OSRAM KW CSLNM1.TG **Datasheet**

OSRAM OSTAR® Projection Compact

KW CSLNM1.TG

Compact light source with isolated heat sink for improved heat dissipation and high current chip technology for increased light output.

Applications

- Entertainment

Features

- Package: white molded SMD ceramic package
- Chip technology: UX:3
- Typ. Radiation: 120° (Lambertian emitter)
- Color: Cx = 0.32, Cy = 0.33 acc. to CIE 1931 (white)
- Corrosion Robustness Class: 3A
- ESD: 8 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)

Туре	Luminous Flux ¹⁾ $I_F = 1000 \text{ mA}$ Φ_V	Ordering Code
KW CSLNM1.TG-5N8N-ebvF46fcbB46-15B5	280 450 lm	Q65113A1587
KW CSLNM1.TG-6N8N-EBVF46FCBB46-15B5	315 450 lm	Q65113A8504

Maximum Ratings

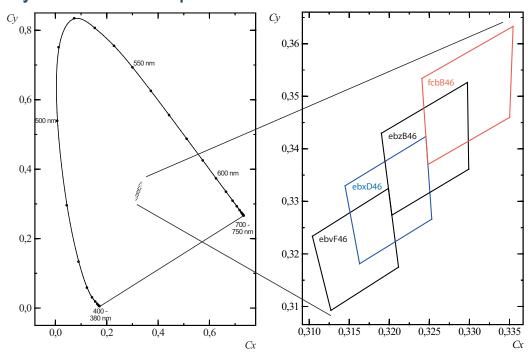
Parameter	Symbol		Values
Operating Temperature	T _{op}	min.	-40 °C
	σp	max.	125 °C
Storage Temperature	T _{stg}	min.	-40 °C
	olg	max.	125 °C
Junction Temperature	T _j	max.	150 °C
Forward current	I _F	min.	40 mA
$T_S = 25 ^{\circ}C$	•	max.	3000 mA
Forward current pulsed D = 0.5; f = 120Hz; Ts = 25 °C	 F pulse	max.	3300 mA
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)	V_{ESD}		8 kV
Reverse current 2)	I _R	max.	200 mA

Characteristics

 I_F = 1000 mA; T_S = 25 °C

Parameter	Symbol		Values
Partial Flux ³⁾ I _F = 1000 mA	E_{v}	typ.	0.76
Chromaticity Coordinate 4)	Cx Cy	typ. typ.	0.32 0.33
Viewing angle at 50% $\rm I_{\rm V}$	2φ	typ.	120 °
Radiating surface	A_{color}	typ.	0.96 x 0.96 mm²
Forward Voltage ⁵⁾ I _F = 1000 mA	V _F	min. typ. max.	2.75 V 3.00 V 3.50 V
Reverse voltage (ESD device)	$V_{\sf RESD}$	min.	45 V
Reverse voltage ²⁾ I _R = 20 mA	V_R	max.	1.2 V
Real thermal resistance junction/solderpoint ⁶⁾	$R_{ ext{thJS real}}$	typ. max.	4.1 K / W 4.9 K / W
Electrical thermal resistance junction/solderpoint $^{6)}$ with efficiency η_e = 31 %	$R_{ ext{thJS elec.}}$	typ. max.	2.8 K / W 3.4 K / W

Brightness Groups


Group	Luminous Flux ¹⁾ $I_F = 1000 \text{ mA}$ min. Φ_V	Luminous Flux ¹⁾ $I_F = 1000 \text{ mA}$ max. Φ_V	
5N	280 lm	315 lm	
6N	315 lm	355 lm	
7N	355 lm	400 lm	
8N	400 lm	450 lm	

Forward Voltage Groups

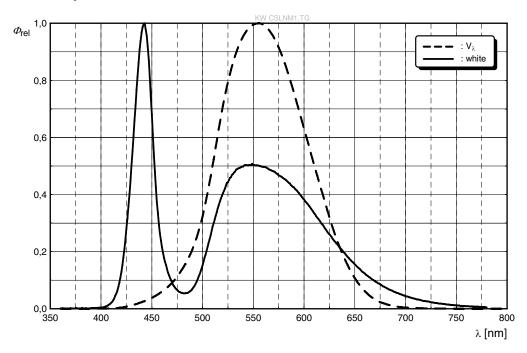
Group	Forward Voltage ⁵⁾ I _F = 1000 mA min. V _F	Forward Voltage ⁵⁾ I _F = 1000 mA max. V _F	
15	2.75 V	3.00 V	
65	3.00 V	3.25 V	
B5	3.25 V	3.50 V	

Chromaticity Coordinate Groups 4)

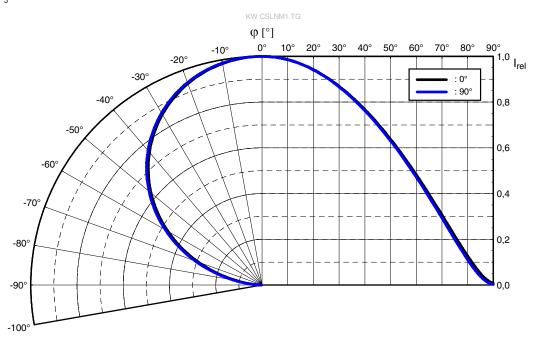
Chromaticity Coordinate Groups 4)

Group	Cx	Су		Group	Cx	Су
ebvF46	0.3104	0.3234		ebzB46	0.3190	0.3430
	0.3199	0.3325		0.3298	0.3526	
	0.3212	0.3175			0.3299	0.3361
	0.3127	0.3093			0.3203	0.3274
ebxD46	0.3145	0.3330		fcbB46	0.3241	0.3534
	0.3246	0.3424	-	0.3355	0.3633	
	0.3253	0.3266			0.3350	0.3460
	0.3163	0.3181			0.3248	0.3370

Group Name on Label

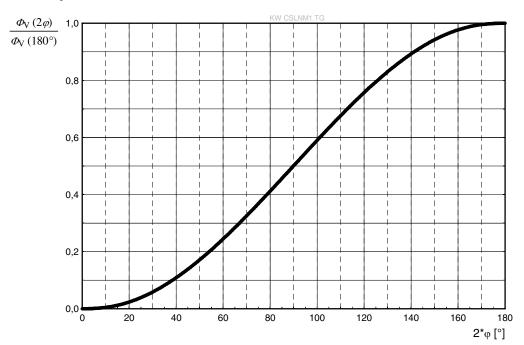

Example: 5N-ebvF46-15

Brightness	Color Chromaticity	Forward Voltage
5N	ebvF46	15


Relative Spectral Emission 3)

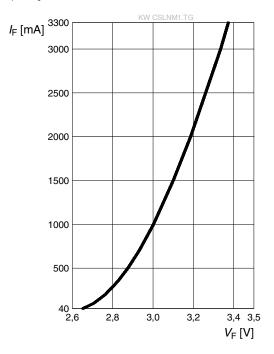
$$\Phi_{rel}$$
 = f (λ); I_F = 1000 mA; T_J = 25 °C

Radiation Characteristics 3)

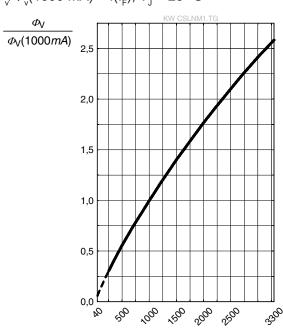

$$I_{rel} = f(\phi); T_J = 25 \, ^{\circ}C$$

Relative Partial Flux 3)

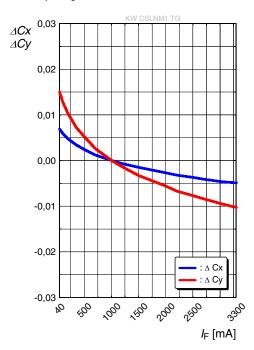
 $\Phi_{_{V}}(2\phi)/\Phi_{_{V}}(180^{\circ}) = f(\phi); T_{_{J}} = 25 \, ^{\circ}C$



*I*_F [mA]

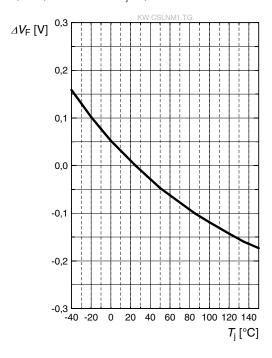

Forward current 3), 7)

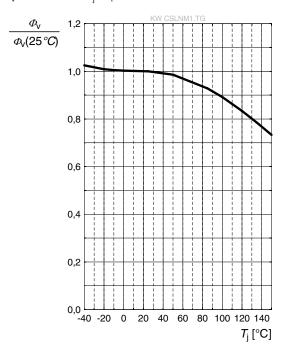
$$I_F = f(V_F); T_J = 25 \, ^{\circ}C$$


Relative Luminous Flux 3), 7)

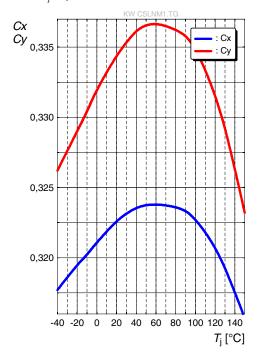
$$\Phi_{V}/\Phi_{V}(1000 \text{ mA}) = f(I_{E}); T_{L} = 25 \text{ °C}$$

Chromaticity Coordinate Shift 3)


 ΔCx , $\Delta Cy = f(I_F)$; $T_J = 25 \, ^{\circ}C$

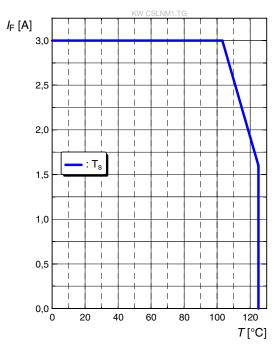

Forward Voltage 3)

$$\Delta V_{_F} = V_{_F} - V_{_F} (25~^{\circ}C) = f(T_{_j}); \ I_{_F} = 1000~mA$$


Relative Luminous Flux 3)

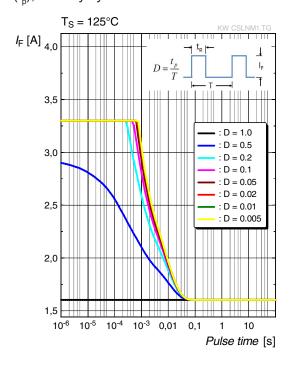
$$\Phi_{v}/\Phi_{v}(25 \text{ °C}) = f(T_{i}); I_{F} = 1000 \text{ mA}$$

Chromaticity Coordinate Shift 3)


 ΔCx , $\Delta Cy = f(T_j)$; $I_F = 1000 \text{ mA}$

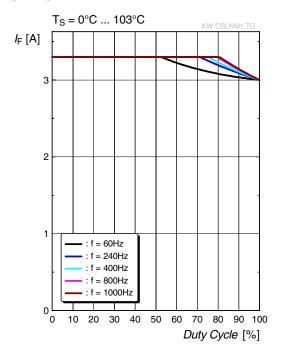

Max. Permissible Forward Current 6)

 $I_{\scriptscriptstyle F} = f(T)$


Permissible Pulse Handling Capability

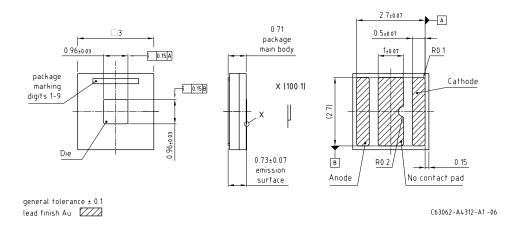
 $I_F = f(t_p)$; D: Duty cycle

Permissible Pulse Handling Capability


 $I_F = f(t_p)$; D: Duty cycle


Permissible Pulse Handling Capability

f: Frequency


Permissible Pulse Handling Capability

f: Frequency

Dimensional Drawing 8)

Further Information:

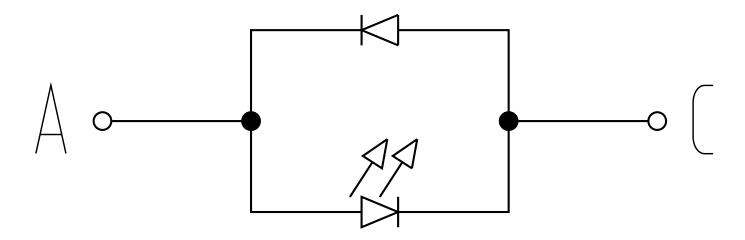
Approximate Weight: 34.0 mg

Package marking: Cathode

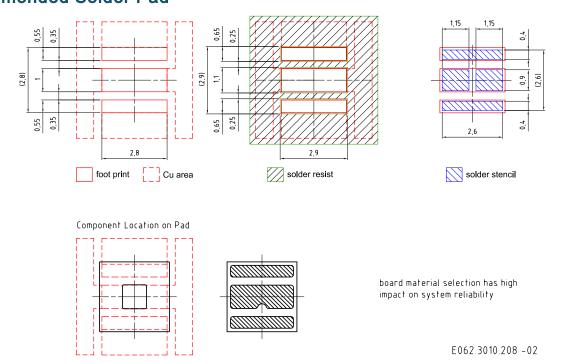
Corrosion test: Class: 3A

Test condition: 40°C / 90 % RH / 15 ppm H₂S / 14 days (stricter than IEC

60068-2-43)

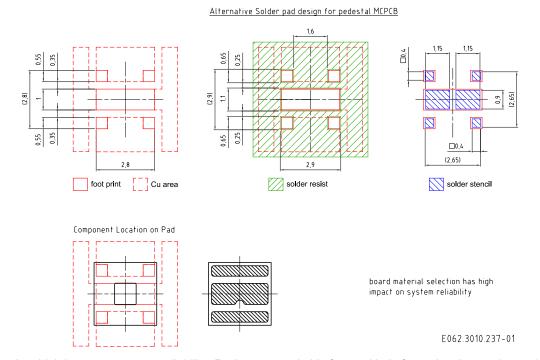

ESD advice: The device is protected by ESD device which is connected in parallel to the

Chip.



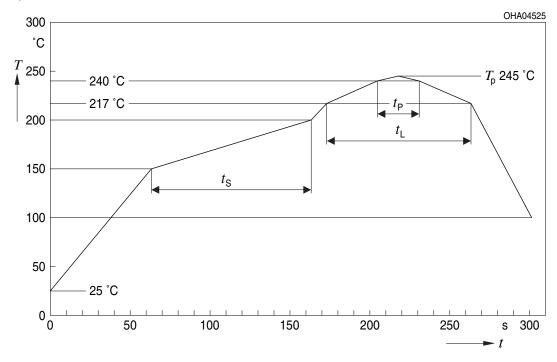
Electrical Internal Circuit

ESD Protection



Recommended Solder Pad 8)

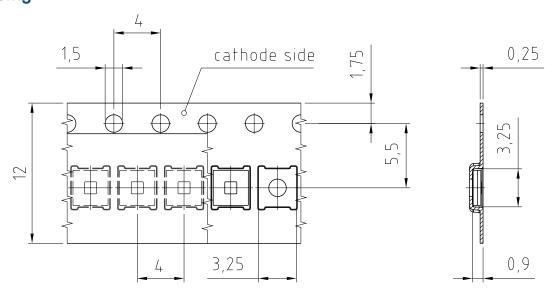
Recommended Solder Pad 8)



Board selection has high impact on system reliability. Package not suitable for any kind of wet cleaning or ultrasonic cleaning.

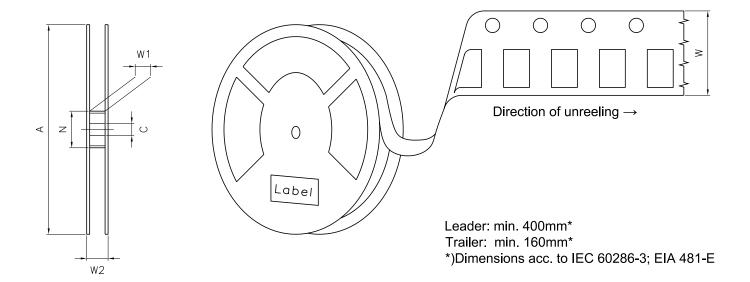
Reflow Soldering Profile

Product complies to MSL Level 2 acc. to JEDEC J-STD-020E


Profile Feature	Symbol	pol Pb-Free (SnAgCu) Assembly		Unit	
		Minimum	Recommendation	Maximum	
Ramp-up rate to preheat*)	'		2	3	K/s
25 °C to 150 °C					
Time t _s	t _s	60	100	120	S
T_{Smin} to T_{Smax}					
Ramp-up rate to peak*)			2	3	K/s
T_{Smax} to T_{P}					
Liquidus temperature	T_{L}		217		°C
Time above liquidus temperature	$t_{\scriptscriptstyle \perp}$		80	100	S
Peak temperature	T _P		245	260	°C
Time within 5 °C of the specified peak	t _P	10	20	30	S
temperature T _P - 5 K					
Ramp-down rate* T _P to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S
20 0 to 1 _P					

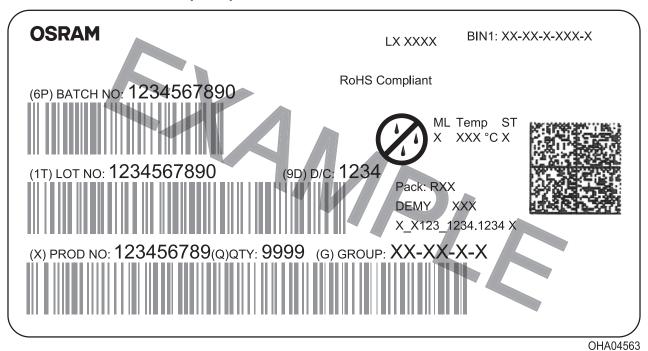
All temperatures refer to the center of the package, measured on the top of the component

^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

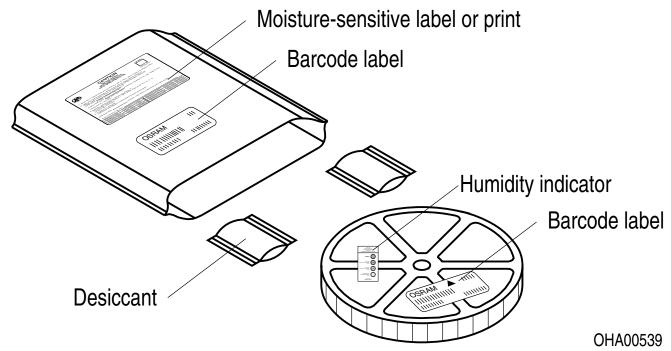

Taping 8)

C63062-A4312-B3-03

Tape and Reel 9)



Reel Dimensions


Α	W	N_{\min}	W_1	$W_{2 \text{max}}$	Pieces per PU
180 mm	12 + 0.3 / - 0.1 mm	60 mm	12.4 + 2 mm	18.4 mm	1000

Barcode-Product-Label (BPL)

Dry Packing Process and Materials 8)

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.

Notes

The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class moderate risk (exposure time 0.25 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.

Subcomponents of this device contain, in addition to other substances, metal filled materials. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers avoid device exposure to aggressive substances during storage, production,

For further application related information please visit https://ams-osram.com/support/application-notes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on our website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

Our products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer.

Glossary

- Brightness: Brightness values are measured during a current pulse of typically 25 ms, with an internal reproducibility of ±8 % and an expanded uncertainty of ±11 % (acc. to GUM with a coverage factor of k = 3).
- Reverse Operation: This product is intended to be operated applying a forward current within the specified range. Applying any continuous reverse bias or forward bias below the voltage range of light emission shall be avoided because it may cause migration which can change the electro-optical characteristics or damage the LED.
- Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- Chromaticity coordinate groups: Chromaticity coordinates are measured during a current pulse of typically 25 ms, with an internal reproducibility of ±0.005 and an expanded uncertainty of ±0.01 (acc. to GUM with a coverage factor of k = 3).
- Forward Voltage: The forward voltage is measured during a current pulse of typically 8 ms, with an internal reproducibility of ±0.05 V and an expanded uncertainty of ±0.1 V (acc. to GUM with a coverage factor of k = 3).
- 6) Thermal Resistance: Rth max is based on statistic values (6 σ) used for Derating.
- 7) Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
- Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.

Revision History

Version	Date	Change
1.3	2020-07-06	Ordering Information
1.4	2020-07-16	Features
1.4	2020-07-17	Features
1.5	2020-10-30	Maximum Ratings
1.6	2024-09-16	Ordering Information Characteristics New Layout
1.7	2024-10-22	Applications Features
1.7	2024-10-29	Applications Features
1.7	2024-10-30	Applications Features

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。

Published by ams-OSRAM AG

Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ams OSRAM:

KW CSLNM1.TG-5N8N-EBVF46FCBB46-15B5 KW CSLNM1.TG-6N8N-EBVF46FCBB46-15B5