

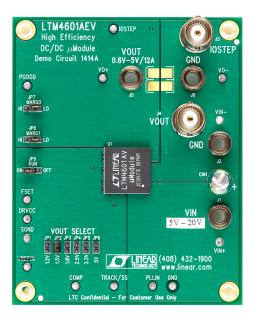
DEMO MANUAL DC1414A

LTM4601AEV 20V, 12A DC/DC µModule® Regulator

DESCRIPTION

Demonstration circuit 1414 features the LTM®4601AEV, a high efficiency, high density switch mode step-down power module. The DC1414A accepts an input voltage from 5V to 20V to deliver a jumper selectable output voltage from 1.2V to 5V at up to 12A. As shown in the data sheet, derating is necessary for certain V_{IN} , V_{OUT} , and thermal conditions. The LTM4601A allows the user to program output ramp-up and ramp-down through the TRACK/SS pin. The output can be set to coincidentally or ratiometrically

track with another voltage rail. This board also supports demonstration of the output voltage margining function by $\pm 5\%$ from nominal which is determined by the state of the MARGN0 and MARGN1 pins. Refer to the LTM4601A data-sheet for additional information.


Design files for this circuit board are available at http://www.linear.com/demo

𝕶, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

PARAMETER	CONDITION	VALUE
Input Voltage Range		5V to 20V
Output Voltage V _{OUT}	Jumper Selectable (Open for 0.6V)	1.2V, 1.5V, 1.8V, 2.5V, 3.3V, 5V
Maximum Continuous Output Current	Derating is Necessary for Certain $V_{\text{IN}},V_{\text{OUT}},\text{and Thermal Conditions}$	12A _{DC}
Default Operating Frequency		850kHz
External Synchronous Clock Frequency Range	Please Refer to Data Sheet for Minimum t _{ON} and t _{OFF} Requirement.	600kHz to 1000kHz
Efficiency	V _{IN} = 12V, V _{OUT} = 3.3V, I _{OUT} = 12A	89.5%, See Figure 2

BOARD PHOTO

dc1414af

QUICK START PROCEDURE

Demonstration circuit 1414 is easy to set up to evaluate the performance of the LTM4601AEV. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place jumpers in the following positions for a typical 1.5V_{OUT} application:

V _{OUT} SELECT	RUN	MARGO	MARG1
1.5V	ON	LO	LO

- 2. With the power off, connect the input power supply, load and meters as shown in Figure 1. Preset the load to 0A and V_{IN} supply between 5V to 20V.
- 3. Turn on the power at the input. The output voltage should be $1.5V \pm 1\%$.
- 4. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters. Output ripple should be measured at J4 with a BNC cable.

- 5. (Optional) To review load transient performance, apply an adjustable pulse signal between IOSTEP (E3) and GND pins. Pulse amplitude sets the current step. The pulse signal should have very small duty cycle (<15%) to limit the thermal stress on the transient load circuit. The output transient current can be monitored at BNC connector J3 (10mV/A).
- 6. (Optional) To implement output voltage margining, place jumpers MARG0 and MARG1 in the configuration shown according to the table below. The output voltage measured at J4 will respond accordingly.

MARG1	MARGO	ΔV _{OUT}
LO	LO	0
LO	HI	5%
HI	LO	-5%
HI	HI	0

QUICK START PROCEDURE

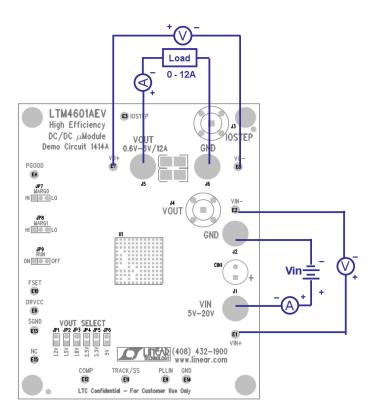


Figure 1. Test Setup of DC1414A

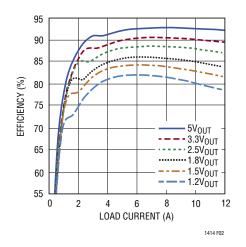


Figure 2. Measuring Supply Efficiency with Different $V_{OUT} \left(V_{IN} = 12V \right)$

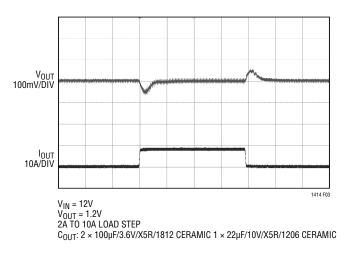
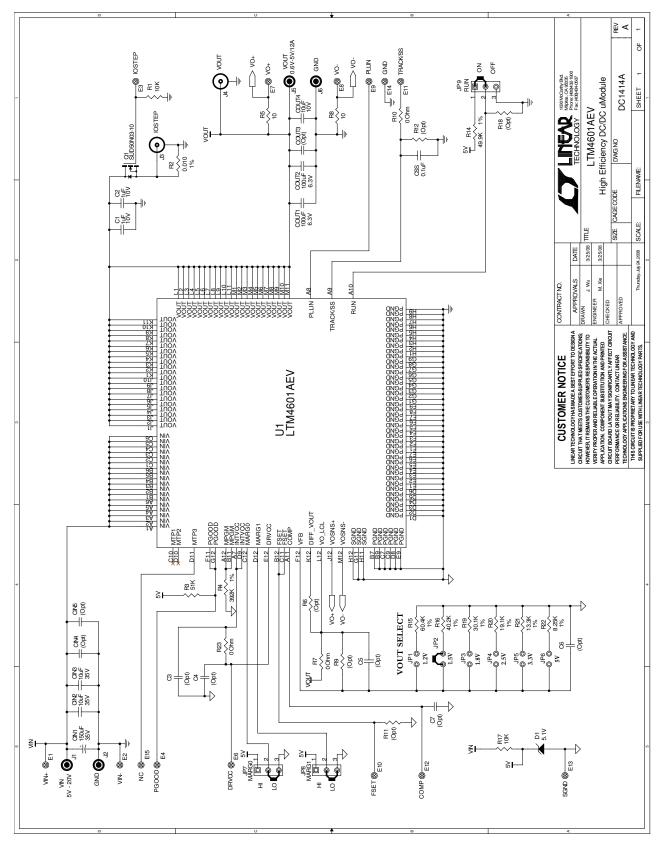


Figure 3. Measured Load Transient Response

3


DEMO MANUAL DC1414A

PARTS LIST

ITEM	QUANTITY	REFERENCE-DESCRIPTION	DESCRIPTION	MANUFACTURER/PART NUMBER
Required Ci	cuit Compone	nts	1	
1	1	CIN1	Cap, Alum 150µF 35V 20%	Sanyo 35ME150WXV+TS
2	2	CIN2 CIN3	Cap, X7R 10µF 35V 20%	Taiyo Yuden GMK316BJ106ML-T
3	2	COUT1 COUT2	Cap, X5R 100µF 6.3V 20%, 1210/1812	TDK C4532X5R0J107M
4	1	COUT4	Cap, X5R 10µF 10V 10%	Taiyo Yuden LMK316BJ106KL-T
5	1	CSS	Cap, X7R 0.1µF 16V 20%	AVX 0603YC104MAT2A
6	1	D1	Zener Diode, 5.1V	On Semiconductor MMBZ5231B
7	1	R17	Res, Chip 10k 0.1W 5%	Vishay CRCW060310K0JNEA
8	1	R3	Res, Chip 51k 0.1W 5%	Vishay CRCW060351K0JNEA
9	1	R4	Res, Chip 392k 0.1W 1%	Vishay CRCW0603392KFKEA
10	1	R14	Res, Chip 49.9k 0.1W 1%	Vishay CRCW060349K9FKEA
11	1	R16	Res, Chip 40.2k 0.1W 1%	Vishay CRCW060340K2FKEA
12	1	U1	IC, Voltage Regulator	Linear Technology LTM4601AEV
Additional D	emo Board Cir	cuit Components		·
1	0	CIN4, CIN5 (OPT)	Cap, 1206 TBD	
2	0	COUT3 (OPT)	Cap, 1210 TBD	
3	2	C1, C2	Cap, X5R 1µF 10V 10%	Taiyo Yuden LMK107BJ105KA
4	0	C3, C4, C5, C6, C7 (OPT)	Cap, 0603 TBD	
5	1	Q1	MOSFET, N-Channel 30V	Vishay SUD50N03-09P-E3
6	1	R1	Res, Chip 10k 0.1W 5%	Vishay CRCW060310K0JNEA
7	1	R2	Res, LRF, 0.010, 2W, 1%, 2512	IRC LRF2512LF-01-R010-F
8	2	R8, R5	Res, Chip 10 0.1W 5%	Vishay CRCW060310R0JNEA
9	0	R6, R9, R11, R12, R18 (OPT)	Res, 0603 TBD	
10	3	R7, R10, R23	Res/Jumper, Chip 0 Ω 1/16W 1 AMP	Vishay CRCW06030000Z0EA
11	1	R15	Res, Chip 60.4k 0.1W 1%	Vishay CRCW060360K4FKEA
12	1	R19	Res, Chip 30.1k 0.1W 1%	Vishay CRCW060330K1FKEA
13	1	R20	Res, Chip 19.1k 0.1W 1%	Vishay CRCW060319K1FKEA
14	1	R21	Res, Chip 13.3k 0.1W 1%	Vishay CRCW060313K3FKEA
15	1	R22	Res, Chip 8.25k 0.1W 1%	Vishay CRCW06038K25FKEA
Hardware fo	r Demo Board	Only		· · ·
1	14	E1 to E4, E6 to E13, E14, E15	Turret, Testpoint	Mill Max 2308-02-00-80-00-00-07-0
2	6	JP1, JP2, JP3, JP4, JP5, JP6	2 Pin 0.079 Single Row Header	Samtec TMM102-02-L-S
3	3	JP7, JP8, JP9	3 Pin 0.079 Single Row Header	Samtec TMM103-02-L-S
4	4	XJP2, XJP7, XJP8, XJP9	Shunt, 0.079 Center	Samtec 2SN-BK-G
5	4	J1, J2, J5, J6	Connector, Banana Jack	Keystone 575-4
6	2	J3, J4	BNC Connector	Connex 112404
7	4		Stand Off, Nylon, 0.5" Tall	Keystone 8833 (Snap On)

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. dc1414af

5

DEMO MANUAL DC1414A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

dc1414at

6

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: DC1414A