OSRAM V105Q121A-850 **Datasheet**

BIDOS® P2433 Q

V105Q121A-850

850 nm Multi-Mode VCSEL Power Array Designed for Sensor Field of Interest: 60° x 45°

Applications

- Access Control & Security

Features

- Package: QFN Package
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)
- Very small SMT package
- VCSEL power array
- High optical power
- IR Laser with photodiode

V105Q121A-850

section.

Q65113A5438

Ordering Information

 $I_F = 4 \text{ A}; t_D = 300 \text{ } \mu\text{s}; D = 0.05$

Optical output power Ordering Code Type typ. P_{opt}

Depending on the mode of operation, these devices emit highly concentrated visible and non-visible light which can be hazardous to the human eye. Products which incorporate these devices must follow the safety precautions given in the "Notes"

3 W

Maximum Ratings

T_A = 25 °C

Parameter	Symbol		Values
Operating temperature	Top	min.	-20 °C
(refers to T _A ; T _A = 85°C with reduced efficiency)		max.	85 °C
Storage temperature	T _{stg}	min.	-40 °C
		max.	100 °C
Soldering temperature	Ts	max.	260 °C
t_{max} = 10 s			
ESD withstand voltage	V _{ESD}	max.	2 kV
acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)			
IR Laser			
Junction temperature	Tj	max.	125 °C
Forward current pulsed	I _F pulse	max.	6 A
$t_p \le 500 \ \mu s; \ D = 0.01$			
Reverse voltage ⁵⁾	V_{R}		Not designed for
			reverse operation
Photodiode			
Reverse voltage 5)	V_R	max.	20 V
Breakdown voltage	V_{BR}	min.	50 V

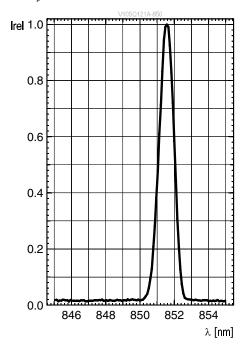
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.

Characteristics

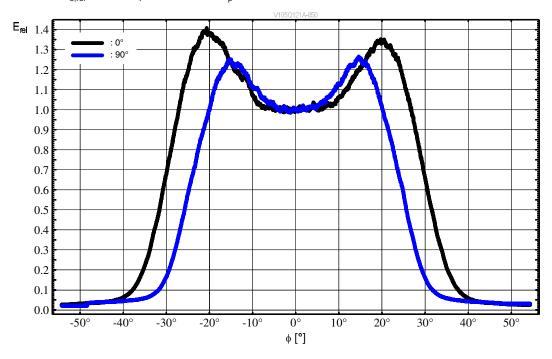
 t_p = 300 µs; D = 0.05; T_A = 25 °C

Parameter	Symbol		Values
IR Laser			
Peak wavelength ⁶⁾	λ_{peak}	min.	840 nm
		typ.	850 nm
		max.	860 nm
Optical output power 7)	Popt	min.	2.85 W
I _F = 4 A		typ.	3.00 W
Field of view (HFOV)	ΘΙΙ	typ.	63 °
Angle at Ee,50% level, normalized to the centroid			
Field of view (VFOV)	Θι	typ.	50 °
Angle at Ee,50% level, normalized to the centroid			
Dimensions of chip area	LxW	typ.	0.9 x 1.0
			mm x mm
Slope efficiency	η	typ.	0.95 W/ A
I _F = 1 A 2 A			
Power conversion efficiency	η tot	typ.	38 %
$I_F = 4 A$			
Threshold current	I _{th}	typ.	0.9 A
Forward voltage 8)	V _F	min.	1.95 V
I _F = 4 A		typ.	2.10 V
		max.	2.45 V
Rise time	t _r	typ.	1 ns
10% and 90% of I_{emax}			
Fall time	t _f	typ.	1 ns
10% and 90% of I _{e max}			
Temperature coefficient of wavelength	TC_λ	typ.	0.06 nm/ K
Thermal resistance junction solder point real	Rth _{JS real}	max.	11 K/ W
$t_p = 0.01 \text{ s}$			

Characteristics

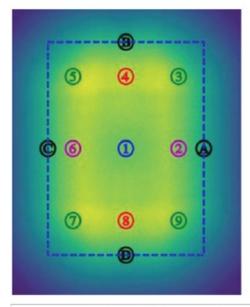

T_A = 25 °C

ameter Symbol		Values	
Photodiode			
Wavelength of max sensitivity	λ _{S max}	typ.	800 nm
Spectral range of sensitivity	λ _{10%}	typ.	450 1050 nm
Photocurrent	l _P	typ.	0.25 µA
λ = 850 nm, E _e = 0.5 mW/cm ² , V _R = 3.3 V			
Photocurrent 9)	I _P	min	0.45 mA
with VCSEL @ I_F = 4 A; λ = 850 nm; V_R = 3.3 V		typ.	0.50 mA
		max.	0.75 mA
Dimensions of chip area	LxW	typ.	0.38 x 0.38
			mm x mm
Dark current	I _R	typ.	0.1 nA
$V_R = 3.3 \text{ V}, E = 0$		max.	30 nA
Open-circuit voltage	Vo	typ.	320 mV
λ = 850 nm, E _e = 0.5 mW/cm ²			
Short-circuit current	Isc	typ.	235 nA
λ = 850 nm, E _e = 0.5 mW/cm ² , V _R = 0 V			
Rise time	t _r	typ.	1 ns
10 %/ 90%; λ = 850 nm			
Fall time	t _f	typ.	1 ns
10 %/ 90%; λ = 850 nm			
Forward voltage	V _F	typ.	0.85 V
$I_F = 10 \text{ mA}, E = 0$		max.	1.00 V
Capacitance	C_0	typ.	2 pF
$E_e = 0$ mW/cm², f = 1 MHz, $V_R = 0$ V Temperature coefficient of sensitivity	TCı	tun	0.23 %/ K
λ = 940 nm, E _e = 0.5 mW/cm ² , V _R = 3.3 V	ICI	typ.	0.23 %/ K
7. 5 15 mm, 28 5.5 mm 7/5mm, 7/1 5.5 v			


Relative Spectral Emission 1), 2)

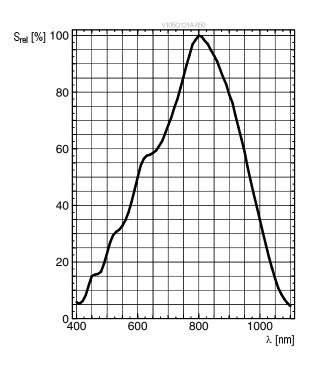
• infrared (850 nm): $I_{\rm e,rel}$ = f (λ); $I_{\rm F}$ = 4000 mA; $t_{\rm p}$ = 300 μs

Radiation Characteristics 1), 2)

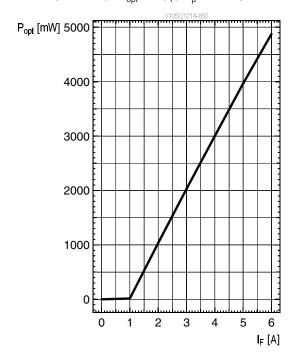

• infrared (850 nm): $E_{e,rel} = f(\phi)$; $I_F = 4000$ mA; $t_p = 300$ μ s; D = 0.05

Far-Field Illumination Pattern 2)

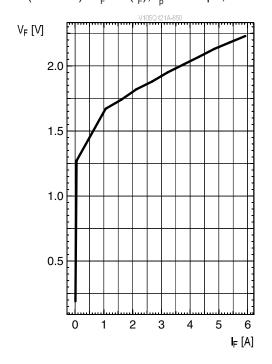
• infrared (850 nm): $I_{e,rel}$ = f (ϕ); I_{F} = 4000 mA; t_{p} = 300 μ s; D = 0.05


	Min	Тур	Max
1	100%	100%	100%
2	100%	120%	140%
3	110%	135%	160%
4	110%	133%	155%
5	110%	135%	160%
6	100%	120%	140%
7	110%	135%	160%
8	110%	133%	155%
9	110%	135%	160%
Α	65%	85%	105%
В	70%	90%	110%
С	65%	85%	105%
D	70%	90%	110%

Sensor FOI 60°(H) x 45°(V) (dotted line)

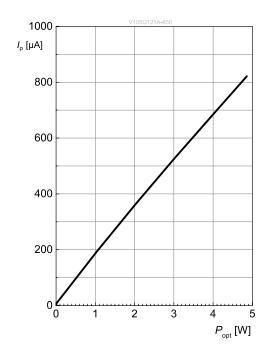

Relative Spectral Sensitivity 1), 2)

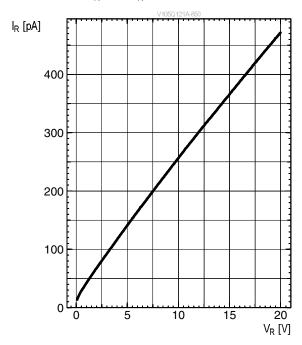
■ photodiode: $S_{rel} = f(\lambda)$


Optical Output Power 1), 2)

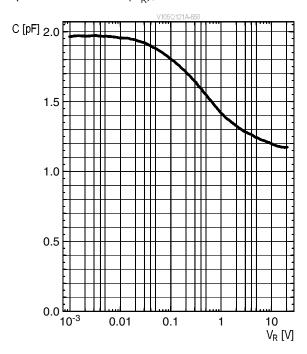
• infrared (850 nm): $P_{opt} = f(I_F)$; $t_p = 300 \ \mu s$; D = 0.05

Forward Voltage 1), 2)


• infrared (850 nm): $V_F = f(I_F)$; $t_p = 300 \ \mu s$; D = 0.05


Photocurrent 1), 2)

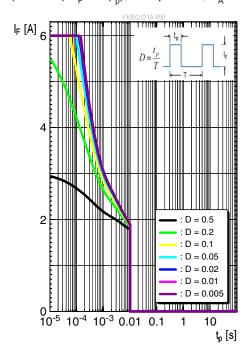
■ photodiode: $I_P = f(P_{opt})$; $V_R = 3.3 \text{ V}$


Dark Current 1), 2)

■ photodiode: $I_R = f(V_R)$

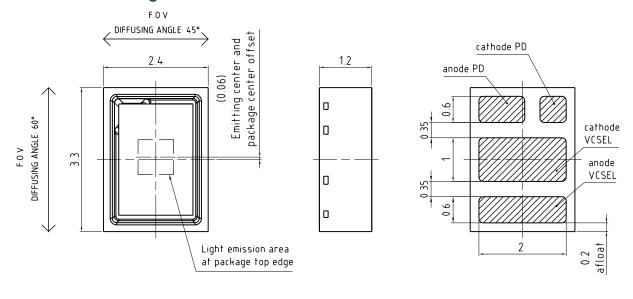
Capacitance 1), 2)

■ photodiode: C = f (V_R);


Permissible Pulse Handling Capability

• infrared (850 nm): $I_F = f(t_p)$; D = param.; $T_A = 25 \, ^{\circ}\text{C}$

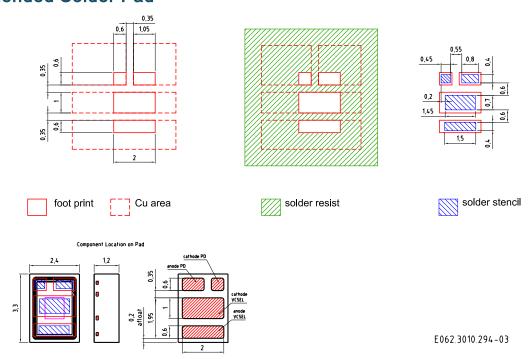
I_F [A] ₆ ∏ : D = 0.2 : D = 0.1: D = 0.05 : D = 0.01 : D = 0.0050 E 10-4 10-3 0.01 0.1 $t_p\left[s\right]$


Permissible Pulse Handling Capability

• infrared (850 nm): $I_F = f(t_p)$; D = param.; $T_A = 85 \, ^{\circ}\text{C}$

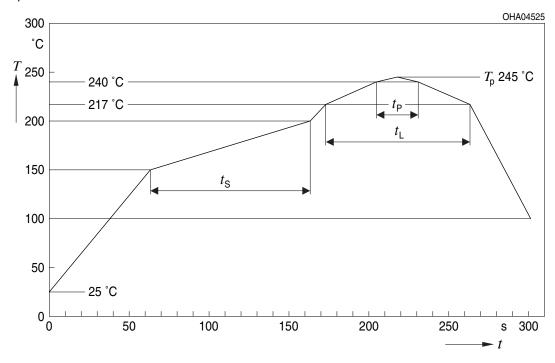
Dimensional Drawing 3)

general tolerance ± 0.1 lead finish Au


C67062-A0363-A1-06

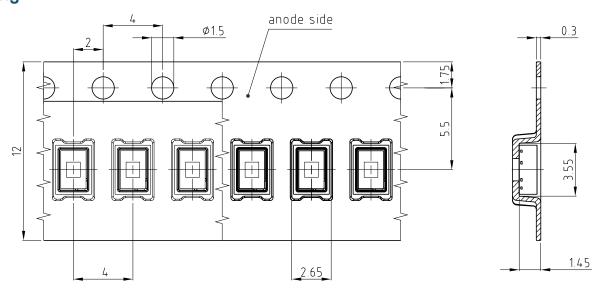
Further Information:

Approximate Weight: 20.0 mg


Recommended Solder Pad 3)

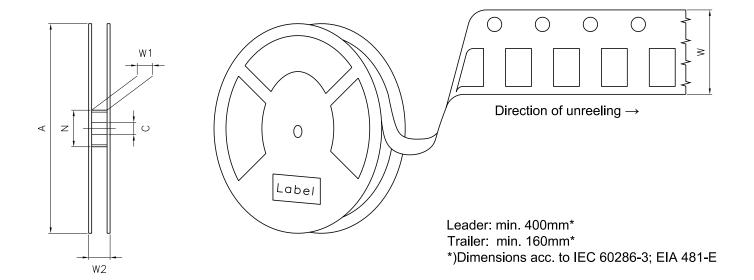
Reflow Soldering Profile

Product complies to MSL Level 3 acc. to JEDEC J-STD-020E


Profile Feature	Symbol	nbol Pb-Free (SnAgCu) Assembly			Unit
		Minimum	Recommendation	Maximum	
Ramp-up rate to preheat*)	'		2	3	K/s
25 °C to 150 °C					
Time t _s	t _s	60	100	120	S
T_{Smin} to T_{Smax}					
Ramp-up rate to peak*)			2	3	K/s
T_{Smax} to T_{P}					
Liquidus temperature	T_{L}		217		°C
Time above liquidus temperature	$t_{\scriptscriptstyle \perp}$		80	100	S
Peak temperature	T _P		245	260	°C
Time within 5 °C of the specified peak temperature T _p - 5 K	t _P	10	20	30	S
Ramp-down rate* T _P to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S

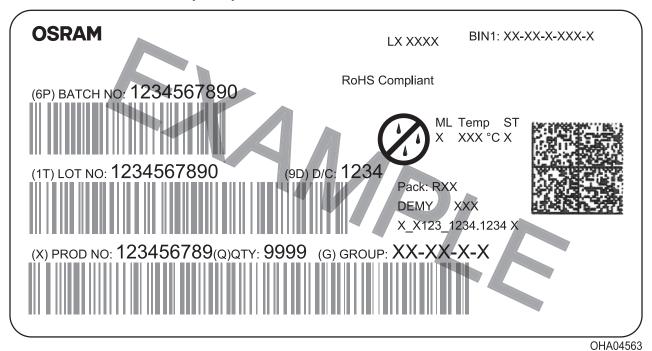
All temperatures refer to the center of the package, measured on the top of the component

^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

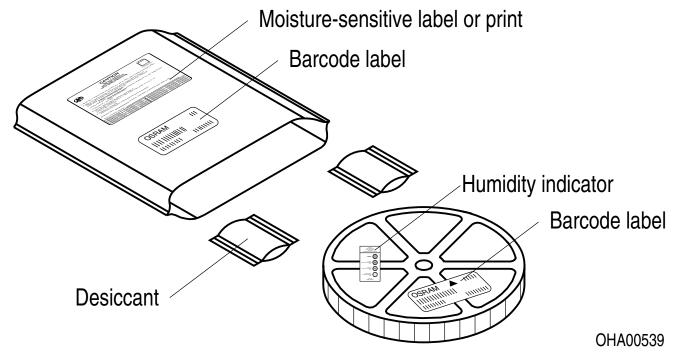

Taping 3)

C67062-A0363-B6-04

Tape and Reel 4)



Reel Dimensions


Α	W	N_{\min}	W_1	$W_{2\text{max}}$	Pieces per PU
180 mm	12 + 0.3 / - 0.1 mm	60 mm	12.4 + 2 mm	18.4 mm	2000

Barcode-Product-Label (BPL)

Dry Packing Process and Materials

Notes

Depending on the mode of operation, these devices emit highly concentrated visible and non visible light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1.

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

For further application related information please visit https://ams-osram.com/support/application-notes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on our website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

Our products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer.

Glossary

- 1) Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- 2) **Testing temperature:** T_A = 25°C (unless otherwise specified)
- 3) Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- 4) Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.
- 5) **Reverse Operation:** This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
- 6) Wavelength: The wavelengths are measured with a tolerance of ±1 nm.
- 7) **Brightness:** The brightness values are measured with a tolerance of ±11%.
- 8) Forward Voltage: The forward voltages are measured with a tolerance of ±0.1 V.
- 9) Photocurrent: The photocurrent values are measured (by irradiating the devices with a homogenous light source and applying a voltage to the device) with a tolerance of ±11 %.

Revision History

Version	Date	Change
1.0	2023-11-23	Initial Version
1.1	2024-06-26	Recommended Solder Pad Taping

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。

Published by ams-OSRAM AG

Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ams OSRAM:

V105Q121A-850