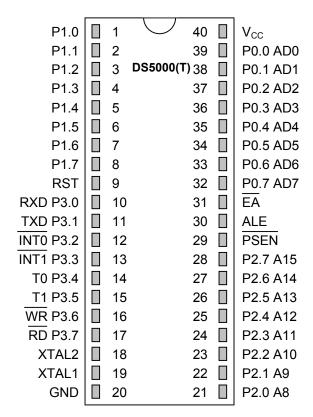


# DS5000(T) Soft Microcontroller Module

#### www.maxim-ic.com

#### **FEATURES**


- 8-Bit 8051-Compatible Microcontroller Adapts to Task at Hand
  - 8 or 32 kbytes of Nonvolatile RAM for Program and/or Data Memory Storage Initial Downloading of Software in End System via On-Chip Serial Port Capable of Modifying Its Own Program and/or Data Memory in End Use
- Crashproof Operation
  - $\begin{array}{c} \text{Maintains All Nonvolatile Resources for 10} \\ \text{Years in the Absence of $V_{CC}$ at Room} \\ \text{Temperature} \end{array}$

Power-Fail Reset

Early Warning Power-Fail Interrupt Watchdog Timer

- Software Security Feature
  - Executes Encrypted Software to Prevent Unauthorized Disclosure
- On-Chip, Full-Duplex Serial I/O Ports
- Two On-Chip Timer/Event Counters
- **32 Parallel I/O Lines**
- Compatible with Industry Standard 8051 Instruction Set and Pinout
- Optional Permanently Powered Real-Time Clock (DS5000T)

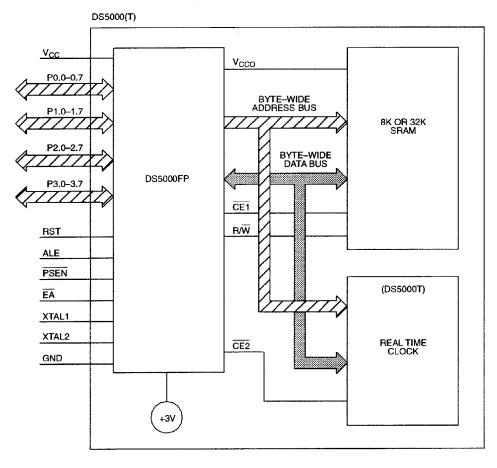
### PIN ASSIGNMENT



40-Pin Encapsulated Package

### **DESCRIPTION**

The DS5000(T) Soft Microcontroller Module is a fully 8051-compatible 8-bit CMOS microcontroller that offers "softness" in all aspects of its application. This is accomplished through the comprehensive use of nonvolatile technology to preserve all information in the absence of system  $V_{CC}$ . The internal program/data memory space is implemented using either 8 or 32 kbytes of nonvolatile CMOS SRAM. Furthermore, internal data registers and key configuration registers are also nonvolatile. An optional real-time clock (RTC) gives permanently powered timekeeping. The clock keeps time to a hundredth of a second using an on-board crystal.


**Note:** This data sheet provides ordering information, pinout, and electrical specifications. Refer to the Secure Microcontroller User's Guide for operating information.

# **ORDERING INFORMATION**

| PART                  | RAM SIZE (kB) | MAX CRYSTAL<br>SPEED (MHz) | TIMEKEEPING? |
|-----------------------|---------------|----------------------------|--------------|
| <b>DS5000-</b> 32-16  | 32            | 16                         | No           |
| DS5000-32-16+         | 32            | 16                         | No           |
| <b>DS5000T-</b> 32-16 | 32            | 16                         | Yes          |
| DS5000T-32-16+        | 32            | 16                         | Yes          |

<sup>+</sup> Denotes a lead-free package.

# DS5000(T) BLOCK DIAGRAM Figure 1

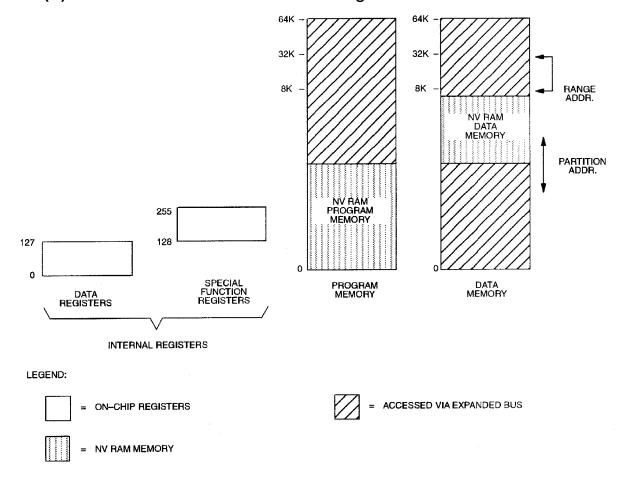


# **PIN DESCRIPTION**

| PIN    | NAME                  | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1–8    | P1.0-P1.7             | General-Purpose I/O Port 1                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9      | RST                   | Active-High Reset Input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used.                                                                                                                                                                                                                                                                                        |
| 10     | P3.0/RXD              | General-Purpose I/O Port Pin 3.0/Receive Signal for On-Board UART. This pin should not be connected directly to a PC COM port.                                                                                                                                                                                                                                                                                                                                 |
| 11     | P3.1/TXD              | General-Purpose I/O Port Pin 3.1/Transmit Signal for On-Board UART. This pin should not be connected directly to a PC COM port.                                                                                                                                                                                                                                                                                                                                |
| 12     | P3.2/INTO             | General-Purpose I/O Port Pin 3.2/Active-Low External Interrupt 0                                                                                                                                                                                                                                                                                                                                                                                               |
| 13     | P3.3/ <u>INT1</u>     | General-Purpose I/O Port Pin 3.3/Active-Low External Interrupt 1                                                                                                                                                                                                                                                                                                                                                                                               |
| 14     | P3.4/T0               | General-Purpose I/O Port Pin 3.4/Timer 0 Input                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15     | P3.5/T1               | General-Purpose I/O Port Pin 3.5/Timer 1 Input                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16     | P3.6/WR               | General-Purpose I/O Port Pin 3.6/Active-Low Write Strobe for Expanded Bus Operation                                                                                                                                                                                                                                                                                                                                                                            |
| 17     | P3.7/RD               | General-Purpose I/O Port Pin 3.7/Active-Low Read Strobe for Expanded Bus Operation                                                                                                                                                                                                                                                                                                                                                                             |
| 18, 19 | XTAL2,<br>XTAL1       | Crystal Connection. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output.                                                                                                                                                                                                                                                                                                      |
| 20     | GND                   | Logic Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21–28  | P2.0–P2.7/<br>A8–A15  | General-Purpose I/O Port 2/MSB of the Expanded Address Bus                                                                                                                                                                                                                                                                                                                                                                                                     |
| 29     | PSEN                  | Active-Low Program Store Enable. Used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the bootstrap loader. At this time, PSEN is pulled down externally. This should only be done once the DS5000(T) is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. |
| 30     | ALE                   | Address Latch Enable. Used to demultiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. When using a parallel programmer, this pin also assumes the PROG function for programming pulses.                                                                                                                                                                           |
| 31     | ĒΑ                    | Active-Low External Access. This pin forces the DS5000(T) to behave like an 8031. No internal memory (or clock) is available when this pin is at a logic low. Since this pin is pulled down internally, it should be connected to +5V to use NV RAM. In a parallel programmer, this pin also serves as V <sub>PP</sub> for super voltage pulses.                                                                                                               |
| 32-39  | P0.7–P0.0/<br>AD7–AD0 | General-Purpose I/O Port 0/Multiplexed Expanded Address/Data Bus. This port is open drain and cannot drive a logic 1. It requires external pullups. When used in the multiplexed expanded address data/bus mode, this pin does not require pullups.                                                                                                                                                                                                            |
| 40     | V <sub>CC</sub>       | +5V Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### INSTRUCTION SET

The DS5000(T) executes an instruction set which is object code-compatible with the industry standard 8051 microcontroller. As a result, software development packages that have been written for the 8051, including cross-assemblers, high-level language compilers, and debugging tools, are compatible with the DS5000(T).


A complete description for the DS5000(T) instruction set is available in *Secure Microcontroller User's Guide*.

### MEMORY ORGANIZATION

Figure 2 illustrates the address spaces, which are accessed by the DS5000(T). As illustrated in the figure, separate address spaces exist for program and data memory. Since the basic addressing capability of the machine is 16 bits, a maximum of 64 kbytes of program memory and 64 kbytes of data memory can be accessed by the DS5000(T) CPU. The 8- or 32-kbyte RAM area inside of the DS5000(T) can be used to contain both program and data memory.

The real-time clock (RTC) in the DS5000T is reached in the memory map by setting a SFR bit. The MCON.2 bit (ECE2) is used to select an alternate data memory map. While ECE2 = 1, all MOVXs will be routed to this alternate memory map. The RTC is a serial device that resides in this area. A full description of the RTC access and example software is given in the *Secure Microcontroller User's Guide*. If the ECE2 bit is set on a DS5000 without a timekeeper, the MOVXs will simply go to a nonexistent memory. Software execution would not be affected otherwise.

### DS5000(T) LOGICAL ADDRESS SPACES Figure 2



### PROGRAM LOADING

The Program Load Modes allow initialization of the NV RAM Program/Data Memory. This initialization may be performed in one of two ways:

- 1. Serial Program Loading that can perform Bootstrap Loading of the DS5000(T). This feature allows the loading of the application program to be delayed until the DS5000(T) is installed in the end system. Dallas Semiconductor strongly recommends the use of serial program loading because of its versatility and ease of use.
- 2. Parallel Program Load cycles that perform the initial loading from parallel address/data information presented on the I/O port pins. This mode is timing-set compatible with the 8751H microcontroller programming mode.

The DS5000(T) is placed in its Program Load configuration by simultaneously applying a logic 1 to the RST pin and forcing the PSEN line to a logic 0 level. Immediately following this action, the DS5000(T) will look for a parallel Program Load pulse, or a serial ASCII carriage return (0DH) character received at 9600, 2400, 1200, or 300 bps over the serial port.

The hardware configurations used to select these modes of operation are illustrated in Figure 3.

### **PROGRAM LOADING CONFIGURATIONS** Figure 3

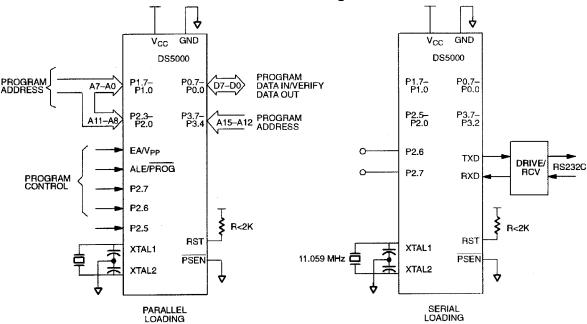



Table 1 summarizes the selection of the available Parallel Program Load cycles. The timing associated with these cycles is illustrated in the electrical specs.

### SERIAL BOOTSTRAP LOADER

The Serial Program Load Mode is the easiest, fastest, most reliable, and most complete method of initially loading application software into the DS5000(T) nonvolatile RAM. Communication can be performed over a standard asynchronous serial communications port. A typical application would use a simple RS232C serial interface to program the DS5000(T) as a final production procedure. The hardware configuration required for the Serial Program Load mode is illustrated in Figure 3. Port pins 2.7 and 2.6 must be either open or pulled high to avoid placing the DS5000(T) in a parallel load cycle. Although an 11.0592 MHz crystal is shown in Figure 3, a variety of crystal frequencies and loader baud rates are supported, shown in Table 2. The serial loader is designed to operate across a 3-wire interface from a standard UART. The receive, transmit, and ground wires are all that are necessary to establish communication with the DS5000(T).

The Serial Bootstrap Loader implements an easy-to-use command line interface that allows an application program in an Intel hex representation to be loaded into and read back from the device. Intel hex is the typical format which existing 8051 cross-assemblers output. The serial loader responds to single character commands, which are summarized below:

| <b>COMMAND</b> | <b>FUNCTION</b>                             |
|----------------|---------------------------------------------|
| C              | Return CRC-16 checksum of embedded RAM      |
| D              | Dump Intel hex file                         |
| F              | Fill embedded RAM block with constant       |
| K              | Load 40-bit encryption key                  |
| L              | Load Intel hex file                         |
| R              | Read MCON register                          |
| T              | Trace (echo) incoming Intel hex data        |
| U              | Clear security lock                         |
| V              | Verify embedded RAM with incoming Intel hex |
| W              | Write MCON register                         |
| Z              | Set security lock                           |
| P              | Put a value to a port                       |
| G              | Get a value from a port                     |

### PARALLEL PROGRAM LOAD CYCLES Table 1

| MODE                       | RST | PSEN | PROG | EA          | P2.7 | P2.6 | P2.5 |
|----------------------------|-----|------|------|-------------|------|------|------|
| Program                    | 1   | 0    | 0    | $V_{PP}$    | 1    | 0    | X    |
| Security Set               | 1   | 0    | 0    | $V_{PP}$    | 1    | 1    | X    |
| Verify                     | 1   | X    | X    | 1           | 0    | 0    | X    |
| Prog Expanded              | 1   | 0    | 0    | $ m V_{PP}$ | 0    | 1    | 0    |
| Verify Expanded            | 1   | 0    | 1    | 1           | 0    | 1    | 0    |
| Prog MCON or Key registers | 1   | 0    | 0    | $V_{PP}$    | 0    | 1    | 1    |
| Verify MCON registers      | 1   | 0    | 1    | 1           | 0    | 1    | 1    |

The Parallel Program Cycle is used to load a byte of data into a register or memory location within the DS5000(T). The Verify Cycle is used to read this byte back for comparison with the originally loaded value to verify proper loading. The Security Set Cycle may be used to enable and the Software Security feature of the DS5000(T). One may also enter bytes for the MCON register or for the five encryption registers using the Program MCON cycle. When using this cycle, the absolute register address must be presented at Ports 1 and 2 as in the normal program cycle (Port 2 should be 00H). The MCON contents can likewise be verified using the Verify MCON cycle.

When the DS5000(T) first detects a Parallel Program Strobe pulse or a Security Set Strobe pulse while in the Program Load Mode following a Power-On Reset, the internal hardware of the DS5000(T) is initialized so that an existing 4-kbyte program can be programmed into a DS5000(T) with little or no modification. This initialization automatically sets the Range Address for 8 kbytes and maps the lowest 4-kbyte bank of Embedded RAM as program memory. The next 4 kbytes of Embedded RAM are mapped as Data Memory.

In order to program more than 4 kbytes of program code, the Program/Verify Expanded cycles can be used. Up to 32 kbytes of program code can be entered and verified. Note that the expanded 32-kbyte Program/Verify cycles take much longer than the normal 4-kbyte Program/Verify cycles.

A typical parallel loading session would follow this procedure. First, set the contents of the MCON register with the correct range and partition only if using expanded programming cycles. Next, the encryption registers can be loaded to enable encryption of the program/data memory (not required). Then, program the DS5000(T) using either normal or expanded program cycles and check the memory contents using Verify cycles. The last operation would be to turn on the security lock feature by either a Security Set cycle or by explicitly writing to the MCON register and setting MCON.0 to a 1.

# SERIAL LOADER BAUD RATES FOR DIFFERENT CRYSTAL FREQUENCIES Table 2

| CRYSTAL FREQ | AL FREQ BAUD RATE |      |      |      |       |       |
|--------------|-------------------|------|------|------|-------|-------|
| (MHz)        | 300               | 1200 | 2400 | 9600 | 19200 | 57600 |
| 14.7456      |                   | Y    | Y    | Y    | Y     |       |
| 11.0592      | Y                 | Y    | Y    | Y    | Y     | Y     |
| 9.21600      | Y                 | Y    | Y    | Y    |       |       |
| 7.37280      | Y                 | Y    | Y    | Y    |       |       |
| 5.52960      | Y                 | Y    | Y    | Y    |       |       |
| 1.84320      | Y                 | Y    | Y    | Y    |       |       |

### ADDITIONAL INFORMATION

Refer to the *Secure Microcontroller User's Guide* for a complete description for all operational aspects of the DS5000(T).

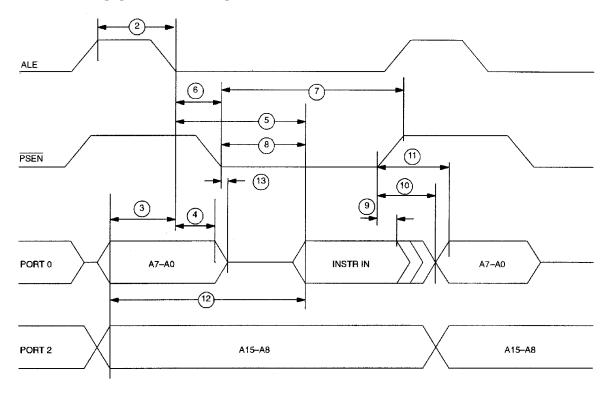
### **DEVELOPMENT SUPPORT**

The DS89C450-K00 evaluation kit (<u>www.maxim-ic.com/DS89C450evkit</u>) can be used to develop and test user code. It allows the user to download Intel hex-formatted code to the DS5000(T) from a PC. Refer to the *Secure Microcontroller User's Guide* for more information.

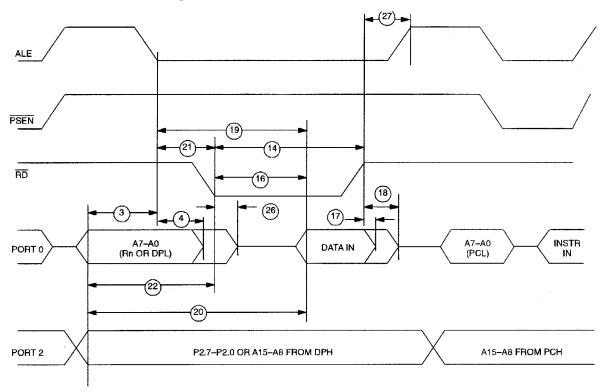
# **ABSOLUTE MAXIMUM RATINGS**

| Voltage on Any Pin Relative to Ground | 0.3V to +7.0V                         |
|---------------------------------------|---------------------------------------|
| Operating Temperature                 | 0°C to +70°C                          |
| Storage Temperature                   | 40°C to +70°C                         |
| Soldering Temperature                 | See IPC/JEDEC J-STD-020 Specification |

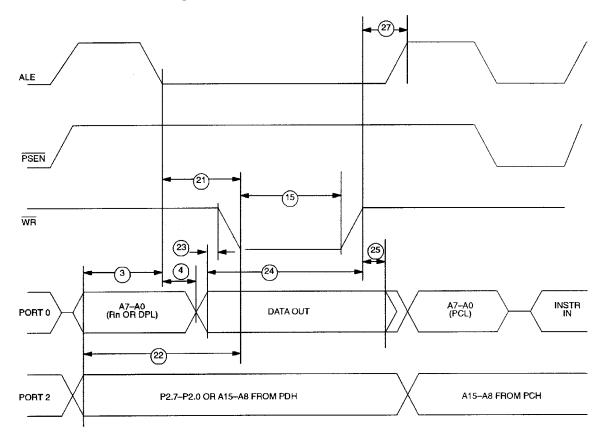
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.


| DC CHARACTERISTICS                                                                    | C CHARACTERISTICS  |      |                      | (t <sub>A</sub> =0°C to 70°C; $V_{CC}$ =5V $\pm$ 5%) |       |       |  |
|---------------------------------------------------------------------------------------|--------------------|------|----------------------|------------------------------------------------------|-------|-------|--|
| PARAMETER                                                                             | SYMBOL             | MIN  | TYP                  | MAX                                                  | UNITS | NOTES |  |
| Input Low Voltage                                                                     | $V_{\mathrm{IL}}$  | -0.3 |                      | 0.8                                                  | V     | 1     |  |
| Input High Voltage                                                                    | $V_{\mathrm{IH1}}$ | 2.0  |                      | V <sub>CC</sub> +0.3                                 | V     | 1     |  |
| Input High Voltage RST, XTAL1                                                         | $V_{IH2}$          | 3.5  |                      | V <sub>CC</sub> +0.3                                 | V     | 1     |  |
| Output Low Voltage @ I <sub>OL</sub> =1.6 mA (Ports 1, 2, 3)                          | $V_{\mathrm{OL1}}$ |      | 0.15                 | 0.45                                                 | V     |       |  |
| Output Low Voltage $@I_{OL}$ =3.2 mA (Ports 0, ALE, $\overline{PSEN}$ )               | $V_{\mathrm{OL2}}$ |      | 0.15                 | 0.45                                                 | V     | 1     |  |
| Output High Voltage @ I <sub>OH</sub> =-80 μA (Ports 1, 2, 3)                         | $V_{\mathrm{OH1}}$ | 2.4  | 4.8                  |                                                      | V     | 1     |  |
| Output High Voltage @ I <sub>OH</sub> =-400 μA (Ports 0, ALE, PSEN)                   | $V_{\mathrm{OH2}}$ | 2.4  | 4.8                  |                                                      | V     | 1     |  |
| Input Low Current $V_{IN} = 0.45V$<br>(Ports 1, 2, 3)                                 | $I_{\mathrm{IL}}$  |      |                      | -50                                                  | μΑ    |       |  |
| Transition Current; 1 to 0 V <sub>IN</sub> =2.0V (Ports 1, 2, 3)                      | $I_{TL}$           |      |                      | -500                                                 | μΑ    |       |  |
| Input Leakage Current $0.45 < V_{IN} < V_{CC}$ (Port 0)                               | $I_{L}$            |      |                      | ±10                                                  | μA    |       |  |
| RST, EA Pulldown Resistor                                                             | $R_{RE}$           | 40   |                      | 125                                                  | kΩ    |       |  |
| Stop Mode Current                                                                     | $I_{SM}$           |      |                      | 80                                                   | μΑ    | 4     |  |
| Power-Fail Warning Voltage                                                            | $V_{ m PFW}$       | 4.15 | 4.6                  | 4.75                                                 | V     | 1     |  |
| Minimum Operating Voltage                                                             | $V_{CCmin}$        | 4.05 | 4.5                  | 4.65                                                 | V     | 1     |  |
| Programming Supply Voltage<br>(Parallel Program Mode)                                 | $V_{PP}$           | 12.5 |                      | 13                                                   | V     | 1     |  |
| Program Supply Current                                                                | $I_{PP}$           |      | 15                   | 20                                                   | mA    |       |  |
| Operating Current DS5000-8k @ 8MHz<br>DS5000-32k @ 12 MHz<br>DS5000(T)-32-16 @ 16 MHz | I <sub>CC</sub>    |      | 25.2<br>35.7<br>45.6 | 43<br>48<br>54                                       | mA    | 2     |  |
| Idle Mode Current @ 12 MHz                                                            | $I_{CC}$           |      | 4.5                  | 6.2                                                  | mA    | 3     |  |

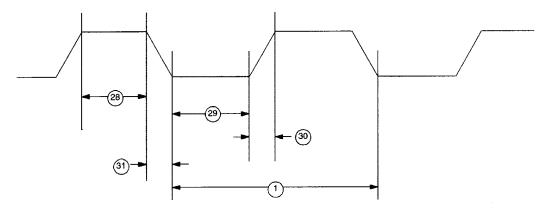
# AC CHARACTERISTICS: EXPANDED BUS MODE TIMING SPECIFICATIONS


 $(t_A=0^{\circ}C \text{ to } 70^{\circ}C; V_{CC}=5V \pm 5\%)$ 

| DUS | MODE HIMING SPECIFICATIONS                         |                       | $(\iota_A - \iota_A - \iota_A$ | $V \pm 5\%$                                      |          |
|-----|----------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|
| #   | PARAMETER                                          | SYMBOL                | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAX                                              | UNITS    |
| 1   | Oscillator Frequency                               | 1/t <sub>CLK</sub>    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                               | MHz      |
| 2   | ALE Pulse Width                                    | $t_{ m ALPW}$         | 2t <sub>CLK</sub> -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | ns       |
| 3   | Address Valid to ALE Low                           | $t_{ m AVALL}$        | t <sub>CLK</sub> -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | ns       |
| 4   | Address Hold After ALE Low                         | $t_{AVAAV}$           | t <sub>CLK</sub> -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | ns       |
| 5   | ALE Low to Valid Instr. In  (a) 12 MHz (a) 16 MHz  | t <sub>ALLVI</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4t <sub>CLK</sub> -150<br>4t <sub>CLK</sub> -90  | ns<br>ns |
| 6   | ALE Low to PSEN Low                                | $t_{\mathrm{ALLPSL}}$ | t <sub>CLK</sub> -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | ns       |
| 7   | PSEN Pulse Width                                   | $t_{\mathrm{PSPW}}$   | 3t <sub>CLK</sub> -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | ns       |
| 8   | PSEN Low to Valid Instr. In  @ 12 MHz @ 16 MHz     | $t_{ m PSLVI}$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3t <sub>CLK</sub> -150<br>3t <sub>CLK</sub> -90  | ns<br>ns |
| 9   | Input Instr. Hold after PSEN Going High            | $t_{\mathrm{PSIV}}$   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | ns       |
| 10  | Input Instr. Float after PSEN Going High           | $t_{PSIX}$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t <sub>CLK</sub> -20                             | ns       |
| 11  | Address Hold after PSEN Going High                 | t <sub>PSAV</sub>     | t <sub>CLK</sub> -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | ns       |
| 12  | Address Valid to Valid Instr. In @ 12 MHz @ 16 MHz | t <sub>AVVI</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5t <sub>CLK</sub> -150<br>5t <sub>CLK</sub> -90  | ns<br>ns |
| 13  | PSEN Low to Address Float                          | t <sub>PSLAZ</sub>    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | ns       |
| 14  | RD Pulse Width                                     | $t_{ m RDPW}$         | 6t <sub>CLK</sub> -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | ns       |
| 15  | WR Pulse Width                                     | $t_{\mathrm{WRPW}}$   | 6t <sub>CLK</sub> -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | ns       |
| 16  | RD Low to Valid Data In  @ 12 MHz @ 16 MHz         | t <sub>RDLDV</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5t <sub>CLK</sub> -165<br>5t <sub>CLK</sub> -105 | ns<br>ns |
| 17  | Data Hold after RD High                            | $t_{ m RDHDV}$        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | ns       |
| 18  | Data Float after RD High                           | t <sub>RDHDZ</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2t <sub>CLK</sub> -70                            | ns       |
| 19  | ALE Low to Valid Data In @ 12 MHz @ 16 MHz         | t <sub>ALLVD</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 <sub>CLK</sub> -150<br>8t <sub>CLK</sub> -90   | ns<br>ns |
| 20  | Valid Addr. to Valid Data In @ 12 MHz @ 16 MHz     | $t_{ m AVDV}$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9t <sub>CLK</sub> -165<br>9t <sub>CLK</sub> -105 | ns<br>ns |
| 21  | ALE Low to RD or WR Low                            | t <sub>ALLRDL</sub>   | 3t <sub>CLK</sub> -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3t <sub>CLK</sub> +50                            | ns       |
| 22  | Address Valid to RD or WR Low                      | $t_{ m AVRDL}$        | 4t <sub>CLK</sub> -130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | ns       |
| 23  | Data Valid to WR Going Low                         | $t_{ m DVWRL}$        | t <sub>CLK</sub> -60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | ns       |
| 24  | Data Valid to WR High @ 12 MHz @ 16 MHz            | $t_{ m DVWRH}$        | 7t <sub>CLK</sub> -150<br>7t <sub>CLK</sub> -90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | ns<br>ns |
| 25  | Data Valid after WR High                           | $t_{\mathrm{WRHDV}}$  | t <sub>CLK</sub> -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | ns       |
| 26  | RD Low to Address Float                            | $t_{RDLAZ}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                | ns       |
| 27  | RD or WR High to ALE High                          | $t_{ m RDHALH}$       | t <sub>CLK</sub> -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t <sub>CLK</sub> +50                             | ns       |
|     |                                                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |          |


# **EXPANDED PROGRAM MEMORY READ CYCLE**




### **EXPANDED DATA MEMORY READ CYCLE**



# **EXPANDED DATA MEMORY WRITE CYCLE**

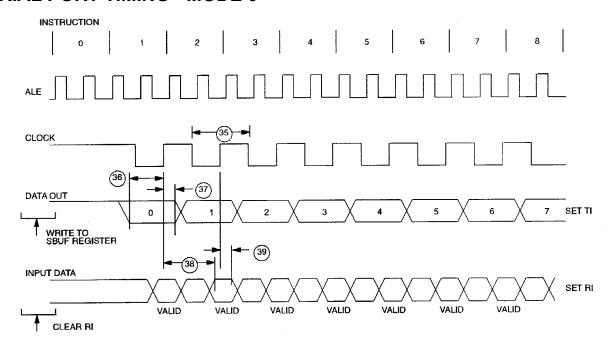


# **EXTERNAL CLOCK TIMING**



# $\textbf{AC CHARACTERISTICS} \ (\texttt{cont'd})$

**EXTERNAL CLOCK DRIVE**  $(t_A=0^{\circ}\text{C to }70^{\circ}\text{C}; V_{CC}=5\text{V} \pm 5\%)$ 

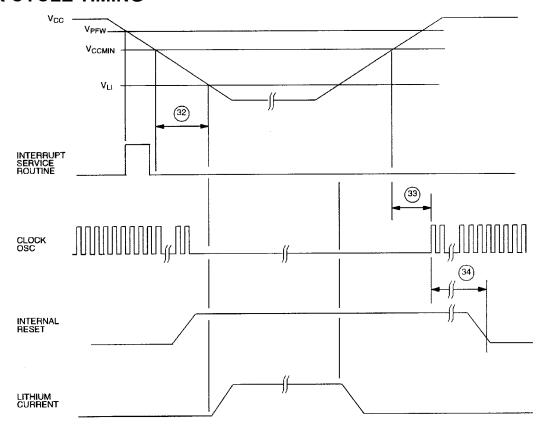

| #  | PARAMETER                        | SYMBOL                                              | MIN | MAX | UNITS |
|----|----------------------------------|-----------------------------------------------------|-----|-----|-------|
| 28 | External Clock High Time @ 12 MI | Hz t <sub>CLKHPW</sub>                              | 20  |     | ns    |
|    | @ 16 MI                          | Hz                                                  | 15  |     | ns    |
| 29 | External Clock Low Time @ 12 MI  | Hz t <sub>CLKLPW</sub>                              | 20  |     | ns    |
|    | @ 16 MI                          | Hz                                                  | 15  |     | ns    |
| 30 | External Clock Rise Time @ 12 MI | $\mathbf{H}\mathbf{z}$ $\mathbf{t}_{\mathrm{CLKR}}$ |     | 20  | ns    |
|    | @ 16 MI                          | Hz                                                  |     | 15  | ns    |
| 31 | External Clock Fall Time @ 12 MI | Hz t <sub>CLKF</sub>                                |     | 20  | ns    |
|    | <u>@</u> 16 MI                   | Hz                                                  |     | 15  | ns    |

# AC CHARACTERISTICS (cont'd)

**SERIAL PORT TIMING - MODE 0**  $(t_A=0^{\circ}\text{C to }70^{\circ}\text{C}; V_{CC}=5\text{V} \pm 5\%)$ 

| #  | PARAMETER                                | SYMBOL               | MIN                     | MAX                     | UNITS |
|----|------------------------------------------|----------------------|-------------------------|-------------------------|-------|
| 35 | Serial Port Cycle Time                   | $t_{\mathrm{SPCLK}}$ | 12t <sub>CLK</sub>      |                         | μs    |
| 36 | Output Data Setup to Rising Clock Edge   | t <sub>DOCH</sub>    | 10t <sub>CLK</sub> -133 |                         | ns    |
| 37 | Output Data Hold after Rising Clock Edge | t <sub>CHDO</sub>    | 2t <sub>CLK</sub> -117  |                         | ns    |
| 38 | Clock Rising Edge to Input Data Valid    | $t_{CHDV}$           |                         | 10t <sub>CLK</sub> -133 | ns    |
| 39 | Input Data Hold after Rising Clock Edge  | $t_{CHDIV}$          | 0                       |                         | ns    |

### **SERIAL PORT TIMING - MODE 0**



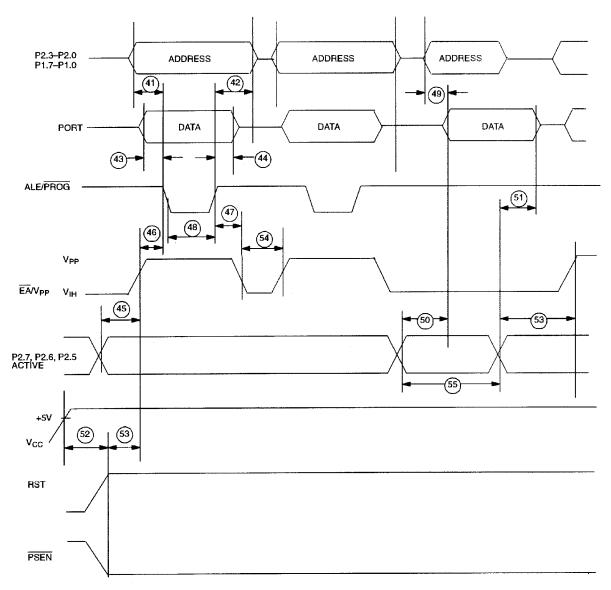

# **AC CHARACTERISTICS** (cont'd) **POWER CYCLING TIMING**

(t<sub>A</sub>=0°C to 70°C;  $V_{CC}$ =5V  $\pm$  5%)

| #  | PARAMETER                                 | SYMBOL     | MIN | MAX      | UNITS     |
|----|-------------------------------------------|------------|-----|----------|-----------|
| 32 | Slew Rate from V <sub>CCmin</sub> to 3.3V | $t_{ m F}$ | 40  |          | μs        |
| 33 | Crystal Start-up Time                     | $t_{CSU}$  |     | (note 5) |           |
| 34 | Power-on Reset Delay                      | $t_{POR}$  |     | 21504    | $t_{CLK}$ |

### **POWER CYCLE TIMING**



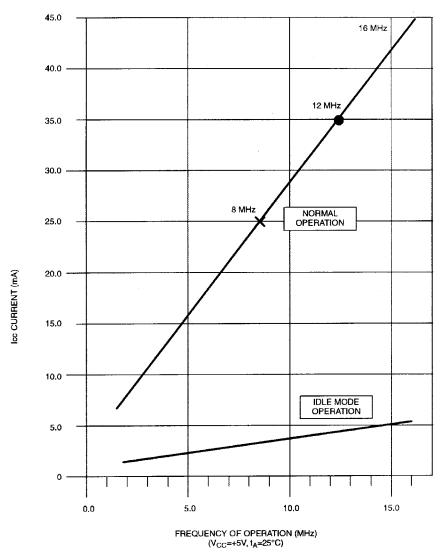

# AC CHARACTERISTICS (cont'd) PARALLEL PROGRAM LOAD TIMING

 $(t_A=0^{\circ}C \text{ to } 70^{\circ}C; V_{CC}=5V \pm 5\%)$ 

| . , | ALLEL I NOONAM LOAD IMMINO                                                   |                      | $t_A = 0$   | 0 0, 100 0  | <del>/                                    </del> |
|-----|------------------------------------------------------------------------------|----------------------|-------------|-------------|--------------------------------------------------|
| #   | PARAMETER                                                                    | SYMBOL               | MIN         | MAX         | UNITS                                            |
| 40  | Oscillator Frequency                                                         | 1/t <sub>CLK</sub>   | 1.0         | 12.0        | MHz                                              |
| 41  | Address Setup to PROG Low                                                    | $t_{AVPRL}$          | 0           |             |                                                  |
| 42  | Address Hold after PROG High                                                 | $t_{PRHAV}$          | 0           |             |                                                  |
| 43  | Data Setup to PROG Low                                                       | $t_{\mathrm{DVPRL}}$ | 0           |             |                                                  |
| 44  | Data Hold after PROG High                                                    | $t_{PRHDV}$          | 0           |             |                                                  |
| 45  | P2.7, 2.6, 2.5 Setup to V <sub>PP</sub>                                      | t <sub>P27HVP</sub>  | 0           |             |                                                  |
| 46  | $V_{PP}$ Setup to $\overline{PROG}$ Low                                      | $t_{VPHPRL}$         | 0           |             |                                                  |
| 47  | V <sub>PP</sub> Hold after PROG Low                                          | $t_{PRHVPL}$         | 0           |             |                                                  |
| 48  | PROG Width Low                                                               | $t_{\mathrm{PRW}}$   | 2400        |             | $t_{CLK}$                                        |
| 49  | Data Output from Address Valid                                               | $t_{ m AVDV}$        |             | 48<br>1800* | t <sub>CLK</sub>                                 |
| 50  | Data Output from P2.7 Low                                                    | t <sub>DVP27L</sub>  |             | 48<br>1800* | t <sub>CLK</sub>                                 |
| 51  | Data Float after P2.7 High                                                   | t <sub>P27HDZ</sub>  | 0           | 48<br>1800* | t <sub>CLK</sub>                                 |
| 52  | Delay to Reset/PSEN Active after Power On                                    | $t_{PORPV}$          | 21504       |             | $t_{CLK}$                                        |
| 53  | Reset/ $\overline{\text{PSEN}}$ Active (or Verify Inactive) to $V_{PP}$ High | t <sub>RAVPH</sub>   | 1200        |             | t <sub>CLK</sub>                                 |
| 54  | V <sub>PP</sub> Inactive (Between Program Cycles)                            | t <sub>VPPPC</sub>   | 1200        |             | $t_{CLK}$                                        |
| 55  | Verify Active Time                                                           | $t_{ m VFT}$         | 48<br>2400* |             | $t_{CLK}$                                        |

<sup>\*</sup> Second set of numbers refers to expanded memory programming up to 32k bytes.

# **PARALLEL PROGRAM LOAD TIMING**




### **CAPACITANCE**

(test frequency=1MHz; t<sub>A</sub>=25°C)

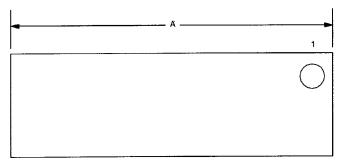
| PARAMETER          | SYMBOL  | MIN | TYP | MAX | UNITS | NOTES |
|--------------------|---------|-----|-----|-----|-------|-------|
| Output Capacitance | Co      |     |     | 10  | pF    |       |
| Input Capacitance  | $C_{I}$ |     |     | 10  | pF    |       |

# DS5000(T) TYPICAL Icc VS. FREQUENCY

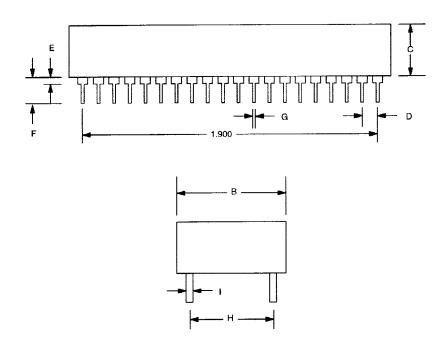


Normal operation is measured using:

- 1) External crystals on XTAL1 and 2
- 2) All port pins disconnected
- 3) RST=0 volts and EA= $V_{CC}$
- 4) Part performing endless loop writing to internal memory


Idle mode operation is measured using:

- 1) External clock source at XTAL1; XTAL2 floating
- 2) All port pins disconnected
- 3) RST=0 volts and EA=V<sub>CC</sub>
- 4) Part set in IDLE mode by software


### NOTES:

- 1. All voltages are referenced to ground.
- 2. Maximum operating  $I_{CC}$  is measured with all output pins disconnected; XTAL1 driven with  $t_{CLKR}$ ,  $t_{CLKF} = 10$  ns,  $V_{IL} = 0.5V$ ; XTAL2 disconnected;  $\overline{EA} = RST = PORT0 = V_{CC}$ .
- 3. Idle mode  $I_{CC}$  is measured with all output pins disconnected; XTAL1 driven with  $t_{CLKR}$ ,  $t_{CLKF}$  = 10 ns,  $V_{IL}$  = 0.5V; XTAL2 disconnected;  $\overline{EA}$  = PORT0 =  $V_{CC}$ , RST =  $V_{SS}$ .
- 4. Stop mode  $I_{CC}$  is measured with all output pins disconnected;  $\overline{EA}$  = PORT0 =  $V_{CC}$ ; XTAL2 not connected; RST =  $V_{SS}$ .
- 5. Crystal start-up time is the time required to get the mass of the crystal into vibrational motion from the time that power is first applied to the circuit until the first clock pulse is produced by the on-chip oscillator. The user should check with the crystal vendor for the worst case spec on this time.

### PACKAGE DRAWING



| DIM   | INCHES |       |  |  |
|-------|--------|-------|--|--|
| DIN   | MIN    | MAX   |  |  |
| A IN. | 2.080  | 2.100 |  |  |
| B IN. | 0.680  | 0.700 |  |  |
| C IN. | 0.290  | 0.325 |  |  |
| D IN. | 0.090  | 0.110 |  |  |
| E IN. | 0.030  | 0.060 |  |  |
| F IN. | 0.145  | 0.185 |  |  |
| G IN. | 0.016  | 0.020 |  |  |
| H IN. | 0.590  | 0.610 |  |  |
| I IN. | 0.009  | 0.015 |  |  |



### **DATA SHEET REVISION SUMMARY**

| REVISION  | DESCRIPTION                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| 072095 to | Corrected Figure 3 to show RST active high.                                                                                              |
| 072496    | Added Data Sheet Revision Summary section.                                                                                               |
| 112299    | Converted from Interleaf to Word.                                                                                                        |
|           | Page 1: Features Added "at Room Temperature" to "Maintains All Nonvolatile Resources Up to 10 Years in the Absence of $V_{CC}$ " bullet. |
|           | Page 2: Ordering Information<br>Removed 8kB parts from list; added 32kB and lead-free packages.                                          |
| 070706    | Page 8: Development Support Updated paragraph to reflect availability of DS89C450-K00 evaluation kit, not DS5000TK.                      |
|           | Page 9: Absolute Maximum Ratings                                                                                                         |
|           | Changed "260°C for 10 seconds" to "See IPC/JEDEC J-STD-020 Specification."                                                               |
|           | Pages 1, 4, 8: Replaced references to "User's Guide section of Secure                                                                    |
|           | Microcontroller Data Book" with "Secure Microcontroller User's Guide."                                                                   |

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

DS5000-32-16 DS5000T-32-16