

ULUGY High Speed, Precision, JFET Input Instrumentation Amplifier (Fixed Gain = 10 or 100)

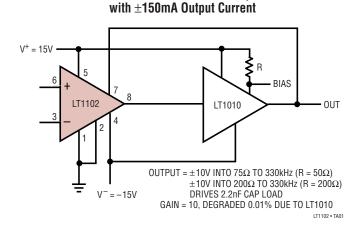
FEATURES

- Slew Rate: 30V/µs
- Gain-Bandwidth Product: 35MHz
- Settling Time (0.01%): 3μs
- Overdrive Recovery: 0.4µs
- Gain Error: 0.05% Max
- Gain Drift: 5ppm/°C
- Gain Nonlinearity: 16ppm Max
- Offset Voltage (Input + Output): 600µV Max
 Drift with Temperature: 2µV/°C
- Input Bias Current: 40pA Max
- Input Offset Current: 40pA Max
 Drift with Temperature (to 70°C): 0.5pA/°C

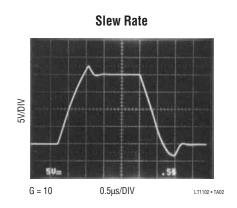
APPLICATIONS

- Fast Settling Analog Signal Processing
- Multiplexed Input Data Acquisition Systems
- High Source Impedance Signal Amplification from High Resistance Bridges, Capacitance Sensors, Photodetector Sensors
- Bridge Amplifier with < 1Hz Lowpass Filtering</p>

DESCRIPTION


The LT[®]1102 is the first fast FET input instrumentation amplifier offered in the low cost, space saving 8-pin packages. Fixed gains of 10 and 100 are provided with excellent gain accuracy (0.01%) and non-linearity (3ppm). No external gain setting resistor is required.

Slew rate, settling time, gain-bandwidth product, overdrive recovery time are all improved compared to competitive high speed instrumentation amplifiers.

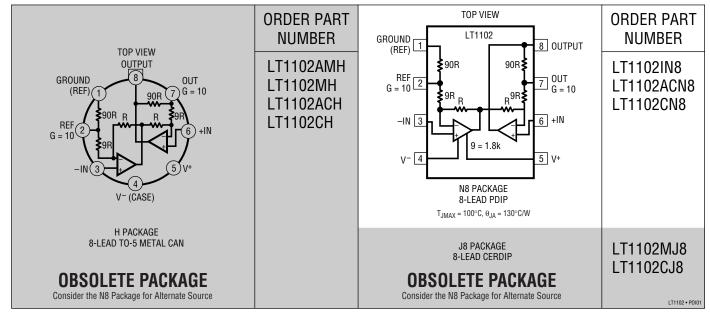

Industry best speed performance is combined with impressive precision specifications: less than 10pA input bias and offset currents, 180μ V offset voltage. Unlike other FET input instrumentation amplifiers, on the LT1102 there is no output offset voltage contribution to total error, and input bias currents do not double with every 10°C rise in temperature. Indeed, at 70°C ambient temperature the input bias current is only 40pA.

C, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Wideband Instrumentation Amplifier

LINEAR TECHNOLOGY


ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	±20V
Differential Input Voltage	±40V
Input Voltage	±20V

Order Options Tape and Reel: Add #TR

Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF Lead Free Part Marking: http://www.linear.com/leadfree/

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $V_{S} = \pm 15V$, $V_{CM} = 0V$, $T_{A} = 25^{\circ}C$, Gain = 10 or 100, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1102AM/AC			LT1102M/I/C			
			MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS	
G _E	Gain Error	$V_0 = \pm 10V, R_L = 50k \text{ or } 2k$		0.010	0.050		0.012	0.070	%	
G _{NL}	Gain Nonlinearity	$G = 100, R_L = 50k$		3	14		4	18	ppm	
		$G = 100, R_L = 2k$		8	20		8	25	ppm	
		G = 10, RL = 50k or 2k		7	16		7	30	ppm	
V _{OS}	Input Offset Voltage			180	600		200	900	μV	
l _{OS}	Input Offset Current			3	40		4	60	рА	
I _B	Input Bias Current			±3	±40		± 4	±60	рА	
	Input Resistance									
	Common Mode	$V_{CM} = -11V$ to 8V		10 ¹²			10 ¹²		Ω	
		$V_{CM} = 8V$ to 11V		10 ¹¹			10 ¹¹		Ω	
	Differential Mode			10 ¹²			10 ¹²		Ω	
e _n	Input Noise Voltage	0.1Hz to 10Hz		2.8			2.8		μν _{Ρ-Ρ}	
	Input Noise Voltage	f ₀ = 10Hz		37			37		nV/√Hz	
	Density	f ₀ = 1000Hz (Note 2)		19	30		20		nV/√Hz	
	Input Noise Current Density	f ₀ = 1000Hz, 10Hz (Note 3)		1.5	4		2	5	fA/√Hz	
	Input Voltage Range		±10.5	±11.5		±10.5	±11.5		V	
CMRR	Common Mode Rejection Ratio	1k Source Imbalance, $V_{CM} = \pm 10.5V$	84	98		82	97		dB	
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 9V \text{ to } \pm 18V$	88	102		86	101		dB	
ls	Supply Current			3.3	5.0		3.4	5.6	mA	
Vo	Maximum Output	R _L = 50k	±13.0	±13.5		±13.0	±13.5		V	
	Voltage Swing	$R_{L} = 2k$	±12.0	±13.0		±12.0	±13.0		V	
BW	Bandwidth	G = 100 (Note 4)	120	220		100	220		kHz	
		G = 10 (Note 4)	2.0	3.5		1.7	3.5		MHz	
SR	Slew Rate	G = 100, $V_{IN} = \pm 0.13V$, $V_0 = \pm 5V$	12	17		10	17		V/µs	
		$G = 10, V_{IN} = \pm 1V, V_0 = \pm 5V$	21	30		18	30		V/µs	
	Overdrive Recovery	50% Overdrive (Note 5)		400			400		ns	
	Settling Time	$V_0 = 20V$ Step (Note 4)								
		G = 10 to 0.05%		1.8	4.0		1.8	4.0	μs	
		G = 10 to 0.01%		3.0	6.5		3.0	6.5	μs	
		G = 100 to 0.05%		7	13		7	13	μs	
		G = 100 to 0.01%		9	18		9	18	μs	

$\label{eq:constraint} \begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \\ -40^\circ \textbf{C} \leq \textbf{T}_A \leq 85^\circ \textbf{C} \mbox{ for I grades, unless otherwise noted.} \end{array}$

 V_S = ±15V, V_{CM} = 0V, Gain = 10 or 100, $-55^\circ C \leq T_A \leq 125^\circ C$ for AM/M grades,

				LT1102AN	Λ	L			
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
G _E	Gain Error	$ \begin{array}{l} G = 100, V_0 = \pm 10V, R_L = 50k \mbox{ or } 2k \\ G = 10, V_0 = \pm 10V, R_L = 50k \mbox{ or } 2k \end{array} $		0.10 0.05	0.25 0.12		0.10 0.06	0.30 0.15	% %
TCG _E	Gain Error Drift (Note 6)	G = 100, R_L = 50k or 2k G = 10, R_L = 50k or 2k		9 5	20 10		10 6	25 14	ppm/°C ppm/°C
G _{NL}	Gain Nonlinearity			20 28 9	70 85 20		24 32 9	90 110 24	ppm ppm ppm
V _{OS}	Input Offset Voltage			300	1400		400	2000	μV
$\Delta V_{0S} / \Delta T$	Input Offset Voltage Drift	(Note 6)		2	8		3	12	μV/°C
l _{OS}	Input Offset Current			0.3	4		0.4	6	nA
I _B	Input Bias Current			±2	±10		±2.5	±15	nA
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10.3 V$	82	97		80	96		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 10$ V to ± 17 V	88	100		84	99		dB
Is	Supply Current	T _A = 125°C		2.5			2.5		mA
V ₀	Maximal Output Voltage Swing	$R_{L} = 50k$ $R_{L} = 2k$	±12.5 ±12.0	±13.2 ±12.6		±12.5 ±12.0	±13.2 ±12.6		V V

V_S = ±15V, V_{CM} = 0V, Gain = 10 or 100, $0^\circ C \leq T_A \leq 70^\circ C,$ unless otherwise noted.

OVMDO				LT1102A(BAIN			
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
G _E	Gain Error	$G = 100, V_0 = \pm 10V, R_L = 50k \text{ or } 2k$		0.04	0.11		0.05	0.14	%
		$G = 10, V_0 = \pm 10V, R_L = 50k \text{ or } 2k$		0.03	0.09		0.04	0.12	%
TCG _E	Gain Error Drift	G = 100, R _L = 50k or 2k		8	18		9	22	ppm/°C
	(Note 6)	G = 10, R _L = 50k or 2k		5	10		6	14	ppm/°C
G _{NL}	Gain Nonlinearity	G = 100, R _I = 50k		8	30		9	40	ppm
		$G = 100, R_{L} = 2k$		11	36		12	48	ppm
		$G = 10, R_L = 50k \text{ or } 2k$		8	18		8	22	ppm
V _{OS}	Input Offset Voltage			230	1000		280	1400	μV
$\Delta V_{0S} / \Delta T$	Input Offset Voltage Drift	(Note 6)		2	8		3	12	μV/°C
I _{OS}	Input Offset Current			10	150		15	220	pА
$\Delta I_{0S} / \Delta T$	Input Offset Current Drift	(Note 6)		0.5	3		0.5	4	pA/°C
I _B	Input Bias Current			±40	±300		±50	±400	pА
$\Delta I_{B}/\Delta T$	Input Bias Current Drift	(Note 6)		1	4		1	6	pA/°C
CMRR	Common Mode	$V_{CM} = \pm 10.3 V$	83	98		81	97		dB
	Rejection Ratio								
PSRR	Power Supply	$V_{S} = \pm 10V$ to $\pm 17V$	87	101		85	100		dB
	Rejection Ratio								ĺ
I _S	Supply Current	$T_A = 70^{\circ}C$		2.8			2.9		mA
V ₀	Maximum Output	$R_{L} = 50k$	±12.8	±13.4		±12.8	±13.4		V
-	Voltage Swing	$R_{L} = 2k$	±12.0	±12.8		±12.0	±12.8		V

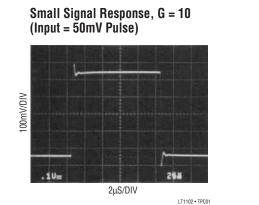
ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

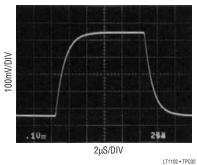
Note 2: This parameter is tested on a sample basis only.

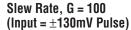
Note 3: Current noise is calculated from the formula:

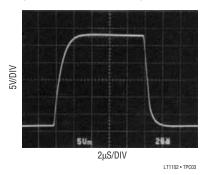
 $i_n = (2qI_B)^{1/2}$

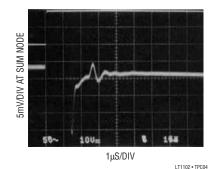

where $q = 1.6 \cdot 10^{-19}$ coulomb. The noise of source resistors up to $1G\Omega$ swamps the contribution of current noise.

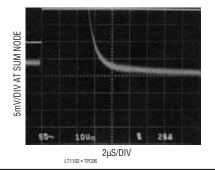
Note 4: This parameter is not tested. It is guaranteed by design and by inference from the slew rate measurement.

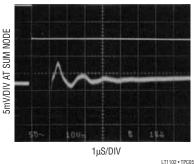

Note 5: Overdrive recovery is defined as the time delay from the removal of an input overdrive to the output's return from saturation to linear operation.

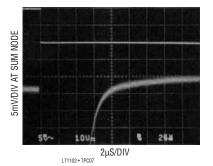

50% overdrive equals $V_{IN} = \pm 2V$ (G = 10) or $V_{IN} = \pm 200 \text{mV}$ (G = 100). Note 6: This parameter is not tested. It is guaranteed by design and by inference from other tests.


TYPICAL PERFORMANCE CHARACTERISTICS

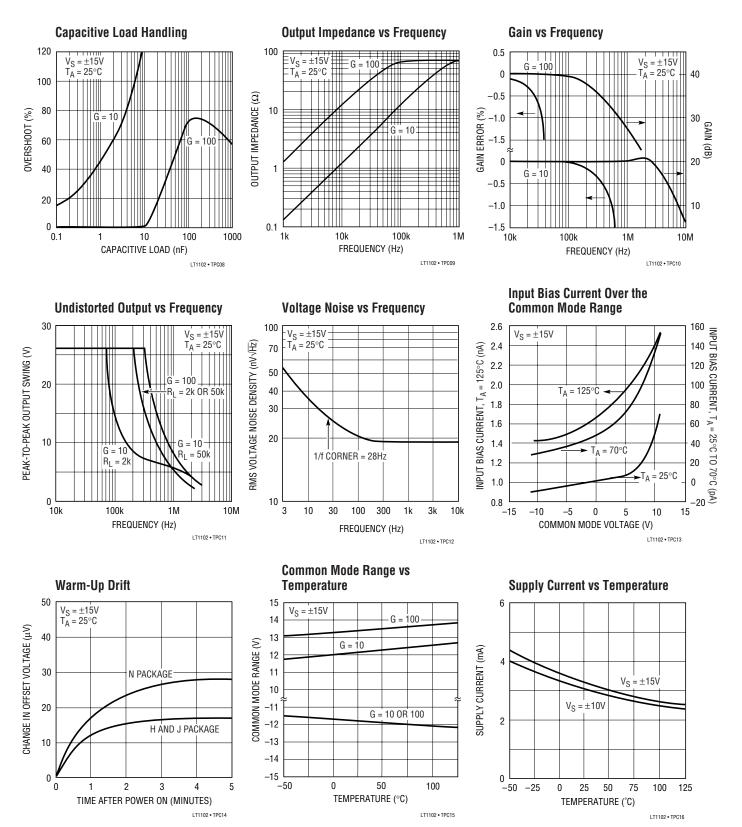

Small Signal Response, G = 100 (Input = 5mV Pulse)



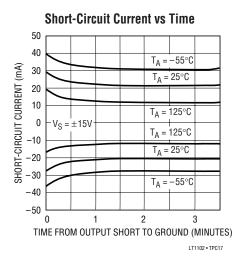

Settling Time, G = 10 (Input From – 10V to 10V)



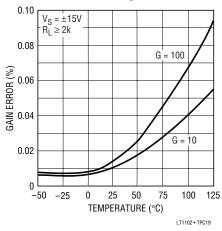
Settling Time, G = 10 (Input From 10V to -10V)

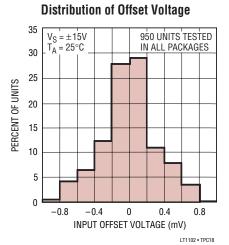


Settling Time, G = 100 (Input From 10V to -10V)

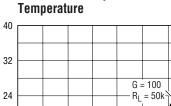


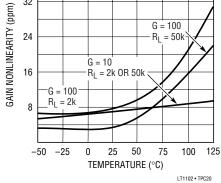
TYPICAL PERFORMANCE CHARACTERISTICS



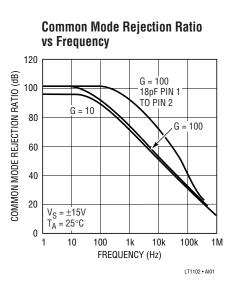


TYPICAL PERFORMANCE CHARACTERISTICS





Gain Nonlinearity Over


APPLICATIONS INFORMATION

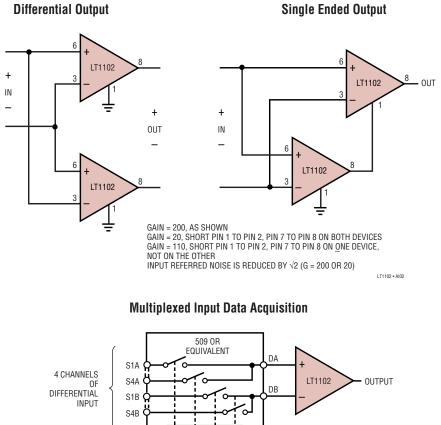
In the two op amp instrumentation amplifier configuration, the first amplifier is basically in unity gain, and the second amplifier provides all the voltage gain. In the LT1102, the second amplifier is decompensated for gain of 10 stability, therefore high slew rate and bandwidth are achieved. Common mode rejection versus frequency is also optimized in the G = 10 mode, because the bandwidths of the two op amps are similar. When G = 100, this statement is no longer true; however, by connecting an 18pF capacitor between pins 1 and 2, a common mode AC gain is created to cancel the inherent roll-off. From 200Hz to 30kHz, CMRR versus frequency is improved by an order of magnitude.

Input Protection

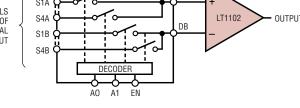
Instrumentation amplifiers are often used in harsh environments where overload conditions can occur. The LT1102 employs FET input transistors, consequently the differential input voltage can be $\pm 30V$ (with $\pm 15V$ supplies, $\pm 36V$ with $\pm 18V$ supplies). Some competitive instrumentation amplifiers have NPN inputs which are protected by back-to-back diodes. When the differential input Voltage exceeds $\pm 13V$ on these competitive devices, input current increases to milliampere level; more than $\pm 10V$ differential voltage can cause permanent damage.

When the LT1102 inputs are pulled below the negative supply or above the positive supply, the inputs will clamp a diode voltage below or above the supplies. No damage will occur if the input current is limited to 20mA.

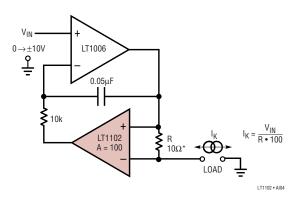
Gains Between 10 and 100


Gains between 10 and 100 can be achieved by connecting two equal resistors (= R_X) between pins 1 and 2 and pins 7 and 8.

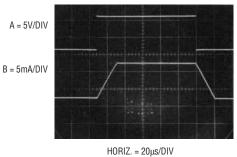
Gain = 10 +
$$\frac{R_X}{R + R_X/90}$$


The nominal value of R is $1.84k\Omega$. The usefulness of this method is limited by the fact that R is not controlled to better than $\pm 10\%$ absolute accuracy in production. However, on any specific unit, 90R can be measured between Pins 1 and 2.

APPLICATIONS INFORMATION

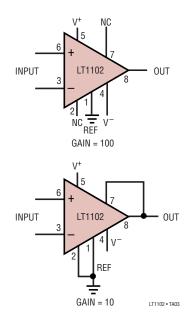


Gain = 20, 110, or 200 Instrumentation Amplifiers



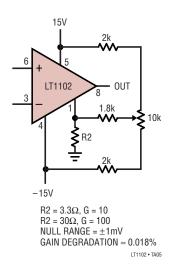
800kHz SIGNALS CAN BE MULTIPLEXED WITH LT1102 IN G = 10 LT1102 • AI03

Voltage Programmable Current Source is Simple and Precise

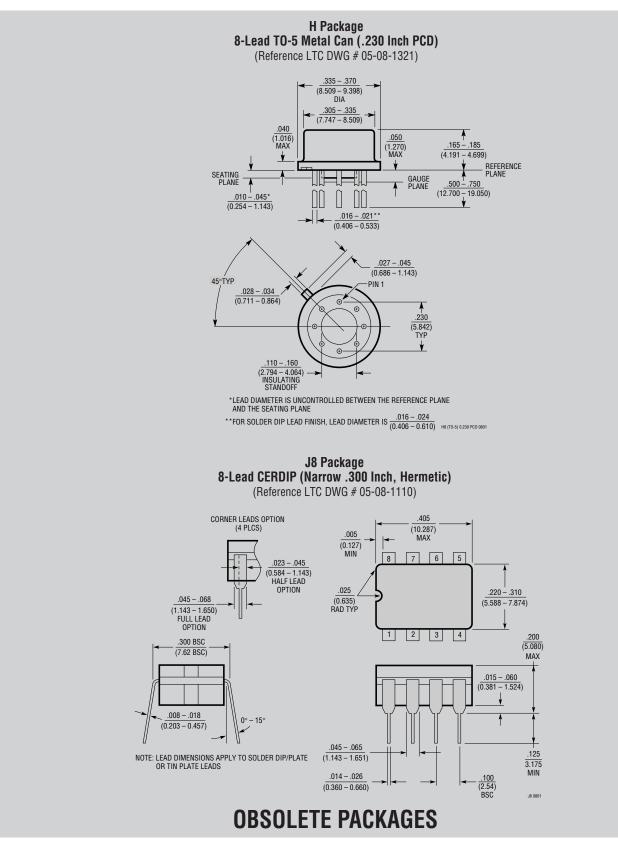

Dynamic Response of the Current Source

LT1102 • AI05

TYPICAL APPLICATIONS



Basic Connections


Offset Nulling

PACKAGE DESCRIPTION

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

PACKAGE DESCRIPTION

8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .400* (10.160)MAX 7 6 8 5 $.255 \pm .015*$ $(\overline{6.477 \pm 0.381})$ 2 1 3 4 $.130\pm.005$.300 – .325 .045 - .065 $(\overline{1.143} - 1.651)$ $(\overline{3.302 \pm 0.127})$ (7.620 - 8.255) .065 (1.651) .008 – .015 TYP 1 .120 (0.203 - 0.381).020 (3.048) .325 ^{+.035} -.015 MIN (0.508)MIN .100 $.018 \pm .003$ (8.255^{+0.889}_-0.381) (2.54) (0.457 ± 0.076) N8 1002 BSC

N8 Package

NOTE:

NOTE: 1. DIMENSIONS ARE <u>INCHES</u> *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

LT1102ACN8#PBF LT1102IN8 LT1102IN8#PBF LT1102CN8 LT1102ACN8 LT1102CN8#PBF