

DEMO MANUAL DC1406A

LT3746 32-Channel LED Driver

DESCRIPTION

Demonstration circuit 1406A features the LT®3746, 32-channel 20mA LED driver with buck controller and serial interface. Each channel has an individually adjustable 12-bit (4096-step) grayscale PWM dimming control and a 6-bit (64-step) dot correction current adjustment. Both dimming control and current adjustment are accessible via a 30MHz cascadable serial data interface. Individual open/short LED and overtemperature flags are sent back during status read-back.

Three LT3746's are connected in series to control 32 RGB LEDs stuffed on the demo board. Each IC drives a separate color. The evaluation software installed in a host computer

communicates with the DC1406A via the interface board DC590B, an USB serial controller.

The LT3746 data sheet gives a complete description of the part, its operation and application information. The datasheet must be read in conjunction with this quick start guide for working on or modifying the demo circuit 1406A.

Design files for this circuit board are available at http://www.linear.com/demo

Δ7, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and QuikEval is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at $T_A = 25^{\circ}C$.

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
V _{IN}	Input Supply Range		9		40	V
V _{OUT-R}	Pre-Charge Voltage (Red)			3.0		V
V _{OUT-G}	Pre-Charge Voltage (Green)			4.2		V
V _{OUT-B}	Pre-Charge Voltage (Blue)			4.2		V
f _S	Free-Running Switching Frequency			400		kHz

QUICK START PROCEDURE

Demonstration circuit 1406A is easy to set up to evaluate the performance of the LT3746. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

- 1. Install the QuikEval[™] System software on the host computer. The software can be downloaded from http:// www.linear.com/designtools/software/quick_eval.jsp.
- 2. Install Microsoft .NET framework. The software can be downloaded from http://www.microsoft.com/NET/
- 3. Copy LEDRelease folder to the host computer. Run vcredist_x86.exe. You may need to restart the computer.

4. Place jumpers in the following positions:

JP1 On

JP2 TO PWMCK

- 5. Connect the demo board to DC590B as shown in Figure 1.
- 6. With power off, connect the input power supply to $V_{\mbox{\scriptsize IN}}$ and GND.
- 7. Apply 9V to 40V to DC1406A input.
- 8. Run LTcolorLEDarray.exe in the LEDRelease folder.
- 9. The initial start-up screen appears, at this point, none of the LEDs should light up. Proceed with board evaluation.

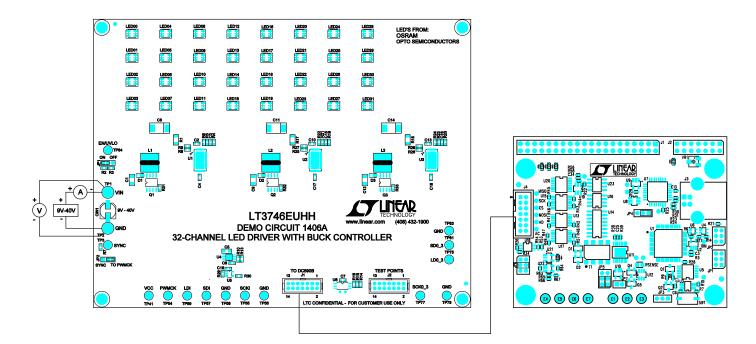


Figure 1. Proper Measurement Equipment Setup

OPERATING THE CONTROL SCREEN

Figure 2 is the initial start-up screen that appears when the program is launched.

1. Send Data Frame to Chip

Double-click one of the black squares in the "LED Colors" grid. The standard color selector dialog box appears. Select a color and click "OK." Or select the LED number in the "LED Configuration" grid, adjust the LED color by moving the sliding bars.

Click the command button labeled "Send Data Frame to Chip." Verify that the LEDs light up in corresponding colors.

2. Play Pattern File

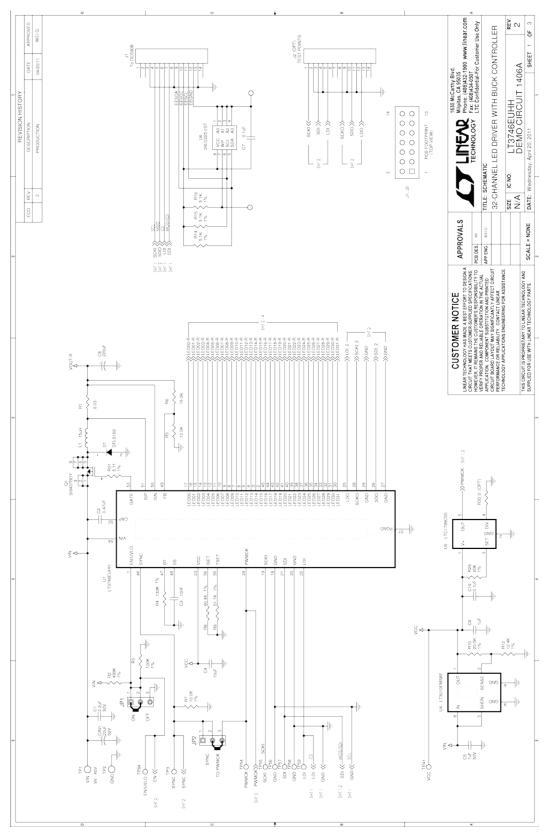
Click the "Browse" button and pick the file "test". Click the command button labeled "Play Pattern File." Verify that all 32 RGB LEDs light up in red, green, blue and white in sequence.

Check the "Auto-Update Data/Loop File" option. Click the command button labeled "Play Pattern File." Click the "stop" button at any time to stop.

3. Append Data Frame to Pattern File

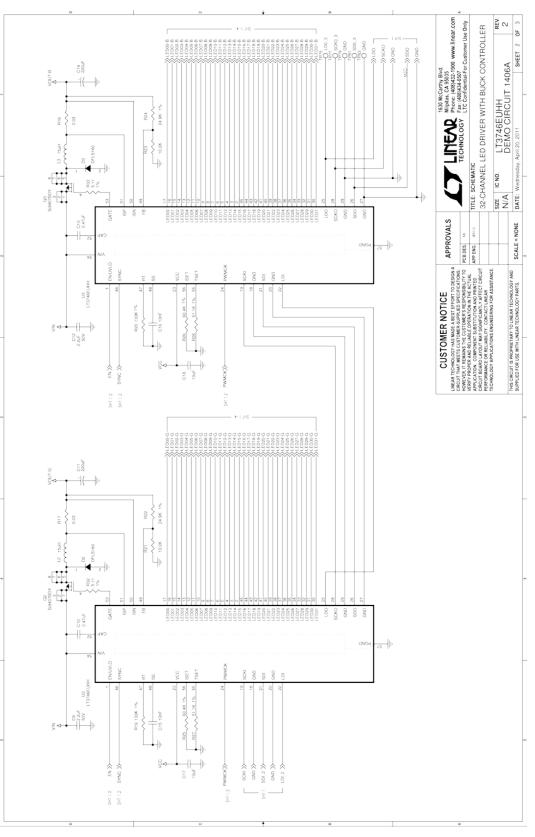
Create a blank text file. Click the "Browse" button and pick this new file. Create and then add the first data frame to the file by clicking the "Append Data Frame to Pattern File" button. Create the second data frame and add it to the file by clicking the "Append" button. Repeat until all the data frames are added to the file. Click the command button labeled "Play Pattern File."

🖶 LTC Color LED Array Controller 📃 🗖 🔀							
LED Colors	8 12	16 20	24 28	Status Flags			
1 5	9 13	17 21	25 29				
2 6	10 14	18 22 19 23	26 30				
	ayscale PWM Dimming	Dot Con		Status:			
Green		/ 4095 / 4095 / 4095 / 4095	 ▶ 100 % ▶ 100 % ▶ 100 % 				
Data Frames Frame type Grayscale PWM Red Append Data Frame to Pattern File Time between updates: 500 ms							
Send both Pattern Sequence File:	Blue	Play Patter	Browse	Stop			

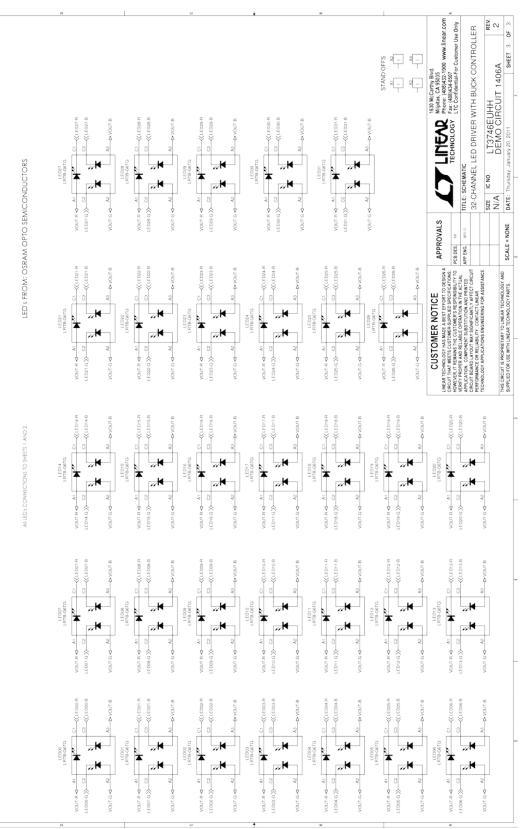

DEMO MANUAL DC1406A

PARTS LIST

ITEM	QUANTITY	REFERENCE-DESCRIPTION	DESCRIPTION	MANUFACTURER'S PART NUMBER	
Required Cir	cuit Component	ts		•	
1	3	C1, C9, C12	Capacitor, 1206 2.2µF 10% 50V X5R	Murata GRM31CR71H225KA88L	
2	3	C2, C10, C13	Capacitor, 0603 0.47µF 10% 16V X7R	TDK C1608X7R1C474KT	
3	3	C3, C15, C16	Capacitor, 0603 10nF 10% 50V X7R	AVX 06035C103KAT2A	
4	3	C4, C17, C18	Capacitor, 0603 10µF 10% 6.3V X5R	Murata GRM188R60J106ME47D	
5	1	C5	Capacitor, 0805 1µF 10% 50V X7R	Murata GRM21BR71H105KA12L	
6	1	C6	Capacitor, 0603 1µF 10% 16V X7R	TDK C1608X7R1C105K	
7	2	C7, C19	Capacitor, 0603 0.1µF 10% 50V X7R	TDK C1608X7R1H104K	
8	3	C8, C11, C14	Capacitor, 7343 220µF 20% 6.3V POSCAP	SANYO POSCAP 6TPE220ML	
9	3	D1, D2, D3	Diode, Rectifier, Barrier, Schottky 1.0A	Diodes Inc. DFLS160	
10	32	LED00-LED31	LED, Top, 6-Lead	OSRAM LRTB-G6TG	
11	3	L1, L2, L3	Inductor, 15µH	Würth 744778115	
12	3	Q1, Q2, Q3	XSTR, P-channel MOSFET	Vishay Si9407BDY	
13	3	R1, R17, R18	Resistor, 1206 0.03Ω 1% 1/8W	IRC LR1206LF-01-R030-F	
14	1	R2	Resistor, 0603 499kΩ 1% 1/10W	Vishay CRCW0603499KFKEA	
15	1	R3	Resistor, 0603 100kΩ 1% 1/10W	NIC NRC06F1003TRF	
16	3	R4, R19, R20	Resistor, 0603 133kΩ 1% 1/10W	Vishay CRCW0603133KFKEA	
17	4	R5, R7, R21, R23	Resistor, 0603 10.0kΩ 1% 1/10W	Vishay CRCW060310K0FKED	
18	1	R6	Resistor, 0603 15.0kΩ 1% 1/10W	YAGEO RC0603FR-0715KL	
19	3	R8, R25, R26	Resistor, 0603 60.4kΩ 1% 1/10W	Vishay CRCW060360K4FKEA	
10	3	R9, R27, R28	Resistor, 0603 51.1kΩ 1% 1/10W	NIC NRC06F5112TRF	
21	1	R10	Resistor, 0603 20.5kΩ 1% 1/10W	Vishay CRCW060320K5FKED	
22	1	R13	Resistor, 0603 12.4kΩ 1% 1/10W	Vishay CRCW060312K4FKED	
23	3	R14, R15, R16	Resistor, 0603 5.1kΩ 1% 1/10W	Vishay CRCW06035K10FKED	
24	2	R22, R24	Resistor, 0603 24.9kΩ 1% 1/10W	NIC NRC06F2492TRF	
25	1	R29	Resistor, 0603 20kΩ 1% 1/10W	Vishay CRCW060320K0FKEA	
26	3	R31, R32, R33	Resistor, 0603 5.11Ω 1% 1/10W	AAC CR16-R11FM	
27	3	U1, U2, U3	IC, LT3746EUHH	Linear Technology LT3746EUHH	
28	1	U4	IC, LT3010EMS8E	Linear Technology LT3010EMS8E	
29	1	U5	IC, LTC1799CS5	Linear Technology LTC1799CS5	
30	1	U6	IC, 24LC025-I/ST	Microchip Tech. 24LC025-I/ST	
Additional D	emo Board Circ	uit Components			
1	1	CIN1	Capacitor, 22µF 20% 50V	Sanyo 50CE22BS	
2	0	R30	Resistor, 0603 0 Ω Jumper Option	Vishay CRCW06030000Z0ED Option	
Hardware					
1	2	TP1, TP2	Turrets	Mill-Max 2501-2-00-80-00-00-07-0	
2	14	TP3, TP41, TP54-TP59, TP75, TP77, TP79, TP81, TP83, TP84	Turrets	Mill-Max 2308-2-00-80-00-00-07-0	
3	2	JP1, JP2	Header, 3-Pin, 2mm	Samtec TMM-103-02-L-S	
4	1	J1	Header, 2×7 2mm	MOLEX 87831-1420	
5	0	J2	Header, 2×7 2mm Option	MOLEX 87831-1420 Option	
6	2	JP1, JP2	Shunt, 2mm	Samtec 2SN-BK-G	
7	4		Standoff, Snap-On	Keystone_8831	



SCHEMATIC DIAGRAMS



SCHEMATIC DIAGRAMS

SCHEMATIC DIAGRAMS

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1406A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

dc1406afa

8

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: DC1406A