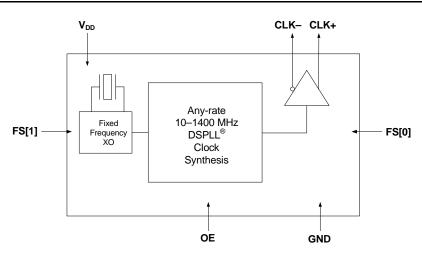


QUAD FREQUENCY CRYSTAL OSCILLATOR (XO) (10 MHz to 1.4 GHz)

Features

- Available with any-rate output frequencies from 10 MHz to 945 MHz and select frequencies to 1.4 GHz
- Four selectable output frequencies
- 3rd generation DSPLL[®] with superior jitter performance
- 3x better frequency stability than SAW-based oscillators

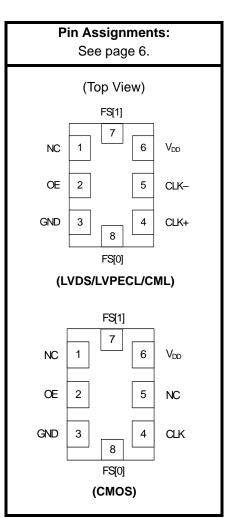
Applications


- SONET/SDH
- Networking
- SD/HD video

Description

- Internal fixed crystal frequency ensures high reliability and low aging
 Available CMOS, LVPECL.
- LVDS, and CML outputs
- 3.3, 2.5, and 1.8 V supply options
- Industry-standard 5 x 7 mm
- package and pinout
- Pb-free/RoHS-compliant
- Test and measurement
- Clock and data recovery
- FPGA/ASIC clock generation

The Si534 quad frequency XO utilizes Skyworks Solutions' advanced DSPLL[®] circuitry to provide a low jitter clock at high frequencies. The Si534 is available with any-rate output frequency from 10 to 945 MHz and select frequencies to 1400 MHz. Unlike a traditional XO where a different crystal is required for each output frequency, the Si534 uses one fixed crystal to provide a wide range of output frequencies. This IC-based approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides superior supply noise rejection, simplifying the task of generating low jitter clocks in noisy environments typically found in communication systems. The Si534 IC-based XO is factory configurable for a wide variety of user specifications including frequency, supply voltage, output format, and temperature stability. Specific configurations are factory programmed at time of shipment, thereby eliminating long lead times associated with custom oscillators.


Functional Block Diagram

Si534

REVISION D

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.4 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • March 4, 2022

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Voltage ¹	V _{DD}	3.3 V option	2.97	3.3	3.63	V
		2.5 V option	2.25	2.5	2.75	V
		1.8 V option	1.71	1.8	1.89	V
Supply Current	I _{DD}	Output enabled LVPECL CML LVDS CMOS Tristate mode	 	111 99 90 81 60	121 108 98 88 75	mA
Output Enable (OE) and Frequency Select FS[1:0] ²		V _{IH} V _{IL}	0.75 x V _{DD}	_		V V
Operating Temperature Range	T _A	- IL	-40	_	85	°C

Notes:

1. Selectable parameter specified by part number. See Section 3. "Ordering Information" on page 7 for further details.

2. OE and FS[1:0] pins include a 17 k Ω pullup resistor to V_{DD}.

Table 2. CLK± Output Frequency Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Nominal Frequency ^{1,2}	f _O	LVPECL/LVDS/CML	10	_	945	MHz
		CMOS	10	_	160	MHz
Initial Accuracy	f _i	Measured at +25 °C at time of shipping	_	±1.5	_	ppm
Temperature Stability ^{1,3}			7 20 50		+7 +20 +50	ppm
Aging	f	Frequency drift over first year			±3	ppm
	f _a	Frequency drift over 20-year life		_	±10	ppm
Total Stability		Temp stability = ±7 ppm			±20	ppm
		Temp stability = ±20 ppm		_	±31.5	ppm
		Temp stability = ±50 ppm			±61.5	ppm

Notes:

1. See Section 3. "Ordering Information" on page 7 for further details.

2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz.

3. Selectable parameter specified by part number.

4. Time from powerup or tristate mode to f_{O} .

Table 2. CLK± Output Frequency Characteristics (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	
Powerup Time ⁴	t _{OSC}		—	_	10	ms	
Settling Time After FS[1:0] Change			_	_	20	ms	
 Notes: 1. See Section 3. "Ordering Information" on page 7 for further details. 2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz. 3. Selectable parameter specified by part number. 							

Time from powerup or tristate mode to f_O.

	Test Condition	Min	Тур	Max	Units
Vo	mid-level	V _{DD} - 1.42	—	V _{DD} – 1.25	V
V _{OD}	swing (diff)	1.1	_	1.9	V _{PP}
V _{SE}	swing (single-ended)) 0.55	_	0.95	V _{PP}
V _O	mid-level	1.125	1.20	1.275	V
V _{OD}	swing (diff)	0.5	0.7	0.9	V _{PP}
V	2.5/3.3 V option mid-le	vel —	V _{DD} – 1.30	_	V
۷O	1.8 V option mid-leve	əl —	$V_{DD} - 0.36$	_	V
V	2.5/3.3 V option swing (diff) 1.10	1.50	1.90	V _{PP}
VOD	1.8 V option swing (di	ff) 0.35	0.425	0.50	V _{PP}
V _{OH}	I _{OH} = 32 mA	0.8 x V _{DD}	—	V _{DD}	V
V _{OL}	I _{OL} = 32 mA		—	0.4	V
t _{R,} t _F	LVPECL/LVDS/CML	. —	_	350	ps
	CMOS with $C_L = 15 p$	F —	1	_	ns
SYM	(diff)	45	_	55	%
	V_{OD} V_{SE} V_{O} V_{OD} V_{OD} V_{OD} V_{OH} V_{OL} $t_{R,} t_{F}$	$\begin{tabular}{ c c c c c } \hline V_{OD} & swing (diff) \\ \hline V_{SE} & swing (single-ended) \\ \hline V_{O} & mid-level \\ \hline V_{OD} & swing (diff) \\ \hline V_{OD} & 2.5/3.3 V option mid-level \\ \hline 1.8 V option mid-level \\ \hline 1.8 V option swing (dievel) \\ \hline V_{OD} & 2.5/3.3 V option swing (dievel) \\ \hline 1.8 V option swing (dievel) \\ \hline 1.8 V option swing (dievel) \\ \hline V_{OH} & I_{OH} = 32 mA \\ \hline V_{OL} & I_{OL} = 32 mA \\ \hline V_{OL} & I_{OL} = 32 mA \\ \hline t_{R,} t_{F} & LVPECL/LVDS/CML \\ \hline CMOS with C_{L} = 15 p \\ SYM & LVPECL: V_{DD} - 1. \\ (diff) \\ LVDS: & 1.25 V (dievel) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline V_{OD} & swing (diff) & 1.1 \\ \hline V_{SE} & swing (single-ended) & 0.55 \\ \hline V_{O} & mid-level & 1.125 \\ \hline V_{OD} & swing (diff) & 0.5 \\ \hline V_{OD} & \frac{2.5/3.3 \ V \ option \ mid-level}{1.8 \ V \ option \ mid-level} & \\ \hline V_{OD} & \frac{2.5/3.3 \ V \ option \ mid-level}{1.8 \ V \ option \ swing (diff)} & 1.10 \\ \hline V_{OD} & \frac{2.5/3.3 \ V \ option \ swing (diff) & 1.10 \\ \hline 1.8 \ V \ option \ swing (diff) & 0.35 \\ \hline V_{OH} & I_{OH} = 32 \ mA & 0.8 \ x \ V_{DD} \\ \hline V_{OL} & I_{OL} = 32 \ mA & \\ \hline t_{R, t_{F}} & \frac{LVPECL/LVDS/CML}{CMOS \ with \ C_{L} = 15 \ pF} & \\ \hline SYM & \frac{LVPECL: \ V_{DD} - 1.3 \ V}{(diff)} \\ \hline LVDS: & 1.25 \ V (diff) & 45 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c } \hline V_{OD} & swing (diff) & 1.1 & \\ \hline V_{SE} & swing (single-ended) & 0.55 & \\ \hline V_{O} & mid-level & 1.125 & 1.20 \\ \hline V_{OD} & swing (diff) & 0.5 & 0.7 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ mid-level & & V_{DD} - 1.30 \\ \hline V_{OD} & 1.8 \ V \ option \ mid-level & & V_{DD} - 0.36 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 1.10 & 1.50 \\ \hline 1.8 \ V \ option \ swing (diff) & 0.35 & 0.425 \\ \hline V_{OH} & l_{OH} = 32 \ mA & 0.8 \ x \ V_{DD} & \\ \hline V_{OL} & l_{OL} = 32 \ mA & & \\ \hline V_{OL} & l_{OL} = 32 \ mA & & \\ \hline CMOS \ with \ C_L = 15 \ pF & & 1 \\ \hline SYM & LVPECL: \ V_{DD} - 1.3 \ V \\ (diff) \\ LVDS: & 1.25 \ V \ (diff) & 45 & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

3. $C_L = 15 \, \text{pF}$

Table 4. CLK± Output Phase Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Phase Jitter (RMS) ¹	фJ	12 kHz to 20 MHz (OC-48)	_	0.25	0.40	ps
for $F_{OUT} \ge 500 \text{ MHz}$		50 kHz to 80 MHz (OC-192)	_	0.26	0.37	ps
Phase Jitter (RMS) ¹	φJ	12 kHz to 20 MHz (OC-48)	_	0.36	0.50	ps
for F_{OUT} of 125 to 500 MHz		50 kHz to 80 MHz (OC-192) ²	_	0.34	0.42	ps
Phase Jitter (RMS)	φJ	12 kHz to 20 MHz (OC-48) ²	_	0.62		ps
for F _{OUT} of 10 to 160 MHz CMOS Output Only		50 kHz to 20 MHz ²	_	0.61		ps
Notos:	•		•	•	•	

Notes:

1. Refer to AN256 for further information.

2. Max offset frequencies: 80 MHz for FOUT \geq 250 MHz, 20 MHz for 50 MHz \leq FOUT <250 MHz,

2 MHz for 10 MHz \leq FOUT <50 MHz.

Table 5. CLK± Output Period Jitter

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units		
Period Jitter*	J _{PER}	RMS		2	_	ps		
		Peak-to-Peak		14	_	ps		
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information.								

Table 6. CLK± Output Phase Noise (Typical)

Offset Frequency (f)	120.00 MHz LVDS	156.25 MHz LVPECL	622.08 MHz LVPECL	Units
100 Hz	-112	-105	-97	
1 kHz	-122	-122	-107	
10 kHz	-132	-128	-116	
100 kHz	-137	-135	-121	dBc/Hz
1 MHz	-144	-144	-134	
10 MHz	-150	-147	-146	
100 MHz	n/a	n/a	-148	

Table 7. Environmental Compliance

The Si534 meets the following qualification test requirements.

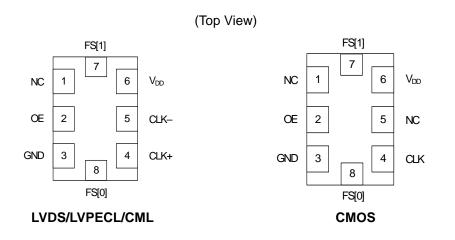
Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883, Method 2002
Mechanical Vibration	MIL-STD-883, Method 2007
Solderability	MIL-STD-883, Method 2003
Gross & Fine Leak	MIL-STD-883, Method 1014
Resistance to Solder Heat	MIL-STD-883, Method 2036
Moisture Sensitivity Level	J-STD_020, MSL1
Contact Pads	Gold over Nickel

Table 8. Thermal Characteristics

(Typical values TA = 25 °C, V_{DD} = 3.3 V)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance Junction to Ambient	θ_{JA}	Still Air	—	84.6	_	°C/W
Thermal Resistance Junction to Case	θ_{JC}	Still Air	—	38.8	_	°C/W
Ambient Temperature	Τ _Α		-40	_	85	°C
Junction Temperature	Τ _J		_		125	°C

Table 9. Absolute Maximum Ratings¹

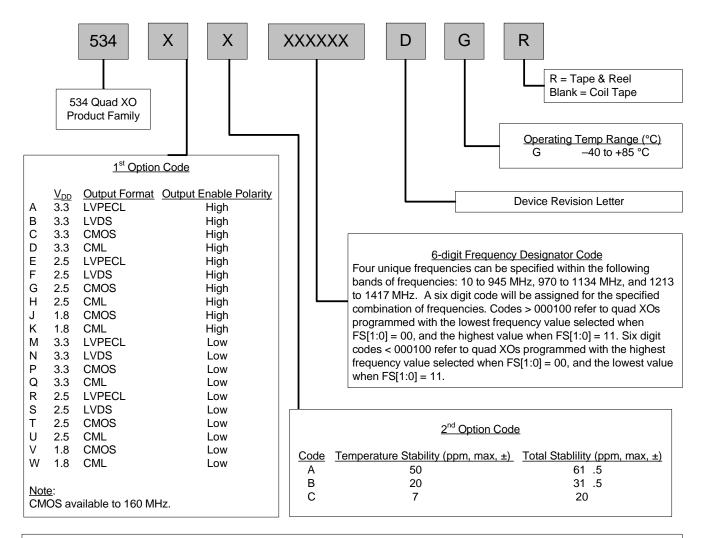

Parameter	Symbol	Rating	Units
Maximum Operating Temperature	T _{AMAX}	85	٥C
Supply Voltage, 1.8 V Option	V _{DD}	-0.5 to +1.9	V
Supply Voltage, 2.5/3.3 V Option	V _{DD}	-0.5 to +3.8	V
Input Voltage (any input pin)	VI	-0.5 to V _{DD} + 0.3	V
Storage Temperature	Τ _S	-55 to +125	٥C
ESD Sensitivity (HBM, per JESD22-A114)	ESD	2000	V
Soldering Temperature (Pb-free profile) ²	T _{PEAK}	260	٥C
Soldering Temperature Time @ T _{PEAK} (Pb-free profile) ²	t _P	20–40	seconds

Notes:

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download at https://www.skyworksinc.com/Product_Certificate.aspx for further information, including soldering profiles.

2. Pin Descriptions


Table 10. Pin Descriptions

Pin	Symbol	LVDS/LVPECL/CML Function	CMOS Function					
1	NC	No connection	No connection					
2	OE*	Output enable 0 = clock output disabled (outputs tristated) 1 = clock output enabled	Output enable 0 = clock output disabled (outputs tristated) 1 = clock output enabled					
3	GND	Electrical and Case Ground	Electrical and Case Ground					
4	CLK+	Oscillator Output	Oscillator Output					
5	CLK–	Complementary Output	No connection					
6	V _{DD}	Power Supply Voltage	Power Supply Voltage					
7	FS[1]*	Frequency Select MSB	Frequency Select MSB					
8	FS[0]*	Frequency Select LSB	Frequency Select LSB					
*Note	*Note: FS[1:0] and OE include a 17 kΩ pullup resistor to V _{DD} . See Section 3. "Ordering Information" on page 7 for details on frequency value ordering.							

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
 Rev. 1.4 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • March 4, 2022

3. Ordering Information

The Si534 XO supports a variety of options including frequency, temperature stability, output format, and V_{DD}. Specific device configurations are programmed into the Si534 at time of shipment. Configurations can be specified using the Part Number Configuration chart below. Skyworks Solutions provides a web browser-based part number configuration utility to simplify this process. Refer to https://www.skyworksinc.com/en/Products/Timing to access this tool and for further ordering instructions. The Si534 is supplied in an industry-standard, RoHS compliant, 6-pad, 5 x 7 mm package.

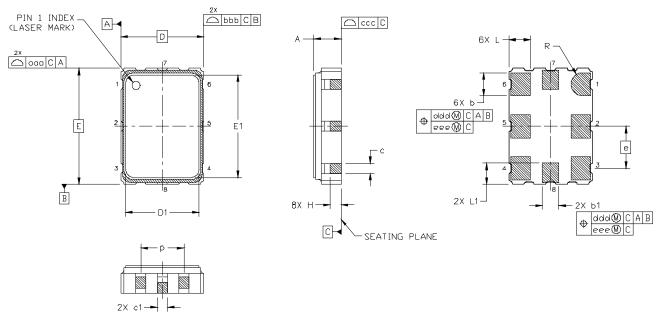

Example Part Number: 534AB000108DGR is a 5 x 7 mm quad XO in a 8 pad package. Since the six digit code (000108) is > 000100, f0 is 644.53125 MHz (lower frequency) and f1 is 693.48299 (higher frequency), with a 3.3 V supply, LVPECL output, and Output Enable active high polarity. Temperature stability is specified as ± 20 ppm. The part is specified for a -40 to +85 C° ambient temperature range operation and is shipped in tape and reel format.

Figure 1. Part Number Convention

8

4. Outline Diagram and Suggested Pad Layout

Figure 2 illustrates the package details for the Si534. Table 11 lists the values for the dimensions shown in the illustration.

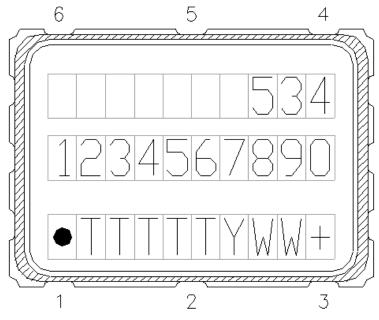
Table 11. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Max
А	1.50	1.65	1.80
b	1.30	1.40	1.50
b1	0.90	1.00	1.10
С	0.50	0.60	0.70
c1	0.30	—	0.60
D	5.00 BSC		
D1	4.30	4.40	4.50
е	2.54 BSC		
Е	7.00 BSC		
E1	6.10	6.20	6.30
Н	0.55	0.65	0.75
L	1.17	1.27	1.37
L1	1.07	1.17	1.27
р	1.80	—	2.60
R	0.70 REF		
aaa	_	—	0.15
bbb	—	—	0.15
CCC	—	—	0.10
ddd	—	—	0.10
eee		—	0.05
	s shown are in millim and Tolerancing per		

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.4 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • March 4, 2022

5. Si534 Mark Specification

Figure 3 illustrates the mark specification for the Si534. Table 12 lists the line information.



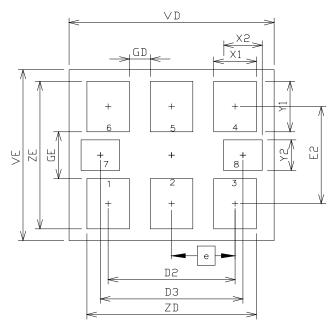

Figure 3. Mark Specification

Table 12. Si53x Top Mark Description

Line	Position	Description	
1	1–10	"534"	
2	1–10	Si530, Si531: Option1 + Option2 + Freq(7) + Temp Si532, Si533, Si534, Si530/Si531 w/ 8-digit resolution: Option1 + Option2 + ConfigNum(6) + Temp	
3	³ Trace Code		
	Position 1	Pin 1 orientation mark (dot)	
	Position 2	Product Revision (D)	
	Position 3–6	Tiny Trace Code (4 alphanumeric characters per assembly release instructions)	
	Position 7	Year (least significant year digit), to be assigned by assembly site (ex: 2007 = 7)	
	Position 8–9	Calendar Work Week number (1–53), to be assigned by assembly site	
	Position 10	"+" to indicate Pb-Free and RoHS-compliant	

6. 8-Pin PCB Land Pattern

Figure 4 illustrates the 8-pin PCB land pattern for the Si554. Table 13 lists the values for the dimensions shown in the illustration.

Table 13. PCB Land Pattern Dimensions (mm)

Dimension	Min	Мах		
D2	5.08 REF			
D3	5.705 REF			
е	2.54 BSC			
E2	4.20 REF			
GD	0.84	—		
GE	2.00	_		
VD	8.20 REF			
VE	7.30 REF			
X1	1.70 TYP			
X2	1.545 TYP			
Y1	2.15 REF			
Y2	1.3 REF			
ZD	_	6.78		
ZE	_	6.30		
Note: 1. Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification.				

2. Land pattern design follows IPC-7351 guidelines.

3. All dimensions shown are at maximum material condition (MMC).

4. Controlling dimension is in millimeters (mm).

DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1

- Updated Table 1, "Recommended Operating Conditions," on page 2.
 - Device maintains stable operation over -40 to +85 °C operating temperature range.
 - Supply current specifications updated for revision D.
- Updated Table 2, "CLK± Output Frequency Characteristics," on page 2.
 - Added specification for ±20 ppm lifetime stability (±7 ppm temperature stability) XO.
- Updated Table 3, "CLK± Output Levels and Symmetry," on page 3.
 - Updated LVDS differential peak-peak swing specifications.
- Updated Table 4, "CLK± Output Phase Jitter," on page 4.
- Updated Table 5, "CLK± Output Period Jitter," on page 4.
 - Revised period jitter specifications.
- Updated Table 9, "Absolute Maximum Ratings¹," on page 5 to reflect the soldering temperature time at 260 °C is 20–40 sec per JEDEC J-STD-020C.
- Updated 3. "Ordering Information" on page 7.
 Changed ordering instructions to revision D.
- Added 5. "Si534 Mark Specification" on page 9.

Revision 1.1 to Revision 1.2

- Updated 2.5 V/3.3 V and 1.8 V CML output level specifications for Table 3 on page 3.
- Added footnotes clarifying max offset frequency test conditions for Table 4 on page 4.
- Removed the words "Differential Modes: LVPECL/LVDS/CML" in the footnote referring to AN256 in Table 4 on page 4.
- Added CMOS phase jitter specs to Table 4 on page 4.
- Updated ESD HBM sensitivity rating in Table 9 on page 5.
- Updated Table 7 on page 5 to include the "Moisture Sensitivity Level" and "Contact Pads" rows.
- Revised Figure 2 on page 8 to reflect current package outline diagram.
- Updated Figure 3 and Table 12 on page 9 to reflect specific marking information. Previously, Figure 3 was generic.

Revision 1.2 to Revision 1.3

 Added Table 8, "Thermal Characteristics," on page 5.

Revision 1.3 to Revision 1.4

June, 2018

 Changed "Trays" to "Coil Tape" in section 3. "Ordering Information".

SKYWORKS[®]

ClockBuilder Pro

One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only).

skyworksinc.com/CBPro

Portfolio skyworksinc.com SW/HW skyworksinc.com/CBPro

Support & Resources skyworksinc.com/support

Copyright © 2022 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5[®], SkyOne[®], SkyBlue[™], Skyworks Green[™], Clockbuilder[®], DSPLL[®], ISOmodem[®], ProSLIC[®], and SiPHY[®] are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

> Skyworks Solutions, Inc. | Nasdaq: SWKS | sales@skyworksinc.com | www.skyworksinc.com USA: 781-376-3000 | Asia: 886-2-2735 0399 | Europe: 33 (0)143548540

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Skyworks:

534CC000363DG 534BC000362DG 534CC000359DG 534BC000359DG 534AA000389DG 534NA000402DG
534KA000276DG 534BA000477DG 534FC000482DG 534FC000487DG 534AA000565DG 534FA000563DG
534BA000595DG 534CC000367DG 534AC000368DG 534EA000371DG 534AA000370DG 534FA000159DG
534PA000366DG 534CC000260DG 534NA000448DG 534BA000450DG 534AA000465DG 534PA000476DG
534AA000484DG 534AA000485DG 534BA000484DG 534BA000485DG 534FA000504DG 534FC000509DG
534PC000516DG 534CC000518DG 534CC000525DG 534CB000545DG 534CC000557DG 534CB000558DG
534CB000578DG 534MC000593DG 534FC000603DG 534BC000606DG 534AA000604DG 534MC000611DG
534BC000605DG 534MC000612DG 534BC000607DG 534DC000619DG 534AC000626DG 534BC000626DG
534CC000625DG 534DC000607DG 534CC000633DG 534FC000622DG 534MC000260DG 534DA000737DG
534BA000745DG 534MC000695DG 534MC000306DG 534BA000446DG 534BC000753DG 534BC000752DG
534AB000620DG 534BC000762DG 534BA000762DG 534FA000627DG 534FA000594DG 534CC000528DG
534VB000536DG 534CC002376DG 534FA000498DG 534FB002366DG 534AC000129DG 534BA002395DG
534AA000290DG 534PC002392DG 534FA002366DG 534CC002393DG 534KB000631DG 534PC000391DG
534CC002428DG 534FA002416DG 534AA002429DG 534KA000741DG 534FB000704DG 534FA002403DG
534BC000489DG 534AB000129DG 534BC000501DG 534HB000742DG 534KC002430DG 5344D-D09178-GM
534DC000596DG 534CC000542DG 534QC002492DG 534AA000485DGR 534DA000141DGR 534FA000594DGR
534AC000204DG 534FB002500DGR 534FA000385DG 534AC000387DG