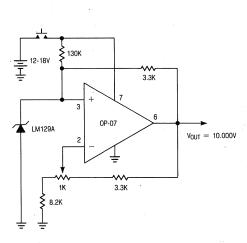


OP-07CS8

Precision Operational Amplifier

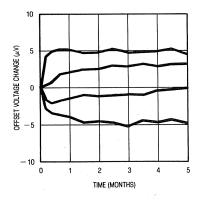
FEATURES


- Guaranteed 150µV max. Offset Voltage
- Guaranteed 1.8µVI°C max. Offset Voltage Drift with Temperature
- Excellent 2.0µV/Month max. Long Term Stability
- Guaranteed 0.65µVp-p max. Noise
- Guaranteed 7nA max. Input Bias Current

APPLICATIONS

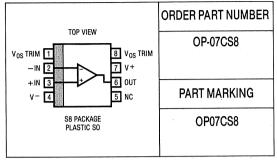
- Thermocouple Amplifiers
- Strain Gauge Amplifiers
- Low Level Signal Processing
- Medical Instrumentation

DESCRIPTION


The OP-07 offers excellent performance in applications requiring low offset voltage, low drift with time and temperature and very low noise. Linear's OP-07 is interchangeable with many of the precision op amp device types. The OP-07 also offers a wide input voltage range, high common-mode rejection and low input bias current. These features result in optimum performance for small signal level and low frequency applications. Use of advanced design, processing and testing techniques make Linear's OP-07 a superior choice over similar products. A buffered reference application is shown below. For single op amp applications requiring higher performance in the SO package, see the LT1001CS8.

Precision Buffered Single Supply Reference

The OP-07 contributes less than 5% of the total drift with temperature, noise and long term drift of the reference application.


Long Term Stability of Four Representative Units

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ± 22V
Differential Input Voltage ± 30V
Input Voltage Equal to Supply Voltage
Output Short Circuit Duration Indefinite
Operating Temperature Range
Storage Temperature Range
All Devices – 65°C to 150°C
Lead Temperature (Soldering, 10 sec.)

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS $V_{S} = \pm 15V$, $T_{A} = 25^{\circ}$ C, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	OP-07CS8 TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 1)		60	150	μV
∆V _{0S} ∆Time	Long Term Input Offset Voltage Stability	(Notes 2 and 3)		0.4	2.0	μV/Month
los	Input Offset Current			0.8	6.0	nA
I _B	Input Bias Current			± 1.8	±7.0	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz (Note 2)		0.35	0.65	μVp-p
	Input Noise Voltage Density	$f_0 = 10Hz$ $f_0 = 100Hz$ (Note 2) $f_0 = 1000Hz$		10.5 10.2 9.8	20.0 13.5 11.5	nV/√Hz nV/√Hz nV/√Hz
l _n	Input Noise Current	0.1Hz to 10Hz (Note 2)		15	35	рАр-р
	Input Noise Current Density	$f_0 = 10Hz$ $f_0 = 100Hz$ (Note 2) $f_0 = 1000Hz$		0.32 0.15 0.13	0.90 0.27 0.18	pA/√Hz pA/√Hz pA/√Hz
R _{in}	Input Resistance Differential Mode	(Note 4)	- 8	33		M
	Input Resistance Common-Mode			120		G
A	Input Voltage Range		± 13.0	± 14.0		V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = \pm 13V$	100	120		dE
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 3V$ to $\pm 18V$. 90	104		dE
A _{VOL}	Large Signal Voltage Gain	$ \begin{array}{l} R_L = 2k\Omega, V_O = \pm 10V \\ R_L = 500\Omega, V_O = \pm 0.5V \\ V_S = \pm 3V (Note 4) \end{array} $	120 100	400 400		V/m\ V/m\
Vo	Maximum Output Voltage Swing	$\begin{array}{l} R_{L} = 10 k \Omega \\ R_{L} \ge 2 k \Omega \\ R_{L} \ge 1 k \Omega \end{array}$	± 12.5 ± 11.5	± 13.0 ± 12.8 ± 12.0		
SR	Slewing Rate	$R_L \ge 2k\Omega$ (Note 2)	0.1	0.25		V/µ
GBW	Closed Loop Bandwidth	A _{VOL} = +1 (Note 2)	0.4	0.6		MH
Zo	Open Loop Output Impedance	$V_0 = 0, I_0 = 0, f = 10Hz$		60		\$
P _d	Power Dissipation	$V_{S} = \pm 15V$ $V_{S} = \pm 3V$		80 4	150 8	mV mV
	Offset Adjustment Range	Null Pot = 20kΩ		±4		m

ELECTRICAL CHARACTERISTICS $V_{S} = \pm 15V$, 0°C $\leq T_{A} \leq 70$ °C, unless otherwise noted.

CVNROI	DADAMETER	CONDITIONS	OP-07CS8 MIN TYP MAX			UNITS	
SYMBOL	PARAMETER	CONDITIONS		BUIN			
V _{OS}	Input Offset Voltage		•		85	250	μV
∆V _{os}	Average Input Offset Voltage Drift						
∆Temp	Without External Trim		•		0.5	1.8	μV/°C
2 long	With External Trim	Null Pot = $20k\Omega$ (Note 2)			0.4	1.6	μV/°C
los	Input Offset Current				1.6	8.0	nA
∆l _{os}	Average Input Offset Current Drift	(Note 2)	•		12	50	pA/°C
I _B	Input Bias Current		•		± 2.2	± 9.0	nA
∆l _B	Average Input Bias Current Drift	(Note 2)	•		18	50	pA/°C
		(
∆Temp							
	Input Voltage Range		•	± 13.0	± 13.5		V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = \pm 13V$	•	97	120		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 3V$ to $\pm 18V$	•	86	100		dB
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega, V_0 = \pm 10V$	•	100	400		V/mV
VOUT	Output Voltage Swing	R _L ≥2kΩ	•	± 11.0	± 12.6		V

The ${\ensuremath{\bullet}}$ denotes specifications which apply over the full operating temperature range.

Note 1: Offset voltage is measured with high speed test equipment, approximately 1 second after power is applied.

Note 2: This parameter is tested on a sample basis only.

Note 3: Long Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5 μ V.

Note 4: This parameter is guaranteed by design.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: OP07DN8#PBF OP07CN8#PBF OP07CS8#TRPBF OP07EN8#PBF OP07CS8#PBF