

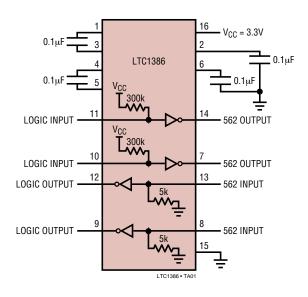
3.3V Low Power EIA/TIA562 Transceiver

FEATURES

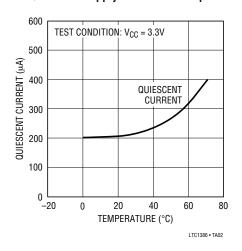
- Operates from a Single 3.3V Supply
- Low Supply Current: I_{CC} = 200µA
- ESD Protection Over ±10kV
- Available in 16-Pin SOIC Narrow Package
- Uses Small Capacitors: 0.1µF
- Operates to 120kBaud
- Output Overvoltage Does Not Force Current Back into Supplies
- EIA/TIA562 I/O Lines Can Be Forced to ±25V Without Damage
- Pin Compatible with LT1181A

APPLICATIONS

- Notebook Computers
- Palmtop Computers

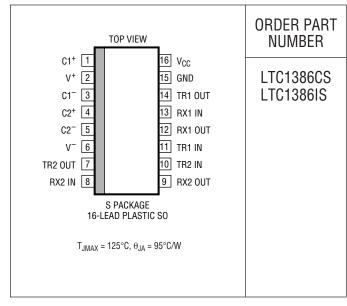

DESCRIPTION

The LTC®1386 is an ultra-low power 2-driver/2-receiver EIA/TIA562 transceiver that operates from a single 3.3V supply. The charge pump requires only four space-saving 0.1 μF capacitors. The supply current (I_CC) of the transceiver is only 200 μA with driver outputs unloaded.


The LTC1386 is fully compliant with all data rate and overvoltage EIA/TIA562 specifications. The transceiver can operate up to 120kbaud with a 1000pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage and can survive multiple $\pm 10kV$ ESD strikes.

LT, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION


Quiescent Supply Current vs Temperature

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 5V
Input Voltage
Driver $-0.3V$ to $V_{CC} + 0.3V$
Receiver25V to 25V
Digital Input $-0.3V$ to $V_{CC} + 0.3V$
Output Voltage
Driver – 25V to 25V
Receiver $-0.3V$ to $V_{CC} + 0.3V$
Short-Circuit Duration
V+ 30 sec
V ⁻ 30 sec
Driver Output Indefinite
Receiver Output Indefinite
Operating Temperature Range
LTC1386C0°C to 70°C
LTC1386I – 40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

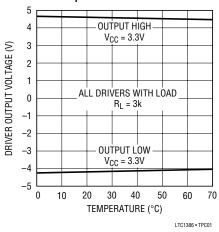
DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC}=3.3V$, $C1=C2=C3=C4=0.1\mu F$, unless otherwise noted.

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Any Driver							
Output Voltage Swing	3k to GND Po	ositive	•	3.7	4.5		V
	Ne	egative	•	-3.7	-4.5		V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High)		•		1.4	0.8	V
	Input High Level (V _{OUT} = Low)		•	2.0	1.4		V
Logic Input Current	$V_{IN} = V_{CC}$		•			5	μА
	$V_{IN} = 0V$		•		-20	-40	μА
Output Short-Circuit Current	$V_{OUT} = 0V$			±9	±10		mA
Any Receiver							
Input Voltage Thresholds	Input Low Threshold		•	0.8	1.3		V
	Input High Threshold		•		1.7	2.4	V
Hysteresis			•	0.1	0.4	1	V
Input Resistance	$-10V \le V_{IN} \le 10V$			3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 3.3$ V)		•		0.2	0.4	V
	Output High, $I_{OUT} = 160 \mu A (V_{CC} = 3.3 V)$		•	3.0	3.2		V
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC}			-5	-20		mA
	Sourcing Current, V _{OUT} = GND			2	7		mA
Power Supply Generator							
V ⁺ Output Voltage	I _{OUT} = 0mA				5.7		V
	$I_{OUT} = 5mA$				5.5		V
V ⁻ Output Voltage	I _{OUT} = 0mA				-5.3		V
	$I_{OUT} = -5mA$				-5.0		V
Power Supply							
V _{CC} Supply Current	No Load (Note 2), 0°C to 70°C		•		0.2	0.5	mA
	No Load (Note 2), -40°C to 85°C		•		0.35	1.0	mA
							1386fa

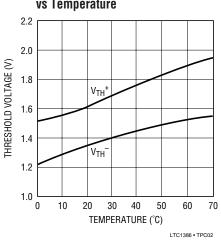
AC CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range.

 $V_{CC} = 3.3V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless otherwise noted.

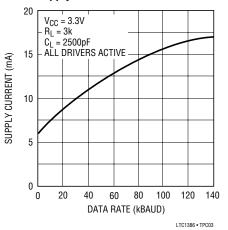
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Slew Rate	$R_L = 3k, C_L = 51pF$			8	30	V/µs
	$R_L = 3k, C_L = 1000pF$		3	5		V/μs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to EIA/TIA562)	t _{LHD} (Figure 1)	•		2	3.5	μS
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(EIA/TIA562 to TTL)	t _{LHR} (Figure 2)			0.3	0.8	μS

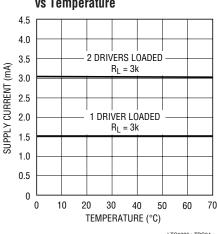

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

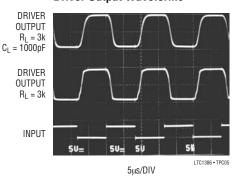
Note 2: Supply current is measured with driver and receiver outputs unloaded.

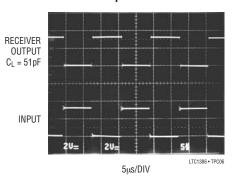

Note 3: Measurements made in the shutdown mode are performed with $V_{ON/\overline{OFF}}$ =0V.

TYPICAL PERFORMANCE CHARACTERISTICS


Driver Output Voltage vs Temperature


Receiver Input Thresholds vs Temperature


Supply Current vs Data Rate


V_{CC} Supply Current vs Temperature

Driver Output Waveforms

Receiver Output Waveforms

1386fa

PIN FUNCTIONS

 V_{CC} : 3.3V Input Supply Pin. This pin should be decoupled with a 0.1 μ F ceramic capacitor.

GND: Ground Pin.

V⁺: Positive Supply Output (EIA/TIA562 Drivers). $V^+ \cong 2V_{CC} - 1V$. This pin requires an external capacitor $C = 0.1\mu F$ for charge storage. The capacitor may be tied to ground or V_{CC} . With multiple devices, the V^+ and V^- pins may share a common capacitor. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). $V^- = -(2V_{CC} - 1.3V)$. This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage.

C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu F$: one from C1+ to C1- and another from C2+ to C2-. To maintain

charge pump efficiency, the capacitor's effective series resistance should be less than 2Ω .

TR IN: EIA/TIA562 Driver Input Pins. Inputs are TTL/CMOS compatible. The inputs of unused drivers can be left unconnected since 300k input pull-up resistors to V_{CC} are included on chip.

TR OUT: Driver Outputs at EIA/TIA562 Voltage Levels. The driver outputs are protected against ESD to ± 10 kV for human body model discharges.

RX IN: Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels.

SWITCHING TIME WAVEFORMS

Figure 1. Driver Propagation Delay Timing

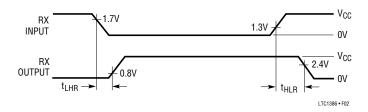
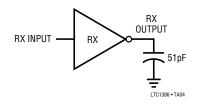
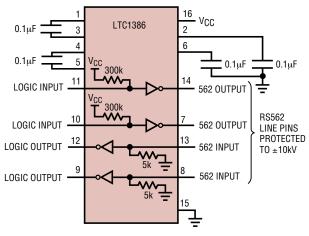


Figure 2. Receiver Propagation Delay Timing


TECHNOLOGY TECHNOLOGY

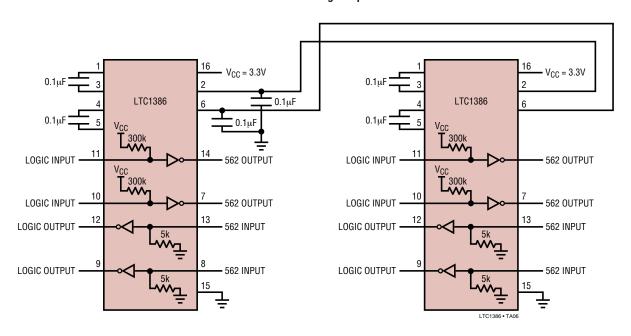
TEST CIRCUITS


Driver Timing Test Load

DRIVER OUTPUT INPUT DRIVER DRIVER OUTPUT 51pF 3k

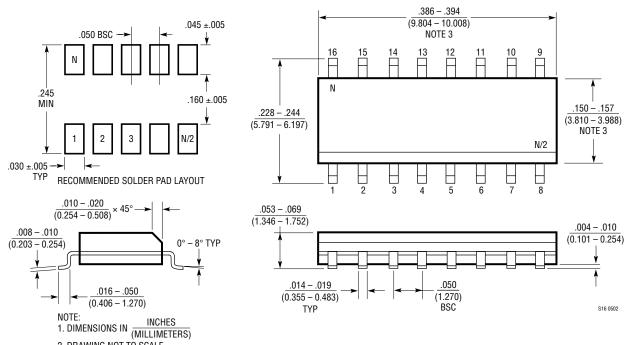
Receiver Timing Test Load

ESD Test Circuit



1386 TA05

TYPICAL APPLICATIONS


Paralleling Power Supply Generator with Common Storage Capacitors

PACKAGE DESCRIPTION

S Package 16-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

^{2.} DRAWING NOT TO SCALE

^{3.} THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1780/LT1781	5V, 2 Driver, 2 Receiver RS232 Transeivers	±15kV ESD per IEC 1000-4
LTC1327	3.3V, 3 Driver, 5 Receiver RS562 Transceiver	300μA Supply Current, 0.2μA in Shutdown
LTC1348	3.3V to 5V, 3 Driver, 5 Receiver RS232 Transceiver	True RS232 on 3.3V, 5 Receivers Active in Shutdown
LTC1382	5V, 2 Driver, 2 Receiver RS232 Transceiver	220μA Supply Current, 0.2μA in Shutdown
LTC1383	5V, 2 Driver, 2 Receiver RS232 Transceiver	220μA Supply Current, Narrow 16-pin SO
LTC1384	5V, 2 Driver, 2 Receiver RS232 Transceiver	220μA Supply Current, 2 Receivers Active in Shutdown
LTC1385	3.3V, 2 Driver, 2 Receiver RS562 Transceiver	220μA Supply Current, 2 Receivers Active in Shutdown

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

<u>LTC1386IS#TR</u> <u>LTC1386CS#TRPBF</u> <u>LTC1386IS#TRPBF</u> <u>LTC1386IS</u> <u>LTC1386CS#PBF</u> <u>LTC1386CS</u>

LTC1386IS#PBF LTC1386CS#TR