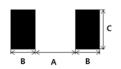


Metal Composite Power Inductor (wire wound) Specification Sheet

CIGW252010GLR33MNE (2520 / EIA 1008)

APPLICATION


Smart phones, Tablet, Wearable devices, Power converter modules, etc.

FFATURES

Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free

RECOMMENDED LAND PATTERN

	Unit : mm
TYPE	2520
Α	1.2
В	0.8
С	2.0

DIMENSION

TYPE		Dimensi	on [mm]		
TIPE	L	W	T	D	
2520	2.5±0.2	2.0±0.2	1.0 max	0.55±0.25	

DESCRIPTION

Port no	Part no	Thickness	tolerance	DC Resista	ance [mΩ]	Rated DC Cu	rrent (Isat) [A]	Rated DC C	urrent (Irms) \]	
raitiio.		[mm] (max)			Max.	Тур.	Max.	Тур.	Max.	Тур.
CIGW252010GLR33MNE	1008/2520	1.0	0.33	±20	16	12	5.5	6.2	6.2	6.5

- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or

when current flows and temperature has risen to $40\,^\circ\text{C}$ whichever is smaller. (Reference: ambient temperature is $25\,^\circ\text{C}\pm10)$

(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of

the initial inductance value at 30% (Reference: ambient temperature is 25°C±10)

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of

<u>10</u>

* Absolute maximum voltage : Absolute maximum voltage DC 20V.

CIG

 * Operating temperature range : -40 to +125°C (Including self-temperature rise)

PRODUCT IDENTIFICATION

(1)	(2)	(3)	(4)	(5)

2520

- (1) Power Inductor
- (3) Dimensior (2520: 2.5mm \times 2.0mm)

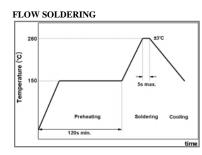
W

- (5) Remark (Characterization Code)
- (7) Toleranc (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (2) Type (W: Metal Composite Wire Wound Type)

(7)

<u>R33</u>

(6)


(4) Thickness (10: 1.0mm)

<u>GL</u>

(6) Inductance (R33: 0.33 uH)

RECOMMENDED SOLDERING CONDITION

REFLOW SOLDERING 280 230 230 10s max. Preheating Soldering Cooling 30 - 60s time

IRON SOLDERING	
Temperature of Soldering Iron Tip	280℃ max.
Preheating Temperature	150℃min.
Temperature Differential	ΔT≤130°C
Soldering Time	3sec max.
Wattage	50W max.

<u>N</u>

(8)

<u>E</u>

(9)

PACKAGING

Packaging Style	Quantity(pcs/reel)			
Embossed Taping	3000 pcs			

Item	Specified Value	Test Condition			
Solderability	More than 90% of terminal electrode should be soldered newly.	After being dipped in flux for 4 ± 1 seconds, and preheated at $150\sim180$ °C for $2\sim3$ min, the specimen shall be immersed in solder at 245 ± 5 °C for 4 ± 1 seconds.			
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial.	After being dipped in flux for 4 ± 1 seconds, and preheated at $150\!\sim\!180^\circ\!\!\!\mathrm{C}$ for $2\!\sim\!3$ min, the specimen shall be immersed in solder at $260\pm5^\circ\!\!\!\mathrm{C}$ for 10 ± 0.5 seconds.			
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within ±20% to the initial.	Repeat 100 cycles under the following conditions. -40±3 °C for 30 min → 85±3 °C for 30 min			
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
Low Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Exposure at -55±2°C for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.			
High Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Exposure at 125±2°C for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24hours.			
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
High Temperature Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
Reflow Test	No mechanical damage Inductance change to be within ±20% to the initial	Peak 260±5°C, 3 times			
Vibration Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PCB. Vibrate as apply 10~55Hz, 1.5mm amplitude for 2 hours in each of three(X,Y,Z) axis (total 6 hours).			
	No mechanical damage	Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at the limit point in 5 sec. PCB thickness: 1.6mm			
Bending Test	10	20 Unit :mm			
	45 ▶	45			
	No indication of peeling shall occur on the terminal electrode.	W(kgf) TIME(sec)			
		0.5 10±1			
Terminal Adhesion Test		▼ w			
Drop Test	No mechanical damage Inductance change to be within ±20% to the initial.	Random Free Fall test on concrete plate. 1 meter, 10 drops			
lpeak (AC+DC Load Life)	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, Load(Ipeak) for 120 hours. (Frequncy:1MHz, Load(Ipeak):1.5hr on / 0.5hr off) Measure the test items after leaving at normal temperature and humidity for 24 hours. * Load(Ipeak) = Irms(max)×1.4			

Metal Composite Power Inductor (wire wound) Data Sheet

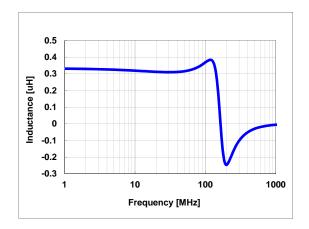
1. Model: CIGW252010GLR33MNE

2. Description

Part no.	Size Thickness Inc	Thickness	Inductance	Inductance tolerance	DC Resista	ance [mΩ]	Rated DC Cu	rrent (Isat) [A]	Rated DC C	urrent (Irms) \]
rait iio.		InHI I	m] (max) [uH]	(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.
CIGW252010GLR33MNE	1008/2520	1.0	0.33	±20	16	12	5.5	6.2	6.2	6.5

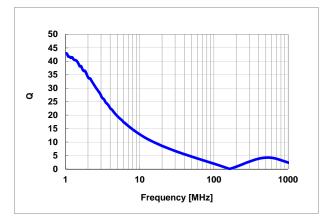
- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or when current flows and temperature has risen to 40°C whichever is smaller. (Reference: ambient temperature is 25°C±10)

(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of the initial inductance value at 30% (Reference: ambient temperature is 25℃±10)

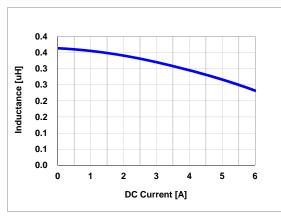

(Irms): Allowable current of temperature rise: The temperature rise allowable current value is specified when temperature of the inductor is raised 40℃ by DC current. (Reference: ambient temperature is 25℃±10)

- * Absolute maximum voltage : Absolute maximum voltage DC 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)

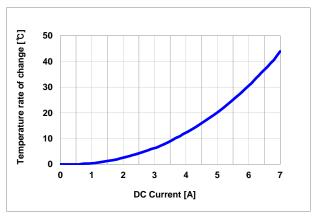
3. Characteristics data


1) Frequency characteristics (Ls)

Agilent E4294A +E4991A , 1MHz to 1,000MHz



2) Frequency characteristics (Q)


Agilent E4294A +E4991A , 1MHz to 1,000MHz

3) DC Bias characteristics (Typ.)

4)Temperature characteristics (Typ.)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Samsung Electro-Mechanics: CIGW252010GLR33MNE