

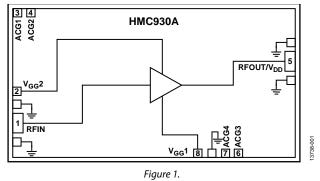
GaAs, pHEMT, MMIC, 0.25 W Power Amplifier, DC to 40 GHz

Data Sheet

HMC930A

FEATURES

High output power for 1 dB compression (P1dB): 22 dBm High saturated output power (P_{SAT}): 24 dBm High gain: 13 dB High output third-order intercept (IP3): 33.5 dBm Supply voltage: 10 V at 175 mA 50 Ω matched input/output Die size: 2.82 mm × 1.50 mm × 0.1 mm


APPLICATIONS

Test instrumentation Microwave radios and VSATs Military and space Telecommunications infrastructure Fiber optics

GENERAL DESCRIPTION

The HMC930A is a gallium arsenide (GaAs), pseudomorphic, high electron mobility transfer (pHEMT), monolithic microwave integrated circuit (MMIC), distributed power amplifier that operates from dc to 40 GHz. The HMC930A provides 13 dB of gain, 33.5 dBm output IP3, and 22 dBm of output power at 1 dB gain compression, requiring 175 mA from a 10 V supply. The HMC930A exhibits a slightly positive gain slope from

FUNCTIONAL BLOCK DIAGRAM

8 GHz to 32 GHz, making it ideal for electronic warfare (EW), electronic countermeasures (ECM), radar, and test equipment applications. The HMC930A amplifier inputs/outputs (I/Os) are internally matched to 50 Ω , facilitating integration into multichip modules (MCMs). All data is taken with the chip connected via two 0.025 mm (1 mil) wire bonds of minimal length at 0.31 mm (12 mils).

Rev. A

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features
Applications1
Functional Block Diagram1
General Description
Revision History
Electrical Specifications
DC to 12 GHz Frequency Range 3
12 GHz to 32 GHz Frequency Range 3
32 GHz to 40 GHz Frequency Range 4
Total Supply Current by $V_{\mbox{\tiny DD}}4$
Absolute Maximum Ratings 5
ESD Caution

Pin Configuration and Function Descriptions6
Interface Schematics7
Typical Performance Characteristics
Theory of Operation
Applications Information14
Biasing Procedures14
Mounting and Bonding Techniques for Millimeterwave
GaAs MMICs15
Outline Dimensions
Die Packaging Information16
Ordering Guide 16

REVISION HISTORY

3/2020-Rev. 0 to Rev. A

Changes to Channel Temperature Parameter and Continuous	
Power Dissipation, P_{DISS} ($T_A = 85^{\circ}$ C, Derate 32.1 mW/°C Above	e
85°C) Parameter, Table 5	5

12/2015—Revision 0: Initial Version

ELECTRICAL SPECIFICATIONS

DC TO 12 GHz FREQUENCY RANGE

 $T_A = 25^{\circ}C$, $V_{DD} = 10$ V, $V_{GG}2 = 3.5$ V, $I_{DD} = 175$ mA. Adjust $V_{GG}1$ between -2 V to 0 V to achieve $I_{DD} = 175$ mA, typical.

Table 1. Parameter Symbol **Test Conditions/Comments** Min Тур Мах Unit FREQUENCY RANGE DC 12 GHz 11.5 13.5 GAIN dB Gain Flatness ±0.5 dB Gain Variation Over Temperature 0.01 dB/°C **RETURN LOSS** Input 18 dB Output 28 dB OUTPUT P1dB 21 Output Power for 1 dB Compression 23 dBm Saturated Output Power 25 $\mathbf{P}_{\mathsf{SAT}}$ dBm Output Third-Order Intercept IP3 dBm 36 NOISE FIGURE 4.5 dB SUPPLY CURRENT $V_{DD} = 10 V$, $V_{GG}1 = -0.8 V$, typical 175 IDD mΑ

12 GHz TO 32 GHz FREQUENCY RANGE

 $T_A = 25^{\circ}C$, $V_{DD} = 10$ V, $V_{GG}2 = 3.5$ V, $I_{DD} = 175$ mA. Adjust $V_{GG}1$ between -2 V to 0 V to achieve $I_{DD} = 175$ mA, typical.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Мах	Unit
FREQUENCY RANGE			12		32	GHz
GAIN			11	13		dB
Gain Flatness				±0.3		dB
Gain Variation Over Temperature				0.017		dB/°C
RETURN LOSS						
Input				16		dB
Output				20		dB
OUTPUT						
Output Power for 1 dB Compression	P1dB			22		dBm
Saturated Output Power	Psat			24		dBm
Output Third-Order Intercept	IP3			33.5		dBm
NOISE FIGURE				5		dB
SUPPLY CURRENT	IDD	$V_{DD} = 10 V, V_{GG}1 = -0.8 V, typical$		175		mA

32 GHz TO 40 GHz FREQUENCY RANGE

 $T_A = 25^{\circ}$ C, $V_{DD} = 10$ V, $V_{GG}2 = 3.5$ V, $I_{DD} = 175$ mA. Adjust $V_{GG}1$ between -2 V to 0 V to achieve $I_{DD} = 175$ mA, typical.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Мах	Unit
FREQUENCY RANGE			32		40	GHz
GAIN			10	12		dB
Gain Flatness				±1.0		dB
Gain Variation Over Temperature				0.032		dB/°C
RETURN LOSS						
Input				15		dB
Output				20		dB
OUTPUT						
Output Power for 1 dB Compression	P1dB			20		dBm
Saturated Output Power	P _{SAT}			23		dBm
Output Third-Order Intercept	IP3			29		dBm
NOISE FIGURE				7.5		dB
SUPPLY CURRENT	IDD	$V_{DD} = 10 \text{ V}, V_{GG}1 = -0.8 \text{ V}, \text{typical}$		175		mA

TOTAL SUPPLY CURRENT BY $V_{\mbox{\scriptsize DD}}$

Table 4. Parameter Symbol Min Тур Max Unit SUPPLY CURRENT Idd $V_{\text{DD}} = 9 \text{ V}$ 175 mΑ $V_{\text{DD}} = 10 \text{ V}$ 175 mΑ $V_{DD} = 11 \text{ V}$ 175 mΑ

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating						
Drain Bias Voltage (V _{DD})	13 V						
Gate Bias Voltage							
V _{GG} 1	–3 V to 0 V dc						
V _{GG} 2							
$V_{DD} = 12 V$	$V_{GG}2 = 5.5 \text{ V}, I_{DD} > 145 \text{ mA}$						
$V_{DD} = 8.5 \text{ V to } 11 \text{ V}$	V _{GG} 2 = (V _{DD} – 6.5 V) up to 4.5 V						
$V_{DD} < 8.5 V$	V _{GG} 2 must remain > 2 V						
RF Input Power (RFIN)	22 dBm						
Channel Temperature	175°C						
Continuous Power Dissipation, P _{DISS} (T _A = 85°C, Derate 32.1 mW/°C Above 85°C)	2.89 W						
Thermal Resistance (Channel to Die Bottom)	31.1°C/W						
Output Power into Voltage Standing Wave Ratio (VSWR) > 7:1	24 dBm						
Storage Temperature Range	–65°C to +150°C						
Operating Temperature Range	–55°C to +85°C						
ESD Sensitivity, Human Body Model (HBM)	Class 1A, passed 250 V						

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

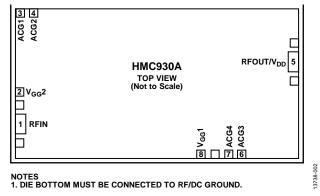
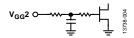


Figure 2. Pad Configuration


Table 6. Pad Function Descriptions


Pad No.	Mnemonic	Description
1	RFIN	RF Input. This pin is dc-coupled and matched to 50 Ω . A blocking capacitor is required on this pin.
2	V _{GG} 2	Gate Control 2 for the Amplifier. Attach bypass capacitors as shown in Figure 37. For nominal operation, apply 3.5 V to $V_{GG}2$.
3	ACG1	Low Frequency Termination 1. Attach bypass capacitors as shown in Figure 37.
4	ACG2	Low Frequency Termination 2. Attach bypass capacitors as shown in Figure 37.
5	RFOUT/V _{DD} ¹	RF Output for the Amplifier (RFOUT).
		DC Bias (V_{DD}). Connect V_{DD} to the bias tee network to provide the drain current (I_{DD}). See Figure 37.
6	ACG3	Low Frequency Termination 3. Attach bypass capacitors as shown in Figure 37.
7	ACG4	Low Frequency Termination 4. Attach bypass capacitors as shown in Figure 37.
8	V _{GG} 1	Gate Control 1 for the Amplifier. Attach bypass capacitors as shown in Figure 37. Follow the procedures described in the Biasing Procedures section.
Die Bottom	GND	Die bottom must be connected to RF/dc ground.

 1 RFOUT/V_{\mbox{\scriptsize DD}} is a multifunction pad.

INTERFACE SCHEMATICS

Figure 3. RFIN Interface Schematic

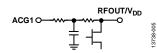


Figure 5. ACG1 and RFOUT/V_{DD} Interface Schematic

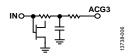


Figure 6. ACG3 Interface Schematic

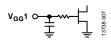


Figure 7. V_{GG}1 Interface Schematic

Figure 8. GND Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

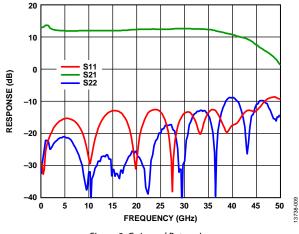


Figure 9. Gain and Return Loss

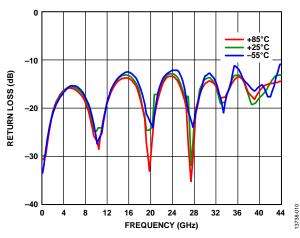


Figure 10. Input Return Loss vs. Frequency for Various Temperatures

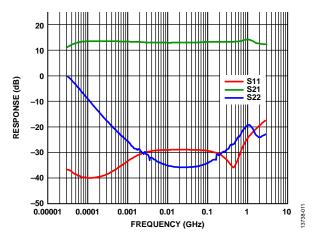


Figure 11. Low Frequency Gain and Return Loss

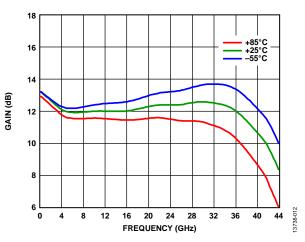
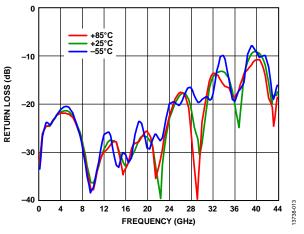
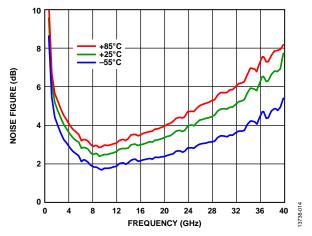
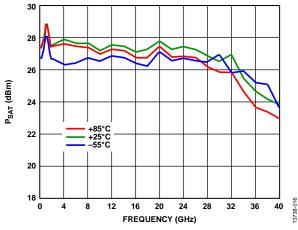
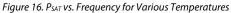
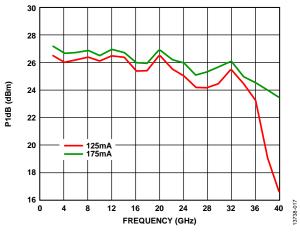



Figure 12. Gain vs. Frequency for Various Temperatures

Figure 13. Output Return Loss vs. Frequency for Various Temperatures


Figure 14. Noise Figure vs. Frequency for Various Temperatures


Data Sheet

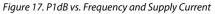
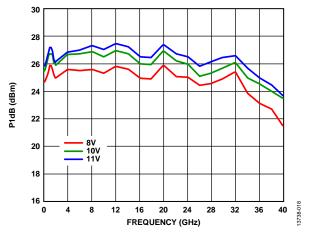
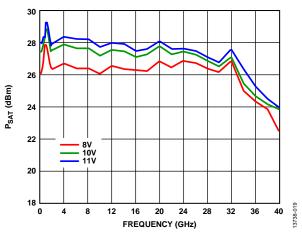
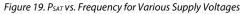
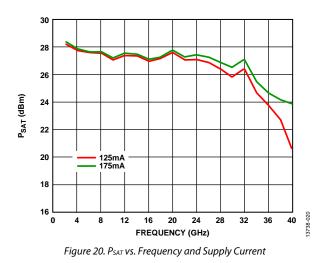
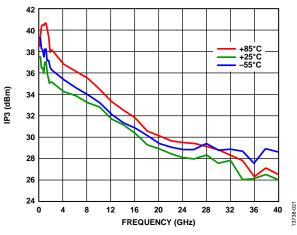
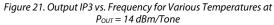
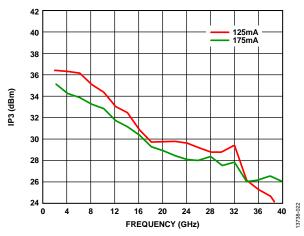
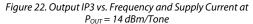

P1dB (dBm) +85°C +25°C –55°C 13738-015 FREQUENCY (GHz)

Figure 15. P1dB vs. Frequency for Various Temperatures


Figure 18. P1dB vs. Frequency for Various Supply Voltages





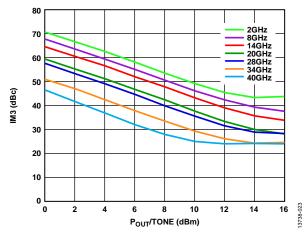


Figure 23. Output Third-Order Intermodulation Tone (IM3) at $V_{DD} = 10 V$

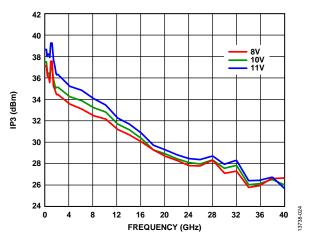
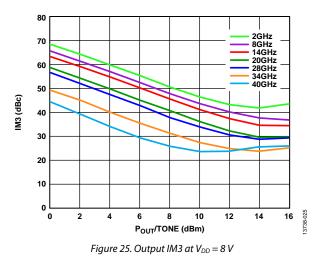
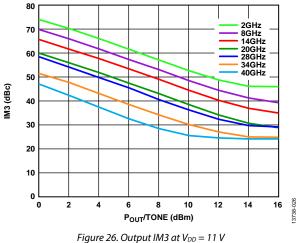




Figure 24. Output IP3 vs. Frequency for Various Supply Voltages at $P_{OUT} = 14 \text{ dBm/Tone}$

Data Sheet

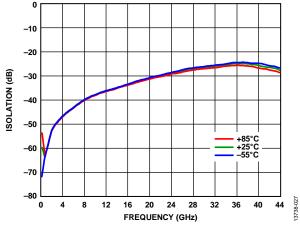


Figure 27. Reverse Isolation vs. Frequency for Various Temperatures

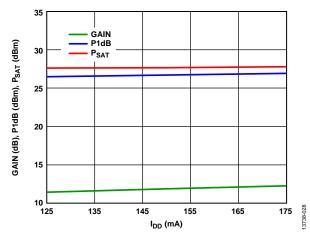
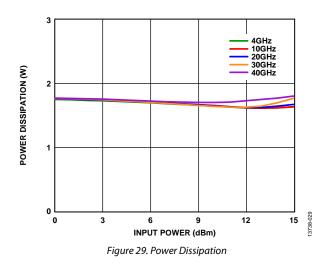
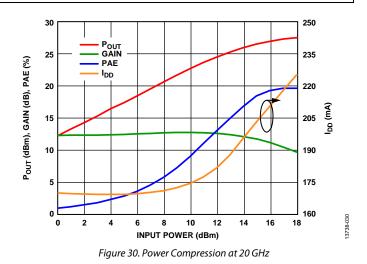




Figure 28. Gain and Power (P1dB and P_{SAT}) vs. Supply Current (I_{DD}) at 20 GHz

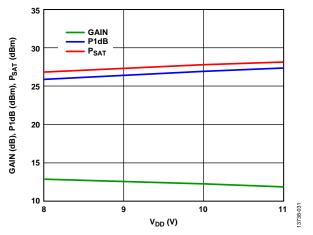


Figure 31. Gain and Power (P1dB and P_{SAT}) vs. Supply Voltage (V_{DD}) at 20 GHz

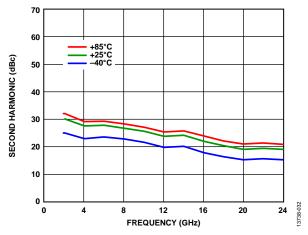


Figure 32. Second-Order Harmonic vs. Frequency for Various Temperatures at $P_{OUT} = 14$ dBm, $V_{DD} = 10$ V, $V_{GG} = 3.5$ V, and $I_{DD} = 175$ mA

HMC930A

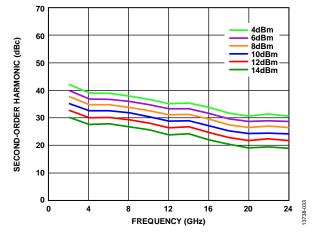


Figure 33. Second-Order Harmonic vs. Frequency for Various P_{OUT} Values, $V_{DD} = 10$ V, $V_{GG} = 3.5$ V, and $I_{DD} = 175$ mA

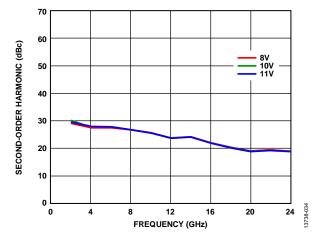


Figure 34. Second-Order Harmonic vs. Frequency for Various V_{DD} Values at P_{OUT} = 14 dBm and I_{DD} = 175 mA

THEORY OF OPERATION

The HMC930A is a GaAs, pHEMT, MMIC, cascaded, distributed power amplifier. The cascade distributed architecture uses a fundamental cell consisting of a stack of two field effect transistors (FETs) connected from source to drain. The basic schematic for a fundamental cell is shown in Figure 35. The fundamental cell is duplicated several times, with transmission lines connecting the drains of the top devices and the gates of the bottom devices, respectively. Additional circuit design techniques around each cell optimize the overall response. The major benefit of this architecture is that acceptable gain is maintained across a bandwidth that is far greater than what is typically provided by a single instance of the fundamental cell.

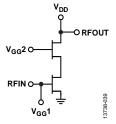


Figure 35. Fundamental Cell Schematic

To obtain the best performance from the HMC930A and to avoid damaging the device, follow the recommended biasing sequences described in the Biasing Procedures section.

APPLICATIONS INFORMATION

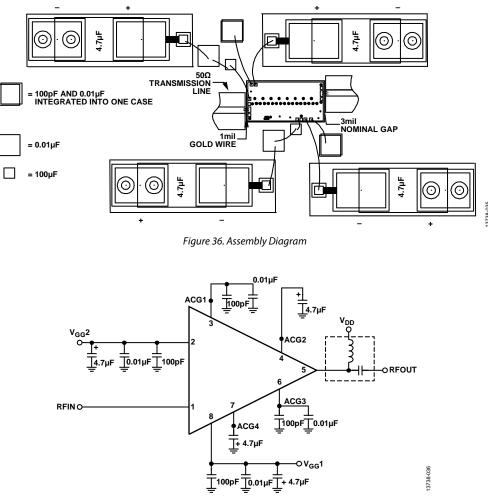


Figure 37. Application Circuit

BIASING PROCEDURES

Capacitive bypassing is required for both V_{GG1} and V_{GG2} , as shown in Figure 37. The capacitors to ground required for the ACG1 through ACG4 pads act as low frequency terminations; this helps flatten the overall frequency response by diminishing the gain at low frequencies.

The recommended biasing sequence during power-up is as follows:

- 1. Connect to GND.
- 2. Set $V_{GG}1$ to -2 V to pinch off the drain current.
- 3. Set V_{DD} to 10 V (the drain current is pinched off).
- 4. Set $V_{GG}2$ to 3.5 V (the drain current is pinched off).
- 5. Adjust V_{GG} 1 in a positive direction until a quiescent current (I_{DD}) of 175 mA is obtained.
- 6. Apply the RF signal.

The recommended biasing sequence during power-down is as follows:

- 1. Turn off the RF signal.
- 2. Set $V_{GG}1$ to -2 V to pinch off the drain current.
- 3. Set $V_{GG}2$ to 0 V.
- 4. Set V_{DD} to 0 V.
- 5. Set $V_{GG}1$ to 0 V.

All measurements for the HMC930A are taken using the typical application circuit (see Figure 37) configured as shown Figure 36. The bias conditions shown in the Electrical Specifications section are the operating points recommended to optimize the overall performance. Unless otherwise noted, the data shown is taken using the recommended bias conditions. Operation of the HMC930A at different bias conditions may provide performance that differs from what is shown in the Typical Performance Characteristics section.

MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS

Attach the die directly to the ground plane eutectically or with conductive epoxy (see the Handling Precautions section, the Mounting section, and the Wire Bonding section).

Microstrip, 50 Ω , transmission lines on 0.127 mm (5 mil) thick alumina, thin film substrates are recommended for bringing the radio frequency to and from the chip (see Figure 38). When using 0.254 mm (10 mil) thick alumina thin film substrates, raise the die 0.150 mm (6 mils) to ensure that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102 mm (4 mil) thick die to a 0.150 mm (6 mil) thick, molybdenum (Mo) heat spreader (moly tab), which is then attached to the ground plane (see Figure 38).

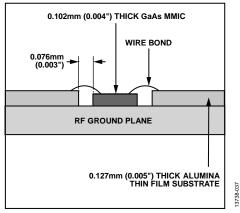


Figure 38. Die Without the Moly Tab

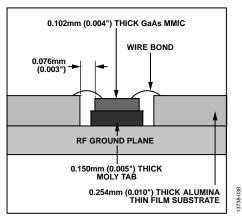


Figure 39. Die With the Moly Tab

Place microstrip substrates as close to the die as possible to minimize bond wire length. Typical die to substrate spacing is 0.076 mm to 0.152 mm (3 mil to 6 mil).

Handling Precautions

To avoid permanent damage, follow these storage, cleanliness, static sensitivity, transient, and general handling precautions:

- Place all bare die in either waffle or gel-based ESD protective containers and then seal the die in an ESD protective bag for shipment. Once the sealed ESD protective bag is opened, store all die in a dry nitrogen environment.
- Handle the chips in a clean environment. Do not attempt to clean the chip using liquid cleaning systems.
- Follow ESD precautions to protect against ESD strikes.
- While bias is applied, suppress instrument and bias supply transients. Use shielded signal and bias cables to minimize inductive pick up.
- Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and must not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. Ensure that the mounting surface is clean and flat.

When attaching eutectic die, an 80/20 gold tin preform is recommended with a work surface temperature of 255°C and a tool temperature of 265°C. When hot 90/10 nitrogen/hydrogen gas is applied, ensure that tool tip temperature is 290°C. Do not expose the chip to a temperature greater than 320°C for more than 20 seconds. For attachment, no more than 3 seconds of scrubbing is required.

When attaching epoxy die, apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the schedule of the manufacturer.

Wire Bonding

RF bonds made with two 1 mil wires are recommended. Ensure that these bonds are thermosonically bonded with a force of 40 grams to 60 grams. DC bonds of a 0.001" (0.025 mm) diameter, thermosonically bonded, are recommended. Make ball bonds with a force of 40 grams to 50 grams and wedge bonds with a force of 18 grams to 22 grams. Make all bonds with a nominal stage temperature of 150°C. Apply a minimum amount of ultrasonic energy to achieve reliable bonds. Make all bonds as short as possible, less than 12 mils (0.31 mm).

OUTLINE DIMENSIONS

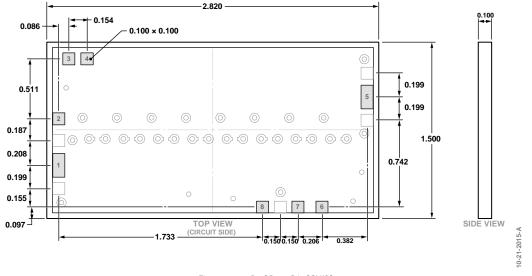


Figure 40. 8-Pad Bare Die [CHIP] (C-8-6) Dimensions shown in millimeter

DIE PACKAGING INFORMATION

Standard	Alternate Packaging
GP-2 (Gel Pack)	For alternate packaging information, contact Analog Devices, Inc.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
HMC930A	–55°C to +85°C	8-Pad Bare Die [CHIP]	C-8-6

www.analog.com

Rev. A | Page 16 of 16

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: HMC930A-SX HMC930A