

Dual Monolithic SPST CMOS Analog Switch

General Description

The DG200A is a dual, normally closed, single-pole-single-throw (SPST) analog switch. This CMOS switch can be operated with power supplies ranging from $\pm 4.5 \text{V}$ to $\pm 18 \text{V}$. The DG200A has guaranteed break-before-make switching. Its maximum turn-off time is 500ns, and its maximum turn-on time is 100ns.

Maxim guarantees that the DG200A will not latch-up if the power supplies are turned off with input signals still connected as long as absolute maximum ratings are not violated.

Compared to the original manufacturer's product, Maxim's DG200A consumes significantly lower power, making it better suited for portable applications.

Applications

Winchester Disk Drives

Test Equipment

Communications Systems

PBX, PABX

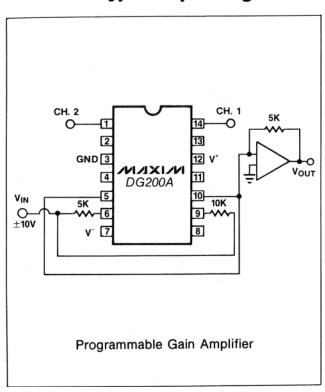
Guidance and Control Systems

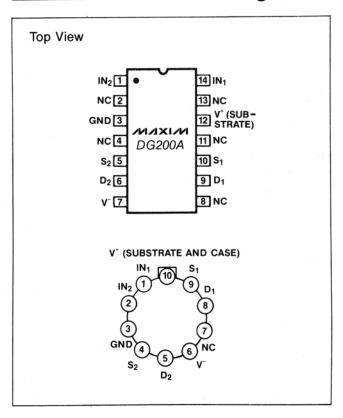
Head up Displays

Military Radios

Features

- Improved 2nd Source! Power Supply Current <300μA</p>
- ♦ Wide Supply Range ±4.5V to ±18V
- Single Supply Operation
- Non-Latching with Supplies Turned-off and Input Signals Present
- ♠ CMOS and TTL Logic Compatible


Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE
DG200AAK	-55°C to +125°C	14 Lead CERDIP
DG200ABK	-25°C to +85°C	14 Lead CERDIP*
DG200ACK	0°C to +70°C	14 Lead CERDIP
DG200ACJ	0°C to +70°C	14 Lead Plastic DIP
DG200ADJ	-40°C to +85°C	14 Lead Plastic DIP
DG200ACY	0°C to +70°C	14 Lead SO
DG200ADY	-40°C to +85°C	14 Lead SO
DG200AC/D	0°C to +70°C	Dice
DG200AAA	-55°C to +125°C	10 Pin Metal Can*
DG200ABA	-25°C to +85°C	10 Pin Metal Can*
DG200ACA	0°C to +70°C	10 Pin Metal Can*

^{*}Contact factory for availability.

Pin Configuration

Typical Operating Circuit

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V	
V+	44V
GND	25V
Digital Inputs VS, VD (Note 1)	2V to (V+ + 2V)
or 20m	A, whichever occurs first.
Current, Any Terminal Except S or D	30mA
Continuous Current, S or D	20mA
(Pulsed at 1msec, 10% duty cycle max)	100mA
Storage Temperature (A & B Suffix)	65 to 150°C
(C Suffix)	65 to 125°C

Operating Temperature	e (A Suffix)	55 to 125°C
	(B Suffix)	25 to 85°C
	(C Suffix)	25 to 85°C
	(D Suffix)	40 to 85°C
Power Dissipation (Page	ckage)*	
Metal Can**		450mW
14 Pin Ceramic DIP***		825mW
14 Pin Plastic DIP****		470mW
* All leads soldered	or welded to PC board.	

- ** Derate 6mW/°C above 75°C.
- *** Derate 11mW/°C above 75°C.
- **** Derate 6.5mW/°C above 25°C.

Stresses listed under "Absolute Maximum Ratings" may be applied (one at a time) to devices without resulting in permanent damage. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (V⁺ = +15V, V⁻ = -15V, GND = 0V, T_A = 25°C, unless otherwise indicated.)

PARAMETER		TEST CONDITIONS		LIMITS								
	SYMBOL			DG200A			DG200 B/C/D			UNITS		
PARAMETER	STMBOL	1231	MIN (Note 2	TYP) (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX				
SWITCH												
Analog Signal Range (Note 1)	V _{ANALOG}			-15		15	-15		15	v		
Drain-Source ON Resistance	r _{DS(on)}	V _D = :	\pm 10V, V _{in} = 0.8V, I _S = 1mA		45	70		45	80	Ω		
Source OFF			$V_S = 14V, V_D = -14V$		0.01	2.0		0.01	5.0	nA		
Leakage Current	I _{S(off)}	V _{in} = 2.4V	V _S = -14V, V _D = 14V	-2.0	-0.02		-5.0	-0.02				
Drain OFF	1	V _{in} = 2.4V	V _S = -14V, V _D = 14V		0.01	2.0		0.01	5.0			
Leakage Current	I _{D(off)}		V _S = 14V, V _D = -14V	-2.0	-0.02		-5.0	-0.02				
Drain ON Leakage				V _{in} = 0.8V	$V_{S} = V_{D} = 14V$		0.1	2.0		0.1	5.0	
Current (Note 4)	I _{D(on)}	V _{in} - 0.6V	V _S = V _D = -14V	-2.0	-0.1		-5.0	-0.1				
INPUT			- 4									
Input Current with Input		V _{in} = 2.4V,		-1.0	0.0009		-1.0	0.0009				
Voltage High	INH		V _{in} = 15V		0.005	1.0		0.005	1.0	μΑ		
Input Current with Input Voltage Low	I _{INL}	V _{in} = 0V		-1.0	-0.0015		-1.0	-0.0015		μΑ		
DYNAMIC												
Turn-ON Time	ton	See Switch	ing Time Test Circuit		440	1000		440	1000	ns		
Turn-OFF Time	t _{off}		(Figure 1)		70	500		70	500			
Charge Injection	Q	C _L = 10 R _{GEN}		10			10		рС			
Source OFF Capacitance	C _{S(off)}	f = 140kHz	V _S = 0V		9.0			9.0				
Drain OFF Capacitance	C _{D(off)}	V _{in} = 5V	V _D = 0V		9.0			9.0		pF		
Channel ON Capacitance	C _{D(on)} + C _{S(on)}	or V _S = 0V	V _D = V _S = 0V		25			25				
OFF Isolation Figure 3 (Note 5)		$V_{in} = 5V, Z_{L} = 75\Omega$ $V_{S} = 2.0V, f = 1MHz$			75			75		dB		
Crosstalk Figure 4 (Channel to Channel)					90			90				

ELECTRICAL CHARACTERISTICS (continued)

 $(V^+ = +15V, V^- = -15V, GND = 0V, T_A = 25^{\circ}C, unless otherwise indicated.)$

PARAMETER					LIM	IITS	UNITS		
	SYMBOL	TEST CONDITIONS	DG200A			DG200 B/C/D			
	01111202	1201 001121110110	MIN (Note 2)	TYP (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX	
SUPPLY									
Positive Supply Current	l+	Both Channels ON or OFF		180	300		200	500	
Negative Supply Current	I-	$V_{in} = 0$ and 2.4V	-10	-0.1		-100	-0.1		μΑ

ELECTRICAL CHARACTERISTICS (Over Temperature)

(V⁺ = +15V, V⁻ = -15V, GND = 0V, T_A = Over Temperature Range, unless otherwise indicated.)

			LIMITS							
PARAMETER	SYMBOL	TEST CONDITIONS		DG200A			DG200 B/C			UNITS
	STWIDOL			MIN (Note 2)	TYP (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX	
SWITCH										
Analog Signal Range (Note 1)	V _{ANALOG}			-15		15	-15		15	V
Drain-Source ON Resistance	r _{DS(on)}	V _D = :	\pm 10V, V _{in} = 0.8V, I _S = 1mA			100			100	Ω
Source OFF	Τ.	V _{in} = 2.4V	V _S = 14V, V _D = -14V			100			100	
Leakage Current	I _{S(off)}		V _S = -14V, V _D = 14V	-100			-100			
Drain OFF			V _S = -14V, V _D = 14V			100			100	nA
Leakage Current	I _{D(off)}		V _S = 14V, V _D = -14V	-100			-100			''^
Drain ON Leakage		V = 0.9V	V _S = V _D = 14V			200			200	
Current (Note 4)	I _{D(on)}	V _{in} = 0.8V	$V_{S} = V_{D} = -14V$	-200			-200			
INPUT										
Input Current/	l	V _{in} =		-10			-10			
Voltage High	I _{NH}		2.4V, V _{in} = 15V			10			10	
Input Current/ Voltage Low	I _{INL}		V _{in} = 0V	-10			-10			μΑ

- Note 1: Signals on S_X, D_X, or IN_X, exceeding V⁻ or V⁺ will be clamped by internal diodes. LIMIT FORWARD DIODE CURRENT to maximum current ratings.
- Note 2: The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
- Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- Note 4: I_{D(on)} is leakage from driver into "ON" switch.
- **Note 5:** "OFF" isolation = 20 log V_S/V_D , V_S = input to OFF switch, V_D = output.

Test Circuits

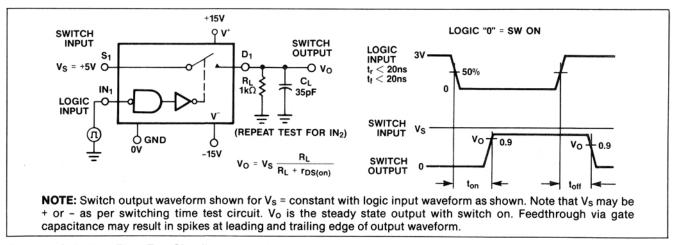


Figure 1. Switching Time Test Circuit

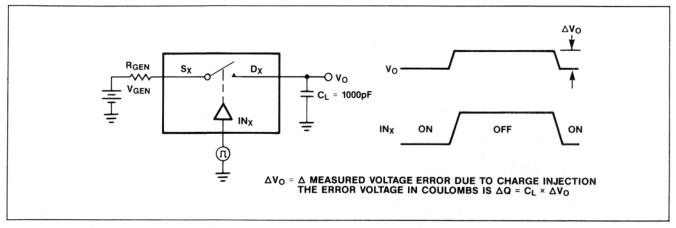


Figure 2. Charge Injection Test Circuit

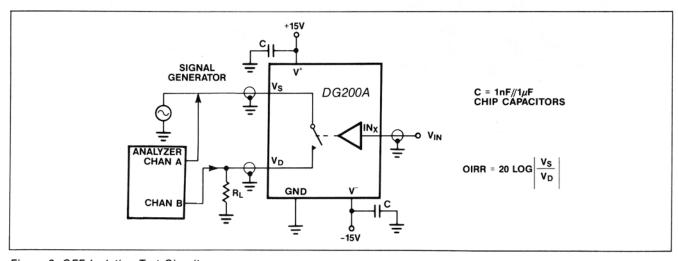


Figure 3. OFF Isolation Test Circuit

Test Circuits (continued)

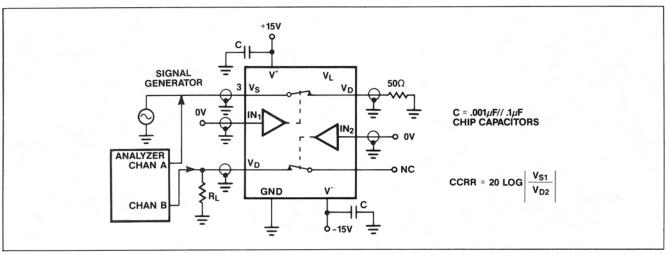
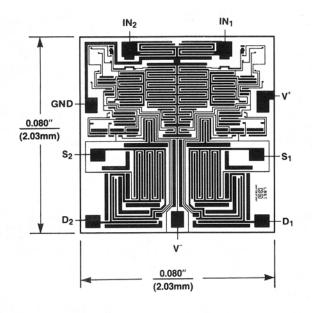
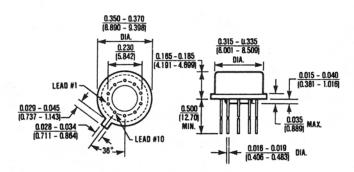
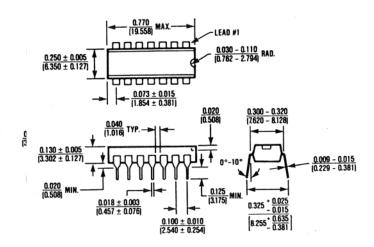




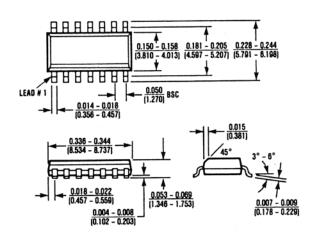
Figure 4. Channel To Channel Crosstalk Test Circuit

Chip Topography

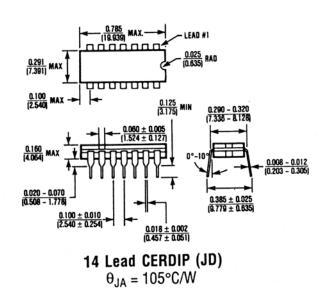
Package Information



10 Lead T0-100 Can (TW) $\theta_{JA} = 150^{\circ}\text{C/W} \\ \theta_{JC} = 45^{\circ}\text{C/W}$


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)


14 Lead Plastic DIP (PD)

 $\theta_{JA} = 140$ °C/W $\theta_{JC} = 70$ °C/W

14 Lead Small Outline (SD)

 $\theta_{JA} = 115$ °C/W $\theta_{JC} = 60$ °C/W

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

 $\theta_{JC} = 50^{\circ}\text{C/W}$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

 $\underline{\mathsf{DG200AAK/883B}} \ \underline{\mathsf{DG200ACJ+}} \ \underline{\mathsf{DG200ACY+}} \ \underline{\mathsf{DG200ACY+T}} \ \underline{\mathsf{DG200ADY+}} \ \underline{\mathsf{DG200ADY+T}}$