

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

www.hittite.com

www.analog.com

THIS PAGE INTENTIONALLY LEFT BLANK

3

MUX & DEMUX - SMT

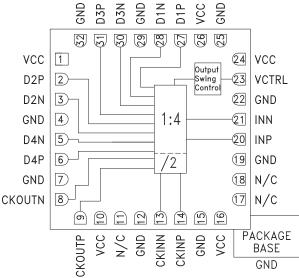
HMC848LC5

45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

Supports Data Rates up to 45 Gbps

Quarter Rate Reference Clock Output

Fast Rise and Fall Times: 25 / 21 ps


Programmable Differential Output Voltage Swing: 300 - 1000 mVp-p

Typical Applications

The HMC848LC5 is ideal for:

- SONET OC-768
- RF ATE Applications
- Broadband Test & Measurements
- Serial Data Transmission up to 45 Gbps
- High Speed ADC Interfacing

Functional Diagram

Electrical Specifications, $T_A = +25^{\circ}C$, Vcc = 3.3V

General Description

Features

Half Rate Clock Input

Single Supply: +3.3V

The HMC848LC5 is a 1:4 demultiplexer designed for data deserialization up to 45 Gbps. The device uses both rising and falling edges of the half-rate clock to sample the input data in sequence, D0-D3 and latches the data onto the differential outputs. A quarter-rate clock output generated on-chip can be used to clock the data into other devices.

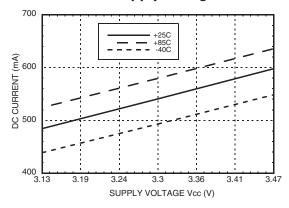
32 Lead Ceramic 5x5 mm SMT Package: 25 mm²

All clock and data inputs / outputs of the HMC848LC5 are CML and terminated on-chip with 50 Ohms to the VCC, and may be DC or AC coupled. The inputs and outputs of the HMC848LC5 may be operated either differentially or single-ended. The HMC848LC5 also features an output level control pin, VCTRL, which allows for loss compensation or signal level optimization. The HMC848LC5 operates from a single +3.3V supply and is available in ROHS compliant 5x5 mm SMT package.

Parameter Conditions Min Тур. Max Units Power Supply Voltage ± 5% Tolerance 3.13 3.3 3.47 V 540 Power Supply Current Vctrl = 2.5V 480 600 mΑ Output Amplitude Control Voltage Range (Vctrl) 2.5 1.7 3 V Maximum Data Bate 45 Gbps Maximum Clock Rate GHz Half Rate Clock 22.5 Single-Ended, peak-to-peak [1] 150 800 mVp-p Input Amplitude (Data) 1000 Differential, peak-to-peak 150 mVp-p Single-Ended, peak-to-peak [1] 100 700 mVp-p Input Amplitude (Clock) Differential, peak-to-peak 100 1000 mVp-p

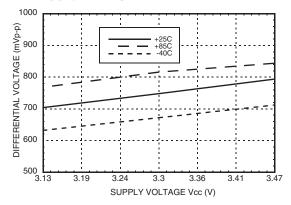
[1] The un-used port is biased @ 3.3V

45 Gbps, 1:4 DEMUX WITH **PROGRAMMABLE OUTPUT VOLTAGE**


Electrical Specifications, (continued)

Parameter	Conditions	Min.	Тур.	Max	Units
Input High Voltage (Data & Clock)	Vctrl = 2.5V	2.8		3.8	V
Input Low Voltage (Data & Clock)	Vctrl = 2.5V	2.3		3.3	V
Data Output Voltage Swing Range	Differential, peak-to-peak @ 40 Gbps	300		1000	mVp-p
Clock Output Voltage Swing	Differential, peak-to-peak @ 10 GHz	600	700	800	mVp-p
Output High Voltage	Vctrl = 2.5V		2.95		V
Output Low Voltage	Vctrl = 2.5V		2.6		V
land Datum Land	Data input up to 11.25 GHz		10		dB
Input Return Loss	Clock input up to 22.5 GHz		9		dB
Output Return Loss	Data output up to 22.5 GHz		8		dB
	Clock output up to 11.25 GHz		8		dB
Deterministic Jitter, Jd ^[2]			4		ps p-p
Additive Random Jitter, Jr ^[3]			0.35		ps rms
Rise Time, tr ^[2]	20% - 80%		25		ps
Fall Time, tf ^[2]	20% - 80%		21		ps
Propagation Delay Clock to Data, Tdpd	Input clock to output data		380		ps
Propagation Delay Clock to Output Clock, Tcpd	Input clock to output clock		80		ps
Set Up Time, ts	Both at rising and falling edges		20		ps
Hold Time, th	Both at rising and falling edges		2		ps

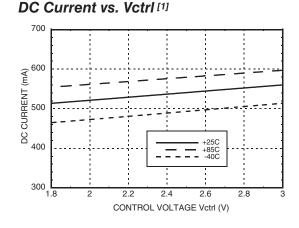
[2] CKINP: 20 GHz clock signal, 250 mVp-p single-ended, INP: 40 Gbps PRBS 2²³-1 pattern, 250 mVp-p single-ended


[3] Random jitter is measured with 40 Gbps 10101... pattern

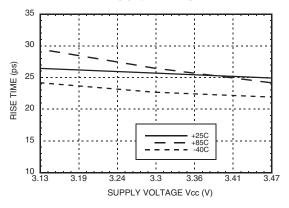
DC Current vs. Supply Voltage [1] [2]

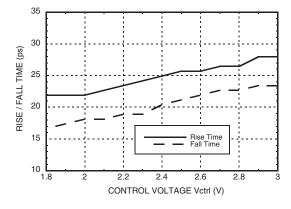
[1] Vctrl = 2.5V [2] Data Rate = 40 Gbps

Differential Output Swing vs. Supply Voltage [1][2]

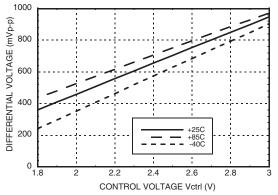


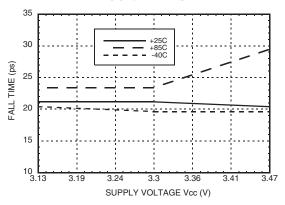
3



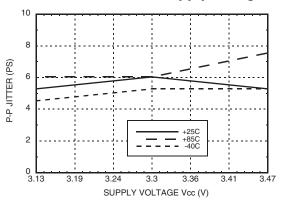

45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

Rise Time vs. Supply Voltage [1][2][3][4]


Rise Time vs. Vctrl [1][3][4]


 [1] Data Rate = 40 Gbps
 [2] Vctrl = 2.5V
 [3] Data was taken at single-ended output

 [5] Source jitter was not deembeded
 [3] Data was taken at single-ended output


Differential Output Swing vs. Vctrl [1]

Fall Time vs. Supply Voltage [1][2][3][4]

Peak-to-Peak Jitter vs. Supply Voltage [1][2][3][5]

[4] 20% - 80%

20

20

25

15

FREQUENCY (GHz)

15

FREQUENCY (GHz)

Clock Output Return Loss vs. Frequency [1][2]

25

45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

10

-5

-10

-15

-20

-25

-30

0

-5

-10

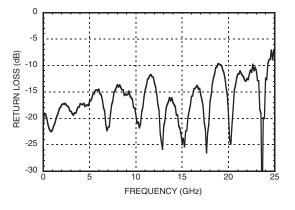
-15

-20

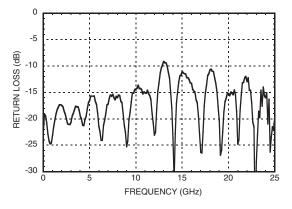
-25

-30

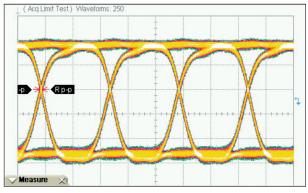
0


RETURN LOSS (dB)

0


RETURN LOSS (dB)

Data Output Return Loss vs. Frequency [1][2]


Data Input Return Loss vs. Frequency [1][2]

Clock Input Return Loss vs. Frequency [1][2]

10 Gbps Single-Ended Output Eye Diagram

Measurements Current Minimum Maximum Total Meas. Eye Amp 356 mV 356 mV 356 mV 84 **Rise Time** 25.8 ps 25.8 ps 26.7 ps 84 Fall Time 21.3 ps 21.3 ps 21.3 ps 84 p-p jitter 5.33 ps 4.44ps 5.33 ps 84

10

Time Scale: 40 ps/div

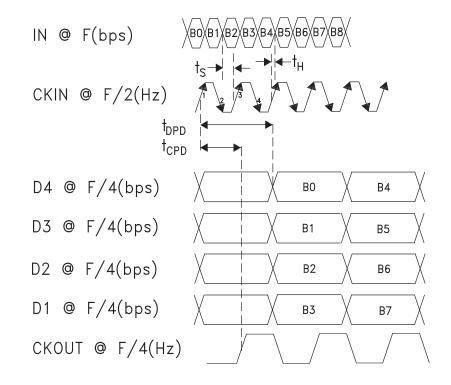
Amplitude Scale: 79.7 mV/div

Test Conditions:

VCC = +3.3V, VCTRL = 2.5V

INP: 40 Gbps NRZ PRBS 2^{23}-1 pattern, 250 mVp-p single-ended

CKINP: 20 GHz Clock Signal, 250 mVp-p single-ended

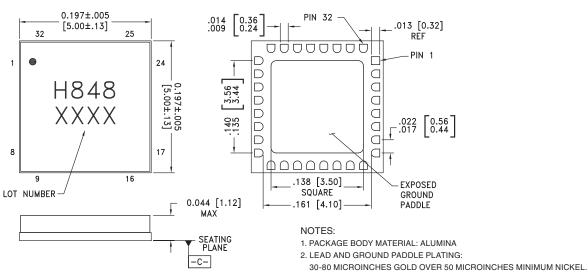

Vctrl = 2.5V
 Device measured on evaluation board with single ended time domain gating

45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

Timing Diagram

Absolute Maximum Ratings

Power Supply Voltage (Vcc)	3.7V to +0.5V	
Input Voltages	Vcc -2V to Vcc +0.5V	
DC Control Pins (Vctrl, Vdcc)	Vcc +0.2V to Vcc -2.5V	
Channel Temperature	125 °C	
Continuous Pdiss (T = 85 °C) (derate 49.97 mW/°C above 85 °C)	2 W	
Thermal Resistance (Channel to die bottom)	20.01 °C/W	
Storage Temperature	-65°C to +150°C	
Operating Temperature	-40°C to +85°C	



45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

Outline Drawing

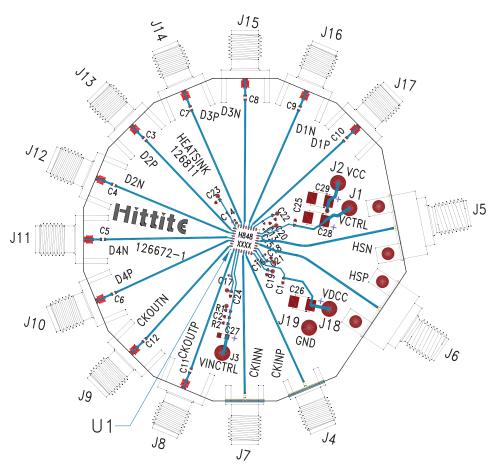
BOTTOM VIEW

- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO Vee.

3

45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

Pin Descriptions


Pin Number	Function	Description	Interface Schematic	
1, 10, 16, 24, 26	VCC	Positive supply (3.3V)		
2, 3, 5, 6, 27, 28, 30, 31	D2P, D2N, D4N, D4P, D1P, D1N, D3N, D3P	Differential 4 Channel Serial Data Outputs	Vcc 500 DxP DxN	
4, 7, 12, 15, 19, 22, 25, 29, 32	GND	Signal and supply ground.		
8, 9	CKOUTN, CKOUTP	Differential Quarter Rate System Clock Outputs.	Vcc 500 CKOUTP, CKOUTN	
11, 17, 18	N/C	Not connected.		
13, 14	CKINN, CKINP	Differential Half Rate Clock Inputs.		
20, 21	INP, INN	High Speed Serial Data Inputs		
23	Vctrl	Output Amplitude Control	Vcc Vcc VCTRL 0 4 4 500 5500 1.15k0 4 4 5 500	

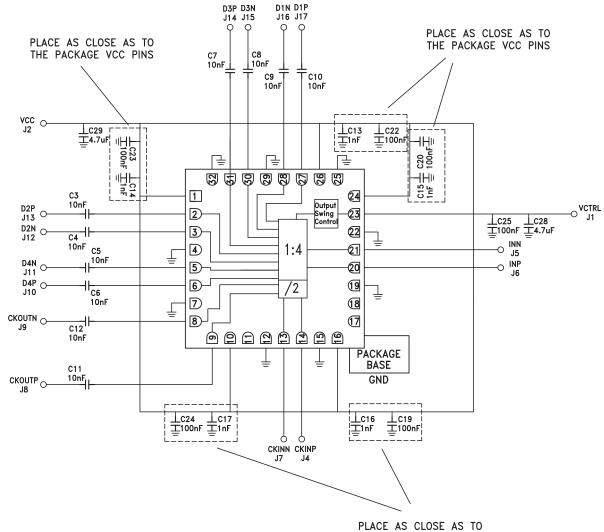
45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

Evaluation PCB

List of Materials for Evaluation PCB 126674 [1]

Item	Description
J1, J2, J18, J19	DC Connector
J4, J7	K Connector
J5, J6	2.4mm Connector
J8 - J17	SMA Connector
C1, C19 - C25	100 nF Capacitor, 0402 Pkg.
C3 - C12	10 nF Capacitor, 0402 Pkg.
C13 - C18	1 nF Capacitor, 0201 Pkg.
C26, C28, C29	4.7 µF Capacitor, Tantalum
U1	HMC848LC5 45 Gbps 1:4 Demux
PCB [2]	126672 Evaluation Board

Reference this number when ordering complete evaluation PCB
 Circuit Board Material: Arlon 25FR or Rogers 4350


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed metal package base must be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. 3

45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

Application Circuit

THE PACKAGE VCC PINS

For price, delivery and to place orders: Hittite Microwave Corporation, 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

3

45 Gbps, 1:4 DEMUX WITH PROGRAMMABLE OUTPUT VOLTAGE

Notes:

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: HMC848LC5 126674-HMC848LC5 HMC848LC5TR-R5 HMC848LC5TR