

Nonvolatile Memory, Dual 1024-Position Digital Potentiometer

Enhanced Product

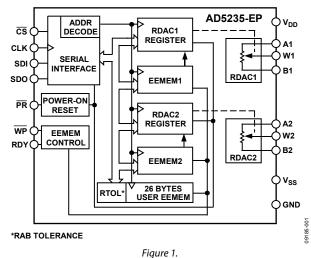
AD5235-EP

FEATURES

Dual-channel, 1024-position resolution 25 kΩ nominal resistance Low temperature coefficient: 35 ppm/°C Nonvolatile memory stores wiper settings Permanent memory write protection Wiper setting readback **Resistance tolerance stored in EEMEM** Predefined linear increment/decrement instructions Predefined ±6 dB/step log taper increment/decrement instructions **SPI-compatible serial interface** +2.7 V to +5 V single supply or ±2.5 V dual supply 26 bytes extra nonvolatile memory for user-defined information 100-year typical data retention, $T_A = 55^{\circ}C$ **Power-on refreshed with EEMEM settings Enhanced Features** Supports defense and aerospace applications (AQEC) Temperature range: -40°C to +125°C **Controlled manufacturing baseline** 1 assembly/test site 1 fabrication site Product change notification **Qualification data available on request APPLICATIONS**

DWDM laser diode driver, optical supervisory systems Mechanical potentiometer replacement Instrumentation: gain, offset adjustment Programmable voltage-to-current conversion Programmable filters, delays, time constants Programmable power supply Low resolution DAC replacement Sensor calibration

GENERAL DESCRIPTION


The AD5235-EP is a dual-channel, nonvolatile memory,¹ digitally controlled potentiometer² with 1024-step resolution. The device performs the same electronic adjustment function as a mechanical potentiometer with enhanced resolution, solid state reliability, and superior low temperature coefficient performance. The AD5235-EP's versatile programming via an SPI*-compatible serial interface allows 16 modes of operation and adjustment including scratchpad programming, memory storing and restoring, increment/decrement, ± 6 dB/step log taper adjustment, wiper setting readback, and extra EEMEM¹ for user-defined information such as memory data for other components, look-up tables, or system identification information.

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

rigute i.

In scratchpad programming mode, a specific setting can be programmed directly to the RDAC² register that sets the resistance between Terminal W and Terminal A, and Terminal W and Terminal B. This setting can be stored into the EEMEM and is restored automatically to the RDAC register during system power-on.

The EEMEM content can be restored dynamically or through external \overline{PR} strobing, and a \overline{WP} function protects EEMEM contents. To simplify the programming, the independent or simultaneous linear-step increment or decrement commands can be used to move the RDAC wiper up or down, one step at a time. For logarithmic ± 6 dB changes in the wiper setting, the left or right bit shift command can be used to double or halve the RDAC wiper setting.

The AD5235-EP patterned resistance tolerance is stored in the EEMEM. Therefore, in readback mode, the host processor can know the actual end-to-end resistance. The host can execute the appropriate resistance step through a software routine that simplifies open-loop applications as well as precision calibration and tolerance matching applications.

The AD5235-EP is available in a thin, 16-lead TSSOP package. The part is guaranteed to operate over the extended industrial temperature range of -40° C to $+125^{\circ}$ C.

Full details about this enhanced product, including theory of operation, register details, and applications information, are available in the AD5235 data sheet, which should be consulted in conjunction with this data sheet.

¹ The terms nonvolatile memory and EEMEM are used interchangeably.

² The terms digital potentiometer and RDAC are used interchangeably.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010-2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1	l
Applications 1	L
General Description 1	L
Functional Block Diagram 1	L
Revision History 2	2
Specifications	3
Electrical Characteristics	3
Interface Timing and EEMEM Reliability Characteristics 5	5

REVISION HISTORY

1/2018—Rev. A to Rev. B
Change to Features Section 1
Changes to Ordering Guide14

7/2012—Rev. 0 to Rev. A

Change to Features Section
Changes to Electrical Characteristics Section and Table 1 3
Changes to Interface Timing and EEMEM Reliability
Characteristics Section and Table 2 5
Changes to Typical Performance Characteristics Section
Added Figure 14 and Figure 16, Renumbered Sequentially 10
Deleted Figure 21 11
Added Figure 23 12

7/2010—Revision 0: Initial Version

Absolute Maximum Ratings	7
ESD Caution	7
Pin Configuration and Function Descriptions	8
Typical Performance Characteristics	9
Test Circuits	13
Outline Dimensions	14
Ordering Guide	14

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 $V_{\text{DD}} = 2.7 \text{ V to } 5.5 \text{ V}, V_{\text{SS}} = 0 \text{ V}; V_{\text{DD}} = 2.5 \text{ V}, V_{\text{SS}} = -2.5 \text{ V}, V_{\text{A}} = V_{\text{DD}}, V_{\text{B}} = V_{\text{SS}}, -40^{\circ}\text{C} < T_{\text{A}} < +125^{\circ}\text{C}, \text{ unless otherwise noted}.$

Parameter	Symbol	Conditions	Min	Typ ¹	Мах	Unit
	Symbol	Conditions	MIN	тур	IVIdX	Unit
DC CHARACTERISTICS—RHEOSTAT MODE (All RDACs)						
Resistor Differential Nonlinearity ²	R-DNL	R _{wb}	-1		+1	LSB
Resistor Integral Nonlinearity ²	R-INL	R _{WB}	-2		+2	LSB
Nominal Resistor Tolerance	$\Delta R_{AB}/R_{AB}$	Code = full-scale	-8		+8	%
Resistance Temperature Coefficient	$(\Delta R_{AB}/R_{AB})/\Delta T \times 10^{6}$			35		ppm/°C
Wiper Resistance	Rw	$I_W = 1 V/R_{WB}$, $V_{DD} = 5 V$, code = half scale		30	65	Ω
		$I_W = 1 V/R_{WB}$, $V_{DD} = 3 V$, code = half scale		50		Ω
Nominal Resistance Match	RAB1/RAB2	$Code = full-scale, T_A = 25^{\circ}C$		±0.1		%
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (All RDACs)						
Resolution	Ν				10	Bits
Differential Nonlinearity ³	DNL		-1		+1	LSB
Integral Nonlinearity ³	INL		-1		+1	LSB
Voltage Divider Temperature Coefficient	$(\Delta V_W/V_W)/\Delta T \times 10^6$	Code = half scale		15		ppm/°0
Full-Scale Error	V _{WFSE}	Code = full-scale	-7		0	LSB
Zero-Scale Error	Vwzse	Code = zero scale	0		5	LSB
RESISTOR TERMINALS						
Terminal Voltage Range ⁴	VA, VB, VW		Vss		V_{DD}	V
Capacitance Ax, Bx⁵	C _A , C _B	f = 1 MHz, measured to GND, code = half scale		11		pF
Capacitance Wx⁵	Cw	f = 1 MHz, measured to GND, code = half scale		80		pF
Common-Mode Leakage Current ^{5, 6}	Ісм	$V_W = V_{DD}/2$		0.01	±1	μΑ
DIGITAL INPUTS AND OUTPUTS						
Input Logic High	VIH	With respect to GND, $V_{DD} = 5 V$	2.4			V
Input Logic Low	VIL	With respect to GND, $V_{DD} = 5 V$			0.8	V
Input Logic High	VIH	With respect to GND, $V_{DD} = 3 V$	2.1			V
Input Logic Low	VIL	With respect to GND, $V_{DD} = 3 V$			0.6	V
Input Logic High	VIH	With respect to GND, $V_{DD} = +2.5 V$, $V_{SS} = -2.5 V$	2.0			V
Input Logic Low	VIL	With respect to GND, $V_{DD} = +2.5 V$, $V_{SS} = -2.5 V$			0.5	V
Output Logic High (SDO, RDY)	V _{OH}	$R_{PULL-UP} = 2.2 \text{ k}\Omega \text{ to } 5 \text{ V}$	4.9			V
Output Logic Low	Vol	$I_{OL} = 1.6 \text{ mA}, V_{LOGIC} = 5 \text{ V}$			0.4	V
Input Current	IIL	$V_{IN} = 0 V \text{ or } V_{DD}$			±2.25	μΑ
Input Capacitance⁵	CIL			5		pF

Parameter	Symbol	Conditions	Min	Typ ¹	Max	Unit
POWER SUPPLIES				·		
Single-Supply Power Range	V _{DD}	$V_{SS} = 0 V$	2.7		5.5	V
Dual-Supply Power Range	V _{DD} /V _{SS}		±2.25		±2.75	V
Positive Supply Current	I _{DD}	$V_{IH} = V_{DD} \text{ or } V_{IL} = GND$		2	7	μA
Negative Supply Current	Iss	$V_{IH} = V_{DD} \text{ or } V_{IL} = GND, V_{DD} = +2.5 \text{ V},$ $V_{SS} = -2.5 \text{ V}$	-6	-2		μΑ
EEMEM Store Mode Current	I _{DD} (store)	$V_{IH} = V_{DD} \text{ or } V_{IL} = GND, V_{SS} = GND, I_{SS} \approx 0$		2		mA
	Iss (store)	$V_{DD} = +2.5 V, V_{SS} = -2.5 V$		-2		mA
EEMEM Restore Mode Current ⁷	I _{DD} (restore)	$V_{IH} = V_{DD}$ or $V_{IL} = GND$, $V_{SS} = GND$, $I_{SS} \approx 0$		320		μA
	Iss (restore)	$V_{DD} = +2.5 V, V_{SS} = -2.5 V$		-320		μA
Power Dissipation ⁸	P _{DISS}	$V_{IH} = V_{DD}$ or $V_{IL} = GND$		10	40	μW
Power Supply Sensitivity⁵	Pss	$\Delta V_{\text{DD}} = 5 \text{ V} \pm 10\%$		0.006	0.01	%/%
DYNAMIC CHARACTERISTICS ^{5, 9}						
Bandwidth	BW	$-3 \text{ dB}, V_{DD}/V_{SS} = \pm 2.5 \text{ V}$		125		kHz
Total Harmonic Distortion	THDw	$V_A = 1 V rms$, $V_B = 0 V$, $f = 1 kHz$		0.009		%
V _w Settling Time	ts	$\label{eq:VA} \begin{split} V_A &= V_{DD}, V_B = 0 \text{ V}, \\ V_W &= 0.50\% \text{ error band}, \\ \text{Code } 0x000 \text{ to Code } 0x200 \end{split}$		4		μs
Resistor Noise Density	en_wb	$T_A = 25^{\circ}C$		20		nV/√Hz
Crosstalk (Cw1/Cw2)	CT	$V_A = V_{DD}$, $V_B = 0$ V, measured V_{W1} with V_{W2} making full-scale change		30		nV-s
Analog Crosstalk	C _{TA}	$ \begin{array}{l} V_{DD} = V_{A1} = +2.5 \ V, \\ V_{SS} = V_{B1} = -2.5 \ V, \ measured \\ V_{W1} \ with \ V_{W2} = 5 \ V \ p\mbox{-}p \ at \ f = 1 \ kHz, \\ Code \ 1 = 0x200, \ Code \ 2 = 0x3FF \end{array} $		-110		dB

¹ Typicals represent average readings at 25°C and $V_{DD} = 5$ V.

² Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper

positions. R-DNL measures the relative step change from ideal between successive tap positions. I_W ~ 50 μ A for V_{DD} = 2.7 V and I_W ~ 400 μ A for V_{DD} = 5 V (see Figure 25). ³ INL and DNL are measured at V_W with the RDAC configured as a potentiometer divider similar to a voltage output DAC. V_A = V_{DD} and V_B = V_{SS}. DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions (see Figure 26).

⁴ Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables groundreferenced bipolar signal adjustment.

⁵ Guaranteed by design and not subject to production test. ⁶ Common-mode leakage current is a measure of the dc leakage from any Terminal A, Terminal B, or Terminal W to a common-mode bias level of V_{DD}/2.

⁷ EEMEM restore mode current is not continuous. Current is consumed while EEMEM locations are read and transferred to the RDAC register (see Figure 22). To minimize power dissipation, a NOP, Instruction 0 (0x0) should be issued immediately after Instruction 1 (0x1).

⁸ P_{DISS} is calculated from $(I_{DD} \times V_{DD}) + (I_{SS} \times V_{SS})$.

⁹ All dynamic characteristics use V_{DD} = +2.5 V and V_{SS} = -2.5 V.

INTERFACE TIMING AND EEMEM RELIABILITY CHARACTERISTICS

Guaranteed by design and not subject to production test. See the Timing Diagrams section for the location of measured values. All input control voltages are specified with $t_R = t_F = 2.5$ ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V. Switching characteristics are measured using both $V_{DD} = 2.7$ V and $V_{DD} = 5$ V.

Table 2.

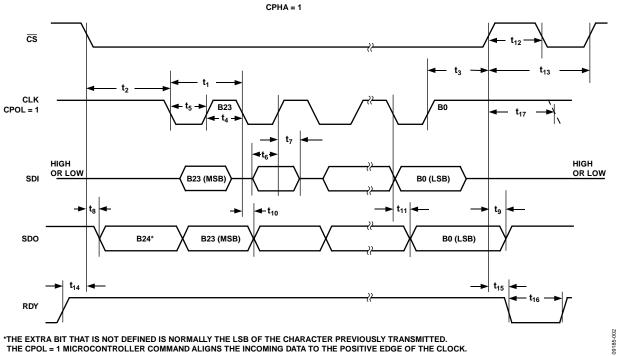
Parameter	Symbol	Conditions	Min	Typ ¹	Max	Unit
Clock Cycle Time (t _{CYC})	t1		20			ns
CS Setup Time	t ₂		10			ns
CLK Shutdown Time to CS Rise	t ₃		1			t _{CYC}
Input Clock Pulse Width	t4, t5	Clock level high or low	10			ns
Data Setup Time	t ₆	From positive CLK transition	5			ns
Data Hold Time	t ₇	From positive CLK transition	5			ns
CS to SDO-SPI Line Acquire	t ₈				40	ns
CS to SDO-SPI Line Release	t9				50	ns
CLK to SDO Propagation Delay ²	t10	$R_P = 2.2 \text{ k}\Omega, C_L < 20 \text{ pF}$			50	ns
CLK to SDO Data Hold Time	t11	$R_P = 2.2 \text{ k}\Omega, C_L < 20 \text{ pF}$	0			ns
CS High Pulse Width ³	t ₁₂		10			ns
CS High to CS High ³	t ₁₃		4			tcyc
RDY Rise to \overline{CS} Fall	t ₁₄		0			ns
CS Rise to RDY Fall Time	t ₁₅			0.15	0.3	ms
Store EEMEM Time ^{4, 5}	t ₁₆	Applies to Instructions 0x2, 0x3		15	50	ms
Read EEMEM Time⁴	t ₁₆	Applies to Instructions 0x8, 0x9, 0x10		7	30	μs
CS Rise to Clock Rise/Fall Setup	t ₁₇		10			ns
Preset Pulse Width (Asynchronous) ⁶	t _{PRW}		50			ns
Preset Response Time to Wiper Setting ⁶	t _{PRESP}	PR pulsed low to refresh wiper positions		30		μs
Power-On EEMEM Restore Time ⁶	t _{EEMEM}			30		μs
FLASH/EE MEMORY RELIABILITY						
Endurance ⁷		$T_A = 25^{\circ}C$		1		MCycles
			100			kCycles
Data Retention ⁸				100		Years

¹ Typicals represent average readings at 25°C and $V_{DD} = 5$ V.

 2 Propagation delay depends on the value of $V_{\text{DD}},$ $R_{\text{PULL-UP}},$ and $C_{\text{L}}.$

³ Valid for commands that do not activate the RDY pin.

⁴ The RDY pin is low only for Instruction 2, Instruction 3, Instruction 8, Instruction 9, Instruction 10, and the PR hardware pulse: CMD_8 ~ 20 μs; CMD_9, CMD_10 ~ 7 μs; CMD_2, CMD_3 ~ 15 ms; PR hardware pulse ~ 30 μs.


⁵ Store EEMEM time depends on the temperature and EEMEM writes cycles. Higher timing is expected at a lower temperature and higher write cycles.

⁶ Not shown in Figure 2 and Figure 3.

⁷ Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at -40°C, +25°C, and +125°C.

⁸ Retention lifetime equivalent at junction temperature (T_j) = 85°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 1 eV derates with junction temperature in the Flash/EE memory.

Timing Diagrams

*THE EXTRA BIT THAT IS NOT DEFINED IS NORMALLY THE LSB OF THE CHARACTER PREVIOUSLY TRANSMITTED. THE CPOL = 1 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.

Figure 2. CPHA = 1 Timing Diagram

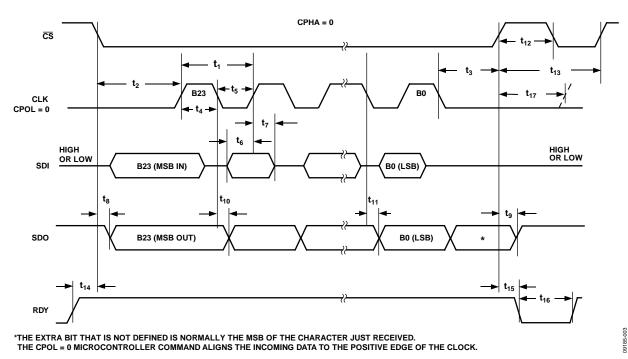


Figure 3. CPHA = 0 Timing Diagram

ABSOLUTE MAXIMUM RATINGS

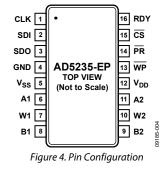
 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

ParameterRating V_{DD} to GND-0.3 V to +7 V V_{SS} to GND+0.3 V to -7 V V_{DD} to V_{SS} 7 V V_{A} , V_{B} , V_{W} to GND $V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$ I_A , I_B , I_W ±2.5 mAPulsed1±2.5 mAContinuous±1.1 mADigital Input and Output Voltage to GND-0.3 V to $V_{DD} + 0.3 V$ Operating Temperature Range2-40°C to +125°CMaximum Junction Temperature (TJ max)150°CStorage Temperature Range-65°C to +150°CLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CThermal ResistanceJunction-to-Ambient, θ_{JA} Junction-to-Case, θ_{JC} 28°C/WPackage Power Dissipation(T_J max - T_A)/ θ_{JA}		
Vss to GND $+0.3 V to -7 V$ V_DD to Vss $7 V$ VA, VB, Vw to GND $V_{ss} - 0.3 V to V_{DD} + 0.3 V$ IA, IB, Iw $\pm 2.5 mA$ Pulsed1 $\pm 2.5 mA$ Continuous $\pm 1.1 mA$ Digital Input and Output Voltage to GND $-0.3 V to V_{DD} + 0.3 V$ Operating Temperature Range2 $-40^{\circ}C to + 125^{\circ}C$ Maximum Junction Temperature (TJ max) $150^{\circ}C$ Storage Temperature Range $-65^{\circ}C to + 150^{\circ}C$ Lead Temperature, Soldering $215^{\circ}C$ Vapor Phase (60 sec) $215^{\circ}C$ Infrared (15 sec) $220^{\circ}C$ Thermal Resistance $150^{\circ}C/W$ Junction-to-Ambient, θ_{JA} $150^{\circ}C/W$ Junction-to-Case, θ_{JC} $28^{\circ}C/W$	Parameter	Rating
$\begin{array}{llllllllllllllllllllllllllllllllllll$	V _{DD} to GND	–0.3 V to +7 V
Var, VB, VW to GND $Y = V_{SS} - 0.3 V to V_{DD} + 0.3 V$ Var, VB, VW to GND $y = 2.5 \text{ mA}$ Pulsed1 $\pm 2.5 \text{ mA}$ Continuous $\pm 1.1 \text{ mA}$ Digital Input and Output Voltage to GND $-0.3 V to V_{DD} + 0.3 V$ Operating Temperature Range2 -40°C to $+125^{\circ}\text{C}$ Maximum Junction Temperature (TJ max) 150°C Storage Temperature Range -65°C to $+150^{\circ}\text{C}$ Lead Temperature, Soldering 215°C Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C Thermal Resistance $150^{\circ}\text{C}/\text{W}$ Junction-to-Ambient, θ_{JA} $150^{\circ}\text{C}/\text{W}$	V _{ss} to GND	+0.3 V to -7 V
I_A , I_B , I_W $\pm 2.5 \text{ mA}$ Pulsed 1 $\pm 2.5 \text{ mA}$ Continuous $\pm 1.1 \text{ mA}$ Digital Input and Output Voltage to GND $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ Operating Temperature Range 2 $-40^{\circ}\text{C to} + 125^{\circ}\text{C}$ Maximum Junction Temperature (TJ max) 150°C Storage Temperature Range $-65^{\circ}\text{C to} + 150^{\circ}\text{C}$ Lead Temperature, Soldering 215°C Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C Thermal Resistance 150°C/W Junction-to-Ambient, θ_{JA} 150°C/W Junction-to-Case, θ_{JC} 28°C/W	V _{DD} to V _{SS}	7 V
Pulsed1 $\pm 2.5 \text{ mA}$ Continuous $\pm 1.1 \text{ mA}$ Digital Input and Output Voltage to GND $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ Operating Temperature Range2 $-40^{\circ}\text{C to } + 125^{\circ}\text{C}$ Maximum Junction Temperature (TJ max) 150°C Storage Temperature Range $-65^{\circ}\text{C to } + 150^{\circ}\text{C}$ Lead Temperature, Soldering 215°C Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C Thermal Resistance 150°C/W Junction-to-Ambient, θ_{JA} 150°C/W Junction-to-Case, θ_{JC} 28°C/W	V _A , V _B , V _W to GND	V_{SS} – 0.3 V to V_{DD} + 0.3 V
Continuous $\pm 1.1 \text{ mA}$ Digital Input and Output Voltage to GND -0.3 V to $V_{DD} + 0.3 \text{ V}$ Operating Temperature Range ² -40°C to $+125^{\circ}\text{C}$ Maximum Junction Temperature (TJ max) 150°C Storage Temperature Range -65°C to $+150^{\circ}\text{C}$ Lead Temperature, Soldering 215°C Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C Thermal Resistance 150°C/W Junction-to-Ambient, θ_{JA} 150°C/W Junction-to-Case, θ_{JC} 28°C/W	I _A , I _B , I _W	
Digital Input and Output Voltage to GND $-0.3 V$ to $V_{DD} + 0.3 V$ Operating Temperature Range2 -40° C to $+125^{\circ}$ CMaximum Junction Temperature (TJ max) 150° CStorage Temperature Range -65° C to $+150^{\circ}$ CLead Temperature, Soldering 215° CVapor Phase (60 sec) 215° CInfrared (15 sec) 220° CThermal Resistance 150° C/WJunction-to-Ambient, θ_{JA} 150° C/WJunction-to-Case, θ_{JC} 28° C/W	Pulsed ¹	±2.5 mA
Operating Temperature Range2 $-40^{\circ}C$ to $+125^{\circ}C$ Maximum Junction Temperature (TJ max) $150^{\circ}C$ Storage Temperature Range $-65^{\circ}C$ to $+150^{\circ}C$ Lead Temperature, Soldering $215^{\circ}C$ Vapor Phase (60 sec) $215^{\circ}C$ Infrared (15 sec) $220^{\circ}C$ Thermal Resistance $150^{\circ}C/W$ Junction-to-Ambient, θ_{JA} $150^{\circ}C/W$ Junction-to-Case, θ_{JC} $28^{\circ}C/W$	Continuous	±1.1 mA
Maximum Junction Temperature (TJ max) 150° CStorage Temperature Range -65° C to $+150^{\circ}$ CLead Temperature, Soldering215^{\circ}CVapor Phase (60 sec)215^{\circ}CInfrared (15 sec)220^{\circ}CThermal Resistance150^{\circ}C/WJunction-to-Ambient, θ_{JA} 150^{\circ}C/WJunction-to-Case, θ_{JC} 28^{\circ}C/W	Digital Input and Output Voltage to GND	-0.3 V to V _{DD} + 0.3 V
Storage Temperature Range -65° C to $+150^{\circ}$ CLead Temperature, Soldering215^{\circ}CVapor Phase (60 sec)215^{\circ}CInfrared (15 sec)220^{\circ}CThermal Resistance150^{\circ}C/WJunction-to-Ambient, θ_{JA} 150^{\circ}C/WJunction-to-Case, θ_{JC} 28^{\circ}C/W	Operating Temperature Range ²	–40°C to +125°C
Lead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CThermal Resistance150°C/WJunction-to-Ambient, θ_{JA} 150°C/WJunction-to-Case, θ_{JC} 28°C/W	Maximum Junction Temperature (TJ max)	150°C
Vapor Phase (60 sec) 215° CInfrared (15 sec) 220° CThermal ResistanceJunction-to-Ambient, θ_{JA} 150° C/WJunction-to-Case, θ_{JC} 28° C/W	Storage Temperature Range	–65°C to +150°C
Infrared (15 sec)220°CThermal Resistance150°C/WJunction-to-Ambient, θ_{JA} 150°C/WJunction-to-Case, θ_{JC} 28°C/W	Lead Temperature, Soldering	
Thermal Resistance150°C/WJunction-to-Ambient, θ_{JA} 150°C/WJunction-to-Case, θ_{JC} 28°C/W	Vapor Phase (60 sec)	215°C
Junction-to-Ambient, θ_{JA} 150°C/WJunction-to-Case, θ_{JC} 28°C/W	Infrared (15 sec)	220°C
Junction-to-Case, θ_{JC} 28°C/W	Thermal Resistance	
	Junction-to-Ambient, θ _{JA}	150°C/W
Package Power Dissipation $(T_J \max - T_A)/\theta_{JA}$	Junction-to-Case, θ_{JC}	28°C/W
	Package Power Dissipation	$(T_J max - T_A)/\theta_{JA}$

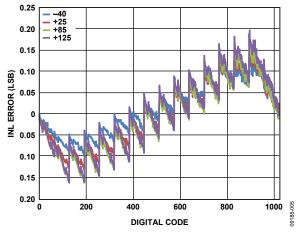
¹ Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package and the maximum applied voltage across any two of the A, B, and W terminals at a given resistance.

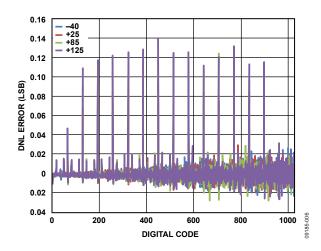
² Includes programming of nonvolatile memory.


Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.


PIN CONFIGURATION AND FUNCTION DESCRIPTIONS


Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	CLK	Serial Input Register Clock. Shifts in one bit at a time on positive clock edges.
2	SDI	Serial Data Input. Shifts in one bit at a time on positive clock CLK edges. MSB loads first.
3	SDO	Serial Data Output. Serves readback and daisy-chain functions. Command 9 and Command 10 activate the SDO output for the readback function, delayed by 24 or 25 clock pulses, depending on the clock polarity before and after the data-word (see Figure 2 and Figure 3). In other commands, the SDO shifts out the previously loaded SDI bit pattern, delayed by 24 or 25 clock pulses depending on the clock polarity (see Figure 2 and Figure 3). This previously shifted out SDI can be used for daisy-chaining multiple devices. Whenever SDO is used, a pull-up resistor in the range of 1 k Ω to 10 k Ω is needed.
4	GND	Ground Pin, Logic Ground Reference.
5	V _{ss}	Negative Supply. Connect to 0 V for single-supply applications. If V _{ss} is used in dual supply, it must be able to sink 35 mA for 30 ms when storing data to EEMEM.
6	A1	Terminal A of RDAC1.
7	W1	Wiper terminal of RDAC1. ADDR (RDAC1) = 0x0.
8	B1	Terminal B of RDAC1.
9	B2	Terminal B of RDAC2.
10	W2	Wiper terminal of RDAC2. ADDR (RDAC2) = $0x1$.
11	A2	Terminal A of RDAC2.
12	V _{DD}	Positive Power Supply.
13	WP	Optional Write Protect. When active low, \overline{WP} prevents any changes to the present contents, except \overline{PR} strobe. CMD_1 and COMD_8 refresh the RDAC register from EEMEM. Execute a NOP instruction before returning to \overline{WP} high. Tie \overline{WP} to V_{DD} , if not used.
14	PR	Optional Hardware Override Preset. Refreshes the scratchpad register with current contents of the EEMEM register. Factory default loads midscale 51210 until EEMEM is loaded with a new value by the user. PR is activated at the logic high transition. Tie PR to VDD, if not used.
15	CS	Serial Register Chip Select Active Low. Serial register operation takes place when CS returns to logic high.
16	RDY	Ready. Active high open-drain ou <u>tp</u> ut. Identifies completion of Instruction 2, Instruction 3, Instruction 8, Instruction 9, Instruction 10, and PR.

TYPICAL PERFORMANCE CHARACTERISTICS

*Figure 5. INL vs. Code, T*_A = -40°*C,* +25°*C,* +85°*C,* +125°*C Overlay*

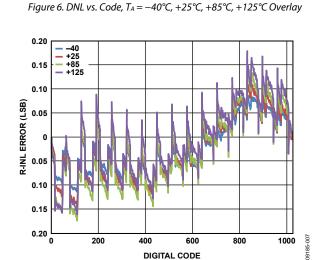
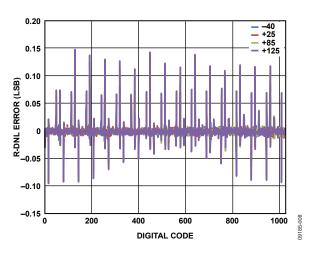
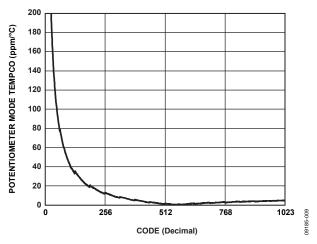
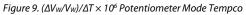





Figure 7. R-INL vs. Code, $T_A = -40^{\circ}$ C, $+25^{\circ}$ C, $+85^{\circ}$ C, $+125^{\circ}$ C Overlay

*Figure 8. R-DNL vs. Code, T*_A = -40°C, +25°C, +85°C, +125°C Overlay

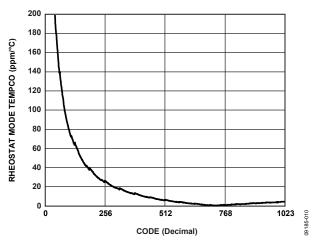


Figure 10. ($\Delta R_{WB}/R_{WB}$)/ $\Delta T \times 10^6$ Rheostat Mode Tempco

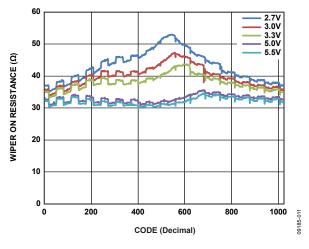
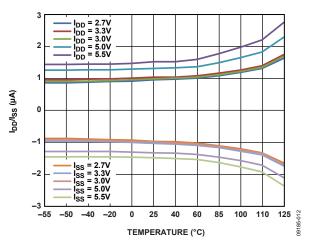
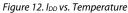




Figure 11. Wiper On Resistance vs. Code

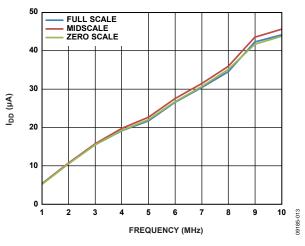


Figure 13. IDD vs. Clock Frequency

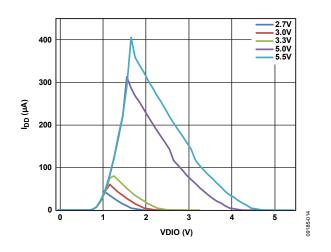
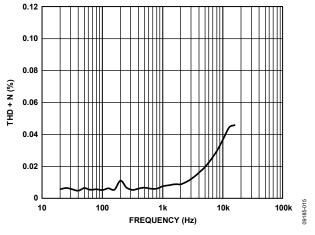
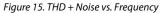




Figure 14. IDD vs. Digital Input Voltage

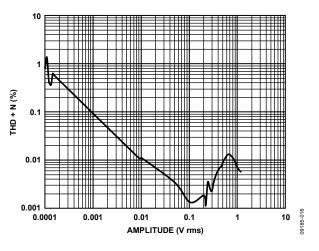


Figure 16. THD + Noise vs. Amplitude

Enhanced Product

AD5235-EP

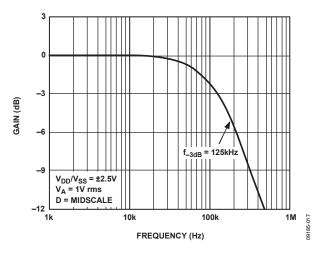


Figure 17. – 3 dB Bandwidth vs. Resistance (See Figure 31)

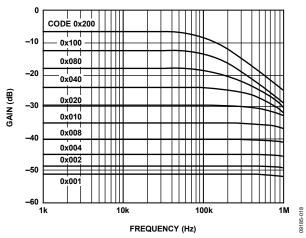


Figure 18. Gain vs. Frequency vs. Code (See Figure 31)

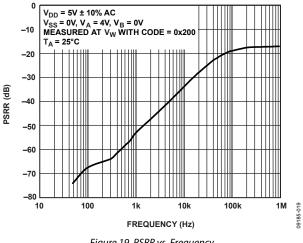


Figure 19. PSRR vs. Frequency

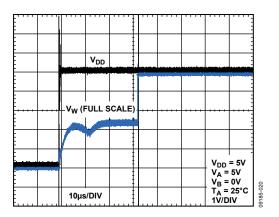
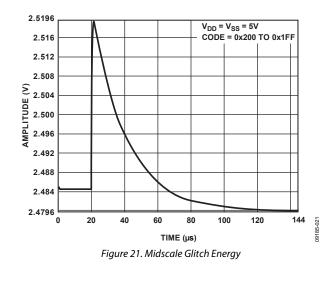



Figure 20. Power-On Reset

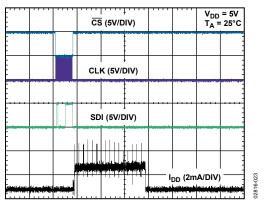


Figure 22. IDD vs. Time When Storing Data to EEMEM

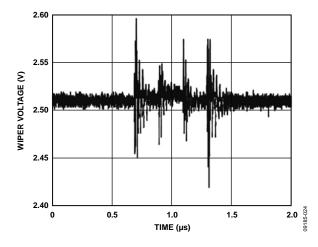


Figure 23. Digital Feedthrough

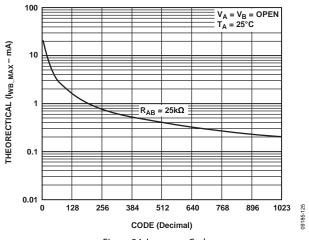


Figure 24. I_{WB_MAX} vs. Code

TEST CIRCUITS

Figure 25 to Figure 35 define the test conditions used in the Specifications section.

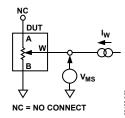


Figure 25. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

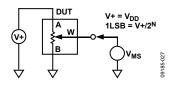
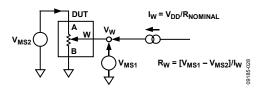



Figure 26. Potentiometer Divider Nonlinearity Error (INL, DNL)

Figure 27. Wiper Resistance

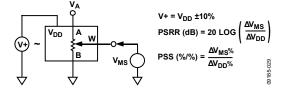


Figure 28. Power Supply Sensitivity (PSS, PSRR)

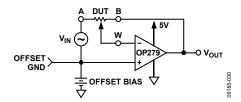
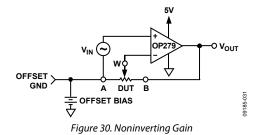



Figure 29. Inverting Gain

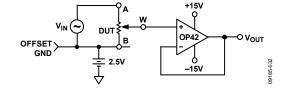


Figure 31. Gain vs. Frequency

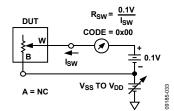


Figure 32. Incremental On Resistance

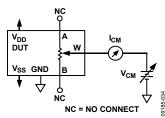
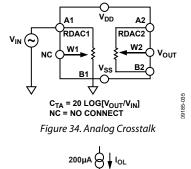



Figure 33. Common-Mode Leakage Current

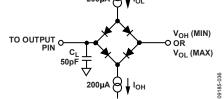
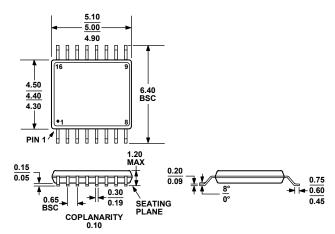



Figure 35. Load Circuit for Measuring V_{OH} and V_{OL} (The diode bridge test circuit is equivalent to the application circuit with $R_{PULL-UP}$ of 2.2 k Ω .)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB Figure 36. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	R _{AB} (kΩ)	Temperature Range	Package Description	Package Option
AD5235BRU25-EP-RL7	25	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
AD5235BRUZ25-EP-R7	25	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

 1 Z = RoHS Compliant Part.

©2010–2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09185-0-1/18(B)

www.analog.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

<u>AD5235BRUZ250-R7</u> <u>EVAL-AD5235SDZ</u> <u>AD5235BRUZ250</u> <u>AD5235BRUZ25</u> <u>AD5235BRUZ25-RL7</u> AD5235BRUZ25-EP-R7