

DEMO MANUAL DC1707

±6A Monolithic Step-Down Regulator for DDR Termination

DESCRIPTION

Demonstration circuit 1707 is a high efficiency monolithic step-down DC/DC switching regulator designed for double-data-rate (DDR) memory termination in computer systems. The VTT output is capable of sourcing and sinking up to 6A with an output voltage equal to one-half the voltage applied to the V_{DDQIN} terminal or one-half the input supply voltage, selected by a jumper. An additional low current output (VTTR) also equal to one-half the voltage on V_{DDQIN} and can source and sink up to 10mA is included. Input voltage range is from 2.25V to 5.5V with overvoltage protection for transients exceeding 6.5V. Switching frequency is set to 1MHz although it can be programmed up to 4MHz and can be synchronized to an external clock for noise sensitive applications. Jumpers are provided for a low quiescent current shutdown and for selecting internal or external compensation. Internal soft-start is included and a PGOOD output terminal that pulls low at start-up and when the VTT output is outside a voltage window. The LTC3617 is available in the 24-pin $3mm \times 5mm$ thermally enhanced QFN package.

The LTC3617 datasheet gives a complete description of the part, operation and application information and should be read in conjunction with this quick start guide.

Design files for this circuit board are available at http://www.linear.com/demo

Δ7, LT, LTC, LTM, μModule, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PARAMETER	CONDITIONS	TYPICAL VALUE	
Input Voltage Range (V _{IN})		2.25V to 5.5V	
Output Voltage (VTTR)	V _{IN} = 3.3V, V _{DDQIN} = 1.800V	900mV ±18mV (±2%)	
Output Voltage (VTT)	V _{IN} = 3.3V, V _{DDQIN} = 1.800V	VTTR ±10mV	
Load Regulation	V _{IN} = 3.3V, V _{DDQIN} = 1.800V, 0A to 5A Load	2mV	
Maximum Output Current	V _{IN} = 3.3V, V _{DDQIN} = 1.800V	±6A	
Switching Frequency		1MHz ±20%	
Output Voltage Ripple V _{IN} = 3.3V, OA to 5A Load		25mV _{P-P}	
Efficiency	V _{IN} = 3.3V, V _{OUT} = 900mV, 1A Load	87%	
Efficiency	V _{IN} = 3.3V, V _{OUT} = 900mV, 3A Load	85%	

PERFORMANCE SUMMARY (T_A = 25°C)

QUICK START PROCEDURE

Demonstration circuit 1707 allows the user to quickly evaluate the performance of the LTC3617. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below

1. Place jumpers in the following positions.

JP2 - EXT REF (lower)

- JP1 RUN (lower)
- JP3 V_{IN} (upper)
- 2. With both power supplies turned down and switched off, connect the supplies and digital voltmeters and ammeters as shown in Figure 1.
- 3. Switch on the input supply and adjust for approximately 3.3V on $V_{IN},\,and\,set$ the Reference supply to 1.800V on $V_{DDQIN}.$
- Verify that the VTTR voltmeter is exactly one-half of V_{DDQIN} ±18mV or approximately 900mV.
- 5. Verify that the VTT voltmeter reading is equal to the VTTR value ±10mV.

- 6. To evaluate sourcing current from the VTT terminal, connect one lead of a 0.2Ω 5W load resistor to the VTT terminal and the other lead to the GND terminal. Verify that the voltmeter measurements still meet the specifications shown in the table on page 1.
- 7. To evaluate sinking current into the VTT terminal, connect one lead of a 0.5Ω 10 or 20W load resistor to the VTT terminal and the other lead to the V_{IN} terminal. Verify that the voltmeter measurements meet the specifications in the Performance Summary table on the front page.

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the V_{IN} or V_{OUT} and GND terminals. See Figure 2 for proper scope probe technique.

NOTE. Additional pads for are located on the board backside for larger compensation components for optimizing loop compensation.

dc17071

QUICK START PROCEDURE

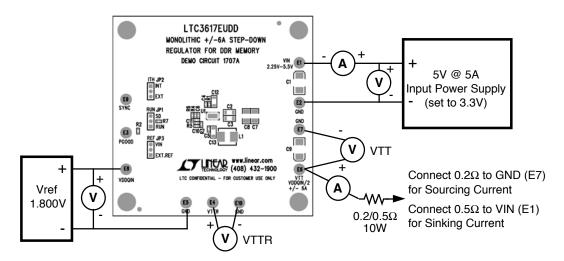


Figure 1. Proper Measurement Equipment Setup

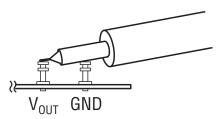
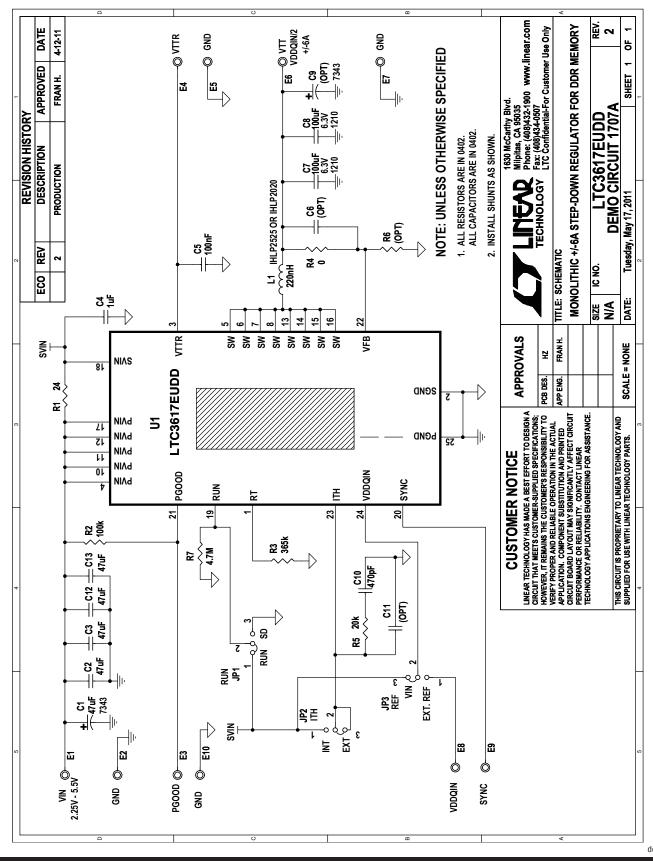


Figure 2. Measuring Input or Output Ripple

PARTS LIST


ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER	
Required Circuit Components					
1	1	C1	CAP., TANT, 47µF, 10V,20%, 7343	AVX, TPSC476M010R0350	
2	0	C9 (OPT)	CAP, TANT, 100µF, 10V, 20%, 7343	AVX, TPSC107M010R0150	
3	4	C2, C3, C12, C13	CAP., X5R, 47µF, 10V, 20% 1206	TAIYO YUDEN, LMK316BJ476ML-T	
4	1	C4	CAP., X5R, 1µF, 10V, 10% 0402	MURATA, GRM155R61A105KE15D	
5	1	C5	CAP., X7R, 0.1µF, 16V, 10% 0402	MURATA, GRM155R71C104KA88D	
6	2	C7, C8	CAP., X5R, 100µF, 10V, 20% 1210	TAIYO YUDEN, LMK325BJ107MM-T	
7	1	C10	CAP., X5R, 470pF, 16V, 10% 0402	AVX, 0402YC471KAT2A	
8	0	C6, C11(OPT)	CAP., 0402		
9	10	E1-E10	TESTPOINT, TURRET, .094"	MILL-MAX, 2501-2-00-80-00-00-07	
10	3	JP1-JP3	HEADER 3 PIN 0.079 SINGLE ROW	SAMTEC, TMM-103-02-L-S	
11	3	JP1-JP3 SHUNT	SHUNT	SAMTEC, 2SN-BK-G	
12	1	L1	INDUCTOR, 220nH IHP-2020	VISHAY, IHLP2020BZERR22M01	
13	1	R1	Res., CHIP, 24, 1% 0402	VISHAY, CRCW040224R0FKED	
14	1	R2	Res., CHIP, 100K, 1% 0402	VISHAY, CRCW0402100KFKED	
15	1	R3	Res., CHIP, 365K, 1% 0402	VISHAY, CRCW0402365KFKED	
16	1	R4	Res., CHIP, 0, 1% 0402	VISHAY, CRCW04020000Z0ED	
17	1	R5	Res., CHIP, 20K, 1% 0402	NIC, NRC04F2002TRF	
18	0	R6 (OPT)	Res., 0402		
19	1	R7	Res., CHIP, 4.7M, 5% 0402	VISHAY, CRCW04024M70JNED	
20	1	U1	IC., LTC3617EUDD QFN-24 3X5MM	LINEAR TECH., LTC3617EUDD	
21	4	MH1-MH4	STAND-OFF, NYLON 0.25"	KEYSTONE, 8831 (SNAP ON)	
22	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT 1707A	
23	1		STENCIL	STENCIL	

dc1707f

DEMO MANUAL DC1707

SCHEMATIC DIAGRAM

TECHNOLOGY

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. dc1707f

5

DEMO MANUAL DC1707

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

dc17071

6

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: DC1707A