TINY NO RSENSE BOOST CONVERTER

LTC3872-1

DESCRIPTION

Demonstration circuit 989B-B is a single-output boost converter, it features tiny, boost controller LTC3872-1. The input voltage is from 3.0V to 4.5V without output de-rating. The supply has one output: $5\text{V}/2\text{A}_{\text{MAX}}$. Minimum input voltage is 2.75V. When input voltage is lower than 3V, output current should be de-rated. The design employs the LTC3872-1, the small footprint NO R_{SENSE} boost regulator. The switching frequency is fixed at 550 kHz. With current mode control and OPTI-LOOP compensation, DC989B-B can be optimized to provide fast transient response. NO R_{SENSE} technique reduces both: size of the converter and power dissipation. However, care should be taken

to MOSFET selection, it's not only switching element, but also its $R_{\text{DS(ON)}}$ represents the current sensing element for the control loop, see LTC3872-1 datasheet for details. LTC3872-1 allows design small size and high efficiency step-up DC/DC solutions.

Design files for this circuit board are available. Call the LTC factory.

TM-NO R_{SENSE} is trademark of Linear Technology Corporation

Table 1.Performance Summary $(T_A = 25^{\circ}C)$

PARAMETER	CONDITION	VALUE
Minimum Input Voltage If the input voltage must be lower than 3V, degrade output load current.		2.75V
Maximum Input Voltage		4.5V
Output Voltage V _{OUT}		5V +/- 2%
Maximum Continuous output Current	Vin = 3V to 4.5V	2A
Typical Operating Frequency	Fixed	550kHz
Typical Output Ripple (V _{OUT})	20MHz BW, 2A load, V _{IN} = 3V, frequency = 550kHz	
Efficiency	V _{IN} =3V, V _{OUT} =5V I _{OUT} =2A	90%

QUICK START PROCEDURE

Demonstration circuit 989B-B is easy to set up to evaluate the performance of the LTC3872-1. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place RUN in ON position for normal operation.

Connect the desired loads between 5V output terminal and the GND terminal on the board.

NOTE: The maximum load is 2A.

Connect the input power supply to the VIN and GND terminals on the right, center of the board.

NOTE: Do not increase V_{IN} over 5V.

- 3. Vary the input voltage from 3.0V to 4.5V and adjust the load current from 0 to 2A. Measure the output voltages. V_{OUT} should read between 5.0V $\pm 0.1V$ within specified maximum load current.
- 4. Measure the output ripple voltage at maximum output current level and minimum in-

TINY NO R_{SENSE} BOOST CONVERTER

put voltage; it usually will measure less than 30mV.

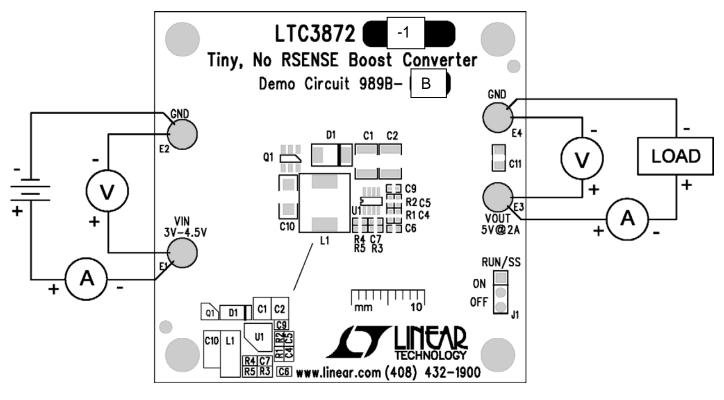


Figure 1. Proper Measurement Equipment Setup

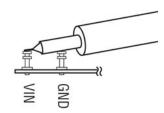


Figure 2. Scope Probe Placements for Measuring Input or Output Ripple.

TINY NO RSENSE BOOST CONVERTER

Figure 3. Typical Switch Node and Output Ripple Waveform

 V_{IN} =3.0V, V_{OUT} =5V, I_{OUT} =2A

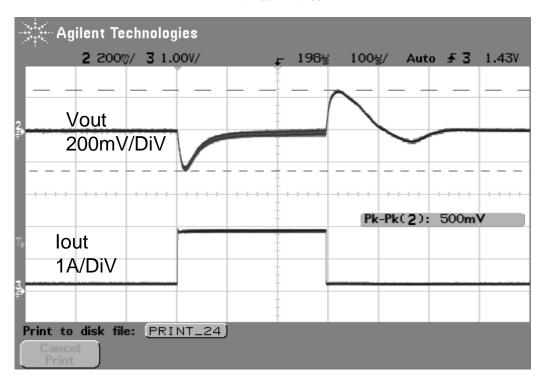
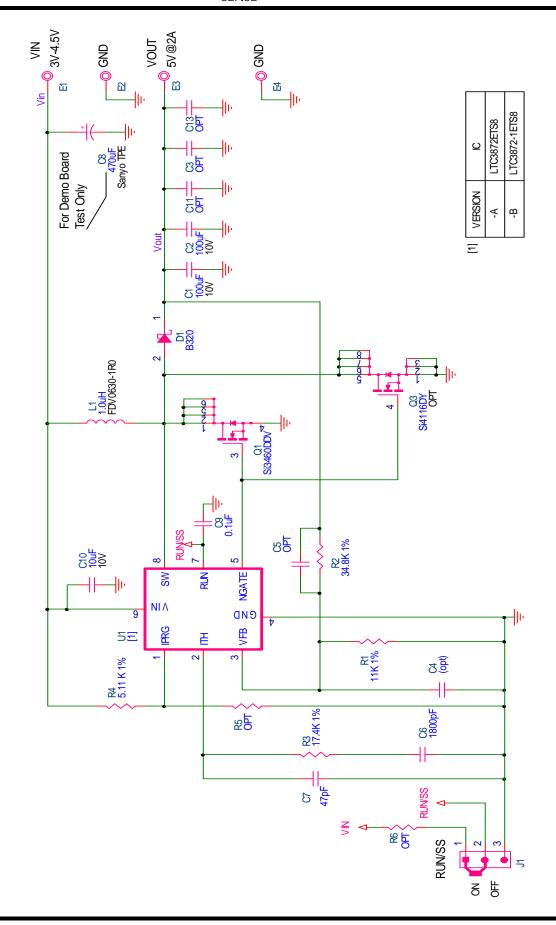



Figure 4. Load Step Response

 $V_{IN} = 3.3V$, $V_{OUT} = 5V \& 1.6A$ Load Step

TINY NO R_{SENSE} BOOST CONVERTER

TINY NO R_{SENSE} BOOST CONVERTER

Item	Qty	Ref- Des	Part Description	Manufacturer's Part Numbei	
REQUIRED CIRCUIT COMPONENTS:					
1	2	C1,C2	CAP 1210 100uF 20% 10V X5R	TAIYO YUDEN LMK325ABJ107MM-1	
2	1	C6	CAP 0402 1800pF 5% 50V X7R	AVX 04025C182JAT	
3	1	C7	CAP 0402 47pF 5% 25V NPO	AVX 0603YC104KAT	
4	1	C8	CAP 7343 470uf 20% 6.3V POSCAP	Sanyo 6tpe470m	
5	1	C9	CAP 0402 0.1uF 10% 16V X5R	TDK C1005X5R1C104K	
6	1	C10	CAP 1206 10uF 10% 10V X5R	TAIYO YUDEN LMK316BJ106KD-T	
7	1	D1	DIODE B320A-13	DIODES INC. B320A-13	
8	1	L1	IND 1.0uH	TOYO FDV0630-1R0M-P3	
9	1	Ql	XSTR MOSFET N-CHANNEL 20V	VISHAY Si3460DDV	
10	1	R1	RES 0402 11k OHMS 1% 1/16W	VISHAY CRCW040211K0FKED	
11	1	R2	RES 0402 34.8k OHMS 1% 1/16W	VISHAY CRCW040234K8FKED	
12	1	R3	RES 0402 17.4k OHMS 1% 1/10W	VISHAY CRCW040217K4FKED	
13	1	R4	RES 0402 5.11k OHMS 1% 1/16W	VISHAY CRCW04025K11FKED	
14	1	U1	IC CURRENT MODE BOOST DC/DC CONTROLLER	LINEAR TECH. LTC3872-1ETS8#TRPBF	
		ADDITIONAL DEMO BOAR	D CIRCUIT COMPONENTS:	·····	
1		C3,C4,C5,C11,C13		OPT	
2		Q3		VISHAY Si4116DY OPTION	
3		R5,R6		OPT	
		HARDWARE		www	
1	4	E1,E2,E3,E4	TURRET	MILL MAX 2501-2-00-80-00-00-07-0	
2	1	J1	HEADER 3PIN 2mm	SULLINS NRPN031PAEN-RC	
3	1	JP1	SHUNT	Samtec 2SN-BK-G	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

DC989B-B