

Click here to ask an associate for production status of specific part numbers.

Portable Medical Power Management Solution with Cable Detection

General Description

The MAX14663 is a complete power solution for portable medical devices, including blood glucose meters.

The device integrates a high-efficiency single-cell Li-ion switching charger targeted at space-limited portable applications with small batteries.

An ultra low-power seal mode which significantly reduces standby current and preserves battery charge during prolonged periods of storage is also included. This mode extends battery shelf life, and enables improved customer experience with immediate out-of-box use.

Additionally, the MAX14663 embeds a Maxim proprietary ModelGauge[™] (fuel gauge), which provides an accurate estimate of the available capacity for rechargeable Li-ion batteries.

A boost converter and LED current sinks are also integrated for powering OLED displays or LED backlights.

Internal cable-detection circuitry enables the MAX14663 to identify the presence of an unpowered/unconnected USB cable. This information can be used by the portable system to intelligently select its operating mode, maximizing accuracy and minimizing measurement errors.

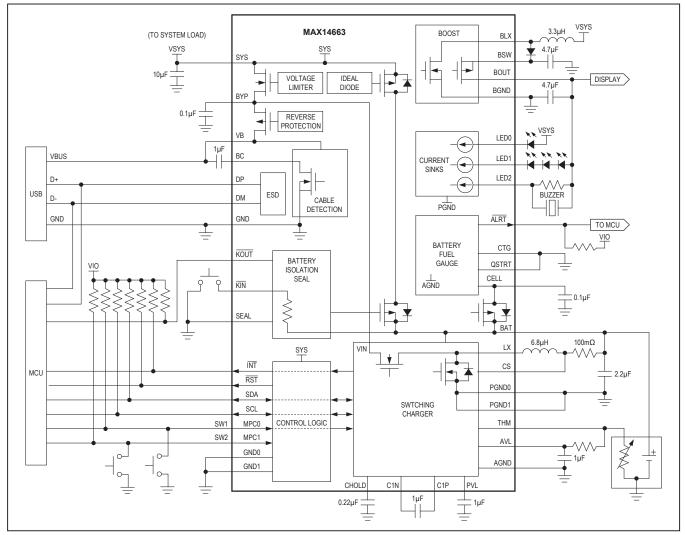
The MAX14663 operates over the -20°C to +70°C temperature range and is available in a (5mm x 5mm), 40-pin, TQFN-EP package.

Applications

- Portable Blood Glucose Meters
- Portable Medical Devices
- USB Connected Devices

Benefits and Features

- High-Efficiency Switching Charger Tailored for Small Capacity Batteries Saves Space, Extends Battery Life
- Battery Isolation Switch Extends Battery Shelf Life
 Hardware/Software Configurable
 - Integrated Power-Key Monitor
- Integration Simplifies and Shrinks Display Driving Circuitry
 - 3-Channel Programmable-LED Current Sinks
 - Integrated Step-Up Converter
- Integrated Protection and Control for Reliable
 Performance
 - Fully Integrated Cable Detection Controller to Ensure Measurement Accuracy
 - Overvoltage and Thermal Protection
 28V Tolerant VB Input Connection
 - High ESD Protection (VB, DP, DM, KIN)
 - ±15kV HBM ESD Protection
 - ±10kV Air-Gap Protection
 - ±8kV Contact Discharge Protection
 - Manual Reset Controller
 - Programmable Interrupt Generation (I²C)
- Integrated ModelGauge Host-Side Fuel Gauge Saves
 Space and Accurately Estimates State of Charge
 - ModelGauge Algorithm
 - Tolerates Temperature & Load Variation
 - No Error Accumulation
 - · Learning Not Necessary
 - · Current-Sense Resistor Not Required


Ordering Information appears at end of data sheet.

ModelGauge™ is a registered trademark of Maxim Integrated Products, Inc.

19-6817; Rev 6; 8/20

© 2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2023 Analog Devices, Inc. All rights reserved.

Portable Medical Power Management Solution with Cable Detection

Typical Application Circuit/Functional Diagram

Portable Medical Power Management Solution with Cable Detection

Absolute Maximum Ratings

(All voltages referenced to GND.)	
BAT, KIN, KOUT, CS, THM, AVL, P	VL, SYS, SEAL, MPC0,
MPC1, INT, RST, SDA, SCL, AL	RT, CTG, QSTRT,
DP, DM	0.3V to +6V
CELL	0.3V to BAT+0.3V
LX	0.3V to PVL+0.3V
BBSW, BLX, LED0, LED1, LED2	0.3V to +20V
BOUT	0.3V to BSW+0.3V
BYP	0.3V to +30V
VB	0.3V to BYP+0.3V
C1N	0.3V to PVL+0.3V
C1P	PVL-0.3V to CHOLD+0.3V
C1P to C1N	0.3V to +6V
CHOLD	PVL-0.3V to PVL+6V
VBC	0.3V to +0.6V

PGND0 to GSUB0, PGND1 to GSUB1 BGND to GSUB0. GSUB1	0.3V to +0.3V
(GSUB0 and GSUB1 internally shorted)	0.3V to +0.3V
AGND to GSUB0, GSUB1 (GSUB0 and GSUB1 internally shorted)	
Continuous Current into VB, BAT	
Continuous Power Dissipation (multilayer board	at $I_A = +70^{\circ}C$):
40-pin, 5mm x 5mm TQFN	2957m\//
(derate 35.7mW/°C above +70°C)	
Operating Temperature Range	
Junction Temperature	
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

40 TQFN-EP

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
GLOBAL SUPPLY CURRENT (V _{VB} = +5V, V _{BAT} = 3.6V, CD_EN = 00, CHG_EN = 00, BST_EN = 00, LDO_EN = 00, I _{BYP} = 0mA, I _{SYS} = 0mA.) (Fuel gauge disabled (FG_DIS = 1), LED disabled (LED0_CFG[2:0] = LED1_CFG[2:0] = LED2_CFG[2:0] = 000.))							
		All functions disabled		0.9	1.3		
		Cable detection enabled CD_EN = 11		1.5	2.5		
VB Input Supply Current	I _{VB}	Charger enabled, I _{CHG} = 0mA CEN_O = 11		5	10	mA	
		Boost enabled, I _{BOUT} = 0mA BST_EN = 01		2.7	5		

Portable Medical Power Management Solution with Cable Detection

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Battery-isolation switch open, (SEAL condition active), V _{VB} = 0V		0.01	1	μA
		Battery-isolation switch closed, (SEAL condition off), V_{VB} = 0V, all functions disabled		2.7	4.5	μA
BAT Input Supply Current	I _{BAT}	Battery-isolation switch closed, (SEAL condition off), V _{VB} = 0V, fuel gauge active		23	45	μA
		Battery-isolation switch closed, V _{VB} = 0V, boost enabled (BST_V[3:0] = 0000), I _{BOUT} = 0mA, BST_EN = 1		1.3	2.3	mA
		Battery-isolation switch closed, $V_{VB} = 0V$, cable detect active, CD_EN = 11		300		μA
		Battery-isolation switch closed, V_{VB} = 0V, LED enabled		600		μA
POWER SWITCHES (V _{VB} = 4.4V to 28V, unless othe	rwise noted. Typic	cal values are at V _{VB} = 5.0V, V _{BAT} = 3.6V.)				
VB Input Supply Voltage	V _{VB}		0		28	V
Q _{RPP} REVERSE POLARITY PR	OTECTION SWIT	TCH (VB to BYP)				
RPP Switch On-Resistance	R _{ON_RPP}	V _{VB} = 4.4V		150	260	mΩ
Q _{OVP} OVERVOLTAGE PROTEC	CTION SWITCH (BYP to SYS)				
Overvoltage Lockout Threshold	V _{OVLO}	BYP rising	6.15	6.7	7.2	V
Overvoltage Lockout Hyster- esis	V _{OVLOH}	BYP falling		300		mV
Undervoltage Lockout Threshold	V _{UVLO}	BYP rising	3.3	3.8	4.2	V
Undervoltage Lockout Hys- teresis	V _{UVLOH}	BYP falling		200		mV
VBYP OVP Pulldown Current	I _{BYP_OVP}	V _{BYP} > V _{OVLO}		300		μA
VBYP to BAT Shutdown UVLO		V_{VB} rising, V_{BYP} - V_{BAT} threshold	40	111	200	mV
Threshold		V_{VB} falling, V_{BYP} - V_{BAT} threshold	0.8	58	120	IIIV
SYS Voltage Regulation Voltage	V _{SYS}	I _{SYS} = 250mA	4.44	5	5.5	V
SYS UVLO	V _{SYS_UVLO}	SYS rising	2.0	2.4	2.8	V
SYS UVLO Hysteresis	V _{SYS_UVLOH}	SYS falling		130		mV
BAT UVLO	V _{BAT_UVLO}	BAT rising	1.95	2.2	2.5	V
BAT UVLO Hysteresis	V _{BAT_OVLOH}	BAT falling		110		mV
OVP Switch On-Resistance	R _{ON_OVP}	V _{VB} = 4.4V		220	500	mΩ
BAT OVLO	V _{BAT_OVLO}	BAT rising	4.3	4.38	4.55	V

Portable Medical Power Management Solution with Cable Detection

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BAT OVLO Hysteresis	V _{BAT_OVLOH}	BAT falling		60		mV
SYS Turn-On Time	t _{ON}	V _{OVLO} > V _{VB} > V _{UVLO} (Note 3)		16		ms
SYS Voltage Rise Time		V_{SYS} from 20% to 80% of V_{VB} = 5V (Note 3)		1.1		ms
SYS Turn-Off time	tOFF	$R_{LOAD} = 20\Omega$, $C_{SYS} = 10\mu$ F, $V_{VB} > V_{OVLO}$ to $V_{SYS} = 80\%$ of V_{VB} (Note 3)		200		μs
Q _{DIO} IDEAL DIODE SWITCH (SYS to BAT)					
Ideal Diode Switch On-Resis- tance	R _{ON_DIO}	V _{BAT} = 3.6V		150	250	mΩ
BAT-SYS Ideal Switch Turn- On Threshold	V(BATSYS)_PPON			20.6		mV
BAT-SYS Ideal Switch Turn- Off Threshold	V(BATSYS)_PPOFF			2		mV
IBAT-to-SYS Current Limit	I _{BS_LIMIT}			1.3		A
QISO BATTERY ISOLATION SV	WITCH (CELL to E	BAT)				
FG Seal Switch On-Resistance	R _{ON_ISO}	V _{BAT} = 3.6V		15	25	Ω
CABLE DETECTOR AND ESD $(V_{VB} = 4.4V \text{ to } 28V, \text{ unless otherwise})$						
DP, DM Capacitance				15		pF
CABLE DETECTOR						
Capacitance Threshold 1	C _{TH1}	Room temperature only (Note 4)		20		pF
Capacitance Threshold 2	C _{TH2}	Room temperature only (Note 4)		40		pF
Capacitance Threshold 3	C _{TH3}	Room temperature only (Note 4)		60		pF
Capacitance Threshold 4	C _{TH4}	Room temperature only (Note 4)		80		pF
Maximum Injected Current During Cable Detection		CTH_SEL[1:0] = 00		1		μA
Maximum VB Voltage During Cable Detection				1		V
VBC On-Resistance		V _{VB} = 0V		0.24	1	Ω
TIMING CHARACTERISTICS						
Cable Detection Time	t _{DET}			470		ms
VB-Off Debounce Time	^t DEB_FALL	Cable detection active (VB falling edge)		64		ms
VB-On Debounce Time	t _{DEB_RIS}	Cable detection NOT active (VN rising edge)		36		ms
THERMAL PROTECTION (VB	Supplied)	·	1			1
Thermal Shutdown	-			150		°C

Portable Medical Power Management Solution with Cable Detection

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIO	ONS	MIN	TYP	MAX	UNIT
Thermal Hysteresis					20		°C
THERMAL PROTECTION (VB	AT Supplied)						
Thermal Shutdown					150		°C
Thermal Hysteresis					20		°C
BATTERY CHARGER (V_{VB} = 5V, 1µF capacitor from V = 0), V_{THM} = 2.5V, 1µF from C							
BYP INPUT							
BYP to BAT Charger Shut-		VB rising: VBYP - VBAT	threshold	200	360	550	
down Threshold	V _{BYPvsBAT}	VB falling: V _{BYP} - V _{BAT}	threshold	40	100	200	mV
BATTERY CHARGER	1						
		6-bit programmable from 20mV steps	n 3.5V to 4.4V in	3.5		4.4	V
Battery Regulation Voltage	V _{CHG}	VCHG reduction for JEITA enabled and active			120		mV
Battery Regulation Voltage Accuracy		Linear charger mode	T _A = +25°C	-0.5		0.5	
			T _A = -20°C to +70°C	-1		1	%
	DATDELL	Below regulation point	VRSTRT = 0	90	135	180	
Battery Refresh Threshold	DAIRFN	BATRFH VRSTRT = 1	VRSTRT = 1	170	214	270	mV
Battery Overvoltage Protec- tion	BATOV	BAT threshold over regute to turn off charger during regulation voltage)		101	102.5	104	%
		Hysteresis (V _{BAT} Falling	g)		65		mV
Battery Removal Threshold		Battery voltage rising			5		
Battery Prequalification	N	3-bit programmable, BA	T rising	2.4		3.1	V
Threshold	V _{PQ}	Hysteresis BAT falling			100		mV
Battery Prequalification Threshold Accuracy		T _A = +25°C		-1		1	%
Battery Prequalification Cur- rent	I _{PQ}	2.1V < V _{BAT} < V _{PQ} ; T _A	= +25°C	20	25	30	mA
юп. 		V _{BAT} < 2.1V			13		
		4-bit programmable (No	te 5), R _S = 50mΩ	50		750	mA
Battery Fast-Charge Current	I _{СНG}	I _{CHG} percentage for JEI active I _{CHG} ≥ 100mA	ITA enabled and		50		%

Portable Medical Power Management Solution with Cable Detection

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Battery-Fast-Charge Current		50mA < I _{CHG} < 500mA; T _A = +25°C				
Accuracy		100mA < I _{CHG} < 500mA; T _A = -20°C to +70°C	-10		10	%
Charge-Current Termination	IDONE	3-bit programmable, independent from JEITA	12.5		150	mA
mesnou		Hysteresis ICHARGE rising, I _{DONE} = 50mA		25		
Charge-Current Termination		I _{DONE} > 25mA	-25		+25	%
Accuracy		I _{DONE} ≤ 25mA	-60		+60	- %
Charge-Current Termination Deglitch	IDONE_DGL	Deglitch time with 2mV overdrive, 100ns rise/fall time		4		ms
Battery Leakage Current	IBATLKG	CHG_EN low, SEAL MODE		0.01	1	μA
Thermal Regulation Tempera- ture	TH _{REG}	ICHG reduces thermal regulation tem- perature when die temp rises above		120		°C
Thermal Regulation Gain	TH _{GN}	Charge current drops to 0 at +120°C		5		%/°C
Charger Soft-Start Time	t _{SF}			160		ms
BATTERY CHARGER TIMER						
Prequalification Time	t _{PQ}	V _{BAT} < V _{PQ}		60		min
Fast-Charge Time	^t FCH	CHGTM[1:0] = 11		10		hrs
Charger-DONE Delay Time	DONEDLY	From I _{DONE} threshold detection until charger turns off and CHG goes high		15		s
Timer Accuracy				20		%
BUCK REGULATOR						
Switching Frequency	f _{SW}	CON_FR1 = I, CON_FR2 = 0, T _A = +25°C	0.95	1.1	1.25	MHz
Switching Frequency	ISW	CON_FR1 = I, CON_FR2 = 0, T _A = +25°C	0.6	0.7	0.8	
Max Duty Cycle	D _{T_MAX}			99.7		%
Maximum On-Time	t _{ON_MAX}			8		μs
Minimum Off-Time	t _{ON_MIN}			40		ns
High-Side Resistance	R _{ONH}			90	210	mΩ
Low-Side Resistance	R _{ONL}			120	240	mΩ
JEITA THERMISTOR MONITO	R SPECIFICATIO	DNS				
Open Threshold	V _{THOP}	Battery missing	92	94	96	% of AVL
	l		l			L

Portable Medical Power Management Solution with Cable Detection

Electrical Characteristics (continued)

(T_A = -20°C to +70°C, unless otherwise noted. Typical values are at T_A = +25°C) (Note 2)

PARAMETER	SYMBOL	CONDITIC	NS	MIN	TYP	MAX	UNITS
THM Threshold T1	V _{THT1}	1.2% hysteresis	1.2% hysteresis		74	77.6	% of AVL
		Thermistor temperature	falling		0		°C
THM Threshold T2	V _{THT2}	1.2% hysteresis		61.6	65	67.8	% of AVL
		Thermistor temperature	falling		10		°C
THM Threshold T3	V _{THT3}	1.2% hysteresis		48	50	52	% of AVL
		Thermistor temperature	falling		25		°C
THM Threshold T4	V _{THT4}	1.2% hysteresis		31.2	33	34.3	% of AVL
		Thermistor temperature	rising		45		°C
THM Threshold T5	V _{THT5}	1.2% hysteresis		22.1	23	24.1	% of AVL
		Thermistor temperature	Thermistor temperature rising		60		°C
SHORT Threshold	V _{THSH}	Thermistor fault		3	5	7	% of AVL
THM Pulldown Impedance, Shutdown	R _{THM_SD}	JEN = 0			12		kΩ
THM Input Bias Current	I	VTHM = AVL and 0V,	T _A = +25°C	-0.1		+0.1	μA
	Ітнм	JEN = High	T _A = +70°C		0.1		μΑ
AVL/PVL OUTPUT VOLTAGE							
AVL Regulated Output Volt- age	V _{AVL}	5.5V < V_{VB} , I_{AVLOUT} < 1	mA	4.3	4.5	4.7	V
PVL Regulated Output Volt- age	V _{PVL}	5.5V < V _{VB} , I _{PVLOUT} < 1mA		4.8	5.1	5.25	V
FUEL GAUGE (V _{IN} = 2.5V to 4.5V, T _A = -20°C	to +70°C, unles	s otherwise noted.)					
Supply Voltage	V _{CELL}	(Note 6)		2.5		4.5	
Fuel-Gauge SOC Reset	V _{RST}	Configuration range, in 4	0mV steps	2.28		3.48	v
(VRESET Register)	"RSI	Trimmed at 3V		2.85	3	3.15	v

Portable Medical Power Management Solution with Cable Detection

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Sleep mode, T _A < +50°C		0.5	2	
Supply Current	I _{DD0}	Hibernate mode, reset comparator en- abled (VRESET.Dis = 1)		3	5	
Supply Current		Hibernate mode, reset comparator dis- abled (VRESET.Dis = 0)		4		μΑ
	I _{DD1}	Active mode		23	40	
Time Base Accuracy	t _{ERR}	Active, hibernate modes (Note 7)	-3.5		3.5	%
ADC Sample Period		Active mode		250		ms
ADC Sample Fellou		Hibernate mode		45		S
Voltage Error	V	V _{CELL} = 3.6V, T _A = +25°C (Note 8)	-7.5		7.5	mV
Voltage Ellor	V _{ERR}	$T_{A} = -20^{\circ}C \text{ to } 70^{\circ}C$	-20		20	
Voltage Measurement Reso- lution				1.25		mV
Voltage Measurement Range		V _{CELL} pin	2.5		4.5	V
BOOST CONVERTER (V _{SYS} = 3.6V.)						
Input Operating Range		Input voltage = V _{SYS}	2.7		5.5	V
Output Voltage Range			6		17	V
Output-Voltage Resolution		4 bits		1000		mV
Operating Frequency			1400	1500	1700	kHz
Oscillator Maximum Duty Cycle				96		%
Output Regulation Error			-2.5		2	%
BLX On-Resistance		I _{BLX} = 50mA		200	600	mΩ
True-Shutdown Switch [BSW to BOUT] On-Resistance		V _{BSW} = 5.8V		1	2	Ω
BLX Leakage Current		$T_A = +25^{\circ}C$			26	μA
BLX Current Limit		Duty cycle = 80%	1.5	1.8	2.1	A
Soft-Start Period				50		ms

Portable Medical Power Management Solution with Cable Detection

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITION	IS	MIN	TYP	MAX	UNITS
Max Operative Boost Current					50		mA
CURRENT SINKS							
$(V_{SYS} = 3.6V, V_{GND} = V_{PGND} =$		1					1
Allowed V _{LED} Voltage Range	VINLED					17	V
		0.6mA steps, (register 0A) TEP[1:0] = 00	LEDIS-	0.6		15	
I _{LED} Input-Current Range		1mA steps, (register 0A) r LEDISTEP[1:0] = 01	register	1		25	mA
	1.2mA steps, (register 0A) 1.2 LEDISTEP[1:0] = 11 1.2	1.2		30			
		I _{LED} = 25mA	T _A = +25°C			2.6	%
I _{LED} Current Accuracy		I _{LED} = 25mA	T _A = -20°C to +70°C			5	70
L Deserved Vielde and	N	$\begin{array}{c} V_{\text{LED}} \text{ AT } I_{\text{LED}} = 0.9 \text{ x} \\ 25 \text{mA} \end{array} \qquad T_{\text{A}}$	T _A = +25°C		200	400	
I _{LED} Dropout Voltage	V _{LED_DROP}		T _A = -20°C to +70°C			620	mV
Leakage in Shutdown		V _{LED} = 17V			0.1	5	μA
Open LED Detection Thresh- old		LED_ enabled, LED_ISTE	P[1:0] = 00		87	150	mV
DIGITAL SIGNALS (V _{SYS} = 2.5V to 5.5V.)							1
CTG, SDA, SCL, QSTRT, SEAL, MPC0, MPC1, KIN, Input Logic-High	V _{IH}			1.4			V
CTG, SDA, SCL, QSTRT, SEAL, MPC0, MPC1, KIN, Input Logic-Low	V _{IL}					0.5	V
SDA, ALRT, RST, INT, KOUT Output Logic-Low	V _{OL}	I _{OL} = 4mA				0.4	V
ALRT, RST, INT, KOUT High-Level Leakage Current	I _{LK}					1	μA
KIN Pullup Resistance to BAT	R _{PULL}			10	20	35	kΩ
SDA, SCL Bus Low-Detection Current	I _{PD}	V _{SDA} = V _{SCL} = 0.4V (Note	e 9)		0.2	0.4	μA
Bus Low Detection Timeout	tSLEEP	(Note 10)			2.25		s
SCL Clock Frequency	f _{SCL}	(Note 11)				400	kHz
Bus Free Time Between a STOP and START Condition	^t BUF			1.3			μs

Portable Medical Power Management Solution with Cable Detection

Electrical Characteristics (continued)

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
START Condition (Repeated) Hold Time	^t HD:STA	(Note 12)	0.6			μs
Low Period for SCL Clock	tLOW		1.3			μs
High Period for SCL Clock	t _{HIGH}		0.6			μs
Setup Time for Repeated START Condition	^t SU:STA		0.6			μs
Data Hold Time	thd:dat	(Write hold time) (Notes 13, 14)			0	μs
Data Setup Time	t _{SU:DAT}	(Note 13)	100			ns
Setup Time for STOP Condi- tion	tsu:sto		0.6			μs
Spike Pulse Widths Sup- pressed by Input Filter	t _{SP}	(Note 15)		100		ns
SCL, SDA Input Capacitance	C _{B,IN}	(Note 16)		11		pF
ESD PROTECTION						
		Human Body Model		±15		
DP, DM, VB, KIN, VBC		IEC61000-4-2 Air Gap		±10		kV
		IEC61000-4-2 Contact		±8		1
All Other Pins		Human Body Model		±2		kV

Note 2: Parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.

Note 3: SYS capacitance range, $C_{SYS} = 10\mu F$ to $50\mu F$

Note 4: See *Cable Detection Section* for more information.

Note 5: Maximum charging and SYS current are limited by the total current into VB. Current into VB must not exceed 800mA up to 50% duty cycle or 640mA above 50% duty cycle.

Note 6: All voltages are referenced to VSS.

Note 7: Test is performed on unmounted/unsoldered parts.

Note 8: The voltage is trimmed and verified with 16X averaging.

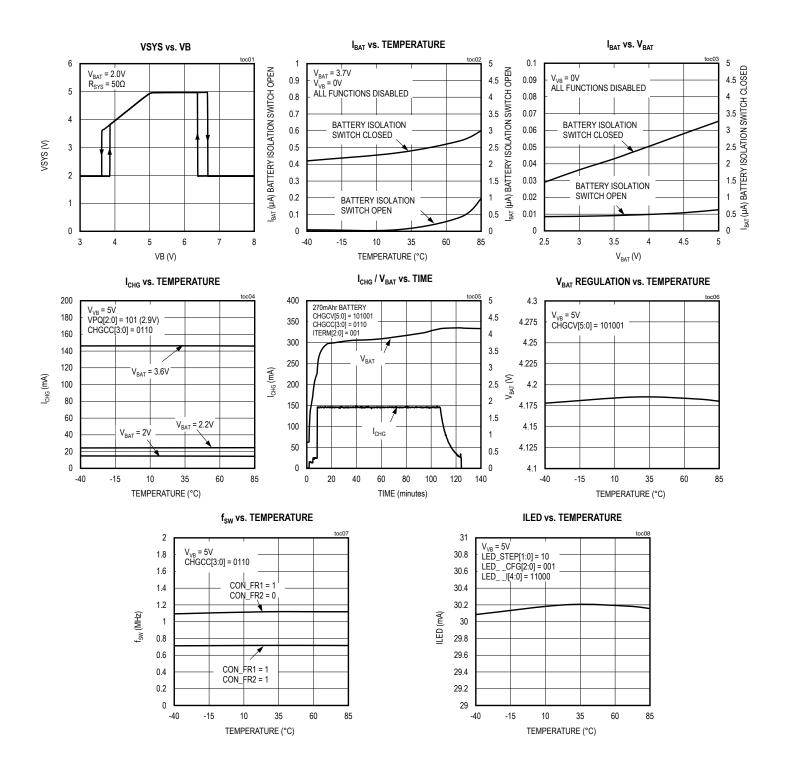
Note 9: This current is always present.

Note 10: The device enters shutdown mode after SCL < V_{IL} and SDA < V_{IL} for longer than t_{SLEEP} .

Note 11: Timing must be fast enough to prevent the device from entering sleep mode due to bus low for period > t_{SLEEP}.

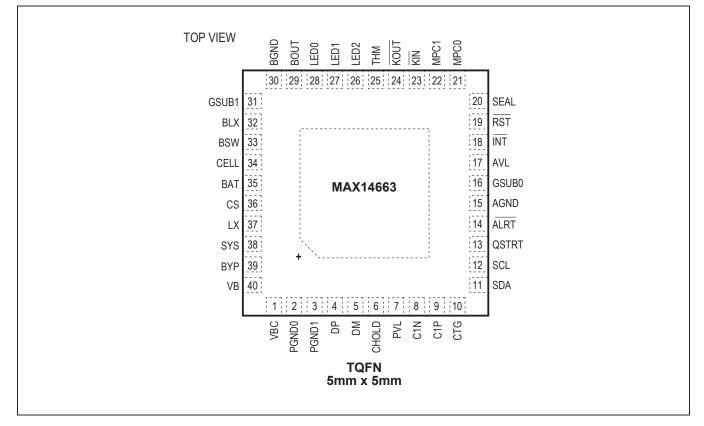
Note 12: f_{SCL} must meet the minimum clock low time plus the rise/fall times.

Note 13: The maximum t_{HD:DAT} has only to be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.


Note 14: This device internally provides a hold time of at least 100ns for the SDA signal (referred to the V_{IH} (min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.

Note 15: Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.

Note 16: CB is total capacitance of one bus line in pF.


Portable Medical Power Management Solution with Cable Detection

Typical Operating Characteristics (R_S = 100m Ω , T_A = +25°C, unless otherwise noted.)

Portable Medical Power Management Solution with Cable Detection

Pin Configuration

Pin Description

PIN	NAME	I/O	FUNCTION
1	VBC	I/O	VB Bypass Cap Connection. Use as current injection/measuring point in cable detection algorithm.
2	PGND0	GND	Charger Power Ground
3	PGND1	GND	Charger Power Ground
4	DP	I	ESD Protection for D+
5	DM		ESD Protection for D-
6	CHOLD	0	Charge Pump Output
7	PVL	0	Charger Power Regulated Voltage 5.25V
8	C1N	0	Charge-Pump Capacitor Negative
9	C1P	0	Charge-Pump Capacitor Positive
10	CTG		Connect to Ground

Portable Medical Power Management Solution with Cable Detection

Pin Description (continued)

PIN	NAME	I/O	FUNCTION
11	SDA	I/O	I ² C Data
12	SCL	I/O	I ² C Clock
13	QSTRT	I	Quick-Start Input. Allows reset of the fuel gauge through hardware. Connect to GND if not used.
14	ALRT	0	Fuel Gauge Interrupt
15	AGND	GND	Analog Ground
16	GSUB0	GND	Substrate. Connect to ground.
17	AVL	0	Charger Analog 4.5V Regulated supply
18	ĪNT	0	Interrupt Output, Active-Low, Open-Drain
19	RST	0	Reset Output, Active-Low, Open-Drain
20	SEAL	I	Battery-Storage Seal Input
21	MPC0	I	Multi-Purpose Control Input 0 (Charger/Cable Detect/LED)
22	MPC1	I	Multi-Purpose Control Input 1 (Charger/Cable Detect/LED)
23	KIN	I	Key Input, Power Button Monitored. Active-low, internal pullup to BAT. Connect $\overline{\text{KIN}}$ to a momentary pushbutton to GND.
24	KOUT	0	Key Output, Active-Low, Open-Drain, Buffered Copy of KIN
25	THM	I	Thermistor Temperature Sensing pin
26	LED2	0	Programmable Current Sink
27	LED1	0	Programmable Current Sink
28	LED0	0	Programmable Current Sink
29	BOUT	I	Boost-Converter Output
30	BGND	GND	Boost Power Ground
31	GSUB1	0	Substrate. Connect to ground.
32	BLX	0	Boost-Converter Switching-Node Pin
33	BSW	0	Boost-Converter Output Power Switch Input
34	CELL	I	Fuel Gauge Voltage Input
35	BAT	I/O	Li-ION Battery Connection
36	CS	I	Charger Current Sense
37	LX	0	Switching Charger Switch Node
38	SYS	I/O	System Power Connection
39	BYP	0	Reverse-Protected Bypass Pin
40	VB	I	USB VBUS Supply

Portable Medical Power Management Solution with Cable Detection

Detailed Description

The MAX14663 is a collection of power circuits commonly found in portable medical equipment such as high-end blood glucose meters. It is targeted at current high-end devices with more advanced displays that consume more power and require rechargeable batteries. It combines a battery charger and fuel gauge, voltage protection and conversion, and cable detection and protection.

Cable Detector and ESD Protection

The MAX14663 includes a cable detector for blood glucose meters (BGM), and the device detects the presence of a cable by measuring the capacitance on VB through the injection of probing currents into the VB node.

Cable Detection

The MAX14663 detects a valid VB voltage (VB) or a cable present. When a valid VB voltage is present, the DET status bit is asserted and an interrupt is signaled. When there is no valid VB voltage, the cable detection is enabled. VB detection is normally disabled during the cable detection loop to minimize the capacitance measurement but is periodically turned on to check whether VB has been reapplied. When ENB = 0, DET is updated at the end of each 200us long cable detection cycle when BSY goes high. The MAX14663 automatically adjusts the internal current to the programmed threshold. When the detected capacitance is greater than the selected threshold, a cable is considered plugged. When the detected capacitance is smaller than the selected threshold, it is considered no cable present. See the CD-CFG register for capacitance threshold values.

Battery Charger

This charger is intended for portable medical applications. It is designed to charge a battery with minimal power dissipation. The charger regulates the current based on the charge profile, Figure 1. The currents shown in the diagram assume that the current is not being limited by the input or thermal considerations.

Prequalification Mode

This mode is utilized during battery prequalification (VBAT < VPQ). The current limit in this mode is specified to be less than 0.1C precharge for batteries with 280mAhr capacity, and low enough power so as not to be hazardous when applied to a shorted or damaged battery.

Fast-Charge Mode

This is the standard CC/CV charging mode. In this mode, the charger will attempt to charge the battery at the current specified in the fast-charge current register. The fast-charge current can be programmed from 50mA to 750mA in 25mA steps. This will be set in a 4-bit value indexed from 0mA.

Charge Termination

There are several conditions that cause the charger to stop charging. The charger can be manually stopped by an I²C command. The charger can also stop itself if the AUTOSTP bit is set. When AUTOSTP is enabled, the charge current has dropped to the value set by ITERM, and the TopOffTime timer has expired the charger will transition to end-of-charge and the charger will be automatically disabled. In this condition, there is a 1.8mA (typ) discharging draw on the battery which supplies some of the internal control blocks of the charger. With AUTOSTP enabled, the charger will also restart when the voltage drops BATRFH threshold below the current charge voltage setting, VCHG (battery regulation voltage).

JEITA Control

The charger has a thermistor interface that allows it to adjust the charge settings based on the battery temperature. The temperatures are separated into five ranges based on the boundary temperatures of T1 (0°C), T2 (10°C), T3 (25°C), and T4 (45°C). Below T1 or above T4, the charger is disabled, and between T2 and T3, the charger functions normally. The behavior in the regions between T1-T2 and T3-T4 are specified in the JEITA control register. In each region the user can independently specify whether or not to reduce the charge voltage or current as illustrated in Figure 2. The voltage can be reduced by 120mV and the fast-charge current can be reduced by half in these regions. The thermistor monitor also has a fifth threshold (T5) of 60°C. This can be used by the system by making the interrupt.

Portable Medical Power Management Solution with Cable Detection

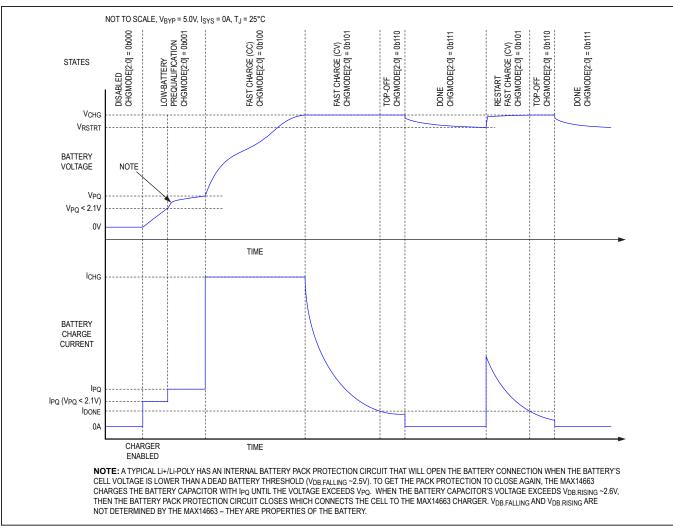


Figure 1. Charging Profile

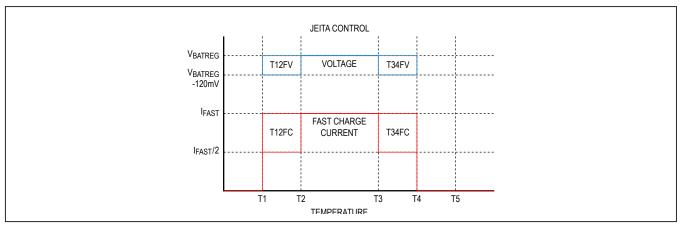


Figure 2. JEITA Control

Portable Medical Power Management Solution with Cable Detection

Safety Timers

The charger includes safety timers to limit the amount of time that can be spent in the different charging modes.

Fuel Gauge

ModelGauge Theory of Operation

The MAX14663 fuel gauge is based on the MAX17048 stand-alone fuel gauge and simulates the internal, nonlinear dynamics of a Li+ battery to determine the state of charge (SOC). The sophisticated battery model considers impedance and the slow rate of chemical reactions in the battery. ModelGauge performs best with a custom model, obtained by characterizing the battery at multiple discharge currents and temperatures to precisely model it. At power-on reset (POR), the ICs have a preloaded ROM model that performs well for some batteries.

Fuel-Gauge Performance

In coulomb counter-based fuel gauges, SOC drifts because offset error in the current-sense ADC measurement accumulates over time. Instantaneous error can be very small, but never precisely zero. Error accumulates over time in such systems (typically 0.5%–2% per day) and requires periodic corrections. Some algorithms correct drift using occasional events, and until such an event occurs, the algorithm's error is boundless:

- Reaching predefined SOC levels near full or empty
- Measuring the relaxed battery voltage after a long period of inactivity
- Completing a full charge/discharge cycle

ModelGauge requires no correction events because it uses only voltage, which is stable over time. The ModelGauge remains accurate despite the absence of any of the above events; it neither drifts nor accumulates error over time.

To correctly measure performance of a fuel gauge as experienced by end-users, exercise the battery dynamically. Accuracy cannot be fully determined from only simple cycles.

Battery Voltage and State of Charge

Open-circuit voltage (OCV) of a Li+ battery uniquely determines its SOC; one SOC can have only one value of OCV. In contrast, a given VCELL can occur at many different values of OCV because VCELL is a function of time, OCV, load, temperature, age, and impedance, etc. One value of OCV can have many values of VCELL. Therefore, one SOC can have many values of VCELL, so VCELL cannot uniquely determine SOC.

Even the use of sophisticated tables to consider both voltage and load results in significant error due to the load transients typically experienced in a system. During charging or discharging, and for approximately 30min after, VCELL and OCV differ substantially, and VCELL has been affected by the preceding hours of battery activity. ModelGauge uses voltage comprehensively.

Temperature Compensation

For best performance, the host microcontroller must measure battery temperature periodically, and compensate the RCOMP ModelGauge parameter accordingly, at least once per minute. Each custom model defines constants RCOMP0 (default, 0x97), TempCoUp (default, -0.5), and TempCoDown (default, -5.0). To calculate the new value of CONFIG.RCOMP:

if (T > 20) {

RCOMP = RCOMP0 + (T - 20) x TempCoUp;

}

else {

}

RCOMP = RCOMP0 + (T - 20) x TempCoDown;

Impact of Empty-Voltage Selection

Most applications have a minimum operating voltage below which the system immediately powers off (empty voltage). When characterizing the battery to create a custom model, choose empty voltage carefully. Capacity unavailable to the system increases at an accelerating rate as empty voltage increases.

To ensure a controlled shutdown, consider including operating margin into the fuel gauge based on some low threshold of SOC, for example shutting down at 3% or 5%. This utilizes the battery more effectively than adding error margin to empty voltage.

Battery Insertion

When the battery is first inserted into the system, the fuel gauge IC has no previous knowledge about the battery's SOC. Assuming that the battery is relaxed, the IC translates its first VCELL measurement into the best initial estimate of SOC. Initial error caused by the battery not being in a relaxed state diminishes over time, regardless of loading following this initial conversion. While SOC estimated by a coulomb counter diverges, ModelGauge SOC

Portable Medical Power Management Solution with Cable Detection

converges, correcting error automatically. Initial error has no long-lasting impact.

Battery Insertion Debounce

Any time the IC powers on or resets (see the VRESET/ ID Register (0x18) section), it estimates that OCV is the maximum of 16 VCELL samples (1ms each, full 12-bit resolution). OCV is ready 17ms after battery insertion, and SOC is ready after 175ms.

Battery Swap Detection

If VCELL falls below VRST, the IC quick starts when VCELL returns above VRST. This handles battery swap; the SOC of the previous battery does not affect that of the new one. See the *Quick Start and VRESET/ID Register* (0x18) sections.

Quick Start

If the IC generates an erroneous initial SOC, the battery insertion and system power-up voltage waveforms must be examined to determine if a quick start is necessary, as well as the best time to execute the command. The IC samples the maximum VCELL during the first 17ms. See the *Battery Insertion Debounce* section. Unless VCELL is fully relaxed, even the best sampled voltage can appear greater or less than OCV. Therefore, quick start must be used cautiously.

Most systems should not use quick start because the ICs handle most startup problems transparently, such as intermittent battery-terminal connection during insertion. If battery voltage stabilizes faster than 17ms, as illustrated in Figure 6, then do not use quick start.

The quick-start command restarts fuel-gauge calculations in the same manner as initial power-up of the IC. If the system power-up sequence is so noisy that the initial estimate of SOC has unacceptable error, the system microcontroller may be able to reduce the error by using quick-start. A quick-start is initiated by a rising edge on the QSTRT pin, or by writing 1 to the quick-start bit in the MODE register.

Power-On Reset (POR)

POR includes a quick start, so only use it when the battery is fully relaxed. See the *Quick Start* section. This command restores all registers to their default values. After this command, reload the custom model. See the *CMD Register* (0xFE) section.

Hibernate Mode

The ICs have a low-power hibernate mode that can accurately fuel gauge the battery when the charge/ discharge rate is low. By default, the device automatically enters and exits the hibernate mode according to the charge/discharge

rate, which minimizes quiescent current (below 5FA) without compromising fuel-gauge accuracy. The ICs can be forced into hibernate or active modes. Force the IC into hibernate mode to reduce power consumption in applications with less than C/4-rate maximum loading. For applications with higher loading, Maxim recommends the default configuration of automatic control of hibernate mode.

In hibernate mode, the device reduces its ADC conversion period and SOC update to once per 45s. See the HIBRT Register (0x0A) section for details on how the IC automatically enters and exits hibernate mode.

Alert Interrupt

The ICs can interrupt a system microcontroller with five configurable alerts. All alerts can be disabled or enabled with software. When the interrupt occurs, the system microcontroller can determine the cause from the STATUS register.

When an alert is triggered, the IC drives the ALRT pin logic-low and sets CONFIG.ALRT = 1. The ALRT pin remains logic-low until the system software writes CONFIG.ALRT = 0 to clear the alert. The alert function is enabled by default, so any alert can occur immediately upon powerup. Entering sleep mode clears no alerts.

Sleep Mode

In sleep mode, the IC halts all operations, reducing current consumption to below 1 μ A. After exiting sleep mode, the IC continues normal operation. In sleep mode, the IC does not detect self-discharge. If the battery changes state while the IC sleeps, the IC cannot detect it, causing SOC error. Wake up the IC before charging or discharging. To enter sleep mode, write MODE.EnSleep = 1 and either:

- Hold SDA and SCL logic-low for a period for t_{SLEEP}. A rising edge on SDA or SCL wakes up the IC.
- Write CONFIG.SLEEP = 1. To wake up the IC, write CONFIG.SLEEP = 0. Other communication does not wake up the IC. POR does wake up the IC.

Applications which can tolerate $4\mu A$ should use hibernate rather than sleep mode.

Power Protection and Delivery

The MAX14663 is designed to deliver reliable power to the system from either a USB connector or battery, and to transition between these sources without disrupting the system. In addition to routing power to the system, the MAX14663 also provides protection for some common anomalies on the USB VB input such over voltage. This is accomplished through four power switches between five power connections.

RPP Switch

 Q_{RPP} is the switch connecting VB to BYP. This switch is also utilized to isolate the bypass capacitance from the VB pin during cable detection.

Overvoltage Protection Switch

Q_{OVP} is the switch between BYP and SYS. This switch protects the system power output from overvoltage conditions up to +28V applied to the VB input. This overvoltage protection includes a voltage limiting mode so that for voltages greater than the VI IM (plus minimum dropout at the given load current), but less than V_{OVLO}, the OVP switch will act as a linear regulator. Above VOVLO the switch is opened and power is disconnected from the part, and below V_{LIM} the switch is closed and the voltage applied to VB is passed directly to the part. This OVP circuitry also blocks reverse current to prevent the battery from back feeding the charger cable detection circuits. The status of the OVP is accessible through the I²C interface and can be programmed to generate an interrupt. To minimize inrush current, the MAX14663 features a soft-start capability to slowly turn on the internal MOSFET. The soft-start is initiated when VB is valid for longer than the debounce time, t_{DFB}.

Ideal Diode Switch

Q_{DIO} is the switch connecting SYS to BAT. This switch behaves as an ideal diode switch between the battery and the system power output (SYS). The purpose of this switch is to provide power to the system output from the battery when VB is outside the acceptable range. This switch is also used to isolate the system load from the battery in sealed battery isolation mode.

Battery Isolation Switch

 Q_{ISO} is the switch between CELL and BAT. This battery isolation switch preserves battery life when the product is sitting on a shelf waiting to be purchased. The switch is opened in the factory just before packaging by actively driving the SEAL pin high, or through an I²C command. The switch is closed by the included power-button monitoring circuitry when the end customer presses the power button (\overline{KIN}),or when a voltage larger than V_{UVLO} is present at VB. The battery seal circuitry includes a pull-up to monitor the \overline{KIN} press and provides a buffered output (\overline{KOUT}) to the system.

Interrupts

The MAX14663 includes an interrupt output which can be configured to indicate status changes for a variety of different signals and events. The interrupt behavior and status is configured and read through the I²C interface. The specific interrupt sources are detailed in the register descriptions.

Reset

The MAX14663 includes the ability to monitor key presses and other system status signals to force the processor into reset. The following criteria will cause manual reset to go active:

- VB > VB_UVLO
- MPC1, MPC0 and $\overline{\text{KIN}}$ are all held low

Reset will go active when these conditions have been met for two seconds and remain active until one of the conditions is no longer satisfied. Reset will also be driven active when the part is in its internal power-on reset state immediately after VSYS becomes valid.

Boost Converter

The MAX14663 includes a boost converter suitable for providing power to an OLED display or white LED backlights. This step-up DC-DC converter operates from a 2.7V to 5.5V supply. It includes an internal high-voltage nMOSFET switch with low on-resistance. A true-shutdown feature disconnects the battery from the load and minimizes the supply current consumption. This DC-DC converter provides adjustable output voltage from 6V to 17V with 1V steps.

Programmable Current-Sinks

The MAX14663 includes three low-dropout linear current regulators from LED_ to PGND. These current-sink regulators are suitable for sinking current from external LED cathode terminals. The LED_ currents are individually regulated to an I2C programmable level from OFF to 30mA in 25 steps, independently set for each LED_. There is a single register that allows the selection of one of three step sizes which applies to all three current sinks. The behavior of the current-sinks is programmable. They can be configured to be gated by a PWM signal for finer dimming control or to provide status information such as the state of the battery charger. The LED PWM input frequency range is 5MHz to 50MHz. The LED PWM input duty cycle range is 10% to 100%.

Portable Medical Power Management Solution with Cable Detection

I²C Interface

The MAX14663 uses the two-wire I^2C interface to communicate with the host microcontroller. The configuration settings and status information provided through this interface are detailed in the register descriptions.

I²C Addresses

The MAX14663 appears as three separate I²C devices on the bus to simplify code reuse of drivers designed for existing ModelGauge[™] based fuel gauges, the switching charger, and the cable detector. The registers for the fuel gauge are accessed through the slave address of 0110110 (0x6C for writes/0x6D for reads). The registers for the switching charger are accessed through the slave address of 0100101 (0x4A for writes and 0x4B for reads). The rest of the configuration registers are accessed through the slave address of 0101000 (0x50 for writes/0x51 for reads). Both of these address spaces are described in more detail below.

I²C Address 0101000 Register Map (Cable Detector and LED Driver)

Table 1. TOP Grid Register Map (Slave Address 0101000)

REGISTER ADDRESS	REGISTER NAME	B7	B6	B5	B4	B3 B2		B1	В0	POR	R/W		
GLOBAL													
0x00	DEVICE_ID					CHIP_ID[7:0]				0x18	R		
0x01	RSVD	-	-	-	-	-	-	-	-	0x00	R/W		
0x02	INT	-	-	-	-	CD_DETI	CD_BSYI	CD_VBOVPI	CD_VBDETI	0x00	COR		
0x03	STATUS	-	-	-	-	CD_DET	CD_BSY	BSY CD_VBOVP CD_VBDET		0x00	R		
0x04	INTMASK	-	-	-	-	CD_DETM	CD_BSYM	CD_VBOVPM	CD_VBDETM	0x00	R/W		
0x05	CD_CFG	CD_EN	[1:0]	-	-	-	VB_DSC CTH_SEL[1:0]			0x00	R/W		
0x06	R_CNT1	-	-	-	-	-			0x00	R			
0x07	R_CNT0		R_CNT[7:0]								R		

Portable Medical Power Management Solution with Cable Detection

REGISTER REGISTER **B**7 **B6 B5 B2 B1 B0** POR R/W **B4 B**3 ADDRESS NAME CONFIGURATION 0x08 DEBOUNCE D_CNT[7:0] 0x80 R/W 0x09 BST_CFG BST EN[1:0] BST_V[3:0] 0x00 R/W _ -0x0A LED_ISTEP LED_ISTEP[1:0] 0x01 R/W _ _ -_ --0x0B LED0 LED0_CFG[2:0] LED0_I[4:0] 0x00 R/W 0x0C LED1 LED1_CFG[2:0] 0x00 R/W LED1_I[4:0] LED2_CFG[2:0] R/W 0x0D LED2 LED2_I[4:0] 0x00 0x0E SEAL SEAL_CMD[7:0] 0x00 R/W 0x0F PINS KOUT SEAL MPC1_IN MPC0 IN 0x00 R _ _ _ -0x10 DIAG LEDLO[2:0] 0x00 R _ ----EXTRA_CFG FG_DIS 0x11 BST_TMR 0x00 R/W ------

Table 1. TOP Grid Register Map (Slave Address 0101000) (continued)

I²C Address 0101000 Register Descriptions

Table 2. DEVICE_ID Register (0x00)

REGISTER	BIT	NAME	DESCRIPTION				
		DEVICE_ID	Device Identification Register				
	7						
	6						
	5	CHIP_ID[7:0]					
0x00	4						
	3		Device ID				
	2						
	1						
	0						

Portable Medical Power Management Solution with Cable Detection

Table 3. INT Register (0x02)

REGISTER	BIT	NAME	DESCRIPTION
		INT	Interrupt Register CLEAR ON READ REGISTER, all bits are cleared after a read
	7	-	
	6	-	
	5	-	
	4	-	
0x02	3	CD_DETI	Cable Detection Interrupt 0 = no change 1 = CD_DET state has changed
	2	CD_BSYI	Cable Detection Busy Interrupt 0 = no change 1 = CD_BSY state has changed
	1	CD_VBOVPI	VB OVP Interrupt 0 = no change 1 = CD_VBOVP state has changed
	0	CD_VBDETI	VB Detect Interrupt 0 = no change 1 = CD_VBDET state has changed

Portable Medical Power Management Solution with Cable Detection

REGISTER NAME BIT DESCRIPTION STATUS **Status Register** 7 -6 -5 -4 -Cable Detection Status 0 = no cable detected 3 CD_DET 1 = cable present OR VB present: VB>VBuvlo AND VB<VBovlo AND VB>VBAT with long deglitch 0x03 **Cable Detection Busy** 2 CD_BSY 0 = cable detection running 1 = cable detection not running **VB OVP Status** 1 CD_VBOVP 0 = VB < VBOVP1 = VBOVP < VBVB Detect Status $0 = VB < V_{UVLO}$ 0 CD_VBDET 1 = VB > VUVLO

Table 4. STATUS Register (0x03)

Table 5. INTMASK Register (0x04)

REGISTER	BIT	NAME	DESCRIPTION
		INTMASK	Interrupt Mask Register
	7	-	
	6	-	
	5	-	
	4	-	
	3	CD_DETM	Cable Detection Interrupt Mask 0 = mask 1 = not masked
0x04	2	CD_BSYM	Cable Detection Busy Interrupt Mask 0 = mask 1 = not masked
	1 CD_VBOVPM		VB OVP Interrupt Mask 0 = mask 1 = not masked
	0	CD_VBDETM	VB Detect Interrupt Mask 0 = mask 1 = not masked

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION
		CD_CFG	Cable Detection Configuration
	7	CD_EN[1:0]	Cable Detection Enable 00 = disabled (regardless of MPC0/1) 01 = enabled (regardless of MPC0/1)
	6		10 = enabled when MPC0 is high (regardless of MPC1) 11 = enabled when MPC1 is high (regardless of MPC0)
	5	-	
	4	-	
0x05	3	-	
	2	VB_DSC	VB Discharge Disable. VB is discharged as at the first startup for every 250ms (only if VB is present for all of the previous 250ms). 0 = enabled 1 = disabled
	1		Capacitance Threshold Select. CTH_SEL sets the desired capacitance thresh- old. 00 = 1st threshold (Capacitance threshold) = 20pF
	0	CTH_SEL[1:0]	01 = 2nd threshold (Capacitance threshold) = 40pF 10 = 3rd threshold (Capacitance threshold) = 60pF 11 = 4th threshold (Capacitance threshold) = 80pF

Table 6. CD_CFG Register (0x05)

Table 7. R_CNT1 Register (0x06)

REGISTER	BIT	NAME	DESCRIPTION				
		R_CNT1	Ramp Counter MSBs				
	7	-					
	6	-					
	5	-					
0x06	4	-					
	3	-					
	2						
	1	R_CNT[10:8]	High Bits of Ramp Counter. R_CNT reads the number of the external clock oscillator shots in the detection time.				
	0						

Portable Medical Power Management Solution with Cable Detection

Table 8. R_CNT0 Register (0x07)

REGISTER	BIT	NAME	DESCRIPTION					
		R_CNT0	Ramp Counter LSBs					
	7							
	6							
	5							
0x07	4	D ONTITIO	Low Bits of Ramp Counter. R_CNT reads the number of the external clock oscil-					
	3	R_CNT[7:0]	lator shots in the detection time.					
	2							
	1							
	0							

Table 9. DEBOUNCE Register (0x08)

REGISTER	BIT	NAME	DESCRIPTION					
		DEBOUNCE	VB Invalid Debounce Time					
	7							
	6							
	5							
0x08	4	D CNT[7:0]	Debounce Counter. D_CNT sets the number of time needed to debounce VB in the negative slope. The minimum debounce step (LSB) is 0.5ms. The default					
	3	D_CNT[7.0]	debounce time is 65ms (typ).					
	2							
	1							
	0							

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION									
		BST_CFG	Boost Configuration Register									
	7		Boost	Enable								
	/	DOT ENILLOI	00	Disabled		10	Enabled when MPC0 is high			igh		
	6	BST_EN[1:0]	01	Enabled		11	Enabled when MPC1 is high					
	0											
	5	-										
0x09	4	-										
	3			Output Volt Itage setting		ooost regul	ator should	be disable	d when ch	anging		
		DOT NO OL	0000	6V	0100	10V	1000	14V	1100	8V		
	2	BST_V[3:0]	0001	7V	0101	11V	1001	15V	1101	8V		
	1		0010	8V	0110	12V	1010	16V	1110	8V		
	0		0011	9V	0111	13V	1011	17V	1111	8V		

Table 10. BST_CFG Register (0x09)

Table 11. LED_ISTEP Register (0x0A)

REGISTER	BIT	NAME	DESCRIPTION							
		LED_ISTEP	LED Current Step Configuration							
	7	-								
	6	-								
	5	-								
0.00	4	-								
0x0A	3	-								
	2	-								
	4		LED Step C	Current						
	1	LED_ISTEP[1:0]	00	0.6mA	10	1.2mA				
	0		01	1.0mA	11	1.2mA				

Portable Medical Power Management Solution with Cable Detection

REGISTER BIT NAME DESCRIPTION LED0 LED0 Configuration Current Sink Configuration Controlled by Controlled by 7 000 Off 011 internal charger 110 external MPC1 status signal pin no filter Controlled by Controlled by ex-LED0_CFG[2:0] 6 001 100 external MPC0 111 ternal MPC1 pin On with PWM filter pin, no filter Controlled by Controlled by ex-5 010 internal cable 101 ternal MPC0 pin, with PWM filter detection signal 0x0B LED Sink Current Setting LED 00 01 10/11 4 ISTEP[1:0] 00000 1.0mA 1.2mA 0.6mA 2.4mA 00001 1.2mA 3 2.0mA LED0_I[4:0] 00010 1.8mA 3.0mA 3.6mA 2 30mA 11000 15mA 25mA 1 11001 15mA 25mA 30mA 0 25mA 30mA 11111 15mA

Table 12. LED0 Register (0x0B)

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION								
		LED1	LED1 Configuration								
			Current Sink Configuration								
	7	LED1_CFG[2:0]	000	Off		011	Controlled by internal charger status signal	110	Controlled by external MPC1 pin no filter		
	6		001 On		'n	100	Controlled by external MPC0 pin, no filter	111	Controlled by external MPC1 pin with PWM filter		
0x0C	5		010	Controlled by internal cable detection signal		101	Controlled by external MPC0 pin, with PWM filter				
0.100			LED Sink Current Setting								
	4		LED_ ISTEP[1:0]	00	01	10/11					
			00000	0.6mA	1.0mA	1.2mA					
	3		00001	1.2mA	2.0mA	2.4mA					
	2	LED1_I[4:0]	00010	1.8mA	3.0mA	3.6mA					
	1		11000	15mA	25mA	30mA					
			11001	15mA	25mA	30mA					
	0										
	0		11111	15mA	25mA	30mA					

Table 13. LED1 Register (0x0C)

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION							
		LED2	LED2 Configuration							
			Current Sink Configuration							
	7	LED2_CFG[2:0]	000 Off		011	Controlled by internal charger status signal	110	Controlled by external MPC1 pin no filter		
	6		001	001 On		100	Controlled by external MPC0 pin, no filter	111	Controlled by external MPC1 pin with PWM filter	
0x0D	5		010	Controlled by internal cable detection signal		101	Controlled by external MPC0 pin, with PWM filter			
0,000	4		LED Sink Current Setting							
			LED_ ISTEP[1:0]	00	01	10/11				
			00000	0.6mA	1.0mA	1.2mA				
	3		00001	1.2mA	2.0mA	2.4mA				
	2	LED2_I[4:0]	00010	1.8mA	3.0mA	3.6mA				
	2	-								
	1		11000	15mA	25mA	30mA				
			11001	15mA	25mA	30mA				
	0									
			11111	15mA	25mA	30mA				

Table 14. LED2 Register (0x0D)

Table 15. SEAL Register (0x0E)

REGISTER	BIT	NAME	DESCRIPTION
		SEAL	SEAL Command
	7		
	6		
	5	SEAL_CMD[7:0]	SEAL Command 0xA5 = Enter battery seal mode when written.
0x0E	4		
	3		All others = Do nothing
	2		Always reads 0x00
	1		
	0		

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION
		PINS	
	7	-	
	6	-	
	5	-	
	4	KOUT	KOUT Output State 0 = KIN low and debounced 1 = KIN open
0x0F	3	SEAL	SEAL Input State 0 = pin low 1 = pin high
	2	-	
	1	MPC1_IN	MPC1 Input State 0 = pin low 1 = pin high
	0	MPC0_IN	MPC0 Input State 0 = pin low 1 = pin high

Table 16. PINS Register (0x0F)

Table 17. DIAG Register (0x10)

REGISTER	BIT	NAME	DESCRIPTION
		PINS2	Current sink diagnostic
	7	-	
	6	-	
	5	-	H: LED2 short high
0x10	4	-	H: LED1 short high
	3	-	H: LED0 short high
	2		H: LED2 open
	1	LEDLO[2:0]	H: LED1 open
	0		H: LED0 open

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION
		EXTRA_CFG	Fuel Gauge Configuration
	7	BST_TMR	Boost Startup Timer 0 = standard boost start-up time 1 = extended (double) boost start-up time
	6	-	
	5	-	
0x11	4	-	
	3	-	
	2	-	
	1	-	
	0	FG_DIS	Fuel Gauge Disable 0 = fuel gauge enabled 1 = fuel gauge disabled (disconnected from BAT)

Table 18. EXTRA_CFG Register (0x11)

I²C Address 0100101 Register Map (Battery Charger)

Table 19. CHG Register Map

				r							r
REGISTER ADDRESS	REGISTER NAME	В7	B6	B5	B4	В3	B2	B1	В0	POR	R/W
STATUS	STATUS										
0x00	CHG_ID				CHG_I	D[7:0]				0x18	R
0x01	INT	-	-	тнмі	ChgEn bldI	CHGE RRI	OVPI	POKI	EOCI	0x00	COR
0x02	STATUS1	-	-	THME	ChgEn bld	CHGE RR	OVP	POK	EOC	0x00	R
0x03	STATUS2	-		CHGMC	DDE[2:0]		-	TMF	P[2:0]	0x00	R
CONTROL											
0x04	INTMASK	-	-	ТНММ	ChgEn bldM	CHGE RRM	OVPM	РОКМ	EOCM	0x00	R/W
0x05	CHGTMR	-	-	SCTDS	PQTDS		ffTime :0]	_	GTM :0]	0x07	R/W
0x06	CHGCTL	-	-	CEN_	O[1:0]	-		VPQ[2:0]		0x05	R/W
0x07	CHGCV	-	-			CHGCV[5:0]			0x29	R/W	
0x08	CHGCC	-	CHGCC[3:0]			0x04	R/W				
0x09	CHGTRM	AUTOSTP	-	-	VRSTRT			ITERM[2:0]	0x81	R/W
0x0A	JEITA	JEN	-	-	-	T34FV	T12FV	T34FC	T12FC	0x8F	R/W
0x0B	FUNC	THsoft OFF	EIC_ LIM	EN_ SKIP	-	CON_ FR1	CON_ FR2	ABS_ OFF	EIN_ LIM	0x68	R/W

Note: R: read only

COR: clear on read R/W: readable and writeable

Portable Medical Power Management Solution with Cable Detection

I²C Address 0100101 Register Descriptions

Table 20. CHG ID Register (0x00)

REGISTER	BIT	NAME	DESCRIPTION
		CHG_ID	Charger Identification Register
	7		
	6		
	5	CHG_ID[7:0]	
0x00	4		Charger ID
	3		Charger ID
	2		
	1		
	0		

Table 21. INT Register (0x01)

REGISTER	BIT	NAME	DESCRIPTION
		INT	Interrupt Register. CLEAR ON READ REGISTER, all bits are cleared after a read
	7	-	
	6	-	
	5	THMI	Thermistor Temperature Zone Changed Interrupt 0 = no change 1 = interrupt (TMP[2:0] bits have changed)
	4	ChgEnbldI	Battery Charger Enabled Interrupt 0 = no change 1 = interrupt (ChgEnbld bit has changed)
0x01	3	CHGERRI	Battery Fast-Charge Timer Expire Interrupt 0 = no change 1 = interrupt (CHGERR bit has changed)
	2	OVPI	VB Overvoltage Protection Interrupt 0 = no change 1 = interrupt (OVP bit has changed)
	1	ΡΟΚΙ	Charger Power-OK Interrupt (occurs when VB rises above V _{UYLO}) 0 = no change 1 = interrupt (POK bit has changed)
	0	EOCI	End-of-Charge Interrupt 0 = no change 1 = interrupt (EOC bit has changed)

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION
		STATUS1	Status Register 1
	7	-	
	6	-	
	5	THME	Thermistor Error 0 = no thermistor error 1 = thermistor open or shorted
0x02	4	ChgEnbld	Indicates if battery charger is enabled. This bit does not indicate if the charger is passing current, it only indicates that the charger logic is enabled. EOC determines if charging is active. 0 = charger is not enabled 1 = charger is enabled
	3	CHGERR	Battery Fast Charging Timer Expired 0 = timer not expired 1 = timer expired
	2	OVP	$\label{eq:stability} \begin{array}{l} VB \ \text{Overvoltage Protection Trip Level Indication} - Interrupt \ \text{Generated for OVP} \\ \text{Rising and Falling} \\ 0 = V_{VB} \leq V_{OVLO}) \\ 1 = V_{VB} > V_{OVLO}) \\ \text{Please note that this bit is only valid when the charger is enabled. The same information is also available in the CD_VBOVP bit which is always valid.} \end{array}$
	1	РОК	$ \begin{array}{l} \mbox{Charger Power-OK Monitor} \\ 0 = V_{VB} < (VB undervoltage lockout) \\ 1 = V_{VB} \ge (VB undervoltage lockout) \\ \mbox{Please note that this bit is only valid when the charger is enabled. The same information is also available in the CD_VBDET bit which is always valid. } \end{array} $
	0	EOC	End-of-Charge Status 0 = charger is in top-off or disabled 1 = charger in prequal or fast-charge mode

Table 22. status1 Register (0x02)

Portable Medical Power Management Solution with Cable Detection

Table 23. STATUS2 Register (0x03)

REGISTER	BIT	NAME	DESCRIPTION
		STATUS2	Status Register 2
	7	-	
	6	CHGMODE[2:0]	Present Charger Mode of Operation 000 = charging disabled 001 = prequalification
	5		010 = slow-charge constant current 011 = slow-charge constant voltage 100 = fast-charge constant current
0x03	4		101 = fast-charge constant voltage 110 = top off 111 = done (battery charged)
	3	-	
	2		Battery Thermistor Temperature 000 = thermistor open 001 = TMP < 0C (T1)
	1		010 = 0C (T1) < TMP < 10C (T2) 011 = 10C (T2) < TMP < 25C (T3) 100 = 25C (T3) < TMP < 45C (T4)
	0		101 = 45C (T4) < TMP < 60C (T5) 110 = 60C (T5) < TMP 111 = thermistor shorted

Portable Medical Power Management Solution with Cable Detection

REGISTER BIT NAME DESCRIPTION INTMASK Interrupt Mask Register 7 _ 6 -Thermistor Temperature Zone Change Interrupt Mask 5 THMM 0 = mask 1 = not masked Battery Charger Enabled Interrupt Mask ChgEnbldM 4 0 = mask 1 = not masked Battery Fast Charge Timer Interrupt Mask 0x04 3 CHGERRM 0 = mask 1 = not masked VB Overvoltage Protection Interrupt Mask 2 OVPM 0 = mask 1 = not masked Charger Power-OK Interrupt Mask 1 POKM 0 = mask 1 = not masked End-of-Charge Interrupt Mask 0 EOCM 0 = mask1 = not masked

Table 24. INTMASK Register (0x04)

Portable Medical Power Management Solution with Cable Detection

REGISTER BIT NAME DESCRIPTION CHGTMR **Charger Timimg Set Register** 7 -6 -Slow-Charge Timer Disable (The timer for slow charge is the same as fast charge.) 5 SCTDS 0 = timer active during slow charge 1 = timer disabled during slow charge Pre-Qualification Timer Disable (FIXED TIME = 60 minutes) 0 = pregualification timer enabled 4 PQTDS 1 = prequalification timer disabled 0x05 Top Off Timer Setting 3 00 = timer disabled TopOffTime[1:0] 01 = 1 minute 10 = 10 minutes 2 11 = 30 minutes Charger Elapsed Timer Setting 1 00 = timer disabled CHGTM[1:0] 01 = 2.5hrs 10 = 5hrs 0 11 = 10hrs

Table 25. CHGTMR Register (0x05)

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION
		CHGCTL	Charger Control Register
	7	-	
	6	-	
	5		Charger Enable 00 = disabled
	4	CEN_O[1:0]	01 = enabled 10 = enabled when MPC0 pin is high 11 = enabled
0x06	3	-	
	2		Prequalification Voltage Threshold 000 = 2.4V 001 = 2.5V
	1	VPQ[2:0]	010 = 2.6V 011 = 2.7V 100 = 2.8V
	0		101 = 2.9V 110 = 3.0V 111 = 3.1V

Table 26. CHGCTL Register (0x06)

Table 27. CHGCV Register (0x07)

REGISTER	BIT	NAME			DES	CRIPTION						
		CHGCV		Cł	narger Cons	tant Voltage	Setting					
			CHGV[1:0]									
					11	10	01	00				
	7	-		0000	3.5V	3.5V	3.5V	3.5V				
				0001	3.52V	3.5V	3.5V	3.5V				
				0010	3.60V	3.58V	3.56V	3.54V				
	6	-		0011	3.68V	3.66V	3.64V	3.62V				
	_			0100	3.76V	3.74V	3.72V	3.70V				
	5			0101	3.84V	3.82V	3.80V	3.78V				
0.07				0110	3.92V	3.90V	3.88V	3.86V				
0x07	4		CHGCV[5:2]	0111	4.00V	3.98V	3.96V	3.94V				
	3			1000	4.08V	4.06V	4.04V	4.02V				
	3			1001	4.16V	4.14V	4.12V	4.10V				
	2	CHGCV[5:0]		1010	4.24V	4.22V	4.20V	4.18V				
				1011	4.32V	4.30V	4.28V	4.26V				
				1100	4.40V	4.38V	4.36V	4.34V				
	1			1101	4.40V	4.40V	4.40V	4.40V				
				1110	4.40V	4.40V	4.40V	4.40V				
	0			1111	4.40V	4.40V	4.40V	4.40V				

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME			-		DESCR	PTION				
		CHGCC		Fast-Charge Constant Current Limit. Set to maximum allowable battery charge current.								
	7	-										
	6	-										
	5	-										
	4	-										
								CHGC	C[1:0]			
	3				1	1	1	0	C)1	C	00
					Rs = 50 mΩ	Rs = 100 mΩ						
		CHGCC[3:0]		00	150mA	75mA	100mA	50mA	100mA	50mA	100mA	50mA
	2		CHGCC	01	350mA	175mA	300mA	150mA	250mA	125mA	200mA	100mA
	1		[3:2]	10	550mA	275mA	500mA	250mA	450mA	225mA	400mA	200mA
	0			11	750mA	375mA	700mA	350mA	650mA	325mA	600mA	300mA

Table 28. CHGCC Register (0x08)

Table 29. CHGTRM Register (0x09)

REGISTER	BIT	NAME				DESCRIP	TION			
		CHGTRM	Charge	r Termination	n Control	Register				
	7	AUTOSTP	0 = alwa box afte 1 = stop (Note: V	ays charge wh r fast charge) and start bas When charger typ) load on th	nen enabl sed on reg reaches	gister settings end-of-charge	machine	ts after EOC. remains in the TOSTP enable of the internal I	ed, there	is a
	6	-								
0x09	5	-								
	4	VRSTRT	0 = 135	Voltage Thres mV below CH mV below CH	GCV sett	•				
	3	-								
	2		Termina	tion current s	etting in r	nA (Rs=50mΩ	2/Rs=100	mΩ)		
	<u> </u>	ITERM[2:0]	000	25 / 12.5	011	100 / 50	110	250 / 125		
	1		001	50 / 25	100	150 / 75	111	300 /150		
	0		010	75 / 37.5	101	200 / 100				

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME	DESCRIPTION
		JEITA	JEITA Control Register
	7	JEN	JEITA Enable. The default value can be set by OTP 0 = no thermistor based control 1 = charger disabled below T1 and above T4 and behaves as specified below
	6	-	
	5	-	
	4	-	
	3	T34FV	T3-T4 Float Voltage when temperature between T3 and T4 0 = CHGCV – 120mV 1 = CHGCV
0x0A	2	T12FV	T1-T2 Float Voltage when temperature between T1 and T2 0 = CHGCV – 120mV 1 = CHGCV
	1	T34FC	T3-T4 Fast charge current limit when temperature between T3 and T4 0 = MAX(CHGCC/2,50mA); if CHGCC->100mA for JEITA the fast charge timeout is suspended. If CHGCC = 50mA, I_{FAST} charge goes to zero between T3 and T4. 1 = CHGCC
	0	T12FC	T1-T2 Fast charge current limit when temperature between T1 and T2 0 = MAX(CHGCC/2,50mA)); if CHGCC->100mA for JEITA the fast charge timeout is suspended. If CHGCC = 50mA, I _{FAST} charge goes to zero between T1 and T2. 1 = CHGCC

Table 30. JEITA Register (0x0A)

Portable Medical Power Management Solution with Cable Detection

REGISTER	BIT	NAME		D	ESCRIPTIO	N
		FUNC	Charger Function Con	trol Regist	er	
	7	THsoftOFF	Soft Thermal Shutdown 0 = soft thermal shutdow 1 = disable soft thermal	vn enabled		
	6	EIC_LIM	Charge-Current Control 0 = charge-current control 1 = charge-current control	ol limit disa	bled	
	5	EN_SKIP	Skip Mode Enable 0 = charger skip mode o 1 = charger skip mode e			
0x0B	4	-				
				FR1	FR2	
	3	CON_FR1	Duty-cycle frequency dependence disable	0	0	Fsw at 50% duty = 1.1MHz Constant ripple mode
				0	1	Fsw at 50% duty = 700kHz Constant ripple mode
	2	CON_FR2	Icharge frequency de-	1	0	Fsw at =1.1MHz
	2		pendence disable	1	1	Fsw =700kHz
	1	ABS_OFF	Safety charge-pump mo	de enable		
	0			_		

Table 31. FUNC Register (0x0B)

Portable Medical Power Management Solution with Cable Detection

I²C Address 0110110 Register Map (Fuel Gauge)

Register Summary

All registers must be written and read as 16-bit words; 8-bit writes cause no effect. Any bits marked X (don't care) or read only must be written with the rest of the register, but the value written is ignored by the IC. The values read from don't care bits are undefined. Calculate the register's value by multiplying the 16-bit word by the register's LSb value, as shown in Table 33.

VCELL Register (0x02)

The MAX14663 measures VCELL between the VDD and GND pins. VCELL is the average of four ADC conver-

sions. The value updates every 250ms in active mode and every 45s in hibernate mode.

SOC Register (0x04)

The ICs calculate SOC using the ModelGauge algorithm. This register automatically adapts to variation in battery size since ModelGauge naturally recognizes relative SOC.

The upper byte least-significant bit has units of 1%. The lower byte provides additional resolution.

The first update is available approximately 1s after POR of the IC. Subsequent updates occur at variable intervals depending on application conditions.

ADDRESS	REGISTER NAME	16-BIT LSb	DESCRIPTION	READ/WRITE	DEFAULT
0x02	VCELL	78.125µV/cell	ADC measurement of VCELL.	R	—
0x04	SOC	1%/256	Battery state of charge.	R	—
0x06	MODE	_	Initiates quick-start, reports hibernate mode, and enables sleep mode.	W	0x0000
0x08	VERSION	—	IC production version.	R	0x001_
0x0A	HIBRT	_	Controls thresholds for entering and exiting hibernate mode.	R/W	0x8030
0x0C	CONFIG	_	Compensation to optimize performance, sleep mode, alert indicators, and configuration.	R/W	0x971C
0x14	VALRT	_	Configures the VCELL range outside of which alerts are generated.	R/W	0x00FF
0x16	CRATE	0.208%/hr	Approximate charge or discharge rate of the battery.	R	—
0x18	VRESET/ID	_	Configures VCELL threshold below which the IC resets itself, ID is a one-time factory- programmable identifier.	R/W	0x96
0x1A	STATUS	_	Indicates overvoltage, undervoltage, SOC change, SOC low, and reset alerts.	R/W	0x01
0x40 to 0x7F	TABLE		Configures battery parameters.	W	
0xFE	CMD		Sends POR command.	R/W	0xFFFF

Portable Medical Power Management Solution with Cable Detection

MODE Register (0x06)

The MODE register allows the system processor to send special commands to the IC (see Figure 3).

- **Quick-Start** generates a first estimate of OCV and SOC based on the immediate cell voltage. Use with caution; see the Quick-Start section.
- **EnSleep** enables sleep mode. See the Sleep Mode section.
- **HibStat** indicates when the IC is in hibernate mode (read only).

VERSION Register (0x08)

The value of this read-only register indicates the production version of the IC.

HIBRT Register (0x0A)

To disable hibernate mode, set HIBRT = 0x0000. To always use hibernate mode, set HIBRT = 0xFFFF (see Figure 4).

- ActThr (active threshold): If at any ADC sample |OCV-CELL| is greater than ActThr, the IC exits hibernate mode. 1 LSb = 1.25mV.
- **HibThr** (hibernate threshold). If the absolute value of CRATE is less than HibThr for longer than 6min, the IC enters hibernate mode. 1 LSb = 0.208%/hr.

CONFIG Register (0x0C)

See Figure 5.

- **RCOMP** is an 8-bit value that can be adjusted to optimize IC performance for different lithium chemistries or different operating temperatures. Contact Maxim for instructions for optimization. The POR value of RCOMP is 0x97.
- **SLEEP** forces the IC in or out of sleep mode if Mode.EnSleep is set. Writing 1 forces the IC to enter sleep mode, and 0 forces the IC to exit. The POR value of SLEEP is 0.

		MSB—A	DDRESS	0x06							LSB-	-ADD	RESS	0x07		
X Quick- Start EnSleep HibStat X X X X									x	х	х	Х	х	х	х	х
MSb							LSb		MSb	<u>.</u>						LSb

Figure 3. Mode Register Format

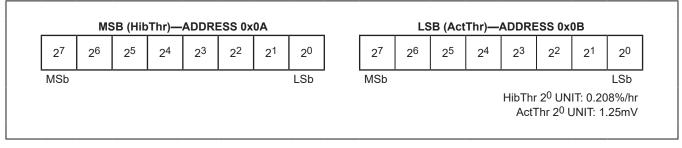


Figure 4. HIBRT Register Format

Portable Medical Power Management Solution with Cable Detection

- ALSC (SOC change alert) enables alerting when SOC changes by at least 1%. Each alert remains until STATUS.SC is cleared, after which the alert automatically clears until SOC again changes by 1%. Do not use this alert to accumulate changes in SOC.
- ALRT (alert status bit) is set by the IC when an alert occurs. When this bit is set, the ALRT pin asserts low. Clear this bit to service and deassert the ALRT pin. The power-up default value for ALRT is 0. The STATUS register specifies why the ALRT pin was asserted.
- ATHD (empty alert threshold) sets the SOC threshold, where an interrupt is generated on the ALRT pin and can be programmed from 1% up to 32%. The value is (32 - ATHD)% (e.g., 00000b à 32%, 00001b à 31%, 00010b à 30%, 11111b à 1%). The POR value of ATHD is 0x1C, or 4%. The alert only occurs on a falling edge past this threshold.

VALRT Register (0x14)

This register is divided into two thresholds: Voltage alert maximum (VALRT.MAX) and minimum (VALRT. MIN). Both registers have 1 LSb = 20mV. The IC alerts while VCELL > VALRT.MAX or VCELL < VALRT.MIN (see Figure 6).

CRATE Register (0x16)

The IC calculates an approximate value for the average SOC rate of change. 1 LSb = 0.208% per hour (not for conversion to ampere).

VRESET/ID Register (0x18)

See Figure 7.

• **ID** is an 8-bit read-only value that is one-time programmable at the factory, which can be used as an identifier to distinguish multiple cell types in production. Writes to these bits are ignored.

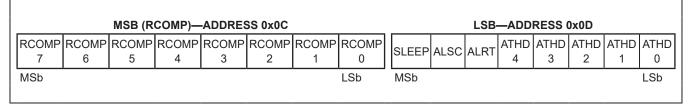


Figure 5. CONFIG Register Format

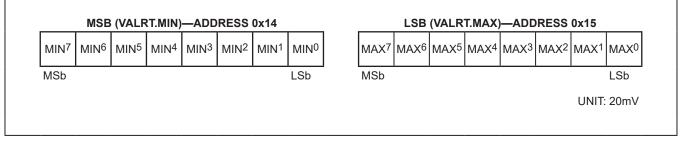


Figure 6. VALRT Register Format

Г		MSB (VRESET)—ADDRESS 0x18									LSB (II	D)—AL	DRES	S 0x19		
	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	Dis	ID ⁶	ID ⁵	ID ⁴	ID ³	ID ²	ID ¹	ID0	ID
Ν	/ISb							LSb	MSb							LSb
													VRES	ET 2 ⁰ (JNITS:	40mV

Portable Medical Power Management Solution with Cable Detection

- VRESET[7:1] adjusts a fast analog comparator and a slower digital ADC threshold to detect battery removal and reinsertion. For captive batteries, set to 2.5V. For removable batteries, set to at least 300mV below the application's empty voltage, according to the desired reset threshold for your application. If the comparator is enabled, the IC resets 1ms after VCELL rises above the threshold. Otherwise, the IC resets 250ms after the VCELL register rises above the threshold.
- **Dis.** Set Dis = 1 to disable the analog comparator in hibernate mode to save approximately 0.5µA

STATUS Register (0x1A)

An alert can indicate many different conditions. The STATUS register identifies which alert condition was met. Clear the corresponding bit after servicing the alert (see Figure 8).

Reset Indicator:

RI (reset indicator) is set when the device powers up. Any time this bit is set, the IC is not configured, so the model should be loaded and the bit should be cleared.

Alert Descriptors:

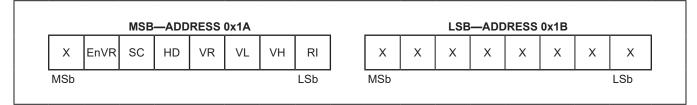
These bits are set only when they cause an alert (e.g., if CONFIG.ALSC = 0, then SC is never set).

- **VH** (voltage high) is set when VCELL has been above ALRT.VALRTMAX.
- VL (voltage low) is set when VCELL has been below ALRT.VALRTMIN.

- **VR** (voltage reset) is set after the device has been reset regardless of EnVr.
- HD (SOC low) is set when SOC crosses the value in CONFIG.ATHD.
- SC (1% SOC change) is set when SOC changes by at least 1% if CONFIG.ALSC is set.

Enable or Disable VRESET Alert:

 EnVr (enable voltage reset alert) when set to 1 asserts the ALRT pin when a voltage-reset event occurs under the conditions described by the VRESET/ID register.


TABLE Registers (0x40 to 0x7F)


Contact Maxim for details on how to configure these registers. The default value is appropriate for some Li+ batteries.

To unlock the TABLE registers, write 0x57 to address 0x3F, and 0x4A to address 0x3E. While TABLE is unlocked, no ModelGauge registers are updated, so relock as soon as possible by writing 0x00 to address 0x3F, and 0x00 to address 0x3E.

CMD Register (0xFE)

Writing a value of 0x5400 to this register causes the device to completely reset as if power had been removed (see the Power-On Reset (POR) section). The reset occurs when the last bit has been clocked in. The IC does not respond with an I2C ACK after this command sequence.

Portable Medical Power Management Solution with Cable Detection

Table 33. CMD Register (0xFF)

REGISTER	BIT	NAME	DESCRIPTION
		CMD	Command Register LSB
	7		
	6		
	5		
0xFF	4		
	3	CMD[7:0]	
	2		
	1		
	0		

Portable Medical Power Management Solution with Cable Detection

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14663ETL+	-40°C to +85°C	40 TQFN –EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
40 TQFN	T4055+1	<u>21-0140</u>	<u>90-0016</u>

Portable Medical Power Management Solution with Cable Detection

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/13	Initial release	—
1	1/15	Updated page 1 content	1
2	7/16	Updated ambiguous charge current capability	1, 3, 6, 8–11, 15, 21, 27–29, 40
3	10/16	Corrected typo in T3 Jetta Thermistor Falling Temperature spec in <i>Electrical Characteristics</i> table	8
4	1/17	Corrected incorrect temperature compensation calculation and typo in <i>Model Gauge</i> section	17, 18, 44
5	3/17	Updated <i>Typical Operating Circuit/Functional Diagram</i> , <i>Electrical Characteristics</i> table, deleted Table 3, and made various text updates	2, 10, 15, 19, 20, 22, 38
6	8/20	Updated the <i>Benefits and Features, Electrical Characteristics, Pin Description,</i> and <i>Battery Isolation Switch</i> sections	1, 10–11, 14, 19

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: <u>MAX14663ETL+</u>