
BOURNS®

- Designed for Complementary Use with the TIP2955 Series
- 90 W at 25°C Case Temperature
- 15 A Continuous Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT
Collector-base voltage (I _E = 0)	V _{CBO}	100	V
Collector-emitter voltage (I _B = 0) (see Note 1)	V _{CER}	70	V
Emitter-base voltage	V_{EBO}	7	V
Continuous collector current	I _C	15	Α
Continuous base current	I _B	7	Α
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	90	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)	P _{tot}	3.5	W
Unclamped inductive load energy (see Note 4)	½LI _C ²	62.5	mJ
Operating junction temperature range	T _j	-65 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds	T _L	260	°C

NOTES: 1. This value applies when the base-emitter resistance R_{BE} = 100 Ω .

- 2. Derate linearly to 150°C case temperature at the rate of 0.72 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 28 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 10 V.

electrical characteristics at 25°C case temperature

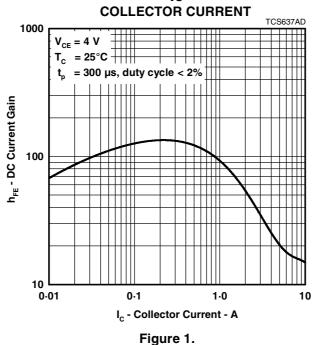
PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 30 mA	I _B = 0	(see Note 5)	60			V
I _{CER}	Collector-emitter cut-off current	V _{CE} = 70 V	$R_{BE} = 100 \Omega$				1	mA
I _{CEO}	Collector cut-off current	V _{CE} = 30 V	I _B = 0				0.7	mA
I _{CEV}	Voltage between base and emitter	V _{CE} = 100 V	V _{BE} = -1.5 V				5	mA
I _{EBO}	Emitter cut-off current	V _{EB} = 7 V	I _C = 0				5	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 4 V$ $V_{CE} = 4 V$	$I_C = 4A$ $I_C = 10A$	(see Notes 5 and 6)	20 5		70	
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = 0.4 \text{ A}$ $I_B = 3.3 \text{ A}$	$I_C = 4A$ $I_C = 10A$	(see Notes 5 and 6)			1.1 3	V
V _{BE}	Base-emitter voltage	V _{CE} = 4 V	I _C = 4 A	(see Notes 5 and 6)			1.8	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	$I_C = 0.5 A$	f = 1 kHz	15			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	3	_		

NOTES: 5. These parameters must be measured using pulse techniques, $t_0 = 300 \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

	PARAMETER			MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.39	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			35.7	°C/W

resistive-load-switching characteristics at 25°C case temperature


	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 6 A	$I_{B(on)} = 0.6 A$	$I_{B(off)} = -0.6 A$		0.6		μs
t _{off}	Turn-off time	$V_{BE(off)} = -4 V$	$R_L = 5 \Omega$	t_p = 20 μs , $dc \le 2\%$		1		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN vs

MAXIMUM SAFE OPERATING REGIONS

MAXIMUM FORWARD-BIAS SAFE OPERATING AREA

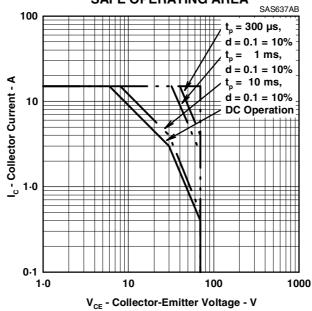


Figure 2.

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

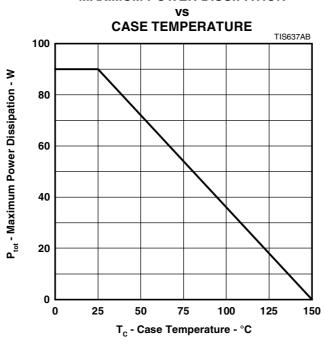


Figure 3.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Bourns: TIP3055-S