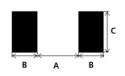


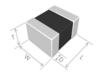
Metal Composite Power Inductor (Thin Film) Specification Sheet

CIGT201610EH2R2MNE (2016 / EIA 0806)

APPLICATION


Smart phones, Tablet, Wearable devices, Power converter modules, etc.

FFATURES


Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free

RECOMMENDED LAND PATTERN

Unit : mm					
TYPE	2016				
Α	0.8				
В	0.8				
С	1.8				

DIMENSION

TYPE	Dimension [mm]									
ITPE	L	L W T D								
2016	2.0±0.2	1.6±0.2	1.0 max	0.5±0.2						

DESCRIPTION

	Part no.	Size	Thickness	Inductance	nductance tolerance	DC Resistance [mΩ]		Rated DC Current (Isat) [A] Rated DC Current (Irms)			ırrent (Irms) [A]
		[inch/mm] [mm] (max)	[uH]	(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.	
	CIGT201610EH2R2MNE	0806/2016	1.0	2.2	±20	87	73	2.7	2.9	2.5	2.7

- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or

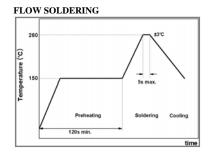
when current flows and temperature has risen to 40℃ whichever is smaller. (Reference: ambient temperature is 25℃±10)

(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of

(Irms): Allowable current of temperature rise: The temperature rise allowable current value is specified when temperature of

the inductor is raised 40 $^{\circ}{\rm C}$ by DC current. (Reference: ambient temperature is 25 $^{\circ}{\rm C}\pm10$)

- * Absolute maximum voltage : Rated Voltage 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)


PRODUCT IDENTIFICATION

CIG	<u>T</u>	<u> 2016</u>	<u>10</u>	<u>EH</u>	<u>2R2</u>	<u>M</u>	<u>N</u>	<u>E</u>
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

- (1) Power Inductor
- (3) Dimensior (2016: 2.0mm ×1.6 mm)
- (5) Remark (Characterization Code)
- (7) Toleranc (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (2) Type (T: Metal Composite Thin Film Type)
- (4) Thicknes (10: 1.0mm)
- (6) Inductan (2R2: 2.2 uH)

RECOMMENDED SOLDERING CONDITION

REFLOW SOLDERING 280 230 230 180 180 Preheating Soldering Cooling 30 - 60s time

Temperature of Soldering Iron Tip	280 ℃ max.
Preheating Temperature	150°C min.
Temperature Differential	ΔT≤130°C
Soldering Time	3sec max.

50W max

IRON SOLDERING

Wattage

PACKAGING

Packaging Style	Quantity(pcs/reel)
Embossed Taping	3000 pcs

Item	Specified Value		Test Condition		
Solderability	More than 90% of terminal electrode should be soldered newly.	•	for 4±1 seconds, and preheated at a, the specimen shall be immersed in 1 seconds.		
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial.		for 4±1 seconds, and preheated at a, the specimen shall be immersed in ±0.5 seconds.		
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within ±20% to the initial.	Repeat 100 cycles under -40±3°C for 30 min → 85			
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, for 500: Measure the test items a humidity for 24 hours.	±12 hours. fter leaving at normal temperature and		
Low Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PC at -55±2°C for 500±12 ho Measure the test items a humidity for 24hours.			
High Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	hours.	CB. Exposure at 125±2°C for 500±12 fter leaving at normal temperature and		
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within ±20% to the initial		Current for 500±12 hours. fter leaving at normal temperature and		
High Temperature Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
Reflow Test	No mechanical damage Inductance change to be within ±20% to the initial	Peak 260±5℃, 3 times			
Vibration Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Vibrate as apply 10~55Hz, 1.5mm amplitude for 2 hours in each of three(X,Y,Z) axis (total 6 hours)			
	No mechanical damage	Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at th PCB thickness : 1.6mm			
Bending Test	10,	20 R340 46	Unit :mm		
	No indication of peeling shall occur on the terminal electrode.	W(kgf)	TIME(sec)		
Terminal Adhesion Test		₩ w	1721		
Drop Test	No mechanical damage Inductance change to be within ±20% to the initial.	Random Free Fall test or 1 meter, 10 drops	n concrete plate.		

Metal Composite Power Inductor (Thin Film)

Data Sheet

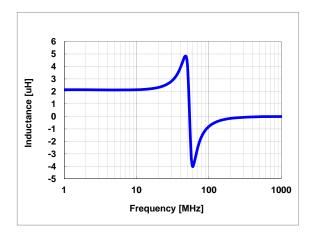
1. Model: CIGT201610EH2R2MNE

2. Description

Part no.	Size	Thickness	Inductance	nce Inductance tolerance	DC Resist	tance [mΩ]	Rated DC Current (Isat) [A] Rated DC Current (Irms) [A]			irrent (Irms) [A]
	[inch/mm] [mm] (max)	[uH]	(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.	
CIGT201610EH2R2MNE	0806/2016	1.0	2.2	±20	87	73	2.7	2.9	2.5	2.7

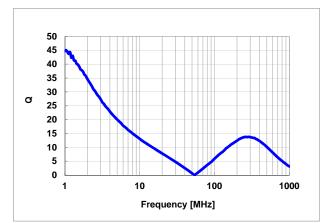
^{*} Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)

(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of the initial inductance value at 30% (Reference: ambient temperature is 25 °C±10)

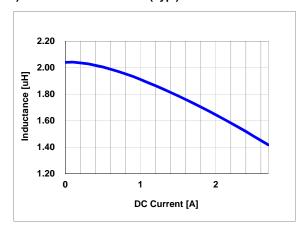

(Irms): Allowable current of temperature rise: The temperature rise allowable current value is specified when temperature of the inductor is raised 40 ℃ by DC current. (Reference: ambient temperature is 25 ℃±10)

* Absolute maximum voltage: Rated Voltage 20V.

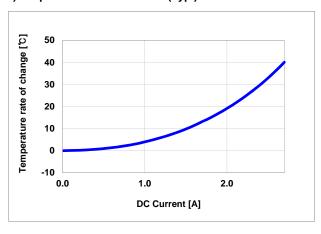
3. Characteristics data


1) Frequency characteristics (Ls)

Agilent E4294A +E4991A , 1MHz to 1,000MHz



2) Frequency characteristics (Q)


Agilent E4294A +E4991A , 1MHz to 1,000MHz

3) DC Bias characteristics (Typ.)

4)Temperature characteristics (Typ.)

^{*} DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent

^{*} Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or when current flows and temperature has risen to 40 ℃ whichever is smaller. (Reference: ambient temperature is 25 ℃±10)

^{*} Operating temperature range : -40 to +125°C (Including self-temperature rise)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Samsung Electro-Mechanics: CIGT201610EH2R2MNE