

Click here to ask an associate for production status of specific part numbers.

MAX77985/MAX77986

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

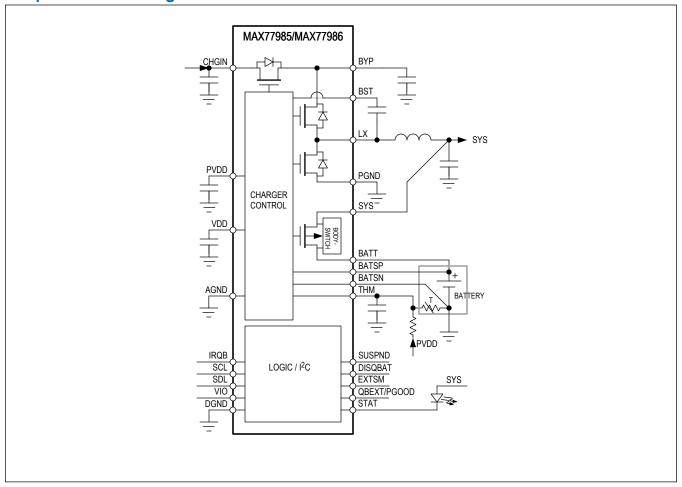
General Description

The MAX77985/MAX77986 is a high-performance high input range 3.5/5.5A fast charger with Smart Power SelectorTM. The IC can operate as a reverse boost without an additional inductor, allowing the battery to share its power through the charging port with voltage programmable from 5V to 12V. The device features fully integrated lowloss power switches to provide a small solution size and high efficiency, even at high input voltage and high charging current. Its high switching frequency allows the use of a smaller sized inductor. Li-ion, Li-polymer, and LiFePO₄ battery chemistries are supported. The IC is compatible with USB Power Delivery sources with input current capability up to 5A. It can also provide fast unplug detection of 5V, 9V, and 15V sources for dynamic management of system load. The IC also helps mitigate EMI with the spread spectrum feature. The IC features true load disconnection in reverse boost mode and has an adjustable output current protection limit. The device is highly flexible and programmable through I²C configuration.

The battery charger includes a Smart Power Selector to accommodate a wide range of battery sizes and system loads. The Smart Power Selector allows the system to start up gracefully as soon as an input source is available, even when the battery is deeply discharged (dead battery) or missing. It can be configured so that when power is applied to the charger input, the battery charging can automatically start.

Note: For parts with chip revision 0b001 (PASS1), contact Analog Devices for Rev 0 of the data sheet. This information can be read from the CHIP_REVISION (0x01) register.

Applications


- · Gaming Devices
- VR Applications
- mPOS
- Tablet PCs

Benefits and Features

- High-Efficiency Single-Cell Switching Charger
 - Up to 5.5A Charging with MAX77986
 - Up to 3.5A Charging with MAX77985
 - 92% Buck Efficiency at 4A, 12V Input
 - 92% Charging Efficiency at 3.5A, 9V Input
 - Optimized for High Voltage Input Operation
 - Accelerate Charge Time by Monitoring Kelvin Sensing Battery Voltage
 - Up to 5.5A Input Current Limit with AICL (MAX77986)
 - Up to 3.5A Input Current Limit with AICL (MAX77985)
- +28V Absolute Maximum Input Voltage Rating
- 4.7V to 19V Input Operating Voltage Range
- Reverse Boost with Programmable Output Voltage Options up to 12V
 - Up to 18W for MAX77986
 - Up to 12W for MAX77985
- Integrated Battery True-Disconnect FET
 - $R_{DSON} = 7.7 m\Omega$
 - Programmable Discharge Current Limit up to 10A
 - Support Shipping Mode and Low Battery Leakage Current
 - 1.3MHz/2.6MHz Switching Frequency with 1μH/ 0.47μH Inductor
 - Disconnect Input (DISQBAT)
- Safety
 - Battery Temperature Sensing and Charge Safety Timer
 - JEITA Guideline Compliant
 - Thermal Regulation and Thermal Shutdown
 - System Voltage OVLO/UVLO
- Spread Spectrum for Noise Sensitive Applications
- Programmable Unplug Detection for 9V and 15V Sources
- Charge Status Output for LED
- Push-Button Input for Exiting from Ship Mode
- External Discharge FET Enable Output
- Dedicated Input for Suspend Mode (SUSPND)
- I²C Interface
- 4mm x 4mm FC2QFN

Smart Power Selector is a trademark of Maxim Integrated Products, Inc. USB Type-C is a registered trademark of USB Implementers Forum. PowerPath is a trademark of Linear Technology Corporation.

Simplified Block Diagram

TABLE OF CONTENTS

General Description	
Applications	1
Benefits and Features	1
Simplified Block Diagram	2
Absolute Maximum Ratings	7
Package Information	7
FCQFN	7
Electrical Characteristics	10
Typical Operating Characteristics	23
Pin Configuration	24
FC2QFN	24
Pin Description	24
Functional Diagrams	26
Functional Diagram	26
Detailed Description	27
Switching Mode Charger	27
Features	27
Detailed Description	28
Smart Power Selector (SPS)	28
Input Validation	29
Input Current Limit	29
Input Voltage Regulation Loop	30
System Self-Discharge with No Power	30
Power States	32
Charger States	33
No Input Power or Charge Idle State	35
Precharge State	36
Trickle Charge State	36
Fast-Charge Constant Current (CC) State	37
Fast-Charge Constant Voltage (CV) State	37
Top-Off State	37
Done State	38
Timer Fault State	38
Watchdog Timer	39
Thermal Shutdown State	39
Charger Interrupt Debounce Time	39
Main-Battery Differential Voltage Sense	39
Reverse Boost Mode	40
Main-Battery Overcurrent Protection During System Power-Up	40

TABLE OF CONTENTS (CONTINUED)

·	
Main-Battery Overcurrent Protection Due to Fault	40
Battery to SYS QBATT Switch Control (DISIBS)	41
HW Control of Battery to SYS QBATT Switch—DISQBAT	42
Thermal Management	42
Thermal Foldback	42
Thermistor Input (THM)	43
JEITA Controlled Charging	45
Analog Low-Noise Power PVDD and VDD	46
Factory-Ship Mode	46
External Q _{BATT} Control I/O	47
Charge Status LED Indication	47
Audio Mode	48
Spread Spectrum	48
Programmable Minimum System Voltage	48
Top System Management	49
Overview	49
Main Bias	49
System Faults	49
System Faults Debounce Time	50
I ² C Interface Description	50
Register Map	54
TOP	54
Register Details	54
CHARGER	58
Register Details	59
Typical Application Circuits	80
Ordering Information	81
Revision History	82

MAX77985/MAX77986

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

LIST OF FIGURES

Figure 1. System Self-Discharge Circuit	31
Figure 2. Power State Diagram	32
Figure 3. Li+/Li-Poly Charge Profile	34
Figure 4. Charger State Diagram	35
Figure 5. BATT to SYS Overcurrent Protection	41
Figure 6. Charge Currents vs. Junction Temperature	43
Figure 7. JEITA Controlled Charging	46
Figure 8. I ² C Bit Transfer	50
Figure 9. I ² C Start and Stop	51
Figure 10. System Configurations	51
Figure 11. I ² C Acknowledge	52
Figure 12. I ² C Master Transmits	52
Figure 13. I ² C Master Reads After Setting Register Address	53
Figure 14. I ² C Master Block Read	53

MAX77985/MAX77986

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

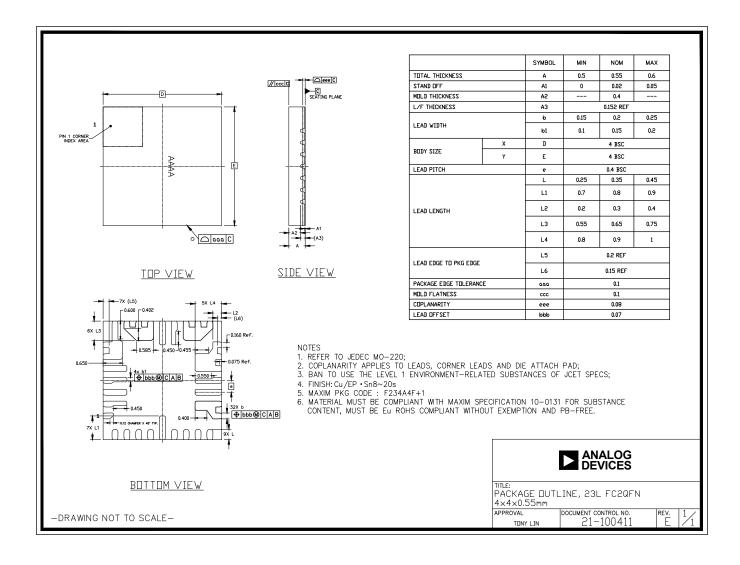
LIST OF TABLES

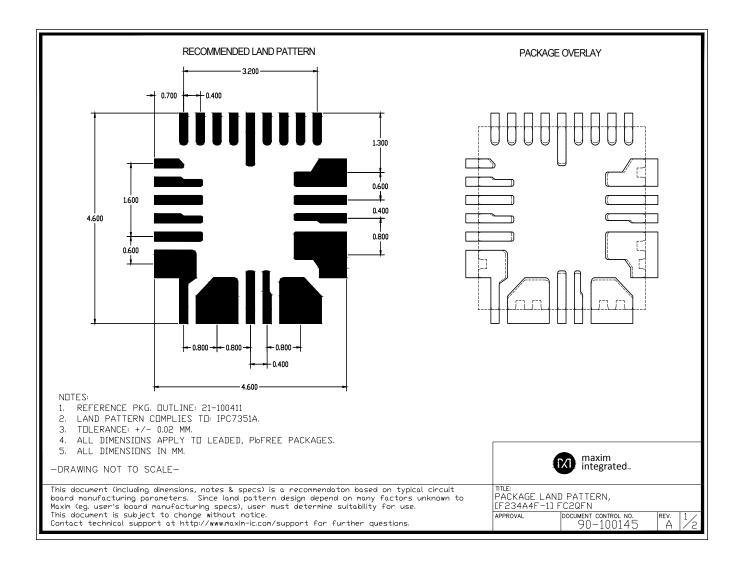
Table 1. Recommended Buck Output Current Range	28
Table 2. Charger Interrupt Debounce Time	39
Table 3. Trip Temperatures for Different Thermistors	45
Table 4. QBEXT Output in Different System Modes	47
Table 5. PGOOD States Under Different Situations	47
Table 6. STAT_MODE = 0x0	48
Table 7. STAT_MODE = 0x1	48
Table 8. Minimum System Voltage Values for Different Part Variants	48
Table 9. System Faults Debounce Time Summary	50

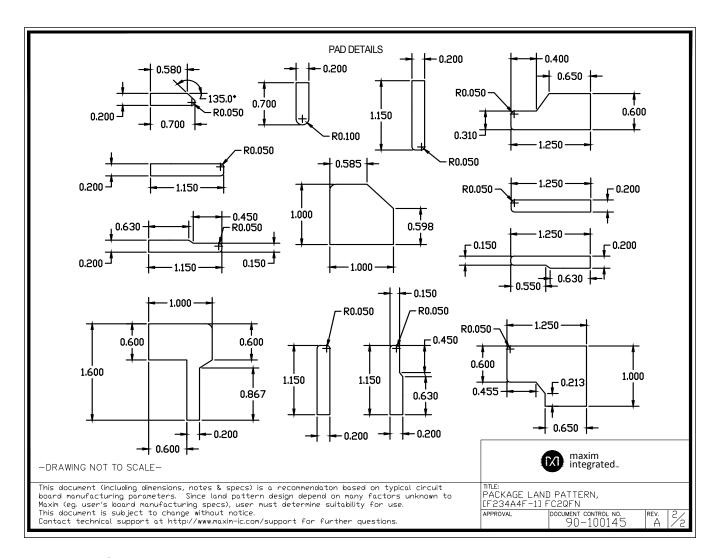
Absolute Maximum Ratings

BST to LX	SYS to AGND BATT to AGND BATSP to AGND BATSP to BATT BATSN to AGND PGND to AGND DGND to AGND PVDD to PGND VDD to AGND	-0.3V to +28V -0.3V to +16V -0.3V to +28V -0.3V to +22V -0.3V to +22V -0.3V to +2.2V -0.3V to +6.0V -0.3V to +6.0V -0.3V to +0.3V -0.3V to +2.2V -0.3V to +2.2V -0.3V to +2.2V -0.3V to +2.2V	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
-----------	---	---	---

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Package Information


FCQFN


Package Code	F234A4F+1
Outline Number	<u>21-100411</u>
Land Pattern Number	<u>90-100145</u>
Thermal Resistance, Four-Layer Board:	
Junction-to-Ambient (θ _{JA})	28.30°C/W
Junction-to-Case Thermal Resistance (θ _{JC})	6.65°C/W
Junction-to-Board (θ _{JB})	12°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GENERAL ELECTRICAL	L CHARACTERI	STICS				
CHGIN Quiescent		V _{CHGIN} = 5.0V, SUSPEND pin digital high or MODE = 0, DEEP_SUSP_DIS = 1		0.19	0.32	mA
	ICHGIN	V _{CHGIN} = 5.0V, SUSPEND pin digital high or MODE = 0, DEEP_SUSP_DIS = 0		85		μA
Current		V _{CHGIN} = 5.0V, V _{BATT} = 4.2V, MODE = 5, DONE state (V _{SYS} = 4.35V), I _{SYS} = 0A (<i>Note 3</i>)		2.2	3.3	mA
Input Undervoltage Supply Current	I _{IN}	V _{CHGIN} = 2.4V, the input is undervoltage		0.035		mA

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BAT Quiescent Current	I _{BAT}	V_{CHGIN} = 0V, V_{BATT} = 3.6V, Q_{BATT} FET is on, B2SOVRC_CTRL = 0, LPM = 0, I_{SYS} = 0A		29		μΑ
BAT Quiescent Current in Low-Power Mode	I _{BAT}	V _{CHGIN} = 0V, V _{BATT} = 3.6V, Q _{BATT} FET is on, B2SOVRC = 0, LPM = 1, I _{SYS} = 0A		22		μΑ
BAT Quiescent Current in Factory-Ship Mode	I _{BAT}	V_{CHGIN} = 0V, V_{BATT} = 3.6V, Q_{BATT} FET is off, V_{SYS} = V_{VDD} = 0V, factory-ship mode		3.0	4.5	μΑ
BAT Quiescent Current in Done State	I _{MBDN}	$V_{CHGIN} = 5V$, $I_{BYP} = 0A$, $V_{BATT} = 4.2V$, $I_{SYS} = 0A$, Q_{BATT} FET is off, B2SOVRC = 0, MODE = 5, done state		7.5	10.5	μΑ
SYS Operating Voltage	V _{SYS}	Guaranteed by V _{SYS_UVLO_R} and V _{SYS_OVLO_R}	V _{SYS_U} VLO_R		V _{SYS_O} VLO_R	V
VIO Operating Voltage Range	V _{VIO}		1.62		5.5	V
SCL, SDA Input Low Level	V _{SCL_SDA_IN_}	T _A = +25°C			0.3 x V _{VIO}	V
SCL, SDA Input High Level	V _{SCL_SDA_IN_}	T _A = +25°C	0.7 x V _{VIO}			V
SCL, SDA Input Hysteresis	V _{SCL_SDA_HY}	T _A = +25°C		0.05 x V _{VIO}		V
SCL, SDA Logic Input Current	I _{SCL_SDA}	V _{SCL} = V _{SDA} = V _{VIO} = 1.9V	-10		+10	μΑ
SDA Output Low Voltage	V _{SDA_OUT_L}	I _{SDA} = 20mA sinking			0.4	V
IRQB Output Low Voltage	V _{IRQB_OUT_L}	I _{IRQB} = 1mA sinking			0.4	V
IRQB Output High	linon	V _{IRQB} = 5.5V, T _A = +25°C	-1	0	+1	μA
Leakage	I _{IRQB_H}	V _{IRQB} = 5.5V, T _A = +85°C		0.1		μΛ
CHGIN INPUT LIMITER						
CHGIN Operating Voltage Range	V _{CHGIN}	V _{CHGIN} must be less than V _{CHGIN} _OVLO and greater than both V _{CHGIN} _UVLO and (V _{SYS} + V _{CHGIN2SYS} _TH) for the charger to turn-on	V _{CHGIN} _ UVLO		V _{CHGIN} _ OVLO	V
CHGIN Overvoltage Threshold	V _{CHGIN_OVLO}	V _{CHGIN} rising	19	19.5	20	V
CHGIN Overvoltage Threshold Hysteresis	V _{CHGIN_OVLO} _HYS			500		mV
CHGIN Undervoltage Threshold Setting Range	V _{CHGIN_UVLO}	V _{CHGIN} rising, 20% hysteresis, programmable at 4.7V, 4.8V, 4.9V, 5.05V	4.7		5.05	V
CHGIN Undervoltage Threshold Accuracy	VCHGIN_UVLO _ACC	V _{CHGIN} rising, 4.7V setting	4.625	4.7	4.775	V
CHGIN to SYS Undervoltage Threshold Rising	V _{CHGIN2SYS} _ TH	V _{CHGIN} - V _{SYS} , rising	0.15	0.20	0.25	V

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CHGIN Turn-On Threshold Validation Delay	t _{D-UVLO}	Delay from V _{CHGIN} > V _{CHGIN_UVLO} to Q _{CHGIN} FET enable		8		ms
CHGIN Switching Start Delay	^t START	Delay from Input Validation to LX switching (if charge or buck mode is selected and charger is not suspended); see the Input Validation section for input validation conditions		150		ms
CHGIN Adaptive Voltage Regulation Threshold Setting Range	Vchgin_reg	Programmable at 4.5V, 4.6V, 4.7V, 4.85V. The input voltage regulation loop decreases the input current to regulate V _{CHGIN} at V _{CHGIN} _{REG} under weak input source conditions. If the input current is decreased to I _{IULO} _{DET} and the input voltage is equal or below V _{CHGIN} _{REG} , then the charger input is turned off.	4.5		4.85	V
CHGIN Adaptive Voltage Regulation Threshold Accuracy	V _{CHGIN_REG_}	4.5V setting	4.4	4.5	4.6	V
		Programmable, 500mA default, 50mA step, production tested at 5V (500mA, 2700mA), 9V (1500mA), 12V(1000mA), 15V(500mA) (MAX77985)	0.1		3.5	
CHGIN Input Current Limit Setting Range	I _{INLIMIT}	Programmable, 500mA default, 50mA step, production tested at 5V (500mA, 2700mA, 5000mA), 9V (1500mA, 4000mA), 12V (1000mA, 3000mA), 15V (500mA, 2400mA) (MAX77986)	0.1		5.5	А
CHGIN Input Current Limit Accuracy	INLIMIT_ACC	Charger enabled, CHGIN = 5V, 9V, 12V, and 15V, $0.5A \le CHGIN_ILIM \le 3A$, $T_A = -5^{\circ}C$ to $+85^{\circ}C$ (<i>Note 3</i>)	-10		-2	%
CHGIN Input Current Low Threshold	liulo_det	Charger enabled, 3200mA input current limit setting		60		mA
	VCHGIN_UNPL G_ACC_5V (AICL enabled)	V _{CHGIN} falling, DIS_AICL=0b0, UNPLUG_TH[1:0]=0b01, VCHGIN_REG[1:0]=0b01 (<u>Note 1</u> , <u>Note</u> <u>3</u>)	4.5	4.6	4.7	V
CHGIN Unplug Detection Threshold Accuracy (5V)	I _{CHGIN_UNPL} G_ACC_5V (AICL enabled)	I _{CHGIN} , DIS_AICL=0b0, UNPLUG_TH[1:0]=0b01, VCHGIN_REG[1:0]=0b01, 1ms debounced (<i>Note 1</i> , <i>Note 3</i>)	30	60	90	mA
	VCHGIN_UNPL G_ACC_5V (AICL disabled)	V _{CHGIN} falling, DIS_AICL=0b1, UNPLUG_TH[1:0]=0b01 (<u>Note 2</u> , <u>Note 3</u>)	3.54	3.84	4.14	V

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CHGIN Unplug Detection Threshold	V _{CHGIN_UNPL} G_ACC_9V	V _{CHGIN} falling, UNPLUG_TH[1:0]=0b10 (Note 3)	7.30	7.45	7.60	V
Accuracy (9V, 15V)	VCHGIN_UNPL G_ACC_15V	V _{CHGIN} falling, UNPLUG_TH[1:0]=0b11 (Note 3)	12.925	13.125	13.325	V
CHGIN Unplug Detection Threshold Hysteresis	V _{CHGIN_UNPL} G_HYS			500		mV
SYSTEM BUCK	•		•			
Buck Output Voltage Setting Range (Tracking Disabled, MODE = 0x4, Variant A)	V _{SYSREG}	Programmable 4.15V to 4.5375V in 12.5mV steps (5-bits); production tested at 4.2V only	4.15		4.5375	V
Buck Output Voltage Setting Range (Tracking Disabled, MODE = 0x4, Variant B)	V _{SYSREG}	Programmable 3.50V to 4.275V in 25mV steps (5-bits); production tested at 4.2V only	3.50		4.275	V
Buck Output Voltage Setting Range (Tracking Disabled, MODE = 0x6, Variant A)	V _{SYSREG}	Programmable 4.65V to 5.00V in 50mV steps (3-bits); production tested at 5.0V only	4.65		5.00	V
Buck Output Voltage Setting Range (Tracking Disabled, MODE = 0x6, Variant B)	V _{SYSREG}	Programmable 4.50V to 5.00V in 100mV steps (3-bits); production tested at 5.0V only	4.50		5.00	V
Buck Output Voltage Accuracy (Tracking Disabled)	V _{SYSREG_AC}	Buck only, charging disabled	-3		+3	%
	V _{SYSREG_TR} K_MIN	MODE = 4, MINSYS setting = 3.60V, SYS tracking mode enabled, V _{BATT} < V _{SYS_MIN} /1.04	3.48	3.60	3.72	V
Buck Output Voltage (Tracking Enabled)	V _{SYSREG_TR}	MODE = 4, SYS tracking mode enabled, V _{BATT} ≥ MINSYS - 4% * V _{BATT} , measured of V _{SYS} - V _{BATT} , V _{SYSREG_TRK} represented as a percentage of V _{BATT} (<u>Note 3</u>)		4		%
	К	MODE=6, SYS Tracking mode enabled, VBATT ≥ BCKSYS - 4%*VBATT, measured of VSYS - VBATT, VSYSREG_TRK represented as a percentage of VBATT (Note 3)		4		70
Buck Inductor Current	I _{HSILIM}	For MAX77986	10.0	11.1	12.2	Α
Limit	I _{HSILIM}	For MAX77985	7.5	8.3	9.1	
Buck Minimum On Time	t _{ON-MIN}	Measured on LX		100		ns
Buck Minimum Off Time	t _{OFF-MIN}	Measured on LX		100		ns
System Power-Up Current (from BYP)	ISYSPU_BYP	Charger present, V _{SYS} < V _{SYS_UVLO_R}	50	75	100	mA

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
System Power-Up Time- Out (from BYP)	tsyspu_byp			150		ms	
0 10 1		SS_ENV = 0b01		±4			
Spread Spectrum Modulation Envelope	ΔFss	SS_ENV = 0b10		±8		%	
		SS_ENV = 0b11		±16			
CHARGER							
Precharge Charge Current	I _{PRECHG}	V _{BATT} < V _{PRECHG}	40	55	80	mA	
Precharge Voltage Threshold	V _{PRECHG}	V _{BATT} rising	2.425	2.5	2.575	V	
Precharge Voltage Threshold Hysteresis	V _{PRECHG_HY} S			500		mV	
Trickle Charge Current	ITRICKLE	TKEN = 1 by default, V _{PRECHG} < V _{BATT} < V _{TRICKLE}	270	300	330	mA	
Trickle Charge Voltage Threshold	V _{TRICKLE}	V _{BATT} rising, TKEN = 1 by default	3.0	3.1	3.2	V	
Trickle Charge Voltage Threshold Hysteresis	V _{TRICKLE_HY}	TKEN = 1 by default		100		mV	
Prequalification Time	t _{PQ}	Applies to the total time of precharge and trickle charge mode		30		min	
Fast-Charge Current	I _{FC}	100mA to 5500mA in 50mA steps; production tested at 500mA, 1000mA, 3000mA, and 5000mA settings (MAX77986 only)	0.1		5.5	A	
Setting Range		100mA to 3500mA in 50mA steps; production tested at 500mA, 1000mA, and 3000mA settings (MAX77985 only)	0.1		3.5		
		Programmed $I_{FC} \ge 500$ mA, $V_{BATT} > V_{SYSMIN}$, $T_A = +25$ °C	-3.5		+3.5		
Fast-Charge Current Accuracy		Programmed I _{FC} ≥ 500mA, V _{BATT} > V _{SYSMIN} , T _A = 0°C to +85°C	-6		+6	%	
, 1000, 100		Programmed I _{FC} \geq 500mA, V _{TRICKLE} $<$ V _{BATT} $<$ V _{SYSMIN} (LDO mode), T _A = -5° C to $+85^{\circ}$ C	-10		+10		
Fast-Charge Current Thermal Regulation Setting Range	T _{REG}	Junction temperature when charge current starts to reduce for thermal regulation; programmable from +85°C to +130°C in 5°C steps; the default value is +115°C	85		130	°C	

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Fast-Charge Current Thermal Regulation Gain	ATJREG	The charge current is decreased by 5.73% of the fast-charge current full-scale for every degree that the junction temperature exceeds the thermal regulation temperature. This slope ensures that the full-scale current of 5.5A is reduced to 0A by the time the junction temperature is +17.5°C above the programmed loop set point. For lower programmed charge currents such as 480mA, this slope is valid for charge current reductions down to 80mA; below 100mA the slope becomes shallower but the charge current is reduced to 0A if the junction temperature is +20°C above the programmed loop set point.		-315		mA/°C
Fast-Charge Termination Voltage Setting Range (Variant A)	V _{BATTREG}	Programmable from 4.15V to 4.5375V in 12.5mV steps (5-bits); production tested at 4.2V and 4.35V only (MAX77985A and MAX77986A)	4.150		4.5375	V
Fast-Charge Termination Voltage Setting Range (Variant B)	V _{BATTREG}	Programmable from 3.500V to 4.275V in 25mV steps (5-bits); production tested at 3.6V and 4.2V only (MAX77985B and MAX77986B)	3.500		4.275	V
Fast-Charge Termination Voltage Accuracy at Room Temp (Variant A)	VBATTREG_AC	$V_{BATTREG}$ = 4.35V setting, represented as percentage of $V_{BATTREG}$; T_A = +25°C	-0.6	-0.3	+0.0	%
Fast-Charge Termination Voltage Accuracy (Variant A)	V _{BATTREG_AC}	$V_{BATTREG}$ = 4.35V setting, represented as percentage of $V_{BATTREG}$; T_A = -5°C to +85°C	-0.8	-0.3	+0.2	%
Fast-Charge Termination Voltage Accuracy at Room Temp (Variant B)	VBATTREG_AC	$V_{BATTREG}$ = 4.20V setting, represented as percentage of $V_{BATTREG}$; T_A = +25°C	-0.6	-0.3	+0.0	%
Fast-Charge Termination Voltage Accuracy (Variant B)	V _{BATTREG_AC}	$V_{BATTREG}$ = 4.20V setting, represented as percentage of $V_{BATTREG}$; T_A = -5°C to +85°C	-0.8	-0.3	+0.2	%
Fast-Charge Termination Debounce Time	t _{TERM}	(<u>Note 3</u>)		100		ms
Fast-Charge Constant Current + Constant Voltage Safety Time	t _{FC}	Adjustable from 3hrs, 4hrs, 5hrs, 6hrs, 7hrs, and 8hrs including a disable setting; 5hrs default		5		hrs
Top-Off Current Setting Range	Іто	Programmable from 150mA to 850mA with 50mA in 16 steps; production tested at 150mA, 200mA, 500mA, and 850mA settings	150		850	mA

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		150mA setting	122.5	150	177.5	
Top-Off Current		200mA setting	170	200	230] .
Accuracy	ITO_ACC	500mA setting	455	500	545	mA mA
		850mA setting	787.5	850	912.5	
Top-Off Time	t _{TO}	Adjustable from 30sec to 70min in 10min steps; default setting is 30min		30		min
Charge Restart Threshold Setting Range	V _{RSTRT}	Adjustable at 100mV, 150mV, and 200mV; it can also be disabled	100	150	200	mV
Charge Restart Debounce Time	tCRDG			130		ms
Charge State Change Interrupt Debounce Time	tscidg	Excludes transition to timer fault state, watchdog timer state		30		ms
Charge Watchdog Time	t _{WD}			80		s
Charge Timers Accuracy	tACC		-20		+20	%
Charge-Overvoltage Threshold	V _{COV}	V _{BAT_SP} - V _{BAT_SN} , relative to V _{CHG_CV_PRM}		200		mV
Remote Sense BAT_SP Input Current in Charging Mode	I _{BAT_SP_CHG}	$V_{BATT_SP} = V_{BATT} = 3.8V$, MODE = 5, $T_A = +\overline{2}5$ °C		14		μA
Remote Sense BAT_SN Input Current in Charging Mode	IBAT_SN_CHG	V _{BATT_SN} = 0, MODE = 5, T _A = +25°C		10		μA
SMART POWER SELEC	TOR					
System Regulation Voltage Setting Range (Charging Enabled, Low Battery, Variant A)	V _{SYSMIN_RNG}	Charging enabled, V _{BATT} < V _{SYSMIN} , programmable from 3.4V to 3.7V in 0.1V steps (MAX77985A and MAX77986A)	3.4		3.7	V
System Regulation Voltage Setting Range (Charging Enabled, Low Battery, Variant B)	Vsysmin_rng	Charging enabled, V _{BATT} < V _{SYSMIN} , programmable from 3.0V, 3.1V, 3.5V or 3.6V (MAX77985B and MAX77986B)	3.0		3.6	V
System Regulation Voltage Accuracy (Charging Enabled, Low Battery)	V _{SYSMIN_ACC}	Charging enabled, V _{BATT} < V _{SYSMIN} , production tested at 3.60V only	-3		+3	%

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
System Regulation		Charging enabled, V _{SYSMIN} - V _{SYSTRK} < V _{BATT} < V _{SYSMIN} , measure of V _{SYS} - V _{BATT} , V _{SYSREG_TRK} represented as a percentage of V _{BATT} [For MINSYS settings 3.0V, 3.1V, 3.2V, 3.3V] (Note 3)		15.5		
Voltage (Charging Enabled, Low Battery)	Vsystrk	Charging enabled, V _{SYSMIN} - V _{SYSTRK} < V _{BATT} < V _{SYSMIN} , measure of V _{SYS} - V _{BATT} , V _{SYSREG_TRK} represented as a percentage of V _{BATT} [For MINSYS settings 3.4V, 3.5V, 3.6V, 3.7V] (Note 3)		13.5		- %
BATT to SYS Reverse Regulation Voltage	V _{BSREG}	Measure of V _{SYS} - V _{BATT} ; production tested at 10mA and 2A	-	-100		mV
SYS Self-Discharge Resistor	R _{SYSSD}	Switching is disabled, Q _{BATT} FET is off, V _{SYS} < V _{SYS} UVLO_F		600		Ω
BATTERY OVERCURRE	NT PROTECTIO	N				
Battery Overcurrent Protection Quiescent Current	I _{Q_OVRC}	B2SOVRC_CTRL = 0; I _{BATT} represented in units of μA	IBA	3 + _{ATT} /75 000		μA
Battery Overcurrent Protection Setting Range	I _{BOVRC}	Programmable from 3A to 10A with 0.5A steps; can be disabled	3		10	А
Battery Overcurrent	1	B2SOVRC setting 0x4 (4.5A) and below; production tested at 3.0A setting	-15		+15	- %
Protection Accuracy	IBOVRC_ACC	B2SOVRC setting 0x5 (5.0A) and above; production tested at 5.0A setting	-10		+10	70
Battery Overcurrent Debounce Time	t _{BOVRC}	B2SOVRC_CTRL = 1; time between battery over-current event and BAT_I interrupt generation		105		μs
Battery Overcurrent	t	Delay from IRQB toggling low to Q _{BATT} FET opening (B2SOVRC_DTC = 0)		105		μs
Delay	tocp	Delay from IRQB toggling low to Q _{BATT} FET opening (B2SOVRC_DTC = 1)		10		ms
Battery Overcurrent Retry Timer	tOCP_RETRY	Retry is one time		150		ms
System Power-Up Current (from BATT)	ISYSPU_BAT	V _{CHGIN} = 0V	35	50	80	mA
System Power-Up Voltage (from BATT)	V _{SYSPU_BAT}	V _{SYS} rising, 100mV hysteresis	1.9	2.0	2.1	V
System Power-Up Time- Out (from BATT)	tsyspu_bat			150		ms

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
REVERSE BOOST						
Reverse Boost Quiescent Current		V _{BYP} = 5.1V, V _{BATT} = 3.8V, MODE = 0x0A, V _{BYPSET} = 0x1		2.5		mA
Reverse Boost Output Voltage Setting Range	V _{BYP_OTG}	Measured on BYP pin, 2.5V < V _{BATT} < 4.5V; adjustable from 5V to 12V with 0.1V step; production tested at 5V and 12V	5		12	V
Reverse Boost Output Voltage Accuracy	V _{BYP_ACC}	Measured on BYP, MODE = 0x0A, VBYPSET = 0x1	4.95	5.10	5.25	V
Reverse Boost Inductor	I _{LSILIM}	For MAX77986	8.5	9.5	10.5	Α
Current Limit	I _{LSILIM}	For MAX77985	5.95	7.00	8.05	_ ^
CHGIN OUTPUT LIMITE	R					
OTG Output Current Limit Setting Range (MAX77985)	ICHGIN_OTG_L IM	Configurable from 500mA to 2400mA in 100mA steps; clamped to 12W power limit	500		2400	mA
OTG Output Current Limit Setting Range (MAX77986)	ICHGIN_OTG_L IM	Configurable from 500mA to 3100mA in 100mA steps; clamped to 18W power limit	500		3100	mA
		3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x00	500	537	575	
		3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x04	900	967	1035	
OTG Output Current Limit	ICHGIN_OTG_L IM	3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x0A	1500	1612	1725]
		3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x19 (MAX77985 only)	2400	2580	2760	mA
		3.4V < V _{BATT} < 4.5V, OTG_ILIM = 0x19 (MAX77986 only)	3000	3225	3450	
OTG Output Current Limit Alarm Time	tOTG_ALARM	Delay from OTG overcurrent event to BYP_I interrupt generated		20		ms
OTG Output Current Limit Fault Time	tOTG_FAULT	Delay from OTG overcurrent event to Q _{CHGIN} FET opening		30		ms
OTG Output Current Limit Retry Time	totg_retry	Delay from Q _{CHGIN} FET opening to Q _{CHGIN} FET closing again (OTG_REC_EN = 1)		300		ms
SWITCH IMPEDANCES	AND LEAKAGE	CURRENTS				
CHGIN to BYP On Resistance at Room Temp	R _{CHGIN2BYP} _ ROOM	CHGIN pin to BYP pin, T _A = +25°C		14.3	18.6	mΩ
CHGIN to BYP On Resistance	R _{CHGIN2BYP}	CHGIN pin to BYP pin, T _A = -40°C to +85°C		14.3	22.0	mΩ
LX High-Side On Resistance at Room Temp	R _{HS_ROOM}	BYP pin to LX pin, T _A = +25°C		31.0	43.4	mΩ
LX High-Side On Resistance	R _{HS}	BYP pin to LX pin, T _A = -40°C to +85°C		31.0	54.3	mΩ
LX Low-Side On Resistance at Room Temp	R _{LS_ROOM}	LX pin to PGND pin, T _A = +25°C		16.0	22.4	mΩ

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
LX Low-Side On Resistance	R _{LS}	LX pin to PGND pin, T _A = -40°C to +85°C		16.0	28.0	mΩ	
BATT to SYS On Resistance at Room Temp	R _{BAT2SYS_RO}	BATT pin to SYS pin, V _{BATT} = 4.4V, T _A = +25°C		7.70	10.5	mΩ	
BATT to SYS On Resistance	R _{BAT2SYS}	BATT pin to SYS pin, V _{BATT} = 4.4V, T _A = -40°C to +85°C		7.70	12.75	mΩ	
LX Leakage Current	l =	$V_{LX} = V_{PGND}$ or V_{BYP} , $T_A = +25$ °C		0.01	10		
LA Leakage Current	I _{LX_LEAK}	$V_{LX} = V_{PGND}$ or V_{BYP} , $T_A = +85$ °C		1		μA	
BST Leakage Current	IDOT LEAK	V _{BST} - V _{LX} = 1.8V, T _A = +25°C		0.01	10	μA	
BOT Leakage Outrent	I _{BST_LEAK}	V _{BST} - V _{LX} = 1.8V, T _A = +85°C		1		μΛ	
BYP Leakage Current	leve . s.v.	V_{BYP} = 5.5V, V_{CHGIN} = 0V, V_{LX} = 0V, charger disabled, T_A = +25°C		0.01	10	μA	
BTF Leakage Culletil	IBYP_LEAK	V_{BYP} = 5.5V, V_{CHGIN} = 0V, V_{LX} = 0V, charger disabled, T_A = +85°C		1		μΑ	
BATSP Input Current Leakage	I _{BATSP}	Charger disabled, V _{BATSP} = V _{BATT} , T _A = +25°C		±1		μA	
BATSN Input Current Leakage	I _{BATSN}	Charger disabled, V _{BATSN} = V _{AGND} , T _A = +25°C		±1		μA	
LOGIC AND CONTROL	I/Os		Į.				
		SUSPND, DISQBAT, T _A = +25°C			0.4		
Input Low Level	V _{IL}	EXTSM, T _A = +25°C			0.3 x V _{BATT}	V	
		SUSPND, DISQBAT, T _A = +25°C	1.4				
Input High Level	V _{IH}	EXTSM, T _A = +25°C	0.7 x V _{BATT}			V	
Input Leakage Current	I _{LK}	SUSPND, DISQBAT, EXTSM pin, at 5.5V (including current through pulldown resistor)		24	60	μA	
Output Low Voltage QBEXT	V _{OLQBEXT}	Sourcing 1mA, T _A = +25°C			0.4	V	
Output High Leakage	1	V _{SYS} = 5.5V, T _A = +25°C	-1	0	+1		
QBEXT	ILQBEXT	V _{SYS} = 5.5V, T _A = +85°C		0.1		μA	
SUSPND Internal Pulldown Resistor	R _{SUSPND}			235		kΩ	
DISQBAT Internal Pulldown Resistor	R _{DISQBAT}			235		kΩ	
EXTSM Internal Pulldown Resistor	R _{EXTSM}			235		kΩ	
EVTOM Dak and a T		V _{BATT} in 3.3V to 4.5V range, EXTSM_T = 0		10			
EXTSM Debounce Time	textsm_deb	V _{BATT} in 3.3V to 4.5V range, EXTSM_T = 1		0.1		ms	

Electrical Characteristics (continued)

 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
CHARGE STATUS INDIC	ATOR						
Charge Status Current Setting Range	ISTAT_RNG	5mA to 20mA in 5mA steps; production tested at V_{STAT} - V_{AGND} = 1.0V and 5.0V	5		20	mA	
Charge Status Current Accuracy	ISTAT_ACC	Production tested at 5mA and 20mA	-15		+15	%	
THERMISTOR MONITOR	?						
THM Threshold, COLD	THM_COLD	V _{THM} /V _{PVDD} rising, 1% hysteresis (thermistor temperature falling)	73.8	75.0	76.2	%	
THM Threshold, COOL	THM_COOL	V _{THM} /V _{PVDD} rising, 1% hysteresis (thermistor temperature falling)	64.3	65.5	66.7	%	
THM Threshold, WARM	THM_WARM	V _{THM} /V _{PVDD} falling, 1% hysteresis (thermistor temperature rising)	30.8	32.0	33.2	%	
THM Threshold, HOT	тнм_нот	V _{THM} /V _{PVDD} falling, 1% hysteresis (thermistor temperature rising)	20.8	22.0	23.2	%	
THM Threshold, Disabled	THM_DIS	V _{THM} /V _{PVDD} falling, 1% hysteresis, THM function is disabled below this voltage	4.8	6.0	7.2	%	
THM Threshold, Battery Removal Detection	THM_RM	V _{THM} /V _{PVDD} rising, 1% hysteresis, battery removal	85	87	89	%	
THM Input Leakage	1	$V_{THM} = V_{AGND}$ or V_{PVDD} , charger disabled, $T_A = +25^{\circ}C$		0.1	1	μA	
Current	I _{LKTHM}	$V_{THM} = V_{AGND}$ or V_{PVDD} , charger disabled, $T_A = +85^{\circ}C$		0.1		μΑ	
SUPPLIES AND MONITO	RING						
VDD Output Voltage	V _{VDD_1P8}	V_{SYS} or V_{BATT} = 3.8V, I_{VDD} = 20mA	1.71	1.80	1.89	V	
SYS Undervoltage- Lockout Threshold (SYS Rising)	V _{SYS_UVLO_R}		2.74	2.80	2.86	V	
SYS Undervoltage- Lockout Threshold (SYS Falling)	V _{SYS_UVLO_F}		2.55	2.60	2.65	V	
SYS Undervoltage- Lockout Hysteresis	V _{SYS_UVLO_H}			200		mV	
SYS Overvoltage- Lockout Threshold (SYS Rising)	V _{SYS_OVLO_R}	SYS rising	5.350	5.425	5.500	V	
SYS Overvoltage- Lockout Threshold (SYS Falling)	V _{SYS_OVLO_F}	SYS falling	5.200	5.275	5.350	V	
SYS Overvoltage- Lockout Hysteresis	V _{SYS_OVLO_H}			150		mV	
Thermal Shutdown Threshold	T _{SHDN_R}	T _j rising		155		°C	
Thermal Shutdown Threshold Hysteresis	T _{SHDN_H}			15		°C	

Electrical Characteristics (continued)

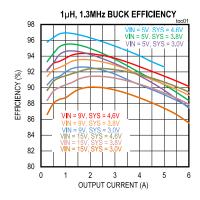
 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

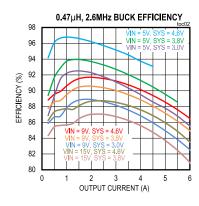
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PVDD Output Voltage	V _{PVDD_1P8}	V _{SYS} = 3.8V, I _{PVDD} = 20mA	1.71	1.80	1.89	V
I ² C-COMPATIBLE INTER	FACE TIMING I	FOR STANDARD, FAST, AND FAST-	MODE PLUS			
Clock Frequency	f _{SCL}				1000	kHz
Hold Time (Repeated) START Condition	t _{HD;STA}		0.26			μs
CLK Low Period	t _{LOW}		0.5			μs
CLK High Period	tHIGH		0.26			μs
Set-Up Time Repeated START Condition	^t SU;STA		0.26			μs
DATA Hold Time	t _{HD:DAT}		0			μs
DATA Valid Time	t _{VD:DAT}				0.45	μs
DATA Valid Acknowledge Time	t _{VD:ACK}				0.45	μs
DATA Set-Up time	t _{SU;DAT}		50			ns
Set-Up Time for STOP Condition	tsu;sto		0.26			μs
Bus-Free Time Between STOP and START	t _{BUF}		0.5			μs
Pulse Width of Spikes that must be Suppressed by the Input Filter	t _{SP}			50		ns
I ² C-COMPATIBLE INTER	RFACE TIMING I	FOR HS-MODE (CB = 100pF)				
Clock Frequency	f_{SCL}				3.4	MHz
Set-Up Time Repeated START Condition	t _{SU;STA}		160			ns
Hold Time (Repeated) START Condition	t _{HD;STA}		160			ns
CLK Low Period	t_{LOW}		160			ns
CLK High Period	tHIGH		60			ns
DATA Set-Up time	tsu;dat		10			ns
DATA Hold Time	t _{HD:DAT}		0			ns
Set-Up Time for STOP Condition	t _{SU;STO}		160			ns
Pulse Width of Spikes that must be Suppressed by the Input Filter	t _{SP}			10		ns
I ² C-COMPATIBLE INTER	FACE TIMING	FOR HS-MODE (CB = 400pF)				
Clock Frequency	f _{SCL}				1.7	MHz
Set-Up Time Repeated START Condition	tsu;sta		160			ns

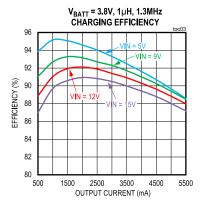
Electrical Characteristics (continued)

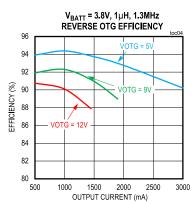
 $(V_{SYS} = 3.8V, V_{BATT} = 3.8V, V_{VIO} = 1.8V, V_{CHGIN} = 5V, unless otherwise specified. Limits are production tested at T_A = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Hold Time (Repeated) START Condition	t _{HD;STA}		160			ns
CLK Low Period	t_LOW		320			ns
CLK High Period	tHIGH		120			ns
DATA Set-Up time	t _{SU;DAT}		10			ns
DATA Hold Time	t _{HD:DAT}		0			ns
Set-Up Time for STOP Condition	tsu;sto		160			ns
Pulse Width of Spikes that must be Suppressed by the Input Filter	t _{SP}			10		ns

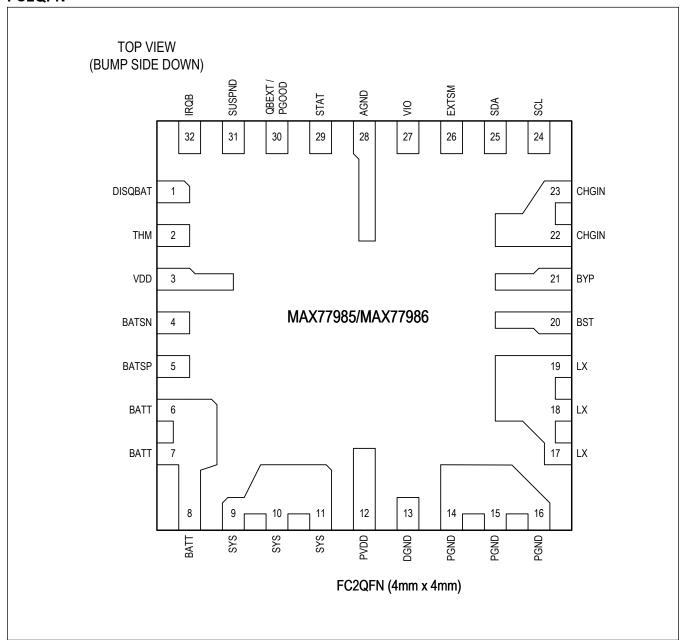

Note 1: See the <u>Unplug Detection</u> section for more information on Case1.


Note 2: See the <u>Unplug Detection</u> section for more information on Case2.


Note 3: For parts with chip revision 0b001 (PASS1), contact Analog Devices for Rev 0 of the data sheet. This information can be read from the CHIP_REVISION (0x01) register.


Typical Operating Characteristics

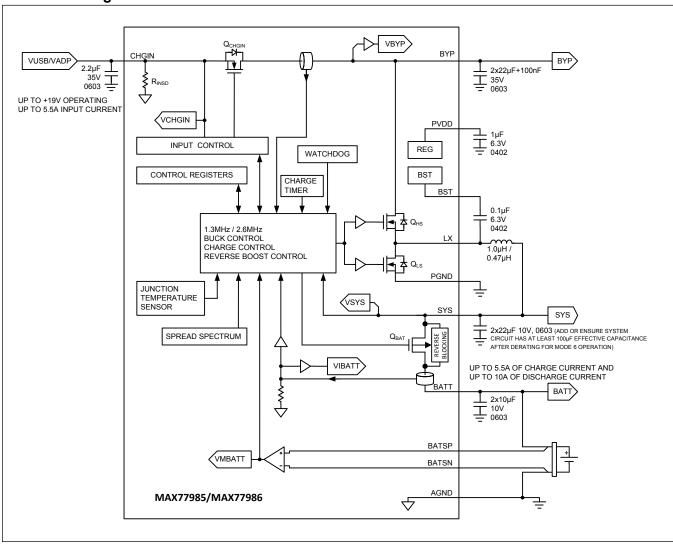
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$



Pin Configuration

FC2QFN

Pin Description


PIN	NAME	FUNCTION	TYPE
1	DISQBAT	Active-high to disable internal Q _{BATT} FET between SYS and BATT.	DI
2	THM	Thermistor Connection. Connect an external thermistor between THM and AGND.	Α

Pin Description (continued)

PIN	NAME	FUNCTION	TYPE
3	VDD	Analog Voltage Level. The output of on-chip low voltage LDO used to power on-chip, low-noise circuits. Bypass with a 1µF (6.3V) ceramic capacitor to AGND. Powering external loads from VDD is not recommended, other than pullup	А
		resistors.	
4	BATSN	Battery Negative Differential Sense Connection. Connect to the negative or ground terminal as close as possible.	Α
5	BATSP	Battery Positive Differential Sense Pin. Connect to battery positive terminal as close as possible to eliminate errors due to trace/connector voltage drops.	Α
6, 7, 8	BATT	Connection with Battery. Connect to the positive terminal of a single-cell Li-ion battery. Bypass with 2 x 10μ F (6.3V) ceramic capacitors from BATT to PGND.	Р
9, 10, 11	SYS	Connection with System. Bypass with at least $2x22\mu F$ (6.3V) ceramic capacitors from SYS to PGND. This ensures that the minimum effective capacitance on the SYS node is $12\mu F$ (effective), for stability purposes. If Mode 0x6 is used, then it additionally requires more ceramic capacitors to give a total effective capacitance of at least $100\mu F$ on the SYS node. The SYS node capacitance can increase up to $350\mu F$ total (effective).	Р
12	PVDD	Internal Bias Regulator High Current Output Bypass Pin. Supplies internal noisy and high current gate drive loads. Bypass with 1µF (6.3V) from PVDD to PGND. Powering external loads from PVDD is not recommended, other than pullup resistors.	Р
13	DGND	Digital Ground	Α
14, 15 ,16	PGND	Charger Power Ground	Р
17, 18, 19	LX	Charger Switching Node. Connect the inductor between LX and SYS.	Р
20	BST	High-Side FET Driver Supply. Bypass BST to LX with a 1x 100nF (6.3V) ceramic capacitor.	Α
21	ВҮР	CHGIN Bypass Pin. This pin is the input for the switching charger and the output for the boost converter when the charger is operating in 'reverse-boost' mode. Bypass with $2 \times 22\mu F$ (35V) + 100nF (35V) ceramic capacitor from BYP to PGND.	Р
22, 23	CHGIN	Charger Input. Connect a 2.2µF (35V) capacitor between CHGIN and PGND.	Р
24	SCL	I ² C Interface Clock Input	DI
25	SDA	I ² C Interface Data Input	DI
26	EXTSM	Exit Ship Mode Input by Push-Button. Active-high input.	DI
27	VIO	I ² C Supply Voltage Input. Bypass to AGND with a 1μF (6.3V) capacitor.	Р
28	AGND	Analog Ground	Α
29	STAT	LED Low-Side Driver Output for Indicating Charging Status	Α
30	QBEXT/ PGOOD	When UNPLG_DET = 0x00, this pin is configured to QBEXT which is the external battery FET control output. Connect a pullup resistor to VIO, SYS, or BATT supply. When UNPLG_DET ≠ 0x00, this pin is configured to PGOOD which is the unplug detection comparator output.	DO
31	SUSPND	Active-High Input to Disable the DC-DC Between CHGIN Input and SYS Output	DI
32	IRQB	Interrupt Output. Connect a 100kΩ pullup resistor between IRQB and VIO.	DO

Functional Diagrams

Functional Diagram

Detailed Description

Switching Mode Charger

Features

- Complete Li+/LiPoly Battery Charger
 - · Pregualification, Constant Current, Constant Voltage
 - 55mA Precharge Current
 - · 300mA Trickle Charge Current
 - · Adjustable Constant Current Charge
 - 100mA to 5.5A in 50mA Steps (Limited to 3.5A for MAX77985)
 - Adjustable Charge-Termination Threshold
 - 150mA to 850mA in 50mA Steps
 - · Adjustable Battery Regulation Voltage
 - 4.15V to 4.5375V in 12.5mV Steps for MAX7798xA
 - 3.50V to 4.275V in 25mV Steps for MAX7798xB
 - -0.8/+0.2% Accuracy from -5°C to +85°C
 - Remote Differential Sensing
- Synchronous Switch-Mode Based Design
- Smart Power Selector
 - · Optimally distributes power between the charge adapter, system, and battery.
 - When powered by a charge adapter, the battery can provide supplemental current to the system.
 - The charge adapter can support the system with a dead battery or without a battery.
- No External MOSFETs Required for Switcher
- CHGIN Input
 - · Adjustable Input Current Limit
 - 100mA to 5.5A in 50mA Steps (CHGIN ILIM)
 - · Default is set to 500mA
 - Supports AC-to-DC Wall Adapters
 - V_{CHGIN OVLO} = 19.5V
 - Reverse-Leakage Protection Prevents the Battery Leaking Current to the Inputs
- Charge Safety Watchdog Timer
 - · Selectable: 3hr to 8hr, plus a Disable Setting
- Die Temperature Monitor with Thermal Foldback Loop
 - Selectable Die-Temperature Thresholds (°C): +85°C to +130°C in +5°C Steps
- Input Voltage Dropout Control Allows Operation from High-Impedance Sources (AICL)
- BATT to SYS Switch is 7.7mΩ Typical
 - Capable of up to 10A Steady-State Operation from BATT to SYS
- Short-Circuit Protection
 - · Programmable BATT to SYS Overcurrent Threshold from 3A to 10A, plus a Disable Setting
 - DISIBS Bit Allows the Host to Disable the Battery to System Discharge Path to Protect Against a Short-Circuit
 - · SYS Short to Ground
 - · Buck current is limited by switcher current limit and disabling of the synchronous rectifier.
 - BATT currents above the programmed by B2SOVRC threshold generate an interrupt. The host can then disable
 the battery to the system discharge path by setting DISIBS or asserting the DISQBAT pin high.
- Fast Unplug Detection of 5V, 9V and 15V Sources
- Spread Spectrum Modulation for Reduced EMI

Detailed Description

The MAX77985/MAX77986 includes a full-featured switch-mode charger for a one-cell lithium-ion (Li+) or lithium-polymer (Li-polymer) battery. The current limit for CHGIN input is independently programmable from 100mA to 3.5A/5.5A in 50mA steps allowing the flexibility for connection to either an AC-to-DC wall charger or a USB port.

The synchronous switch-mode DC-DC converter utilizes a high 1.3MHz/2.6MHz switching frequency which is ideal for portable devices because it allows the use of small components while eliminating excessive heat generation. The DC-DC has both a buck and a boost mode of operation. When charging the main battery, the converter operates as a buck. The DC-DC buck operates from a 4.3V to 19.5V source. The battery charge current is programmable from 100mA to 3.5A/5.5A in MAX77985/MAX77986.

As a boost converter, the DC-DC uses energy from the main battery to boost the voltage at BYP. The BYP supplies the USB OTG voltage (5.1V) and USB Type-C[®] PD Source Voltages (5V to 12V). The programmable boost output current limit range is from 0.5A to 3.1A with a 0.1A step.

The Smart Power Selector architecture makes the best use of the limited adapter power and the battery's power at all times to supply up to buck current limit from the buck to the system. (Additionally, supplement mode provides additional current from the battery to the system up to B2SOVRC.) Adapter power that is not used for the system goes to charging the battery. All power switches for charging and switching the system load between the battery and adapter power are included on-chip—no external MOSFETs are required.

A multitude of safety features ensures reliable charging. Features include a charge timer, watchdog, junction thermal regulation, over/under voltage protection, and short circuit protection.

The BATT to SYS switch has overcurrent protection (see the <u>Main-Battery Overcurrent Protection Due to Fault</u> section for more information).

Recommended buck output current range is as follows:

Table 1. Recommended Buck Output Current Range

	MINIMUM SYS CURRENT (A)	MAXIMUM SYS CURRENT (A)
MAX77985A, MAX77985B	0	4.5
MAX77986A, MAX77986B	0	7

Smart Power Selector (SPS)

The SPS architecture is a network of internal switches and control loops that distribute energy between external power sources CHGIN, BYP, SYS, and BATT.

The *Functional Diagram* shows a more detailed arrangement of the Smart Power Selector switches and gives them the following names: Q_{CHGIN}, Q_{HS}, Q_{BATT}.

Switch and Control Loop Descriptions

- CHGIN Input Switch: The input switch is either completely on or completely off. As shown in the <u>Functional Diagram</u>, there are SPS control loops that monitor the current through the input switches as well as the input voltage.
- DC-DC Switches: Q_{HS} and Q_{LS} are the DC-DC switches that can operate as a buck (step-down) or a boost (step-up). When operating as a buck, energy is moved from BYP to SYS. When operating as a boost, energy is moved from SYS to BYP. SPS control loops monitor the DC-DC switch current, the SYS voltage, and the BYP voltage.
- Battery-to-System Switch: Q_{BATT} controls the battery charging and discharging. Additionally, Q_{BATT} allows the battery to be isolated from the system (SYS). An SPS control loop monitors the Q_{BATT} current.

Control Bits

- MODE configures the Smart Power Selector
- V_{BYPSET} sets the BYP regulation voltage target
- B2SOVRC configures the main-battery overcurrent protection

Energy Distribution Priority

- With a valid external power source:
 - The external power source is the primary source of energy

MAX77985/MAX77986

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

- · The main battery is the secondary source of energy
- · Energy delivery to BYP is the highest priority
- · Energy delivery to SYS is the second priority
- Any energy that is not required by BYP or SYS is available to the main-battery charger
- With no power source available at CHGIN:
 - The main-battery is the primary source of energy
 - · Energy delivery to BYP (if boost mode is selected) and SYS share the same priority
 - BYP includes CHGIN if boost OTG mode is selected, itself limited by OTG_ILIM threshold
 - · Energy delivery to BYP (if boost mode is selected) and SYS is limited by B2SOVRC threshold

BYP Regulation Voltage

- When the DC-DC is off or in one of its buck modes and there is a valid power source at CHGIN, V_{BYP} = V_{CHGIN} I_{CHGIN} x R_{CHGIN2BYP}.
- When the DC-DC is off and there is no valid power source at CHGIN, BYP is connected to LX through the high-side switch's body diode.

SYS Regulation Voltage

- When the DC-DC is enabled as a buck and the charger is disabled, Q_{BATT} is off and V_{SYS} is regulated to V_{SYSREG_TRK} when the V_{BATT} < V_{SYSMIN} or V_{SYSREG_TRK} when the V_{BATT} ≥ V_{SYSMIN}.
 When the DC-DC is enabled as a buck and the charger is enabled but in a non-charging state such as done,
- When the DC-DC is enabled as a buck and the charger is enabled but in a non-charging state such as done, thermistor suspend, watchdog suspend, or timer fault, Q_{BATT} is off and V_{SYS} is regulated to V_{SYSREG_TRK_MIN} when the V_{BATT} < V_{SYSMIN} or V_{SYSREG_TRK} when the V_{BATT} ≥ V_{SYSMIN}.
- When the DC-DC is enabled as a buck and charging in prequalification, fast-charge, or top-off modes, V_{SYS} is regulated to V_{SYSMIN} when the V_{BATT} < V_{SYSMIN}; in this mode, the Q_{BATT} switch acts as a linear regulator and dissipates power [P = (V_{SYSMIN} V_{BATT}) x I_{BATT}]. When V_{BATT} > V_{SYSMIN}, then V_{SYS} = V_{BATT} + I_{BATT} x R_{BAT2SYS}; in this mode, the Q_{BATT} switch is closed.
- In all of the above modes, if the combined SYS and BYP loading exceeds the input current limit, then V_{SYS} drops to V_{BATT} - V_{BSREG} and the battery provides supplemental current.
- When the DC-DC is enabled as a boost, then the QBATT switch is closed, and VSYS = VBATT IBATT x RBAT2SYS.

Input Validation

The charger input is compared with several voltage thresholds to determine if it is valid. A charger input must meet the following four characteristics to be valid:

- CHGIN must be above V_{CHGIN_UVLO} to be valid. Once CHGIN is above the UVLO threshold, the information (together with IN2SYS, described below) is latched and can only be reset when the charger is in an adaptive input current loop (AICL) and the input current is lower than the IULO_DET threshold.
- CHGIN must be below its overvoltage-lockout threshold (V_{CHGIN OVLO}).
- CHGIN must be above the system voltage by IN2SYS drop out.
- CHGIN input generates a CHGIN_I interrupt when its status changes. The input status can be read with CHGIN_OK
 and CHGIN_DTLS. Interrupts can be masked with CHGIN_M.

Input Current Limit

The default settings of the CHGIN_ILIM and MODE control bits are such that when a charge source is applied to CHGIN, the IC turns its DC-DC converter on in BUCK mode, limits V_{SYS} to V_{SYSREG_TRK} , and limits the charge source current to I_{INI_IMIT} . All control bits are reset on global shutdown.

Input Voltage Regulation Loop

An input voltage regulation loop allows the charger to be well behaved when it is attached to a poor-quality charge source. The loop improves performance with relatively high resistance charge sources that exist when long cables are used or devices are charged with non-compliant USB hub configurations. Additionally, this input voltage regulation loop improves performance with current limited adapters. If the ICs input current limit is programmed above the current-limit threshold of a given adapter, the input voltage loop allows the IC to regulate at the current limit of the adapter. Finally, the input-voltage regulation loop allows the IC to perform well with adapters that have poor transient load response times.

The input voltage regulation loop automatically reduces the inductor average current to keep the input voltage at V_{CHGIN_REG} . If the input current is reduced to I_{ULO_DET} and the input voltage is below V_{CHGIN_REG} , then the charger input is turned off. V_{CHGIN_REG} is programmable with V_{CHGIN_REG} [1:0].

After operating with the input voltage regulation loop active, an AICL_I interrupt is generated, and AICL_OK sets to 0. To optimize input power when working with a current limited charge source, monitor the AICL_OK status while decreasing the input current limit. When the input current limit is set below the limit of the adapter, the input voltage rises. Although the input current limit is lowered, more power can be extracted from the input source when the input voltage is allowed to rise.

Example 1. Optimum use of the Input Voltage Regulation Loop Along with a Current Limited Adapter.

Sequence of Events:

- 1. $V_{BATT} = 3.2V$, the system is operating normally.
- 2. MODE = 0x04, CHGIN_ILIM = 100mA, CHG_CV_PRM = 4.2V, V_{CHGIN_REG} = 4.5V, CHG_CC_TOT = 2.0A.
- 3. A 5.0V 1.2A current limited dedicated USB charger is applied to CHGIN.
- The DC-DC buck regulator turns on, V_{SYS} is regulated to V_{BATTREG} (4.2V) and the input is allowed to provide 100mA to the system.
- 5. The system detects that the charge source is a dedicated USB charger and enables the battery charger (MODE = 0x05) and programs an input current limit to 1.8A (CHGIN_ILIM = 1.8A).
- 6. The input current limit starts to ramp up from 100mA to 1.8A, but at the input current limit of the adapter (1.2A), the adapter voltage collapses. The ICs input voltage regulation loop prevents the adapter voltage from falling below 4.5V (VCHGIN REG = 4.5V). An AICL I interrupt is generated and AICL OK sets to 0.
- 7. With the input-voltage regulation loop active, the adapter provides 1.2A at 4.5V which is a total of 5.4W being delivered to the system.
- 8. The system software detects that the input voltage regulation loop is active and it begins to ramp down the programmed input current limit. When the current limit ramps down to 1.175A, the adapter is no longer in the current limit, and the adapter voltage increases from 4.5V to 5.0V.
- 9. With the adapter operating just below its current limit, it provides 1.175A at 5.0V which is a total of 5.88W to the system. This is 440mW more than when the adapter was in the current limit.

System Self-Discharge with No Power

To ensure a timely, complete, repeatable, and reliable reset behavior when the system has no power, the ICs actively discharge the SYS nodes when Q_{BATT} and switcher are disabled and V_{SYS} is less than $V_{SYSUVLO}$. As shown in Figure 1, the SYS discharge resistor is 600Ω .

Example 1. Basic System Self-Discharge

Initial Conditions: No charger adapter is present at CHGIN, the BAT-to-SYS switch is closed, C_{BAT} = 100 μ F, C_{SYS} = 200 μ F, V_{BATT} = 3.6V, and $V_{SYSUVLO}$ falling is SYS_UVLOB_F.

Sequence of Events:

- 1. With the system in its normal operating mode it is drawing 1A.
- 2. The main battery is removed.
- 3. The system continues to draw 1A until V_{SYS} falls below V_{SYSUVLO}. This takes 480μs ((3.6V-2.0V)/1A x 300μF).
- 4. When the system voltage falls below V_{SYSUVLO}, the system turns off the leakage current. To facilitate discharging C_{BAT} and C_{SYS} the IC engages its 600Ω discharge resistors.

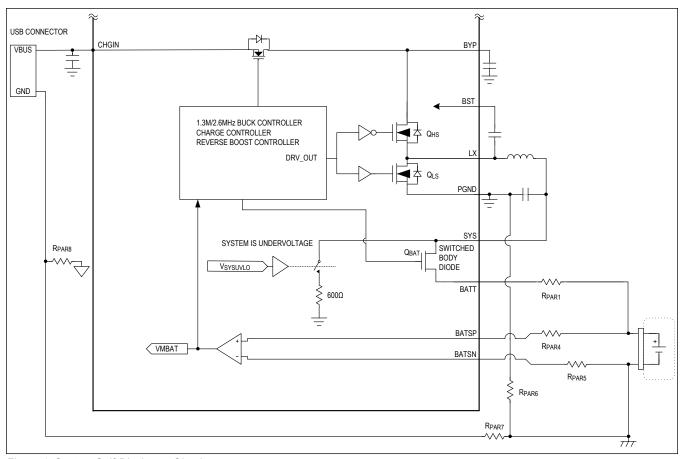


Figure 1. System Self-Discharge Circuit

Power States

The MAX77985/MAX77986 transitions between power states as input/battery and load conditions dictate; see Figure 2.

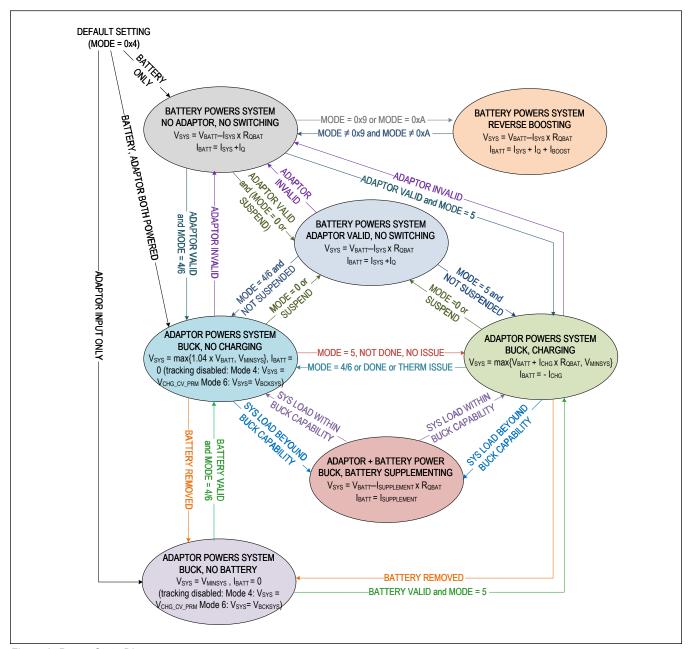


Figure 2. Power State Diagram

MAX77985/MAX77986

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

The IC provides five (5) power modes and one (1) no power mode (MODE detailed description is at register CHG_CNFG_00 [3:0]). Under power limited conditions, the PowerPathTM feature maintains SYS load at the expense of battery charge current. Also, the battery supplements the input power when required. As shown, transitions between power states are initiated by the detection/removal of valid power sources, OTG events, and under-voltage conditions. Details of the SYS voltage and BATT current are provided for each state. There are six main usage modes:

- 1. NO INPUT POWER, <u>MODE = undefined</u>: No input adapter or battery is detected. The charger and system are off. The battery is disconnected and the charger is off.
- 2. BATTERY-ONLY, <u>MODE = any modes</u>: The adapter is invalid and outside the input voltage operating range (Q_{CHGIN} = OFF). The battery is connected to power the SYS load (Q_{BATT} = ON).
- 3. NO CHARGE-BUCK, $\underline{MODE = 0x04}$: The adapter is valid, buck supplies power to SYS. The battery is disconnected ($Q_{BATT} = OFF$) when SYS load is less than the power that the buck can supply.

When the SYS load is larger than the power that the buck can supply, the battery is reconnected ($Q_{BATT} = ON$) and supplements extra SYS load.

- 4. CHARGE-BUCK, $\underline{MODE = 0x05}$: The adapter is valid, the buck supplies power to SYS, and charges the battery with I_{BATT} .
- 5. HIGH-VOLTAGE-BUCK, <u>MODE = 0x06</u>: Power path same as MODE = 0x04, except for the SYS regulation voltage when SYS tracking disabled is controlled by BCKSYS instead of CHG_CV_PRM.
- 6. BATTERY-BOOST (FLASH), $\underline{MODE = 0x09}$: OTG is inactive (Q_{CHGIN} = OFF). The battery is connected to support SYS and BYP loads (Q_{BATT} = ON), and the charger is operating in boost mode (Boost = ON).
- 7. BATTERY-BOOST (OTG), $\underline{MODE} = 0x0A$: OTG is active (Q_{CHGIN} = ON). The battery is connected to support SYS and OTG loads (Q_{BATT} = ON), and the charger is operating in boost mode (Boost = ON).

Charger States

The ICs utilize several charging states to safely and quickly charge batteries as shown in <u>Figure 3</u>. The figure shows an exaggerated view of a Li+/Li-Poly battery progressing through the following charge states when there is no system load and the die and battery are close to room temperature. It shows a complete charging state transition process with four states: prequalification, fast-charge, top-off, and done.

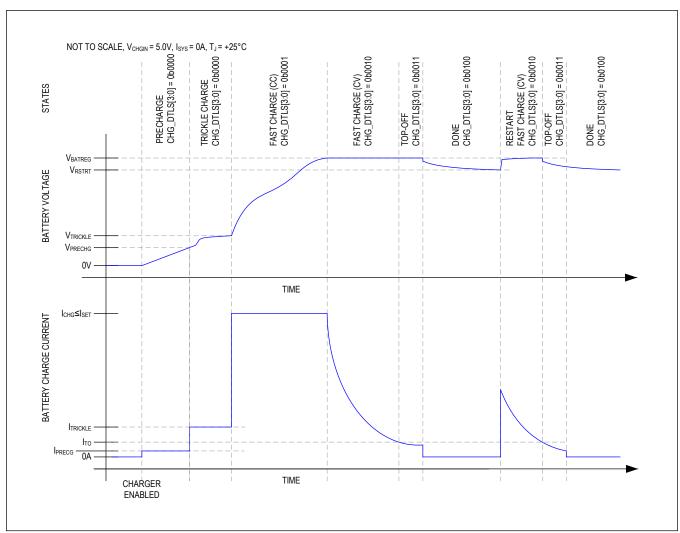


Figure 3. Li+/Li-Poly Charge Profile

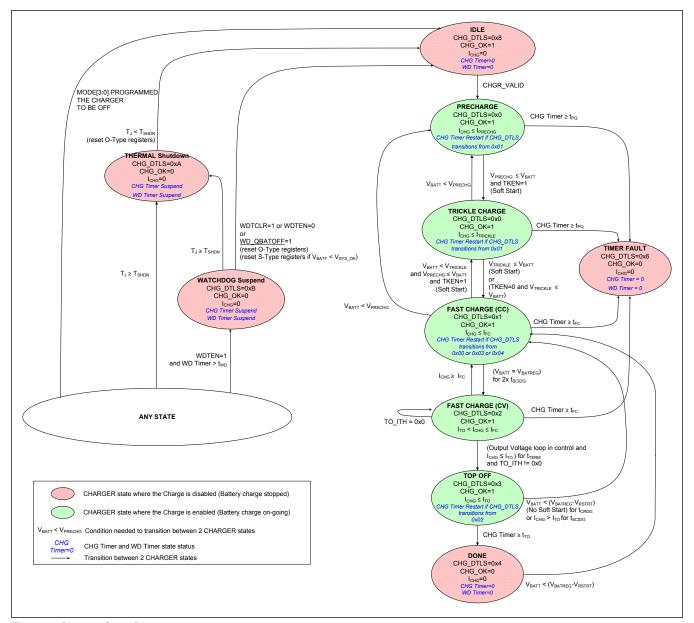


Figure 4. Charger State Diagram

No Input Power or Charge Idle State

While in the "no input power or charger idle" state, the charge current is 0mA, the watchdog and charge timers are forced to 0, and the power to the system is provided by either the battery or the adapter. When both battery and adapter power is available, the adapter provides primary power to the system and the battery contributes supplemental energy to the system if necessary.

To exit the "no input power or charger idle" state, the charger input must be valid and the charger has to be enabled.

Precharge State

As shown in <u>Figure 3</u>, the precharge state occurs when the main-battery voltage is less than V_{PRECHG}. After being in this state for t_{SCIDG}, a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS is set to 0x00. In the precharge state, the charge current in the battery is I_{PRECHG}.

The following events cause the state machine to exit this state:

- Main battery voltage rises above V_{PRECHG} and the charger enters the next state in the charging cycle: "Trickle Charge".
- If the battery charger remains in this state for longer than t_{PQ}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced (see the <u>Watchdog Timer</u> section), the charger state machine transitions to the "Watchdog Suspend" state.

Note that the precharge state works with battery voltages down to 0V. The low 0V operation typically allows this battery charger to recover batteries that have an "open" internal pack protector. Typically a pack internal protection circuit opens if the battery has seen an overcurrent, undervoltage, or overvoltage. When a battery with an "open" internal pack protector is used with this charger, the precharge mode current flows into the 0V battery—this current raises the pack's terminal voltage to the pointer where the internal pack protection switch closes.

Note that a normal battery typically stays in the precharge state for several minutes or less. Therefore a battery that stays in the precharge for longer than t_{PO} may be experiencing a problem.

Trickle Charge State

As shown in Figure 3, the trickle charge state occurs when $V_{BATT} > V_{PRECHG}$ and $V_{BATT} < V_{TRICKLE}$. After being in this state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x00.

With TKEN = 1 and the IC is in its trickle charge state, the current in the battery is less than or equal to ITRICKLE. When TKEN = 0, the battery current is less than or equal to I_{FC}.

Charge current may be less than ITRICKLE/IFC for any of the following reasons:

- The charger input is in input current limit
- The charger input voltage is low
- The charger is in thermal foldback
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

Typical systems operate with TKEN = 1. When operating with TKEN = 0, the system's software usually sets I_{FC} to a low value such as 450mA and then monitors the battery voltage. When the battery exceeds a relatively low voltage such as 3.1V, then the system's software usually increases I_{FC} .

The following events cause the state machine to exit this state:

- When the main battery voltage rises above VTRICKLE or the TKEN bit is cleared, the charger enters the next state in the charging cycle: "Fast Charge (CC)".
- If the battery charger remains in this state for longer than t_{PQ}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

Note that a normal battery typically stays in the trickle charge state for several minutes or less. Therefore a battery that stays in trickle charge for longer than t_{PQ} may be experiencing a problem.

Fast-Charge Constant Current (CC) State

As shown in Figure 3, the fast-charge CC state occurs when the main-battery voltage is greater than the low-battery prequalification threshold and less than the battery regulation threshold ($V_{TRICKLE} < V_{BATT} < V_{BATTREG}$). After being in the fast-charge CC state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x01.

In the fast-charge CC state, the current in the battery is less than or equal to I_{FC} . Charge current may be less than I_{FC} for any of the following reasons:

- The charger input is in input current limit
- · The charger input voltage is low
- The charger is in thermal foldback
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current

The following events cause the state machine to exit this state:

- When the main battery voltage rises above V_{BATTREG}, the charger enters the next state in the charging cycle: "Fast Charge (CV)".
- If the battery charger remains in this state for longer than t_{FC}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

The battery charger dissipates the most power in the fast-charge constant current state. This power dissipation causes the internal die temperature to rise. If the die temperature exceeds T_{REG}, I_{FC} is reduced. See the <u>Thermal Foldback</u> section for more information.

Fast-Charge Constant Voltage (CV) State

As shown in <u>Figure 3</u>, the fast-charge CV state occurs when the battery voltage rises to $V_{BATTREG}$ from the fast-charge CC state. After being in the fast-charge CV state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x02.

In the fast-charge CV state, the battery charger maintains $V_{BATTREG}$ across the battery and the charge current is less than or equal to I_{FC} . As shown in <u>Figure 3</u>, the charger current decreases exponentially in this state as the battery becomes fully charged.

The smart power selector control circuitry may reduce the charge current lower than the battery may otherwise consume for any of the following reasons:

- · The charger input is in input current limit
- The charger input voltage is low
- The charger is in thermal foldback
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

The following events causes the state machine to exit this state:

- When the charger current is below I_{TO} for t_{TERM}, the charger enters the next state in the charging cycle: the "TOP OFF" state.
- If the battery charger remains in this state for longer than t_{FC}, the charger state machine transitions to the "Timer Fault" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

Top-Off State

As shown in Figure 3, the top-off state can only be entered from the fast-charge CV state when the charger current decreases below I_{TO} for t_{TERM} . After being in the top-off state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 1, and CHG_DTLS = 0x03. In the top-off state, the battery charger tries to maintain $V_{BATTREG}$ across the battery and typically the charge current is less than or equal to I_{TO} .

The smart power selector control circuitry may reduce the charge current lower than the battery may otherwise consume

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

for any of the following reasons:

- · The charger input is in the input current limit
- The charger input voltage is low
- The charger is in thermal foldback
- The system load is consuming adapter current. Note that the system load always gets priority over the battery charge current.

The following events cause the state machine to exit this state:

- After being in this state for the top-off time (t_{TO}), the charger enters the next state in the charging cycle: the "DONE" state.
- If $V_{BATT} < V_{BATTREG} V_{RSTRT}$, the charger goes back to the "FAST CHARGE (CC)" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

Top-Off Current Shift in Skip Mode

When DISKIP = 0, the buck charger operates in skip mode during light loads. The skip mode operation makes a long-term ripple in the battery charging current and usually results in the I_{TO} shifting down than the actual target. Approximately, if $(I_{SYS} + I_{TO}) < I_{ULO_DET} \times V_{CHGIN}/V_{BATTREG}$ (let's call this "condition T") then the IC may exhibit lower I_{TO} accuracy..

To maintain I_{TO} accuracy, one of the following two methods may be employed:

- 1. Use higher I_{TO} and longer t_{TO} : For example, V_{CHGIN} = 15V, $V_{BATTREG}$ = 4.2, I_{SYS} = 0A, I_{TO} = 200mA. It may show I_{TO} shifted down to around 100mA because it meets condition T. In the case where the selected I_{TO} is 250mA or 300mA, then I_{TO} accuracy is maintained since the buck charger is still operating in non-skip mode.
- 2. Set DISKIP = 1 only when V_{CHGIN} ≥15V && CHG_DTLS = 0x02 (CV mode), and set DISKIP = 0 when CHG_DTLS = 0x03 (Top-Off mode). The alternative condition could be V_{CHGIN} ≥15V && I_{BAT} = 50mA + I_{TO} for setting DISKIP = 1 assuming the system processor can read the battery current through the fuel gauge.

Done State

As shown in <u>Figure 3</u>, the battery charger enters its done state after the charger has been in the top-off state for t_{TO} . After being in this state for t_{SCIDG} , a CHG_I interrupt is generated only if CHG_OK was 0 previously, CHG_OK is set to 0, and CHG_DTLS = 0x04.

The following events cause the state machine to exit this state:

- If V_{BATT} < V_{BATTREG} V_{RSTRT}, the charger goes back to the "FAST-CHARGE CC" state.
- If the watchdog timer is not serviced, the charger state machine transitions to the "Watchdog Suspend" state.

In the done state, the charge current into the battery (I_{CHG}) is 0A. In the done state, the charger presents a very low load (I_{MBDN}) to the battery. If the system load presented to the battery is low, then a typical system can remain in the done state for many days. If left in the done state long enough, the battery voltage decays below the restart threshold (V_{RSTRT}), and the charger state machine transitions back into the fast-charge CV state. There is no soft-start (di/dt limiting) during the done to a fast-charge state transition.

Timer Fault State

The battery charger provides both a charge timer and a watchdog timer to ensure safe charging. The charge timer prevents the battery from charging indefinitely. The time that the charger is allowed to remain in each of its prequalification states is t_{PQ} . The time that the charger is allowed to remain in the fast-charge CC & CV states is t_{FC} which is programmable with FCHGTIME. Finally, the time that the charger is in the top-off state is t_{TO} which is programmable with TO_TIME. Upon entering the timer fault state a CHG_I interrupt is generated without a delay, CHG_OK is cleared, and CHG_DTLS = 0x06.

In the timer fault state, the charger is off. The charger can exit the timer fault state by programming the charger to be off and then programming it to be on again through the MODE bits. Alternatively, the charger input can be removed and re-inserted to exit the timer fault state.

Watchdog Timer

The battery charger provides both a charge timer and a watchdog timer to ensure safe charging. The watchdog timer protects the battery from charging indefinitely if the host hangs or otherwise cannot communicate correctly. The watchdog timer is disabled by default with WDTEN = 0. To use the watchdog timer feature enable the feature by setting WDTEN. While enabled, the system controller must reset the watchdog timer within the timer period (t_{WD}) for the charger to operate normally. Reset the watchdog timer by programming WDTCLR = 0x01.

If WD_QBATTOFF bit is set to 0 and the watchdog timer expires while the charger is in dead-battery prequalification, low-battery prequalification, fast-charge CC or CV, top-off, done, or timer fault, the charging stops, a CHG_I interrupt is generated only if CHG_OK was 1 previously, CHG_OK is cleared, and CHG_DTLS indicates that the charger is off because the watchdog timer expired. Once the watchdog timer has expired, the charger may be restarted by programming WDTCLR = 0x01. The SYS node can be supported by the battery and/or the adapter through the DC-DC buck while the watchdog timer is expired.

If the WD_QBATTOFF bit is set to 1 and the watchdog timer expires, MAX77986 turns off the buck, charger, and Q_{BATT} switch for 150ms. And then V_{SYS} voltage collapses and it resets all I²C registers. The IC restarts as the initial power-up condition.

Thermal Shutdown State

The thermal shutdown state occurs when the battery charger is in any state and the junction temperature (T_J) exceeds the device's thermal-shutdown threshold (T_{SHDN}). When T_J is close to T_{SHDN} the charger folds back the charge current to 0A (see the <u>Thermal Foldback</u> section). Upon entering this state, CHG_I interrupt is generated if CHG_OK was 1 previously, CHG_OK is cleared, and CHG_DTLS = 0x0A.

In the thermal shutdown state, the charger is off. MODE register (CHG_CNFG_00[3:0]) is reset to its default value as well as all O-type registers.

Charger Interrupt Debounce Time

Table 2. Charger Interrupt Debounce Time

	DEBOUNCE TIME RISING	DEBOUNCE TIME FALLING
INTERRUPT	Typ (ms)	Typ (ms)
AICL_I	30	30
CHGIN_I	7.5	_
INLIM_I	30	30
BAT_I (Overvoltage T _{BATOV})	7.5	_
BYP_I (T _{OTG_I})	20	_
BYP_I (BST_I _{LIM})	30	_
BYP_I (Buck Neg I _{LIM})	0.5	_

Accuracy of the timer is defined by T_{ACC}

Main-Battery Differential Voltage Sense

BATSP and BATSN are differential remote sense lines for the main battery. To improve accuracy and decrease charging times, the battery charger voltage sense is based on the differential voltage between BATSP and BATSN. Similarly, the thermistor voltage is interpreted with respect to BATSN.

A Maxim battery charger without the remote sensing function would typically measure the battery voltage between BATT and GND. In case a charge current of 1A measuring from BATT to GND leads to a V_{BATT} that is 40mV higher than the real voltage because of R_{PAR1} and R_{PAR7} ($I_{CHG} \times (R_{PAR1} + R_{PAR7}) = 1A \times 40m\Omega = 40mV$). Since the charger thinks the battery voltage is higher than it actually is, it enters its fast-charge CV state sooner and the effective charge time may be extended by 10 minutes (based on real lab measurements). This charger with differential remote sensing does not experience this type of problem because BATSP and BATSN sense the battery voltage directly. To get the maximum benefit from these sense lines, connect them as close as possible to the main-battery connector.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Reverse Boost Mode

The DC-DC converter topology of the IC allows it to operate as a forward buck converter or as a reverse boost converter. The modes of the DC-DC converter are controlled with MODE. When MODE = 0x09 or 0x0A, the DC-DC converter operates in reverse boost mode allowing it to source current to BYP. To allow current flow to CHGIN, set MODE = 0x0A. This mode allows current to be sourced from CHGIN and is commonly referred to as OTG mode.

When MODE = 0x0A, the DC-DC converter operates in reverse boost mode and regulates V_{BYP} to $V_{BYP.OTG}$ and the low ohmic ($R_{CHGIN2BYP}$) switch from BYP to CHGIN is closed. The current through the BYP to CHGIN switch is limited to the value programmed by OTG_ILIM. The programmable OTG_ILIM options allow for supplying from 500mA to 3100mA to an external load. When the OTG mode is selected, the unipolar CHGIN transfer function measures the current going out of CHGIN. When OTG mode is not selected, the unipolar CHGIN transfer function measures the current going into CHGIN.

If the external OTG load at CHGIN exceeds ICHGIN.OTG.ILIM current during a minimum time of T_{OTG_I} ms, then a BYP_I interrupt is generated. BYP_OK = 0 and BYP_DTLS[0] = 1. In response to an overload at CHGIN during OTG mode operation, the BYP to CHGIN switch is latched off T_{OTG_fault} after entering the OTG_ILIM condition. If the overload at CHGIN persists, BYP_DTLS keeps continuing to report OTG_ILIM fault through BYP_DTLS[0] = 1.

If OTG_REC_EN bit = '1: other functions remain unaffected, i.e., BYP is supplied by reverse boost, and the BYP to CHGIN switch automatically retries after T_{OTG_retry} . If the overload at CHGIN persists, then the CHGIN switch toggles ON and OFF with T_{OTG_fault} ON time and T_{OTG_retry} OFF time.

If OTG REC EN bit = '0: the BYP to CHGIN switch remains off and the switcher is turned off until MODE is toggled.

BYP_I exit interrupt is only generated on OTG load release such as IOTG < ICHGIN.OTG.ILIM or FET opening. At that time, the BYP_I interrupt is generated. BYP_OK = 1 and BYP_DTLS[0] = 0.

Note: On OTG_ILIM debounce time out, BYP_DTLS[0] is latched until the BYP_DTLS register is read by AP. BYP_OK is matching BYP_DTLS[0] behavior.

Main-Battery Overcurrent Protection During System Power-Up

The "main-battery overcurrent protection during system power-up" feature limits the main battery to system current to I_{SYSPU} as long as V_{SYS} is less than V_{SYSPU} BAT. This feature limits the surge current that typically flows from the main battery to the device's low-impedance system bypass capacitors during a system power-up. System power-up is anytime that energy from the battery is supplied to SYS when $V_{SYS} < V_{SYSPU}$. This "system power-up" condition typically occurs when a battery is hot-inserted into an otherwise unpowered device. Similarly, the "system power-up" condition can occur when the DISIBS bit is driven low.

When "system power-up" occurs due to hot-insertion into an otherwise unpowered device, a small delay is required for this feature's control circuits to activate. A current spike over I_{SYSPU BAT} can occur during this time.

Main-Battery Overcurrent Protection Due to Fault

The IC protects itself, the battery, and the system from potential damage due to excessive battery discharge current. Excessive battery discharge current can occur in a smartphone for several reasons such as exposure to moisture, a software problem, an IC failure, a component failure, or a mechanical failure that causes a short circuit. The main-battery overcurrent protection feature is enabled with B2SOVRC; disabling this feature reduces the main-battery current consumption by $2\mu A$.

When the main battery (BATT) to system (SYS) discharge current (I_{BATT}) exceeds the programmed overcurrent threshold (I_{BOVRC}) for at least I_{BOVRC} , a BAT_I interrupt is generated, BAT_OK is cleared, and BAT_DTLS reports an overcurrent condition. Typically when the system's processor detects this overcurrent interrupt it executes a housekeeping routine that tries to mitigate the overcurrent situation. If the processor cannot correct the overcurrent within I_{CCP} , then the IC disables the BATT to SYS discharge path (I_{CCP}) and turns off the Buck.

Under OCP fault condition, when SYS is low ($V_{SYS} < V_{SYSUP}$) for t_{OCP_RETRY} , the IC restarts on its own and attempts to pullup SYS again. If the fault condition remains, the whole cycle repeats until this fault condition is removed.

AP can also turn off the QBATT switch by driving the DISIBS bit to a logic-high or pulling the DISQBAT pin high.

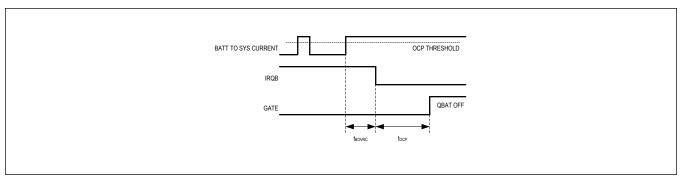


Figure 5. BATT to SYS Overcurrent Protection

There are different scenarios of how the ICs respond to the OCP event depending on the available power source and the state of the charger:

- 1) The IC is only powered by a battery, then the OCP event occurs:
 - a. QBATT switch opens.
 - b. SYS collapses and is allowed to go to 0V.
 - c. If RECYCLE_EN = 1: After SYS is low ($V_{SYS} < V_{SYSUP}$) for t_{OCP} _RETRY, the IC retries to bring up V_{SYS} above V_{SYSUP} . If the fault condition is not removed by SYS collapsing to 0V, the IC may fail to bring up V_{SYS} above V_{SYSUP} (see the $\underline{V_{SYS}}$ Power-Up Failure ($\underline{P_{WRUPFAIL}}$) section). If a V_{SYS} power-up failure happened during a retry, then a valid charger input has to be inserted to turn on the buck and Q_{BATT} switch. If RECYCLE_EN = 0: The Q_{BATT} switch remains open. When a valid charger input is inserted, the buck and Q_{BATT} switch turns on.
- 2) The IC is powered from BATT and CHGIN, buck is switching, charge is ON, then an OCP event occurs:
 - a. Buck is off and the QBATT switch opens.
 - b. SYS collapses and is allowed to go to 0V.
 - c. Regardless of the RECYCLE_EN setting, the IC retries to bring up V_{SYS} above V_{SYSUP} . If the fault condition is not removed by SYS collapsing to 0V, the IC may fail to bring up V_{SYS} above V_{SYSUP} (see the $\underline{V_{SYS}Power-Up}$ Failure ($\underline{P_{WRUPFAIL}}$) section). If a V_{SYS} power-up failure happened during a retry, then a valid charger input has to be inserted to turn on the buck and Q_{BATT} switch.
- 3) The IC is powered from CHGIN, buck is switching, charge is OFF, then an OCP event occurs:
 - a. Buck is off and the QBATT switch opens.
 - b. SYS collapses and is allowed to go to 0V.
 - c. Regardless of the RECYCLE_EN setting, the IC retries to bring up V_{SYS} above V_{SYSUP} . If the fault condition is not removed by SYS collapsing to 0V, the IC may fail to bring up V_{SYS} above V_{SYSUP} (see the V_{SYS} Power-Up Failure ($P_{WRUPFAIL}$) section). If a V_{SYS} power-up failure happened during a retry, then a valid charger input has to be inserted to turn on the buck and Q_{BATT} switch.

Note: For parts with chip revision 0b001 (PASS1), contact Analog Devices for Rev 0 of the data sheet. This information can be read from the CHIP_REVISION (0x01) register.

Battery to SYS Q_{BATT} Switch Control (DISIBS)

To protect the system from unexpected and critical events (e.g., excessive battery discharge current), the AP can control the MAX77985/MAX77986 QBATT switch by driving the DISIBS bit to a logic-high.

There are different scenarios of how the IC responds to setting the DISIBS bit high depending on the available power source and the state of the charger:

- 1) The IC is only powered from BATT and DISIBS bit is set:
 - a. QBATT switch opens

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

- b. SYS collapses and is allowed to go to 0V
- c. If RECYCLE_EN = 1, the IC self-recovers and restarts after t_{OCP_RETRY} . If the fault condition is not removed by SYS collapsing to 0V, the IC may fail to bring up V_{SYS} above V_{SYSUP} (see the V_{SYS} Power-Up Failure (PWRUPFAIL) section). If RECYCLE_EN = 0, after t_{OCP_RETRY} , the IC does not recycle until a valid charger input is inserted.
- 2) The IC is powered from BATT, CHGIN is present, the charger buck is not switching, and the DISIBS bit is set:
 - a. QBATT switch opens
 - b. SYS collapses and is allowed to go to 0V
 - a. Regardless of RECYCLE bit setting, the IC self-recovers and restarts after t_{OCP_RETRY} . If the fault condition is not removed by SYS collapsing to 0V, the IC may fail to bring up V_{SYS} above V_{SYSUP} (see the $\underline{V_{SYS}Power-Up}$ Failure $\underline{P_{WRUPFAIL}}$) section).
- 3) The IC is powered from CHGIN, the buck is switching, the charge is OFF, and the DISIBS bit is set:
 - a. QBATT stays OFF (opened)
 - b. Turn off Buck
 - c. SYS collapses and is allowed to go to 0V
 - d. Regardless of RECYCLE bit setting, the IC self-recovers and restarts after t_{OCP_RETRY} . If the fault condition is not removed by SYS collapsing to 0V, the IC may fail to bring up v_{SYS} above v_{SYSUP} (see the v_{SYS} Power-Up Failure (v_{SYS} Power-Up) section).
- 4) The IC is powered from CHGIN, the buck is switching, the charge is ON, and the DISIBS bit is set:
 - a. Charge is disabled
 - b. QBATT turns off (opened)
 - c. Turn off Buck
 - d. SYS collapses and is allowed to go to 0V
 - e. Regardless of the RECYCLE bit setting, the IC self-recovers and restarts after t_{OCP_RETRY} . If the fault condition is not removed by SYS collapsing to 0V, the IC may fail to bring up V_{SYS} above V_{SYSUP} (see the \underline{V}_{SYS} Power-Up Failure ($\underline{P}_{WRUPFAIL}$) section).

Note: For parts with chip revision 0b001 (PASS1), contact Analog Devices for Rev 0 of the data sheet. This information can be read from the CHIP_REVISION (0x01) register.

HW Control of Battery to SYS QBATT Switch—DISQBAT

To protect the system from unexpected and critical events (e.g., excessive battery discharge current), the AP can control the IC's QBATT switch by driving the DISQBAT hardware pin. This pin can also be driven during factory test modes.

On DISQBAT low-to-high assertion, Q_{BATT} FET opens and any ongoing charge is disabled but buck keeps switching (if allowed by MODE setting).

The IC supports factory-boost mode to enter in boost mode (through CHG_CNFG_00.MODE setting) and keep QBATT OFF even if boost mode is set.

This functionality is only enabled once functional register CHG_CNFG_07.QBEXT_CTRL_EN bit is set 1.

DISQBAT is an input control signal for Q_{BATT} FET with an external logic signal. If DISQBAT is driven by high, Q_{BATT} FET is truly disconnected. It has an internal 470k Ω pulldown resistor.

Thermal Management

The ICs charger uses several thermal management techniques to prevent excessive battery and die temperatures.

Thermal Foldback

Thermal foldback maximizes the battery charge current while regulating the ICs junction temperature. As shown in <u>Figure 6</u>, when the die temperature exceeds the value programmed by REGTEMP (T_{REG}), a thermal limiting circuit reduces the battery charger's target current by A_{TJREG}. The target charge current reduction is achieved with an analog control

loop (i.e., not a digital reduction in the input current). When the thermal foldback loop changes state, a CHG_I interrupt is generated and the system's microprocessor may read the status of the thermal regulation loop through the T_{REG} status bit. Note that the thermal foldback loop being active is not considered to be an abnormal operation and the thermal foldback loop status does not affect the CHG_OK bit (only information contained within CHG_DTLS affects CHG_OK).

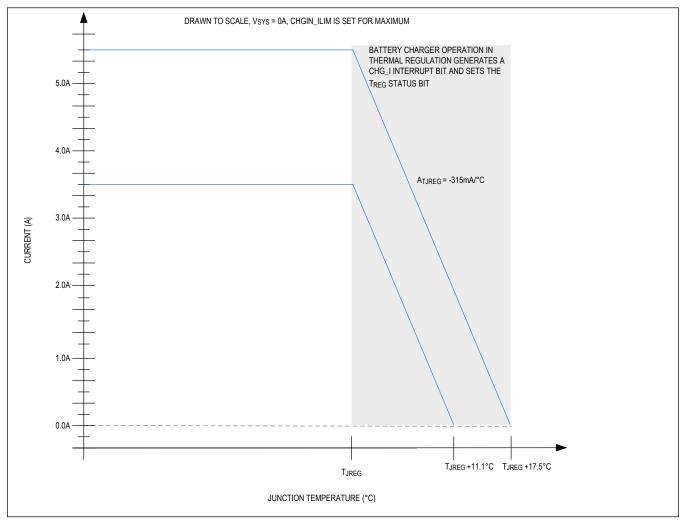


Figure 6. Charge Currents vs. Junction Temperature

Thermistor Input (THM)

The thermistor input can be utilized to achieve functions such as charge suspension, JEITA compliant charging, and battery removal detection. The thermistor monitoring feature can be disabled by connecting the THM pin to ground.

The THM input connects to an external negative temperature coefficient (NTC) thermistor to monitor battery or system temperature.

JEITA Compliant Charging

JEITA compliant charging is available with JEITA_EN = 1.

Charging stops when the thermistor temperature is out of range (T < T_{COLD} or T > T_{HOT}). The charge timers are reset and the CHG_DTLS[3:0], CHG_OK register bits report the charging suspension status, and CHG_I interrupt bit is set. When the thermistor comes back into range (T_{COLD} < T < T_{HOT}), charging resumes, and the charge timer restarts.

Battery Removal Detection

With pullup connected between PVDD and THM, if the battery is removed, the thermistor is disconnected from THM; this event is detected as THM is pulled up to PVDD. Battery removal event prevents charging.

Disable Thermistor Monitoring

Connecting THM to GND disables the thermistor monitoring function, and JEITA controlled charging is unavailable in this configuration. The IC detects an always-connected battery when THM is grounded, and charging starts automatically when a valid adapter is plugged in. In applications with removable batteries, do not connect THM to GND because the IC is not able to detect battery removal when THM is grounded. Instead, connecting THM to the thermistor pin in the battery pack is recommended.

Since the thermistor monitoring circuit employs an external bias resistor from THM to PVDD, the thermistor is not limited only to $10k\Omega$ (at +25°C). Any resistance thermistor can be used as long as the value is equivalent to the thermistor +25°C resistance. For example, with a $10k\Omega$ at RTB resistor, the charger enters a temperature suspend state when the thermistor resistance falls below $4.67k\Omega$ (too hot) or rises above $30.3k\Omega$ (too cold). This corresponds to 0°C to +45°C range when using a $10k\Omega$ NTC thermistor with a beta of 3610. The general relation of thermistor resistance to temperature is defined by the following equation:

$$R_T = R_{25} \times e^{\left\{\beta\left\{\frac{1}{T + 273^{\circ}C} - \frac{1}{298^{\circ}C}\right\}\right\}}$$

where:

 R_T = The resistance in Ω of the thermistor at temperature T in Celsius

R₂₅= The resistance in Ω of the thermistor at +25°C

 β = The material constant of the thermistor, which typically ranges from 3000k to 5000k

T = The temperature of the thermistor in °C

Some designs might prefer other thermistor temperature limits. Threshold adjustment can be accommodated by changing R_{TB} , connecting a resistor in series and/or in parallel with the thermistor, or using a thermistor with different β . For example, a +45°C hot threshold and 0°C cold threshold can be realized by using a thermistor with a β to 4250 and connecting 120k Ω in parallel. Since the thermistor resistance near 0°C is much higher than it is near +50°C, a large parallel resistance lowers the cold threshold while only slightly lowering the hot threshold. Conversely, a small series resistance raises the hot threshold, while only slightly raising the cold threshold. Raising R_{TB} , lowers both the hot and cold threshold, while lowering R_{TB} raises both thresholds.

Thermistor bias current flows whenever PVDD is enabled (CHGIN valid or BOOST enabled). When using a $10k\Omega$ thermistor and a $10k\Omega$ pullup to THM, this results in an additional $90\mu\text{A}$ load. This load can be reduced to $9\mu\text{A}$ by instead using a $100k\Omega$ thermistor and $100k\Omega$ pullup resistor.

Table 3. Trip Temperatures for Different Thermistors

	R25 (Ω)	10000	10000	47000	100000
	Thermistor Beta (β)	3380	3610	4050	4250
Thermistor	RTB (Ω)	10000	10000	47000	100000
	R15 (Ω)	14826	15223	75342	164083
	R45 (Ω)	4900	4671	19993	40781
	T _{COLD} (°C)	-1.3	0.2	2.7	3.7
Trin Tomporatures	T _{COOL} (°C)	9.0	10.0	11.6	12.2
Trip Temperatures	T _{WARM} (°C)	46.2	44.8	42.5	41.7
	T _{HOT} (°C)	62.5	59.8	55.6	54.1

JEITA Controlled Charging

The IC safely charges Li+ batteries in accordance with JEITA specifications. The IC monitors the battery temperature with an NTC thermistor connected at the THM pin and automatically adjusts the fast-charge current and/or charge termination voltage as the battery temperature varies. JEITA controlled charging can be disabled by setting JEITA_EN to '0; if JEITA_EN = '0, thermistor input is not taken into account to determine charge state or charge current and voltage levels. CHG DTLS and THM DTLS registers report JEITA controlled charging status.

The JEITA controlled fast-charging current (I_{CHGCC_JEITA}) for $T_{WARM} < T < T_{HOT}$ is programmable with I^2C bit CHG_CC_WARM.

The JEITA controlled charge termination voltage (V_{CHGCV_JEITA}) for $T_{COLD} < T < T_{COOL}$ is programmable with I²C bit CHG CV COOL.

The JEITA controlled fast-charging current for $T_{COLD} < T < T_{COOL}$ is halved (to CHG_CC x 0.5) and the charge termination voltage for $T_{WARM} < T < T_{HOT}$ is reduced (CHG_CV_PRM - 187.5mV for MAX77985A/MAX77986A, CHG_CV_PRM - 375mV for MAX77985B/MAX77986B) as shown in Figure 7.

The JEITA controlled charging is suspended when the battery temperature is too cold or too hot (T < T_{COLD} or T_{HOT} < T_{COLD}).

Temperature thresholds T_{COLD}, T_{COOL}, T_{WARM}, and T_{HOT} depend on the thermistor selection. When JEITA controlled battery charge current is reduced by 50%, the charger timer is doubled.

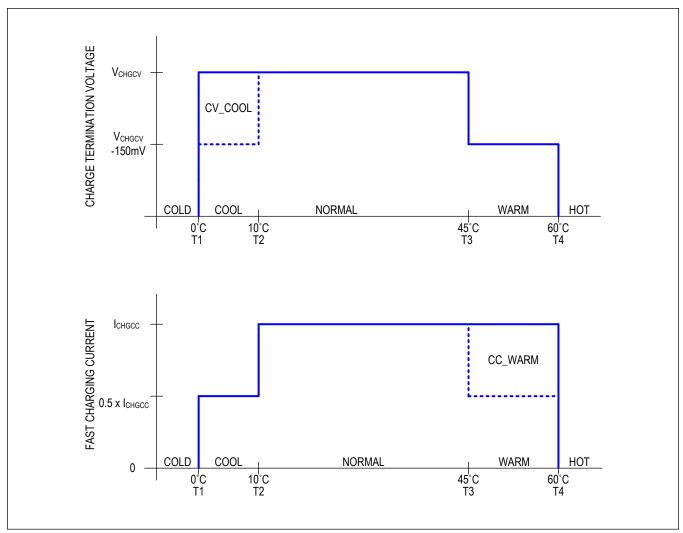


Figure 7. JEITA Controlled Charging

Analog Low-Noise Power PVDD and VDD

VDD is the 1.8V LDO output for the charger's analog circuitry. VDD takes its power from the higher voltage of CHGIN, BATT, and SYS. VDD has a bypass capacitance of 1µF.

PVDD is the 1.8V LDO output for internal power circuitry. PVDD has a bypass capacitance of $1\mu F$.

Factory-Ship Mode

The ICs support factory-ship mode.

Charger's CHG CNFG 07 bit 0: FSHIP MODE bit controls this mode.

When this bit is set to 1, the IC goes into factory-ship mode.

This mode can be exited by battery removal or on a valid charger input plug or by pulling EXTSM high longer than $t_{\rm EXTSM\ DEB}$ (programmable with EXTSM_T bit).

Factory-ship mode can not be entered when a valid charger is present.

This feature minimizes battery leakage current when the factory ships battery-connected devices.

External QBATT Control I/O

QBEXT is an open-drain output that is driven low in Battery mode and high-impedance (pulled-up externally) in non-battery mode.

The Q_{BATT} in MAX77986 has a very low R_{DSON} that equals 7.7m Ω . If the application requires a lower resistive discharging path then this output can be utilized to drive an external Q_{BATT} FET driver in parallel with an internal Q_{BATT} . This output can be enabled or disabled by the QBEXT_CTRL bit.

Once this function is enabled, the BAT2SYS OCP detection is not valid and can be disabled by setting bits B2SOVRC = 0x0.

Table 4. QBEXT Output in Different System Modes

SYSTEM MODE	USE CASE DETAILS	QBEXT OUTPUT
Battery Mode	All use cases except non-battery mode	Low
Non-Battery Mode	Valid adapter is present, and buck is switching (whatever charge status is) or MODE = 0x09 (Boost) or MODE = 0x0A (Boost + OTG)	Hi-Z (pulled-up)

Unplug Detection

The QBEXT pin can also be configured to an alternative function called PGOOD. If a user writes UNPLUG_TH[1:0] with 0b10 or 0b11, then the QBEXT pin is working as a PGOOD which is the comparator output of VBUS unplug detection.

For the 9V and 15V unplug detection, the output goes high when V_{CHGIN} voltage comes across the threshold of V_{CHGIN} UNPLUG with a selectable debounce by the UNPLUG_DB bit.

For the 5V unplug case, the following are two cases:

Case1: AICL function is enabled—the output goes Hi-Z when $(V_{CHGIN} = V_{CHGIN_REG})$ AND $(I_{CHGIN} < I_{IULO_DET})$ with 1ms debounce time)

Case2: AICL functions is disabled—the output goes Hi-Z when ($V_{CHGIN2SYS} < V_{CHGIN2SYS}_F$) OR ($V_{CHGIN} < V_{CHGIN} = V_{CHGIN} =$

The unplug detection does not apply to Mode 9 or Mode A.

Note: For parts with chip revision 0b001 (PASS1), contact Analog Devices for Rev 0 of the data sheet. This information can be read from the CHIP REVISION (0x01) register.

The PGOOD output state follows the below table.

Table 5. PGOOD States Under Different Situations

VBUS	BATTERY	MODE	PGOOD
Plugged, > programmed threshold	Yes/No	Normal	Low
Plugged, < programmed threshold	Yes/No	Normal	Hi-Z
Not plugged	Yes	Normal	Hi-Z
Not plugged	Yes	Factory-ship mode	Hi-Z
Not plugged	No	No Power	Hi-Z
Plugged, > programmed threshold	Yes	Suspend	Low
Plugged, < programmed threshold	Yes	Suspend	Hi-Z
Don't care	Yes	Deep Suspend	Hi-Z
Don't care	Yes	OTG (reverse boost)	Hi-Z

Charge Status LED Indication

STAT is the LED current sink shown in the following tables based on the STAT MODE bit.

The LED driving current can be programmed through I²C STAT_CURR from 5mA to 20mA with a 5mA step.

Table 6. STAT MODE = 0x0

CHG STATUS	LED	DUTY (%)
No DC input or Suspend or Buck operation	Off	0
Any Charging Timeout, Off by JEITA feature, Off by thermal shutdown	Blink in 2Hz	50
DBAT, Pre-Q, CC, CV	Blink in 1Hz	50
Top-off, Done, Restart	Solid on	100

Table 7. STAT_MODE = 0x1

CHG STATUS	LED	DUTY (%)
No DC input or Suspend or Buck operation	Off	0
Any Charging Timeout, Off by JEITA feature, Off by thermal shutdown	Off	0
DBAT, Pre-Q, CC, CV	Blink in 1Hz	50
Top-off, Done, Restart	Solid on	100

Audio Mode

When Audio Mode is enabled by writing AUDIO_MODE = 0b1, the switching frequency is limited to at least 64kHz so that the switching frequency is always higher than the audible frequency. Audio mode affects bootstrap refresh frequency and spread spectrum.

Spread Spectrum

The buck converter is capable of dithering its switching frequency for noise-sensitive applications. The dithering allows the buck converter to be operated not at a single fixed frequency but over a varying band of frequencies. This helps reduce the peak value of EMI emission. The spread-spectrum function is activated only in CCM (Continuous Conduction Mode) and it is automatically deactivated when the buck converter enters DCM (Discontinuous Conduction Mode). The spread-spectrum function can be disabled by the SS_ENV[1:0] bits.

Modulation envelope (Δ FSS) determines the maximum difference between the modulated switching frequency and the nominal switching frequency. The modulation envelope is programmable ($\pm 4\%$, $\pm 8\%$, or $\pm 16\%$) by the SS_ENV[1:0] bits and it controls 'how wide' the switching frequency dithers.

Two modulation patterns are determined by the SS PAT bit. One is triangular and the other is pseudo-random.

The modulation frequency determines how often the switching frequency dithering cycle repeats. In a triangular pattern, the modulation frequency is fixed at 2.133kHz. In pseudo-random, it is 4.267kHz. When audio mode is enabled, then the modulation frequency is automatically changed to 133Hz for a triangular pattern and to 267Hz for a pseudo-random pattern.

Programmable Minimum System Voltage

MAX77985/MAX77986 supports programmable MINSYS (minimum system voltage) by MINSYS[2:1] value. It is recommended to position the Min SYS greater than the minimum system supply voltage for proper operation.

Table 8. Minimum System Voltage Values for Different Part Variants

VALUE	MAX77985A/MAX77986A (V)	MAX77985B/MAX77986B (V)
0b00	3.4	3.0
0b01	3.5	3.1
0b10	3.6	3.5
0b11	3.7	3.6

Top System Management

Overview

This section discusses the top system of the MAX77985/MAX77986 and how the IC manages its bias, system faults, and turn-on and off events.

Main Bias

The main bias includes voltage and current references for all circuitry that runs from the V_{SYS} node.

System Faults

V_{SYS} Fault

The system monitors the V_{SYS} node for undervoltage and overvoltage events. The following describes the IC behavior if any of these events are to occur.

V_{SYS} Undervoltage Lockout (V_{SYSUVLO})

 V_{SYS} undervoltage lockout prevents the regulators from being used when the input voltage is below the operating range. When the voltage from SYS to GND (V_{SYS}) is less than the undervoltage-lockout threshold ($V_{SYSUVLO}$), MAX77985/MAX77986 shuts down and resets the "O" Type I²C registers.

V_{SYS} Overvoltage Lockout (V_{SYSOVLO})

 V_{SYS} overvoltage lockout is a fail-safe mechanism and prevents the regulators from being used when the input voltage is above the operating range. The absolute maximum ratings state that the SYS node withstands up to 6V. The SYS OVLO threshold is set to 5.35V (typ)—ideally, V_{SYS} should not exceed the battery charge termination threshold. Systems must be designed such that V_{SYS} never exceeds 5.2V (transient and steady-state). If the V_{SYS} exceeds $V_{SYS_OVLO_R}$, the ICs shuts down and resets the "O" Type I²C registers.

V_{SYS} Power-Up Failure (PWRUPFAIL)

 V_{SYS} power-up failure is a hardware diagnostic mechanism to detect failures affecting the system and preventing the platform from powering up. When a **valid** power source (battery $V_{BATT} > SYS_UVLOB_R$ or charger with $V_{CHGIN} > V_{CHGIN_UVLO}$) is plugged, the MAX77985/MAX77986 is expected to pull the SYS node up by utilizing one of the system power-up current sources (I_{SYSPU_BAT} or I_{SYSPU_BYP} respectively). If V_{SYS} does not rise above V_{SYSPU} due to a fault in the application (external to MAX77986), after a time-out elapses (I_{SYSPU_BAT} or I_{SYSPU_BYP} respectively) a power-up fault is asserted and an interrupt (PWRUP_FAIL_INT) is generated. Because the SYS node is down, the application software may not be able to service the interrupt; the interrupt can only be observed by pulling VIO up externally and serviced by taking control of the I²C interface.

Thermal Fault

The ICs have one centralized thermal circuit which senses the temperature on the die. If the temperature increases >155°C (T_{SHDN}) this constitutes a thermal shutdown event and the MAX77986 shuts down and resets the "O" Type I²C registers. There is a 15°C thermal hysteresis. After thermal shutdown, if the die temperature is reduced by 15°C, the thermal shutdown bus is deasserted and the IC can be enabled again. The main battery charger has an independent thermal control loop which does not cause a thermal shutdown event. If a charger thermal overload occurs, only the charger turns off.

S-Type and O-Type Registers

S-type registers include: TOP_FUNC registers 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x51; I2C_FUNC register 0x40; CHARGER_FUNC registers 0x10, 0x12, 0x13, 0x14, 0x15.

O-type registers include: TOP_FUNC register 0x50, CHARGER_FUNC registers 0x11, and all registers from 0x16 to 0x24.

Charger Register Write Protection

CHG_CNFG register 1, 2, 3, 4, 5, 7, 8 (CHARGER_FUNC register address 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1D, 0x1E) are protected by CHG_CNFG_06.CHGPROT bitfield. By default, these configurations are not writable, and need unlocking by writing bitfield CHGPROT = 0b11 first.

System Faults Debounce Time

Applicable in charge or buck mode.

Table 9. System Faults Debounce Time Summary

	EDGE	TO I/T	I/T TO FAULT	ACTION ON FAULT	
	t _{DEB} (Rising)	t _{DEB} (Falling)	t _{DEB} (Rising)	t _{DEB} (Falling)	_
SYS UVLO	_	_	8ms	_	O-Type reset
SYS OVLO	*-/5ms by I ² C	_	_	_	O-Type reset
TSHDN	175µs	_	_	_	O-Type reset
BATT OCP	t _{BOVRC}	_	t _{OCP}	_	Q _{BATT} opens
OTG OCP	totg_alarm	_	tOTG_FAULT - tOTG_ALARM	_	RBFET opens

^(*) Depending on I²C bit SYSOVLO_DEB_EN

I²C Interface Description

Main I²C Interface

The IC acts as a Slave Transmitter/Receiver and has the following slave addresses:

Slave Address (7 bit) 0x6B 110 1011 Slave Address (Write) 0xD6 1101 0110 Slave Address (Read) 0xD7 1101 0111

I²C Bit Transfer

One data bit is transferred for each clock pulse. The data on SDA must remain stable during the high portion of the clock pulse as changes in data during this time are interpreted as a control signal.

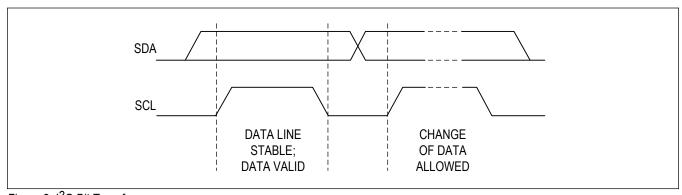


Figure 8. I²C Bit Transfer

I²C Start and Stop Conditions

Both SDA and SCL remain High when the bus is not busy. The Start (S) condition is defined as a high-to-low transition of the SDA while the SCL is high. The Stop (P) condition is defined as a low-to-high transition of the SDA while the SCL is high.

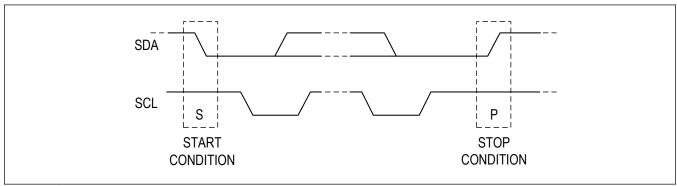


Figure 9. I²C Start and Stop

I²C System Configuration

A device on the I²C bus that generates a "message" is called a "Transmitter" and a device that receives the message is a "Receiver". The device that controls the message is the "Master" and the devices that are controlled by the "Master" are called "Slaves".

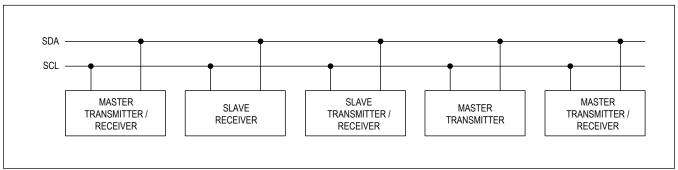


Figure 10. System Configurations

I²C Acknowledge

The number of data bytes between the start and stop conditions for the Transmitter and Receiver are unlimited.

Each 8-bit byte is followed by an Acknowledge bit. The Acknowledge bit is a high-level signal put on SDA by the transmitter during which time the master generates an extra acknowledge-related clock pulse. A slave receiver that is addressed must generate an acknowledge after each byte it receives. Also a master receiver must generate an acknowledge after each byte it receives that has been clocked out of the slave transmitter.

The device that acknowledges must pulldown the SDA line during the acknowledge-clock pulse so that the SDA line is stable and low during the high period of the acknowledge-clock pulse (setup and hold times must also be met). A master receiver must signal the end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave SDA high to enable the master to generate a stop condition.

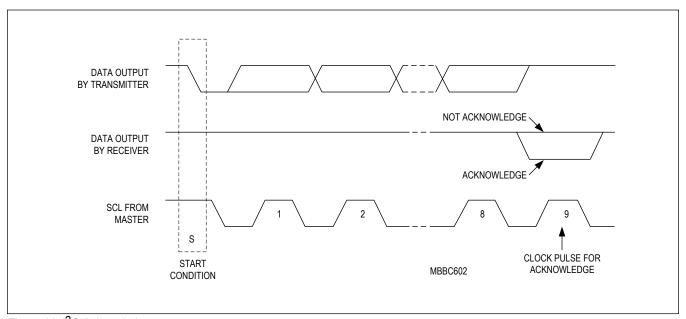


Figure 11. I²C Acknowledge

Master Transmits (Write Mode)

Use the following format when the master writes to the slave.

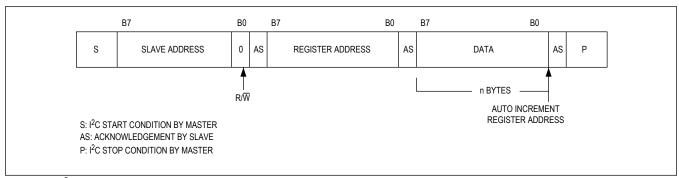


Figure 12. I²C Master Transmits

Master Reads after Setting Register Address (Write Register Address and Read Data)

Use the following format to read a specific register.

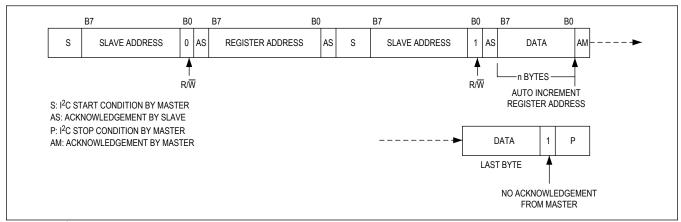


Figure 13. I²C Master Reads After Setting Register Address

Master Reads Register Data Without Setting Register Address (Read Mode)

Use the following format to read registers continuously starting from first address.

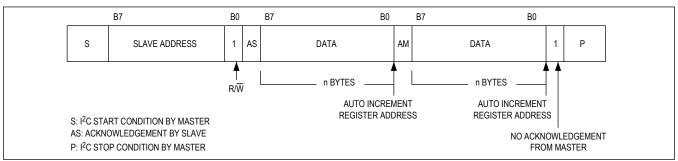


Figure 14. I²C Master Block Read

Register Map

TOP

I²C Slave Address

Slave Address (7 bit) 0x6B (7'b110 1011)
Slave Address (Write) 0xD6 (8'b1101 0110)
Slave Address (Read) 0xD7 (8'b1101 0111)

Functional Reset Conditions

The chip has different levels of reset as defined below:

- Type S: Registers are reset each time when: SYS < VDD (1.8V)
- Type O: Registers are reset each time when: SYS < VDD or SYS < SYS UVLO or SYS > SYS OVLO or die

temp > T_{SHDN} or software reset (SW RST)

	DIA OF SORWARD TOSET (OV								LCD	
ADDRESS	NAME	MSB							LSB	
TOP_FUNC										
0x00	CHIP_ID[7:0]		ID[7:0]							
0x01	CHIP_REVISION[7:0]		VERSION	ON[3:0]			REVISI	ON[3:0]		
0x02	OTP_REVISION[7:0]		SPR_7	_4[3:0]			OTP_R	EV[3:0]		
0x03	TOP_INT[7:0]	SPR_7	TSHDN_ INT	SYSOVL O_INT	SYSUVL O_INT	SPR_3_1[2:0]			PWRUP _FAIL_I NT	
0x04	TOP_INT_MASK[7:0]	SPR_7	TSHDN_ INT_M	SYSOVL O_INT_ M	SYSUVL O_INT_ M	SPR_3_1[2:0]			PWRUP _FAIL_I NT_M	
0x05	TOP_CTRL[7:0]	1	S	SPR_6_4[2:0)]	LPM	SYSOVL O_DIS	SYSOVL O_DEB_ EN	TSHDN_ DIS	
0x50	SW_RESET[7:0]		•		SWR_F	RST[7:0]				
0x51	SM_CTRL[7:0]	SPR_7_1[6:0]						EXTSM_ T		
I2C_FUNC	I2C_FUNC									
0x40	I2C_CNFG[7:0]	SPR_7	RSVI	D[1:0]	PAIR	S	SPR_3_1[2:0)]	HS_EXT _EN	

Register Details

CHIP ID (0x0)

PMIC ID

I WIIO ID									
BIT	7	6	5	4	3	2	1	0	
Field		ID[7:0]							
Reset		0x86							
Access Type		Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
ID	7:0	ID of MAX77986/MAX77985	0x86: MAX77986 0x85: MAX77985

CHIP_REVISION (0x1)

PMIC revision

BIT	7	6	5	4	3	2	1	0	
Field		VERSI	ON[3:0]		REVISION[3:0]				
Reset		0xA c	or 0xB		0b010				
Access Type		Read Only				Read Only			

BITFIELD	BITS	DESCRIPTION	DECODE		
VERSION	7:4	Version (Note: For parts with chip revision 0b001 (PASS1), contact Analog Devices for Rev 0 of the data sheet. This information can be read from the CHIP_REVISION (0x01) register.)	0b1010: MAX77985/MAX77986 A variation 0b1011: MAX77985/MAX77986 B variation		
REVISION	3:0	Revision (Note : For parts with chip revision 0b001 (PASS1), contact Analog Devices for Rev 0 of the data sheet.)	0b001: PASS1 0b010: PASS2 0b011: Reserved 0b100: Reserved		

OTP_REVISION (0x2)

BIT	7	6	5	4	3	2	1	0	
Field		SPR_7	'_4[3:0]		OTP_REV[3:0]				
Reset		0:	к0		0x1				
Access Type		Read	Only		Read Only				

BITFIELD	BITS	DESCRIPTION
SPR_7_4	7:4	
OTP_REV	3:0	Revision

TOP_INT (0x3)

Top SYS Interrupts

10p 010 interrupts									
BIT	7	6	5	4	3	2	1	0	
Field	SPR_7	TSHDN_IN T	SYSOVLO_ INT	SYSUVLO_ INT		PWRUP_F AIL_INT			
Reset	0b0	0b0	0b0	0b0		0b0			
Access Type	Read Clears All	Read Clears All	Read Clears All	Read Clears All	0x0 Read Clears All			Read Clears All	

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7	7		
TSHDN_INT	6	Thermal Shutdown Interrupt (entering fault condition)	0b0: No interrupt. 0b1: Interrupt is detected.
SYSOVLO_I NT	5	SYSOVLO Interrupt (entering fault condition)	0b0: No interrupt. 0b1: Interrupt is detected.
SYSUVLO_I NT	4	SYSUVLO Interrupt (entering fault condition)	0b0: No interrupt. 0b1: Interrupt is detected.
SPR_3_1	3:1		

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
PWRUP_FAI L_INT	0	Power-Up Fail Interrupt (entering fault condition)	0b0: No interrupt. 0b1: Interrupt is detected.

TOP INT MASK (0x4)

Top SYS Interrupt Mask

BIT	7	6	5	4	3	2	1	0
Field	SPR_7	TSHDN_IN T_M	SYSOVLO_ INT_M	SYSUVLO_ INT_M	SPR_3_1[2:0]			PWRUP_F AIL_INT_M
Reset	0b1	0b1	0b1	0b1		0b0		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	0x7 Write, Read			Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7	7		
TSHDN_INT _M	6	Thermal Shutdown Interrupt Mask	0b0: Unmasked 0b1: Masked
SYSOVLO_I NT_M	5	SYSOVLO Interrupt Mask	0b0: Unmasked 0b1: Masked
SYSUVLO_I NT_M	4	SYSUVLO Interrupt Mask	0b0: Unmasked 0b1: Masked
SPR_3_1	3:1		
PWRUP_FAI L_INT_M	0	Powe-Up Fail Interrupt Mask	0b0: Unmasked 0b1: Masked

TOP_CTRL (0x5)

Main Control1

Maii Control								
BIT	7	6	5	4	3	2	1	0
Field	_	SPR_6_4[2:0]			LPM	SYSOVLO_ DIS	SYSOVLO_ DEB_EN	TSHDN_DI S
Reset	_		0b000		0b0	0b0	0b0	0b1
Access Type	_		Write, Read		Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_6_4	6:4		
LPM	3	Low-Power Mode Cycling mode is allowed for SYS UVLO, SYS OVLO, and THERM comparators.	O: Low-power mode is disabled. SYSUVLO comparator is always ON. SYSOVLO comparator is controlled by SYSOVLO_DIS. THERM comparator is controlled by THRM_DIS. 1: Low-power mode is allowed. Comparators are periodically enabled (depending on SYSOVLO_DIS/THERM_DIS control)/disabled and cycling every 3ms.
SYSOVLO_D IS	2	SYSOVLO Disable	SYSOVLO comparator is enabled. SYSOVLO comparator is disabled.
SYSOVLO_D EB_EN	1	SYSOVLO Debounce (rising 5ms)	0: SYSOVLO debounce is disabled. 1: SYSOVLO debounce is enabled.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

0xA5: O-Type registers are reset.

BITFIELD	BITS	DESCRIPTION	DECODE
TSHDN_DIS	0	Internal Die Temperature Shutdown Disable Bit. If a valid CHGIN is detected, this bit has no effect and the Internal Die Temperature Comparator is permanently enabled.	1: T _{SHDN} comparator is disabled unless a valid CHGIN is detected. 0: T _{SHDN} comparator is enabled.

SW RESET (0x50)

SW-reset register

orr roode rogn											
BIT	7	6	5	4	3	2	1	0			
Field		SWR_RST[7:0]									
Reset		0x00									
Access Type		Write, Read									
BITFIELD	BITS	BITS DESCRIPTION DECODE									

SM_CTRL (0x51)

7:0

Software Reset

SWR_RST

SW-reset register

OVV TOOCE TO GR	1000110910101								
BIT	7	6	5	4	3	2	1	0	
Field	SPR_7_1[6:0]								
Reset		0x00							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7_1	7:1		
EXTSM_T	0	External Ship Mode Timer	0b0: 10ms 0b1: 0.1ms

I2C CNFG (0x40)

BIT	7	6	5	4	3	2	1	0
Field	SPR_7	RSVD[1:0]		PAIR	SPR_3_1[2:0]			HS_EXT_E N
Reset	0b0	0b0		0b000	0b000			0b0
Access Type	Write, Read	Write, Read		Write, Read		Write, Read		Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7	7	Reserved	
RSVD	6:5	Reserved	
PAIR	4	Pair address mode option for register write burst operation.	1 = Pair address mode is enabled for the channel. 0 = Pair address mode is disabled and sequential mode is used.
SPR_3_1	3:1		

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
HS_EXT_EN	0	Enable HS-Mode Extension	0b0: HS-mode extension is disabled. (I ² C Rev. 4 Compliant) 0b1: HS-mode extension is enabled. HS-mode is enabled without HS-mode entrance code and keeps HS-mode during STOP condition.

CHARGER

ADDRESS	NAME	MSB							LSB
CHARGER		IIIOD							205
0x10	CHG_INT[7:0]	AICL_I	CHGIN_I	INLIM_I	CHG_I	BAT_I	RSVD_2	DISQBA T_I	BYP_I
0x11	CHG_INT_MASK[7:0]	AICL_M	CHGIN_ M	INLIM_M	CHG_M	BAT_M	SPR_2	DISQBA T_M	BYP_M
0x12	CHG_INT_OK[7:0]	AICL_O K	CHGIN_ OK	INLIM_O K	CHG_O K	BAT_OK	RSVD_2	DISQBA T_OK	BYP_OK
0x13	CHG_DETAILS_00[7:0]	RSVD_7	CHGIN_[OTLS[1:0]	RSVD_	4_3[1:0]	SPSN_D	TLS[1:0]	RSVD_0
0x14	CHG_DETAILS_01[7:0]	TREG	В	AT_DTLS[2	:0]		CHG_D	TLS[3:0]	
0x15	CHG_DETAILS_02[7:0]	RSVD_7	TH	HM_DTLS[2	:0]		BYP_D	TLS[3:0]	
0x16	CHG_CNFG_00[7:0]	SS_EI	NV[1:0]	SS_PAT	BATRMV _MSK		MOD	E[3:0]	
0x17	CHG_CNFG_01[7:0]	TKEN	WDTEN	CHG_RS	TRT[1:0]	SPR_3	FC	CHGTIME[2	:0]
0x18	CHG_CNFG_02[7:0]	SPR_7			C	CHG_CC[6:0]			
0x19	CHG_CNFG_03[7:0]	SPR_7	Т	O_TIME[2:0	0]	TO_ITH[3:0]			
0x1A	CHG_CNFG_04[7:0]	SYS_TR ACK_DI S	MINS	/S[1:0]		CHG_CV_PRM[4:0]			
0x1B	CHG_CNFG_05[7:0]	B2SOVR C_DTC	B2SOVR C_ALAR M_ONLY	B2SOVR C_CTRL	RECYCL E_EN		B2SOV	RC[3:0]	
0x1C	CHG_CNFG_06[7:0]		SPR_7	_4[3:0]	•	CHGPR	ROT[1:0]	WDTC	LR[1:0]
0x1D	CHG_CNFG_07[7:0]	WD_QB ATOFF	SPR_6	DISIBS	SPSN_D ET_EN	QBEXT_ CTRL_E N	SPR_2	_1[1:0]	FSHIP_ MODE
0x1E	CHG_CNFG_08[7:0]	AUDIO_ MODE	E	BCKSYS[2:0)]	FMBST	SLOWLX	FSW	DISKIP
0x1F	CHG_CNFG_09[7:0]	SPR_7			CH	GIN_ILIM[6	5:0]		
0x20	CHG_CNFG_10[7:0]	OTG_RE C_EN	INLIM_0	CLK[1:0]		C	TG_ILIM[4:	0]	
0x21	CHG_CNFG_11[7:0]	SPR_7			V	BYPSET[6:	0]		
0x22	CHG_CNFG_12[7:0]	BYPDIS CHG_EN	DEEP_S USP_DI S	VCHGIN_	_REG[1:0]	LINPLUG DIS AIC			
0x23	CHG_CNFG_13[7:0]	JEITA_E N	SPR_6	SPR_6 CHG_CV CHG_C C_WAR REGTEMP[3:0]					
0x24	STAT_CNFG[7:0]	STAT_E N	S	SPR_6_4[2:0)]	STAT_C	URR[1:0]	SPR_1	STAT_M ODE

Register Details

CHG_INT (0x10)

Interrupt status register for the charger block.

BIT	7	6	5	4	3	2	1	0
Field	AICL_I	CHGIN_I	INLIM_I	CHG_I	BAT_I	RSVD_2	DISQBAT_I	BYP_I
Reset						0x0		
Access Type	Read Clears All							

BITFIELD	BITS	DESCRIPTION	DECODE
AICL_I	7	AICL Interrupt	0b0: The AICL_OK bit has not changed since the last time this bit was read. 0b1: The AICL_OK bit has changed since the last time this bit was read.
CHGIN_I	6	CHGIN Interrupt	0b0: The CHGIN_OK bit has not changed since the last time this bit was read. 0b1: The CHGIN_OK bit has changed since the last time this bit was read.
INLIM_I	5	Input Current Limit Interrupt	0b0: The INLIM_OK bit has not changed since the last time this bit was read. 0b1: The INLIM_OK bit has changed since the last time this bit was read.
CHG_I	4	Charger Interrupt	0b0: The CHG_OK bit has not changed since the last time this bit was read. 0b1: The CHG_OK bit has changed since the last time this bit was read.
BAT_I	3	Battery Interrupt	0b0: The BAT_OK bit has not changed since the last time this bit was read. 0b1: The BAT_OK bit has changed since the last time this bit was read.
RSVD_2	2		
DISQBAT_I	1	DISQBAT Interrupt	0b0: The DISQBAT_OK bit has not changed since the last time this was read. 0b1: The DISQBAT_OK bit has changed since the last time this was read.
BYP_I	0	Bypass Node Interrupt	0b0: The BYP_OK bit has not changed since the last time this bit was read. 0b1: The BYP_OK bit has changed since the last time this bit was read.

CHG_INT_MASK (0x11)

Mask register to mask the corresponding charger interrupts.

Mask register	to maon the o	orreopending	onarger inter	rupto.				
BIT	7	6	5	4	3	2	1	0
Field	AICL_M	CHGIN_M	INLIM_M	CHG_M	BAT_M	SPR_2	DISQBAT_ M	BYP_M
Reset	0b1	0b1	0b1	0b1	0b1	0x1	0b1	0b1
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
AICL_M	7	AICL Interrupt Mask	0b0: Unmasked 0b1: Masked
CHGIN_M	6	CHGIN Interrupt Mask	0b0: Unmasked 0b1: Masked
INLIM_M	5	Input Current Limit Interrupt Mask	0b0: Unmasked 0b1: Masked
CHG_M	4	Charger Interrupt Mask	0b0: Unmasked 0b1: Masked
BAT_M	3	Battery Interrupt Mask	0b0: Unmasked 0b1: Masked
SPR_2	2		
DISQBAT_M	1	DISQBAT Interrupt Mask	0b0: Unmasked 0b1: Masked
BYP_M	0	Bypass Interrupt Mask	0b0: Unmasked 0b1: Masked

CHG_INT_OK (0x12)

BIT	7	6	5	4	3	2	1	0
Field	AICL_OK	CHGIN_OK	INLIM_OK	CHG_OK	BAT_OK	RSVD_2	DISQBAT_ OK	BYP_OK
Reset	0x1	0x0	0x1	0x1	0x1	0x0	0x1	0x1
Access Type	Read Only	Read Only						

BITFIELD	BITS	DESCRIPTION	DECODE
AICL_OK	7	AICL_OK Status	0b0: AICL mode. 0b1: Not in AICL mode.
CHGIN_OK	6	CHGIN Input Status Indicator	0b0: The CHGIN input is invalid. CHGIN_DTLS≠0x03 0b1: The CHGIN input is valid. CHGIN_DTLS=0x03
INLIM_OK	5	Input Current Limit Status Indicator	0b0: The CHGIN input current has been reaching the current limit for at least 30ms. 0b1: The CHGIN input current has not reached the current limit.
CHG_OK	4	Charger Status Indicator	0b0: The charger has suspended charging or T _{REG} = 1. 0b1: The charger is okay or the charger is off.
BAT_OK	3	Battery Status Indicator	0b0: The battery has an issue or the charger has been suspended. BAT_DTLS≠0x03, ≠0x04 and ≠0x07. 0b1: The battery is okay. BAT_DTLS = 0x03,0x04 or 0x07.
RSVD_2	2		
DISQBAT_O K	1	DISQBAT Status Indicator	0b0: DISQBAT is high and Q _{BATT} is disabled. 0b1: DISQBAT is low and Q _{BATT} is not disabled.
BYP_OK	0	Bypass Status Indicator	0b0: Something powered by the bypass node has hit current limit. BYP_DTLS≠0x00. 0b1: The bypass node is okay. BYP_DTLS=0x00.

CHG_DETAILS_00 (0x13)

BIT	7	6	5	4	3	2	1	0	
Field	RSVD_7	CHGIN_	OTLS[1:0]	RSVD_4_3[1:0]		RSVD_4_3[1:0]		TLS[1:0]	RSVD_0
Reset	0x0			0x0				0b0	
Access Type	Read Only	Read	Only	Read	Only	Read	Only	Read Only	

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD_7	7		
CHGIN_DTL S	6:5	CHGIN Details	0b00: VBUS is invalid. V _{CHGIN} =< V _{CHGIN} _REG AND I _{CHGIN} < I _{IULO} _DET for 1ms AND DIS_AICL=0] OR [V _{CHGIN} < V _{CHGIN} _UVLO_F] 0b01: VBUS is invalid. V _{CHGIN} < V _{BATT} + V _{CHGIN2SYS} _F and V _{CHGIN} > V _{CHGIN} _UVLO (80% of VCHGIN UVLO) 0b10: VBUS is invalid. V _{CHGIN} > V _{CHGIN} _OVLO 0b11: VBUS is valid. V _{CHGIN} > V _{CHGIN} _UVLO and V _{CHGIN} > V _{BATT} + V _{CHGIN2SYS} _TH and V _{CHGIN} < V _{CHGIN} _OVLO
RSVD_4_3	4:3		
SPSN_DTLS	2:1	SP/SN Remote Sense Battery Line Connection Status	0b00: SPSN remote sense line is connected. 0b01: SP remote sense line detected as opened. 0b10: SN remote sense line detected as opened. 0b11: SP and SN remote sense lines are both detected as opened.
RSVD_0	0	Spare Bit	

CHG DETAILS 01 (0x14)

BIT	7	6	5	4	3	2	1	0		
Field	TREG	ı	BAT_DTLS[2:0]			CHG_DTLS[3:0]				
Reset										
Access Type	Read Only		Read Only			Read	Only			

BITFIELD	BITS	DESCRIPTION	DECODE
TREG	7	Temperature Regulation Status	0b0: The junction temperature is less than the threshold set by REGTEMP and the full charge current limit is available. 0b1: The junction temperature is greater than the threshold set by REGTEMP and the charge current limit may be folding back to reduce power dissipation.

BITFIELD	BITS	DESCRIPTION	DECODE
BAT_DTLS	6:4	Battery Details	Ob000: Battery Removal A valid adapter is present and the battery is detached, detected on the THM pin. Ob001: Battery Prequalification Voltage A valid adapter is present and the battery voltage is low: VBATT < VTRICKLE. Note: This condition is also reported in the CHG_DTLS as 0x00. Ob010: Battery Timer Fault A valid adapter is present and the battery has taken longer than expected to charge (exceeded tFC). This could be due to high system currents, an old battery, a damaged battery, or something else. Charging has been suspended and the charger is in timer-fault mode. Note: This condition is also reported in the CHG_DTLS as 0x06. Ob011: Battery Regular Voltage A valid adapter is present and the battery voltage is greater than the minimum system regulation level but lower than the overvoltage level: VSYSMIN < VBATT < VBATTREG + VCOV VSYS is approximately equal to VBATT. Ob100: Battery Low Voltage A valid adapter is present and the battery voltage is lower than the minimum system regulation level but higher than the prequalification voltage: VTRICKLE < VBATT < VSYSMIN VSYS is regulated at least equal to VSYSMIN. Ob101: Battery Overvoltage A valid adapter is present and the battery voltage is greater than the battery-overvoltage threshold (VBATTREG + VCOV) for the last 30ms. Note: This flag is only generated when there is a valid input. Ob110: Battery Overcurrent The battery current has exceeded the battery-overcurrent threshold (IBOVRC) for at least 3ms since the last time this register was read. Ob111: Battery Only, No Overcurrent No valid adapter is present and the battery current is lower than the battery-overcurrent threshold (IBOVRC). The battery voltage and battery removal monitoring are not available. Note: In the case of deep suspend, it is considered that no valid adapter is present.

BITFIELD	BITS	DESCRIPTION	DECODE
CHG_DTLS	3:0	Charger Details	Ox00: Charger is in dead-battery prequalification or low-battery prequalification mode. CHG_OK = 1 and VBATT < VPQLB and TJ < TSHDN Ox01: Charger is in fast-charge constant current mode. CHG_OK = 1 and VBATT < VBATTREG and TJ < TSHDN Ox02: Charger is in fast-charge constant voltage mode. CHG_OK = 1 and VBATT = VBATTREG and TJ < TSHDN Ox03: Charger is in top-off mode. CHG_OK = 1 and VBATT = VBATTREG and TJ < TSHDN Ox03: Charger is in top-off mode. CHG_OK = 1 and VBATT = VBATTREG and TJ < TSHDN Ox04: Charger is in done mode. CHG_OK = 0 and VBATT > VBATTREG - VRSTRT and TJ < TSHDN Ox05: Reserved Ox06: Charger is in timer-fault mode. CHG_OK = 0 and if BAT_DTLS = 0b001 then VBATT < VPQLB or VBATT < VPQDB and TJ < TSHDN Ox07: Charger is suspended because QBATT is disabled (DISQBAT = H or DISIBS = 1). CHG_OK = 0 Ox08: Charger is off, charger input invalid and/or charger is disabled. CHG_OK = 1 Ox09: Reserved Ox0A: Charger is off and the junction temperature is TSHDN. CHG_OK = 0 Ox0B: Charger is suspended or charge current or voltage is reduced based on JEITA control. This condition is also reported in THM_DTLS. CHG_OK = 0 Ox0C: Charger is suspended because battery removal is detected on THM pin. This condition is also reported in THM_DTLS. CHG_OK = 0 Ox0E: Charger is suspended because SUSPEND pin is high. CHG_OK = 0 Ox0F: Reserved

CHG_DETAILS_02 (0x15)

BIT	7	6	5	4	3	2	1	0		
Field	RSVD_7	٦	THM_DTLS[2:0]			BYP_DTLS[3:0]				
Reset										
Access Type	Read Only		Read Only			Read	Only			

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD_7	7		
THM_DTLS	6:4	Thermistor Details	0b000: Low temperature and charging suspended (COLD). 0b001: Low temperature charging (COOL). 0b010: Normal temperature charging (NORMAL). 0b011: High temperature charging (WARM). 0b100: High temperaure and charging suspended (HOT). 0b101: Battery removal detected on THM pin. 0b110: Thermistor monitoring is disabled. 0b111: RSVD
BYP_DTLS	3:0	Bypass Node Details	0x0: The bypass node is okay. 0x1: OTG_ILIM when CHG_CNFG_00.MODE = 0xA or 0xE or 0xF The BYP to CHGIN switch (OTG switch) current limit was reached within the last 37.5ms. BYP_DTLS[0] status bit is latched until CHG_DETAILS_02 register read access is performed by AP. 0x2: BSTILIM The BYP reverse boost converter has hit its current limit and condition persisted for 30ms. 0x4: BCKNegILIM The BYP buck converter has hit the max negative demand current limit. BYP_DTLS[2] status bit is latched until CHG_DETAILS_02 register read access is performed by AP. 0x8: BST_SWON_DONE (This status bit is only available in CHG_CNFG_00.MODE = 0x9) The BYP reverse boost converter switch-on is done and VBYP reached the VBYPSET target.

CHG CNFG 00 (0x16)

Charger configuration 0

Charger coning	guration o	_						,	
BIT	7	6	5	4	3	2	1	0	
Field	SS_EN	NV[1:0]	SS_PAT	BATRMV_ MSK	MODE[3:0]				
Reset	0:	x0	0b0	0b0	0x4				
Access Type	Write,	Read	Write, Read	Write, Read		Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
SS_ENV	7:6	Spread Spectrum Control Register Bits	0x0: Disabled 0x1: 4% modulation envelope 0x2: 8% modulation envelope 0x3: 16% modulation envelope
SS_PAT	5	Spread Spectrum Pattern Type	0b0: Pseudo-random 0b1: Linear
BATRMV_M SK	4	Battery Removal Detection Masking When masked, battery removal detection is ignored.	0b0: Unmasked 0b1: Masked

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
MODE	3:0	Smart Power Selector Configuration	0x0: Charger = off, OTG = off, buck = off, boost = off. The QBATT switch is on to allow the battery to support the system. BYP may or may not be biased based on the CHGIN availability. 0x1: Same as 0x0 0x2: Same as 0x0 0x3: Same as 0x0 0x4: Charger = off, OTG = off, buck = on, boost = off. When there is a valid input, the buck converter regulates the system voltage to be the maximum of (VMINSYS and and VSYSREG_TRK) if SYS_TRACK_DIS = 0b0. VBYP is equal to VCHGIN minus the resistive drops. 0x5: Charger = on, OTG = off, buck = on, boost = off. When there is a valid input, the battery is charging. VSYS is the larger of VSYSMIN and ~VBATT + IBATT × RBAT2SYS. VBYP is equal to VCHGIN minus the resistive drops. 0x6: Same as 0x4 but VSYS regulated to be the maximum of (VBCKSYS and VSYSREG_TRK).if SYS_TRACK_DIS = 0b0 0x7: Same as 0x4 0x8: Reserved 0x9: Charger = off, OTG = off, buck = off, boost = on. The QBATT switch is on to allow the battery to support the system, the charger's DC-DC operates as a boost converter. BYP voltage is regulated to VBYPSET. QCHGIN is off. 0xA: Charger = off, OTG = on, buck = off, boost = on. The QBATT switch is on to allow the battery to support the system, the charger's DC-DC operates as a boost converter. BYP voltage is regulated to VBYPSET. QCHGIN is on allowing it to source current up to ICHGIN.OTG.LIM. 0xB: Reserved 0xC: Reserved 0xC: Reserved 0xC: Reserved 0xF: Reserved 0xF: Reserved

CHG CNFG 01 (0x17)

Charger configuration 1

onargor comig	,							
BIT	7	6	5	4	3	2	1	0
Field	TKEN	WDTEN	CHG_RSTRT[1:0]		SPR_3	FCHGTIME[2:0]		
Reset	0b1	0b0	0b	0b01		0b011		
Access Type	Write, Read	Write, Read	Write,	Read	Write, Read		Write, Read	

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
TKEN	7	Trickle Charge Enable	0b0: Trickle charge is disabled: When V _{BATT} is in trickle charge voltage range, charge current target level is I _{FC} . 0b1: Trickle charge is enabled: When V _{BATT} is in trickle charge voltage range, charge current target level is I _{TRICKLE} .
WDTEN	6	Watchdog Timer Enable Bit	0b0: Watchdog timer disabled. 0b1: Watchdog timer enabled.
CHG_RSTR T	5:4	Charger-Restart Threshold	0b00: 100mV below the value programmed by CHG_CV_PRM. 0b01: 150mV below the value programmed by CHG_CV_PRM. 10: 200mV below the value programmed by CHG_CV_PRM. 11: Disabled
SPR_3	3	Spare Bit	
FCHGTIME	2:0	Fast-Charge Timer Setting (t _{FC} , hrs)	0b000: Disable 0b001: 3 0b010: 4 0b011: 5 0b100: 6 0b101: 7 0b110: 8 0b111: Reserved

CHG_CNFG_02 (0x18)

Charger configuration 2

BIT	7	6	5	4	3	2	1	0
Field	SPR_7	CHG_CC[6:0]						
Reset	0b0		0x09					
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7	7	Spare Bit	

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
CHG_CC	6:0	Fast-Charge Current Selection (mA). When the charger is enabled, the charge current limit is set by these bits. These bits range from 0.10A (0x00) to 5.5A (0x6E) in 50mA step. Note that the first three codes are all 100mA. Note that the thermal-foldback loop can reduce the battery charger's target current by ATJREG. Note that the fast-charge current is clamped at 3.5A from 0x46 to 0x7F in MAX77985.	Value: Decode 0x00: 100 0x01: 100 0x02: 100 0x03: 150 0x04: 200 0x05: 250 0x06: 300 0x07: 350 0x08: 400 0x09: 450 0x0A: 500 0x0B: 550 0x0C: 600 0x0D: 650 0x0E: 700 0x0F: 750 0x10: 800 0x11: 850 0x12: 900 0x13: 950 0x14: 1000 0x15: 1050 0x16: 1100 0x17: 1150 0x18: 1200 0x18: 1200 0x18: 1350 0x1C: 1400 0x1F: 1550 0x1C: 1400 0x1F: 1550 0x2C: 1600 0x2F: 1850 0x2C: 1700 0x2B: 1500 0x1C: 1400 0x1F: 1550 0x1C: 1400 0x1F: 1550 0x2C: 1600 0x2F: 1550 0x2C: 1500 0x2E: 2500 0x2A: 2100 0x2B: 2150 0x2C: 2200 0x2D: 2250 0x2E: 2350 0x3C: 2450 0x3C: 2550

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
			0x3A: 2900
			0x3B: 2950
			0x3C: 3000
			0x3D: 3050
			0x3E: 3100
			0x3F: 3150
			0x40: 3200
			0x41: 3250 0x42: 3300
			0x43: 3350
			0x44: 3400
			0x45: 3450
			0x46: 3500
			0x47: 3550
			0x48: 3600
			0x49: 3650
			0x4A: 3700
			0x4B: 3750
			0x4C: 3800
			0x4D: 3850
			0x4E: 3900
			0x4F: 3950
			0x50: 4000
			0x51: 4050
			0x52: 4100
			0x53: 4150
			0x54: 4200
			0x55: 4250
			0x56: 4300
			0x57: 4350
			0x58: 4400
			0x59: 4450
			0x5A: 4500
			0x5B: 4550
			0x5C: 4600
			0x5D: 4650
			0x5E: 4700
			0x5F: 4750
			0x60: 4800
			0x61: 4850
			0x62: 4900
			0x63: 4950
			0x64: 5000
			0x65: 5050
			0x66: 5100
			0x67: 5150
			0x68: 5200
			0x69: 5250
			0x6A: 5300
			0x6B: 5350
			0x6C: 5400
			0x6D: 5450
			0x6E: 5500
			0x6F: 5500
			0x70: 5500
			0x71: 5500
			0x71: 5500 0x72: 5500
			0x73: 5500
			0x73: 5500 0x74: 5500
			UA74. JUUU

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
			0x75: 5500
			0x76: 5500
			0x77: 5500
			0x78: 5500
			0x79: 5500
			0x7A: 5500
			0x7B: 5500
			0x7C: 5500
			0x7D: 5500
			0x7E: 5500
			0x7F: 5500

CHG CNFG 03 (0x19)

Charger configuration 3

Onargor com	9							
BIT	7	6	5	4	3	2	1	0
Field	SPR_7	TO_TIME[2:0]			TO_ITH[3:0]			
Reset	0b0		0b011			0b0010		
Access Type	Write, Read		Write, Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7	7	Spare Bit	
TO_TIME	6:4	Top-Off Timer Setting (min)	0b000: 30sec 0b001: 10 0b010: 20 0b011: 30 0b100: 40 0b101: 50 0b110: 60 0b111: 70
то_ітн	3:0	Top-Off Current Threshold (mA). The charger transitions from its fast-charge constant voltage mode to its top-off mode when the charger current decays to the value programmed by this register. This transition generates a CHG_I interrupt and causes the CHG_DTLS register to report top-off mode. This transition also starts the top-off time as programmed by TO_TIME.	0b0000: Disable 0b0001: 150mA 0b0010: 200mA 0b0011: 250mA 0b0100: 300mA 0b0101: 350mA 0b0110: 400mA 0b0111: 450mA 0b1000: 500mA 0b1001: 550mA 0b1011: 650mA 0b1011: 650mA 0b1100: 700mA 0b1101: 750mA 0b1111: 850mA

CHG_CNFG_04 (0x1A)

Charger configuration 4

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BIT	7	6	5	4	3	2	1	0	
Field	SYS_TRAC K_DIS	MINSYS[1:0]		CHG_CV_PRM[4:0]					
Reset	0b0	0b01		0x04					
Access Type	Write, Read	Write, Read		Write, Read					

Туре			
BITFIELD	BITS	DESCRIPTION	DECODE
SYS_TRACK _DIS	7	BUCK SYS Tracking Disable Control	0x0: SYS tracking is enabled. In Buck mode, SYS is regulated to MAX of (V _{BATT} +4%, V _{MINSYS}). This is also valid in charge Done state. 0x1: SYS tracking is disabled. In Buck mode, SYS is regulated to V _{BATTERM} .
MINSYS	6:5	Minimum System Regulation Voltage	VALUE MAX77985A/ MAX77985B/ MAX77986A MAX77986B 0b00 3.4V 3.0V 0b01 3.5V 3.1V 0b10 3.6V 3.5V 0b11 3.7V 3.6V
CHG_CV_P RM	4:0	Charge Termination Voltage Setting	VALUE MAX77986A MAX77986B 0x00 4.1500 3.5000 0x01 4.1625 3.5250 0x02 4.1750 3.5500 0x03 4.1875 3.5750 0x04 4.2000 3.6000 0x05 4.2125 3.6250 0x06 4.2250 3.6500 0x07 4.2375 3.6750 0x08 4.2500 3.7000 0x09 4.2625 3.7250 0x0A 4.2750 3.7500 0x0B 4.2875 3.7500 0x0B 4.2875 3.7750 0x0C 4.3000 3.8000 0x0D 4.3125 3.8250 0x0E 4.3250 3.8500 0x0F 4.3375 3.8750 0x10 4.3500 3.9000 0x11 4.3625 3.9250 0x12 4.3750 3.9500 0x13 4.3875 3.9750 0x14 4.4000 4.0250

CHG_CNFG_05 (0x1B)

Charger configuration 5

BIT	7	6	5	4	3	2	1	0
Field	B2SOVRC_ DTC	B2SOVRC_ ALARM_ON LY	B2SOVRC_ CTRL	RECYCLE_ EN		B2SOV	RC[3:0]	
Reset	0b0	0b0	0b0	0b0		0)	< 6	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read		Write,	Read	

BITFIELD	BITS	DESCRIPTION	DECODE
B2SOVRC_D TC	7	BATT to SYS Overcurrent Debounce to QBATT Clear Control	0x0: 105µs 0x1: 10ms
B2SOVRC_A LARM_ONLY	6	B2SOVRC Alarm Only Control	0x0: Alarm only is disabled: when tripping B2SOVRC, I/T is triggered and Q _{BATT} opens after T _{OCP} . 0x1: Alarm only is enabled: when tripping B2SOVRC, I/T is triggered but Q _{BATT} remains closed even after T _{OCP} .
B2SOVRC_C TRL	5	Battery Mode B2SOVRC Monitoring Control	0x0: Automatic mode 0x1: Continuous mode
RECYCLE_E N	4	B2S OCP or DISIBS Event Recycle Option	0b0: In the case of B2S OCP or DISIBS events, the buck is disabled (OFF) and Q _{BATT} FET is opened. System recycles after 150ms (min) only if a valid charger is present. 0b1: In the case of B2S OCP or DISIBS events, buck is disabled (OFF) and Q _{BATT} FET is opened. System recycles after 150ms (min).
B2SOVRC	3:0	BATT to SYS Overcurrent Threshold (A)	0x0: Disabled 0x1: 3.0 0x2: 3.5 0x3: 4.0 0x4: 4.5 0x5: 5.0 0x6: 5.5 0x7: 6.0 0x8: 6.5 0x9: 7.0 0xA: 7.5 0xB: 8.0 0xC: 8.5 0xD: 9.0 0xE: 9.5 0xF: 10.0

CHG_CNFG_06 (0x1C)

Charger configuration 6

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BIT	7	6	5	4	3	2	1	0
Field		SPR_7	'_4[3:0]		CHGPROT[1:0] WDTCLR[1:0]			LR[1:0]
Reset		0:	к0		0b	00	0b	00
Access Type		Write,	Read		Write,	Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7_4	7:4	Spare Bit	
CHGPROT	3:2	Charger Settings Protection Bit Writing "11" to these bits unlocks the write capability for the registers that are "Protected with CHGPROT." Writing any value besides "11" locks these registers.	0b00: Write capability locked. 0b01: Write capability locked. 0b10: Write capability locked. 0b11: Write capability unlocked.
WDTCLR	1:0	Watchdog Timer Clear Bit. Writing "01" to these bits clears the watchdog timer when the watchdog timer is enabled.	0b00: The watchdog timer is not cleared. 0b01: The watchdog timer is cleared. 0b10: The watchdog timer is not cleared. 0b11: The watchdog timer is not cleared.

CHG_CNFG_07 (0x1D)

Charger configuration 7

Charger com	igaradori i							
BIT	7	6	5	4	3	2	1	0
Field	WD_QBAT OFF	SPR_6	DISIBS	SPSN_DET _EN	QBEXT_CT RL_EN	SPR_2	_1[1:0]	FSHIP_MO DE
Reset	0b0	0b0	0b0	0b0	0b0	0b	00	0b0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write,	Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
WD_QBATO FF	7	Q _{BATT} FET Control Under Watchdog Condition	0b0: When watchdog timer expires, turn off only the charger. 0b1: When watchdog timer expires, turn off buck, charger, and Q _{BATT} switch for 150ms.
SPR_6	6	Spare Bit	
DISIBS	5	BATT to SYS FET Disable Control	0b0: BATT to SYS FET is controlled by the power-path state machine. 0b1: BATT to SYS FET is forced off.
SPSN_DET_ EN	4	SPSN Remote Sense Line Detection Enable. Enable SPSN remote sense line detection only when MODE = 0x0 (detection is discarded if not). End of SPSN detction triggers a BAT_I interrupt. Detection result available in dedicated status bit field SPSN_DTLS[1:0].	0b0: SPSN remote sense line detection disabled. 0b1: SPSN remote sense line detection enabled.
QBEXT_CTR L_EN	3		0b0: External Q _{BATT} control is disabled. 0b1: External Q _{BATT} control is enabled.
SPR_2_1	2:1	Spare Bit	
FSHIP_MOD E	0	Factory-Ship Mode. When asserted to "1", system enters into factory-ship mode. This bit can be reset by battery removal or on a valid charger input plug.	0b0: Not factory-ship mode. 0b1: Factory-ship mode.

CHG_CNFG_08 (0x1E)

Charger configuration 8

onargor comi	Juliation 6							
BIT	7	6	5	4	3	2	1	0
Field	AUDIO_MO DE		BCKSYS[2:0]		FMBST	SLOWLX	FSW	DISKIP
Reset	0b0		0b000			0b0	0b1	0b0
Access Type	Write, Read		Write, Read			Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
AUDIO_MOD E	7	Audio Mode Control Bit	0x0: No audio mode enabled. 0x1: Audio mode enabled.
BCKSYS	6:4	BCKSYS Settings	VALUE MAX77985A/ MAX77985B/ MAX77986A MAX77986B 0b000 4.65 4.5 0b001 4.70 4.6 0b010 4.75 4.7 0b011 4.80 4.8 0b100 4.85 4.9 0b101 4.90 5.0 0b110 4.95 5.0 0b111 5.00 5.0 Note: Do not set BCKSYS > CHGIN -0.3V.
FMBST	3	Factory Mode Boost	0b0: When DISQBAT = high, any mode change is not possible. 0b1: When DISQBAT = high, this bit makes mode change (Boost mode) possible.
SLOWLX	2	LX Slope Control Options	0b0: Fastest LX slope without control. 0b1: Slowest LX slope.
FSW	1	Switching Frequency Options (MHz)	0b0: 2.6 0b1: 1.3
DISKIP	0	Charger Skip Mode Disable	0b0: Auto skip mode. 0b1: Disable skip mode.

CHG CNFG 09 (0x1F)

Charger configuration 9

Charger comit	marger configuration 9							
BIT	7	6	5	4	3	2	1	0
Field	SPR_7		CHGIN_ILIM[6:0]					
Reset	0b0		0x09					
Access Type	Write, Read				Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
SPR_7	7	Spare Bit	

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
CHGIN_ILIM	6:0	CHGIN Input Current Limit (mA) 7 Bit adjustment: from 0.1A to 3.5A in 50mA steps (MAX77985A/B) from 0.1A to 5.5A in 50mA steps (MAX77986A/B) Note that the first two codes are both 0.1A.	0x00: 100 0x01: 100 0x02: 150 0x03: 200 0x04: 250 0x05: 300 0x06: 350 0x07: 400 0x08: 450 0x09: 500 0x08: 650 0x08: 650 0x00: 750 0x06: 750 0x06: 750 0x11: 900 0x12: 950 0x13: 1000 0x14: 1050 0x15: 1100 0x16: 1150 0x17: 1200 0x18: 1250 0x19: 1300 0x14: 1050 0x17: 1200 0x18: 1250 0x19: 1300 0x16: 1450 0x17: 1200 0x18: 1250 0x19: 1300 0x14: 1450 0x17: 1200 0x18: 1250 0x19: 1300 0x14: 1350 0x18: 1450 0x16: 1550 0x17: 1500 0x16: 1550 0x17: 1500 0x18: 1250 0x19: 1300 0x16: 1550 0x17: 1500 0x18: 1250 0x19: 1300 0x16: 1550 0x17: 1500 0x18: 1250 0x19: 1300 0x20: 1650 0x21: 1700 0x22: 1750 0x23: 1800 0x24: 1850 0x25: 2500 0x26: 2350 0x27: 2000 0x28: 2250 0x20: 2300 0x28: 2250 0x31: 2500 0x32: 2550 0x31: 2500 0x33: 2850 0x39: 2900 0x34: 2950

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
			0x3B: 3000
			0x3C: 3050
			0x3D: 3100
			0x3E: 3150
			0x3F: 3200
			0x40: 3250
			0x40: 3230 0x41: 3300
			0x42: 3350
			0x43: 3400
			0x44: 3450
			0x45: 3500
			0x46: 3550
			0x47: 3600
			0x48: 3650
			0x49: 3700
			0x4A: 3750
			0x4B: 3800
			0x4C: 3850
			0x4D: 3900
			0x4E: 3950
			0x4F: 4000
			0x50: 4050
			0x51: 4100
			0x52: 4150
			0x53: 4200
			0x54: 4250
			0x55: 4300
			0x56: 4350
			0x57: 4400
			0x58: 4450
			0x59: 4500
			0x5A: 4550
			0x5B: 4600
			0x5C: 4650
			0x5D: 4700
			0x5E: 4750
			0x5F: 4800
			0x60: 4850
			0x61: 4900
			0x62: 4950
			0x63: 5000
			0x64: 5050
			0x65: 5100
			0x66: 5150
			0x67: 5200
			0x68: 5250
			0x69: 5300
			0x6A: 5350
			0x6B: 5400
			0x6C: 5450
			0x6D: 5500
			UNUD. 0000

CHG CNFG 10 (0x20)

Charger configuration 10

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BIT	7	6	5	4	3	2	1	0	
Field	OTG_REC_ EN	INLIM_CLK[1:0]		OTG_ILIM[4:0]					
Reset	0b0	0b	10	0x00					
Access Type	Write, Read	Write,	Write, Read			Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
OTG_REC_E N	7	OTG OCP Event Recycle Option	1b0: In case of OTG OCP, OTG FET is disabled (OFF = opened). System does not recycle OTG output. 1b1: In case of OTG OCP, OTG FET is disabled (OFF = opened). OTG recycles after T _{OTG} , retry.
INLIM_CLK	6:5	Input Current Limit Soft-Start Clock (µsec per 50mA step)	0b00: 16 0b01: 512 0b10: 2048 0b11: 8192
OTG_ILIM	4:0	CHGIN OTG Output Current Limit (mA). When the boost-OTG mode (MODE = 0xA) is enabled, the OTG output current limit is set by these bits. These bits range from 0.50A (0x00) to 3.1A (0x1A) in 100mA steps. Note that the OTG output current limit is clamped at 2.4A from 0x13 to 0x1F in MAX77985.	Value: Decode 0x00: 500 0x01: 600 0x02: 700 0x03: 800 0x04: 900 0x05: 1000 0x06: 1100 0x07: 1200 0x08: 1300 0x09: 1400 0x08: 1500 0x08: 1600 0x0C: 1700 0x0D: 1800 0x0E: 1900 0x0F: 2000 0x10: 2100 0x11: 2200 0x12: 2300 0x13: 2400 0x14: 2500 0x15: 2600 0x16: 2700 0x17: 2800 0x17: 2800 0x18: 2900 0x18: 3100 0x18: 3100 0x1C: 3100 0x1C: 3100 0x1E: 3100 0x1E: 3100 0x1F: 3100 0x1F: 3100

CHG_CNFG_11 (0x21)

Charger configuration 11

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BIT	7	6	5	4	3	2	1	0
Field	SPR_7		VBYPSET[6:0]					
Reset	0b0		0x1					
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION
SPR_7	7	Spare Bit
VBYPSET	6:0	V _{BYP} Target Output Voltage (V). Bypass target output voltage in boost mode. MODE = 0x9/0xA. 5.0V to 12.0V with 100mV step.

CHG_CNFG_12 (0x22)

Charger configuration 12

BIT	7	6	5	4	3	2	1	0
Field	BYPDISCH G_EN	DEEP_SUS P_DIS	VCHGIN_REG[1:0]		UNPLUG_TH[1:0]		UNPLUG_D B	DIS_AICL
Reset	0b0	0b0	0b01		0b01		0b0	0b0
Access Type	Write, Read	Write, Read	Write, Read		Write, Read		Write, Read	Write, Read

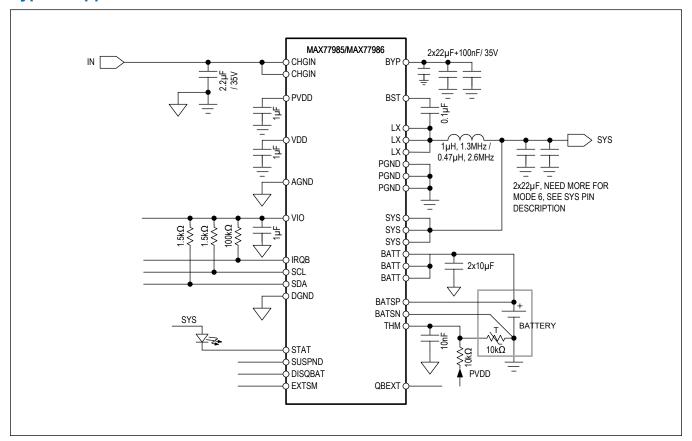
BITFIELD	BITS	DESCRIPTION	DECODE
BYPDISCHG _EN	7	Boost BYP Discharge after Overshoot. When enabled, if BYP is seen to be above target, a soft pulldown is activated to discharge BYP back to target, even if autoskip mode is active.	0b0: Disabled 0b1: Enabled
DEEP_SUSP _DIS	6	When SUSPND pin pulls high or in MODE 0, input FET is enabled or disabled by this bit.	0b0: Disabled 0b1: Enabled
VCHGIN_RE G	5:4	CHGIN Voltage Regulation Threshold (V _{CHGIN_REG}) Adjustment. The CHGIN to GND minimum turn-on threshold (V _{CHGIN_UVLO}) also scales with this adjustment.	0b00: V _{CHGIN_REG} = 4.5V and V _{CHGIN_UVLO} = 4.7V 0b01: V _{CHGIN_REG} = 4.6V and V _{CHGIN_UVLO} = 4.8V 0b10: V _{CHGIN_REG} = 4.7V and V _{CHGIN_UVLO} = 4.9V 0b11: V _{CHGIN_REG} = 4.85V and V _{CHGIN_UVLO} = 5.05V
UNPLUG_TH	3:2	VBUS Unplug Detection Enabling and Threshold. If written as 0b01, 0b10, or 0b11, QBEXT pin works as unplug detection active-low output (so called PGOOD)	0b00: Disabled (functions as QBEXT) 0b01: 5V unplug detection 0b10: 9V unplug detection 0b11: 15V unplug detection (Note: For parts with chip revision 0b001 (PASS1), contact Analog Devices for Rev 0 of the data sheet. This information can be read from the CHIP_REVISION (0x01) register.)
UNPLUG_D B	1	VBUS Unplug Detection Debounce Selection	0b0: No debounce 0b1: 2µs (only valid when SUSPEND = 0)
DIS_AICL	0	AICL Disable Feature	0b0: AICL feature is not disabled. 0b1: AICL feature is disabled.

CHG_CNFG_13 (0x23)

BIT	7	6	5	4	3	2	1	0
Field	JEITA_EN	SPR_6	CHG_CV_C OOL	CHG_CC_ WARM	REGTEMP[3:0]			
Reset	0b0	0b0	0b0	0b0	0x6			
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
JEITA_EN	7	JEITA Enable	0x0: JEITA disabled Fast-charge current and charge termination voltage do not change based on thermistor temperature. 0x1: JEITA enabled Fast-charge current and charge termination voltage change based on thermistor temperature.
SPR_6	6	Spare Bit	
CHG_CV_C OOL	5	JEITA controlled battery termination voltage when thermistor temperature is between T _{COLD} and T _{COOL} .	0x0: Battery termination voltage is set by CHG_CV_PRM. 0x1: Battery termination voltage is set by (CHG_CV_PRM - 187.5mV) [MAX77985A/MAX77986A] by (CHG_CV_PRM - 375mV) [MAX77985B/MAX77986B]
CHG_CC_W ARM	4	JEITA controlled battery fast-charge current when thermistor temperature is between T _{WARM} and T _{HOT} .	0x0: Battery fast-charge current is set by CHG_CC. 0x1: Battery fast-charge current is to 50% of CHG_CC.
REGTEMP	3:0	Junction Temperature Thermal Regulation (°C). The charger's target current limit starts to foldback and the T _{REG} bit is set if the junction temperature is greater than the REGTEMP setpoint.	0x0: 85 0x1: 90 0x2: 95 0x3: 100 0x4: 105 0x5: 110 0x6: 115 0x7: 120 0x8: 125 0x9: 130

STAT_CNFG (0x24)


BIT	7	6	5	4	3	2	1	0
Field	STAT_EN	SPR_6_4[2:0]			STAT_CURR[1:0]		SPR_1	STAT_MOD E
Reset	0b1		0b0			:00	0b0	0b0
Access Type	Write, Read		Write, Read		Write, Read		Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
STAT_EN	7	STAT Charging Status Indication LED Enable Bit	0x0: Disable 0x1: Enable
SPR_6_4	6:4	Spare Bit	

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

BITFIELD	BITS	DESCRIPTION	DECODE
STAT_CURR	3:2	STAT LED Driving Current (mA)	0b00: 5 0b01: 10 0b10: 15 0b11: 20
SPR_1	1	Spare Bit	
STAT_MOD E	0	STAT LED Behaviour Selection Bit	0b0: LED mode 1 0b1: LED mode 2

Typical Application Circuits

Layout Guidelines

- 1. Do not connect AGND/DGND directly with the top layer PGND. Allocate ground isolation between AGND/DGND and PGND. This can be done by connecting AGND/DGND to the system ground plane near the input capacitor. Usually, the input source's ground plane is more stable.
- 2. Place CHGIN, BYP, SYS, and BATT bypass capacitors as close as possible to the IC pins and connect them to the power ground plane on the PCB top layer. Especially, make sure the connection between BYP cap ground and SYS cap ground is as direct, short, and wide as possible. If possible, reinforce the connection between BYP cap ground and SYS cap ground in other layers.
- 3. Place PVDD and AVDD bypass cap as close to IC as possible. Reduce the loop area between the bypass cap and the IC.
- 4. Use wide and short traces for high current connections such as CHGIN, BYP, SYS, and BATT.
- 5. BATSP and BATSN should have direct kelvin sensing connections to the interface of the battery. Connect as close to the battery terminal as possible, so that the battery voltage is sensed correctly.
- 6. The kelvin sensing traces should not be shared with other circuits and via on kelvin traces are not recommended.

Ordering Information

PART NUMBER	TEMP RANGE	MAX FAST- CHARGE CURRENT (A)	SUPPORTED BATTTERY TYPE	INDUCTOR CURRENT LIMIT (A)	REVERSE BOOST POWER CEILING (W)	PIN- PACKAGE	DEFAULT MODE[3:0]
MAX77985AEFD+	-40°C to +85°C	3.5	General Li-ion	8.3	12	32-FC2QFN	0x4
MAX77985AEFD+T	-40°C to +85°C	3.5	General Li-ion	8.3	12	32-FC2QFN	0x4
MAX77985BEFD+	-40°C to +85°C	3.5	LiFePO ₄	8.3	12	32-FC2QFN	0x4
MAX77985BEFD+T	-40°C to +85°C	3.5	LiFePO ₄	8.3	12	32-FC2QFN	0x4
MAX77986AEFD+	-40°C to +85°C	5.5	General Li-ion	11.1	18	32-FC2QFN	0x4
MAX77986AEFD+T	-40°C to +85°C	5.5	General Li-ion	11.1	18	32-FC2QFN	0x4
MAX77986BEFD+	-40°C to +85°C	5.5	LiFePO ₄	11.1	18	32-FC2QFN	0x4
MAX77986BEFD+T	-40°C to +85°C	5.5	LiFePO ₄	11.1	18	32-FC2QFN	0x4

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

19VIN, 3.5/5.5A 1-Cell Li+ Battery Charger with Smart Power Selector and OTG for USBC PD

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/22	Release for Market Intro	_
1	10/23	Updated Electrical Characteristics table, Pin Description table, Functional Diagram, Detailed Description, Switching Mode Charger, JEITA Controlled Charging, Unplug Detection, Table 8, Top-Off State, Main-Battery Overcurrent Protection Due to Fault, Battery to SYS QBATT Switch Control (DISIBS), Register Details table, Typical Application Circuit, Layout Guidelines, and Ordering Information table	10, 12–14, 16, 17, 25–28, 37, 41, 42, 44–48, 55, 64, 70, 73, 74, 77, 78, 80
2	11/23	Updated General Description, Electrical Characteristics table, Main-Battery Overcurrent Protection Due to Fault, Battery to SYS Q _{BATT} Switch Control (DISIBS), Unplug Detection, and Register Details	1, 10, 12, 13, 15, 17, 22, 41, 42, 47, 55, 82

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

<u>MAX77985AEFD+</u> <u>MAX77985AEFD+T</u> <u>MAX77985BEFD+</u> <u>MAX77986BEFD+T</u> <u>MAX77986AEFD+T</u> <u>MAX77986CEFD+T</u> <u>MAX77986CEFD+T</u>