Write-Back Format
	10.4.2.2.1.1 Dummy Receive Descriptors

	10.4.2.2.2 32-Byte Receive Descriptors Write-Back Format
	10.4.2.2.3 Programming Status Descriptor Write-Back Format
	10.4.2.2.4 Receive Flexible Advanced Descriptors Format

	10.4.3 LAN Receive Queue (Ring)
	10.4.3.1 Receive Queue Programming
	10.4.3.1.1 Receive Queue Enable Flow
	10.4.3.1.2 Receive Queue Disable Flow
	10.4.3.1.2.1 Fast Receive Queue Disable Flow

	10.4.3.2 Clear PXE Mode Admin Command (0x0110)
	10.4.3.3 Configure No-Drop Policy Admin Command (0x00112)
	10.4.3.4 Transitioning Flow to non-PXE Mode
	10.4.3.4.1 Device Response to Clear PXE Mode Admin Command
	10.4.3.4.2 Software Steps Transitioning to non-PXE Mode

	10.4.3.5 Receive Queues Doorbells and Completions
	10.4.3.5.1 Receive Descriptors and Tail Bump
	10.4.3.5.2 Receive Descriptor Reporting (Descriptor Write-Back)

	10.4.3.6 Receive Queue Context Parameters
	10.4.3.6.1 Receive Queue Context
	10.4.3.6.1.1 Receive Queue Context - Static Section
	10.4.3.6.1.2 Receive Queue Context - Dynamic Section

	10.4.3.6.2 Miscellaneous Receive Queue Context

	10.4.4 Stateless Receive Offloads
	10.4.4.1 Strip Ethernet CRC Bytes
	10.4.4.2 Header Split
	10.4.4.3 Receive L3 and L4 Integrity Check Offload

	10.5 LAN Transmit Data-Path
	10.5.1 LAN Transmit Introduction
	10.5.2 Transmit Packets in System Memory
	10.5.3 Descriptors and Doorbells
	10.5.3.1 General Descriptors
	10.5.3.1.1 Transmit Data Descriptor
	10.5.3.1.2 NOP Descriptor
	10.5.3.1.3 Transmit Descriptors Write-Back Format

	10.5.3.2 LAN Transmit Context Descriptors
	10.5.3.3 FD Filter Programming Descriptor

	10.5.4 LAN Transmit - Advanced Features
	10.5.4.1 Advanced Mode Host Interface
	10.5.4.2 Advanced Mode Host Interface New Terms and Entities
	10.5.4.3 LAN Transmit Queue Modes
	10.5.4.4 Quanta Descriptor
	10.5.4.5 Completion Queue (CQ) Descriptor
	10.5.4.6 Doorbells
	10.5.4.6.1 Legacy Mode Doorbell
	10.5.4.6.2 Advanced Mode Doorbell

	10.5.4.7 Doorbell Queue Descriptors
	10.5.4.8 Transmit During Link Down

	10.5.5 Transmit Configuration
	10.5.5.1 Transmit Queue Programming
	10.5.5.2 Transmit Queue Context
	10.5.5.2.1 Transmit Queue Context Structure

	10.5.5.3 Quanta Profile
	10.5.5.4 Quanta Descriptor Cache Profile
	10.5.5.5 Packet Shaping Profile
	10.5.5.6 Doorbell Queue Configuration
	10.5.5.7 Completion Queue Configuration
	10.5.5.8 Tx-Queue Handling Admin Queue Commands
	10.5.5.8.1 Add Tx LAN Queues (0x0C30)
	10.5.5.8.1.1 Software Activities Prior to Calling Add Tx LAN Queues AQ
	10.5.5.8.1.2 Software Activities After Add Tx LAN Queues AQ Completed

	10.5.5.8.2 Add Tx RDMA Queue Sets (0x0C33)
	10.5.5.8.2.1 Software Activities Prior to Calling Add Tx RDMA Queue Sets AQ
	10.5.5.8.2.2 Software Activities After Add Tx RDMA Queue Sets AQ Completed

	10.5.5.8.3 Transmit Queue Disable Flow - LAN and RDMA (0x0C31)
	10.5.5.8.3.1 Software Activities Prior to Calling Transmit Queue Disable
	10.5.5.8.3.2 Software Activities After Transmit Queue Disable AQ Completed

	10.5.5.8.4 Move/Reconfigure Tx LAN Queues (0x0C32)
	10.5.5.8.4.1 Software Activities Prior to Calling Move/Reconfigure Tx LAN Queues AQ
	10.5.5.8.4.2 Software Activities After Move/Reconfigure Tx LAN Queues AQ Completed

	10.5.5.8.5 Move RDMA Queue Sets (0x0C34)

	10.5.6 Packet Transmission
	10.5.6.1 Transmit Doorbell Flow in Legacy Mode
	10.5.6.2 Advanced Transmit Mode
	10.5.6.3 Head Drop via Quanta Expiration
	10.5.6.4 Head Drop via Drop Request
	10.5.6.5 Quanta Size Selection

	10.5.7 Performance Consideration
	10.5.8 Stateless Transmit Offloads
	10.5.8.1 Insert Ethernet CRC Bytes
	10.5.8.2 Insert L2 Tags (VLAN)
	10.5.8.3 Transmit L3 and L4 Integrity Offload
	10.5.8.4 Transmit Segmentation Offload (Also Known as TSO or LSO)
	10.5.8.4.1 Frame Formats and Assumptions
	10.5.8.4.2 Transmit Segmentation Flow
	10.5.8.4.3 Transmit Arbitration
	10.5.8.4.4 Segmentation Indication to the Hardware

	Chapter 11 Protocol Engine
	11.1 Protocol Engine Overview
	11.2 Features
	11.3 Functional Description
	11.3.1 Packet Classification and the PE

	11.4 Verbs Programming Model
	11.4.1 Verbs from a System View
	11.4.1.1 Asynchronous Event Queue (AEQ)
	11.4.1.2 Completion Event Queue (CEQ)
	11.4.1.3 Completion Queues
	11.4.1.4 Memory Registration (Translation/Protection)
	11.4.1.4.1 Address Translation and Protection Overview
	11.4.1.4.1.1 STag
	11.4.1.4.1.2 Memory Region and Memory Window
	11.4.1.4.1.3 Tagged Offset (TO)
	11.4.1.4.1.4 Page Size

	11.4.1.5 QP
	11.4.1.5.1 Doorbell Pages
	11.4.1.5.2 SQ
	11.4.1.5.2.1 Immediate Data Operations
	11.4.1.5.2.2 RDMA Read with Multiple SGEs or Local Data Sink Buffer
	11.4.1.5.2.2.1 iWARP - RDMA Read with Multiple SGEs
	11.4.1.5.2.2.2 RoCEv2 - RDMA Read

	11.4.1.5.3 Memory Keys
	11.4.1.5.4 Privileged Keys
	11.4.1.5.5 Virtual Queues
	11.4.1.5.6 SQ Push Mode
	11.4.1.5.7 SQ Suspend and Resume
	11.4.1.5.8 RQ

	11.4.2 iWARP State Management
	11.4.3 RoCEv2 State Management
	11.4.4 Exception Queues
	11.4.4.1 iWARP Partial FPDU Support

	11.4.5 Completion Event Queue (CEQ) Entry Format
	11.4.6 Asynchronous Event Queue (AEQ) Entry Format
	11.4.7 AE Codes
	11.4.8 Steering Tag (STag) and Processing Hint Support for PE Traffic (TPH)

	11.5 Resource Management
	11.5.1 PE Initialization
	11.5.2 Control QP (CQP) Operation
	11.5.2.1 Creating the CQP
	11.5.2.2 Destroying the CQP
	11.5.2.3 CQP Context
	11.5.2.4 CQP Error Codes
	11.5.2.5 CQP CQE Format

	11.5.3 CQP SQ Descriptor Format
	11.5.3.1 Common CQP Descriptor Format Fields
	11.5.3.2 Create/Modify/Destroy QP Descriptor Format
	11.5.3.3 Create/Modify/Destroy CQ Descriptor Format
	11.5.3.4 Allocate/Register/Registershared/Deallocate STag Descriptor Format
	11.5.3.5 Query STag Descriptor Format
	11.5.3.6 Manage ARP Table Descriptor Format
	11.5.3.7 Manage VF PBLE Backing Pages Descriptor Format
	11.5.3.8 Manage Push Page Descriptor Format
	11.5.3.9 Upload Context Descriptor Format
	11.5.3.10 Manage HMC PM Function Table
	11.5.3.11 Create/Destroy CEQ Descriptor Format
	11.5.3.12 Create/Destroy AEQ Descriptor Format
	11.5.3.13 Create/Modify/Destroy Address Handle Descriptor Format
	11.5.3.14 Update PE SDs Descriptor Format
	11.5.3.15 Query FPM Values Descriptor Format
	11.5.3.16 Commit FPM Values Descriptor Format
	11.5.3.17 Flush WQEs Descriptor Format
	11.5.3.18 Manage Accelerated Port Bit Vector (APBV)
	11.5.3.19 NOP Descriptor Format
	11.5.3.20 Manage Quad Hash Table Descriptor Format
	11.5.3.21 Create/Modify/Destroy Multicast Group Descriptor Format
	11.5.3.22 Suspend QP Descriptor Format
	11.5.3.23 Resume QP Descriptor Format
	11.5.3.24 Static HMC Resources Allocated Descriptor Format
	11.5.3.25 Manage Statistics Instance Descriptor Format
	11.5.3.26 Gather Statistics Descriptor Format
	11.5.3.27 Manage Work Scheduler (WS) Node Descriptor Format
	11.5.3.28 Set UP-UP Mapping
	11.5.3.29 Query RDMA Features

	11.6 RDMA Functionality
	11.6.1 iWARP Q2 Area
	11.6.2 iWARP QP Context Format
	11.6.3 RoCEv2 QP Context Format
	11.6.4 RDMA QP Completion Codes
	11.6.5 RDMA CQ Entry Formats
	11.6.6 RDMA Descriptor Formats
	11.6.6.1 RDMA SQ Descriptors
	11.6.6.1.1 Common RDMA SQ Descriptor Format Fields
	11.6.6.1.1.1 Fragment Descriptor Format
	11.6.6.1.1.2 Inline Data Format

	11.6.6.1.2 SQ WQE Format - NOP
	11.6.6.1.3 SQ WQE Format - Send
	11.6.6.1.4 SQ WQE Format - Send with Inline Data
	11.6.6.1.5 SQ WQE Format - RDMA Write
	11.6.6.1.6 SQ WQE Format - RDMA Write with Inline Data
	11.6.6.1.7 SQ WQE Format - RDMA Read
	11.6.6.1.8 SQ WQE Format - Memory Window Bind
	11.6.6.1.9 SQ WQE Format - Local Invalidate
	11.6.6.1.10 SQ WQE Format - Fast Register
	11.6.6.1.11 SQ WQE Format - Connection Established

	11.6.6.2 RQ WQE Format

	11.7 UD/UDA Functionality
	11.7.1 UD/UDA Descriptor Formats
	11.7.1.1 UD/UDA CQ Entry Formats
	11.7.1.2 UD/UDA SQ Descriptors
	11.7.1.3 UD/UDA SQ Descriptor Formats
	11.7.1.3.1 Common UD/UDA SQ Descriptor Format Fields
	11.7.1.3.2 UD/UDA SQ WQE Format - NOP
	11.7.1.3.3 UD/UDA SQ WQE Format - Send
	11.7.1.3.4 UD/UDA SQ WQE Format - Send with Inline Data

	11.7.1.4 UD/UDA RQ Descriptors

	11.8 UDA Functionality
	11.8.1 Transmit UDA Hardware Acceleration
	11.8.2 Receive UDA Hardware Filtering and Acceleration
	11.8.2.1 UDP UDA Filtering and Acceleration
	11.8.2.2 TCP UDA Filtering and Acceleration

	11.8.3 UDA Programming Interface
	11.8.3.1 CEQ
	11.8.3.2 AEQ
	11.8.3.3 CQ
	11.8.3.4 QP
	11.8.3.5 Send Operation
	11.8.3.6 Receive Operation
	11.8.3.7 Memory Registration
	11.8.3.8 Address Handle
	11.8.3.9 Push Mode Support

	11.8.4 UDA QP Context Format
	11.8.5 UDA CQ Entry Formats
	11.8.6 UDA QP Completion Error Codes
	11.8.7 UDA QP Asynchronous Error Codes
	11.8.8 UDA Descriptor Formats
	11.8.8.1 UDA SQ WQE Format - Send
	11.8.8.2 UDA SQ WQE Format - Send with Inline Data
	11.8.8.3 UDA SQ WQE Format - NOP
	11.8.8.4 UDA RQ WQE Format

	11.9 Protocol Engine Statistics
	11.9.1 Summary

	11.10 SR-IOV Protocol Engine Functionality
	11.11 NVM RDMA Register Initialization

	Chapter 12 System Manageability
	12.1 Features
	12.2 Pass-Through Functionality
	12.2.1 Supported Topologies
	12.2.2 Pass-Through Packet Routing

	12.3 Components of the Sideband Interface
	12.3.1 Physical Layer
	12.3.1.1 SMBus
	12.3.1.1.1 PEC Support

	12.3.1.2 NC-SI over RBT
	12.3.1.2.1 Electrical Characteristics

	12.3.1.3 PCIe Vendor-Defined Messages (VDMs)

	12.3.2 Logical Layer
	12.3.2.1 SMBus
	12.3.2.1.1 SMBus Transactions
	12.3.2.1.2 SMBus Addressing
	12.3.2.1.3 SMBus ARP Functionality
	12.3.2.1.3.1 SMBus ARP Flow
	12.3.2.1.3.2 SMBus ARP UDID Content

	12.3.2.2 NC-SI
	12.3.2.2.1 Package ID Setting
	12.3.2.2.2 Channel ID Mapping

	12.4 Packet Filtering
	12.4.1 Manageability Receive Filtering
	12.4.2 L2 Filters
	12.4.2.1 MAC and VLAN Filters
	12.4.2.2 EtherType Filters

	12.4.3 L3/L4 Filtering
	12.4.3.1 ARP Filtering
	12.4.3.2 Neighbor Discovery Filtering and MLD
	12.4.3.3 RMCP Filtering
	12.4.3.4 ICMP Filtering
	12.4.3.5 Flexible Port Filtering
	12.4.3.6 IP Address Filtering
	12.4.3.7 Checksum Filtering

	12.4.4 Flexible 144-Byte Filter
	12.4.4.1 Flexible Filter Structure
	12.4.4.2 TCO Filter Programming
	12.4.4.2.1 Flexible TCO Filter Configuration in NVM (Global MNG Offset 0x05)
	12.4.4.2.1.1 Section Header (Offset 0x00)
	12.4.4.2.1.2 Flexible Filter Control (Offset 0x01)
	12.4.4.2.1.3 Flexible Filter Length (Offset 0x02)
	12.4.4.2.1.4 Flexible Filter Enable Mask (Offset 0x03-0x0A)
	12.4.4.2.1.5 Flexible Filter Data - (Offset 0x0B-0x4A)
	12.4.4.2.1.6 Section Footer (Offset Block Length)

	12.4.5 Configuring Manageability Filters
	12.4.5.1 Manageability Decision Filters
	12.4.5.2 Exclusive Traffic
	12.4.5.3 Global Controls

	12.4.6 Filtering Programming Interfaces
	12.4.6.1 Shared MAC and Shared IP Support
	12.4.6.1.1 Sharing an IP and MAC Address
	12.4.6.1.1.1 TCP/UDP Ports Owned by an MC
	12.4.6.1.1.2 Sharing Network Infrastructure Packets
	12.4.6.1.1.3 ARP Filters Enhancement

	12.4.7 Possible Configurations
	12.4.7.1 Dedicated MAC Packet Filtering
	12.4.7.2 Broadcast Packet Filtering
	12.4.7.3 VLAN Packet Filtering
	12.4.7.4 IPv6 Filtering
	12.4.7.5 Receive Filtering with Shared IP

	12.4.8 Determining Manageability MAC Address

	12.5 OS-to-BMC Traffic
	12.5.1 Overview
	12.5.2 Filtering
	12.5.2.1 OS-to-BMC Filtering
	12.5.2.2 BMC-to-OS Filtering

	12.5.3 Blocking Network-to-BMC Flow
	12.5.4 OS-to-BMC and Flow Control
	12.5.5 Statistics
	12.5.6 OS-to-BMC Enablement
	12.5.7 SMBus Troubleshooting
	12.5.7.1 TCO Alert Line Stays Asserted After a Power Cycle
	12.5.7.2 When SMBus Commands are Always NACK'd
	12.5.7.3 SMBus Clock Speed is 16.6666 KHz
	12.5.7.4 A Network-Based Host Application is Not Receiving Any Network Packets
	12.5.7.5 Unable to Transmit Packets from the MC
	12.5.7.6 SMBus Fragment Size
	12.5.7.7 Losing Link
	12.5.7.8 Enable Checksum Filtering
	12.5.7.9 Still Having Problems?

	12.6 Network Controller Sideband Interface (NC-SI) PT Interface
	12.6.1 Overview
	12.6.1.1 Terminology
	12.6.1.2 System Topology
	12.6.1.3 Data Transport
	12.6.1.3.1 Control Frames
	12.6.1.3.2 NC-SI Frames Receive Flow

	12.6.2 NC-SI Standard Support
	12.6.2.1 Supported Features
	12.6.2.1.1 Error Conditions

	12.6.2.2 AEN Handling
	12.6.2.2.1 Driver Status Change AEN Generation

	12.6.2.3 NC-SI 1.1 New Features

	12.6.3 External Link Control via NC-SI
	12.6.3.1 NC-SI Link State Control
	12.6.3.2 Set Link Error Codes
	12.6.3.3 MC External Link Control
	12.6.3.3.1 Set Link while LAN PCIe Functionality is Disabled

	12.6.4 NC-SI Mode - Intel-Specific Commands
	12.6.4.1 Overview
	12.6.4.1.1 OEM Command (0x50)
	12.6.4.1.2 OEM Response (0xD0)

	12.6.4.2 OEM Commands Summary
	12.6.4.3 Set Intel Filters Control Commands
	12.6.4.3.1 Set IP Filters Control Command (Intel Command 0x00, Parameter 0x00)
	12.6.4.3.1.1 Set IP Filters Control Response

	12.6.4.4 Get Intel Filters Control Commands
	12.6.4.4.1 Get IP Filters Control Command (Intel Command 0x01, Parameter 0x00)
	12.6.4.4.1.1 Get IP Filters Control Response

	12.6.4.5 Set Intel Filters Formats
	12.6.4.5.1 Set Intel Filters Command (Intel Command 0x02)
	12.6.4.5.1.1 Set Intel Filters Response

	12.6.4.5.2 Set Manageability Only Command (Intel Command 0x02, Parameter 0x0F)
	12.6.4.5.2.1 Set Manageability Only Response

	12.6.4.5.3 Set Flex Filter Mask and Length Command (Intel Command 0x02, Parameter 0x10)
	12.6.4.5.3.1 Set Flex Filter Mask and Length Response

	12.6.4.5.4 Set Flex Filter Data Command (Intel Command 0x02, Parameter 0x11)
	12.6.4.5.4.1 Set Flex Filter Data Response

	12.6.4.5.5 Set Packet Addition Decision Filter Command (Intel Command 0x02, Parameter 0x61)
	12.6.4.5.6 Set Flex TCP/UDP Port Filter Command (Intel Command 0x02, Parameter 0x63)
	12.6.4.5.6.1 Set Flex TCP/UDP Port Filter Response

	12.6.4.5.7 Set Flex IPv4 Address Filter Command (Intel Command 0x02, Parameter 0x64)
	12.6.4.5.7.1 Set Flex IPv4 Address Filter Response

	12.6.4.5.8 Set Flex IPv6 Address Filter Command (Intel Command 0x02, Parameter 0x65)
	12.6.4.5.8.1 Set Flex IPv6 Address Filter Response

	12.6.4.5.9 Set EtherType Filter Command (Intel Command 0x02, Parameter 0x67)
	12.6.4.5.9.1 Set EtherType Filter Response

	12.6.4.5.10 Set Packet Addition Extended Decision Filter Command (Intel Command 0x02, Parameter 0x68)
	12.6.4.5.10.1 Set Packet Addition Extended Decision Filter Response

	12.6.4.5.11 Set Special Filter Modifiers Command (Intel Command 0x02, Parameter 0x69)
	12.6.4.5.11.1 Set Special Filter Modifiers Response

	12.6.4.6 Get Intel Filters Formats
	12.6.4.6.1 Get Intel Filters Command (Intel Command 0x03)
	12.6.4.6.1.1 Get Intel Filters Response

	12.6.4.6.2 Get Manageability Only Command (Intel Command 0x03, Parameter 0x0F)
	12.6.4.6.2.1 Get Manageability Only Response

	12.6.4.6.3 Get Flex Filter Mask and Length Command (Intel Command 0x03, Parameter 0x10)
	12.6.4.6.3.1 Get Flex Filter Mask and Length Response

	12.6.4.6.4 Get Flex Filter Data Command (Intel Command 0x03, Parameter 0x11)
	12.6.4.6.4.1 Get Flex Filter Data Response

	12.6.4.6.5 Get Packet Addition Decision Filter Command (Intel Command 0x03, Parameter 0x61)
	12.6.4.6.6 Get Flex TCP/UDP Port Filter Command (Intel Command 0x03, Parameter 0x63)
	12.6.4.6.6.1 Get Flex TCP/UDP Port Filter Response

	12.6.4.6.7 Get IPv4 Address Filter Command (Intel Command 0x03, Parameter 0x64)
	12.6.4.6.7.1 Get IPv4 Address Filter Response

	12.6.4.6.8 Get IPv6 Address Filter Command (Intel Command 0x03, Parameter 0x65)
	12.6.4.6.8.1 Get IPv6 Address Filter Response

	12.6.4.6.9 Get EtherType Filter Command (Intel Command 0x03, Parameter 0x67)
	12.6.4.6.9.1 Get EtherType Filter Response

	12.6.4.6.10 Get Packet Addition Extended Decision Filter Command (Intel Command 0x03, Parameter 0x68)
	12.6.4.6.10.1 Get Packet Addition Extended Decision Filter Response

	12.6.4.6.11 Get Special Filter Modifiers Command (Intel Command 0x03, Parameter 0x69)
	12.6.4.6.11.1 Get Special Filter Modifiers Response

	12.6.4.7 Set Intel Packet Reduction Filters Formats
	12.6.4.7.1 Set Intel Packet Reduction Filters Command (Intel Command 0x04)
	12.6.4.7.1.1 Set Intel Packet Reduction Filters Response

	12.6.4.7.2 Set Extended Unicast Packet Reduction Command (Intel Command 0x04, Parameter 0x10)
	12.6.4.7.2.1 Set Extended Unicast Packet Reduction Response

	12.6.4.7.3 Set Extended Multicast Packet Reduction Command (Intel Command 0x04, Parameter 0x11)
	12.6.4.7.3.1 Set Extended Multicast Packet Reduction Response

	12.6.4.7.4 Set Extended Broadcast Packet Reduction Command (Intel Command 0x04, Parameter 0x12)
	12.6.4.7.4.1 Set Extended Broadcast Packet Reduction Response

	12.6.4.8 Get Intel Packet Reduction Filters Formats
	12.6.4.8.1 Get Extended Unicast Packet Reduction Command (Intel Command 0x05, Parameter 0x10)
	12.6.4.8.1.1 Get Extended Unicast Packet Reduction Response

	12.6.4.8.2 Get Extended Multicast Packet Reduction Command (Intel Command 0x05, Parameter 0x11)
	12.6.4.8.2.1 Get Extended Multicast Packet Reduction Response

	12.6.4.8.3 Get Extended Broadcast Packet Reduction Command (Intel Command 0x05, Parameter 0x12)
	12.6.4.8.3.1 Get Extended Broadcast Packet Reduction Response

	12.6.4.9 System MAC Address
	12.6.4.9.1 Get System MAC Address Command (Intel Command 0x06)
	12.6.4.9.1.1 Get System MAC Address Response

	12.6.4.10 Set Intel Management Control Formats
	12.6.4.10.1 Set Intel Management Control Command (Intel Command 0x20)
	12.6.4.10.1.1 Set Intel Management Control Response

	12.6.4.11 Get Intel Management Control Formats
	12.6.4.11.1 Get Intel Management Control Command (Intel Command 0x21)
	12.6.4.11.1.1 Get Intel Management Control Response

	12.6.4.12 TCO Reset
	12.6.4.12.1 Perform Intel TCO Reset Command (Intel Command 0x22)
	12.6.4.12.1.1 Perform Intel TCO Reset Response

	12.6.4.13 Checksum Offloading
	12.6.4.13.1 Enable IP/UDP/TCP Checksum Offloading Command (Intel Command 0x23)
	12.6.4.13.1.1 Enable IP/UDP/TCP Checksum Offloading Response

	12.6.4.13.2 Disable IP/UDP/TCP Checksum Offloading Command (Intel Command 0x24)
	12.6.4.13.2.1 Disable IP/UDP/TCP Checksum Offloading Response

	12.6.4.14 Shared MAC and Shared IP Support
	12.6.4.14.1 Set IP Address Command (Intel Command 0x25, Parameter 0x0)
	12.6.4.14.1.1 Set IP Address Response

	12.6.4.14.2 Get IP Address Command (Intel Command 0x25, Parameter 0x1)
	12.6.4.14.2.1 Get IP Address Response

	12.6.4.14.3 Set Port Command (Intel Command 0x25, Parameter 0x2)
	12.6.4.14.3.1 Set Port Response

	12.6.4.14.4 Get Port Command (Intel Command 0x25, Parameter 0x3)
	12.6.4.14.4.1 Get Port Response

	12.6.4.14.5 Enable Unicast Infrastructure Filter Command (Intel Command 0x25, Parameter 0x4)
	12.6.4.14.5.1 Enable Unicast Infrastructure Filter Response

	12.6.4.14.6 Get Shared IP Capabilities Command (Intel Command 0x25, Parameter 0x5)
	12.6.4.14.6.1 Get Shared IP Capabilities Response

	12.6.4.14.7 Shared IP Enable Broadcast Filtering Command (Intel Command 0x25, Parameter 0x6)
	12.6.4.14.7.1 Shared IP Enable Broadcast Filtering Response

	12.6.4.14.8 Shared IP Enable Global Multicast Filtering Command (Intel Command 0x25, Parameter 0x7)
	12.6.4.14.8.1 Shared IP Enable Global Multicast Filtering Response

	12.6.4.14.9 Get Shared IP Parameters Command (Intel Command 0x25, Parameter 0x8)
	12.6.4.14.9.1 Get Shared IP Parameters Response

	12.6.4.14.10 Set Binding Command (Intel Command 0x25, Parameter 0x9)
	12.6.4.14.10.1 Set Binding Response

	12.6.4.14.11 Get Binding Command (Intel Command 0x25, Parameter 0xA)
	12.6.4.14.11.1 Get Binding Response

	12.6.4.14.12 Set Shared Mode Command (Intel Command 0x25, Parameter 0xB)
	12.6.4.14.12.1 Set Shared Mode Response

	12.6.4.15 LLDP Firmware Agent Configuration
	12.6.4.15.1 Config LLDP FW Agent Command (Intel Command 0x26)
	12.6.4.15.1.1 Config LLDP FW Agent Response

	12.6.4.16 OS2BMC Configuration
	12.6.4.16.1 Enable OS2BMC Flow Command (Intel Command 0x40, Parameter 0x01)
	12.6.4.16.1.1 Enable OS2BMC Flow Response

	12.6.4.16.2 Enable Network-to-BMC Flow Command (Intel Command 0x40, Parameter 0x02)
	12.6.4.16.2.1 Enable Network-to-BMC Flow Response

	12.6.4.16.3 Enable Both Enable Both Network-to-BMC and Host-to-BMC Flows Command (Intel Command 0x40, Parameter 0x03)
	12.6.4.16.3.1 Enable Both Network-to-BMC and Host-to-BMC Flows Response

	12.6.4.16.4 Set BMC IP Address Command (Intel Command 0x40, Parameter 0x04)
	12.6.4.16.4.1 Set BMC IP Address Response

	12.6.4.16.5 Get OS2BMC Parameters Command (Intel Command 0x41)
	12.6.4.16.5.1 Get OS2BMC Parameters Response

	12.6.4.17 Diagnostic Commands
	12.6.4.17.1 Get Controller Information Command (Intel Command 0x48, Parameter 0x1)
	12.6.4.17.1.1 Get Controller Information Response

	12.6.4.18 ASIC Temperature Value
	12.6.4.18.1 Get ASIC Temperature Command (Intel Command 0x4B)
	12.6.4.18.1.1 Get ASIC Temperature Response

	12.6.4.19 SFF Module Temperature
	12.6.4.19.1 Get SFF Module Temperature Command (Intel Command 0x4B, Parameter 0x02)
	12.6.4.19.1.1 Get SFF Module Temperature Response

	12.6.4.20 Get Status (Intel Command 0x62)
	12.6.4.20.1 Get Status Response

	12.6.4.21 Initialization Error AEN (Intel AEN 0x82)
	12.6.4.22 SyncE Status Change Event (Intel OEM NC-SI AEN 0x83)

	12.6.5 Basic NC-SI Workflows
	12.6.5.1 Package States
	12.6.5.2 Channel States
	12.6.5.3 Discovery
	12.6.5.4 Configurations
	12.6.5.4.1 NC Capabilities Advertisement
	12.6.5.4.2 Receive Filtering
	12.6.5.4.2.1 MAC Address Filtering

	12.6.5.4.3 VLAN

	12.6.5.5 PT Traffic States
	12.6.5.6 Channel Enable
	12.6.5.7 Network Transmit Enable

	12.6.6 Asynchronous Event Notifications (AENs)
	12.6.7 Querying Active Parameters
	12.6.8 Resets
	12.6.9 Advanced Workflows
	12.6.9.1 Multi-NC Arbitration
	12.6.9.2 Package Selection Sequence Example
	12.6.9.3 Multiple Channels (Fail-Over)
	12.6.9.3.1 Fail-Over Algorithm Example

	12.6.9.4 Statistics

	12.7 Management Component Transport Protocol (MCTP)
	12.7.1 MCTP Overview
	12.7.1.1 MCTP Usage Model
	12.7.1.2 Detecting an MC EID and Physical Address
	12.7.1.3 Bus Transition
	12.7.1.3.1 Initial Assignment Flow
	12.7.1.3.2 SMBus-to-PCIe Transition
	12.7.1.3.3 PCIe Target ID Change
	12.7.1.3.4 PCIe-to-SMBus Transition

	12.7.2 MCTP over PCIe
	12.7.2.1 Message Format
	12.7.2.2 PCIe Discovery Process
	12.7.2.3 MCTP over PCIe Special Features
	12.7.2.3.1 MCTP Uplink Rate Limiting
	12.7.2.3.2 Service Provider MCTP Endpoint ACLs

	12.7.3 MCTP over SMBus
	12.7.3.1 SMBus Discovery Process
	12.7.3.2 MCTP over SMBus Special Features
	12.7.3.2.1 Fairness Arbitration

	12.7.4 NC-SI over MCTP
	12.7.4.1 NC-SI to MCTP Mapping
	12.7.4.2 NC-SI Packets Format
	12.7.4.2.1 Control Packets
	12.7.4.2.2 Pass-Through Packets

	12.7.5 PLDM over MCTP
	12.7.6 OEM Commands
	12.7.7 MCTP Programming
	12.7.7.1 MCTP Commands Support
	12.7.7.1.1 Set Endpoint ID (0x01)
	12.7.7.1.2 Get Endpoint ID (0x02)
	12.7.7.1.3 Get Endpoint UUID (0x03)
	12.7.7.1.4 Get MCTP Version Support (0x04)
	12.7.7.1.5 Get Message Type Support (0x05)
	12.7.7.1.6 Get Vendor-Defined Message Support (0x06)
	12.7.7.1.7 Query Rate Limit (0x11)
	12.7.7.1.8 Request Tx Rate Limit (0x12)
	12.7.7.1.8.1 Request Tx Rate Limit Response
	12.7.7.1.8.2 Request Tx Rate Limit Send

	12.7.7.1.9 Update Rate Limit (0x13)
	12.7.7.1.10 Query Supported Interfaces (0x14)

	12.7.8 SPDM over MCTP
	12.7.8.1 SPDM Messages Support
	12.7.8.2 Generic SPDM Message Field Definitions
	12.7.8.3 SPDM over MCTP over PCIe/SMBus Message Format

	12.8 PLDM Support
	12.8.1 PLDM Base Implementation
	12.8.1.1 Reset Conditions
	12.8.1.2 PLDM Control Commands
	12.8.1.2.1 GetPLDMVersion (0x03)
	12.8.1.2.2 GetPLDMType (0x04)
	12.8.1.2.3 GetPLDMCommand (0x05)

	12.8.2 PLDM Monitoring and Control Support
	12.8.2.1 PLDM Monitoring and Control Supported Commands
	12.8.2.1.1 GetTerminusUID (0x3)
	12.8.2.1.2 SetEventReceiver (0x4)
	12.8.2.1.3 GetEventReceiver (0x5)
	12.8.2.1.4 PlatformEventMessage (0xA)
	12.8.2.1.5 PollForPlatformEventMessage (0xB)
	12.8.2.1.6 EventMessageSupported (0xC)
	12.8.2.1.7 EventMessageBufferSize (0xD)
	12.8.2.1.8 SetNumericSensorEnable (0x10)
	12.8.2.1.9 GetSensorReading (0x11)
	12.8.2.1.10 GetSensorThresholds (0x12)
	12.8.2.1.11 SetSensorThresholds (0x13)
	12.8.2.1.12 GetSensorHysteresis (0x15)
	12.8.2.1.13 SetStateSensorEnables (0x20)
	12.8.2.1.14 GetStateSensorReadings (0x21)
	12.8.2.1.15 GetPDRRepositoryInfo (0x50)
	12.8.2.1.16 GetPDR (0x51)
	12.8.2.1.17 GetPDRRepositorySignature (0x53)

	12.8.2.2 PLDM Monitoring and Control Events
	12.8.2.3 PDR Dynamic Changes Flow
	12.8.2.3.1 PDR Change Events
	12.8.2.3.1.1 QSFP/SFP Plug Events
	12.8.2.3.1.2 QSFP/SFP Unplug Events
	12.8.2.3.1.3 Transition Between Breakout to Non-Breakout Cable Configurations

	12.8.3 PLDM Monitoring and Control Generic Structures
	12.8.3.1 Sensors Numbering
	12.8.3.2 Sensors
	12.8.3.2.1 Numeric Sensors
	12.8.3.2.1.1 Temperature Sensor Data Structure
	12.8.3.2.1.2 Link Speed Data Structure
	12.8.3.2.1.3 Plug Power Data Structure

	12.8.3.2.2 NIC Composite State Sensors
	12.8.3.2.2.1 NIC Health State Data Structure
	12.8.3.2.2.2 NIC Configuration Data Structure
	12.8.3.2.2.3 NIC Changed Configuration State Data Structure
	12.8.3.2.2.4 NIC Thermal Trip State Data Structure

	12.8.3.2.3 Controller Composite State Sensors
	12.8.3.2.3.1 Controller Health State Data Structure
	12.8.3.2.3.2 Controller Configuration Data Structure
	12.8.3.2.3.3 Controller Configuration Change Data Structure
	12.8.3.2.3.4 Controller Thermal Trip State Data Structure
	12.8.3.2.3.5 Firmware Version State Data Structure

	12.8.3.2.4 Plug Composite State Sensors
	12.8.3.2.4.1 Plug Health State Data Structure
	12.8.3.2.4.2 Plug Presence State Data Structure
	12.8.3.2.4.3 Plug Thermal Trip State Data Structure

	12.8.3.2.5 Simple Sensors
	12.8.3.2.5.1 Port Link Sensor

	12.8.3.3 PDRs
	12.8.3.3.1 Terminus Locator PDR
	12.8.3.3.2 Physical Association PDRs
	12.8.3.3.2.1 NIC Association PDR
	12.8.3.3.2.2 Controller Association PDR
	12.8.3.3.2.3 Connector Association PDR
	12.8.3.3.2.4 Pluggable Module Association PDR

	12.8.3.3.3 Logical Association PDRs
	12.8.3.3.3.1 Communication Channel Entity Association PDR

	12.8.3.3.4 Composite State Sensor PDRs
	12.8.3.3.4.1 NIC Composite State Sensor PDR
	12.8.3.3.4.2 Controller Composite State Sensor PDR
	12.8.3.3.4.3 Plug Composite State Sensor PDR

	12.8.3.3.5 Simple State Sensors PDRs
	12.8.3.3.5.1 Port Link State PDR

	12.8.3.3.6 Numeric Sensors PDRs
	12.8.3.3.6.1 Thermal Sensors PDR
	12.8.3.3.6.2 Pluggable Module Power Sensors PDR
	12.8.3.3.6.3 Link Speed Sensors PDR

	12.8.3.3.7 Redfish PDRs
	12.8.3.3.7.1 Summary

	12.8.3.3.8 ACD Profile PDRs and Links
	12.8.3.3.8.1 NetworkAdapter PDR
	12.8.3.3.8.2 NetworkInterface PDR
	12.8.3.3.8.3 Ports PDR
	12.8.3.3.8.4 NetworkDeviceFunctions PDR
	12.8.3.3.8.5 Port PDR
	12.8.3.3.8.6 NetworkDeviceFunction PDR
	12.8.3.3.8.7 PCIeDevice PDR
	12.8.3.3.8.8 PCIeFunctions PDR
	12.8.3.3.8.9 PCIeFunction PDR
	12.8.3.3.8.10 NetworkAdapterMetrics PDR
	12.8.3.3.8.11 PortMetrics PDR
	12.8.3.3.8.12 NetworkDeviceFunctionMetrics PDR

	12.8.3.3.9 Non-ACD PDRs
	12.8.3.3.9.1 EthernetInterfaceCollection PDR
	12.8.3.3.9.2 EthernetInterface PDR

	12.8.3.3.10 RDE Action PDRs
	12.8.3.3.10.1 NetworkAdapter.ResetSetingsToDefault Action PDR
	12.8.3.3.10.2 Port.Reset Action PDR

	12.8.4 PLDM Firmware Update Commands
	12.8.4.1 Firmware-to-BMC Commands
	12.8.4.1.1 GetPackageData (Command Code 0x11)
	12.8.4.1.2 RequestFirmwareData (Command Code 0x15)
	12.8.4.1.3 TransferComplete (Command Code 0x16)
	12.8.4.1.4 VerifyComplete (Command Code 0x17)
	12.8.4.1.5 ApplyComplete (Command Code 0x18)

	12.8.4.2 BMC-to-Firmware Commands
	12.8.4.2.1 QueryDeviceIdentifiers (Command Code 0x01)
	12.8.4.2.2 GetFirmwareParameters (Command Code 0x02)
	12.8.4.2.3 RequestUpdate (Command Code 0x10)
	12.8.4.2.4 PassComponentTable (Command Code 0x13)
	12.8.4.2.5 UpdateComponent (Command Code 0x14)
	12.8.4.2.6 ActivateFirmware (Command Code 0x1A)
	12.8.4.2.7 GetStatus (Command Code 0x1B)
	12.8.4.2.8 CancelUpdateComponent (Command Code 0x1C)
	12.8.4.2.9 CancelUpdate (Command Code 0x1D)

	12.8.5 PLDM Firmware Update Flow
	12.8.5.1 Update Components
	12.8.5.2 Firmware Update Package
	12.8.5.2.1 Package Versions

	12.8.5.3 Firmware Flow for Section Update
	12.8.5.4 PLDM Events and Commands
	12.8.5.5 Reset During Update
	12.8.5.6 Activation Methods

	12.8.6 RDE Support
	12.8.6.1 Implementation Guidelines
	12.8.6.1.1 Presence of Payload in Command/Response
	12.8.6.1.2 UPDATE, REPLACE Operation Guidelines
	12.8.6.1.3 String Handling
	12.8.6.1.4 Resource Permissions
	12.8.6.1.5 Resources Exposing @Redfish.Settings Attr.

	12.8.6.2 RDE Commands Summary
	12.8.6.3 Command Details
	12.8.6.3.1 NegotiateRedfishParameters (0x01)
	12.8.6.3.2 NegotiateMediumParameters (0x02)
	12.8.6.3.3 GetSchemaDictionary (0x03)
	12.8.6.3.4 GetSchemaURI (0x04)
	12.8.6.3.5 GetResourceETag (0x05)
	12.8.6.3.6 GetOEMCount (0x06)
	12.8.6.3.7 GetOEMName (0x07)
	12.8.6.3.8 GetRegistryCount (0x8)
	12.8.6.3.9 GetRegistryDetails (0x9)
	12.8.6.3.10 SelectRegistryVersion (0x0A)
	12.8.6.3.11 GetMessageRegistry (0xB)
	12.8.6.3.12 RDEOperationInit (0x10)
	12.8.6.3.13 SupplyCustomRequestParameters (0x11)
	12.8.6.3.14 RetrieveCustomResponseParameters (0x12)
	12.8.6.3.15 RDEOperationComplete (0x13)
	12.8.6.3.16 RDEOperationStatus (0x14)
	12.8.6.3.17 RDEOperationKill (0x15)
	12.8.6.3.18 RDEOperationEnumerate (0x16)
	12.8.6.3.19 RDEMultipartSend (0x30)
	12.8.6.3.20 RDEMultipartReceive (0x31)

	12.8.6.4 State Machine
	12.8.6.5 Schemas
	12.8.6.5.1 Resources Parameters
	12.8.6.5.2 Common Fields in All Schemas
	12.8.6.5.3 ACD Schemas
	12.8.6.5.3.1 Port v1.6.0
	12.8.6.5.3.2 PortCollection
	12.8.6.5.3.3 NetworkInterface v1.2.0
	12.8.6.5.3.4 NetworkAdapter v1.7.0
	12.8.6.5.3.5 NetworkDeviceFunction v1.3.3
	12.8.6.5.3.6 NetworkDeviceFunctionCollection
	12.8.6.5.3.7 PCIeDevice.v1.4.0
	12.8.6.5.3.8 PCIeFunctionCollection
	12.8.6.5.3.9 PCIeFunction.v1.2.3
	12.8.6.5.3.10 NetworkAdapterMetrics
	12.8.6.5.3.11 PortMetrics
	12.8.6.5.3.12 NetworkDeviceFunctionMetrics

	12.8.6.5.4 Non-ACD Schemas
	12.8.6.5.4.1 EthernetInterface v1.5.1
	12.8.6.5.4.2 EthernetInterfaceCollection

	12.8.6.5.5 Generic Schemas
	12.8.6.5.5.1 Event
	12.8.6.5.5.2 NetworkDevice Registry v1.0.1

	12.8.6.5.6 Custom OEM Schema Extensions
	12.8.6.5.7 Profiles

	12.8.6.6 Dictionaries
	12.8.6.6.1 Dictionary Storage in NVM

	12.9 Host Isolate Support
	12.10 OCP NIC 3.0 Support
	12.10.1 Support for FAN_ON_AUX Pin

	Chapter 13 Programming Interface
	13.1 Introduction
	13.1.1 Access Mechanisms
	13.1.1.1 Memory-Mapped Access to Internal Registers and Memories
	13.1.1.2 Memory-Mapped Accesses to Flash
	13.1.1.3 Memory-Mapped Access to MSI-X Tables
	13.1.1.4 Memory-Mapped Access to Expansion ROM
	13.1.1.5 I/O-Mapped Access to Internal Registers
	13.1.1.5.1 IOADDR (I/O Offset 0x00)
	13.1.1.5.2 IODATA (I/O Offset 0x04)
	13.1.1.5.3 Undefined I/O Offsets

	13.1.1.6 Configuration Access to Internal Registers

	13.1.2 Memory BAR
	13.1.2.1 PF BAR Structure
	13.1.2.1.1 PF BAR Extension for Scalable I/O Mode

	13.1.2.2 VF BAR Structure

	13.1.3 The MSI-X BAR
	13.1.4 CSR Organization and Mapping
	13.1.4.1 Mapping by Scope

	13.1.5 Register Conventions
	13.1.5.1 Register Abbreviation Naming Conventions

	13.1.6 Register Field Attributes

	13.2 Device Registers - PF
	13.2.1 BAR0 Registers Summary
	13.2.2 Detailed Register Descriptions - PF BAR0
	13.2.2.1 PF - General Registers
	13.2.2.1.1 VF Reset Status - VFGEN_RSTAT[VF] (0x00074000 + 0x4*VF, VF=0...255; RW)
	13.2.2.1.2 Firmware Status Register - GL_FWSTS (0x00083048; RO)
	13.2.2.1.3 PF State - PFGEN_STATE (0x00088000; RW)
	13.2.2.1.4 Global GPIO Control - GLGEN_GPIO_CTL[n] (0x000880C8 + 0x4*n, n=0...6; RW)
	13.2.2.1.5 VF Reset Trigger - VPGEN_VFRTRIG[VF] (0x00090000 + 0x4*VF, VF=0...255; RW)
	13.2.2.1.6 VF Reset Status - VPGEN_VFRSTAT[VF] (0x00090800 + 0x4*VF, VF=0...255; RO)
	13.2.2.1.7 PFGEN Control - PFGEN_CTRL (0x00091000; RW)
	13.2.2.1.8 PFR STAT - PFGEN_PFRSTAT (0x00091080; RO)
	13.2.2.1.9 PF Driver Unload - PFGEN_DRUN (0x00091180; RW)
	13.2.2.1.10 VM Reset Trigger - VSIGEN_RTRIG[VSI] (0x00091800 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.1.11 VM Reset Status - VSIGEN_RSTAT[VSI] (0x00092800 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.1.12 XLR Marker Trigger - GL_XLR_MARKER_TRIG_VMLR (0x00093804; RW)
	13.2.2.1.13 Global Marker Count - GLGEN_MARKER_COUNT (0x000939E8; RW)
	13.2.2.1.14 Global Wait Between Transaction Count - GLGEN_XLR_TRNS_WAIT_COUNT (0x000939EC; RO)
	13.2.2.1.15 Global Wait for HLP After CORER - GLGEN_XLR_MSK2HLP_RDY (0x000939F0; RW)
	13.2.2.1.16 ECC Error Mask Low - GLGEN_ECC_ERR_RST_MASK_L (0x000939F4; RW)
	13.2.2.1.17 ECC Error Mask High - GLGEN_ECC_ERR_RST_MASK_H (0x000939F8; RW)
	13.2.2.1.18 ECC Error Int Mask Low - GLGEN_ECC_ERR_INT_TOG_MASK_L (0x000939FC; RW)
	13.2.2.1.19 ECC Error Int Mask High - GLGEN_ECC_ERR_INT_TOG_MASK_H (0x00093A00; RW)
	13.2.2.1.20 PFR STAT - GLGEN_VFLRSTAT[n] (0x00093A04 + 0x4*n, n=0...7; RW1C)
	13.2.2.1.21 TCVMLR XLR Marker Trigger - GL_XLR_MARKER_TRIG_TCVMLR (0x000A2000; RO)
	13.2.2.1.22 Transmit Scheduler Queue Control - GL_TCVMLR_QCTL (0x000A2004; RO)
	13.2.2.1.23 TCVMLR Drain Marker Control - GL_TCVMLR_DRAIN_MARKER (0x000A2008; RO)
	13.2.2.1.24 TCVMLR Halt Done Down Counter - GL_TCVMLR_QCNTR (0x000A200C; RO)
	13.2.2.1.25 TCVMLR Queue Port TC Config Control - GL_TCVMLR_QCFG (0x000A2010; RO)
	13.2.2.1.26 TCVMLR Queue Port TC Config Status - GL_TCVMLR_QCFG_RD (0x000A2014; RO)
	13.2.2.1.27 TCVMLR Req Flow Status Control - GL_TCVMLR_REQ_STAT (0x000A2018; RO)
	13.2.2.1.28 TCVMLR Req Flow Status Read - GL_TCVMLR_STAT (0x000A201C; RO)
	13.2.2.1.29 TCVMLR Req Flow Error Status - GL_TCVMLR_ERR_STAT (0x000A2024; RO)
	13.2.2.1.30 TCVMLR Drain Done Count for TCLAN - GL_TCVMLR_DRAIN_DONE_TCLAN[n] (0x000A20A8 + 0x4*n, n=0...31; RO)
	13.2.2.1.31 TCVMLR Drain Done Count for TPB - GL_TCVMLR_DRAIN_DONE_TPB[n] (0x000A2128 + 0x4*n, n=0...31; RO)
	13.2.2.1.32 TCVMLR Drain Done Decrement Control - GL_TCVMLR_DRAIN_DONE_DEC (0x000A21A8; RO)
	13.2.2.1.33 TCVMLR Drain Done Down Counter - PRT_TCVMLR_DRAIN_CNTR (0x000A21C0; RO)
	13.2.2.1.34 TCVMLR Drain Done Down Counter Control - GL_TCVMLR_DRAIN_CNTR_CTL (0x000A21E0; RO)
	13.2.2.1.35 Global Status - GLGEN_STAT (0x000B612C; RO)
	13.2.2.1.36 General Port Status - PRTGEN_STATUS (0x000B8100; RO)
	13.2.2.1.37 General Port Configuration - PRTGEN_CNF (0x000B8120; RO)
	13.2.2.1.38 General Port Configuration2 - PRTGEN_CNF2 (0x000B8160; RO)
	13.2.2.1.39 Global Reset Control - GLGEN_RSTCTL (0x000B8180; RO)
	13.2.2.1.40 Global Clock Status - GLGEN_CLKSTAT (0x000B8184; RO)
	13.2.2.1.41 Global Reset Status - GLGEN_RSTAT (0x000B8188; RO)
	13.2.2.1.42 Global Reset Trigger - GLGEN_RTRIG (0x000B8190; RW)
	13.2.2.1.43 Global Switch Mode Reset Control - GLGEN_ASSERT_HLP (0x000B81E4; RW)
	13.2.2.1.44 Global Device Timer - GLVFGEN_TIMER (0x000B8214; RW)
	13.2.2.1.45 Global Clock Status - GLGEN_CLKSTAT_SRC (0x000B826C; RO)
	13.2.2.1.46 General Port Configuration3 - PRTGEN_CNF3 (0x000B8280; RO)
	13.2.2.1.47 LAN Port Number - PFGEN_PORTNUM (0x001D2400; RO)
	13.2.2.1.48 GLGEN_ANA_FLAG_MAP - GLGEN_ANA_FLAG_MAP[n] (0x0020C000 + 0x4*n, n=0...63; RW)
	13.2.2.1.49 GLGEN_ANA_DEF_PTYPE - GLGEN_ANA_DEF_PTYPE (0x0020C100; RW)
	13.2.2.1.50 GLGEN_ANA_CFG_CTRL - GLGEN_ANA_CFG_CTRL (0x0020C104; RW)
	13.2.2.1.51 GLGEN_ANA_CFG_WRDATA - GLGEN_ANA_CFG_WRDATA (0x0020C108; RW)
	13.2.2.1.52 GLGEN_ANA_CFG_RDDATA - GLGEN_ANA_CFG_RDDATA[n] (0x0020C10C + 0x4*n, n=0...15; RO)
	13.2.2.1.53 GLGEN_ANA_CFG_LU_KEY - GLGEN_ANA_CFG_LU_KEY[n] (0x0020C14C + 0x4*n, n=0...2; RW)
	13.2.2.1.54 GLGEN_ANA_CFG_HTBL_LU_RESULT - GLGEN_ANA_CFG_HTBL_LU_RESULT (0x0020C158; RO)
	13.2.2.1.55 GLGEN_ANA_CFG_SPLBUF_LU_RESULT - GLGEN_ANA_CFG_SPLBUF_LU_RESULT (0x0020C15C; RO)
	13.2.2.1.56 GLGEN_ANA_P2P - GLGEN_ANA_P2P[n] (0x0020C160 + 0x4*n, n=0...15; RW)
	13.2.2.1.57 GLGEN_ANA_PG0_HASHKEY - GLGEN_ANA_PG0_HASHKEY[n] (0x0020C1A0 + 0x4*n, n=0...3; RW)
	13.2.2.1.58 GLGEN_ANA_NMPG0_HASHKEY - GLGEN_ANA_NMPG0_HASHKEY[n] (0x0020C1B0 + 0x4*n, n=0...3; RW)
	13.2.2.1.59 GLGEN_ANA_PG_KEYMASK - GLGEN_ANA_PG_KEYMASK[n] (0x0020C1C0 + 0x4*n, n=0...3; RW)
	13.2.2.1.60 GLGEN_ANA_NMPG_KEYMASK - GLGEN_ANA_NMPG_KEYMASK[n] (0x0020C1D0 + 0x4*n, n=0...3; RW)
	13.2.2.1.61 GLGEN_ANA_LAST_PROT_ID - GLGEN_ANA_LAST_PROT_ID[n] (0x0020C1E4 + 0x4*n, n=0...5; RW)
	13.2.2.1.62 GLGEN_ANA_PROFIL - GLGEN_ANA_PROFIL_CTRL (0x0020C1FC; RW)
	13.2.2.1.63 GLGEN_ANA_OUT_OF_PKT - GLGEN_ANA_OUT_OF_PKT (0x0020C200; RW)
	13.2.2.1.64 GLGEN_ANA_NO_HIT_PG_NM_PG - GLGEN_ANA_NO_HIT_PG_NM_PG (0x0020C204; RW)
	13.2.2.1.65 GLGEN_ANA_ALU_ACCSS_OUT_OF_PKT - GLGEN_ANA_ALU_ACCSS_OUT_OF_PKT (0x0020C208; RW)
	13.2.2.1.66 GLGEN_ANA_INV_NODE_PTYPE - GLGEN_ANA_INV_NODE_PTYPE (0x0020C210; RW)
	13.2.2.1.67 GLGEN_ANA_INV_PTYPE_MARKER - GLGEN_ANA_INV_PTYPE_MARKER (0x0020C218; RW)
	13.2.2.1.68 GLGEN_ANA_ABORT_PTYPE - GLGEN_ANA_ABORT_PTYPE (0x0020C21C; RW)
	13.2.2.1.69 GLGEN_ANA_ERR_CTRL - GLGEN_ANA_ERR_CTRL (0x0020C220; RW)
	13.2.2.1.70 GLGEN_ANA_TX_FLAG_MAP - GLGEN_ANA_TX_FLAG_MAP[n] (0x0020D000 + 0x4*n, n=0...63; RW)
	13.2.2.1.71 GLGEN_ANA_TX_DEF_PTYPE - GLGEN_ANA_TX_DEF_PTYPE (0x0020D100; RW)
	13.2.2.1.72 GLGEN_ANA_TX_CFG_CTRL - GLGEN_ANA_TX_CFG_CTRL (0x0020D104; RW)
	13.2.2.1.73 GLGEN_ANA_TX_CFG_WRDATA - GLGEN_ANA_TX_CFG_WRDATA (0x0020D108; RW)
	13.2.2.1.74 GLGEN_ANA_TX_CFG_RDDATA - GLGEN_ANA_TX_CFG_RDDATA[n] (0x0020D10C + 0x4*n, n=0...15; RO)
	13.2.2.1.75 GLGEN_ANA_TX_CFG_LU_KEY - GLGEN_ANA_TX_CFG_LU_KEY[n] (0x0020D14C + 0x4*n, n=0...2; RW)
	13.2.2.1.76 GLGEN_ANA_TX_CFG_HTBL_LU_RESULT - GLGEN_ANA_TX_CFG_HTBL_LU_RESULT (0x0020D158; RO)
	13.2.2.1.77 GLGEN_ANA_TX_CFG_SPLBUF_LU_RESULT - GLGEN_ANA_TX_CFG_SPLBUF_LU_RESULT (0x0020D15C; RO)
	13.2.2.1.78 GLGEN_ANA_TX_P2P - GLGEN_ANA_TX_P2P[n] (0x0020D160 + 0x4*n, n=0...15; RW)
	13.2.2.1.79 GLGEN_ANA_TX_PG0_HASHKEY - GLGEN_ANA_TX_PG0_HASHKEY[n] (0x0020D1A0 + 0x4*n, n=0...3; RW)
	13.2.2.1.80 GLGEN_ANA_TX_NMPG0_HASHKEY - GLGEN_ANA_TX_NMPG0_HASHKEY[n] (0x0020D1B0 + 0x4*n, n=0...3; RW)
	13.2.2.1.81 GLGEN_ANA_TX_PG_KEYMASK - GLGEN_ANA_TX_PG_KEYMASK[n] (0x0020D1C0 + 0x4*n, n=0...3; RW)
	13.2.2.1.82 GLGEN_ANA_TX_NMPG_KEYMASK - GLGEN_ANA_TX_NMPG_KEYMASK[n] (0x0020D1D0 + 0x4*n, n=0...3; RW)
	13.2.2.1.83 GLGEN_ANA_TX_PROFIL_CTRL - GLGEN_ANA_TX_PROFIL_CTRL (0x0020D1FC; RW)
	13.2.2.1.84 GLGEN_ANA_TX_NO_HIT_PG_NM_PG - GLGEN_ANA_TX_NO_HIT_PG_NM_PG (0x0020D204; RW)
	13.2.2.1.85 GLGEN_ANA_TX_ALU_ACCSS_OUT_OF_PKT - GLGEN_ANA_TX_ALU_ACCSS_OUT_OF_PKT (0x0020D208; RW)
	13.2.2.1.86 GLGEN_ANA_TX_INV_NODE_PTYPE - GLGEN_ANA_TX_INV_NODE_PTYPE (0x0020D210; RW)
	13.2.2.1.87 GLGEN_ANA_TX_INV_PROT_ID - GLGEN_ANA_TX_INV_PROT_ID (0x0020D214; RW)
	13.2.2.1.88 GLGEN_ANA_TX_INV_PTYPE_MARKER - GLGEN_ANA_TX_INV_PTYPE_MARKER (0x0020D218; RW)
	13.2.2.1.89 GLGEN_ANA_TX_ABORT_PTYPE - GLGEN_ANA_TX_ABORT_PTYPE (0x0020D21C; RW)
	13.2.2.1.90 GLGEN_ANA_TX_ERR_CTRL - GLGEN_ANA_TX_ERR_CTRL (0x0020D220; RW)
	13.2.2.1.91 GLGEN_ANA_TX_DFD_PACE_OUT - GLGEN_ANA_TX_DFD_PACE_OUT (0x0020D4CC; RW)

	13.2.2.2 PF - Internal Fuses Registers
	13.2.2.2.1 SKU Fuses - GL_UFUSE_SOC (0x000A400C; RO)

	13.2.2.3 PF - PCIe Registers
	13.2.2.3.1 PFPCIe Subsystem ID - PFPCI_SUBSYSID (0x0009D880; RO)
	13.2.2.3.2 PCIe Functions Configuration - PFPCI_FUNC (0x0009D980; RO)
	13.2.2.3.3 PCIe Function Status 1 - PFPCI_STATUS1 (0x0009DA00; RO)
	13.2.2.3.4 PCIe PM - PFPCI_PM (0x0009DA80; RW)
	13.2.2.3.5 PCIe Storage Class - PFPCI_CLASS (0x0009DB00; RO)
	13.2.2.3.6 PCIe PF Device ID - PFPCI_DEVID (0x0009DE00; RO)
	13.2.2.3.7 Clock Gating Events - GL_CLKGATE_EVENTS (0x0009DE70; RO)
	13.2.2.3.8 PCI BAR Control - GLPCI_LBARCTRL (0x0009DE74; RO)
	13.2.2.3.9 PCIe Power Data Register - GLPCI_PWRDATA (0x0009DE7C; RO)
	13.2.2.3.10 PCIe Serial Number MAC Address Low - GLPCI_SERL (0x0009DE80; RO)
	13.2.2.3.11 PCIe Serial Number MAC Address High - GLPCI_SERH (0x0009DE84; RO)
	13.2.2.3.12 PCIe Capabilities Control - GLPCI_CAPCTRL (0x0009DE88; RW)
	13.2.2.3.13 PCIe Capabilities Support - GLPCI_CAPSUP (0x0009DE8C; RO)
	13.2.2.3.14 PCIe Link Capabilities - GLPCI_LINKCAP (0x0009DE90; RO)
	13.2.2.3.15 PCIe PM Support - GLPCI_PMSUP (0x0009DE94; RO)
	13.2.2.3.16 PCIe Revision ID - GLPCI_REVID (0x0009DE98; RO)
	13.2.2.3.17 PCIe VF Capabilities Support - GLPCI_VFSUP (0x0009DE9C; RO)
	13.2.2.3.18 PCIe Global Config - GLPCI_CNF (0x0009DEA0; RO)
	13.2.2.3.19 PCIe Vendor ID - GLPCI_VENDORID (0x0009DEC8; RO)
	13.2.2.3.20 PCIe Subsystem ID - GLPCI_SUBVENID (0x0009DEE8; RO)
	13.2.2.3.21 PCIe PF Configuration - PFPCI_CNF (0x0009DF00; RO)
	13.2.2.3.22 Posted Queue IOSF FIFO Status - PQ_FIFO_STATUS (0x0009DF40; RO)
	13.2.2.3.23 Push PE IF Status - GLPCI_PUSH_PE_IF_TO_STATUS (0x0009DF44; RW1C)
	13.2.2.3.24 PCIe VF Flush Done - PFPCI_VF_FLUSH_DONE[VF] (0x0009E000 + 0x4*VF, VF=0...255; RO)
	13.2.2.3.25 PCIe PF Flush Done - PFPCI_PF_FLUSH_DONE (0x0009E400; RO)
	13.2.2.3.26 PCIe VM Flush Done - PFPCI_VM_FLUSH_DONE (0x0009E480; RO)
	13.2.2.3.27 PCIe Configuration Indirect Access Data - PF_PCI_CIAD (0x0009E500; RW)
	13.2.2.3.28 PF Configuration Indirect Access Address - PF_PCI_CIAA (0x0009E580; RW)
	13.2.2.3.29 PCIe VM Pending Index - PFPCI_VMINDEX (0x0009E600; RW)
	13.2.2.3.30 PCIe VM Pending Status - PFPCI_VMPEND (0x0009E800; RO)
	13.2.2.3.31 Function Requester ID Information Register - PF_FUNC_RID (0x0009E880; RO)
	13.2.2.3.32 Function Active and Power State - PFPCI_FACTPS (0x0009E900; RO)
	13.2.2.3.33 PCIe Statistic Control Register #5...#8 - GLPCI_GSCL_5_8[n] (0x0009E954 + 0x4*n, n=0...3; RW)
	13.2.2.3.34 PCIe Byte Counter High - GLPCI_BYTCTH_P (0x0009E970; RO)
	13.2.2.3.35 PCIe Byte Counter Low - GLPCI_BYTCTL_P (0x0009E994; RO)
	13.2.2.3.36 PCIe Statistic Control Registers #2 - GLPCI_GSCL_2 (0x0009E998; RW)
	13.2.2.3.37 PCIe Statistic Counter Registers #0...#3 - GLPCI_GSCN_0_3[n] (0x0009E99C + 0x4*n, n=0...3; RO)
	13.2.2.3.38 PCIe Default Revision ID - GLPCI_DREVID (0x0009E9AC; RO)
	13.2.2.3.39 PCIe Packet Counter - GLPCI_PKTCT_P (0x0009E9B0; RO)
	13.2.2.3.40 PCIe Statistic Control Register #1 - GLPCI_GSCL_1_P (0x0009E9B4; RW)
	13.2.2.3.41 PCIe Global Config 2 - GLPCI_CNF2 (0x000BE004; RO)
	13.2.2.3.42 PCIe Upper Address - GLPCI_UPADD (0x000BE0D4; RW)
	13.2.2.3.43 PCIe NPQ Config - GLPCI_NPQ_CFG (0x000BFD80; RW)
	13.2.2.3.44 PCIe NPQ Watermark of Pipe Monitor - GLPCI_WATMK_CLNT_PIPEMON (0x000BFD90; RO)
	13.2.2.3.45 PCIe Packet Counter - GLPCI_PKTCT_NP_C (0x000BFD9C; RO)
	13.2.2.3.46 PCIe Packet Counter - GLPCI_LATCT_NP_C (0x000BFDA0; RO)
	13.2.2.3.47 PCIe Statistic Control Register #1 - GLPCI_GSCL_1_NP_C (0x000BFDA4; RW)
	13.2.2.3.48 PCIe Byte Counter High - GLPCI_BYTCTH_NP_C (0x000BFDA8; RO)
	13.2.2.3.49 PCIe Byte Counter Low - GLPCI_BYTCTL_NP_C (0x000BFDAC; RO)

	13.2.2.4 PF - MAC Registers
	13.2.2.4.1 HSEC CONTROL Receive PFC ENABLE - PRTMAC_HSEC_CTL_RX_PAUSE_ENABLE (0x001E3180; RO)
	13.2.2.4.2 HSEC CONTROL Transmit PAUSE_ENABLE - PRTMAC_HSEC_CTL_TX_PAUSE_ENABLE (0x001E31A0; RO)
	13.2.2.4.3 HSEC CONTROL Receive ENABLE_GCP - PRTMAC_HSEC_CTL_RX_ENABLE_GCP (0x001E31C0; RO)
	13.2.2.4.4 HSEC CONTROL Receive PAUSE_DA_UCAST_PART1 - PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART1 (0x001E3220; RO)
	13.2.2.4.5 HSEC CONTROL Receive PAUSE_DA_UCAST_PART2 - PRTMAC_HSEC_CTL_RX_PAUSE_DA_UCAST_PART2 (0x001E3240; RO)
	13.2.2.4.6 HSEC CONTROL Receive PAUSE_SA_PART1 - PRTMAC_HSEC_CTL_RX_PAUSE_SA_PART1 (0x001E3280; RO)
	13.2.2.4.7 HSEC CONTROL Receive PAUSE_SA_PART2 - PRTMAC_HSEC_CTL_RX_PAUSE_SA_PART2 (0x001E32A0; RO)
	13.2.2.4.8 HSEC CONTROL Receive ENABLE_GPP - PRTMAC_HSEC_CTL_RX_ENABLE_GPP (0x001E34C0; RO)
	13.2.2.4.9 HSEC CONTROL Receive ENABLE_PPP - PRTMAC_HSEC_CTL_RX_ENABLE_PPP (0x001E35C0; RO)
	13.2.2.4.10 HSEC CONTROL Receive FORWARD_CONTROL - PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL (0x001E36C0; RO)
	13.2.2.4.11 HSEC CONTROL Transmit PAUSE_QUANTA - PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA[n] (0x001E36E0 + 0x20*n, n=0...8; RO)
	13.2.2.4.12 HSEC CONTROL Transmit PAUSE_REFRESH_TIMER - PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER[n] (0x001E3800 + 0x20*n, n=0...8; RO)
	13.2.2.4.13 HSEC CONTROL Transmit SA_GPP_PART1 - PRTMAC_HSEC_CTL_TX_SA_PART1 (0x001E3960; RO)
	13.2.2.4.14 HSEC CONTROL Transmit SA_GPP_PART2 - PRTMAC_HSEC_CTL_TX_SA_PART2 (0x001E3980; RO)
	13.2.2.4.15 MAC Rx Silent Drop Count - PRTMAC_RX_PKT_DRP_CNT (0x001E3C20; RW)
	13.2.2.4.16 MAC Rx Shift FC Quanta - PRTMAC_HSEC_CTL_RX_QUANTA_SHIFT (0x001E3C40; RW)
	13.2.2.4.17 MAC Rx Metadata Override Enable - PRTMAC_MD_OVRRIDE_ENABLE[n] (0x001E3C60 + 0x20*n, n=0...7; RO)
	13.2.2.4.18 MAC Rx Metadata Override Value - PRTMAC_MD_OVRRIDE_VAL[n] (0x001E3D60 +0x20*n, n=0...7; RO)
	13.2.2.4.19 Link Down Counter - PRTMAC_LINK_DOWN_COUNTER (0x001E47C0; RO)
	13.2.2.4.20 Link UP Counter Limit - PRTMAC_TX_LNK_UP_CNT (0x001E4840; RW)
	13.2.2.4.21 MAC Markers Counter Tx - PRTMAC_TX_CNT_MRKR (0x001E48C0; RW1C)
	13.2.2.4.22 MAC Markers Counter Rx - PRTMAC_RX_CNT_MRKR (0x001E48E0; RW1C)

	13.2.2.5 PF - Power Management Registers
	13.2.2.5.1 PME_TO Indication - GLGEN_PME_TO (0x000B81BC; RO)
	13.2.2.5.2 Global Power Mode Control S5 - GL_PWR_MODE_DIVIDE_S5_H_CTRL (0x000B81EC; RO)
	13.2.2.5.3 Global Power Mode Control PE - GL_PWR_MODE_DIVIDE_S0_CTRL_H_PECLK (0x000B81F0; RO)
	13.2.2.5.4 Global Power Mode Control Upper - GL_PWR_MODE_DIVIDE_S0_CTRL_H_UCLK (0x000B81F4; RO)
	13.2.2.5.5 Global Power Mode Control RXCTL - GL_PWR_MODE_DIVIDE_S0_CTRL_H_RXCTL (0x000B81F8; RO)
	13.2.2.5.6 Global Power Mode Control PSM - GL_PWR_MODE_DIVIDE_S0_CTRL_H_PSM (0x000B81FC; RO)
	13.2.2.5.7 Global Power Mode Control Lower - GL_PWR_MODE_DIVIDE_S0_CTRL_H_LCLK (0x000B8200; RO)
	13.2.2.5.8 Global Power Mode Control UANA - GL_PWR_MODE_DIVIDE_S0_CTRL_H_UANA (0x000B8208; RO)
	13.2.2.5.9 Global Power Mode Control - GL_PWR_MODE_CTL (0x000B820C; RO)
	13.2.2.5.10 Global Power Mode Control Defaults - GL_PWR_MODE_DIVIDE_CTRL_L_DEFAULT (0x000B8218; RO)
	13.2.2.5.11 Global Power Mode Control PE - GL_PWR_MODE_DIVIDE_S0_CTRL_M_PECLK (0x000B821C; RO)
	13.2.2.5.12 Global Power Mode Control PE - GL_PWR_MODE_DIVIDE_S0_CTRL_L_PECLK (0x000B8220; RO)
	13.2.2.5.13 Global Power Mode Control Upper - GL_PWR_MODE_DIVIDE_S0_CTRL_M_UCLK (0x000B8224; RO)
	13.2.2.5.14 Global Power Mode Control RXCTL - GL_PWR_MODE_DIVIDE_S0_CTRL_M_RXCTL (0x000B8228; RO)
	13.2.2.5.15 Global Power Mode Control PSM - GL_PWR_MODE_DIVIDE_S0_CTRL_M_PSM (0x000B822C; RO)
	13.2.2.5.16 Global Power Mode Control Lower - GL_PWR_MODE_DIVIDE_S0_CTRL_M_LCLK (0x000B8230; RO)
	13.2.2.5.17 Global Power Mode Control UANA - GL_PWR_MODE_DIVIDE_S0_CTRL_M_UANA (0x000B8234; RO)
	13.2.2.5.18 Global Power Mode Control Upper - GL_PWR_MODE_DIVIDE_S0_CTRL_L_UCLK (0x000B8238; RO)
	13.2.2.5.19 Global Power Mode Control RXCTL - GL_PWR_MODE_DIVIDE_S0_CTRL_L_RXCTL (0x000B823C; RO)
	13.2.2.5.20 Global Power Mode Control PSM - GL_PWR_MODE_DIVIDE_S0_CTRL_L_PSM (0x000B8240; RO)
	13.2.2.5.21 Global Power Mode Control Lower - GL_PWR_MODE_DIVIDE_S0_CTRL_L_LCLK (0x000B8244; RO)
	13.2.2.5.22 Global Power Mode Control UANA - GL_PWR_MODE_DIVIDE_S0_CTRL_L_UANA (0x000B8248; RO)
	13.2.2.5.23 Global Power Mode Control S5 - GL_PWR_MODE_DIVIDE_S5_L_CTRL (0x000B824C; RO)
	13.2.2.5.24 Global Power Mode Control S5 - GL_PWR_MODE_DIVIDE_S5_M_CTRL (0x000B8250; RO)
	13.2.2.5.25 Global Power Mode Control Defaults - GL_PWR_MODE_DIVIDE_CTRL_H_DEFAULT (0x000B825C; RO)
	13.2.2.5.26 Global Power Mode Control Defaults - GL_PWR_MODE_DIVIDE_CTRL_M_DEFAULT (0x000B8260; RO)
	13.2.2.5.27 Global Power Mode Control - GL_S5_PWR_MODE_EXIT_CTL (0x000B8270; RW)
	13.2.2.5.28 Energy Efficient Ethernet (EEE) Status - PRTPM_EEE_STAT (0x001E4320; RO)
	13.2.2.5.29 Energy Efficient Ethernet (EEE) Register - PRTPM_EEER (0x001E4360; RO)
	13.2.2.5.30 Energy Efficient Ethernet (EEE) Control - PRTPM_EEEC (0x001E4380; RO)
	13.2.2.5.31 EEE Rx LPI Count - PRTPM_RLPIC (0x001E43A0; RO)
	13.2.2.5.32 EEE Tx LPI Count - PRTPM_TLPIC (0x001E43C0; RO)
	13.2.2.5.33 EEE Tx Control - PRTPM_EEETXC (0x001E43E0; RO)
	13.2.2.5.34 EEE Tx FW Done - PRTPM_EEEFWD (0x001E4400; RO)

	13.2.2.6 PF - Wake-Up Registers
	13.2.2.6.1 Wake-Up Status Register - PFPM_WUS (0x0009DB80; RW1C)
	13.2.2.6.2 Wake-Up Filter Control Register - PFPM_WUFC (0x0009DC00; RW)
	13.2.2.6.3 Wake-Up Control Register - PFPM_WUC (0x0009DC80; RW)
	13.2.2.6.4 Wake-Up on MNG Control - GLPM_WUMC (0x0009DEE4; RO)
	13.2.2.6.5 APM Control Register - PFPM_APM (0x000B8080; RW)
	13.2.2.6.6 MAC Address Low - PRTPM_SAL[n] (0x001E3B20 + 0x20*n, n=0...3; RW)
	13.2.2.6.7 MAC Address High - PRTPM_SAH[n] (0x001E3BA0 + 0x20*n, n=0...3; RW)

	13.2.2.7 PF - NVM Registers
	13.2.2.7.1 HLP Auto-Load Done Register - GLNVM_AL_DONE_HLP (0x000824C4; RO)
	13.2.2.7.2 Unit Load Status - GLNVM_ULD (0x000B6008; RO)
	13.2.2.7.3 Protected CSR List - GLNVM_PROTCSR[n] (0x000B6010 + 0x4*n, n=0...59; RO)
	13.2.2.7.4 Global NVM General Status Register - GLNVM_GENS (0x000B6100; RO)
	13.2.2.7.5 Flash Access Register - GLNVM_FLA (0x000B6108; RO)
	13.2.2.7.6 Auto-Load Timers - GLNVM_ALTIMERS (0x000B6140; RO)
	13.2.2.7.7 Unit Load Timeout - GLNVM_ULT (0x000B6154; RO)

	13.2.2.8 PF - Analyzer Registers (Pre Parser)
	13.2.2.8.1 L2 Tag Data Low - GL_SWT_L2TAG0[n] (0x000492A8 + 0x4*n, n=0...7; RO)
	13.2.2.8.2 L2 Tag Data High - GL_SWT_L2TAG1[n] (0x000492C8 + 0x4*n, n=0...7; RO)
	13.2.2.8.3 L2 Tag Tx Insert Bytes - GL_SWT_L2TAGTXIB[n] (0x000492E8 + 0x4*n, n=0...7; RO)
	13.2.2.8.4 L2 Tag Rx Extract Bytes - GL_SWT_L2TAGRXEB[n] (0x00052000 + 0x4*n, n=0...7; RW)
	13.2.2.8.5 L2 Tag Control - GL_SWT_L2TAGCTRL[n] (0x001D2660 + 0x4*n, n=0...7; RW)

	13.2.2.9 PF - FlexiPipe Registers
	13.2.2.9.1 Force Profile ID - GL_PSTEXT_FORCE_PID[n] (0x0020E000 + 0x4*n, n=0...2; RO)
	13.2.2.9.2 Profile Level Selector - GL_PSTEXT_PLVL_SEL[n] (0x0020E00C + 0x4*n, n=0...2; RO)
	13.2.2.9.3 L1 Force CDID - GL_PSTEXT_FORCE_L1CDID[n] (0x0020E018 + 0x4*n, n=0...2; RO)
	13.2.2.9.4 L1 P2P Table Configuration Address - GL_PSTEXT_P2P_L1ADDR[n] (0x0020E024 + 0x4*n, n=0...2; RO)
	13.2.2.9.5 L1 P2P Table Configuration Data - GL_PSTEXT_P2P_L1DATA[n] (0x0020E030 + 0x4*n, n=0...2; RO)
	13.2.2.9.6 XLT0 Table Configuration Address - GL_PSTEXT_XLT0_L1ADDR[n] (0x0020E03C + 0x4*n, n=0...2; RO)
	13.2.2.9.7 XLT0 Table Configuration Data - GL_PSTEXT_XLT0_L1DATA[n] (0x0020E048 + 0x4*n, n=0...2; RO)
	13.2.2.9.8 L1 Bidirectional CTL - GL_PSTEXT_CDMD_L1SEL[n] (0x0020E054 + 0x4*n, n=0...2; RO)
	13.2.2.9.9 L1 Flag Select Table - GL_PSTEXT_FLGS_L1TBL[n] (0x0020E060 + 0x4*n, n=0...2; RO)
	13.2.2.9.10 L1 Flag Select Control (0-1) - GL_PSTEXT_FLGS_L1SEL0_1[n] (0x0020E06C + 0x4*n, n=0...2; RO)
	13.2.2.9.11 L1 Flag Select Control (2-3) - GL_PSTEXT_FLGS_L1SEL2_3[n] (0x0020E078 + 0x4*n, n=0...2; RO)
	13.2.2.9.12 L2 Configuration Table Address - GL_PSTEXT_CTLTBL_L2ADDR[n] (0x0020E084 + 0x4*n, n=0...2; RO)
	13.2.2.9.13 L2 Configuration Table Data - GL_PSTEXT_CTLTBL_L2DATA[n] (0x0020E090 + 0x4*n, n=0...2; RO)
	13.2.2.9.14 XLT1, XLT2 Partition Mode - GL_PSTEXT_L2PRTMOD[n] (0x0020E09C + 0x4*n, n=0...2; RO)
	13.2.2.9.15 XLT1 Table Configuration Address - GL_PSTEXT_XLT1_L2ADDR[n] (0x0020E0C0 + 0x4*n, n=0...2; RO)
	13.2.2.9.16 XLT1 Table Configuration Data - GL_PSTEXT_XLT1_L2DATA[n] (0x0020E0CC + 0x4*n, n=0...2; RO)
	13.2.2.9.17 XLT2 Table Configuration Address - GL_PSTEXT_XLT2_L2ADDR[n] (0x0020E0D8 + 0x4*n, n=0...2; RO)
	13.2.2.9.18 XLT2 Table Configuration Data - GL_PSTEXT_XLT2_L2DATA[n] (0x0020E0E4 + 0x4*n, n=0...2; RO)
	13.2.2.9.19 Profile ID Gen Key Type - GL_PSTEXT_PID_L2GKTYPE[n] (0x0020E0F0 + 0x4*n, n=0...2; RO)
	13.2.2.9.20 Profile Key Mask (LSB) - GL_PSTEXT_L2_PMASK0[n] (0x0020E0FC + 0x4*n, n=0...2; RO)
	13.2.2.9.21 Profile Key Mask (MSB) - GL_PSTEXT_L2_PMASK1[n] (0x0020E108 + 0x4*n, n=0...2; RO)
	13.2.2.9.22 TCAM Configuration (Address) - GL_PSTEXT_TCAM_L2ADDR[n] (0x0020E114 + 0x4*n, n=0...2; RO)
	13.2.2.9.23 TCAM Configuration LSB (Data) - GL_PSTEXT_TCAM_L2DATALSB[n] (0x0020E120 + 0x4*n, n=0...2; RO)
	13.2.2.9.24 TCAM Configuration MSB (Data+Mask) - GL_PSTEXT_TCAM_L2DATAMSB[n] (0x0020E12C + 0x4*n, n=0...2; RO)
	13.2.2.9.25 L2 Default Profile - GL_PSTEXT_DFLT_L2PRFL[n] (0x0020E138 + 0x4*n, n=0...2; RO)
	13.2.2.9.26 K2N Table Configuration Address - GL_PSTEXT_K2N_L2ADDR[n] (0x0020E144 + 0x4*n, n=0...2; RO)
	13.2.2.9.27 K2N Table Configuration Data - GL_PSTEXT_K2N_L2DATA[n] (0x0020E150 + 0x4*n, n=0...2; RO)
	13.2.2.9.28 K2N Table Configuration Address - GL_PSTEXT_N2N_L2ADDR[n] (0x0020E15C + 0x4*n, n=0...2; RW)
	13.2.2.9.29 K2N Table Configuration Data - GL_PSTEXT_N2N_L2DATA[n] (0x0020E168 + 0x4*n, n=0...2; RW)
	13.2.2.9.30 Profile Memory Configuration Data - GL_PSTEXT_PRFLM_DATA_0[n] (0x0020E174 + 0x4*n, n=0...63; RO)
	13.2.2.9.31 Profile Memory Configuration Data - GL_PSTEXT_PRFLM_DATA_1[n] (0x0020E274 + 0x4*n, n=0...63; RO)
	13.2.2.9.32 Profile Memory Configuration Data - GL_PSTEXT_PRFLM_DATA_2[n] (0x0020E374 + 0x4*n, n=0...63; RO)
	13.2.2.9.33 Profile Memory Configuration Control - GL_PSTEXT_PRFLM_CTRL[n] (0x0020E474 + 0x4*n, n=0...2; RO)
	13.2.2.9.34 PG L2 Flag15 Bitmask (LSB) - GL_PSTEXT_FL15_BMPLSB[n] (0x0020E480 + 0x4*n, n=0...2; RO)
	13.2.2.9.35 PG L2 Flag15 Bitmask (MSB) - GL_PSTEXT_FL15_BMPMSB[n] (0x0020E48C + 0x4*n, n=0...2; RO)
	13.2.2.9.36 Profile Key Mask (LSB) - GL_PSTEXT_L2_TMASK0[n] (0x0020E498 + 0x4*n, n=0...2; RO)
	13.2.2.9.37 Profile Key Mask (MSB) - GL_PSTEXT_L2_TMASK1[n] (0x0020E4A4 + 0x4*n, n=0...2; RO)
	13.2.2.9.38 Force Profile ID - GL_PREEXT_FORCE_PID[n] (0x0020F000 + 0x4*n, n=0...2; RO)
	13.2.2.9.39 Profile Level Selector - GL_PREEXT_PLVL_SEL[n] (0x0020F00C + 0x4*n, n=0...2; RO)
	13.2.2.9.40 L1 Force CDID - GL_PREEXT_FORCE_L1CDID[n] (0x0020F018 + 0x4*n, n=0...2; RO)
	13.2.2.9.41 L1 P2P Table Configuration Address - GL_PREEXT_P2P_L1ADDR[n] (0x0020F024 + 0x4*n, n=0...2; RO)
	13.2.2.9.42 L1 P2P Table Configuration Data - GL_PREEXT_P2P_L1DATA[n] (0x0020F030 + 0x4*n, n=0...2; RO)
	13.2.2.9.43 XLT0 Table Configuration Address - GL_PREEXT_XLT0_L1ADDR[n] (0x0020F03C + 0x4*n, n=0...2; RO)
	13.2.2.9.44 XLT0 Table Configuration Data - GL_PREEXT_XLT0_L1DATA[n] (0x0020F048 + 0x4*n, n=0...2; RO)
	13.2.2.9.45 L1 Bidirectional CTL - GL_PREEXT_CDMD_L1SEL[n] (0x0020F054 + 0x4*n, n=0...2; RO)
	13.2.2.9.46 L1 Flag Select Table - GL_PREEXT_FLGS_L1TBL[n] (0x0020F060 + 0x4*n, n=0...2; RO)
	13.2.2.9.47 L1 Flag Select Control (0-1) - GL_PREEXT_FLGS_L1SEL0_1[n] (0x0020F06C + 0x4*n, n=0...2; RO)
	13.2.2.9.48 L1 Flag Select Control (2-3) - GL_PREEXT_FLGS_L1SEL2_3[n] (0x0020F078 + 0x4*n, n=0...2; RO)
	13.2.2.9.49 L2 Configuration Table Address - GL_PREEXT_CTLTBL_L2ADDR[n] (0x0020F084 + 0x4*n, n=0...2; RO)
	13.2.2.9.50 L2 Configuration Table Data - GL_PREEXT_CTLTBL_L2DATA[n] (0x0020F090 + 0x4*n, n=0...2; RO)
	13.2.2.9.51 XLT1, XLT2 Partition Mode - GL_PREEXT_L2PRTMOD[n] (0x0020F09C + 0x4*n, n=0...2; RO)
	13.2.2.9.52 PG L2 CDID Bitmap (LSB) - GL_PREEXT_L2BMP0_3[n] (0x0020F0A8 + 0x4*n, n=0...2; RO)
	13.2.2.9.53 PG L2 CDID Bitmap (MSB) - GL_PREEXT_L2BMP4_7[n] (0x0020F0B4 + 0x4*n, n=0...2; RO)
	13.2.2.9.54 XLT1 Table Configuration Address - GL_PREEXT_XLT1_L2ADDR[n] (0x0020F0C0 + 0x4*n, n=0...2; RO)
	13.2.2.9.55 XLT1 Table Configuration Data - GL_PREEXT_XLT1_L2DATA[n] (0x0020F0CC + 0x4*n, n=0...2; RO)
	13.2.2.9.56 XLT2 Table Configuration Address - GL_PREEXT_XLT2_L2ADDR[n] (0x0020F0D8 + 0x4*n, n=0...2; RO)
	13.2.2.9.57 XLT2 Table Configuration Data - GL_PREEXT_XLT2_L2DATA[n] (0x0020F0E4 + 0x4*n, n=0...2; RO)
	13.2.2.9.58 Profile ID Gen Key Type - GL_PREEXT_PID_L2GKTYPE[n] (0x0020F0F0 + 0x4*n, n=0...2; RO)
	13.2.2.9.59 Profile Key Mask (LSB) - GL_PREEXT_L2_PMASK0[n] (0x0020F0FC + 0x4*n, n=0...2; RO)
	13.2.2.9.60 Profile Key Mask (MSB) - GL_PREEXT_L2_PMASK1[n] (0x0020F108 + 0x4*n, n=0...2; RO)
	13.2.2.9.61 TCAM Configuration (Address) - GL_PREEXT_TCAM_L2ADDR[n] (0x0020F114 + 0x4*n, n=0...2; RO)
	13.2.2.9.62 TCAM Configuration LSB (Data) - GL_PREEXT_TCAM_L2DATALSB[n] (0x0020F120 + 0x4*n, n=0...2; RO)
	13.2.2.9.63 TCAM Configuration MSB (Data+Mask) - GL_PREEXT_TCAM_L2DATAMSB[n] (0x0020F12C + 0x4*n, n=0...2; RO)
	13.2.2.9.64 L2 Default Profile - GL_PREEXT_DFLT_L2PRFL[n] (0x0020F138 + 0x4*n, n=0...2; RO)
	13.2.2.9.65 K2N Table Configuration Address - GL_PREEXT_K2N_L2ADDR[n] (0x0020F144 + 0x4*n, n=0...2; RO)
	13.2.2.9.66 K2N Table Configuration Data - GL_PREEXT_K2N_L2DATA[n] (0x0020F150 + 0x4*n, n=0...2; RO)
	13.2.2.9.67 K2N Table Configuration Address - GL_PREEXT_N2N_L2ADDR[n] (0x0020F15C + 0x4*n, n=0...2; RW)
	13.2.2.9.68 K2N Table Configuration Data - GL_PREEXT_N2N_L2DATA[n] (0x0020F168 + 0x4*n, n=0...2; RW)
	13.2.2.9.69 Profile Key Mask (LSB) - GL_PREEXT_L2_TMASK0[n] (0x0020F498 + 0x4*n, n=0...2; RO)
	13.2.2.9.70 Profile Key Mask (MSB) - GL_PREEXT_L2_TMASK1[n] (0x0020F4A4 + 0x4*n, n=0...2; RO)
	13.2.2.9.71 Force Profile ID - GL_ACLEXT_FORCE_PID[n] (0x00210000 + 0x4*n, n=0...2; RO)
	13.2.2.9.72 Profile Level Selector - GL_ACLEXT_PLVL_SEL[n] (0x0021000C + 0x4*n, n=0...2; RO)
	13.2.2.9.73 L1 Force CDID - GL_ACLEXT_FORCE_L1CDID[n] (0x00210018 + 0x4*n, n=0...2; RO)
	13.2.2.9.74 L1 P2P Table Configuration Address - GL_ACLEXT_P2P_L1ADDR[n] (0x00210024 + 0x4*n, n=0...2; RO)
	13.2.2.9.75 L1 P2P Table Configuration Data - GL_ACLEXT_P2P_L1DATA[n] (0x00210030 + 0x4*n, n=0...2; RO)
	13.2.2.9.76 XLT0 Table Configuration Address - GL_ACLEXT_XLT0_L1ADDR[n] (0x0021003C + 0x4*n, n=0...2; RO)
	13.2.2.9.77 XLT0 Table Configuration Data - GL_ACLEXT_XLT0_L1DATA[n] (0x00210048 + 0x4*n, n=0...2; RO)
	13.2.2.9.78 L1 Bidirectional CTL - GL_ACLEXT_CDMD_L1SEL[n] (0x00210054 + 0x4*n, n=0...2; RO)
	13.2.2.9.79 L1 Flag Select Table - GL_ACLEXT_FLGS_L1TBL[n] (0x00210060 + 0x4*n, n=0...2; RO)
	13.2.2.9.80 L1 Flag Select Control (0-1) - GL_ACLEXT_FLGS_L1SEL0_1[n] (0x0021006C + 0x4*n, n=0...2; RO)
	13.2.2.9.81 L1 Flag Select Control (2-3) - GL_ACLEXT_FLGS_L1SEL2_3[n] (0x00210078 + 0x4*n, n=0...2; RO)
	13.2.2.9.82 L2 Configuration Table Address - GL_ACLEXT_CTLTBL_L2ADDR[n] (0x00210084 + 0x4*n, n=0...2; RO)
	13.2.2.9.83 L2 Configuration Table Data - GL_ACLEXT_CTLTBL_L2DATA[n] (0x00210090 + 0x4*n, n=0...2; RO)
	13.2.2.9.84 XLT1, XLT2 Partition Mode - GL_ACLEXT_L2PRTMOD[n] (0x0021009C + 0x4*n, n=0...2; RO)
	13.2.2.9.85 PG L2 CDID Bitmap (LSB) - GL_ACLEXT_L2BMP0_3[n] (0x002100A8 + 0x4*n, n=0...2; RO)
	13.2.2.9.86 PG L2 CDID Bitmap (MSB) - GL_ACLEXT_L2BMP4_7[n] (0x002100B4 + 0x4*n, n=0...2; RO)
	13.2.2.9.87 XLT1 Table Configuration Address - GL_ACLEXT_XLT1_L2ADDR[n] (0x002100C0 + 0x4*n, n=0...2; RO)
	13.2.2.9.88 XLT1 Table Configuration Data - GL_ACLEXT_XLT1_L2DATA[n] (0x002100CC + 0x4*n, n=0...2; RO)
	13.2.2.9.89 XLT2 Table Configuration Address - GL_ACLEXT_XLT2_L2ADDR[n] (0x002100D8 + 0x4*n, n=0...2; RO)
	13.2.2.9.90 XLT2 Table Configuration Data - GL_ACLEXT_XLT2_L2DATA[n] (0x002100E4 + 0x4*n, n=0...2; RO)
	13.2.2.9.91 Profile ID Gen Key Type - GL_ACLEXT_PID_L2GKTYPE[n] (0x002100F0 + 0x4*n, n=0...2; RO)
	13.2.2.9.92 Profile Key Mask (LSB) - GL_ACLEXT_L2_PMASK0[n] (0x002100FC + 0x4*n, n=0...2; RO)
	13.2.2.9.93 Profile Key Mask (MSB) - GL_ACLEXT_L2_PMASK1[n] (0x00210108 + 0x4*n, n=0...2; RO)
	13.2.2.9.94 TCAM Configuration (Address) - GL_ACLEXT_TCAM_L2ADDR[n] (0x00210114 + 0x4*n, n=0...2; RO)
	13.2.2.9.95 TCAM Configuration LSB (Data) - GL_ACLEXT_TCAM_L2DATALSB[n] (0x00210120 + 0x4*n, n=0...2; RO)
	13.2.2.9.96 TCAM Configuration MSB (Data) - GL_ACLEXT_TCAM_L2DATAMSB[n] (0x0021012C + 0x4*n, n=0...2; RO)
	13.2.2.9.97 L2 Default Profile - GL_ACLEXT_DFLT_L2PRFL[n] (0x00210138 + 0x4*n, n=0...2; RO)
	13.2.2.9.98 K2N Table Configuration Address - GL_ACLEXT_K2N_L2ADDR[n] (0x00210144 + 0x4*n, n=0...2; RO)
	13.2.2.9.99 K2N Table Configuration Data - GL_ACLEXT_K2N_L2DATA[n] (0x00210150 + 0x4*n, n=0...2; RO)
	13.2.2.9.100 K2N Table Configuration Address - GL_ACLEXT_N2N_L2ADDR[n] (0x0021015C + 0x4*n, n=0...2; RW)
	13.2.2.9.101 K2N Table Configuration Data - GL_ACLEXT_N2N_L2DATA[n] (0x00210168 + 0x4*n, n=0...2; RW)
	13.2.2.9.102 Profile Key Mask (LSB) - GL_ACLEXT_L2_TMASK0[n] (0x00210498 + 0x4*n, n=0...2; RO)
	13.2.2.9.103 Profile Key Mask (MSB) - GL_ACLEXT_L2_TMASK1[n] (0x002104A4 + 0x4*n, n=0...2; RO)
	13.2.2.9.104 L2 Default Profile - GL_ACLEXT_DFLT_L2PRFL_ACL[n] (0x00393800 + 0x4*n, n=0...2; RO)
	13.2.2.9.105 Tx Scheduling Correction Control - GLFLXP_TX_SCHED_CORRECT[n,m] (0x00458000 + 0x4*n + 0x100*m, n=0...63, m=0...31; RO)
	13.2.2.9.106 ProtIDs for Creating RRX CMD Offsets - GLFLXP_RX_CMD_PROTIDS[n,m] (0x0045A000 + 0x4*n + 0x400*m, n=0...255, m=0...5; RO)
	13.2.2.9.107 PTYPE_10b to PTYPE_8b Translation - GLFLXP_PTYPE_TRANSLATION[n] (0x0045C000 + 0x4*n, n=0...255; RO)
	13.2.2.9.108 LX Prot & Index for Rx CMD - GLFLXP_RX_CMD_LX_PROT_IDX[n] (0x0045C400 + 0x4*n, n=0...255; RO)
	13.2.2.9.109 RXDID FlexiWord 0 Control - GLFLXP_RXDID_FLX_WRD_0[n] (0x0045C800 + 0x4*n, n=0...63; RO)
	13.2.2.9.110 RXDID FlexiWord 1 Control - GLFLXP_RXDID_FLX_WRD_1[n] (0x0045C900 + 0x4*n, n=0...63; RO)
	13.2.2.9.111 RXDID FlexiWord 2 Control - GLFLXP_RXDID_FLX_WRD_2[n] (0x0045CA00 + 0x4*n, n=0...63; RO)
	13.2.2.9.112 RXDID FlexiWord 3 Control - GLFLXP_RXDID_FLX_WRD_3[n] (0x0045CB00 + 0x4*n, n=0...63; RO)
	13.2.2.9.113 RXDID FlexiWord 4 Control - GLFLXP_RXDID_FLX_WRD_4[n] (0x0045CC00 + 0x4*n, n=0...63; RO)
	13.2.2.9.114 RXDID FlexiWord 5 Control - GLFLXP_RXDID_FLX_WRD_5[n] (0x0045CD00 + 0x4*n, n=0...63; RO)
	13.2.2.9.115 RXDID FlexiFlags Control - GLFLXP_RXDID_FLAGS[n,m] (0x0045D000 + 0x4*n + 0x100*m, n=0...63, m=0...4; RO)
	13.2.2.9.116 RXDID Flags1 Override Control - GLFLXP_RXDID_FLAGS1_OVERRIDE[n] (0x0045D600 + 0x4*n, n=0...63; RO)
	13.2.2.9.117 Queue Context Flex Extension - QRXFLXP_CNTXT[QRX] (0x00480000 + 0x4*QRX, QRX=0...2047; RW)

	13.2.2.10 PF - Parser Registers
	13.2.2.10.1 PRS Balancer Config - GL_PRS_RX_SIZE_CTRL (0x00200004; RO)
	13.2.2.10.2 Rx-Query Pipe-Status Init for Word 0-6 - GL_PRS_RX_PIPE_INIT0[n] (0x0020000C + 0x4*n, n=0...6; RO)
	13.2.2.10.3 Rx-Query Pipe-Status Init for Word 7 - GL_PRS_RX_PIPE_INIT1 (0x00200028; RO)
	13.2.2.10.4 Rx-Query Pipe-Status Init for Word 8 - GL_PRS_RX_PIPE_INIT2 (0x0020002C; RO)
	13.2.2.10.5 XLR Marker Trigger - GL_XLR_MARKER_TRIG_RCU_PRS (0x002001C0; RO)
	13.2.2.10.6 QH Removal Marker Trigger - GL_QH_MARKER_TRIG_RCU_PRS[n] (0x002001C4 + 0x4*n, n=0...3; RO)
	13.2.2.10.7 COTF Marker Trigger - GL_COTF_MARKER_TRIG_RCU_PRS[n] (0x002001D4 + 0x4*n, n=0...7; RO)
	13.2.2.10.8 XLR Debug Markers Status - GL_XLR_MARKER_STATUS[n] (0x002001F4 + 0x4*n, n=0...1; RO)
	13.2.2.10.9 QH Debug Markers Status - GL_QH_MARKER_STATUS (0x002001FC; RO)
	13.2.2.10.10 COTF Debug Markers Status - GL_COTF_MARKER_STATUS (0x00200200; RO)
	13.2.2.10.11 PRS Markers Error Indication (Marker FIFO Full) - GL_PRS_MARKER_ERROR (0x00200204; RO)
	13.2.2.10.12 PRS Marker FIFO Read Access - GL_XLR_MARKER_LOG_RCU_PRS[n] (0x00200208 + 0x4*n, n=0...63; RO)
	13.2.2.10.13 Rx ANA CSR Access Control - GL_RPRS_ANA_CSR_CTRL (0x00200708; RO)
	13.2.2.10.14 Pipe Monitor Threshold - GL_TPRS_PM_THR (0x00202000; RO)
	13.2.2.10.15 MNG Pipe Monitor Threshold - GL_TPRS_MNG_PM_THR (0x00202004; RO)
	13.2.2.10.16 Pipe Monitor Counters Status - GL_TPRS_PM_CNT[n] (0x00202008 + 0x4*n, n=0...1; RO)
	13.2.2.10.17 Tx-Query Min/Max Size Control - GL_PRS_TX_SIZE_CTRL (0x00202014; RO)
	13.2.2.10.18 Tx-Query Pipe-Status Init for Word 0-6 - GL_PRS_TX_PIPE_INIT0[n] (0x00202018 + 0x4*n, n=0...6; RO)
	13.2.2.10.19 Tx-Query Pipe-Status Init for Word 7 - GL_PRS_TX_PIPE_INIT1 (0x00202034; RO)
	13.2.2.10.20 Tx-Query Pipe-Status Init for Word 8 - GL_PRS_TX_PIPE_INIT2 (0x00202038; RO)
	13.2.2.10.21 Tx ANA CSR Access Control - GL_TPRS_ANA_CSR_CTRL (0x00202100; RO)
	13.2.2.10.22 XLR Marker Trigger PE - GL_XLR_MARKER_TRIG_PE (0x005008C0; RO)

	13.2.2.11 PF - Switch Registers
	13.2.2.11.1 Port - TC Transmit UP Replacement - PRT_TCTUPR[n] (0x00040840 + 0x4*n, n=0...31; RW)
	13.2.2.11.2 IPsec Function limiting - GL_SWT_FUNCFILT (0x001D2698; RO)
	13.2.2.11.3 Large Action - Single Action Offset - GL_SWT_LAT_SINGLE (0x00204000; RO)
	13.2.2.11.4 Large Action - Double Action Offset - GL_SWT_LAT_DOUBLE (0x00204004; RO)
	13.2.2.11.5 Large Action - Quad Action Offset - GL_SWT_LAT_QUAD (0x00204008; RO)
	13.2.2.11.6 Replication Table Control - EMP_SWT_REPIND (0x0020401C; RO)
	13.2.2.11.7 Prune Table Control - EMP_SWT_PRUNIND (0x00204020; RO)
	13.2.2.11.8 Unallowed Override Attempt Count - GL_OVERRIDEC (0x002040A4; RWC)
	13.2.2.11.9 Switch Metadata Priority - GL_SWT_MD_PRI (0x002040AC; RO)
	13.2.2.11.10 Storm Control - Multicast Current Count - PRT_SWT_MSCCNT (0x00204100; RWC)
	13.2.2.11.11 Port - Store Bad Packets VSI - PRT_SBPVSI (0x00204120; RO)
	13.2.2.11.12 Storm Control - Status - PRT_SCSTS (0x00204140; RO)
	13.2.2.11.13 Storm Control - Broadcast Current Count - PRT_SWT_BSCCNT (0x00204160; RWC)
	13.2.2.11.14 Storm Control - Broadcast Threshold - PRT_SWT_BSCTRH (0x00204180; RO)
	13.2.2.11.15 Storm Control - Multicast Threshold - PRT_SWT_MSCTRH (0x002041C0; RO)
	13.2.2.11.16 Storm Control - Basic Interval - PRT_SWT_SCBI (0x002041E0; RO)
	13.2.2.11.17 Storm Control - Control Register - PRT_SWT_SCCRL (0x00204200; RO)
	13.2.2.11.18 Mirror - LAN Port Ingress Rule - PRT_SWT_MIRIG (0x00204280; RO)
	13.2.2.11.19 Mirror - LAN Port Egress Rule - PRT_SWT_MIREG (0x002042A0; RO)
	13.2.2.11.20 Mirror - Target VSI - GL_SWT_MIRTARVSI[n] (0x00204500 + 0x4*n, n=0...63; RO)
	13.2.2.11.21 SWID Stat Block ID - GLSWID_STAT_BLOCK[n] (0x0020A1A4 + 0x4*n, n=0...255; RO)
	13.2.2.11.22 Switch Recipes Used - GLSWT_ACT_RESP_0 (0x0020A5A4; RO)
	13.2.2.11.23 Switch Recipes Used - GLSWT_ACT_RESP_1 (0x0020A5A8; RO)
	13.2.2.11.24 Throughput Counters Config - GL_PLG_AVG_CALC_CFG (0x0020A5AC; RW)
	13.2.2.11.25 Throughput Counters Status - GL_PLG_AVG_CALC_ST (0x0020A5B0; RO)
	13.2.2.11.26 Hardware Arb Control - GLSWT_ARB_MODE (0x0020A674; RW)
	13.2.2.11.27 Recipe Data - GL_PRE_CFG_DATA[n] (0x00214074 + 0x4*n, n=0...6; RO)
	13.2.2.11.28 Recipe Command - GL_PRE_CFG_CMD (0x00214090; RO)
	13.2.2.11.29 Virtual Port Switch ID - GL_VP_SWITCHID[n] (0x00214094 + 0x4*n, n=0...31; RO)
	13.2.2.11.30 SWID Field Vector Index - GL_SWT_SWIDFVIDX (0x00214114; RO)
	13.2.2.11.31 FW Config Status - GL_SWT_FW_STS[n] (0x00216000 + 0x4*n, n=0...5; RO)

	13.2.2.12 PF - VSI Context Registers
	13.2.2.12.1 VSI Tag Insert Register - First Tag - VSI_TIR_0[VSI] (0x00041000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.2 VSI Tag Insert Register - Second Tag - VSI_TIR_1[VSI] (0x00042000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.3 VSI Tag Insert Register - Third Tag - VSI_TIR_2[VSI] (0x00043000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.4 VSI Tag Alternate Insert Register - VSI_TAIR[VSI] (0x00044000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.5 VSI Tag Accept Register - VSI_TAR[VSI] (0x00045000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.6 VSI L2 Tx Tags Control - VSI_L2TAGSTXVALID[VSI] (0x00046000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.7 VSI Transmit UP Replacement - VSI_TUPR[VSI] (0x00047000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.8 VSI Transmit UP Inner to Outer Mapping - VSI_TUPIOM[VSI] (0x00048000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.9 VSI Receive UP Replacement - VSI_RUPR[VSI] (0x00050000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.10 VSI Tag Strip Register - VSI_TSR[VSI] (0x00051000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.11 PASID Context - VSI_PASID[VSI] (0x0009C000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.12 VSI to Function Mapping Multicast - VSI_VSI2F[VSI] (0x001D0000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.13 VSI Rx Switch Control - VSI_RXSWCTRL[VSI] (0x00205000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.14 Mirror - Rx Rules VSIs - VSI_SWT_MIREG[VSI] (0x00207000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.15 Mirror - Tx Rules VSIs - VSI_SWT_MIRIG[VSI] (0x00208000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.16 VSI Source Switch Control - VSI_SRCSWCTRL[VSI] (0x00209000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.17 Source VSI Switch ID - VSI_SWITCHID[VSI] (0x00215000 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.12.18 VSI Classification Filter - Hash Key - VSIQF_HKEY[n,VSI] (0x00400000 + 0x1000*n + 0x4*VSI, n=0...12, VSI=0...767; RW)
	13.2.2.12.19 VSI Classification Filter - Hash Control - VSIQF_HASH_CTL[VSI] (0x0040D000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.20 VSI Classification Filter - FD Control 1 - VSIQF_FD_CTL1[VSI] (0x00411000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.21 VSI Classification Filter - PE Control 1 - VSIQF_PE_CTL1[VSI] (0x00414000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.22 VSI Classification Filter - Hash LUT - VSIQF_HLUT[n,VSI] (0x00420000 + 0x1000*n + 0x4*VSI, n=0...15, VSI=0...767; RW)
	13.2.2.12.23 VSI Classification Filter - Receive TC Queue Regions - VSIQF_TC_REGION[n,VSI] (0x00448000 + 0x1000*n + 0x4*VSI, n=0...3, VSI=0...767; RW)
	13.2.2.12.24 VSI Classification Filter - FD Default Action - VSIQF_FD_DFLT[VSI] (0x00457000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.25 VSI Classification Filter - FD VSI Space Sizes - VSIQF_FD_SIZE[VSI] (0x00462000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.12.26 VSI Classification Filter - FD VSI Space Counters - VSIQF_FD_CNT[VSI] (0x00464000 + 0x4*VSI, VSI=0...767; RW)

	13.2.2.13 PF - ACL Registers
	13.2.2.13.1 Configuration Access Command - GL_ACL_ACCESS_CMD (0x00391000; RO)
	13.2.2.13.2 Configuration Access Status - GL_ACL_ACCESS_STATUS (0x00391004; RO)
	13.2.2.13.3 Byte and Word Selection Bases Select per Profile - GL_ACL_PROFILE_BWSB_SEL[n] (0x00391008 + 0x4*n, n=0...31; RO)
	13.2.2.13.4 DWord Selection Base Select per Profile - GL_ACL_PROFILE_DWSB_SEL[n] (0x00391088 + 0x4*n, n=0...15; RO)
	13.2.2.13.5 Profile Assignment to Scenario - GL_ACL_PROFILE_PF_CFG[n] (0x003910C8 + 0x4*n, n=0...7; RO)
	13.2.2.13.6 Range Checker Configuration per Profile - GL_ACL_PROFILE_RC_CFG[n] (0x003910E8 + 0x4*n, n=0...7; RO)
	13.2.2.13.7 Word Selection Base Range Checked Fields Masking per Profile - GL_ACL_PROFILE_RCF_MASK[n] (0x00391108 + 0x4*n, n=0...7; RO)
	13.2.2.13.8 Default Action Array - GL_ACL_DEFAULT_ACT[n] (0x00391168 + 0x4*n, n=0...15; RO)
	13.2.2.13.9 VSI Dependent ACL Configuration - VSI_ACL_DEF_SEL[VSI] (0x00391800 + 0x4*VSI, VSI=0...767; RO)
	13.2.2.13.10 GL_ACL_CHICKEN_REGISTER - GL_ACL_CHICKEN_REGISTER (0x00393810; RO)
	13.2.2.13.11 TCAM Write Key Low - GL_ACL_TCAM_KEY_L (0x00393814; RO)
	13.2.2.13.12 TCAM Write Key High - GL_ACL_TCAM_KEY_H (0x00393818; RO)
	13.2.2.13.13 TCAM Write Key Invert Low - GL_ACL_TCAM_KEY_INV_L (0x0039381C; RO)
	13.2.2.13.14 TCAM Write Key Invert High - GL_ACL_TCAM_KEY_INV_H (0x00393820; RO)
	13.2.2.13.15 Action Write Data - GL_ACL_ACTMEM_ACT[n] (0x00393824 + 0x4*n, n=0...1; RO)
	13.2.2.13.16 Scenario Configuration Write Data Low Part - GL_ACL_SCENARIO_CFG_L[n] (0x0039382C + 0x4*n, n=0...15; RO)
	13.2.2.13.17 Scenario Configuration Write Data High Part - GL_ACL_SCENARIO_CFG_H[n] (0x0039386C + 0x4*n, n=0...15; RO)
	13.2.2.13.18 Scenario Action RAM Configuration Write Data - GL_ACL_SCENARIO_ACT_CFG[n] (0x003938AC + 0x4*n, n=0...19; RO)

	13.2.2.14 PF - Rx Filters Registers
	13.2.2.14.1 Global Classification Filter - PE Table Clear - GLQF_PETABLE_CLR[n] (0x000AA078 + 0x4*n, n=0...1; RW)
	13.2.2.14.2 PF Classification Filter - PE Field Vector Bitmap Enable - GLQF_PE_FVE (0x0020E514; RW)
	13.2.2.14.3 Global Classification Filter - Hash Input Set - GLQF_HINSET[n,m] (0x0040E000 + 0x4*n + 0x200*m, n=0...127, m=0...5; RW)
	13.2.2.14.4 Global Classification Filter - Symmetric Hash - GLQF_HSYMM[n,m] (0x0040F000 + 0x4*n + 0x200*m, n=0...127, m=0...5; RW)
	13.2.2.14.5 Global Classification Filter - Hash Mask - GLQF_HMASK[n] (0x0040FC00 + 0x4*n, n=0...31; RW)
	13.2.2.14.6 Global Classification Filter - Hash Mask Select - GLQF_HMASK_SEL[n] (0x00410000 + 0x4*n, n=0...127; RW)
	13.2.2.14.7 Global Classification Filter - FD Mask Select - GLQF_FDMASK_SEL[n] (0x00410400 + 0x4*n, n=0...127; RW)
	13.2.2.14.8 Global Classification Filter - FD Mask - GLQF_FDMASK[n] (0x00410800 + 0x4*n, n=0...31; RW)
	13.2.2.14.9 Global Classification Filter - FD Input Set - GLQF_FDINSET[n,m] (0x00412000 + 0x4*n + 0x200*m, n=0...127, m=0...5; RW)
	13.2.2.14.10 Global Classification Filter - FD SWAP - GLQF_FDSWAP[n,m] (0x00413000 + 0x4*n + 0x200*m, n=0...127, m=0...5; RW)
	13.2.2.14.11 Global Classification Filter - PE Input Set - GLQF_PEINSET[n,m] (0x00415000 + 0x4*n + 0x80*m, n=0...31, m=0...5; RW)
	13.2.2.14.12 Global Classification Filter - PE Mask - GLQF_PEMASK[n] (0x00415400 + 0x4*n, n=0...15; RW)
	13.2.2.14.13 Global Classification Filter - PE Mask Select - GLQF_PEMASK_SEL[n] (0x00415500 + 0x4*n, n=0...31; RW)
	13.2.2.14.14 PF Classification Filter - Hash LUT - PFQF_HLUT[n,PF] (0x00430000 + 0x40*n + 0x4*PF, n=0...511, PF=0...7; RW)
	13.2.2.14.15 Global Classification Filter - Hash LUT - GLQF_HLUT[n,m] (0x00438000 + 0x4*n + 0x200*m, n=0...127, m=0...15; RW)
	13.2.2.14.16 PF Classification Filter - FD Enable - PFQF_FD_ENA (0x0043A000; RW)
	13.2.2.14.17 PF Classification Filter - PE Enable - PFQF_PE_FILTERING_ENA (0x0043A080; RW)
	13.2.2.14.18 Global Classification Filter - Packet Profile to Hash TC Region Mapping - GLQF_PROF2TC[n,m] (0x0044D000 + 0x4*n + 0x200*m, n=0...127, m=0...3; RW)
	13.2.2.14.19 Global Classification Filter Accelerated Port Bit Vector - GLQF_APBVT[n] (0x00450000 + 0x4*n, n=0...2047; RW)
	13.2.2.14.20 Global Classification Filter - FD Profile Evict Enable - GLQF_FDEVICTENA[n] (0x00452000 + 0x4*n, n=0...3; RW)
	13.2.2.14.21 PF Classification Filter - QH TC Enable - PFQF_PE_TC_CTL (0x00452080; RW)
	13.2.2.14.22 Global Classification Filter - PE Control 2 - GLQF_PE_CTL2[n] (0x00455200 + 0x4*n, n=0...31; RW)
	13.2.2.14.23 Global Classification Filter - Hash LUT Size - GLQF_HLUT_SIZE[n] (0x00455400 + 0x4*n, n=0...15; RW)
	13.2.2.14.24 PF Classification Filter - Hash LUT Size - PFQF_HLUT_SIZE (0x00455480; RW)
	13.2.2.14.25 Global PE APBVT LAN Packet Counter - GLQF_PE_APBVT_CNT (0x00455500; RW)
	13.2.2.14.26 VF Classification Filter - PE Enable - VPQF_PE_FILTERING_ENA[VF] (0x00455800 + 0x4*VF, VF=0...255; RW)
	13.2.2.14.27 Global Classification Filter - Hash Key - GLQF_HKEY[n] (0x00456000 + 0x4*n, n=0...12; RW)
	13.2.2.14.28 Global Classification Filter Control - GLQF_FD_CTL (0x00460000; RW)
	13.2.2.14.29 Global Classification Filter - FD Space Size - GLQF_FD_SIZE (0x00460010; RW)
	13.2.2.14.30 Global Classification Filter - FD Space Counters - GLQF_FD_CNT (0x00460018; RW)
	13.2.2.14.31 PF Classification Filter - FD Space Sizes - PFQF_FD_SIZE (0x00460100; RW)
	13.2.2.14.32 Global Classification Filter - FD PF Space Counter - PFQF_FD_CNT (0x00460180; RW)
	13.2.2.14.33 Global Classification Filter - FD PF Space Counter - PFQF_FD_SUBTRACT (0x00460200; RW)
	13.2.2.14.34 PF Classification Filter - PE Control - PFQF_PE_CTL1 (0x00470000; RW)
	13.2.2.14.35 PF Classification Filter - PE Control - PFQF_PE_CTL2 (0x00470040; RW)
	13.2.2.14.36 PF Free List Head Array - PFQF_PE_FLHD (0x00470100; RW)
	13.2.2.14.37 PF Classification Filter PE Filter Counter 0 - PFQF_PECNT_0 (0x00470200; RW)
	13.2.2.14.38 PF Classification Filter PE Filter Counter 1 - PFQF_PECNT_1 (0x00470300; RW)
	13.2.2.14.39 PF Control Register for the Statistic Counter - PFQF_PE_ST_CTL (0x00470400; RW)
	13.2.2.14.40 PF PE Classification Filter Collision Counter 0 - PFQF_PE_CLSN0 (0x00470480; RCW)
	13.2.2.14.41 PF PE Classification Filter Collision Counter 1 - PFQF_PE_CLSN1 (0x00470500; RCW)
	13.2.2.14.42 Global PE Classification Filter Outstanding Request Counter - GLQF_PE_OSR_STS (0x00471040; RCW)
	13.2.2.14.43 QH ADD/REM Commands Status - GLQF_PE_CMD (0x00471080; RW)
	13.2.2.14.44 Global Classification Filter Control - GLQF_PE_CTL (0x004710C0; RW)
	13.2.2.14.45 VF Free List Head Array - VPQF_PE_FLHD[VF] (0x00472000 + 0x4*VF, VF=0...255; RW)
	13.2.2.14.46 VF Classification Filter PE Filter Counter 0 - VPQF_PECNT_0[VF] (0x00472800 + 0x4*VF, VF=0...255; RW)
	13.2.2.14.47 VF Classification Filter PE Filter Counter 1 - VPQF_PECNT_1[VF] (0x00473000 + 0x4*VF, VF=0...255; RW)
	13.2.2.14.48 VF Classification Filter - PE Control - VPQF_PE_CTL1[VF] (0x00474000 + 0x4*VF, VF=0...255; RW)
	13.2.2.14.49 PF Classification Filter - PE Control - VPQF_PE_CTL2[VF] (0x00474800 + 0x4*VF, VF=0...255; RW)

	13.2.2.15 PF - Interrupt Registers
	13.2.2.15.1 PF General Purpose IO Interrupt Enablement - PFINT_GPIO_ENA (0x00088080; RW)
	13.2.2.15.2 EMP General Purpose IO Interrupt Enablement - EMPINT_GPIO_ENA (0x000880C0; RW)
	13.2.2.15.3 VF Vector Allocation - VPINT_ALLOC_PCI[VF] (0x0009D000 + 0x4*VF, VF=0...255; RW)
	13.2.2.15.4 PF Vector Allocation - PCI - PFINT_ALLOC_PCI (0x0009D800; RW)
	13.2.2.15.5 Transmit Queue Interrupt Cause Control - QINT_TQCTL[DBQM] (0x00140000 + 0x4*DBQM, DBQM=0...16383; RW)
	13.2.2.15.6 Receive Queue Interrupt Cause Control - QINT_RQCTL[QRX] (0x00150000 + 0x4*QRX, QRX=0...2047; RW)
	13.2.2.15.7 Global Interrupt Throttling - GLINT_ITR[n,INT] (0x00154000 + 0x2000*n + 0x4*INT, n=0...2, INT=0...2047; RW)
	13.2.2.15.8 Global Interrupt Rate Limit - GLINT_RATE[INT] (0x0015A000 + 0x4*INT, INT=0...2047; RW)
	13.2.2.15.9 Global PE Completion Event Queue Interrupt Cause Control - GLINT_CEQCTL[INT] (0x0015C000 + 0x4*INT, INT=0...2047; RW)
	13.2.2.15.10 Global Interrupt Dynamic Control - GLINT_DYN_CTL[INT] (0x00160000 + 0x4*INT, INT=0...2047; RW)
	13.2.2.15.11 Global Interrupt Vector 2 Function Allocation - GLINT_VECT2FUNC[INT] (0x00162000 + 0x4*INT, INT=0...2047; RW)
	13.2.2.15.12 VF Mailbox Queue Mapping to Interrupt Control - VPINT_MBX_CTL[VSI] (0x0016A000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.15.13 VF Mailbox Queue Mapping to Interrupt Control - VPINT_MBX_CPM_CTL[VP128] (0x0016B000 + 0x4*VP128, VP128=0...127; RW)
	13.2.2.15.14 VF HLP Mailbox Queue Mapping to Interrupt Control - VPINT_MBX_HLP_CTL[VP16] (0x0016B200 + 0x4*VP16, VP16=0...15; RW)
	13.2.2.15.15 VF PSM Mailbox Queue Mapping to Interrupt Control - VPINT_MBX_PSM_CTL[VP16] (0x0016B240 + 0x4*VP16, VP16=0...15; RW)
	13.2.2.15.16 PF Mailbox Queue Mapping to Interrupt Control - PFINT_MBX_CTL (0x0016B280; RW)
	13.2.2.15.17 PF0 CPM Mailbox Queue Mapping to Interrupt Control - PF0INT_MBX_CPM_CTL (0x0016B2C0; RW)
	13.2.2.15.18 PF0 HLP Mailbox Queue Mapping to Interrupt Control - PF0INT_MBX_HLP_CTL (0x0016B2C4; RW)
	13.2.2.15.19 PF0 PSM Mailbox Queue Mapping to Interrupt Control - PF0INT_MBX_PSM_CTL (0x0016B2C8; RW)
	13.2.2.15.20 PF0 CPM SB Queue Mapping to Interrupt Control - PF0INT_SB_CPM_CTL (0x0016B2CC; RW)
	13.2.2.15.21 VF CPM SB Queue Mapping to Interrupt Control - VPINT_SB_CPM_CTL[VP128] (0x0016B400 + 0x4*VP128, VP128=0...127; RW)
	13.2.2.15.22 PF SB Queue Mapping to Interrupt Control - PFINT_SB_CTL (0x0016B600; RW)
	13.2.2.15.23 PF0 HLPSB Queue Mapping to Interrupt Control - PF0INT_SB_HLP_CTL (0x0016B640; RW)
	13.2.2.15.24 VF PE Asynchronous Event Queue Interrupt Cause Control - VPINT_AEQCTL[VF] (0x0016B800 + 0x4*VF, VF=0...255; RW)
	13.2.2.15.25 PF Firmware Admin Queue Mapping to Interrupt Control - PFINT_FW_CTL (0x0016C800; RW)
	13.2.2.15.26 Global Tools Firmware Admin Queue Mapping to Interrupt Control - GLINT_FW_TOOL_CTL (0x0016C840; RW)
	13.2.2.15.27 PF0 HLP Firmware Admin Queue Mapping to Interrupt Control - PF0INT_FW_HLP_CTL (0x0016C844; RW)
	13.2.2.15.28 PF0 PSM Firmware Admin Queue Mapping to Interrupt Control - PF0INT_FW_PSM_CTL (0x0016C848; RW)
	13.2.2.15.29 PF Interrupt Other Cause Enablement - PFINT_OICR_ENA (0x0016C900; RW)
	13.2.2.15.30 Global Interrupt TimeSync PHY Mask - PFINT_TSYN_MSK (0x0016C980; RW)
	13.2.2.15.31 PF Interrupt Other Cause - PFINT_OICR (0x0016CA00; RCW)
	13.2.2.15.32 PF Interrupt Other Cause Control - PFINT_OICR_CTL (0x0016CA80; RW)
	13.2.2.15.33 PF PE Asynchronous Event Queue Interrupt Cause Control - PFINT_AEQCTL (0x0016CB00; RW)
	13.2.2.15.34 PF0 Interrupt Other Cause CPM - PF0INT_OICR_CPM (0x0016CC40; RCW)
	13.2.2.15.35 PF0 Interrupt Other Cause PSM - PF0INT_OICR_PSM (0x0016CC44; RCW)
	13.2.2.15.36 PF0 Interrupt Other Cause CPM Control - PF0INT_OICR_CTL_CPM (0x0016CC48; RW)
	13.2.2.15.37 PF0 Interrupt Other Cause HLP Enablement - PF0INT_OICR_ENA_HLP (0x0016CC4C; RW)
	13.2.2.15.38 Global Interrupt TimeSync PHY Indication - GLINT_TSYN_PHY (0x0016CC50; RW1C)
	13.2.2.15.39 Global Interrupt Control - GLINT_CTL (0x0016CC54; RW)
	13.2.2.15.40 PF0 Interrupt Other Cause PSM Enablement - PF0INT_OICR_ENA_PSM (0x0016CC58; RW)
	13.2.2.15.41 PF0 Interrupt Other Cause HLP Control - PF0INT_OICR_CTL_HLP (0x0016CC5C; RW)
	13.2.2.15.42 PF0 Interrupt Other Cause CPM Enablement - PF0INT_OICR_ENA_CPM (0x0016CC60; RW)
	13.2.2.15.43 PF0 Interrupt Other Cause PSM Control - PF0INT_OICR_CTL_PSM (0x0016CC64; RW)
	13.2.2.15.44 PF0 Interrupt Other Cause HLP - PF0INT_OICR_HLP (0x0016CC68; RCW)
	13.2.2.15.45 Global Interrupt TimeSync Primary Select - GLINT_TSYN_PFMSTR[n] (0x0016CCC0 + 0x4*n, n=0...1; RW)
	13.2.2.15.46 VF Vector Allocation - VPINT_ALLOC[VF] (0x001D1000 + 0x4*VF, VF=0...255; RW)
	13.2.2.15.47 PF Vector Allocation - PFINT_ALLOC (0x001D2600; RW)

	13.2.2.16 PF - Virtualization PF Registers
	13.2.2.16.1 PF Resources Allocation - PF_VT_PFALLOC_HIF (0x0009DD80; RW)
	13.2.2.16.2 PF Virtualization Status Register - PF_VIRT_VSTATUS (0x0009E680; RO)
	13.2.2.16.3 PF Resources Allocation - PF_VT_PFALLOC_PCIE (0x000BE080; RW)
	13.2.2.16.4 PF Resources Allocation - PF_VT_PFALLOC (0x001D2480; RW)

	13.2.2.17 PF - DCB Registers
	13.2.2.17.1 DCB TDPU Control - PRTDCB_TDPUC (0x00040940; RW)
	13.2.2.17.2 DCB Receive UP in TDPU - PRTDCB_RUP_TDPU (0x00040960; RW)
	13.2.2.17.3 Tx DCB DSCP to User Priority Control - PRTDCB_TX_DSCP2UP_CTL (0x00040980; RW)
	13.2.2.17.4 Tx DCB DSCP to User Priority LUT for IPv4 Packets - PRTDCB_TX_DSCP2UP_IPV4_LUT[n] (0x000409A0 + 0x20*n, n=0...7; RW)
	13.2.2.17.5 Tx DCB DSCP to User Priority LUT for IPv6 Packets - PRTDCB_TX_DSCP2UP_IPV6_LUT[n] (0x00040AA0 + 0x20*n, n=0...7; RW)
	13.2.2.17.6 Transmit DCSP to TC Enforcement - IPv4 - GL_DCB_TDSCP2TC_BLOCK_IPV4[n] (0x00049018 + 0x4*n, n=0...63; RO)
	13.2.2.17.7 Transmit DCSP to TC Enforcement - IPv6 - GL_DCB_TDSCP2TC_BLOCK_IPV6[n] (0x00049118 + 0x4*n, n=0...63; RO)
	13.2.2.17.8 Transmit DCSP to TC Enforcement Enable - GL_DCB_TDSCP2TC_BLOCK_DIS (0x00049218; RO)
	13.2.2.17.9 Port DCB General Control - PRTDCB_GENC (0x00083000; RW)
	13.2.2.17.10 Port DCB General Status - PRTDCB_GENS (0x00083020; RO)
	13.2.2.17.11 Global DCB General Control - GLDCB_GENC (0x00083044; RW)
	13.2.2.17.12 DCB Transmit Port DWRR Status - TPB_PRTDCB_TCB_DWRR_CREDITS (0x000991C0; RO)
	13.2.2.17.13 DCB Transmit Port DWRR Quanta/Weights - TPB_PRTDCB_TCB_DWRR_QUANTA (0x00099220; RW)
	13.2.2.17.14 DCB Transmit Port DWRR Saturation Value - TPB_PRTDCB_TCB_DWRR_SAT (0x00099260; RW)
	13.2.2.17.15 DCB Transmit Regular Bulk DWRR Status - TPB_PRTTCB_BULK_DWRR_REG_CREDITS (0x000992A0; RO)
	13.2.2.17.16 DCB Transmit Wait Bulk DWRR Status - TPB_PRTTCB_BULK_DWRR_WB_CREDITS (0x000992C0; RO)
	13.2.2.17.17 DCB Transmit Regular Low Latency DWRR Status - TPB_PRTTCB_LL_DWRR_REG_CREDITS (0x00099300; RO)
	13.2.2.17.18 DCB Transmit Wait Low Latency DWRR Status - TPB_PRTTCB_LL_DWRR_WB_CREDITS (0x00099320; RO)
	13.2.2.17.19 DCB Transmit Regular Bulk DWRR Quanta/Weights - TPB_BULK_DWRR_REG_QUANTA (0x00099340; RW)
	13.2.2.17.20 DCB Transmit Wait Bulk DWRR Quanta/Weights - TPB_BULK_DWRR_WB_QUANTA (0x00099344; RW)
	13.2.2.17.21 DCB Transmit Regular Low Latency DWRR Quanta/Weights - TPB_LL_DWRR_REG_QUANTA (0x00099348; RW)
	13.2.2.17.22 DCB Transmit Wait Low Latency DWRR Quanta/Weights - TPB_LL_DWRR_WB_QUANTA (0x0009934C; RW)
	13.2.2.17.23 DCB Transmit Regular Bulk DWRR Saturation Value - TPB_BULK_DWRR_REG_SAT (0x00099350; RW)
	13.2.2.17.24 DCB Transmit Wait Bulk DWRR Saturation Value - TPB_BULK_DWRR_WB_SAT (0x00099354; RW)
	13.2.2.17.25 DCB Transmit Regular Low Latency DWRR Saturation Value - TPB_LL_DWRR_REG_SAT (0x00099358; RW)
	13.2.2.17.26 DCB Transmit Wait Low Latency DWRR Saturation Value - TPB_LL_DWRR_WB_SAT (0x0009935C; RW)
	13.2.2.17.27 DCB Transmit Rate Limiter Control per TC - TPB_WB_RL_TC_CFG[n] (0x00099360 + 0x4*n, n=0...31; RO)
	13.2.2.17.28 DCB Transmit Rate Limiter Status per TC - TPB_WB_RL_TC_STAT[n] (0x000993E0 + 0x4*n, n=0...31; RO)
	13.2.2.17.29 TC Rate Limiters Config - GLTPB_WB_RL (0x00099460; RO)
	13.2.2.17.30 TPB TC LL Config - GLDCB_TPB_TCLL_CFG (0x00099464; RO)
	13.2.2.17.31 TPB TLPM TC Immediate FC Enable - GLDCB_TPB_IMM_TLPM (0x00099468; RO)
	13.2.2.17.32 TPB TC Immediate FC Enable - GLDCB_TPB_IMM_TPB (0x0009946C; RO)
	13.2.2.17.33 Ignore FC per TC List - GLDCB_TFPFCI (0x0009949C; RO)
	13.2.2.17.34 TCB Arbiter Credit Expansion - TPB_PRTTCB_CREDIT_EXP (0x00099644; RW)
	13.2.2.17.35 TCB Arbiter Credit Expansion Control - TPB_GLTCB_CREDIT_EXP_CTL (0x00099664; RW)
	13.2.2.17.36 Global Wait Buffer Strict Priority Enable - TPB_GLDCB_TCB_WB_SP (0x0009966C; RW)
	13.2.2.17.37 DCB Transmit Data Pipe Port Monitor Status - PRTDCB_TLPM_REG_DM (0x000A0000; RO)
	13.2.2.17.38 DCB Transmit Data Pipe Port Monitor Threshold - PRTDCB_TLPM_REG_DTHR (0x000A0020; RW)
	13.2.2.17.39 DCB Transmit Data Pipe Port Waiting Monitor Status - PRTDCB_TLPM_WAIT_PFC_DM (0x000A0040; RO)
	13.2.2.17.40 DCB Transmit Data Pipe Port Waiting Monitor Threshold - PRTDCB_TLPM_WAIT_PFC_DTHR (0x000A0060; RW)
	13.2.2.17.41 DCB Transmit Data Pipe TC Waiting Monitor Status - TCDCB_TLPM_WAIT_DM[n] (0x000A0080 + 0x4*n, n=0...31; RO)
	13.2.2.17.42 DCB Transmit Data Pipe TC Waiting Monitor Threshold - TCDCB_TLPM_WAIT_DTHR[n] (0x000A0100 + 0x4*n, n=0...31; RW)
	13.2.2.17.43 DCB PCIe Tx Data Count - GLDCB_TLPM_PCI_DM (0x000A0180; RO)
	13.2.2.17.44 DCB PCIe Tx Data Threshold - GLDCB_TLPM_PCI_DTHR (0x000A0184; RW)
	13.2.2.17.45 DCB TC Immediate FC Enable - GLDCB_TLPM_IMM_TCUPM (0x000A018C; RW)
	13.2.2.17.46 DCB TC Immediate FC Mode - GLDCB_TLPM_IMM_TCB (0x000A0190; RW)
	13.2.2.17.47 DCB TLPM TC PFC Mapping - GLDCB_TLPM_TC2PFC (0x000A0194; RW)
	13.2.2.17.48 DCB TC to PFC Mapping - GLRPB_TC2PFC (0x000AC040; RW)
	13.2.2.17.49 DCB Transmit Port DWRR Status - PRTDCB_TCB_DWRR_CREDITS (0x000AE000; RO)
	13.2.2.17.50 DCB Transmit Port DWRR Quanta/Weights - PRTDCB_TCB_DWRR_QUANTA (0x000AE020; RW)
	13.2.2.17.51 DCB Transmit Port DWRR Saturation Value - PRTDCB_TCB_DWRR_SAT (0x000AE040; RW)
	13.2.2.17.52 DCB Transmit Regular Bulk DWRR Status - PRTTCB_BULK_DWRR_REG_CREDITS (0x000AE060; RO)
	13.2.2.17.53 DCB Transmit Wait Bulk DWRR Status - PRTTCB_BULK_DWRR_WB_CREDITS (0x000AE080; RO)
	13.2.2.17.54 DCB Transmit Regular Low Latency DWRR Status - PRTTCB_LL_DWRR_REG_CREDITS (0x000AE0A0; RO)
	13.2.2.17.55 DCB Transmit Wait Low Latency DWRR Status - PRTTCB_LL_DWRR_WB_CREDITS (0x000AE0C0; RO)
	13.2.2.17.56 DCB Transmit Regular Bulk DWRR Quanta/Weights - GLTCB_BULK_DWRR_REG_QUANTA (0x000AE0E0; RW)
	13.2.2.17.57 DCB Transmit Wait Bulk DWRR Quanta/Weights - GLTCB_BULK_DWRR_WB_QUANTA (0x000AE0E4; RW)
	13.2.2.17.58 DCB Transmit Regular Low Latency DWRR Quanta/Weights - GLTCB_LL_DWRR_REG_QUANTA (0x000AE0E8; RW)
	13.2.2.17.59 DCB Transmit Wait Low Latency DWRR Quanta/Weights - GLTCB_LL_DWRR_WB_QUANTA (0x000AE0EC; RW)
	13.2.2.17.60 DCB Transmit Regular Bulk DWRR Saturation Value - GLTCB_BULK_DWRR_REG_SAT (0x000AE0F0; RW)
	13.2.2.17.61 DCB Transmit Wait Bulk DWRR Saturation Value - GLTCB_BULK_DWRR_WB_SAT (0x000AE0F4; RW)
	13.2.2.17.62 DCB Transmit Regular Low Latency DWRR Saturation Value - GLTCB_LL_DWRR_REG_SAT (0x000AE0F8; RW)
	13.2.2.17.63 DCB Transmit Wait Low Latency DWRR Saturation Value - GLTCB_LL_DWRR_WB_SAT (0x000AE0FC; RW)
	13.2.2.17.64 TCB Arbiter Credit Expansion - PRTTCB_CREDIT_EXP (0x000AE100; RW)
	13.2.2.17.65 TCB Arbiter Credit Expansion Control - GLTCB_CREDIT_EXP_CTL (0x000AE120; RW)
	13.2.2.17.66 Global MNG LL Strict Priority Enable - GLDCB_TCB_MNG_SP (0x000AE12C; RW)
	13.2.2.17.67 TC Low Latency Config - GLDCB_TCB_TCLL_CFG (0x000AE134; RW)
	13.2.2.17.68 DCB Transmit Rate Limiter Control per TC - TCTCB_WB_RL_TC_CFG[n] (0x000AE138 + 0x4*n, n=0...31; RW)
	13.2.2.17.69 DCB Transmit Rate Limiter Status per TC - TCTCB_WB_RL_TC_STAT[n] (0x000AE1B8 + 0x4*n, n=0...31; RO)
	13.2.2.17.70 TC Rate Limiters Config - GLTCB_WB_RL (0x000AE238; RW)
	13.2.2.17.71 Global Wait Buffer Strict Priority Enable - GLDCB_TCB_WB_SP (0x000AE310; RW)
	13.2.2.17.72 DCB TC to PFC Mapping - GLDCB_TCUPM_TC2PFC (0x000BC34C; RW)
	13.2.2.17.73 DCB Transmit Command Pipe Port Monitor Status - PRTDCB_TCUPM_REG_CM (0x000BC360; RO)
	13.2.2.17.74 DCB Transmit Command Pipe Port Monitor Threshold - PRTDCB_TCUPM_REG_CTHR (0x000BC380; RW)
	13.2.2.17.75 DCB Transmit Data Pipe Port Monitor Status - PRTDCB_TCUPM_REG_DM (0x000BC3A0; RO)
	13.2.2.17.76 DCB Transmit Data non-Exceed Pipe Monitor Status - PRTDCB_TCUPM_NO_EXCEED_DM (0x000BC3C0; RO)
	13.2.2.17.77 DCB Transmit Data Pipe Port Monitor Threshold - PRTDCB_TCUPM_REG_DTHR (0x000BC3E0; RW)
	13.2.2.17.78 DCB Transmit Data Pipe Port Monitor Status - PRTDCB_TCUPM_REG_PE_HB_DM (0x000BC400; RO)
	13.2.2.17.79 DCB Transmit Data Pipe Port Monitor Threshold - PRTDCB_TCUPM_REG_PE_HB_DTHR (0x000BC420; RW)
	13.2.2.17.80 DCB Transmit Command Pipe Port Waiting Monitor Status - PRTDCB_TCUPM_WAIT_PFC_CM (0x000BC440; RO)
	13.2.2.17.81 DCB Transmit Command Pipe Port Waiting Monitor Threshold - PRTDCB_TCUPM_WAIT_PFC_CTHR (0x000BC460; RW)
	13.2.2.17.82 DCB Transmit Data Pipe Port Waiting Monitor Status - PRTDCB_TCUPM_WAIT_PFC_DM (0x000BC480; RO)
	13.2.2.17.83 DCB Transmit Data Pipe Port Waiting Monitor Threshold - PRTDCB_TCUPM_WAIT_PFC_DTHR (0x000BC4A0; RW)
	13.2.2.17.84 DCB Transmit Data Pipe Port Waiting Monitor Status - PRTDCB_TCUPM_WAIT_PFC_PE_HB_DM (0x000BC4C0; RO)
	13.2.2.17.85 DCB Transmit Data Pipe Port Waiting Monitor Threshold - PRTDCB_TCUPM_WAIT_PFC_PE_HB_DTHR (0x000BC4E0; RW)
	13.2.2.17.86 DCB Transmit Command Pipe TC Waiting Monitor Status - TCDCB_TCUPM_WAIT_CM[n] (0x000BC520 + 0x4*n, n=0...31; RO)
	13.2.2.17.87 DCB Transmit Command Pipe TC Waiting Monitor Threshold - TCDCB_TCUPM_WAIT_CTHR[n] (0x000BC5A0 + 0x4*n, n=0...31; RW)
	13.2.2.17.88 DCB Transmit Data Pipe TC Waiting Monitor Status - TCDCB_TCUPM_WAIT_DM[n] (0x000BC620 + 0x4*n, n=0...31; RO)
	13.2.2.17.89 DCB Transmit Data Pipe TC Waiting Monitor Threshold - TCDCB_TCUPM_WAIT_DTHR[n] (0x000BC6A0 + 0x4*n, n=0...31; RW)
	13.2.2.17.90 DCB Transmit Data Pipe TC Waiting Monitor Status - TCDCB_TCUPM_WAIT_PE_HB_DM[n] (0x000BC720 + 0x4*n, n=0...31; RO)
	13.2.2.17.91 DCB Transmit Data Pipe TC Waiting Monitor Threshold - TCDCB_TCUPM_WAIT_PE_HB_DTHR[n] (0x000BC7A0 + 0x4*n, n=0...31; RW)
	13.2.2.17.92 DCB TC Immediate FC Mode - GLDCB_TCUPM_IMM_EN (0x000BC824; RW)
	13.2.2.17.93 DCB TC Legacy Queues Mapping - GLDCB_TCUPM_LEGACY_TC (0x000BC828; RW)
	13.2.2.17.94 DCB Transmit Data non-Exceed Monitor Enable - GLDCB_TCUPM_NO_EXCEED_DIS (0x000BC830; RW)
	13.2.2.17.95 DCB Transmit Wait Port Data Monitor Enable - GLDCB_TCUPM_WB_DIS (0x000BC834; RW)
	13.2.2.17.96 DCB Receive Port Round Robin Control - PRTDCB_RPRRC (0x001220C0; RW)
	13.2.2.17.97 DCB Receive Port Round Robin Status - PRTDCB_RPRRS (0x001220E0; RW)
	13.2.2.17.98 QRX - GLDCB_RTC2PFC_RCB (0x00122100; RW)
	13.2.2.17.99 DCB Receive ETS per TC Control - GLDCB_RETSTCC[n] (0x00122140 + 0x4*n, n=0...31; RW)
	13.2.2.17.100 DCB Receive ETS per TC Status - GLDCB_RETSTCS[n] (0x001221C0 + 0x4*n, n=0...31; RW)
	13.2.2.17.101 DCB Receive ETS Control - PRTDCB_RETSC (0x001222A0; RW)
	13.2.2.17.102 DCB Receive UP to TC Mapping - PRTDCB_RUP2TC (0x001D2640; RW)
	13.2.2.17.103 DCB TC to PFC Mapping - GLDCB_TC2PFC (0x001D2694; RW)
	13.2.2.17.104 DCB Transmit UP to TC Mapping - PRTDCB_TUP2TC (0x001D26C0; RW)
	13.2.2.17.105 Transmit Flow Control Status - PRTDCB_TFCS (0x001E4560; RO)
	13.2.2.17.106 Flow Control Transmit Timer Value n - PRTDCB_FCTTVN[n] (0x001E4580 + 0x20*n, n=0...3; RW)
	13.2.2.17.107 Flow Control Refresh Threshold Value - PRTDCB_FCRTV (0x001E4600; RW)
	13.2.2.17.108 Flow Control Configuration - PRTDCB_FCCFG (0x001E4640; RW)
	13.2.2.17.109 DCB Transmit PFC Timer Status - PRTDCB_TPFCTS[n] (0x001E4660 + 0x20*n, n=0...7; RW)
	13.2.2.17.110 DCB Receive ETS per TC Control - GLDCB_PRS_RETSTCC[n] (0x002000B0 + 0x4*n, n=0...31; RW)
	13.2.2.17.111 DCB Receive Shared Pipe Monitor Control - GLDCB_PRS_RSPMC (0x00200160; RW)
	13.2.2.17.112 DCB Receive Port Round Robin Control - PRTDCB_PRS_RPRRC (0x00200180; RW)
	13.2.2.17.113 DCB Receive ETS Control - PRTDCB_PRS_RETSC (0x002001A0; RW)
	13.2.2.17.114 DCB Receive ETS per TC Control - GLDCB_SWT_RETSTCC[n] (0x0020A040 + 0x4*n, n=0...31; RW)
	13.2.2.17.115 DCB Receive ETS Control - PRTDCB_SWT_RETSC (0x0020A140; RW)

	13.2.2.18 PF - Receive Packet Buffer Registers
	13.2.2.18.1 RPB Dedicated Pool High Watermark - GLRPB_DHW[n] (0x000AC000 + 0x4*n, n=0...15; RW)
	13.2.2.18.2 RPB Dedicated Pool Low Watermark - GLRPB_DLW[n] (0x000AC044 + 0x4*n, n=0...15; RW)
	13.2.2.18.3 RPB Dedicated Pool Size - GLRPB_DPS[n] (0x000AC084 + 0x4*n, n=0...15; RW)
	13.2.2.18.4 RPB Shared Pool Size - GLRPB_SPS[n] (0x000AC0C4 + 0x4*n, n=0...7; RW)
	13.2.2.18.5 RPB Shared Pool High Watermark - GLRPB_SHW[n] (0x000AC120 + 0x4*n, n=0...7; RW)
	13.2.2.18.6 RPB Shared Pool Low Watermark - GLRPB_SLW[n] (0x000AC140 + 0x4*n, n=0...7; RW)
	13.2.2.18.7 TC Pool Config - GLRPB_TC_CFG[n] (0x000AC2A4 + 0x4*n, n=0...31; RW)
	13.2.2.18.8 DSI Traffic Enable - GLRPB_DSI_EN (0x000AC324; RW)
	13.2.2.18.9 RPB TC High Watermark - GLRPB_TCHW[n] (0x000AC330 + 0x4*n, n=0...31; RW)
	13.2.2.18.10 RPB TC Low Watermark - GLRPB_TCLW[n] (0x000AC3B0 + 0x4*n, n=0...31; RW)

	13.2.2.19 PF - Transmit Scheduler Registers
	13.2.2.19.1 TSCD PEPM - GLPE_TSCD_PEPM (0x0051E228; RO)
	13.2.2.19.2 Transmit Scheduler FLR - GLPE_TSCD_FLR[n] (0x0051E24C + 0x4*n, n=0...3; RO)
	13.2.2.19.3 Transmit Scheduler Number of PQS - GLPE_TSCD_NUM_PQS (0x0051E2FC; RO)

	13.2.2.20 PF - Host Memory Cache Registers
	13.2.2.20.1 FOC Cache Attributes - GLFOC_CACHESIZE (0x000AA074; RO)
	13.2.2.20.2 Private Memory Space Segment Descriptor Command - PFHMC_SDCMD_FPMAT (0x00100000; RW)
	13.2.2.20.3 Private Memory Space Segment Descriptor Data Low - PFHMC_SDDATALOW_FPMAT (0x00100100; RW)
	13.2.2.20.4 Private Memory Space Segment Descriptor Data High - PFHMC_SDDATAHIGH_FPMAT (0x00100200; RW)
	13.2.2.20.5 Private Memory Space Page Descriptor Invalidate - PFHMC_PDINV_FPMAT (0x00100300; RW)
	13.2.2.20.6 Host Memory Cache Error Information Register - PFHMC_ERRORINFO_FPMAT (0x00100400; RW)
	13.2.2.20.7 Host Memory Cache Error Data Register - PFHMC_ERRORDATA_FPMAT (0x00100500; RO)
	13.2.2.20.8 Private Memory Segment Table Partitioning Registers - GLHMC_SDPART_FPMAT[n] (0x00100800 + 0x4*n, n=0...7; RO)
	13.2.2.20.9 Private Memory Segment Table Partitioning Registers - GLHMC_PFPESDPART_FPMAT[n] (0x00100880 + 0x4*n, n=0...7; RO)
	13.2.2.20.10 Private Memory PE Hash Table Entry Object Size - GLHMC_PEHTEOBJSZ_FPMAT (0x0010202C; RO)
	13.2.2.20.11 Private Memory Protocol Engine Hash Entry Max - GLHMC_PEHTMAX_FPMAT (0x00102030; RO)
	13.2.2.20.12 Private Memory Space Segment Descriptor Data Low - GLHMC_FWSDDATALOW_FPMAT (0x00102074; RO)
	13.2.2.20.13 Private Memory Space Segment Descriptor Data High - GLHMC_FWSDDATAHIGH_FPMAT (0x00102078; RO)
	13.2.2.20.14 Private Memory Space Page Descriptor Invalidate - GLHMC_FWPDINV_FPMAT (0x0010207C; RO)
	13.2.2.20.15 FPM PE Hash Table Entry Base - GLHMC_PEHTEBASE_FPMAT[n] (0x00104600 + 0x4*n, n=0...7; RO)
	13.2.2.20.16 FPM PE Hash Table Object Count - GLHMC_PEHTCNT_FPMAT[n] (0x00104700 + 0x4*n, n=0...7; RO)
	13.2.2.20.17 Private Memory Space VF Segment Descriptor Data Low - GLHMC_VFSDDATALOW_FPMAT[n] (0x00108100 + 0x4*n, n=0...31; RO)
	13.2.2.20.18 Private Memory Space VF Segment Descriptor Data High - GLHMC_VFSDDATAHIGH_FPMAT[n] (0x00108200 + 0x4*n, n=0...31; RO)
	13.2.2.20.19 Private Memory Space Page Descriptor Invalidate - GLHMC_VFPDINV_FPMAT[n] (0x00108300 + 0x4*n, n=0...31; RO)
	13.2.2.20.20 Private Memory Segment Table Partitioning Registers - GLHMC_VFSDPART_FPMAT[n] (0x00108800 + 0x4*n, n=0...31; RO)
	13.2.2.20.21 FPM PE Hash Table Entry Base - GLHMC_VFPEHTEBASE_FPMAT[n] (0x0010C600 + 0x4*n, n=0...31; RO)
	13.2.2.20.22 FPM PE Hash Table Object Count - GLHMC_VFPEHTCNT_FPMAT[n] (0x0010C700 + 0x4*n, n=0...31; RW)
	13.2.2.20.23 PDOC Cache Attributes - GLPDOC_CACHESIZE_FPMAT (0x00110088; RO)
	13.2.2.20.24 Private Memory CQ Doorbell Partition Registers - GLHMC_VFDBCQPART[n] (0x00502E00 + 0x4*n, n=0...31; RO)
	13.2.2.20.25 Private Memory CEQ Partitioning Registers - GLHMC_VFCEQPART[n] (0x00502F00 + 0x4*n, n=0...31; RO)
	13.2.2.20.26 Private Memory CQ Doorbell Partition Registers - GLHMC_DBCQPART[n] (0x00503180 + 0x4*n, n=0...7; RO)
	13.2.2.20.27 Private Memory CEQ Partitioning Registers - GLHMC_CEQPART[n] (0x005031C0 + 0x4*n, n=0...7; RO)
	13.2.2.20.28 Private Memory QP Doorbell Partition Registers - GLHMC_DBQPPART[n] (0x005044C0 + 0x4*n, n=0...7; RO)
	13.2.2.20.29 Private Memory VF QP Doorbell Partition Registers - GLHMC_VFDBQPPART[n] (0x00504520 + 0x4*n, n=0...31; RO)
	13.2.2.20.30 PEOC0 Cache Attributes - GLPEOC0_CACHESIZE (0x005140A8; RO)
	13.2.2.20.31 PEOC1 Cache Attributes - GLPEOC1_CACHESIZE (0x005160A8; RO)
	13.2.2.20.32 PBLOC0 Cache Attributes - GLPBLOC0_CACHESIZE (0x00518074; RO)
	13.2.2.20.33 PBLOC1 Cache Attributes - GLPBLOC1_CACHESIZE (0x0051A074; RO)
	13.2.2.20.34 MDOC Cache Attributes - GLMDOC_CACHESIZE (0x0051C06C; RO)
	13.2.2.20.35 Private Memory Space Segment Descriptor Command - PFHMC_SDCMD (0x00520000; RW)
	13.2.2.20.36 Private Memory Space Segment Descriptor Data Low - PFHMC_SDDATALOW (0x00520100; RW)
	13.2.2.20.37 Private Memory Space Segment Descriptor Data High - PFHMC_SDDATAHIGH (0x00520200; RW)
	13.2.2.20.38 Private Memory Space Page Descriptor Invalidate - PFHMC_PDINV (0x00520300; RW)
	13.2.2.20.39 Host Memory Cache Error Information Register - PFHMC_ERRORINFO (0x00520400; RW)
	13.2.2.20.40 Host Memory Cache Error Data Register - PFHMC_ERRORDATA (0x00520500; RO)
	13.2.2.20.41 Private Memory Segment Table Partitioning Registers - GLHMC_SDPART[n] (0x00520800 + 0x4*n, n=0...7; RO)
	13.2.2.20.42 Private Memory Segment Table Partitioning Registers - GLHMC_PFPESDPART[n] (0x00520880 + 0x4*n, n=0...7; RO)
	13.2.2.20.43 Private Memory Protocol Engine Header Max - GLHMC_PEHDROBJSZ (0x00522004; RO)
	13.2.2.20.44 FPM PE Header Object Count - GLHMC_PEHDRMAX (0x00522008; RO)
	13.2.2.20.45 Private Memory PE Metadata Object Size - GLHMC_PEMDOBJSZ (0x0052200C; RO)
	13.2.2.20.46 Private Memory Protocol Engine Metadata Max - GLHMC_PEMDMAX (0x00522010; RO)
	13.2.2.20.47 Private Memory PE Out of Order Send Completion Object Size - GLHMC_PEOOISCOBJSZ (0x00522014; RO)
	13.2.2.20.48 Private Memory Protocol Engine Out of Order Send Completion Max - GLHMC_PEOOISCMAX (0x00522018; RO)
	13.2.2.20.49 Private Memory PE QP Object Size - GLHMC_PEQPOBJSZ (0x0052201C; RO)
	13.2.2.20.50 Private Memory PE CQ Object Size - GLHMC_PECQOBJSZ (0x00522020; RO)
	13.2.2.20.51 Private Memory PE Hash Table Entry Object Size - GLHMC_PEHTEOBJSZ (0x0052202C; RO)
	13.2.2.20.52 Private Memory Protocol Engine Hash Entry Max - GLHMC_PEHTMAX (0x00522030; RO)
	13.2.2.20.53 Private Memory PE ARP Table Entry Object Size - GLHMC_PEARPOBJSZ (0x00522034; RO)
	13.2.2.20.54 Private Memory Protocol Engine ARP Table Entry Max - GLHMC_PEARPMAX (0x00522038; RO)
	13.2.2.20.55 Private Memory PE Memory Region Table Entry Object Size - GLHMC_PEMROBJSZ (0x0052203C; RO)
	13.2.2.20.56 Private Memory Protocol Engine Memory Registration Max - GLHMC_PEMRMAX (0x00522040; RO)
	13.2.2.20.57 Private Memory PE Xmit FIFO Object Size - GLHMC_PEXFOBJSZ (0x00522044; RO)
	13.2.2.20.58 Private Memory Protocol Engine Transmit FIFO Entry Max - GLHMC_PEXFMAX (0x00522048; RO)
	13.2.2.20.59 Private Memory Protocol Engine Transmit FIFO Free List Max - GLHMC_PEXFFLMAX (0x0052204C; RO)
	13.2.2.20.60 Private Memory PE IRRQ Object Size - GLHMC_PEQ1OBJSZ (0x00522050; RO)
	13.2.2.20.61 Private Memory Protocol Engine Q1 Max - GLHMC_PEQ1MAX (0x00522054; RO)
	13.2.2.20.62 Private Memory Protocol Engine Q1 Free List Max - GLHMC_PEQ1FLMAX (0x00522058; RO)
	13.2.2.20.63 Private Memory FSI Multicast Group Object Size - GLHMC_FSIMCOBJSZ (0x0052205C; RO)
	13.2.2.20.64 Private Memory FSI Multicast Group Max - GLHMC_FSIMCMAX (0x00522060; RO)
	13.2.2.20.65 Private Memory FSI Address Vector Object Size - GLHMC_FSIAVOBJSZ (0x00522064; RO)
	13.2.2.20.66 Private Memory FSI Address Vector Max - GLHMC_FSIAVMAX (0x00522068; RO)
	13.2.2.20.67 Private Memory Protocol Engine Physical Buffer List Max - GLHMC_PEPBLMAX (0x0052206C; RO)
	13.2.2.20.68 Private Memory Space Segment Descriptor Data Low - GLHMC_FWSDDATALOW (0x00522074; RO)
	13.2.2.20.69 Private Memory Space Segment Descriptor Data High - GLHMC_FWSDDATAHIGH (0x00522078; RO)
	13.2.2.20.70 Private Memory Space Page Descriptor Invalidate - GLHMC_FWPDINV (0x0052207C; RO)
	13.2.2.20.71 Private Memory PE Timer Object Size - GLHMC_PETIMEROBJSZ (0x00522080; RO)
	13.2.2.20.72 Private Memory PE Timer Object Max - GLHMC_PETIMERMAX (0x00522084; RO)
	13.2.2.20.73 Private Memory Protocol Engine Read Response Entry Object Size - GLHMC_PERRFOBJSZ (0x00522098; RO)
	13.2.2.20.74 Private Memory Protocol Engine Read Response FIFO Entry Max - GLHMC_PERRFMAX (0x0052209C; RO)
	13.2.2.20.75 Private Memory Protocol Engine Read Response FIFO Free List Max - GLHMC_PERRFFLMAX (0x005220A0; RO)
	13.2.2.20.76 Private Memory Protocol Engine Out of Order Send Completion (OOISC) FIFO Free List Max - GLHMC_PEOOISCFFLMAX (0x005220A4; RO)
	13.2.2.20.77 Private Memory Protocol Engine Queue Pair Max - GLHMC_DBQPMAX (0x005220EC; RO)
	13.2.2.20.78 Private Memory Protocol Engine Completion Queue Max - GLHMC_DBCQMAX (0x005220F0; RO)
	13.2.2.20.79 FPM PE QP Base - GLHMC_PEQPBASE[n] (0x00524000 + 0x4*n, n=0...7; RO)
	13.2.2.20.80 FPM PE QP Object Count - GLHMC_PEQPCNT[n] (0x00524100 + 0x4*n, n=0...7; RO)
	13.2.2.20.81 FPM PE CQ Base - GLHMC_PECQBASE[n] (0x00524200 + 0x4*n, n=0...7; RO)
	13.2.2.20.82 FPM PE CQ Object Count - GLHMC_PECQCNT[n] (0x00524300 + 0x4*n, n=0...7; RO)
	13.2.2.20.83 FPM PE Hash Table Entry Base - GLHMC_PEHTEBASE[n] (0x00524600 + 0x4*n, n=0...7; RO)
	13.2.2.20.84 FPM PE Hash Table Object Count - GLHMC_PEHTCNT[n] (0x00524700 + 0x4*n, n=0...7; RO)
	13.2.2.20.85 FPM PE ARP Table Base - GLHMC_PEARPBASE[n] (0x00524800 + 0x4*n, n=0...7; RO)
	13.2.2.20.86 FPM PE ARP Table Object Count - GLHMC_PEARPCNT[n] (0x00524900 + 0x4*n, n=0...7; RO)
	13.2.2.20.87 FPM PE APBVT In-Use Base - GLHMC_APBVTINUSEBASE[n] (0x00524A00 + 0x4*n, n=0...7; RO)
	13.2.2.20.88 FPM PE MRT Base - GLHMC_PEMRBASE[n] (0x00524C00 + 0x4*n, n=0...7; RO)
	13.2.2.20.89 FPM PE Memory Region Table Object Count - GLHMC_PEMRCNT[n] (0x00524D00 + 0x4*n, n=0...7; RO)
	13.2.2.20.90 FPM PE Xmit FIFO Base - GLHMC_PEXFBASE[n] (0x00524E00 + 0x4*n, n=0...7; RO)
	13.2.2.20.91 FPM PE Xmit FIFO Object Count - GLHMC_PEXFCNT[n] (0x00524F00 + 0x4*n, n=0...7; RO)
	13.2.2.20.92 FPM PE Xmit FIFO Free List Base - GLHMC_PEXFFLBASE[n] (0x00525000 + 0x4*n, n=0...7; RO)
	13.2.2.20.93 FPM PE IRRQ Base - GLHMC_PEQ1BASE[n] (0x00525200 + 0x4*n, n=0...7; RO)
	13.2.2.20.94 FPM PE IRRQ Object Count - GLHMC_PEQ1CNT[n] (0x00525300 + 0x4*n, n=0...7; RO)
	13.2.2.20.95 FPM PE IRRQ Free List Base - GLHMC_PEQ1FLBASE[n] (0x00525400 + 0x4*n, n=0...7; RO)
	13.2.2.20.96 FPM FSI Address Vector Base - GLHMC_FSIAVBASE[n] (0x00525600 + 0x4*n, n=0...7; RO)
	13.2.2.20.97 FPM FSI Address Vector Object Count - GLHMC_FSIAVCNT[n] (0x00525700 + 0x4*n, n=0...7; RO)
	13.2.2.20.98 FPM PE Physical Buffer List Base - GLHMC_PEPBLBASE[n] (0x00525800 + 0x4*n, n=0...7; RO)
	13.2.2.20.99 FPM PE PBL Object Count - GLHMC_PEPBLCNT[n] (0x00525900 + 0x4*n, n=0...7; RO)
	13.2.2.20.100 FPM PE Timer Base - GLHMC_PETIMERBASE[n] (0x00525A00 + 0x4*n, n=0...7; RO)
	13.2.2.20.101 FPM PE Timer Object Count - GLHMC_PETIMERCNT[n] (0x00525B00 + 0x4*n, n=0...7; RO)
	13.2.2.20.102 FPM FSI Multicast Group Base - GLHMC_FSIMCBASE[n] (0x00526000 + 0x4*n, n=0...7; RO)
	13.2.2.20.103 FPM FSI Multicast Group Object Count - GLHMC_FSIMCCNT[n] (0x00526100 + 0x4*n, n=0...7; RO)
	13.2.2.20.104 FPM PE Header Base - GLHMC_PEHDRBASE[n] (0x00526200 + 0x4*n, n=0...7; RO)
	13.2.2.20.105 FPM PE Header Object Count - GLHMC_PEHDRCNT[n] (0x00526300 + 0x4*n, n=0...7; RO)
	13.2.2.20.106 FPM PE Metadata Base - GLHMC_PEMDBASE[n] (0x00526400 + 0x4*n, n=0...7; RO)
	13.2.2.20.107 FPM PE Metadata Object Count - GLHMC_PEMDCNT[n] (0x00526500 + 0x4*n, n=0...7; RO)
	13.2.2.20.108 FPM PE Out of Order Send Completion Base - GLHMC_PEOOISCBASE[n] (0x00526600 + 0x4*n, n=0...7; RO)
	13.2.2.20.109 FPM PE Out of Order Send Completion Object Count - GLHMC_PEOOISCCNT[n] (0x00526700 + 0x4*n, n=0...7; RO)
	13.2.2.20.110 FPM PE Read Response Base - GLHMC_PERRFBASE[n] (0x00526800 + 0x4*n, n=0...7; RO)
	13.2.2.20.111 FPM PE Read Response Object Count - GLHMC_PERRFCNT[n] (0x00526900 + 0x4*n, n=0...7; RO)
	13.2.2.20.112 FPM PE Read Response FIFO Free List Base - GLHMC_PERRFFLBASE[n] (0x00526A00 + 0x4*n, n=0...7; RO)
	13.2.2.20.113 FPM PE Read Response FIFO Free List Object Count - GLHMC_PERRFFLCNT_PMAT[n] (0x00526B00 + 0x4*n, n=0...7; RO)
	13.2.2.20.114 FPM PE Out of Order Send Completion (OOISC) FIFO Free List Base - GLHMC_PEOOISCFFLBASE[n] (0x00526C00 + 0x4*n, n=0...7; RO)
	13.2.2.20.115 FPM PE Out of Order Send Completion (OOISC) FIFO Free List Object Count - GLHMC_PEOOISCFFLCNT_PMAT[n] (0x00526D00 + 0x4*n, n=0...7; RO)
	13.2.2.20.116 Private Memory Space VF Segment Descriptor Data Low - GLHMC_VFSDDATALOW[n] (0x00528100 + 0x4*n, n=0...31; RO)
	13.2.2.20.117 Private Memory Space VF Segment Descriptor Data High - GLHMC_VFSDDATAHIGH[n] (0x00528200 + 0x4*n, n=0...31; RO)
	13.2.2.20.118 Private Memory Space Page Descriptor Invalidate - GLHMC_VFPDINV[n] (0x00528300 + 0x4*n, n=0...31; RO)
	13.2.2.20.119 Private Memory Segment Table Partitioning Registers - GLHMC_VFSDPART[n] (0x00528800 + 0x4*n, n=0...31; RO)
	13.2.2.20.120 FPM PE QP Base - GLHMC_VFPEQPBASE[n] (0x0052C000 + 0x4*n, n=0...31; RO)
	13.2.2.20.121 FPM PE QP Object Count - GLHMC_VFPEQPCNT[n] (0x0052C100 + 0x4*n, n=0...31; RO)
	13.2.2.20.122 FPM PE CQ Base - GLHMC_VFPECQBASE[n] (0x0052C200 + 0x4*n, n=0...31; RO)
	13.2.2.20.123 FPM PE CQ Object Count - GLHMC_VFPECQCNT[n] (0x0052C300 + 0x4*n, n=0...31; RO)
	13.2.2.20.124 FPM PE Hash Table Entry Base - GLHMC_VFPEHTEBASE[n] (0x0052C600 + 0x4*n, n=0...31; RO)
	13.2.2.20.125 FPM PE Hash Table Object Count - GLHMC_VFPEHTCNT[n] (0x0052C700 + 0x4*n, n=0...31; RO)
	13.2.2.20.126 FPM PE ARP Table Base - GLHMC_VFPEARPBASE[n] (0x0052C800 + 0x4*n, n=0...31; RO)
	13.2.2.20.127 FPM PE ARP Table Object Count - GLHMC_VFPEARPCNT[n] (0x0052C900 + 0x4*n, n=0...31; RO)
	13.2.2.20.128 FPM PE APBVT In-Use Base - GLHMC_VFAPBVTINUSEBASE[n] (0x0052CA00 + 0x4*n, n=0...31; RO)
	13.2.2.20.129 FPM PE MRT Base - GLHMC_VFPEMRBASE[n] (0x0052CC00 + 0x4*n, n=0...31; RO)
	13.2.2.20.130 FPM PE Memory Region Table Object Count - GLHMC_VFPEMRCNT[n] (0x0052CD00 + 0x4*n, n=0...31; RO)
	13.2.2.20.131 FPM PE Xmit FIFO Base - GLHMC_VFPEXFBASE[n] (0x0052CE00 + 0x4*n, n=0...31; RO)
	13.2.2.20.132 FPM PE Xmit FIFO Object Count - GLHMC_VFPEXFCNT[n] (0x0052CF00 + 0x4*n, n=0...31; RO)
	13.2.2.20.133 FPM PE Xmit FIFO Free List Base - GLHMC_VFPEXFFLBASE[n] (0x0052D000 + 0x4*n, n=0...31; RO)
	13.2.2.20.134 FPM PE IRRQ Base - GLHMC_VFPEQ1BASE[n] (0x0052D200 + 0x4*n, n=0...31; RO)
	13.2.2.20.135 FPM PE IRRQ Object Count - GLHMC_VFPEQ1CNT[n] (0x0052D300 + 0x4*n, n=0...31; RO)
	13.2.2.20.136 FPM PE IRRQ Free List Base - GLHMC_VFPEQ1FLBASE[n] (0x0052D400 + 0x4*n, n=0...31; RO)
	13.2.2.20.137 FPM FSI Address Vector Base - GLHMC_VFFSIAVBASE[n] (0x0052D600 + 0x4*n, n=0...31; RO)
	13.2.2.20.138 FPM FSI Address Vector Object Count - GLHMC_VFFSIAVCNT[n] (0x0052D700 + 0x4*n, n=0...31; RO)
	13.2.2.20.139 FPM PE Physical Buffer List Base - GLHMC_VFPEPBLBASE[n] (0x0052D800 + 0x4*n, n=0...31; RO)
	13.2.2.20.140 FPM PE PBL Object Count - GLHMC_VFPEPBLCNT[n] (0x0052D900 + 0x4*n, n=0...31; RO)
	13.2.2.20.141 FPM PE Timer Base - GLHMC_VFPETIMERBASE[n] (0x0052DA00 + 0x4*n, n=0...31; RO)
	13.2.2.20.142 FPM PE Timer Object Count - GLHMC_VFPETIMERCNT[n] (0x0052DB00 + 0x4*n, n=0...31; RO)
	13.2.2.20.143 FPM FSI Multicast Group Base - GLHMC_VFFSIMCBASE[n] (0x0052E000 + 0x4*n, n=0...31; RO)
	13.2.2.20.144 FPM FSI Multicast Group Object Count - GLHMC_VFFSIMCCNT[n] (0x0052E100 + 0x4*n, n=0...31; RO)
	13.2.2.20.145 FPM PE Header Base - GLHMC_VFPEHDRBASE[n] (0x0052E200 + 0x4*n, n=0...31; RO)
	13.2.2.20.146 FPM PE Header Object Count - GLHMC_VFPEHDRCNT[n] (0x0052E300 + 0x4*n, n=0...31; RO)
	13.2.2.20.147 FPM PE Metadata Base - GLHMC_VFPEMDBASE[n] (0x0052E400 + 0x4*n, n=0...31; RO)
	13.2.2.20.148 FPM PE Metadata Object Count - GLHMC_VFPEMDCNT[n] (0x0052E500 + 0x4*n, n=0...31; RO)
	13.2.2.20.149 FPM PE Out of Order Send Completion Base - GLHMC_VFPEOOISCBASE[n] (0x0052E600 + 0x4*n, n=0...31; RO)
	13.2.2.20.150 FPM PE Out of Order Send Completion Object Count - GLHMC_VFPEOOISCCNT[n] (0x0052E700 + 0x4*n, n=0...31; RO)
	13.2.2.20.151 FPM PE Read Response Base - GLHMC_VFPERRFBASE[n] (0x0052E800 + 0x4*n, n=0...31; RO)
	13.2.2.20.152 FPM PE Read Response Object Count - GLHMC_VFPERRFCNT[n] (0x0052E900 + 0x4*n, n=0...31; RO)
	13.2.2.20.153 FPM PE Read Response FIFO Free List Base - GLHMC_VFPERRFFLBASE[n] (0x0052EA00 + 0x4*n, n=0...31; RO)
	13.2.2.20.154 FPM PE Out of Order Send Completion (OOISC) FIFO Free List Base - GLHMC_VFPEOOISCFFLBASE[n] (0x0052EC00 + 0x4*n, n=0...31; RO)
	13.2.2.20.155 PDOC Cache Attributes - GLPDOC_CACHESIZE (0x00530048; RO)

	13.2.2.21 PF - Context Manager Registers
	13.2.2.21.1 CMPE Cache Attributes - GLCM_PE_CACHESIZE (0x005046B4; RO)

	13.2.2.22 PF - Control Queues Registers
	13.2.2.22.1 PF Firmware Admin Transmit Queue Base Address Low - PF_FW_ATQBAL (0x00080000; RW)
	13.2.2.22.2 Global Tools Firmware Admin Transmit Queue Base Address Low - GL_FW_TOOL_ATQBAL (0x00080040; RW)
	13.2.2.22.3 PF0 PSM Firmware Admin Transmit Queue Base Address Low - PF0_FW_PSM_ATQBAL (0x00080044; RW)
	13.2.2.22.4 PF0 HLP Firmware Admin Transmit Queue Base Address Low - PF0_FW_HLP_ATQBAL (0x00080048; RW)
	13.2.2.22.5 PF Firmware Admin Receive Queue Base Address Low - PF_FW_ARQBAL (0x00080080; RW)
	13.2.2.22.6 Global Tools Firmware Admin Receive Queue Base Address Low - GL_FW_TOOL_ARQBAL (0x000800C0; RW)
	13.2.2.22.7 PF0 PSM Firmware Admin Receive Queue Base Address Low - PF0_FW_PSM_ARQBAL (0x000800C4; RW)
	13.2.2.22.8 PF0 HLP Firmware Admin Receive Queue Base Address Low - PF0_FW_HLP_ARQBAL (0x000800C8; RW)
	13.2.2.22.9 PF Firmware Admin Transmit Queue Base Address High - PF_FW_ATQBAH (0x00080100; RW)
	13.2.2.22.10 Global Tools Firmware Admin Transmit Queue Base Address High - GL_FW_TOOL_ATQBAH (0x00080140; RW)
	13.2.2.22.11 PF0 PSM Firmware Admin Transmit Queue Base Address High - PF0_FW_PSM_ATQBAH (0x00080144; RW)
	13.2.2.22.12 PF0 HLP Firmware Admin Transmit Queue Base Address High - PF0_FW_HLP_ATQBAH (0x00080148; RW)
	13.2.2.22.13 PF Firmware Admin Receive Queue Base Address High - PF_FW_ARQBAH (0x00080180; RW)
	13.2.2.22.14 Global Tools Firmware Admin Receive Queue Base Address High - GL_FW_TOOL_ARQBAH (0x000801C0; RW)
	13.2.2.22.15 PF0 PSM Firmware Admin Receive Queue Base Address High - PF0_FW_PSM_ARQBAH (0x000801C4; RW)
	13.2.2.22.16 PF0 HLP Firmware Admin Receive Queue Base Address High - PF0_FW_HLP_ARQBAH (0x000801C8; RW)
	13.2.2.22.17 PF Firmware Admin Transmit Queue Length - PF_FW_ATQLEN (0x00080200; RW)
	13.2.2.22.18 Global Tools Firmware Admin Transmit Queue Length - GL_FW_TOOL_ATQLEN (0x00080240; RW)
	13.2.2.22.19 PF0 PSM Firmware Admin Transmit Queue Length - PF0_FW_PSM_ATQLEN (0x00080244; RW)
	13.2.2.22.20 PF0 HLP Firmware Admin Transmit Queue Length - PF0_FW_HLP_ATQLEN (0x00080248; RW)
	13.2.2.22.21 PF Firmware Admin Receive Queue Length - PF_FW_ARQLEN (0x00080280; RW)
	13.2.2.22.22 Global Tools Firmware Admin Receive Queue Length - GL_FW_TOOL_ARQLEN (0x000802C0; RW)
	13.2.2.22.23 PF0 PSM Firmware Admin Receive Queue Length - PF0_FW_PSM_ARQLEN (0x000802C4; RW)
	13.2.2.22.24 PF0 HLP Firmware Admin Receive Queue Length - PF0_FW_HLP_ARQLEN (0x000802C8; RW)
	13.2.2.22.25 PF Firmware Admin Transmit Head - PF_FW_ATQH (0x00080300; RW)
	13.2.2.22.26 Global Tools Firmware Admin Transmit Head - GL_FW_TOOL_ATQH (0x00080340; RW)
	13.2.2.22.27 PF0 PSM Firmware Admin Transmit Head - PF0_FW_PSM_ATQH (0x00080344; RW)
	13.2.2.22.28 PF0 HLP Firmware Admin Transmit Head - PF0_FW_HLP_ATQH (0x00080348; RW)
	13.2.2.22.29 PF Firmware Admin Receive Queue Head - PF_FW_ARQH (0x00080380; RW)
	13.2.2.22.30 Global Tools Firmware Admin Receive Queue Head - GL_FW_TOOL_ARQH (0x000803C0; RW)
	13.2.2.22.31 PF0 PSM Firmware Admin Receive Queue Head - PF0_FW_PSM_ARQH (0x000803C4; RW)
	13.2.2.22.32 PF0 HLP Firmware Admin Receive Queue Head - PF0_FW_HLP_ARQH (0x000803C8; RW)
	13.2.2.22.33 PF Firmware Admin Transmit Tail - PF_FW_ATQT (0x00080400; RW)
	13.2.2.22.34 Global Tools Firmware Admin Transmit Tail - GL_FW_TOOL_ATQT (0x00080440; RW)
	13.2.2.22.35 PF0 PSM Firmware Admin Transmit Tail - PF0_FW_PSM_ATQT (0x00080444; RW)
	13.2.2.22.36 PF0 HLP Firmware Admin Transmit Tail - PF0_FW_HLP_ATQT (0x00080448; RW)
	13.2.2.22.37 PF Firmware Admin Receive Queue Tail - PF_FW_ARQT (0x00080480; RW)
	13.2.2.22.38 Global Tools Firmware Admin Receive Queue Tail - GL_FW_TOOL_ARQT (0x000804C0; RW)
	13.2.2.22.39 PF0 PSM Firmware Admin Receive Queue Tail - PF0_FW_PSM_ARQT (0x000804C4; RW)
	13.2.2.22.40 PF0 HLP Firmware Admin Receive Queue Tail - PF0_FW_HLP_ARQT (0x000804C8; RW)
	13.2.2.22.41 Tools Mailbox HOST Interface Buffer Area - GL_HIBA[n] (0x00081000 + 0x4*n, n=0...1023; RW)
	13.2.2.22.42 Tools Mailbox HOST Interface Descriptor Area - GL_HIDA[n] (0x00082000 + 0x4*n, n=0...15; RW)
	13.2.2.22.43 Tools Mailbox HOST Interface Control Register - GL_HICR (0x00082040; RW)
	13.2.2.22.44 Tools Mailbox HOST Interface Enable Register - GL_HICR_EN (0x00082044; RO)
	13.2.2.22.45 VSI Mailbox Transmit Queue Base Address Low - VSI_MBX_ATQBAL[VSI] (0x00220000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.46 VSI Mailbox Transmit Queue Base Address High - VSI_MBX_ATQBAH[VSI] (0x00221000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.47 VSI Mailbox Transmit Queue Length - VSI_MBX_ATQLEN[VSI] (0x00222000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.48 VSI Mailbox Transmit Head - VSI_MBX_ATQH[VSI] (0x00223000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.49 VSI Mailbox Transmit Tail - VSI_MBX_ATQT[VSI] (0x00224000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.50 VSI Mailbox Receive Queue Base Address Low - VSI_MBX_ARQBAL[VSI] (0x00225000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.51 VSI Mailbox Receive Queue Base Address High - VSI_MBX_ARQBAH[VSI] (0x00226000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.52 VSI Mailbox Receive Queue Length - VSI_MBX_ARQLEN[VSI] (0x00227000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.53 VSI Mailbox Receive Head - VSI_MBX_ARQH[VSI] (0x00228000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.54 VSI Mailbox Receive Tail - VSI_MBX_ARQT[VSI] (0x00229000 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.55 VF Mailbox Transmit Queue Base Address Low - VF_MBX_ATQBAL[VF] (0x0022A000 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.56 VF Mailbox Transmit Queue Base Address High - VF_MBX_ATQBAH[VF] (0x0022A400 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.57 VF Mailbox Transmit Queue Length - VF_MBX_ATQLEN[VF] (0x0022A800 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.58 VF Mailbox Transmit Head - VF_MBX_ATQH[VF] (0x0022AC00 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.59 VF Mailbox Transmit Tail - VF_MBX_ATQT[VF] (0x0022B000 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.60 VF Mailbox Receive Queue Base Address Low - VF_MBX_ARQBAL[VF] (0x0022B400 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.61 VF Mailbox Receive Queue Base Address High - VF_MBX_ARQBAH[VF] (0x0022B800 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.62 VF Mailbox Receive Queue Length - VF_MBX_ARQLEN[VF] (0x0022BC00 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.63 VF Mailbox Receive Head - VF_MBX_ARQH[VF] (0x0022C000 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.64 VF Mailbox Receive Tail - VF_MBX_ARQT[VF] (0x0022C400 + 0x4*VF, VF=0...255; RW)
	13.2.2.22.65 VF CPM Mailbox Transmit Queue Base Address Low - VF_MBX_CPM_ATQBAL[VF128] (0x0022C800 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.66 VF CPM Mailbox Transmit Queue Base Address High - VF_MBX_CPM_ATQBAH[VF128] (0x0022CA00 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.67 VF CPM Mailbox Transmit Queue Length - VF_MBX_CPM_ATQLEN[VF128] (0x0022CC00 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.68 VF CPM Mailbox Transmit Head - VF_MBX_CPM_ATQH[VF128] (0x0022CE00 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.69 VF CPM Mailbox Transmit Tail - VF_MBX_CPM_ATQT[VF128] (0x0022D000 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.70 VF CPM Mailbox Receive Queue Base Address Low - VF_MBX_CPM_ARQBAL[VF128] (0x0022D200 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.71 VF CPM Mailbox Receive Queue Base Address High - VF_MBX_CPM_ARQBAH[VF128] (0x0022D400 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.72 VF CPM Mailbox Receive Queue Length - VF_MBX_CPM_ARQLEN[VF128] (0x0022D600 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.73 VF CPM Mailbox Receive Head - VF_MBX_CPM_ARQH[VF128] (0x0022D800 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.74 VF CPM Mailbox Receive Tail - VF_MBX_CPM_ARQT[VF128] (0x0022DA00 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.75 VF HLP Mailbox Transmit Queue Base Address Low - VF_MBX_HLP_ATQBAL[VF16] (0x0022DC00 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.76 VF HLP Mailbox Transmit Queue Base Address High - VF_MBX_HLP_ATQBAH[VF16] (0x0022DC40 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.77 VF HLP Mailbox Transmit Queue Length - VF_MBX_HLP_ATQLEN[VF16] (0x0022DC80 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.78 VF HLP Mailbox Transmit Head - VF_MBX_HLP_ATQH[VF16] (0x0022DCC0 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.79 VF HLP Mailbox Transmit Tail - VF_MBX_HLP_ATQT[VF16] (0x0022DD00 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.80 VF HLP Mailbox Receive Queue Base Address Low - VF_MBX_HLP_ARQBAL[VF16] (0x0022DD40 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.81 VF HLP Mailbox Receive Queue Base Address High - VF_MBX_HLP_ARQBAH[VF16] (0x0022DD80 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.82 VF HLP Mailbox Receive Queue Length - VF_MBX_HLP_ARQLEN[VF16] (0x0022DDC0 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.83 VF HLP Mailbox Receive Head - VF_MBX_HLP_ARQH[VF16] (0x0022DE00 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.84 VF HLP Mailbox Receive Tail - VF_MBX_HLP_ARQT[VF16] (0x0022DE40 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.85 VF PSM Mailbox Transmit Queue Base Address Low - VF_MBX_PSM_ATQBAL[VF16] (0x0022DE80 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.86 VF PSM Mailbox Transmit Queue Base Address High - VF_MBX_PSM_ATQBAH[VF16] (0x0022DEC0 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.87 VF PSM Mailbox Transmit Queue Length - VF_MBX_PSM_ATQLEN[VF16] (0x0022DF00 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.88 VF PSM Mailbox Transmit Head - VF_MBX_PSM_ATQH[VF16] (0x0022DF40 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.89 VF PSM Mailbox Transmit Tail - VF_MBX_PSM_ATQT[VF16] (0x0022DF80 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.90 VF PSM Mailbox Receive Queue Base Address Low - VF_MBX_PSM_ARQBAL[VF16] (0x0022DFC0 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.91 VF PSM Mailbox Receive Queue Base Address High - VF_MBX_PSM_ARQBAH[VF16] (0x0022E000 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.92 VF PSM Mailbox Receive Queue Length - VF_MBX_PSM_ARQLEN[VF16] (0x0022E040 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.93 VF PSM Mailbox Receive Head - VF_MBX_PSM_ARQH[VF16] (0x0022E080 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.94 VF PSM Mailbox Receive Tail - VF_MBX_PSM_ARQT[VF16] (0x0022E0C0 + 0x4*VF16, VF16=0...15; RW)
	13.2.2.22.95 PF Mailbox Transmit Queue Base Address Low - PF_MBX_ATQBAL (0x0022E100; RW)
	13.2.2.22.96 PF Mailbox Transmit Queue Base Address High - PF_MBX_ATQBAH (0x0022E180; RW)
	13.2.2.22.97 PF Mailbox Transmit Queue Length - PF_MBX_ATQLEN (0x0022E200; RW)
	13.2.2.22.98 PF Mailbox Transmit Head - PF_MBX_ATQH (0x0022E280; RW)
	13.2.2.22.99 PF Mailbox Transmit Tail - PF_MBX_ATQT (0x0022E300; RW)
	13.2.2.22.100 PF Mailbox Receive Queue Base Address Low - PF_MBX_ARQBAL (0x0022E380; RW)
	13.2.2.22.101 PF Mailbox Receive Queue Base Address High - PF_MBX_ARQBAH (0x0022E400; RW)
	13.2.2.22.102 PF Mailbox Receive Queue Length - PF_MBX_ARQLEN (0x0022E480; RW)
	13.2.2.22.103 PF Mailbox Receive Head - PF_MBX_ARQH (0x0022E500; RW)
	13.2.2.22.104 PF Mailbox Receive Tail - PF_MBX_ARQT (0x0022E580; RW)
	13.2.2.22.105 PF0 CPM Mailbox Transmit Queue Base Address Low - PF0_MBX_CPM_ATQBAL (0x0022E5C0; RW)
	13.2.2.22.106 PF0 CPM Mailbox Transmit Queue Base Address High - PF0_MBX_CPM_ATQBAH (0x0022E5C4; RW)
	13.2.2.22.107 PF0 CPM Mailbox Transmit Queue Length - PF0_MBX_CPM_ATQLEN (0x0022E5C8; RW)
	13.2.2.22.108 PF0 CPM Mailbox Transmit Head - PF0_MBX_CPM_ATQH (0x0022E5CC; RW)
	13.2.2.22.109 PF0 CPM Mailbox Transmit Tail - PF0_MBX_CPM_ATQT (0x0022E5D0; RW)
	13.2.2.22.110 PF0 CPM Mailbox Receive Queue Base Address Low - PF0_MBX_CPM_ARQBAL (0x0022E5D4; RW)
	13.2.2.22.111 PF0 CPM Mailbox Receive Queue Base Address High - PF0_MBX_CPM_ARQBAH (0x0022E5D8; RW)
	13.2.2.22.112 PF0 CPM Mailbox Receive Queue Length - PF0_MBX_CPM_ARQLEN (0x0022E5DC; RW)
	13.2.2.22.113 PF0 CPM Mailbox Receive Head - PF0_MBX_CPM_ARQH (0x0022E5E0; RW)
	13.2.2.22.114 PF0 CPM Mailbox Receive Tail - PF0_MBX_CPM_ARQT (0x0022E5E4; RW)
	13.2.2.22.115 PF0 HLP Mailbox Transmit Queue Base Address Low - PF0_MBX_HLP_ATQBAL (0x0022E5E8; RW)
	13.2.2.22.116 PF0 HLP Mailbox Transmit Queue Base Address High - PF0_MBX_HLP_ATQBAH (0x0022E5EC; RW)
	13.2.2.22.117 PF0 HLP Mailbox Transmit Queue Length - PF0_MBX_HLP_ATQLEN (0x0022E5F0; RW)
	13.2.2.22.118 PF0 HLP Mailbox Transmit Head - PF0_MBX_HLP_ATQH (0x0022E5F4; RW)
	13.2.2.22.119 PF0 HLP Mailbox Transmit Tail - PF0_MBX_HLP_ATQT (0x0022E5F8; RW)
	13.2.2.22.120 PF0 HLP Mailbox Receive Queue Base Address Low - PF0_MBX_HLP_ARQBAL (0x0022E5FC; RW)
	13.2.2.22.121 PF0 HLP Mailbox Receive Queue Base Address High - PF0_MBX_HLP_ARQBAH (0x0022E600; RW)
	13.2.2.22.122 PF0 HLP Mailbox Receive Queue Length - PF0_MBX_HLP_ARQLEN (0x0022E604; RW)
	13.2.2.22.123 PF0 HLP Mailbox Receive Head - PF0_MBX_HLP_ARQH (0x0022E608; RW)
	13.2.2.22.124 PF0 HLP Mailbox Receive Tail - PF0_MBX_HLP_ARQT (0x0022E60C; RW)
	13.2.2.22.125 PF0 PSM Mailbox Transmit Queue Base Address Low - PF0_MBX_PSM_ATQBAL (0x0022E610; RW)
	13.2.2.22.126 PF0 PSM Mailbox Transmit Queue Base Address High - PF0_MBX_PSM_ATQBAH (0x0022E614; RW)
	13.2.2.22.127 PF0 PSM Mailbox Transmit Queue Length - PF0_MBX_PSM_ATQLEN (0x0022E618; RW)
	13.2.2.22.128 PF0 PSM Mailbox Transmit Head - PF0_MBX_PSM_ATQH (0x0022E61C; RW)
	13.2.2.22.129 PF0 PSM Mailbox Transmit Tail - PF0_MBX_PSM_ATQT (0x0022E620; RW)
	13.2.2.22.130 PF0 PSM Mailbox Receive Queue Base Address Low - PF0_MBX_PSM_ARQBAL (0x0022E624; RW)
	13.2.2.22.131 PF0 PSM Mailbox Receive Queue Base Address High - PF0_MBX_PSM_ARQBAH (0x0022E628; RW)
	13.2.2.22.132 PF0 PSM Mailbox Receive Queue Length - PF0_MBX_PSM_ARQLEN (0x0022E62C; RW)
	13.2.2.22.133 PF0 PSM Mailbox Receive Head - PF0_MBX_PSM_ARQH (0x0022E630; RW)
	13.2.2.22.134 PF0 PSM Mailbox Receive Tail - PF0_MBX_PSM_ARQT (0x0022E634; RW)
	13.2.2.22.135 PF0 CPM Sideband Transmit Queue Base Address Low - PF0_SB_CPM_ATQBAL (0x0022E638; RW)
	13.2.2.22.136 PF0 CPM Sideband Transmit Queue Base Address High - PF0_SB_CPM_ATQBAH (0x0022E63C; RW)
	13.2.2.22.137 PF0 CPM Sideband Transmit Queue Length - PF0_SB_CPM_ATQLEN (0x0022E640; RW)
	13.2.2.22.138 PF0 CPM Sideband Transmit Head - PF0_SB_CPM_ATQH (0x0022E644; RW)
	13.2.2.22.139 PF0 CPM Sideband Transmit Tail - PF0_SB_CPM_ATQT (0x0022E648; RW)
	13.2.2.22.140 PF0 CPM Sideband Receive Queue Base Address Low - PF0_SB_CPM_ARQBAL (0x0022E64C; RW)
	13.2.2.22.141 PF0 CPM Sideband Receive Queue Base Address High - PF0_SB_CPM_ARQBAH (0x0022E650; RW)
	13.2.2.22.142 PF0 CPM Sideband Receive Queue Length - PF0_SB_CPM_ARQLEN (0x0022E654; RW)
	13.2.2.22.143 PF0 CPM Sideband Receive Head - PF0_SB_CPM_ARQH (0x0022E658; RW)
	13.2.2.22.144 PF0 CPM Sideband Receive Tail - PF0_SB_CPM_ARQT (0x0022E65C; RW)
	13.2.2.22.145 VF CPM Sideband Transmit Queue Base Address Low - VF_SB_CPM_ATQBAL[VF128] (0x0022E800 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.146 VF CPM Sideband Transmit Queue Base Address High - VF_SB_CPM_ATQBAH[VF128] (0x0022EA00 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.147 VF CPM Sideband Transmit Queue Length - VF_SB_CPM_ATQLEN[VF128] (0x0022EC00 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.148 VF CPM Sideband Transmit Head - VF_SB_CPM_ATQH[VF128] (0x0022EE00 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.149 VF CPM Sideband Transmit Tail - VF_SB_CPM_ATQT[VF128] (0x0022F000 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.150 VF CPM Sideband Receive Queue Base Address Low - VF_SB_CPM_ARQBAL[VF128] (0x0022F200 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.151 VF CPM Sideband Receive Queue Base Address High - VF_SB_CPM_ARQBAH[VF128] (0x0022F400 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.152 VF CPM Sideband Receive Queue Length - VF_SB_CPM_ARQLEN[VF128] (0x0022F600 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.153 VF CPM Sideband Receive Head - VF_SB_CPM_ARQH[VF128] (0x0022F800 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.154 VF CPM Sideband Receive Tail - VF_SB_CPM_ARQT[VF128] (0x0022FA00 + 0x4*VF128, VF128=0...127; RW)
	13.2.2.22.155 PF Sideband Transmit Queue Base Address Low - PF_SB_ATQBAL (0x0022FC00; RW)
	13.2.2.22.156 PF Sideband Transmit Queue Base Address High - PF_SB_ATQBAH (0x0022FC80; RW)
	13.2.2.22.157 PF Sideband Transmit Queue Length - PF_SB_ATQLEN (0x0022FD00; RW)
	13.2.2.22.158 PF Sideband Transmit Head - PF_SB_ATQH (0x0022FD80; RW)
	13.2.2.22.159 PF Sideband Transmit Tail - PF_SB_ATQT (0x0022FE00; RW)
	13.2.2.22.160 PF Sideband Receive Queue Base Address Low - PF_SB_ARQBAL (0x0022FE80; RW)
	13.2.2.22.161 PF Sideband Receive Queue Base Address High - PF_SB_ARQBAH (0x0022FF00; RW)
	13.2.2.22.162 PF Sideband Receive Queue Length - PF_SB_ARQLEN (0x0022FF80; RW)
	13.2.2.22.163 PF Sideband Receive Head - PF_SB_ARQH (0x00230000; RW)
	13.2.2.22.164 PF Sideband Receive Tail - PF_SB_ARQT (0x00230080; RW)
	13.2.2.22.165 PF0 HLP Sideband Transmit Queue Base Address Low - PF0_SB_HLP_ATQBAL (0x002300C0; RW)
	13.2.2.22.166 PF0 HLP Sideband Transmit Queue Base Address High - PF0_SB_HLP_ATQBAH (0x002300C4; RW)
	13.2.2.22.167 PF0 HLP Sideband Transmit Queue Length - PF0_SB_HLP_ATQLEN (0x002300C8; RW)
	13.2.2.22.168 PF0 HLP Sideband Transmit Head - PF0_SB_HLP_ATQH (0x002300CC; RW)
	13.2.2.22.169 PF0 HLP Sideband Transmit Tail - PF0_SB_HLP_ATQT (0x002300D0; RW)
	13.2.2.22.170 PF0 HLP Sideband Receive Queue Base Address Low - PF0_SB_HLP_ARQBAL (0x002300D4; RW)
	13.2.2.22.171 PF0 HLP Sideband Receive Queue Base Address High - PF0_SB_HLP_ARQBAH (0x002300D8; RW)
	13.2.2.22.172 PF0 HLP Sideband Receive Queue Length - PF0_SB_HLP_ARQLEN (0x002300DC; RW)
	13.2.2.22.173 PF0 HLP Sideband Receive Head - PF0_SB_HLP_ARQH (0x002300E0; RW)
	13.2.2.22.174 PF0 HLP Sideband Receive Tail - PF0_SB_HLP_ARQT (0x002300E4; RW)
	13.2.2.22.175 PF SB HLP Remote Device Control Register - PF0_SB_HLP_REM_DEV_CTL (0x002300E8; RW)
	13.2.2.22.176 VF SB CPM Remote Device Control Register - VF_SB_CPM_REM_DEV_CTL (0x002300EC; RW)
	13.2.2.22.177 PF SB Remote Device Control Register - PF_SB_REM_DEV_CTL (0x002300F0; RW)
	13.2.2.22.178 PF SB CPM Remote Device Control Register - PF0_SB_CPM_REM_DEV_CTL (0x002300F4; RW)
	13.2.2.22.179 SB Remote Device Destination Register - SB_REM_DEV_DEST[n] (0x002300F8 + 0x4*n, n=0...7; RW)
	13.2.2.22.180 PF VF Control Register - VP_MBX_PF_VF_CTRL[VSI] (0x00230800 + 0x4*VSI, VSI=0...767; RW)
	13.2.2.22.181 PF VF Control Register - VP_MBX_CPM_PF_VF_CTRL[VP128] (0x00231800 + 0x4*VP128, VP128=0...127; RW)
	13.2.2.22.182 PF VF Control Register - VP_MBX_HLP_PF_VF_CTRL[VP16] (0x00231A00 + 0x4*VP16, VP16=0...15; RW)
	13.2.2.22.183 PF VF Control Register - VP_MBX_PSM_PF_VF_CTRL[VP16] (0x00231A40 + 0x4*VP16, VP16=0...15; RW)
	13.2.2.22.184 PF VF Control Register - VP_SB_CPM_PF_VF_CTRL[VP128] (0x00231C00 + 0x4*VP128, VP128=0...127; RW)
	13.2.2.22.185 PF VF Control Register - GL_MBX_PASID (0x00231EC0; RW)

	13.2.2.23 PF - Statistics Registers
	13.2.2.23.1 PORT TC Transmit Byte Count - TPB_PRTTPB_STAT_TC_BYTES_SENT[n] (0x00099094 + 0x4*n, n=0...63; RWC)
	13.2.2.23.2 PORT Transmit Packet Count - TPB_PRTTPB_STAT_PKT_SENT[n] (0x00099470 + 0x4*n, n=0...7; RWC)
	13.2.2.23.3 Port (Line) Receive Drop Counter - PRTRPB_RDPC (0x000AC260; RWC)
	13.2.2.23.4 Port (LB) Receive Drop Counter - PRTRPB_LDPC (0x000AC280; RWC)
	13.2.2.23.5 VSI Received Discard Packet Count - GLV_RDPC[n] (0x00294C04 + 0x4*n, n=0...767; RWC)
	13.2.2.23.6 Per VSI Error Drops - GLV_REPC[n] (0x00295804 + 0x4*n, n=0...767; RWC)
	13.2.2.23.7 VSI Good Octets Transmit Count Low - GLV_GOTCL[n] (0x00300000 + 0x8*n, n=0...767; RWC)
	13.2.2.23.8 VSI Good Octets Transmit Count High - GLV_GOTCH[n] (0x00300004 + 0x8*n, n=0...767; RWC)
	13.2.2.23.9 Switch Good Octets Transmit Count Low - GLSW_GOTCL[n] (0x00302000 + 0x8*n, n=0...31; RWC)
	13.2.2.23.10 Switch Good Octets Transmit Count High - GLSW_GOTCH[n] (0x00302004 + 0x8*n, n=0...31; RWC)
	13.2.2.23.11 VEB VLAN Transmit Byte Count Low - GL_STAT_SWR_GOTCL[n] (0x00304000 + 0x8*n, n=0...127; RWC)
	13.2.2.23.12 VEB VLAN Transmit Byte Count High - GL_STAT_SWR_GOTCH[n] (0x00304004 + 0x8*n, n=0...127; RWC)
	13.2.2.23.13 VEB UP Transmit Byte Count Low - GLVEBUP_TBCL[n,m] (0x00306000 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)
	13.2.2.23.14 VEB UP Transmit Byte Count High - GLVEBUP_TBCH[n,m] (0x00306004 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)
	13.2.2.23.15 VEB UP Transmit Packet Count Low - GLVEBUP_TPCL[n,m] (0x00308000 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)
	13.2.2.23.16 VEB UP Transmit Packet Count High - GLVEBUP_TPCH[n,m] (0x00308004 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)
	13.2.2.23.17 VSI Unicast Packets Transmit Count Low - GLV_UPTCL[n] (0x0030A000 + 0x8*n, n=0...767; RWC)
	13.2.2.23.18 VSI Unicast Packets Transmit Count High - GLV_UPTCH[n] (0x0030A004 + 0x8*n, n=0...767; RWC)
	13.2.2.23.19 VSI Multicast Packets Transmit Count Low - GLV_MPTCL[n] (0x0030C000 + 0x8*n, n=0...767; RWC)
	13.2.2.23.20 VSI Multicast Packets Transmit Count High - GLV_MPTCH[n] (0x0030C004 + 0x8*n, n=0...767; RWC)
	13.2.2.23.21 VSI Broadcast Packets Transmit Count Low - GLV_BPTCL[n] (0x0030E000 + 0x8*n, n=0...767; RWC)
	13.2.2.23.22 VSI Broadcast Packets Transmit Count High - GLV_BPTCH[n] (0x0030E004 + 0x8*n, n=0...767; RWC)
	13.2.2.23.23 Switch Unicast Packets Transmit Count Low - GLSW_UPTCL[n] (0x00310000 + 0x8*n, n=0...31; RWC)
	13.2.2.23.24 Switch Unicast Packets Transmit Count High - GLSW_UPTCH[n] (0x00310004 + 0x8*n, n=0...31; RWC)
	13.2.2.23.25 Switch Multicast Packets Transmit Count Low - GLSW_MPTCL[n] (0x00310100 + 0x8*n, n=0...31; RWC)
	13.2.2.23.26 Switch Multicast Packets Transmit Count High - GLSW_MPTCH[n] (0x00310104 + 0x8*n, n=0...31; RWC)
	13.2.2.23.27 Switch Broadcast Packets Transmit Count Low - GLSW_BPTCL[n] (0x00310200 + 0x8*n, n=0...31; RWC)
	13.2.2.23.28 Switch Broadcast Packets Transmit Count High - GLSW_BPTCH[n] (0x00310204 + 0x8*n, n=0...31; RWC)
	13.2.2.23.29 VSI Transmit Error Packet Count - GLV_TEPC[VSI] (0x00312000 + 0x4*VSI, VSI=0...767; RWC)
	13.2.2.23.30 Port Storm Control Discarded Count - GLPRT_STDC[n] (0x00340000 + 0x4*n, n=0...7; RWC)
	13.2.2.23.31 Switch Good Octets Received Count Low - GLSW_GORCL[n] (0x00341000 + 0x8*n, n=0...31; RWC)
	13.2.2.23.32 Switch Good Octets Received Count High - GLSW_GORCH[n] (0x00341004 + 0x8*n, n=0...31; RWC)
	13.2.2.23.33 VEB VLAN Receive Byte Count Low - GL_STAT_SWR_GORCL[n] (0x00342000 + 0x8*n, n=0...127; RWC)
	13.2.2.23.34 VEB VLAN Receive Byte Count High - GL_STAT_SWR_GORCH[n] (0x00342004 + 0x8*n, n=0...127; RWC)
	13.2.2.23.35 VEB UP Receive Byte Count Low - GLVEBUP_RBCL[n,m] (0x00343000 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)
	13.2.2.23.36 VEB UP Receive Byte Count High - GLVEBUP_RBCH[n,m] (0x00343004 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)
	13.2.2.23.37 VEB UP Receive Packet Count Low - GLVEBUP_RPCL[n,m] (0x00344000 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)
	13.2.2.23.38 VEB UP Receive Packet Count High - GLVEBUP_RPCH[n,m] (0x00344004 + 0x8*n + 0x40*m, n=0...7, m=0...31; RWC)
	13.2.2.23.39 Switch Unicast Packets Received Count Low - GLSW_UPRCL[n] (0x00346000 + 0x8*n, n=0...31; RWC)
	13.2.2.23.40 Switch Unicast Packets Received Count High - GLSW_UPRCH[n] (0x00346004 + 0x8*n, n=0...31; RWC)
	13.2.2.23.41 Switch Multicast Packets Received Count Low - GLSW_MPRCL[n] (0x00346100 + 0x8*n, n=0...31; RWC)
	13.2.2.23.42 Switch Multicast Packets Received Count High - GLSW_MPRCH[n] (0x00346104 + 0x8*n, n=0...31; RWC)
	13.2.2.23.43 Switch Broadcast Packets Received Count Low - GLSW_BPRCL[n] (0x00346200 + 0x8*n, n=0...31; RWC)
	13.2.2.23.44 Switch Broadcast Packets Received Count High - GLSW_BPRCH[n] (0x00346204 + 0x8*n, n=0...31; RWC)
	13.2.2.23.45 VEB VLAN Unicast Packet Count Low - GL_STAT_SWR_UPCL[n] (0x00347000 + 0x8*n, n=0...127; RWC)
	13.2.2.23.46 VEB VLAN Unicast Packet Count High - GL_STAT_SWR_UPCH[n] (0x00347004 + 0x8*n, n=0...127; RWC)
	13.2.2.23.47 VEB VLAN Multicast Packet Count Low - GL_STAT_SWR_MPCL[n] (0x00347400 + 0x8*n, n=0...127; RWC)
	13.2.2.23.48 VEB VLAN Multicast Packet Count High - GL_STAT_SWR_MPCH[n] (0x00347404 + 0x8*n, n=0...127; RWC)
	13.2.2.23.49 VEB VLAN Broadcast Packet Count Low - GL_STAT_SWR_BPCL[n] (0x00347800 + 0x8*n, n=0...127; RWC)
	13.2.2.23.50 VEB VLAN Broadcast Packet Count High - GL_STAT_SWR_BPCH[n] (0x00347804 + 0x8*n, n=0...127; RWC)
	13.2.2.23.51 Port Good Octets Received Count Low - GLPRT_GORCL[n] (0x00380000 + 0x8*n, n=0...7; RWC)
	13.2.2.23.52 Port Good Octets Received Count High - GLPRT_GORCH[n] (0x00380004 + 0x8*n, n=0...7; RWC)
	13.2.2.23.53 Port MAC Local Fault Count - GLPRT_MLFC[n] (0x00380040 + 0x8*n, n=0...7; RWC)
	13.2.2.23.54 Port MAC Local Fault Count - GLPRT_MLFC_H[n] (0x00380044 + 0x8*n, n=0...7; RWC)
	13.2.2.23.55 Port MAC Remote Fault Count - GLPRT_MRFC[n] (0x00380080 + 0x8*n, n=0...7; RWC)
	13.2.2.23.56 Port MAC Remote Fault Count - GLPRT_MRFC_H[n] (0x00380084 + 0x8*n, n=0...7; RWC)
	13.2.2.23.57 Port CRC Error Count - GLPRT_CRCERRS[n] (0x00380100 + 0x8*n, n=0...7; RWC)
	13.2.2.23.58 Port CRC Error Count - GLPRT_CRCERRS_H[n] (0x00380104 + 0x8*n, n=0...7; RWC)
	13.2.2.23.59 Receive Length Error Count - GLPRT_RLEC[n] (0x00380140 + 0x8*n, n=0...7; RWC)
	13.2.2.23.60 Receive Length Error Count - GLPRT_RLEC_H[n] (0x00380144 + 0x8*n, n=0...7; RWC)
	13.2.2.23.61 Port Illegal Byte Error Count - GLPRT_ILLERRC[n] (0x003801C0 + 0x8*n, n=0...7; RWC)
	13.2.2.23.62 Port Illegal Byte Error Count - GLPRT_ILLERRC_H[n] (0x003801C4 + 0x8*n, n=0...7; RWC)
	13.2.2.23.63 Receive Undersize Count - GLPRT_RUC[n] (0x00380200 + 0x8*n, n=0...7; RWC)
	13.2.2.23.64 Receive Undersize Count - GLPRT_RUC_H[n] (0x00380204 + 0x8*n, n=0...7; RWC)
	13.2.2.23.65 Receive Oversize Count - GLPRT_ROC[n] (0x00380240 + 0x8*n, n=0...7; RWC)
	13.2.2.23.66 Receive Oversize Count - GLPRT_ROC_H[n] (0x00380244 + 0x8*n, n=0...7; RWC)
	13.2.2.23.67 Port Link XON Received Count - GLPRT_LXONRXC[n] (0x00380280 + 0x8*n, n=0...7; RWC)
	13.2.2.23.68 Port Link XON Received Count - GLPRT_LXONRXC_H[n] (0x00380284 + 0x8*n, n=0...7; RWC)
	13.2.2.23.69 Port Link XOFF Received Count - GLPRT_LXOFFRXC[n] (0x003802C0 + 0x8*n, n=0...7; RWC)
	13.2.2.23.70 Port Link XOFF Received Count - GLPRT_LXOFFRXC_H[n] (0x003802C4 + 0x8*n, n=0...7; RWC)
	13.2.2.23.71 Priority XON Received Count - GLPRT_PXONRXC[n,m] (0x00380300 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.72 Priority XON Received Count - GLPRT_PXONRXC_H[n,m] (0x00380304 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.73 Priority XOFF Received Count - GLPRT_PXOFFRXC[n,m] (0x00380500 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.74 Priority XOFF Received Count - GLPRT_PXOFFRXC_H[n,m] (0x00380504 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.75 Priority XON to XOFF Count - GLPRT_RXON2OFFCNT[n,m] (0x00380700 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.76 Priority XON to XOFF Count - GLPRT_RXON2OFFCNT_H[n,m] (0x00380704 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.77 Packets Received [64 Bytes] Count Low - GLPRT_PRC64L[n] (0x00380900 + 0x8*n, n=0...7; RWC)
	13.2.2.23.78 Packets Received [64 Bytes] Count High - GLPRT_PRC64H[n] (0x00380904 + 0x8*n, n=0...7; RWC)
	13.2.2.23.79 Packets Received [65-127 Bytes] Count Low - GLPRT_PRC127L[n] (0x00380940 + 0x8*n, n=0...7; RWC)
	13.2.2.23.80 Packets Received [65-127 Bytes] Count High - GLPRT_PRC127H[n] (0x00380944 + 0x8*n, n=0...7; RWC)
	13.2.2.23.81 Packets Received [128-255 Bytes] Count Low - GLPRT_PRC255L[n] (0x00380980 + 0x8*n, n=0...7; RWC)
	13.2.2.23.82 Packets Received [128-255 Bytes] Count High - GLPRT_PRC255H[n] (0x00380984 + 0x8*n, n=0...7; RWC)
	13.2.2.23.83 Packets Received [256-511 Bytes] Count Low - GLPRT_PRC511L[n] (0x003809C0 + 0x8*n, n=0...7; RWC)
	13.2.2.23.84 Packets Received [256-511 Bytes] Count High - GLPRT_PRC511H[n] (0x003809C4 + 0x8*n, n=0...7; RWC)
	13.2.2.23.85 Packets Received [512-1023 Bytes] Count Low - GLPRT_PRC1023L[n] (0x00380A00 + 0x8*n, n=0...7; RWC)
	13.2.2.23.86 Packets Received [512-1023 Bytes] Count High - GLPRT_PRC1023H[n] (0x00380A04 + 0x8*n, n=0...7; RWC)
	13.2.2.23.87 Packets Received [1024-1522 Bytes] Count Low - GLPRT_PRC1522L[n] (0x00380A40 + 0x8*n, n=0...7; RWC)
	13.2.2.23.88 Packets Received [1024-1522 Bytes] Count High - GLPRT_PRC1522H[n] (0x00380A44 + 0x8*n, n=0...7; RWC)
	13.2.2.23.89 Packets Received [1523-9522 Bytes] Count Low - GLPRT_PRC9522L[n] (0x00380A80 + 0x8*n, n=0...7; RWC)
	13.2.2.23.90 Packets Received [1523-9522 Bytes] Count High - GLPRT_PRC9522H[n] (0x00380A84 + 0x8*n, n=0...7; RWC)
	13.2.2.23.91 Receive Fragment Count - GLPRT_RFC[n] (0x00380AC0 + 0x8*n, n=0...7; RWC)
	13.2.2.23.92 Receive Fragment Count - GLPRT_RFC_H[n] (0x00380AC4 + 0x8*n, n=0...7; RWC)
	13.2.2.23.93 Receive Jabber Count - GLPRT_RJC[n] (0x00380B00 + 0x8*n, n=0...7; RWC)
	13.2.2.23.94 Receive Jabber Count - GLPRT_RJC_H[n] (0x00380B04 + 0x8*n, n=0...7; RWC)
	13.2.2.23.95 Port Good Octets Transmit Count Low - GLPRT_GOTCL[n] (0x00380B40 + 0x8*n, n=0...7; RWC)
	13.2.2.23.96 Port Good Octets Transmit Count High - GLPRT_GOTCH[n] (0x00380B44 + 0x8*n, n=0...7; RWC)
	13.2.2.23.97 Packets Transmitted [64 Bytes] Count Low - GLPRT_PTC64L[n] (0x00380B80 + 0x8*n, n=0...7; RWC)
	13.2.2.23.98 Packets Transmitted [64 Bytes] Count High - GLPRT_PTC64H[n] (0x00380B84 + 0x8*n, n=0...7; RWC)
	13.2.2.23.99 Packets Transmitted [65-127 Bytes] Count Low - GLPRT_PTC127L[n] (0x00380BC0 + 0x8*n, n=0...7; RWC)
	13.2.2.23.100 Packets Transmitted [65-127 Bytes] Count High - GLPRT_PTC127H[n] (0x00380BC4 + 0x8*n, n=0...7; RWC)
	13.2.2.23.101 Packets Transmitted [128-255 Bytes] Count Low - GLPRT_PTC255L[n] (0x00380C00 + 0x8*n, n=0...7; RWC)
	13.2.2.23.102 Packets Transmitted [128-255 Bytes] Count High - GLPRT_PTC255H[n] (0x00380C04 + 0x8*n, n=0...7; RWC)
	13.2.2.23.103 Packets Transmitted [256-511 Bytes] Count Low - GLPRT_PTC511L[n] (0x00380C40 + 0x8*n, n=0...7; RWC)
	13.2.2.23.104 Packets Transmitted [256-511 Bytes] Count High - GLPRT_PTC511H[n] (0x00380C44 + 0x8*n, n=0...7; RWC)
	13.2.2.23.105 Packets Transmitted [512-1023 Bytes] Count Low - GLPRT_PTC1023L[n] (0x00380C80 + 0x8*n, n=0...7; RWC)
	13.2.2.23.106 Packets Transmitted [512-1023 Bytes] Count High - GLPRT_PTC1023H[n] (0x00380C84 + 0x8*n, n=0...7; RWC)
	13.2.2.23.107 Packets Transmitted [1024-1522 Bytes] Count Low - GLPRT_PTC1522L[n] (0x00380CC0 + 0x8*n, n=0...7; RWC)
	13.2.2.23.108 Packets Transmitted [1024-1522 Bytes] Count High - GLPRT_PTC1522H[n] (0x00380CC4 + 0x8*n, n=0...7; RWC)
	13.2.2.23.109 Packets Transmitted [1523-9522 bytes] Count Low - GLPRT_PTC9522L[n] (0x00380D00 + 0x8*n, n=0...7; RWC)
	13.2.2.23.110 Packets Transmitted [1523-9522 bytes] Count High - GLPRT_PTC9522H[n] (0x00380D04 + 0x8*n, n=0...7; RWC)
	13.2.2.23.111 Priority XON Transmitted Count - GLPRT_PXONTXC[n,m] (0x00380D40 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.112 Priority XON Transmitted Count - GLPRT_PXONTXC_H[n,m] (0x00380D44 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.113 Priority XOFF Transmitted Count - GLPRT_PXOFFTXC[n,m] (0x00380F40 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.114 Priority XOFF Transmitted Count - GLPRT_PXOFFTXC_H[n,m] (0x00380F44 + 0x8*n + 0x40*m, n=0...7, m=0...7; RWC)
	13.2.2.23.115 Port Link XON Transmitted Count - GLPRT_LXONTXC[n] (0x00381140 + 0x8*n, n=0...7; RWC)
	13.2.2.23.116 Port Link XON Transmitted Count - GLPRT_LXONTXC_H[n] (0x00381144 + 0x8*n, n=0...7; RWC)
	13.2.2.23.117 Port Link XOFF Transmitted Count - GLPRT_LXOFFTXC[n] (0x00381180 + 0x8*n, n=0...7; RWC)
	13.2.2.23.118 Port Link XOFF Transmitted Count - GLPRT_LXOFFTXC_H[n] (0x00381184 + 0x8*n, n=0...7; RWC)
	13.2.2.23.119 Port Unicast Packets Transmit Count Low - GLPRT_UPTCL[n] (0x003811C0 + 0x8*n, n=0...7; RWC)
	13.2.2.23.120 Port Unicast Packets Transmit Count High - GLPRT_UPTCH[n] (0x003811C4 + 0x8*n, n=0...7; RWC)
	13.2.2.23.121 Port Multicast Packets Transmit Count Low - GLPRT_MPTCL[n] (0x00381200 + 0x8*n, n=0...7; RWC)
	13.2.2.23.122 Port Multicast Packets Transmit Count High - GLPRT_MPTCH[n] (0x00381204 + 0x8*n, n=0...7; RWC)
	13.2.2.23.123 Port Broadcast Packets Transmit Count Low - GLPRT_BPTCL[n] (0x00381240 + 0x8*n, n=0...7; RWC)
	13.2.2.23.124 Port Broadcast Packets Transmit Count High - GLPRT_BPTCH[n] (0x00381244 + 0x8*n, n=0...7; RWC)
	13.2.2.23.125 Transmit Discard on Link Down - GLPRT_TDOLD[n] (0x00381280 + 0x8*n, n=0...7; RWC)
	13.2.2.23.126 Transmit Discard on Link Down - GLPRT_TDOLD_H[n] (0x00381284 + 0x8*n, n=0...7; RWC)
	13.2.2.23.127 Port Unicast Packets Received Count Low - GLPRT_UPRCL[n] (0x00381300 + 0x8*n, n=0...7; RWC)
	13.2.2.23.128 Port Unicast Packets Received Count High - GLPRT_UPRCH[n] (0x00381304 + 0x8*n, n=0...7; RWC)
	13.2.2.23.129 Port Multicast Packets Received Count Low - GLPRT_MPRCL[n] (0x00381340 + 0x8*n, n=0...7; RWC)
	13.2.2.23.130 Port Multicast Packets Received Count High - GLPRT_MPRCH[n] (0x00381344 + 0x8*n, n=0...7; RWC)
	13.2.2.23.131 Port Broadcast packets received count low - GLPRT_BPRCL[n] (0x00381380 + 0x8*n, n=0...7; RWC)
	13.2.2.23.132 Port Broadcast Packets Received Count High - GLPRT_BPRCH[n] (0x00381384 + 0x8*n, n=0...7; RWC)
	13.2.2.23.133 ACL Counter Bank 0 LSBs - GLSTAT_ACL_CNT_0_L[n] (0x00388000 + 0x8*n, n=0...511; RWC)
	13.2.2.23.134 ACL Counter Bank 0 MSBs - GLSTAT_ACL_CNT_0_H[n] (0x00388004 + 0x8*n, n=0...511; RWC)
	13.2.2.23.135 ACL Counter Bank 1 LSBs - GLSTAT_ACL_CNT_1_L[n] (0x00389000 + 0x8*n, n=0...511; RWC)
	13.2.2.23.136 ACL Counter Bank 1 MSBs - GLSTAT_ACL_CNT_1_H[n] (0x00389004 + 0x8*n, n=0...511; RWC)
	13.2.2.23.137 ACL Counter Bank 2 LSBs - GLSTAT_ACL_CNT_2_L[n] (0x0038A000 + 0x8*n, n=0...511; RWC)
	13.2.2.23.138 ACL Counter Bank 2 MSBs - GLSTAT_ACL_CNT_2_H[n] (0x0038A004 + 0x8*n, n=0...511; RWC)
	13.2.2.23.139 ACL Counter Bank 3 LSBs - GLSTAT_ACL_CNT_3_L[n] (0x0038B000 + 0x8*n, n=0...511; RWC)
	13.2.2.23.140 ACL Counter Bank 3 MSBs - GLSTAT_ACL_CNT_3_H[n] (0x0038B004 + 0x8*n, n=0...511; RWC)
	13.2.2.23.141 Global Packet Byte Statistic Counter Bank 0 Low - GLSTAT_FD_CNT0L[n] (0x003A0000 + 0x8*n, n=0...4095; RWC)
	13.2.2.23.142 Global Packet Byte Statistic Counter Bank 0 High - GLSTAT_FD_CNT0H[n] (0x003A0004 + 0x8*n, n=0...4095; RWC)
	13.2.2.23.143 Global Packet Byte Statistic Counter Bank 1 Low - GLSTAT_FD_CNT1L[n] (0x003A8000 + 0x8*n, n=0...4095; RWC)
	13.2.2.23.144 Global Packet Byte Statistic Counter Bank 1 High - GLSTAT_FD_CNT1H[n] (0x003A8004 + 0x8*n, n=0...4095; RWC)
	13.2.2.23.145 VSI Good Octets Received Count Low - GLV_GORCL[n] (0x003B0000 + 0x8*n, n=0...767; RWC)
	13.2.2.23.146 VSI Good Octets Received Count High - GLV_GORCH[n] (0x003B0004 + 0x8*n, n=0...767; RWC)
	13.2.2.23.147 VSI Unicast Packets Received Count Low - GLV_UPRCL[n] (0x003B2000 + 0x8*n, n=0...767; RWC)
	13.2.2.23.148 VSI Unicast Packets Received Count High - GLV_UPRCH[n] (0x003B2004 + 0x8*n, n=0...767; RWC)
	13.2.2.23.149 VSI Multicast Packets Received Count Low - GLV_MPRCL[n] (0x003B4000 + 0x8*n, n=0...767; RWC)
	13.2.2.23.150 VSI Multicast Packets Received Count High - GLV_MPRCH[n] (0x003B4004 + 0x8*n, n=0...767; RWC)
	13.2.2.23.151 VSI Broadcast Packets Received Count Low - GLV_BPRCL[n] (0x003B6000 + 0x8*n, n=0...767; RWC)
	13.2.2.23.152 VSI Broadcast Packets Received Count High - GLV_BPRCH[n] (0x003B6004 + 0x8*n, n=0...767; RWC)

	13.2.2.24 PF - Protocol Engine Statistics Registers
	13.2.2.24.1 Protocol Engine Statistics Received VLAN_ID Errors - GLPES_PFRXVLANERR[n] (0x00540000 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.2 Protocol Engine Statistics IPv4 Received Octets Low - GLPES_PFIP4RXOCTSLO[n] (0x00540400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.3 Protocol Engine Statistics IPv4 Received Octets High - GLPES_PFIP4RXOCTSHI[n] (0x00540404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.4 Protocol Engine Statistics IPv4 Received Packets Low - GLPES_PFIP4RXPKTSLO[n] (0x00540C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.5 Protocol Engine Statistics IPv4 Received Packets High - GLPES_PFIP4RXPKTSHI[n] (0x00540C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.6 Protocol Engine Statistics IPv4 Discards - GLPES_PFIP4RXDISCARD[n] (0x00541400 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.7 Protocol Engine Statistics IPv4 Truncated Packets - GLPES_PFIP4RXTRUNC[n] (0x00541800 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.8 Protocol Engine Statistics IPv4 Received Fragments Low - GLPES_PFIP4RXFRAGSLO[n] (0x00541C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.9 Protocol Engine Statistics IPv4 Received Fragments High - GLPES_PFIP4RXFRAGSHI[n] (0x00541C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.10 Protocol Engine Statistics IPv4 Received Multicast Octets Low - GLPES_PFIP4RXMCOCTSLO[n] (0x00542400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.11 Protocol Engine Statistics IPv4 Received Multicast Octets High - GLPES_PFIP4RXMCOCTSHI[n] (0x00542404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.12 Protocol Engine Statistics IPv4 Received Multicast Packets Low - GLPES_PFIP4RXMCPKTSLO[n] (0x00542C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.13 Protocol Engine Statistics IPv4 Received Multicast Packets High - GLPES_PFIP4RXMCPKTSHI[n] (0x00542C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.14 Protocol Engine Statistics IPv6 Received Octets Low - GLPES_PFIP6RXOCTSLO[n] (0x00543400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.15 Protocol Engine Statistics IPv6 Received Octets High - GLPES_PFIP6RXOCTSHI[n] (0x00543404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.16 Protocol Engine Statistics IPv6 Received Packets Low - GLPES_PFIP6RXPKTSLO[n] (0x00543C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.17 Protocol Engine Statistics IPv6 Received Packets High - GLPES_PFIP6RXPKTSHI[n] (0x00543C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.18 Protocol Engine Statistics IPv6 Discards - GLPES_PFIP6RXDISCARD[n] (0x00544400 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.19 Protocol Engine Statistics IPv6 Truncated Packets - GLPES_PFIP6RXTRUNC[n] (0x00544800 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.20 Protocol Engine Statistics IPv6 Received Fragments Low - GLPES_PFIP6RXFRAGSLO[n] (0x00544C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.21 Protocol Engine Statistics IPv6 Received Fragments High - GLPES_PFIP6RXFRAGSHI[n] (0x00544C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.22 Protocol Engine Statistics IPv6 Received Multicast Octets Low - GLPES_PFIP6RXMCOCTSLO[n] (0x00545400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.23 Protocol Engine Statistics IPv6 Received Multicast Octets High - GLPES_PFIP6RXMCOCTSHI[n] (0x00545404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.24 Protocol Engine Statistics IPv6 Received Multicast Packets Low - GLPES_PFIP6RXMCPKTSLO[n] (0x00545C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.25 Protocol Engine Statistics IPv6 Received Multicast Packets High - GLPES_PFIP6RXMCPKTSHI[n] (0x00545C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.26 Protocol Engine Statistics IPv4 Transmitted Octets Low - GLPES_PFIP4TXOCTSLO[n] (0x00546400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.27 Protocol Engine Statistics IPv4 Transmitted Octets High - GLPES_PFIP4TXOCTSHI[n] (0x00546404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.28 Protocol Engine Statistics IPv4 Transmitted Packets Low - GLPES_PFIP4TXPKTSLO[n] (0x00546C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.29 Protocol Engine Statistics IPv4 Transmitted Packets High - GLPES_PFIP4TXPKTSHI[n] (0x00546C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.30 Protocol Engine Statistics IPv4 Transmitted Fragments Low - GLPES_PFIP4TXFRAGSLO[n] (0x00547400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.31 Protocol Engine Statistics IPv4 Transmitted Fragments High - GLPES_PFIP4TXFRAGSHI[n] (0x00547404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.32 Protocol Engine Statistics IPv4 Transmitted Multicast Octets Low - GLPES_PFIP4TXMCOCTSLO[n] (0x00547C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.33 Protocol Engine Statistics IPv4 Transmitted Multicast Octets High - GLPES_PFIP4TXMCOCTSHI[n] (0x00547C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.34 Protocol Engine Statistics IPv4 Transmitted Multicast Packets Low - GLPES_PFIP4TXMCPKTSLO[n] (0x00548400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.35 Protocol Engine Statistics IPv4 Transmitted Multicast Packets High - GLPES_PFIP4TXMCPKTSHI[n] (0x00548404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.36 Protocol Engine Statistics IPv6 Transmitted Octets Low - GLPES_PFIP6TXOCTSLO[n] (0x00548C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.37 Protocol Engine Statistics IPv6 Transmitted Octets High - GLPES_PFIP6TXOCTSHI[n] (0x00548C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.38 Protocol Engine Statistics IPv6 Transmitted Packets Low - GLPES_PFIP6TXPKTSLO[n] (0x00549400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.39 Protocol Engine Statistics IPv6 Transmitted Packets High - GLPES_PFIP6TXPKTSHI[n] (0x00549404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.40 Protocol Engine Statistics IPv6 Transmitted Fragments Low - GLPES_PFIP6TXFRAGSLO[n] (0x00549C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.41 Protocol Engine Statistics IPv6 Transmitted Fragments High - GLPES_PFIP6TXFRAGSHI[n] (0x00549C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.42 Protocol Engine Statistics IPv6 Transmitted Multicast Octets Low - GLPES_PFIP6TXMCOCTSLO[n] (0x0054A400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.43 Protocol Engine Statistics IPv6 Transmitted Multicast Octets High - GLPES_PFIP6TXMCOCTSHI[n] (0x0054A404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.44 Protocol Engine Statistics IPv6 Transmitted Multicast Packets Low - GLPES_PFIP6TXMCPKTSLO[n] (0x0054AC00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.45 Protocol Engine Statistics IPv6 Transmitted Multicast Packets High - GLPES_PFIP6TXMCPKTSHI[n] (0x0054AC04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.46 Protocol Engine Statistics IPv4 Discarded No Route Packets - GLPES_PFIP4TXNOROUTE[n] (0x0054B400 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.47 Protocol Engine Statistics IPv6 Discarded No Route Packets - GLPES_PFIP6TXNOROUTE[n] (0x0054B800 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.48 Protocol Engine Statistics TCP Received Segments Low - GLPES_PFTCPRXSEGSLO[n] (0x0054BC00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.49 Protocol Engine Statistics TCP Received Segments High - GLPES_PFTCPRXSEGSHI[n] (0x0054BC04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.50 Protocol Engine Statistics TCP Received Segments with Unsupported Options - GLPES_PFTCPRXOPTERR[n] (0x0054C400 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.51 Protocol Engine Statistics TCP Dropped Segments due Protocol Errors - GLPES_PFTCPRXPROTOERR[n] (0x0054C800 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.52 Protocol Engine Statistics TCP Transmitted Segments Low - GLPES_PFTCPTXSEGLO[n] (0x0054CC00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.53 Protocol Engine Statistics TCP Transmitted Segments High - GLPES_PFTCPTXSEGHI[n] (0x0054CC04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.54 Protocol Engine Statistics UDP Received Packets Low - GLPES_PFUDPRXPKTSLO[n] (0x0054D400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.55 Protocol Engine Statistics UDP Received Packets High - GLPES_PFUDPRXPKTSHI[n] (0x0054D404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.56 Protocol Engine Statistics UDP Transmitted Packets Low - GLPES_PFUDPTXPKTSLO[n] (0x0054DC00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.57 Protocol Engine Statistics UDP Transmitted Packets High - GLPES_PFUDPTXPKTSHI[n] (0x0054DC04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.58 Protocol Engine Statistics RDMA Received Write Messages Low - GLPES_PFRDMARXWRSLO[n] (0x0054E400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.59 Protocol Engine Statistics RDMA Received Write Messages High - GLPES_PFRDMARXWRSHI[n] (0x0054E404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.60 Protocol Engine Statistics RDMA Received Read Request Messages Low - GLPES_PFRDMARXRDSLO[n] (0x0054EC00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.61 Protocol Engine Statistics RDMA Received Read Request Messages High - GLPES_PFRDMARXRDSHI[n] (0x0054EC04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.62 Protocol Engine Statistics RDMA Received Send Messages Low - GLPES_PFRDMARXSNDSLO[n] (0x0054F400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.63 Protocol Engine Statistics RDMA Received Send Messages High - GLPES_PFRDMARXSNDSHI[n] (0x0054F404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.64 Protocol Engine Statistics RDMA Transmitted Write Messages Low - GLPES_PFRDMATXWRSLO[n] (0x0054FC00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.65 Protocol Engine Statistics RDMA Transmitted Write Messages High - GLPES_PFRDMATXWRSHI[n] (0x0054FC04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.66 Protocol Engine Statistics RDMA Transmitted Read Request Messages Low - GLPES_PFRDMATXRDSLO[n] (0x00550400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.67 Protocol Engine Statistics RDMA Transmitted Read Request Messages High - GLPES_PFRDMATXRDSHI[n] (0x00550404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.68 Protocol Engine Statistics RDMA Transmitted Send Messages Low - GLPES_PFRDMATXSNDSLO[n] (0x00550C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.69 Protocol Engine Statistics RDMA Transmitted Send Messages High - GLPES_PFRDMATXSNDSHI[n] (0x00550C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.70 Protocol Engine Statistics RDMA Verbs Bind Operations Low - GLPES_PFRDMAVBNDLO[n] (0x00551400 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.71 Protocol Engine Statistics RDMA Verbs Bind Operations High - GLPES_PFRDMAVBNDHI[n] (0x00551404 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.72 Protocol Engine Statistics RDMA Verbs Invalidate Operations Low - GLPES_PFRDMAVINVLO[n] (0x00551C00 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.73 Protocol Engine Statistics RDMA Verbs Invalidate Operations High - GLPES_PFRDMAVINVHI[n] (0x00551C04 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.74 Protocol Engine Statistics TCP Retransmitted Segments - GLPES_PFTCPRTXSEG[n] (0x00552400 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.75 Protocol Engine Statistics Congestion Notification Packets Ignored - GLPES_PFRXRPCNPIGNORED[n] (0x00552800 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.76 Protocol Engine Statistics Congestion Notification Packets Handled - GLPES_PFRXRPCNPHANDLED[n] (0x00552C00 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.77 Protocol Engine Statistics with ECN Bits Indicating Congestion Low - GLPES_PFRXNPECNMARKEDPKTSLO[n] (0x00553000 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.78 Protocol Engine Statistics with ECN Bits Indicating Congestion High - GLPES_PFRXNPECNMARKEDPKTSHI[n] (0x00553004 + 0x8*n, n=0...127; RW1C)
	13.2.2.24.79 Protocol Engine Congestion Indication Sent Count - GLPES_PFTXNPCNPSENT[n] (0x00553800 + 0x4*n, n=0...127; RW1C)
	13.2.2.24.80 Protocol Engine Statistics RDMA Received Unaligned FPDUs - GLPES_RDMARXUNALIGN (0x0055E000; RW1C)
	13.2.2.24.81 Protocol Engine Statistics RDMA Received Out of Order No Markers FPDUs - GLPES_RDMARXOOONOMARK (0x0055E004; RW1C)
	13.2.2.24.82 Protocol Engine Statistics RDMA Received Multiple FPDUs Low - GLPES_RDMARXMULTFPDUSLO (0x0055E008; RW1C)
	13.2.2.24.83 Protocol Engine Statistics RDMA Received Multiple FPDUs High - GLPES_RDMARXMULTFPDUSHI (0x0055E00C; RW1C)
	13.2.2.24.84 Protocol Engine Statistics RDMA Out of Order Placed DDP Segments Low - GLPES_RDMARXOOODDPLO (0x0055E010; RW1C)
	13.2.2.24.85 Protocol Engine Statistics RDMA Out of Order Placed DDP Segments High - GLPES_RDMARXOOODDPHI (0x0055E014; RW1C)
	13.2.2.24.86 Protocol Engine Statistics TCP Received Pure Acks Low - GLPES_TCPRXPUREACKSLO (0x0055E018; RW1C)
	13.2.2.24.87 Protocol Engine Statistics TCP Received Pure Acks High - GLPES_TCPRXPUREACKHI (0x0055E01C; RW1C)
	13.2.2.24.88 Protocol Engine Statistics TCP Receive First Hole Low - GLPES_TCPRXONEHOLELO (0x0055E020; RW1C)
	13.2.2.24.89 Protocol Engine Statistics TCP Received First Hole High - GLPES_TCPRXONEHOLEHI (0x0055E024; RW1C)
	13.2.2.24.90 Protocol Engine Statistics TCP Receive Second Hole Low - GLPES_TCPRXTWOHOLELO (0x0055E028; RW1C)
	13.2.2.24.91 Protocol Engine Statistics TCP Received Second Hole High - GLPES_TCPRXTWOHOLEHI (0x0055E02C; RW1C)
	13.2.2.24.92 Protocol Engine Statistics TCP Receive Third Hole Low - GLPES_TCPRXTHREEHOLELO (0x0055E030; RW1C)
	13.2.2.24.93 Protocol Engine Statistics TCP Received Third Hole High - GLPES_TCPRXTHREEHOLEHI (0x0055E034; RW1C)
	13.2.2.24.94 Protocol Engine Statistics TCP Receive Fourth Hole Low - GLPES_TCPRXFOURHOLELO (0x0055E038; RW1C)
	13.2.2.24.95 Protocol Engine Statistics TCP Receive Fourth Hole High - GLPES_TCPRXFOURHOLEHI (0x0055E03C; RW1C)
	13.2.2.24.96 Protocol Engine Statistics TCP Fast Retransmissions Low - GLPES_TCPTXRETRANSFASTLO (0x0055E040; RW1C)
	13.2.2.24.97 Protocol Engine Statistics TCP Fast Retransmissions High - GLPES_TCPTXRETRANSFASTHI (0x0055E044; RW1C)
	13.2.2.24.98 Protocol Engine Statistics TCP Fast Retransmission Timeouts Low - GLPES_TCPTXTOUTSFASTLO (0x0055E048; RW1C)
	13.2.2.24.99 Protocol Engine Statistics TCP Fast Retransmissions Timeouts High - GLPES_TCPTXTOUTSFASTHI (0x0055E04C; RW1C)
	13.2.2.24.100 Protocol Engine Statistics TCP Retransmission Timeouts Low - GLPES_TCPTXTOUTSLO (0x0055E050; RW1C)
	13.2.2.24.101 Protocol Engine Statistics TCP Retransmissions Timeouts High - GLPES_TCPTXTOUTSHI (0x0055E054; RW1C)

	13.2.2.25 PF - Comm Transmit Queues Registers
	13.2.2.25.1 Global Transmit Queue Head - QTX_COMM_HEAD[DBQM] (0x000E0000 + 0x4*DBQM, DBQM=0...16383; RW)
	13.2.2.25.2 Transmit Comm Scheduler Completion Queue Control - GLCOMM_CQ_CTL[CQ] (0x000F0000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.3 Tx Completion Queue Context Register 0 - GLTCLAN_CQ_CNTX0[CQ] (0x000F0800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.4 Tx Completion Queue Context Register 1 - GLTCLAN_CQ_CNTX1[CQ] (0x000F1000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.5 Tx Completion Queue Context Register 2 - GLTCLAN_CQ_CNTX2[CQ] (0x000F1800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.6 Tx Completion Queue Context Register 3 - GLTCLAN_CQ_CNTX3[CQ] (0x000F2000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.7 Tx Completion Queue Context Register 4 - GLTCLAN_CQ_CNTX4[CQ] (0x000F2800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.8 Tx Completion Queue Context Register 5 - GLTCLAN_CQ_CNTX5[CQ] (0x000F3000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.9 Tx Completion Queue Context Register 6 - GLTCLAN_CQ_CNTX6[CQ] (0x000F3800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.10 Tx Completion Queue Context Register 7 - GLTCLAN_CQ_CNTX7[CQ] (0x000F4000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.11 Tx Completion Queue Context Register 8 - GLTCLAN_CQ_CNTX8[CQ] (0x000F4800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.12 Tx Completion Queue Context Register 9 - GLTCLAN_CQ_CNTX9[CQ] (0x000F5000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.13 Tx Completion Queue Context Register 10 - GLTCLAN_CQ_CNTX10[CQ] (0x000F5800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.14 Tx Completion Queue Context Register 11 - GLTCLAN_CQ_CNTX11[CQ] (0x000F6000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.15 Tx Completion Queue Context Register 12 - GLTCLAN_CQ_CNTX12[CQ] (0x000F6800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.16 Tx Completion Queue Context Register 13 - GLTCLAN_CQ_CNTX13[CQ] (0x000F7000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.17 Tx Completion Queue Context Register 14 - GLTCLAN_CQ_CNTX14[CQ] (0x000F7800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.18 Tx Completion Queue Context Register 15 - GLTCLAN_CQ_CNTX15[CQ] (0x000F8000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.19 Tx Completion Queue Context Register 16 - GLTCLAN_CQ_CNTX16[CQ] (0x000F8800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.20 Tx Completion Queue Context Register 17 - GLTCLAN_CQ_CNTX17[CQ] (0x000F9000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.21 Tx Completion Queue Context Register 18 - GLTCLAN_CQ_CNTX18[CQ] (0x000F9800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.22 Tx Completion Queue Context Register 19 - GLTCLAN_CQ_CNTX19[CQ] (0x000FA000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.23 Tx Completion Queue Context Register 20 - GLTCLAN_CQ_CNTX20[CQ] (0x000FA800 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.24 Tx Completion Queue Context Register 21 - GLTCLAN_CQ_CNTX21[CQ] (0x000FB000 + 0x4*CQ, CQ=0...511; RW)
	13.2.2.25.25 Global Transmit Comm Min/Max Packet - GLCOMM_MIN_MAX_PKT (0x000FC064; RW)
	13.2.2.25.26 Transmit Comm Scheduler Tx LAN Cache Control - GLLAN_TCLAN_CACHE_CTL (0x000FC0B8; RW)
	13.2.2.25.27 Transmit Comm Scheduler Queue Doorbell - QTX_COMM_DBELL[DBQM] (0x002C0000 + 0x4*DBQM, DBQM=0...16383; RW)
	13.2.2.25.28 Transmit Comm Scheduler Queue Context - QTX_COMM_DBLQ_CNTX[n,DBLQ] (0x002D0000 + 0x400*n + 0x4*DBLQ, n=0...4, DBLQ=0...255; RW)
	13.2.2.25.29 Transmit Comm Scheduler Queue Doorbell - QTX_COMM_DBLQ_DBELL[DBLQ] (0x002D1400 + 0x4*DBLQ, DBLQ=0...255; RW)
	13.2.2.25.30 Transmit Comm Scheduler Queue Context Data - GLCOMM_QTX_CNTX_DATA[n] (0x002D2D40 + 0x4*n, n=0...9; RW)
	13.2.2.25.31 Global Transmit Comm Scheduler Quanta Profile - GLCOMM_QUANTA_PROF[n] (0x002D2D68 + 0x4*n, n=0...15; RW)
	13.2.2.25.32 Global Transmit Comm Scheduler Quanta Profile - GLCOMM_PKT_SHAPER_PROF[n] (0x002D2DA8 + 0x4*n, n=0...7; RW)
	13.2.2.25.33 Transmit Comm Scheduler Queue Context Control - GLCOMM_QTX_CNTX_CTL (0x002D2DC8; RW)
	13.2.2.25.34 Transmit Comm Scheduler Queue Context Status - GLCOMM_QTX_CNTX_STAT (0x002D2DCC; RW)

	13.2.2.26 PF - LAN Transmit/Receive Registers
	13.2.2.26.1 L2 Tag - Enable - PRT_TDPUL2TAGSEN (0x00040BA0; RW)
	13.2.2.26.2 Transmit DCSP to TC Enforcement - IPv4 - GL_HLP_PRT_IPG_PREAMBLE_SIZE[n] (0x00049240 + 0x4*n, n=0...20; RW)
	13.2.2.26.3 Transmit TDPU Scheduler 4 Adjustment Default Recipe - GL_TDPU_PSM_DEFAULT_RECIPE[n] (0x00049294 + 0x4*n, n=0...3; RO)
	13.2.2.26.4 Global TSO TCP Mask First - GLLAN_TSOMSK_F (0x00049308; RO)
	13.2.2.26.5 Global TSO TCP Mask Middle - GLLAN_TSOMSK_M (0x0004930C; RO)
	13.2.2.26.6 Global TSO TCP Mask Last - GLLAN_TSOMSK_L (0x00049310; RO)
	13.2.2.26.7 VF PF Rx-Queue Mapping Table - VPLAN_RX_QTABLE[n,VF] (0x00060000 + 0x800*n + 0x4*VF, n=0...15, VF=0...255; RW)
	13.2.2.26.8 VF PF DB Queue Mapping Table - VPLAN_DB_QTABLE[n,VF] (0x00070000 + 0x800*n + 0x4*VF, n=0...3, VF=0...255; RW)
	13.2.2.26.9 VF PF Rx-Queue Range - VPLAN_RX_QBASE[VF] (0x00072000 + 0x4*VF, VF=0...255; RW)
	13.2.2.26.10 VF LAN RXQ Enablement - VPLAN_RXQ_MAPENA[VF] (0x00073000 + 0x4*VF, VF=0...255; RW)
	13.2.2.26.11 VF LAN TXQ Enablement - VPLAN_TXQ_MAPENA[VF] (0x00073800 + 0x4*VF, VF=0...255; RW)
	13.2.2.26.12 VF PF Rx-Queue Mapping Table - VPDSI_RX_QTABLE[n,VP16] (0x00074C00 + 0x40*n + 0x4*VP16, n=0...15, VP16=0...15; RW)
	13.2.2.26.13 PF Doorbell Queue Allocation - PFLAN_DB_QALLOC (0x00075680; RW)
	13.2.2.26.14 PF Completion Queue Allocation - PFLAN_CP_QALLOC (0x00075700; RW)
	13.2.2.26.15 Global Receive Queue Control - QRX_CTRL[QRX] (0x00120000 + 0x4*QRX, QRX=0...2047; RW)
	13.2.2.26.16 VF PF Tx-Queue Mapping Table - VPLAN_TX_QTABLE[n,VF] (0x001C0000 + 0x800*n + 0x4*VF, n=0...15, VF=0...255; RW)
	13.2.2.26.17 VF PF Tx-Queue Range - VPLAN_TX_QBASE[VF] (0x001D1800 + 0x4*VF, VF=0...255; RW)
	13.2.2.26.18 VF PF Tx-Queue Mapping Table - VPDSI_TX_QTABLE[n,VP16] (0x001D2000 + 0x40*n + 0x4*VP16, n=0...15, VP16=0...15; RW)
	13.2.2.26.19 PF Queue Allocation - PFLAN_RX_QALLOC (0x001D2500; RW)
	13.2.2.26.20 PF Queue Allocation - PFLAN_TX_QALLOC (0x001D2580; RW)
	13.2.2.26.21 Global Receive Queue Context - QRX_CONTEXT[n,QRX] (0x00280000 + 0x2000*n + 0x4*QRX, n=0...7, QRX=0...2047; RW)
	13.2.2.26.22 Receive Queue Tail Update - QRX_TAIL[QRX] (0x00290000 + 0x4*QRX, QRX=0...2047; RW)
	13.2.2.26.23 Global Receive Queue ITR Expire - QRX_ITR[QRX] (0x00292000 + 0x4*QRX, QRX=0...2047; RW)
	13.2.2.26.24 Global RLAN Control 0 - GLLAN_RCTL_0 (0x002941F8; RW1C)
	13.2.2.26.25 Global RLAN Control 1 - GLLAN_RCTL_1 (0x002941FC; RW)
	13.2.2.26.26 Global PF LAN Recipe - GLLAN_PF_RECIPE[n] (0x0029420C + 0x4*n, n=0...7; RW)
	13.2.2.26.27 VF LAN TXQ Enablement - VPLAN_DSI_VF_MODE[VP16] (0x002D2C00 + 0x4*VP16, VP16=0...15; RW)
	13.2.2.26.28 VSI Receive Queue Mapping Table - VSILAN_QTABLE[n,VSI] (0x00440000 + 0x1000*n + 0x4*VSI, n=0...7, VSI=0...767; RW)
	13.2.2.26.29 VSI Queue Control - VSILAN_QBASE[VSI] (0x0044C000 + 0x4*VSI, VSI=0...767; RW)

	13.2.2.27 PF - TimeSync (IEEE 1588) Registers
	13.2.2.27.1 Global TimeSync Enable - GLTSYN_ENA[n] (0x00088808 + 0x4*n, n=0...1; RW)
	13.2.2.27.2 Global Primary TimeSync Command - GLTSYN_CMD (0x00088810; RW)
	13.2.2.27.3 Global Primary TimeSync Command SYNC Control - GLTSYN_CMD_SYNC (0x00088814; RW)
	13.2.2.27.4 Global TimeSync Sync Delay - GLTSYN_SYNC_DLAY (0x00088818; RW)
	13.2.2.27.5 Global HH Sync Delay - GLTSYN_HH_DLAY (0x0008881C; RW)
	13.2.2.27.6 Global TimeSync Semaphore - PFTSYN_SEM (0x00088880; RW)
	13.2.2.27.7 Global TimeSync Status 0 - GLTSYN_STAT[n] (0x000888C0 + 0x4*n, n=0...1; RCW)
	13.2.2.27.8 Global TimeSync Time Zero - GLTSYN_TIME_0[n] (0x000888C8 + 0x4*n, n=0...1; RW)
	13.2.2.27.9 Global TimeSync Time Low - GLTSYN_TIME_L[n] (0x000888D0 + 0x4*n, n=0...1; RW)
	13.2.2.27.10 Global TimeSync Time High - GLTSYN_TIME_H[n] (0x000888D8 + 0x4*n, n=0...1; RW)
	13.2.2.27.11 Global TimeSync Shadow Time Zero - GLTSYN_SHTIME_0[n] (0x000888E0 + 0x4*n, n=0...1; RW)
	13.2.2.27.12 Global TimeSync Shadow Time Low - GLTSYN_SHTIME_L[n] (0x000888E8 + 0x4*n, n=0...1; RW)
	13.2.2.27.13 Global TimeSync Shadow Time High - GLTSYN_SHTIME_H[n] (0x000888F0 + 0x4*n, n=0...1; RW)
	13.2.2.27.14 Global TimeSync HH Time Low - GLTSYN_HHTIME_L[n] (0x000888F8 + 0x4*n, n=0...1; RO)
	13.2.2.27.15 Global TimeSync HH Time High - GLTSYN_HHTIME_H[n] (0x00088900 + 0x4*n, n=0...1; RO)
	13.2.2.27.16 Global TimeSync Shadow Adjust Low - GLTSYN_SHADJ_L[n] (0x00088908 + 0x4*n, n=0...1; RW)
	13.2.2.27.17 Global TimeSync Shadow Adjust High - GLTSYN_SHADJ_H[n] (0x00088910 + 0x4*n, n=0...1; RW)
	13.2.2.27.18 Global TimeSync Increment Value Low - GLTSYN_INCVAL_L[n] (0x00088918 + 0x4*n, n=0...1; RW)
	13.2.2.27.19 Global TimeSync Increment Value High - GLTSYN_INCVAL_H[n] (0x00088920 + 0x4*n, n=0...1; RW)
	13.2.2.27.20 Global TimeSync Target Time Low - GLTSYN_TGT_L_0[n] (0x00088928 + 0x4*n, n=0...1; RW)
	13.2.2.27.21 Global TimeSync Target Time High - GLTSYN_TGT_H_0[n] (0x00088930 + 0x4*n, n=0...1; RW)
	13.2.2.27.22 Global TimeSync Target Time Low - GLTSYN_TGT_L_1[n] (0x00088938 + 0x4*n, n=0...1; RW)
	13.2.2.27.23 Global TimeSync Target Time High - GLTSYN_TGT_H_1[n] (0x00088940 + 0x4*n, n=0...1; RW)
	13.2.2.27.24 Global TimeSync Target Time Low - GLTSYN_TGT_L_2[n] (0x00088948 + 0x4*n, n=0...1; RW)
	13.2.2.27.25 Global TimeSync Target Time High - GLTSYN_TGT_H_2[n] (0x00088950 + 0x4*n, n=0...1; RW)
	13.2.2.27.26 Global TimeSync Target Time Low - GLTSYN_TGT_L_3[n] (0x00088958 + 0x4*n, n=0...1; RW)
	13.2.2.27.27 Global TimeSync Target Time High - GLTSYN_TGT_H_3[n] (0x00088960 + 0x4*n, n=0...1; RW)
	13.2.2.27.28 Global TimeSync Event Time Low - GLTSYN_EVNT_L_0[n] (0x00088968 + 0x4*n, n=0...1; RO)
	13.2.2.27.29 Global TimeSync Event Time High - GLTSYN_EVNT_H_0[n] (0x00088970 + 0x4*n, n=0...1; RO)
	13.2.2.27.30 Global TimeSync Event Time Low - GLTSYN_EVNT_L_1[n] (0x00088978 + 0x4*n, n=0...1; RO)
	13.2.2.27.31 Global TimeSync Event Time High - GLTSYN_EVNT_H_1[n] (0x00088980 + 0x4*n, n=0...1; RO)
	13.2.2.27.32 Global TimeSync Event Time Low - GLTSYN_EVNT_L_2[n] (0x00088988 + 0x4*n, n=0...1; RO)
	13.2.2.27.33 Global TimeSync Event Time High - GLTSYN_EVNT_H_2[n] (0x00088990 + 0x4*n, n=0...1; RO)
	13.2.2.27.34 Global TimeSync AUX Output Control - GLTSYN_AUX_OUT_0[n] (0x00088998 + 0x4*n, n=0...1; RW)
	13.2.2.27.35 Global TimeSync AUX Output Control - GLTSYN_AUX_OUT_1[n] (0x000889A0 + 0x4*n, n=0...1; RW)
	13.2.2.27.36 Global TimeSync AUX Output Control - GLTSYN_AUX_OUT_2[n] (0x000889A8 + 0x4*n, n=0...1; RW)
	13.2.2.27.37 Global TimeSync AUX Output Control - GLTSYN_AUX_OUT_3[n] (0x000889B0 + 0x4*n, n=0...1; RW)
	13.2.2.27.38 Global TimeSync Clock Out Duration - GLTSYN_CLKO_0[n] (0x000889B8 + 0x4*n, n=0...1; RW)
	13.2.2.27.39 Global TimeSync Clock Out Duration - GLTSYN_CLKO_1[n] (0x000889C0 + 0x4*n, n=0...1; RW)
	13.2.2.27.40 Global TimeSync Clock Out Duration - GLTSYN_CLKO_2[n] (0x000889C8 + 0x4*n, n=0...1; RW)
	13.2.2.27.41 Global TimeSync Clock Out Duration - GLTSYN_CLKO_3[n] (0x000889D0 + 0x4*n, n=0...1; RW)
	13.2.2.27.42 Global TimeSync AUX Input Control - GLTSYN_AUX_IN_0[n] (0x000889D8 + 0x4*n, n=0...1; RW)
	13.2.2.27.43 Global TimeSync AUX Input Control - GLTSYN_AUX_IN_1[n] (0x000889E0 + 0x4*n, n=0...1; RW)
	13.2.2.27.44 Global TimeSync AUX Input Control - GLTSYN_AUX_IN_2[n] (0x000889E8 + 0x4*n, n=0...1; RW)
	13.2.2.27.45 Global Hammock Harbor Timer Control - GLHH_ART_CTL (0x000A41D4; RW)
	13.2.2.27.46 Global Hammock Harbor ART Time High - GLHH_ART_TIME_H (0x000A41D8; RO)
	13.2.2.27.47 Global Hammock Harbor ART Time Low - GLHH_ART_TIME_L (0x000A41DC; RO)
	13.2.2.27.48 Global Hammock Harbor Sync-Start DATA - GLHH_ART_DATA (0x000A41E0; RO)
	13.2.2.27.49 Global Hammock Harbor Semaphore - PFHH_SEM (0x000A4200; RW)

	13.2.2.28 PF - Protocol Engine Registers
	13.2.2.28.1 Protocol Engine VF CQP Doorbell - VFPE_CQPDB[VF] (0x00500000 + 0x4*VF, VF=0...255; RW)
	13.2.2.28.2 Protocol Engine VF CQP Tail - VFPE_CQPTAIL[VF] (0x00500400 + 0x4*VF, VF=0...255; RO)
	13.2.2.28.3 Protocol Engine CQP Doorbell - PFPE_CQPDB (0x00500800; RW)
	13.2.2.28.4 Protocol Engine CQP Tail - PFPE_CQPTAIL (0x00500880; RO)
	13.2.2.28.5 Protocol Engine VF CQ Arm - VFPE_CQARM[VF] (0x00502000 + 0x4*VF, VF=0...255; RW)
	13.2.2.28.6 Protocol Engine VF CQ Ack - VFPE_CQACK[VF] (0x00502400 + 0x4*VF, VF=0...255; RW)
	13.2.2.28.7 Protocol Engine VF AEQ Allocate - VFPE_AEQALLOC[VF] (0x00502800 + 0x4*VF, VF=0...255; RW)
	13.2.2.28.8 Protocol Engine CQ Arm - PFPE_CQARM (0x00502C00; RW)
	13.2.2.28.9 Protocol Engine CQ Ack - PFPE_CQACK (0x00502C80; RW)
	13.2.2.28.10 Protocol Engine AEQ Allocate - PFPE_AEQALLOC (0x00502D00; RW)
	13.2.2.28.11 Protocol Engine CQE Drop Count - GLPE_VFCQEDROPCNT[n] (0x00503000 + 0x4*n, n=0...31; RW1C)
	13.2.2.28.12 Protocol Engine CEQE Drop Count - GLPE_VFCEQEDROPCNT[n] (0x00503080 + 0x4*n, n=0...31; RW1C)
	13.2.2.28.13 Protocol Engine AEQE Drop Count - GLPE_VFAEQEDROPCNT[n] (0x00503100 + 0x4*n, n=0...31; RW1C)
	13.2.2.28.14 Protocol Engine CQE Drop Count - GLPE_PFCQEDROPCNT[n] (0x00503200 + 0x4*n, n=0...7; RW1C)
	13.2.2.28.15 Protocol Engine CEQE Drop Count - GLPE_PFCEQEDROPCNT[n] (0x00503220 + 0x4*n, n=0...7; RW1C)
	13.2.2.28.16 Protocol Engine AEQE Drop Count - GLPE_PFAEQEDROPCNT[n] (0x00503240 + 0x4*n, n=0...7; RW1C)
	13.2.2.28.17 Protocol Engine CQM Func Invalidate Register - GLPE_CQM_FUNC_INVALIDATE (0x00503300; RO)
	13.2.2.28.18 Protocol Engine VF WQE Allocate Register - VFPE_WQEALLOC[VF] (0x00504000 + 0x4*VF, VF=0...255; RW)
	13.2.2.28.19 Protocol Engine WQE Allocate Register - PFPE_WQEALLOC (0x00504400; RW)
	13.2.2.28.20 Protocol Engine VF Create CQP Status - VFPE_CCQPSTATUS[VF] (0x00508000 + 0x4*VF, VF=0...255; RO)
	13.2.2.28.21 Protocol Engine VF Create CQP Low - VFPE_CCQPLOW[VF] (0x00508400 + 0x4*VF, VF=0...255; RW)
	13.2.2.28.22 Protocol Engine VF Create CQP High - VFPE_CCQPHIGH[VF] (0x00508800 + 0x4*VF, VF=0...255; RW)
	13.2.2.28.23 Protocol Engine VF IP Config 0 - VFPE_IPCONFIG0[VF] (0x00508C00 + 0x4*VF, VF=0...255; RW)
	13.2.2.28.24 Protocol Engine VF CQP Error Codes - VFPE_CQPERRCODES[VF] (0x00509000 + 0x4*VF, VF=0...255; RO)
	13.2.2.28.25 Protocol Engine VF TCP Now Timer - VFPE_TCPNOWTIMER[VF] (0x00509400 + 0x4*VF, VF=0...255; RO)
	13.2.2.28.26 Protocol Engine VF MRTE Index Mask - VFPE_MRTEIDXMASK[VF] (0x00509800 + 0x4*VF, VF=0...255; RO)
	13.2.2.28.27 Protocol Engine Create CQP Status - PFPE_CCQPSTATUS (0x0050A000; RO)
	13.2.2.28.28 Protocol Engine Create CQP Low - PFPE_CCQPLOW (0x0050A080; RW)
	13.2.2.28.29 Protocol Engine Create CQP High - PFPE_CCQPHIGH (0x0050A100; RW)
	13.2.2.28.30 Protocol Engine IP Config 0 - PFPE_IPCONFIG0 (0x0050A180; RW)
	13.2.2.28.31 Protocol Engine CQP Error Codes - PFPE_CQPERRCODES (0x0050A200; RO)
	13.2.2.28.32 Protocol Engine TCP Now Timer - PFPE_TCPNOWTIMER (0x0050A280; RO)
	13.2.2.28.33 Protocol Engine MRTE Index Mask - PFPE_MRTEIDXMASK (0x0050A300; RO)
	13.2.2.28.34 Protocol Engine TCP Now 50us Count - GLPE_VFTCPNOW50USCNT[n] (0x0050B300 + 0x4*n, n=0...31; RO)
	13.2.2.28.35 Protocol Engine FLM XMIT Allocate Error - GLPE_VFFLMXMITALLOCERR[n] (0x0050B400 + 0x4*n, n=0...31; RO)
	13.2.2.28.36 Protocol Engine FLM Q1 Allocate Error - GLPE_VFFLMQ1ALLOCERR[n] (0x0050B480 + 0x4*n, n=0...31; RO)
	13.2.2.28.37 Protocol Engine FLM Read Response Allocate Error - GLPE_VFFLMRRFALLOCERR[n] (0x0050B500 + 0x4*n, n=0...31; RO)
	13.2.2.28.38 Protocol Engine FLM Out of Order Send Completion (OOISC) Allocate Error - GLPE_VFFLMOOISCALLOCERR[n] (0x0050B580 + 0x4*n, n=0...31; RO)
	13.2.2.28.39 Protocol Engine TCP Now 50us Count - GLPE_PFTCPNOW50USCNT[n] (0x0050B8C0 + 0x4*n, n=0...7; RO)
	13.2.2.28.40 Protocol Engine FLM XMIT Allocate Error - GLPE_PFFLMXMITALLOCERR[n] (0x0050B900 + 0x4*n, n=0...7; RO)
	13.2.2.28.41 Protocol Engine FLM Q1 Allocate Error - GLPE_PFFLMQ1ALLOCERR[n] (0x0050B920 + 0x4*n, n=0...7; RO)
	13.2.2.28.42 Protocol Engine FLM Read Response Allocate Error - GLPE_PFFLMRRFALLOCERR[n] (0x0050B940 + 0x4*n, n=0...7; RO)
	13.2.2.28.43 Protocol Engine FLM Out of Order Send Completion (OOISC) Allocate Error - GLPE_PFFLMOOISCALLOCERR[n] (0x0050B960 + 0x4*n, n=0...7; RO)
	13.2.2.28.44 Protocol Engine CPU Status 0 - GLPE_CPUSTATUS0 (0x0050BA5C; RO)
	13.2.2.28.45 Protocol Engine CPU Status 1 - GLPE_CPUSTATUS1 (0x0050BA60; RO)
	13.2.2.28.46 Protocol Engine CPU Status 2 - GLPE_CPUSTATUS2 (0x0050BA64; RO)
	13.2.2.28.47 PEPM Control - GLPE_PEPM_CTRL (0x0050C000; RO)
	13.2.2.28.48 PEPM Dealloc - GLPE_PEPM_DEALLOC (0x0050C004; RO)
	13.2.2.28.49 PEPM PSQ Count - GLPE_PEPM_PSQ_COUNT (0x0050C020; RO)
	13.2.2.28.50 PEPM PSQ/MDQ Count - PRT_PEPM_COUNT[n] (0x0050C040 + 0x4*n, n=0...511; RO)
	13.2.2.28.51 PEPM PQ Threshold - GLPE_PEPM_THRESH[n] (0x0050C840 + 0x4*n, n=0...511; RO)
	13.2.2.28.52 PE Push PEPM - GLPE_PUSH_PEPM (0x0053241C; RO)
	13.2.2.28.53 Critical Error Status and Control - GLPE_CRITERR (0x00534000; RW)
	13.2.2.28.54 MDQ Base - GLPE_MDQ_BASE[n] (0x00536000 + 0x4*n, n=0...511; RO)
	13.2.2.28.55 MDQ Size - GLPE_MDQ_SIZE[n] (0x00536800 + 0x4*n, n=0...511; RO)
	13.2.2.28.56 MDQ Pointer - GLPE_MDQ_PTR[n] (0x00537000 + 0x4*n, n=0...511; RO)

	13.2.2.29 PF - Manageability Registers
	13.2.2.29.1 MNG FW RAM Status Registers - GL_MNG_FW_RAM_STAT (0x0008309C; RO)
	13.2.2.29.2 Firmware Reset Count - GL_FWRESETCNT (0x00083100; RO)
	13.2.2.29.3 SHA Extend Value - GL_MNG_SHA_EXTEND[n] (0x00083120 + 0x4*n, n=0...7; RO)
	13.2.2.29.4 SHA Extend Value Status - GL_MNG_SHA_EXTEND_STATUS (0x00083148; RO)
	13.2.2.29.5 SHA ROM Extend Value - GL_MNG_SHA_EXTEND_ROM[n] (0x00083160 + 0x4*n, n=0...7; RO)
	13.2.2.29.6 Hardware Arbitration Control - GL_MNG_HWARB_CTRL (0x000B6130; RO)
	13.2.2.29.7 Firmware Status - GL_MNG_FWSM (0x000B6134; RO)
	13.2.2.29.8 General FW Debug Registers - GENERAL_MNG_FW_DBG_CSR[n] (0x000B6180 + 0x4*n, n=0...9; RW)
	13.2.2.29.9 Management Ethernet Type Filters - PRT_MNG_METF[n] (0x00214120 + 0x20*n, n=0...3; RO)
	13.2.2.29.10 Manageability IPv4 Address Filter - PRT_MNG_MIPAF4[n] (0x002141A0 + 0x20*n, n=0...3; RO)
	13.2.2.29.11 Manageability MAC Address High - PRT_MNG_MMAH[n] (0x00214220 + 0x20*n, n=0...3; RO)
	13.2.2.29.12 Manageability MAC Address Low - PRT_MNG_MMAL[n] (0x002142A0 + 0x20*n, n=0...3; RO)
	13.2.2.29.13 Management Flex UDP/TCP Ports - PRT_MNG_MFUTP[n] (0x00214320 + 0x20*n, n=0...15; RO)
	13.2.2.29.14 Manageability IPv6 Address Filter - PRT_MNG_MIPAF6[n] (0x00214520 + 0x20*n, n=0...15; RO)
	13.2.2.29.15 Management Control Register - PRT_MNG_MANC (0x00214720; RO)
	13.2.2.29.16 Management Only Traffic Register - PRT_MNG_MNGONLY (0x00214740; RO)
	13.2.2.29.17 Manageability Special Filters Modifiers - PRT_MNG_MSFM (0x00214760; RO)
	13.2.2.29.18 Management VLAN TAG Value - PRT_MNG_MAVTV[n] (0x00214780 + 0x20*n, n=0...7; RO)
	13.2.2.29.19 Manageability Decision Filters1 - PRT_MNG_MDEF[n] (0x00214880 + 0x20*n, n=0...7; RO)
	13.2.2.29.20 Management Decision Filters VSI - PRT_MNG_MDEFVSI[n] (0x00214980 + 0x20*n, n=0...3; RO)
	13.2.2.29.21 Manageability Decision Filters - PRT_MNG_MDEF_EXT[n] (0x00214A00 + 0x20*n, n=0...7; RO)
	13.2.2.29.22 Port to MDEF Set Mapping - GL_SWT_PRT2MDEF[n] (0x00216018 + 0x4*n, n=0...31; RO)

	13.2.2.30 PF - Malicious Prevention Registers
	13.2.2.30.1 Malicious VF Driver Detected on Tx TDPU - VP_MDET_TX_TDPU[VF] (0x00040000 + 0x4*VF, VF=0...255; RWC)
	13.2.2.30.2 Malicious PF Driver Detected on Tx TDPU - PF_MDET_TX_TDPU (0x00040800; RWC)
	13.2.2.30.3 Malicious VF Driver Detected on Tx TCLAN - VP_MDET_TX_TCLAN[VF] (0x000FB800 + 0x4*VF, VF=0...255; RW1C)
	13.2.2.30.4 Malicious PF Driver Detected on Tx TCLAN - PF_MDET_TX_TCLAN (0x000FC000; RW1C)
	13.2.2.30.5 Malicious Driver Tx Event Details - GL_MDET_TX_TCLAN (0x000FC068; RW1C)
	13.2.2.30.6 Malicious PF Driver Detected on Tx TCLAN - VM_MDET_TX_TCLAN[n] (0x000FC348 + 0x4*n, n=0...767; RW1C)
	13.2.2.30.7 RLAN Malicious Events - GLRLAN_MDET (0x00294200; RW1C)
	13.2.2.30.8 Malicious Driver Rx Checks Enabled - GL_MDCK_RX (0x0029422C; RW)
	13.2.2.30.9 Malicious PF Driver Detected on Rx - PF_MDET_RX (0x00294280; RW1C)
	13.2.2.30.10 Malicious VF Driver Detected on Rx - VP_MDET_RX[VF] (0x00294400 + 0x4*VF, VF=0...255; RW1C)
	13.2.2.30.11 Malicious Driver Rx Event Details - GL_MDET_RX (0x00294C00; RW1C)
	13.2.2.30.12 Malicious VF Driver Detected on Tx PQM - VP_MDET_TX_PQM[VF] (0x002D2000 + 0x4*VF, VF=0...255; RW1C)
	13.2.2.30.13 Malicious PF Driver Detected on Tx PQM - PF_MDET_TX_PQM (0x002D2C80; RW1C)
	13.2.2.30.14 Malicious Driver Tx Command Checks PQM Configuration 1 - GL_MDCK_CFG1_TX_PQM (0x002D2DF4; RW)
	13.2.2.30.15 Malicious Driver Tx Command Checks Enable PQM - GL_MDCK_EN_TX_PQM (0x002D2DFC; RW)
	13.2.2.30.16 Malicious Driver Tx Event Details PQM - GL_MDET_TX_PQM (0x002D2E00; RW1C)

	13.2.2.31 PF - Rx QoS Registers
	13.2.2.31.1 DCB Receive RDMA Pipe Monitor Status - PRTDCB_RRDMAPMS (0x00122120; RW)
	13.2.2.31.2 DCB Receive per Port Pipe Monitor Control - PRTDCB_RPPMC (0x00122240; RW)
	13.2.2.31.3 DCB Receive Pacing Control - GLDCB_RPCC (0x00122260; RW)
	13.2.2.31.4 DCB Receive LAN Pipe Monitor Status - PRTDCB_RLANPMS (0x00122280; RW)
	13.2.2.31.5 DCB Receive per TC PFC Timer Queue - GLDCB_RTCTQ[n] (0x001222C0 + 0x4*n, n=0...31; RO)
	13.2.2.31.6 DCB Receive per TC PFC Timer Status - GLDCB_RTCTS[n] (0x00122340 + 0x4*n, n=0...31; RW)
	13.2.2.31.7 DCB Receive Shared Pipe Monitor Status - GLDCB_RSPMS (0x001223C0; RW)
	13.2.2.31.8 DCB Receive Shared Pipe Monitor Control - GLDCB_RSPMC (0x001223C4; RW)
	13.2.2.31.9 DCB Receive Manageability Pipe Monitor Control - GLDCB_RMPMC (0x001223C8; RW)
	13.2.2.31.10 DCB Receive Manageability Pipe Monitor Status - GLDCB_RMPMS (0x001223CC; RO)
	13.2.2.31.11 DCB Receive per TC PFC Timer Indication - GLDCB_RTCTI (0x001223D0; RW1C)
	13.2.2.31.12 RCB Configuration Change on the Fly Counter - GLRCB_CFG_COTF_CNT[n] (0x001223D4 + 0x4*n, n=0...7; RO)
	13.2.2.31.13 RCB Configuration Change on the Fly Status - GLRCB_CFG_COTF_ST (0x001223F4; RO)
	13.2.2.31.14 Rx PM Dedicated Pool Size - GLRPRS_PMCFG_DPS[n] (0x00200308 + 0x4*n, n=0...15; RO)
	13.2.2.31.15 Rx PM Dedicated Pool High Watermark - GLRPRS_PMCFG_DHW[n] (0x00200388 + 0x4*n, n=0...15; RO)
	13.2.2.31.16 Rx PM Dedicated Pool Low Watermark - GLRPRS_PMCFG_DLW[n] (0x002003C8 + 0x4*n, n=0...15; RO)
	13.2.2.31.17 Rx PM Shared Pool Size - GLRPRS_PMCFG_SPS[n] (0x00200408 + 0x4*n, n=0...7; RO)
	13.2.2.31.18 Rx PM Shared Pool High Watermark - GLRPRS_PMCFG_SHW[n] (0x00200448 + 0x4*n, n=0...7; RO)
	13.2.2.31.19 Rx PM Shared Pool Low Watermark - GLRPRS_PMCFG_SLW[n] (0x00200468 + 0x4*n, n=0...7; RO)
	13.2.2.31.20 TC Pool Config - GLRPRS_PMCFG_TC_CFG[n] (0x00200488 + 0x4*n, n=0...31; RO)
	13.2.2.31.21 Rx PM TC High Watermark - GLRPRS_PMCFG_TCHW[n] (0x00200588 + 0x4*n, n=0...31; RO)
	13.2.2.31.22 Rx PM TC Low Watermark - GLRPRS_PMCFG_TCLW[n] (0x00200608 + 0x4*n, n=0...31; RO)
	13.2.2.31.23 TC Pool Config - GLSWT_PMCFG_TC_CFG[n] (0x00204900 + 0x4*n, n=0...31; RO)

	13.2.3 BAR3 Registers Summary
	13.2.3.1 PF - MSI-X Table Registers Summary

	13.2.4 Detailed Register Descriptions - PF BAR3
	13.2.4.1 PF - MSI-X Table Registers
	13.2.4.1.1 MSI-X Message Address Low - MSIX_TADD[n] (0x00000000 + 0x10*n, n=0...2047; RW)
	13.2.4.1.2 MSI-X Message Address High - MSIX_TUADD[n] (0x00000004 + 0x10*n, n=0...2047; RW)
	13.2.4.1.3 MSI-X Message Data - MSIX_TMSG[n] (0x00000008 + 0x10*n, n=0...2047; RW)
	13.2.4.1.4 MSI-X Vector Control - MSIX_TVCTRL[n] (0x0000000C + 0x10*n, n=0...2047; RW)
	13.2.4.1.5 MSI-X PBA Structure - MSIX_PBA[n] (0x00008000 + 0x4*n, n=0...63; RO)

	13.3 Device Registers - VF
	13.3.1 VF Registers Mapping in the PF Space
	13.3.2 BAR0 Registers Summary
	13.3.3 Detailed Register Descriptions - VF BAR0
	13.3.3.1 VF - General Registers
	13.3.3.1.1 VF Reset Status - VFGEN_RSTAT (0x00008800; RW)
	13.3.3.1.2 VF Flush Done - PFPCI_VF_FLUSH_DONE (0x0000E400; RO)

	13.3.3.2 VF - Interrupt Registers
	13.3.3.2.1 VF Interrupt Throttling N - VFINT_ITRN[n,m] (0x00002800 + 0x4*n + 0x40*m, n=0...15, m=0...2; RW)
	13.3.3.2.2 VF Interrupt Throttling N_64 - VFINT_ITRN_64[n,m] (0x00002C00 + 0x4*n + 0x100*m, n=0...63, m=0...2; RW)
	13.3.3.2.3 VF Interrupt Dynamic Control N - VFINT_DYN_CTLN[n] (0x00003800 + 0x4*n, n=0...63; RW)
	13.3.3.2.4 VF Interrupt Throttling Zero - VFINT_ITR0[n] (0x00004C00 + 0x4*n, n=0...2; RW)
	13.3.3.2.5 VF Interrupt Dynamic Control Zero - VFINT_DYN_CTL0 (0x00005C00; RW)

	13.3.3.3 VF - Control Queues Registers
	13.3.3.3.1 VF Mailbox Receive Queue Base Address High - VF_MBX_ARQBAH (0x00006000; RW)
	13.3.3.3.2 VF Mailbox Transmit Head - VF_MBX_ATQH (0x00006400; RW)
	13.3.3.3.3 VF Mailbox Transmit Queue Length - VF_MBX_ATQLEN (0x00006800; RW)
	13.3.3.3.4 VF Mailbox Receive Queue Base Address Low - VF_MBX_ARQBAL (0x00006C00; RW)
	13.3.3.3.5 VF Mailbox Receive Tail - VF_MBX_ARQT (0x00007000; RW)
	13.3.3.3.6 VF Mailbox Receive Head - VF_MBX_ARQH (0x00007400; RW)
	13.3.3.3.7 VF Mailbox Transmit Queue Base Address High - VF_MBX_ATQBAH (0x00007800; RW)
	13.3.3.3.8 VF Mailbox Transmit Queue Base Address Low - VF_MBX_ATQBAL (0x00007C00; RW)
	13.3.3.3.9 VF Mailbox Receive Queue Length - VF_MBX_ARQLEN (0x00008000; RW)
	13.3.3.3.10 VF Mailbox Transmit Tail - VF_MBX_ATQT (0x00008400; RW)

	13.3.3.4 VF LAN Transmit and Receive Registers
	13.3.3.4.1 Transmit Queue Doorbell - QTX_TAIL[DBQM] (0x00000000 + 0x4*DBQM, DBQM=0...255; RW)
	13.3.3.4.2 Receive Queue Tail Update - QRX_TAIL[QRX] (0x00002000 + 0x4*QRX, QRX=0...255; RW)

	13.3.3.5 VF - Protocol Engine Registers
	13.3.3.5.1 Protocol Engine VF IP Config 0 - VFPE_IPCONFIG0 (0x00008C00; RW)
	13.3.3.5.2 Protocol Engine VF Create CQP High - VFPE_CCQPHIGH (0x00009800; RW)
	13.3.3.5.3 Protocol Engine VF CQP Error Codes - VFPE_CQPERRCODES (0x00009C00; RO)
	13.3.3.5.4 Protocol Engine VF CQP Tail - VFPE_CQPTAIL (0x0000A000; RO)
	13.3.3.5.5 Protocol Engine VF AEQ Allocate - VFPE_AEQALLOC (0x0000A400; RW)
	13.3.3.5.6 Protocol Engine VF TCP Now Timer - VFPE_TCPNOWTIMER (0x0000A800; RO)
	13.3.3.5.7 Protocol Engine VF Create CQP Low - VFPE_CCQPLOW (0x0000AC00; RW)
	13.3.3.5.8 Protocol Engine VF CQ Ack - VFPE_CQACK (0x0000B000; RW)
	13.3.3.5.9 Protocol Engine VF CQ Arm - VFPE_CQARM (0x0000B400; RW)
	13.3.3.5.10 Protocol Engine VF Create CQP Status - VFPE_CCQPSTATUS (0x0000B800; RO)
	13.3.3.5.11 Protocol Engine VF CQP Doorbell - VFPE_CQPDB (0x0000BC00; RW)
	13.3.3.5.12 Protocol Engine VF WQE Allocate Register - VFPE_WQEALLOC (0x0000C000; RW)

	13.3.3.6 VF - Large VF Access Registers
	13.3.3.6.1 VF CPM Mailbox Transmit Queue Base Address Low - VF_MBX_CPM_ATQBAL (0x0000F000; RW)
	13.3.3.6.2 VF CPM Mailbox Transmit Queue Base Address High - VF_MBX_CPM_ATQBAH (0x0000F010; RW)
	13.3.3.6.3 VF CPM Mailbox Transmit Queue Length - VF_MBX_CPM_ATQLEN (0x0000F020; RW)
	13.3.3.6.4 VF CPM Mailbox Transmit Head - VF_MBX_CPM_ATQH (0x0000F030; RW)
	13.3.3.6.5 VF CPM Mailbox Transmit Tail - VF_MBX_CPM_ATQT (0x0000F040; RW)
	13.3.3.6.6 VF CPM Mailbox Receive Queue Base Address Low - VF_MBX_CPM_ARQBAL (0x0000F050; RW)
	13.3.3.6.7 VF CPM Mailbox Receive Queue Base Address High - VF_MBX_CPM_ARQBAH (0x0000F060; RW)
	13.3.3.6.8 VF CPM Mailbox Receive Queue Length - VF_MBX_CPM_ARQLEN (0x0000F070; RW)
	13.3.3.6.9 VF CPM Mailbox Receive Head - VF_MBX_CPM_ARQH (0x0000F080; RW)
	13.3.3.6.10 VF CPM Mailbox Receive Tail - VF_MBX_CPM_ARQT (0x0000F090; RW)
	13.3.3.6.11 VF CPM Sideband Transmit Queue Base Address Low - VF_SB_CPM_ATQBAL (0x0000F100; RW)
	13.3.3.6.12 VF CPM Sideband Transmit Queue Base Address High - VF_SB_CPM_ATQBAH (0x0000F110; RW)
	13.3.3.6.13 VF CPM Sideband Transmit Queue Length - VF_SB_CPM_ATQLEN (0x0000F120; RW)
	13.3.3.6.14 VF CPM Sideband Transmit Head - VF_SB_CPM_ATQH (0x0000F130; RW)
	13.3.3.6.15 VF CPM Sideband Transmit Tail - VF_SB_CPM_ATQT (0x0000F140; RW)
	13.3.3.6.16 VF CPM Sideband Receive Queue Base Address Low - VF_SB_CPM_ARQBAL (0x0000F150; RW)
	13.3.3.6.17 VF CPM Sideband Receive Queue Base Address High - VF_SB_CPM_ARQBAH (0x0000F160; RW)
	13.3.3.6.18 VF CPM Sideband Receive Queue Length - VF_SB_CPM_ARQLEN (0x0000F170; RW)
	13.3.3.6.19 VF CPM Sideband Receive Head - VF_SB_CPM_ARQH (0x0000F180; RW)
	13.3.3.6.20 VF CPM Sideband Receive Tail - VF_SB_CPM_ARQT (0x0000F190; RW)
	13.3.3.6.21 VF HLP Mailbox Transmit Queue Base Address Low - VF_MBX_HLP_ATQBAL (0x00020000; RW)
	13.3.3.6.22 VF HLP Mailbox Transmit Queue Base Address High - VF_MBX_HLP_ATQBAH (0x00020010; RW)
	13.3.3.6.23 VF HLP Mailbox Transmit Queue Length - VF_MBX_HLP_ATQLEN (0x00020020; RW)
	13.3.3.6.24 VF HLP Mailbox Transmit Head - VF_MBX_HLP_ATQH (0x00020030; RW)
	13.3.3.6.25 VF HLP Mailbox Transmit Tail - VF_MBX_HLP_ATQT (0x00020040; RW)
	13.3.3.6.26 VF HLP Mailbox Receive Queue Base Address Low - VF_MBX_HLP_ARQBAL (0x00020050; RW)
	13.3.3.6.27 VF HLP Mailbox Receive Queue Base Address High - VF_MBX_HLP_ARQBAH (0x00020060; RW)
	13.3.3.6.28 VF HLP Mailbox Receive Queue Length - VF_MBX_HLP_ARQLEN (0x00020070; RW)
	13.3.3.6.29 VF HLP Mailbox Receive Head - VF_MBX_HLP_ARQH (0x00020080; RW)
	13.3.3.6.30 VF HLP Mailbox Receive Tail - VF_MBX_HLP_ARQT (0x00020090; RW)
	13.3.3.6.31 VF PSM Mailbox Transmit Queue Base Address Low - VF_MBX_PSM_ATQBAL (0x00021000; RW)
	13.3.3.6.32 VF PSM Mailbox Transmit Queue Base Address High - VF_MBX_PSM_ATQBAH (0x00021010; RW)
	13.3.3.6.33 VF PSM Mailbox Transmit Queue Length - VF_MBX_PSM_ATQLEN (0x00021020; RW)
	13.3.3.6.34 VF PSM Mailbox Transmit Head - VF_MBX_PSM_ATQH (0x00021030; RW)
	13.3.3.6.35 VF PSM Mailbox Transmit Tail - VF_MBX_PSM_ATQT (0x00021040; RW)
	13.3.3.6.36 VF PSM Mailbox Receive Queue Base Address Low - VF_MBX_PSM_ARQBAL (0x00021050; RW)
	13.3.3.6.37 VF PSM Mailbox Receive Queue Base Address High - VF_MBX_PSM_ARQBAH (0x00021060; RW)
	13.3.3.6.38 VF PSM Mailbox Receive Queue Length - VF_MBX_PSM_ARQLEN (0x00021070; RW)
	13.3.3.6.39 VF PSM Mailbox Receive Head - VF_MBX_PSM_ARQH (0x00021080; RW)
	13.3.3.6.40 VF PSM Mailbox Receive Tail - VF_MBX_PSM_ARQT (0x00021090; RW)
	13.3.3.6.41 Transmit Comm Scheduler Queue Doorbell - VFQTX_COMM_DBLQ_DBELL[DBLQ] (0x00022000 + 0x4*DBLQ, DBLQ=0...3; RW)
	13.3.3.6.42 VF Interrupt Dynamic Control - VFINT_DYN_CTL[n] (0x00023000 + 0x1000*n, n=0...7; RW)
	13.3.3.6.43 VF Interrupt Throttling 0 - VFINT_ITR_0[n] (0x00023004 + 0x1000*n, n=0...7; RW)
	13.3.3.6.44 VF Interrupt Throttling 1 - VFINT_ITR_1[n] (0x00023008 + 0x1000*n, n=0...7; RW)
	13.3.3.6.45 VF Interrupt Throttling 2 - VFINT_ITR_2[n] (0x0002300C + 0x1000*n, n=0...7; RW)
	13.3.3.6.46 Global Receive Queue Tail - VFQRX_TAIL[QRX] (0x0002E000 + 0x4*QRX, QRX=0...255; RW)
	13.3.3.6.47 Transmit Comm Scheduler Queue Doorbell - VFQTX_COMM_DBELL[DBQM] (0x00030000 + 0x4*DBQM, DBQM=0...255; RW)

	13.3.4 BAR3 Registers Summary
	13.3.5 Detailed Register Descriptions - VF BAR3
	13.3.5.1 VF - MSI-X Table Registers
	13.3.5.1.1 MSI-X Message Address Low - MSIX_TADD[n] (0x00000000 + 0x10*n, n=0...64; RW)
	13.3.5.1.2 MSI-X Message Address High - MSIX_TUADD[n] (0x00000004 + 0x10*n, n=0...64; RW)
	13.3.5.1.3 MSI-X Message Data - MSIX_TMSG[n] (0x00000008 + 0x10*n, n=0...64; RW)
	13.3.5.1.4 MSI-X Vector Control - MSIX_TVCTRL[n] (0x0000000C + 0x10*n, n=0...64; RW)
	13.3.5.1.5 MSI-X PBA Structure - MSIX_PBA[n] (0x00008000 + 0x4*n, n=0...2; RO)

	Chapter 14 PCIe Programming Interface
	14.1 Overview
	14.1.1 Functions Mapping
	14.1.1.1 Support for Dynamic Changes

	14.1.2 Supported Features

	14.2 PCI Configuration Space
	14.2.1 Register Attributes
	14.2.2 Reset Rules
	14.2.2.1 Sticky Registers
	14.2.2.2 Reset on FLR

	14.2.3 PCI Configuration Space Summary
	14.2.4 Sharing Among PCI Functions
	14.2.5 Mandatory PCI Configuration Registers - Except BARs
	14.2.5.1 Vendor ID Register (0x0; RO)
	14.2.5.2 Device ID Register (0x2; RO)
	14.2.5.3 Command Register (0x4; RW)
	14.2.5.4 Status Register (0x6; RO)
	14.2.5.5 Revision Register (0x8; RO)
	14.2.5.6 Class Code Register (0x9; RO)
	14.2.5.7 Cache Line Size Register (0xC; RW)
	14.2.5.8 Latency Timer (0xD; RO)
	14.2.5.9 Header Type Register (0xE; RO)
	14.2.5.10 Subsystem Vendor ID Register (0x2C; RO)
	14.2.5.11 Subsystem ID Register (0x2E; RO)
	14.2.5.12 Capabilities Pointer Register (0x34; RO)
	14.2.5.13 Interrupt Line Register (0x3C; RW)
	14.2.5.14 Interrupt Pin Register (0x3D; RO)
	14.2.5.15 MIN_GNT and MAX_LAT (0x3E; RO)

	14.2.6 Mandatory PCI Configuration Registers - BARs
	14.2.6.1 Memory and I/O BARs (0x10 - 0x27; RW)
	14.2.6.2 Expansion ROM Base Address Register (0x30; RW)

	14.3 Capabilities in PCI Configuration Space
	14.3.1 PCI Power Management Capability
	14.3.1.1 Capability ID Register (0x40; RO)
	14.3.1.2 Next Pointer Register (0x41; RO)
	14.3.1.3 Power Management Capabilities - PMCR (0x42; RO)
	14.3.1.4 Power Management Control/Status Register - PMCSR (0x44; RW)
	14.3.1.5 PMCSR_BSE Bridge Support Extensions Register (0x46; RO)
	14.3.1.6 Data Register (0x47; RO)

	14.3.2 MSI Capability
	14.3.2.1 Capability ID Register (0x50; RO)
	14.3.2.2 Next Pointer Register (0x51; RO)
	14.3.2.3 Message Control Register (0x52; RW)
	14.3.2.4 Message Address Low Register (0x54; RW)
	14.3.2.5 Message Address High Register (0x58; RW)
	14.3.2.6 Message Data Register (0x5C; RW)
	14.3.2.7 Mask Bits Register (0x60; RW)
	14.3.2.8 Pending Bits Register (0x64; RW)

	14.3.3 MSI-X Capability
	14.3.3.1 Capability Structure
	14.3.3.1.1 Capability ID Register (0x70; RO)
	14.3.3.1.2 Next Pointer Register (0x71; RO)
	14.3.3.1.3 Message Control Register (0x72; RW)
	14.3.3.1.4 MSI-X Table Offset Register (0x74; RW)
	14.3.3.1.5 MSI-X Pending Bit Array - PBA Offset (0x78; RW)

	14.3.3.2 PF MSI-X Table Structure
	14.3.3.2.1 MSI-X Vector Table
	14.3.3.2.2 MSI-X Pending Bits Table

	14.3.4 VPD Capability
	14.3.4.1 Capability ID Register (0xE0; RO)
	14.3.4.2 Next Pointer Register (0xE1; RO)
	14.3.4.3 VPD Address Register (0xE2; RW)
	14.3.4.4 VPD Data Register (0xE4; RW)

	14.3.5 PCIe Capability Structure
	14.3.5.1 Capability ID Register (0xA0; RO)
	14.3.5.2 Next Pointer Register (0xA1; RO)
	14.3.5.3 PCIe Capabilities Register (0xA2; RO)
	14.3.5.4 Device Capabilities Register (0xA4; RO)
	14.3.5.5 Device Control Register (0xA8; RW)
	14.3.5.6 Device Status Register (0xAA; RW1C)
	14.3.5.7 Link Capabilities Register (0xAC; RO)
	14.3.5.8 Link Control Register (0xB0; RO)
	14.3.5.9 Link Status Register (0xB2; RO)
	14.3.5.10 Device Capabilities 2 Register (0xC4; RO)
	14.3.5.11 Device Control 2 Register (0xC8; RW)
	14.3.5.12 Link Capabilities 2 Register (0xCC; RO)
	14.3.5.13 Link Control 2 Register (0xD0; RWS)
	14.3.5.14 Link Status 2 Register (0xD2; RW)

	14.4 PCIe Extended Configuration Space
	14.4.1 Advanced Error Reporting (AER) Capability
	14.4.1.1 Advanced Error Reporting Enhanced Capability Header Register (0x100; RO)
	14.4.1.2 Uncorrectable Error Status Register (0x104; RW1CS)
	14.4.1.3 Uncorrectable Error Mask Register (0x108; RWS)
	14.4.1.4 Uncorrectable Error Severity Register (0x10C; RWS)
	14.4.1.5 Correctable Error Status Register (0x110; RW1CS)
	14.4.1.6 Correctable Error Mask Register (0x114; RWS)
	14.4.1.7 Advanced Error Capabilities and Control Register (0x118; RO)
	14.4.1.8 Header Log Register (0x11C - 0x128; ROS)

	14.4.2 Serial Number
	14.4.2.1 Device Serial Number Enhanced Capability Header Register (0x150; RO)
	14.4.2.2 Serial Number Registers (0x154 - 0x158; RO)

	14.4.3 Alternate Routing ID Interpretation (ARI) Capability Structure
	14.4.3.1 PCIe ARI Header Register (0x148; RO)
	14.4.3.2 PCIe ARI Capability Register (0x14C; RO)

	14.4.4 SR-IOV Capability Structure
	14.4.4.1 PCIe SR-IOV Header Register (0x160; RO)
	14.4.4.2 PCIe SR-IOV Capabilities Register (0x164; RO)
	14.4.4.3 PCIe SR-IOV Control Register (0x168; RW)
	14.4.4.4 PCIe SR-IOV Initial/Total VFs Register (0x16C; RO)
	14.4.4.5 PCIe SR-IOV Num VFs Register (0x170; RW)
	14.4.4.6 PCIe SR-IOV VF RID Mapping Register (0x174; RO)
	14.4.4.7 PCIe SR-IOV VF Device ID Register (0x178; RO)
	14.4.4.8 PCIe SR-IOV Supported Page Size Register (0x17C; RO)
	14.4.4.9 PCIe SR-IOV System Page Size Register (0x180; RW)
	14.4.4.10 PCIe SR-IOV BAR 0 - Low Register (0x184; RW)
	14.4.4.11 PCIe SR-IOV BAR 0 - High Register (0x188; RW)
	14.4.4.12 PCIe SR-IOV BAR 2 Register (0x18C; RO)
	14.4.4.13 PCIe SR-IOV BAR 3 - Low Register (0x190; RW)
	14.4.4.14 PCIe SR-IOV BAR 3 - High Register (0x194; RW)
	14.4.4.15 PCIe SR-IOV BAR 5 Register (0x198; RO)
	14.4.4.16 PCIe SR-IOV VF Migration State Array Offset Register (0x19C; RO)

	14.4.5 TPH Requester Capability
	14.4.5.1 TPH Requester Extended Capability Header (0x1A0; RO)
	14.4.5.2 TPH Requester Capability Register (0x1A4; RO)
	14.4.5.3 TPH Requester Control Register (0x1A8; RW)

	14.4.6 ACS Extended Capability Structure
	14.4.6.1 ACS Extended Capability Header (0x1B0; RO)
	14.4.6.2 ACS Capability Register (0x1B4; RO)
	14.4.6.3 ACS Control Register (0x1B6; RO)

	14.4.7 Secondary PCI Express Extended Capability
	14.4.7.1 Secondary PCIe Extended Capability Header (0x1D0; RO)
	14.4.7.2 Link Control 3 Register (0x1D4; RW)
	14.4.7.3 Lane Error Status Register (0x1D8; RW1CS)
	14.4.7.4 Lane Equalization Control Register (0x1DC - 0x1FA; RO)

	14.4.8 Data Link Feature Extended Capability
	14.4.8.1 Data Link Feature Extended Capability Header (0x200; RO)
	14.4.8.2 Data Link Feature Capabilities Register (0x204; RO)
	14.4.8.3 Data Link Feature Status Register (0x208; RO)

	14.4.9 PASID Capability
	14.4.9.1 PASID Extended Capability Header (0x2D0; RO)
	14.4.9.2 PASID Capabilities Register (0x2D4; RO)
	14.4.9.3 PASID Control Register (0x2D6; RW)

	14.4.10 Physical Layer 16.0 GT/s Capability
	14.4.10.1 Physical Layer 16.0 GT/s Extended Capability Header (0x210; RO)
	14.4.10.2 Physical Layer 16.0 GT/s Capabilities Register (0x214; RsvdP)
	14.4.10.3 Physical Layer 16.0 GT/s Control Register (0x218; RsvdP)
	14.4.10.4 Physical Layer 16.0 GT/s Status Register (0x21C; RW1CS)
	14.4.10.5 16.0 GT/s Local Data Parity Mismatch Status Register (0x220; RW1CS)
	14.4.10.6 16.0 GT/s First Re-timer Data Parity Mismatch Status Register (0x224; RW1CS)
	14.4.10.7 16.0 GT/s Second Re-timer Data Parity Mismatch Status Register (0x228; RW1CS)
	14.4.10.8 Physical Layer 16.0 GT/s Status 2 Register (0x22C; RsvdZ)
	14.4.10.9 16.0 GT/s Lane Equalization Control Register (0x230 - 0x23C; HWInit)

	14.4.11 Lane Margining at the Receiver Capability
	14.4.11.1 Lane Margining at the Receiver Capability Header (0x250; RO)
	14.4.11.2 Lane Margining at the Receiver Capabilities Register (0x254; RO)
	14.4.11.3 Lane Margining at the Receiver Status Register (0x256; RO)
	14.4.11.4 Margining Lane #n Control Register (0x258 + 4*n; RW)
	14.4.11.5 Margining Lane #n Status Register (0x25A + 4*n; RO)

	14.5 Virtual Functions
	14.5.1 Overview
	14.5.1.1 VF to PF Allocation
	14.5.1.2 Bus-Device-Function Layout
	14.5.1.2.1 ARI Mode
	14.5.1.2.2 Non-ARI Mode

	14.5.1.3 Configuration Space Overview

	14.5.2 Mandatory Configuration Space
	14.5.2.1 Legacy PCI Configuration Space
	14.5.2.2 Memory BARs Assignment
	14.5.2.3 VF Command Register (0x4; RW)
	14.5.2.4 VF Status Register (0x6; RW)
	14.5.2.5 VF Subsystem ID (0x2E; RO)

	14.5.3 PCI and PCIe Capabilities
	14.5.3.1 MSI-X Capability
	14.5.3.1.1 VF MSI-X Control Register (0x72; RW)
	14.5.3.1.2 MSI-X Address Register (0x74; RO)
	14.5.3.1.3 MSI-X PBA Register (0x78; RO)

	14.5.3.2 PCIe Capability Registers
	14.5.3.2.1 VF Device Control Register (0xA8; RW)
	14.5.3.2.2 VF Device Status Register (0xAA; RO)

	14.5.3.3 AER Registers
	14.5.3.3.1 Uncorrectable Error Status Register (0x104; RW1C)
	14.5.3.3.2 Correctable Error Status Register (0x110; RW1C)
	14.5.3.3.3 Advanced Error Capabilities and Control Register (0x118; RO)

	Chapter 15 Reliability, Diagnostics, and Testability
	15.1 Reliability
	15.1.1 ECC Support and ECC Error Flow

	15.2 Link Loopback Operations
	15.3 Device Diagnostics
	15.3.1 Firmware Logging Overview
	15.3.1.1 NVM Default Firmware Log Configuration
	15.3.1.2 Persistent Crash Log

	15.3.2 Health Status Commands
	15.3.2.1 Set Health Status Configuration (0xFF20)
	15.3.2.2 Get Supported Health Status Codes (0xFF21)
	15.3.2.3 Get Health Status Event (0xFF22)
	15.3.2.4 Clear Health Status (0xFF23)

	15.3.3 Health Status Codes

	15.4 Firmware Recovery Mode
	15.4.1 Overview
	15.4.1.1 Supported Failure Scenarios by Firmware
	15.4.1.2 Dependencies for Recovery Firmware

	15.4.2 Recovery Flows
	15.4.2.1 Automatic Rollback
	15.4.2.2 Recovery Firmware
	15.4.2.2.1 Recovery Firmware Supported Features
	15.4.2.2.1.1 Recovery Mode Admin Commands
	15.4.2.2.1.2 Recovery Mode Admin Command Usage Guidelines

	15.4.2.2.2 Reset Flows
	15.4.2.2.2.1 CORER/GLOBR
	15.4.2.2.2.2 PFR
	15.4.2.2.2.3 PCIR/PERST
	15.4.2.2.2.4 POR/EMPR

	15.4.2.2.3 Unsupported Features

	15.4.3 Operation Mode Software Identification

	Chapter 16 Electrical/Mechanical Specification
	16.1 Introduction
	16.2 Operating Conditions
	16.2.1 Absolute Maximum Ratings
	16.2.2 Recommended Operating Conditions

	16.3 Power Delivery
	16.3.1 Power Supply Specification
	16.3.1.1 Power On/Off Sequence

	16.3.2 In-Rush Current

	16.4 Power Dissipation
	16.4.1 Max Power (TDP) - E810-CAM2/CAM1
	16.4.2 Typical Power - E810-CAM2/CAM1
	16.4.3 Max Power (TDP) - E810-XXVAM2
	16.4.4 Typical Power - E810-XXVAM2

	16.5 DC/AC Specification
	16.5.1 Digital I/O DC Specifications
	16.5.1.1 Open Drain I/O DC Specification
	16.5.1.2 NC-SI I/O DC Specification

	16.5.2 Digital I/F AC Specifications
	16.5.2.1 Digital I/O AC Specifications
	16.5.2.2 SMBus and I2C AC Specifications
	16.5.2.3 FLASH AC Specification
	16.5.2.4 NC-SI AC Specifications
	16.5.2.5 JTAG AC Specification
	16.5.2.6 MDIO AC Specification
	16.5.2.7 Reset Signals

	16.5.3 PCIe Interface AC/DC Specification
	16.5.4 Network Interface AC/DC Specification
	16.5.5 Reference Clock Specification

	16.6 Package Characteristics
	16.6.1 Mechanical Configuration
	16.6.2 Heat Sink Mechanical Load Limits
	16.6.3 Thermal
	16.6.4 Electrical

	16.7 Package Mechanical Drawings
	16.7.1 Tolerance Information
	16.7.2 E810-CAM2/CAM1
	16.7.3 E810-XXVAM2

	16.8 Devices Supported
	16.8.1 Flash

	Chapter 17 Design Guidelines
	17.1 Introduction
	17.2 Defined Topologies
	17.2.1 E810 Host Topology Overview
	17.2.2 Configuration Topologies
	17.2.2.1 Configuration - 4x SFP Native
	17.2.2.2 Configuration - 2x QSFP Native

	17.2.3 Supported Link Modes and Breakout Modes
	17.2.4 Supported Modules

	17.3 E810 Ethernet Signal Descriptions
	17.3.1 E810 High-Speed Serial
	17.3.2 E810 Management Connections
	17.3.3 E810 SDP[0:7] (GPIO) Connections
	17.3.4 E810 SDP[8:19] (LED) Connections
	17.3.5 E810 SDP[20:23] (IEEE 1588) Connections

	17.4 Signal Descriptions
	17.4.1 High-Speed Serial
	17.4.1.1 PDM Lanes - Transmit
	17.4.1.2 PDM Lanes - Receive
	17.4.1.3 SFP High-Speed Serial
	17.4.1.4 QSFP High-Speed Serial

	17.4.2 SFP and QSFP I/O Module Connections
	17.4.2.1 SFP Cage Connections
	17.4.2.2 QSFP Cage Connections

	17.4.3 Reset, Interrupt, and Present
	17.4.3.1 ResetN
	17.4.3.2 InterruptN
	17.4.3.3 PresentN

	17.4.4 Management Interfaces

	17.5 LED Configuration and Behavior
	17.5.1 Default LED Behavior - Discrete LED Implementation

	17.6 Electrical Specifications
	17.6.1 Pull-Up/Pull-Down Requirements

	Chapter 18 Thermal Design Considerations
	18.1 Introduction
	18.2 Measuring the Thermal Conditions
	18.3 Thermal Considerations
	18.4 Importance of Thermal Management
	18.5 Packaging Terminology
	18.6 Thermal Specifications
	18.7 Package Mechanical Attributes

	Chapter 19 Glossary and Acronyms
	Appendix A Factory Parsing Program
	A.1 General
	A.1.1 Supported Header Length

	A.2 Parse Graph
	A.3 PTYPEs
	A.4 Protocol IDs
	A.5 Frame Formats
	A.5.1 Layer 2
	A.5.1.1 Ethernet II (DIX)
	A.5.1.2 EtherTypes (L2 Tags)
	A.5.1.3 ATA over Ethernet (AoE)
	A.5.1.4 Link Aggregation Control Protocol (LACP)
	A.5.1.5 Point-to-Point Protocol over Ethernet (PPPoE)
	A.5.1.6 Link Layer Discovery Protocol (LLDP)
	A.5.1.7 Magic Packets
	A.5.1.8 Link Control Packets

	A.5.2 Layer 2.5
	A.5.2.1 Multi-Protocol Label Switching (MPLS)

	A.5.3 Layer 3
	A.5.3.1 IPv4
	A.5.3.2 IPv6
	A.5.3.3 IPv6 Extension Headers
	A.5.3.3.1 Protocol Headers (Next Header)

	A.5.3.4 Internet Control Message Protocol (ICMP)
	A.5.3.5 ICMPv6
	A.5.3.6 Virtual Router Redundancy Protocol (VRRP)
	A.5.3.7 Open Shortest Path First (OSPF)
	A.5.3.8 Address Resolution Protocol (ARP)

	A.5.4 Layer 4
	A.5.4.1 User Datagram Protocol (UDP)
	A.5.4.1.1 UDP Pseudo-Header

	A.5.4.2 Transmission Control Protocol (TCP)
	A.5.4.2.1 TCP Pseudo-Header

	A.5.4.3 Stream Control Transmission Protocol (SCTP)

	A.5.5 Tunneling and Overlay Networks
	A.5.5.1 Generic Routing Encapsulation (GRE)
	A.5.5.2 Virtual Extensible Local Area Network (VXLAN)
	A.5.5.3 Generic Protocol Extension for VXLAN (VXLAN-GPE)
	A.5.5.4 Generic Network Virtualization Encapsulation (Geneve)
	A.5.5.5 RDMA over Converged Ethernet v2 (RoCEv2)
	A.5.5.6 Network Service Header (NSH)
	A.5.5.7 IPSEC NAT-T
	A.5.5.8 GPRS Tunneling Protocol (GTP)
	A.5.5.8.1 GTPv1
	A.5.5.8.2 GTPv2

	LEGAL

