
GaAs pHEMT MMIC LOW NOISE AMPLIFIER, DC - 20 GHz

Typical Applications

The HMC460LC5 is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space
- Test Instrumentation

Functional Diagram

Features

Noise Figure: 2.5 dB @ 10 GHz Gain: 14 dB @ 10 GHz P1dB Output Power: +16.5 dBm @ 10 GHz Supply Voltage: +8V @ 75 mA 50 Ohm Matched Input/Output 32 Lead Ceramic 5 x 5 mm SMT Package: 25 mm²

General Description

The HMC460LC5 is a GaAs MMIC pHEMT Low Noise Distributed Amplifier in a leadless 5 x 5 mm ceramic surface mount package which operates from DC to 20 GHz. The amplifier provides 14 dB of gain, 2.5 dB noise figure and +16.5 dBm of output power at 1 dB gain compression while requiring only 75 mA from a Vdd = 8V supply. Gain flatness is excellent from DC to 20 GHz making the HMC460LC5 ideal for EW, ECM, Radar and test equipment applications. The wideband amplifier I/Os are internally matched to 50 Ohms.

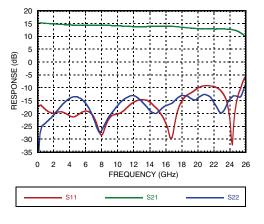
Electrical Specifications, $T_A = +25 \text{ °C}$, Vdd= 8V, Idd= 75 mA*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	DC - 6.0		6.0 - 18.0		18.0 - 20.0		GHz			
Gain	11	14		11	14		10	13		dB
Gain Flatness		± 0.5			± 0.15			± 0.25		dB
Gain Variation Over Temperature		0.008			0.01			0.01		dB/ °C
Noise Figure		3.5	5.0		2.5	4.0		3.5	5	dB
Input Return Loss		17			18			12		dB
Output Return Loss		17			15			15		dB
Output Power for 1 dB Compression (P1dB)	14	17		13	16		12	15		dBm
Saturated Output Power (Psat)		18			18			17		dBm
Output Third Order Intercept (IP3)		29.5			29			28.5		dBm
Supply Current (Idd) (Vdd= 8V, Vgg= -0.9V Typ.)		75			75			75		mA

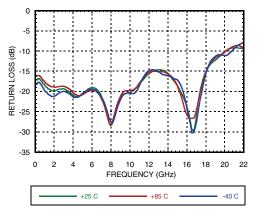
*Adjust Vgg between -2 to 0V to achieve Idd= 75 mA typical.

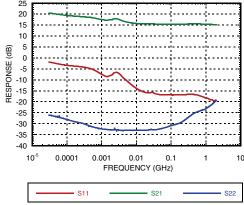
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

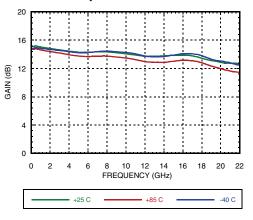
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

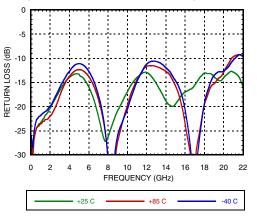


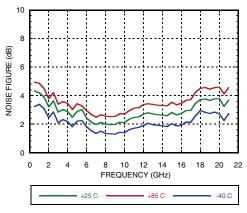
HMC460LC5 v08.1217


GaAs pHEMT MMIC LOW NOISE AMPLIFIER, DC - 20 GHz


Broadband Gain & Return Loss


Input Return Loss vs. Temperature


Low Frequency Gain & Return Loss

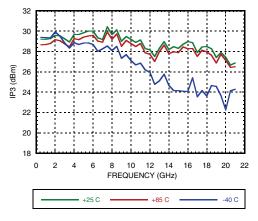


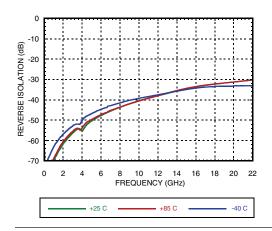
Output Return Loss vs. Temperature

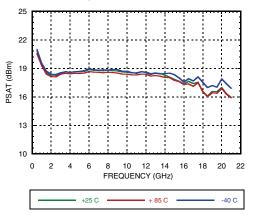
Noise Figure vs. Temperature

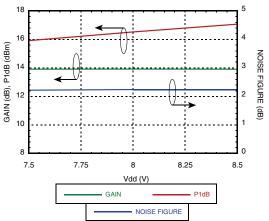


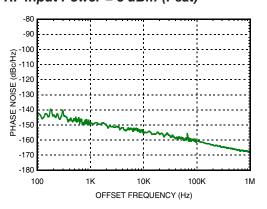
25


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D


GaAs pHEMT MMIC LOW NOISE AMPLIFIER, DC - 20 GHz


Output IP3 vs. Temperature


Reverse Isolation vs. Temperature


Psat vs. Temperature

Gain, Power & Noise Figure vs. Supply Voltage @ 10 GHz, Fixed Vgg

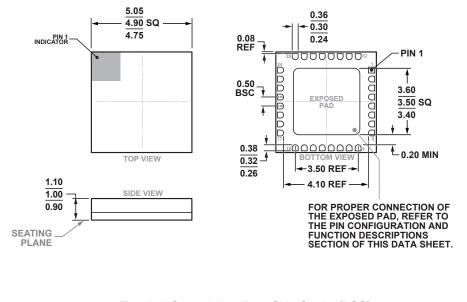
Additive Phase Noise Vs Offset Frequency, RF Frequency = 10 GHz, RF Input Power = 8 dBm (Psat)

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, DC - 20 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+9 Vdc	
Gate Bias Voltage (Vgg)	-2 to 0 Vdc	
Gate Bias Voltage (Igg)	2.5 mA	
RF Input Power (RFIN)(Vdd = +8 Vdc)	+18 dBm	
Channel Temperature	175 °C	
Continuous Pdiss (T = 85 °C) (derate 23 mW/°C above 85 °C)	2 W	
Thermal Resistance (channel to package bottom)	44.4 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-55 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	


Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
+7.5	74
+8.0	75
+8.5	76

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

32-Terminal Ceramic Leadless Chip Carrier [LCC] (E-32-1) Dimensions shown in millimeters.

ORDERING GUIDE

Part Number	Package Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC460LC5	Alumina, White	Gold over Nickel	MSL3 [1]	<u>H460</u> XXXX

[1] Max peak reflow temperature of 260 °C

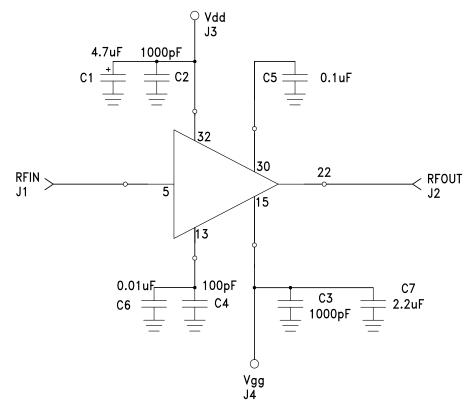
[2] 4-Digit lot number XXXX

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, DC - 20 GHz

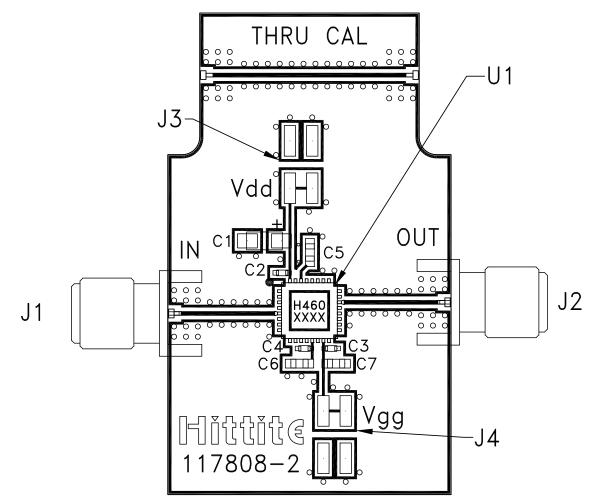
Pin Descriptions

Pin Number	Function	Description	Interface Schematic		
1 - 4, 7 - 12, 14, 16 - 20, 23 - 29, 31	N/C	No connection. These pins may be connected to RF ground. Performance will not be affected.			
5	RFIN	This pin is DC coupled and matched to 50 Ohms.	RFIN ACG2		
6, 21	GND	Package bottom must be connected to RF/DC ground.			
13	ACG2	Low frequency termination. Attach bypass capacitor per application circuit herein.	RFIN ACG2		
15	Vgg	Gate control for amplifier. Please follow "MMIC Amplifier Biasing Procedure" application note	Vgg		
22	RFOUT	This pin is DC coupled and matched to 50 Ohms.	O RFOUT		
30	ACG1	Low frequency termination. Attach bypass capacitor per application circuit herein.	ACG1 RFOUT		
32	Vdd	Power supply voltage for the amplifier. External bypass capacitors are required	OVdd		


AMPLIFIERS - LOW NOISE - SMT

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, DC - 20 GHz

Application Circuit


AMPLIFIERS - LOW NOISE - SMT

GaAs pHEMT MMIC LOW NOISE AMPLIFIER, DC - 20 GHz

Evaluation PCB

List of Materials for Evaluation PCB 117810 [1]

Item	Description	
J1 - J2	PCB Mount SMA Connector	
J3 - J4	2 mm Molex Header	
C4	100 pF Capacitor, 0402 Pkg.	
C2, C3	1000 pF Capacitor, 0402 Pkg.	
C1	4.7 µF Capacitor, Tantalum	
C5	0.1 uF Capacitor, 0603 Pkg.	
C6	0.01 uF Capacitor, 0603 Pkg.	
C7	2.2 uF Capacitor, 0603 Pkg.	
U1	HMC460LC5	
PCB [2]	117808 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Analog Devices upon request.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: <u>HMC460LC5TR</u> <u>HMC460LC5</u> <u>HMC460LC5TR-R5</u>