Features

Regulated Converters

- 2W power in compact SMD package
- Operating temperature from -40°C to +85°C with no derating
- 2kVDC or 3kVDC/1minute isolation voltage
- IEC/EN 62368-1 (pending)
- UL/CSA/CAN 62368-1 certified
- Fully protected- OCP & SCP

Description

High power density 2W SMD isolated DC/DC single output converters. The RSH2 is available with three different input ranges and offers single regulated output. There is no minimum load requirement. Standard isolation is 2kVDC/1min and a /H3 version with 3kVDC/1min is available. The operating temperature is from -40°C up to +85°C without derating. The DIP14 SMD pin-out is industry standard, and the converters come equipped with ON/OFF control and, short circuit protection, and over current protection, making them ideal for highly sophisticated industrial designs. The converters are fully certified to IEC/EN/UL62368 a and are 10/10 RoHS conform.

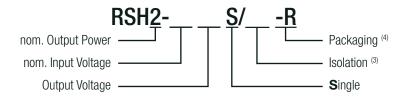
Selection Guide	e				
Part Number	Input Voltage Range [VDC]	Output Voltage [VDC]	Output Current [mA]	Efficiency typ. ⁽¹⁾ [%]	max. Capacitive Load ⁽²⁾ [μF]
RSH2-3.33.3S (3, 4)	2.8-5.5	3.3	500	76	1680
RSH2-3.305S (3, 4)	2.8-5.5	5	400	78	1680
RSH2-3.312S (3, 4)	2.8-5.5	12	167	80	820
RSH2-3.315S (3, 4)	2.8-5.5	15	134	80	680
RSH2-3.324S (3, 4)	2.8-5.5	24	83	80	470
RSH2-053.3S (3,4)	4.5-13.2	3.3	500	78	1680
RSH2-0505S (3,4)	4.5-13.2	5	400	81	1680
RSH2-0512S (3, 4)	4.5-13.2	12	167	82	820
RSH2-0515S (3, 4)	4.5-13.2	15	134	83	680
RSH2-0524S (3, 4)	4.5-13.2	24	83	83	470
RSH2-123.3S (3, 4)	9-18	3.3	500	79	1680
RSH2-1205S (3, 4)	9-18	5	400	81	1680
RSH2-1212S (3, 4)	9-18	12	167	82	820
RSH2-1215S (3, 4)	9-18	15	134	83	680
RSH2-1224S (3, 4)	9-18	24	83	83	470
RSH2-243.3S (3, 4)	18-36	3.3	500	75	1680
RSH2-2405S (3, 4)	18-36	5	400	81	1680
RSH2-2412S (3, 4)	18-36	12	167	82	820
RSH2-2415S (3, 4)	18-36	15	134	83	680
RSH2-2424S (3, 4)	18-36	24	83	83	470

Notes:

Note1: Efficiency is tested at nominal input and full load at +25°C ambient Note2: Max Cap Load is tested at minimum input and full resistive load

RSH₂

2 Watt SMD DIP14 Single Output


UL62368-1 certified CAN/CSA-C22.2 No. 62368-1 certified IEC/EN62368-1 (pending) EN55032 compliant

RSH₂

Series

Model Numbering

Notes:

Note3: add suffix "/H2" for 2kVDC isolation

add suffix "/H3" for 3kVDC isolation, for more information refer to "Isolation Voltage (6)"

Note4: without suffix = standard tube packaging

add suffix "-R" for tape and reel packaging for more details, refer to "PACKAGING INFORMATION"

Ordering Examples:

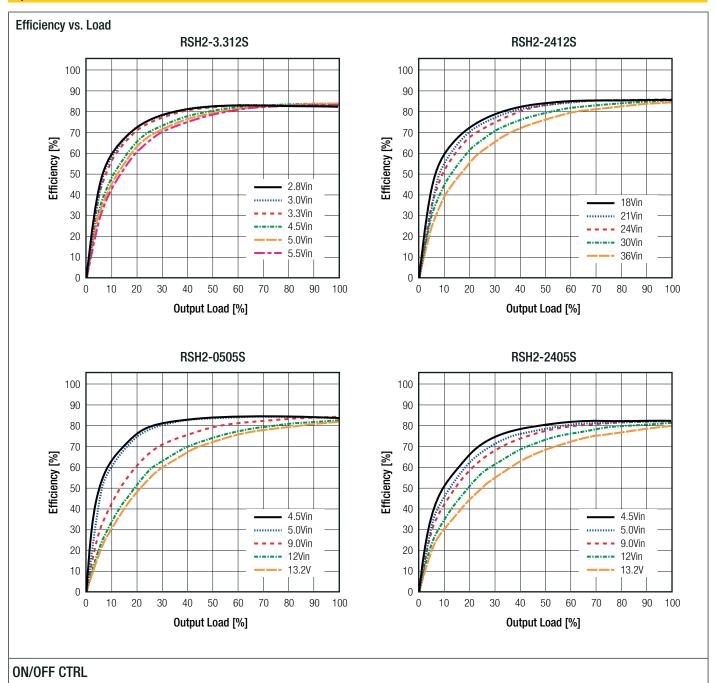
RSH2-0505S/H2	4.5-13.2Vin	5Vout	single output	2kVDC/1sec isolation	tube packaging (25pcs)
RSH2-2405S/H2-R	18-36Vin	5Vout	single output	2kVDC/1sec isolation	Tape and Reel (150pcs)
RSH2-1212S/H3	9-18Vin	12Vout	single output	3kVDC/1sec isolation	tube packaging (25pcs)

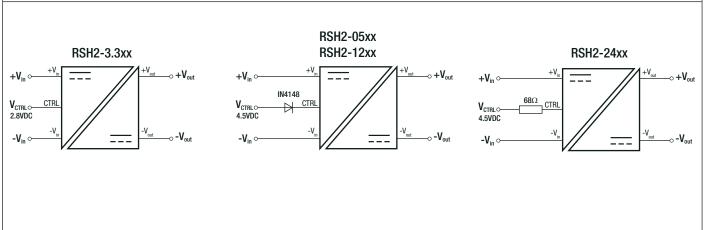
Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

BASIC CHARACTERISTICS						
Parameter	Con	dition	Min.	Тур.	Max.	
Internal Input Filter					Pi type	
Input Voltage Range	nom. Vin=	3.3VDC 5VDC 12VDC 24VDC	2.8VDC 4.5VDC 9VDC 18VDC		5.5VDC 13.2VDC 18VDC 36VDC	
Input Surge Voltage (100ms max.)	nom. Vin=	3.3VDC 5VDC, 12VDC 24VDC			10VDC 25VDC 50VDC	
Input Current	nom. Vin=	3.3VDC 5VDC 12VDC 24VDC		0.8A 0.5A 0.2A 0.1A		
Minimum Load			0%			
	nom. Vin= 3.3VDC	DC-DC ON DC-DC OFF		•	en or high impedance ternal V _{CTRL} = 2.8VDC	
ON/OFF CTRL refer to "ON/OFF CTRL"	nom Vin= 5 12VDC			open or high impedance external V _{CTRL} = 4.5VDC + 1N4148		
	nom. Vin= 24VDC	DC-DC ON DC-DC OFF			en or high impedance $6VDC + 68\Omega$ resistor	
Internal Operating Frequency				200kHz		
Output Ripple and Noise (5)	20M	IHz BW			50mVp-p	

Notes:

Note5: Measurements are made with a 0.1µF MLCC across output. (low ESR)

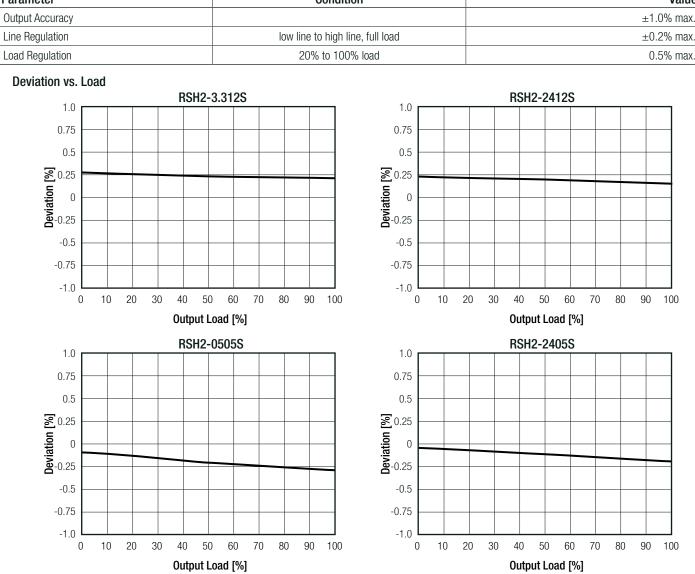

continued on next page



RSH₂

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)



RSH2

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

REGULATIONS							
Parameter	Condition	Value					
Output Accuracy		±1.0% max.					
Line Regulation	low line to high line, full load	±0.2% max.					
Load Regulation	20% to 100% load	0.5% max.					

PROTECTIONS		-		
Parameter		Туре	Value	
Short Circuit Protection (SCP)		below 100mΩ	2	continuous, auto recovery
Over Current Protection (OCP)				160% typ., hiccup mode
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1/D +- O/D		with suffix "H2"	2kVDC 500VAC
Isolation Voltage (6)	I/P to O/P	tested for 1 minute	with suffix "H3"	3kVDC 1kVAC
Isolation Resistance				1GΩ typ.
Isolation Capacitance				50pF typ.

Notes:

Note6: For repeat Hi-Pot testing, reduce the time and/or the test voltage

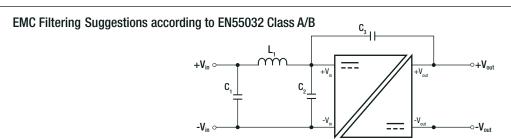
Note7: Refer to local safety regulations if input over-current protection is also required. Recommended fuse: slow blow type

RSH2

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

	Condition				(Condi	itior	1													Val	lue
	@ na	atura	l con	vectio	on 0.	1 m/s			with	n der	atino	g							-4	0°C to	+100)°C
																					105	5°C
																				±	:0.05%	%/K
																					500	0m
					nor	n-cond	dens	ing												95%	RH m	iax.
																					P	PD2
																				MIL-S	TD-20)2G
	000	ordin	a to I		אמחו	0170		,		+	-25°	С							4	140 x	10 ³ ho	urs
	acc	oruiri	y to i	VIIL-F	אסער	-21/6	, G.E	o.		+	-80°	С							1:	206 x	10³ ho	urs
Output Load [%]	90 80 70 60 50 40 30 20 10			;	3.3Vin) 20								00 1	10							
		acc 100 90 80 70 50 40 30 20 10	accordin 100 90 80 70 60 50 40 30 20 10	according to 1 100 90 80 70 60 50 40 30 20 10	according to MIL-H 100 90 80 70 60 00 20 —————————————————————————————	according to MIL-HDBK 100 90 80 70 60 50 40 30 20 ——all others 3.3Vin 0 -40 -30 -20 -10 0 10	according to MIL-HDBK-217F 100 90 80 70 60 50 40 30 20 ————————————————————————————————	according to MIL-HDBK-217F, G.E 100 90 80 70 60 50 40 30 20 ——all others 10 -40 -30 -20 -10 0 10 20 30	non-condensing according to MIL-HDBK-217F, G.B. 100 90 80 70 60 50 40 30 20 all others 10 -40 -30 -20 -10 0 10 20 30 40	non-condensing according to MIL-HDBK-217F, G.B. 100 90 80 70 60 50 40 30 20 ————————————————————————————————	non-condensing according to MIL-HDBK-217F, G.B. 100 90 80 70 60 50 40 30 20 ——all others 10 0 -40 -30 -20 -10 0 10 20 30 40 50 60	non-condensing according to MIL-HDBK-217F, G.B. +25° +80° 100 90 80 70 60 50 40 30 20 — all others 10 3.3Vin	non-condensing according to MIL-HDBK-217F, G.B. +25°C +80°C 100 90 80 70 60 60 50 40 50 60 70 80 80 80 80 80 80 80 80 80 80 80 80 80	non-condensing according to MIL-HDBK-217F, G.B. +25°C +80°C 100 90 80 70 60 60 60 70 80 90 1 85 10 60 70 80 90 1	non-condensing according to MIL-HDBK-217F, G.B. +25°C +80°C 100 90 80 70 60 60 60 70 80 90 100 1 85 90 100 1 85 90 100 1	non-condensing according to MIL-HDBK-217F, G.B. +25°C +80°C 100 90 80 70 60 60 70 80 90 100 110 85 90 100 110	non-condensing according to MIL-HDBK-217F, G.B. +25°C +80°C 100 90 80 70 60 60 70 80 90 100 110 85 100 110 85 100 110 85 100 110 110 85 100 110 110 85 100 110 110 110 110 110 110 110 110 11	non-condensing according to MIL-HDBK-217F, G.B.	non-condensing according to MIL-HDBK-217F, G.B. +25°C +80°C 100 90 80 70 60 60 70 80 90 100 110 85 90 100 110	non-condensing according to MIL-HDBK-217F, G.B. +25°C +80°C 11 100 90 80 70 40 30 40 50 60 70 80 90 100 110 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110	non-condensing 95% MIL-S according to MIL-HDBK-217F, G.B. +25°C +80°C 1206 x 1 100 90 80 70 40 30 20 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110	108 ±0.059 500 non-condensing 95% RH m MIL-STD-20 according to MIL-HDBK-217F, G.B. +25°C +80°C 1206 x 10³ ho 100 90 80 70 60 50 40 30 20 ————————————————————————————————


Certificate Type (Safety)	File Number	Standard
Audio/Video, information and communication technology equipment - Part1: Safety requirements	E224736-A6025-UL	UL62368-1:2014 CAN/CSA-C22.2 No. 62368-1:2014
Audio/Video, information and communication technology equipment - Part1: Safety requirements	pending	IEC62368-1:2014 2nd Edition EN62368-1:2014 + A11:2017
RoHS2		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Condition	Standard / Criterion
Electromagnetic compatibility of multimedia equipment - Emission requirements	with external filter refer to (<i>"EMC Filtering"</i>)	EN55032
Electromagnetic compatibility of multimedia equipment - Immunity requirements		EN55035
Information technology equipment - Immunity characteristics - Limits and methods of measurement		EN55024
ESD Electrostatic Discharge Immunity Test		IEC/EN61000-4-2
Radiated, Radio-Frequency, Electromagnetic Field Immunity Test		IEC/EN61000-4-3
Fast Transient and Burst Immunity		IEC/EN61000-4-4
Surge Immunity		IEC/EN61000-4-5
Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields		IEC/EN61000-4-6

RSH2

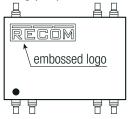
Series

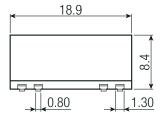
Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

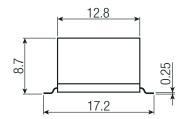
Component List Class A

MODEL	C1	C2	C3	L1
RSH2-3.312S/SMD	10μF			
RSH2-0505S/SMD		N/A	NI/A	3.9µH
RSH2-2405S/SMD			N/A	
RSH2-2412S/SMD				

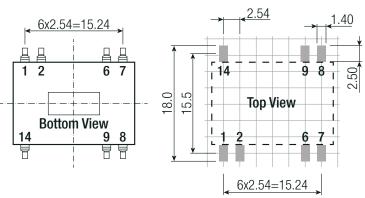
Component List Class B


MODEL	C1	C2	C3	L1
RSH2-3.312S/SMD				
RSH2-0505S/SMD	10uF	10uF	1nF	2 0
RSH2-2405S/SMD	10μF	10μF	IIIF	3.9µH
RSH2-2412S/SMD				


Notes:


Note8: Filter suggestions are valid for indicated part numbers only. For other part numbers, please contact RECOM tech support for advice

DIMENSION AND PHYSICAL CHARACTERISTICS							
Parameter	Туре	Value					
Material	case & base	non-conductive black plastic					
Dimension (LxWxH)		18.9 x 17.2 x 8.7mm					
Weight		2.5g typ.					


Dimension Drawing (mm)

Recommended Footprint Details

Pinning Information

Pin #	Single
1	-Vin
2	CTRL
6	NC
7	NC
8	+Vout
9	-Vout
14	+Vin

NC= no connection

Tolerance: $xx.x = \pm 0.5$ mm $xx.xx = \pm 0.25$ mm

RSH₂

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

PACKAGING INFORMATION		
Parameter	Туре	Value
	tube	520.0 x 22.20 x 11.80mm
Packaging Dimension (LxWxH)	tape and reel (carton)	385.0 x 375.0 70.0mm
	reel (diameter + width)	Ø330.0 x 44.0mm
Packaging Quantity	tube	25pcs
Packaging Quantity	tape and reel	150pcs
Tape Width		44mm
Storage Temperature Range		-55°C to +125°C
Storage Humidity	non-condensing	95% RH max.

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

www.recom-power.com REV.: 0/2021 EC0-7

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

RECOM:

```
RSH2-0505S/H2 RSH2-0505S/H2-R RSH2-0505S/H3 RSH2-0505S/H3-R RSH2-0512S/H2 RSH2-0512S/H2-R RSH2-0512S/H3 RSH2-0512S/H3-R RSH2-0515S/H2 RSH2-0515S/H2 RSH2-0515S/H3 RSH2-0515S/H3 RSH2-0515S/H3-R RSH2-0524S/H3 RSH2-0524S/H3-R RSH2-0524S/H3-R RSH2-053.3S/H2 RSH2-053.3S/H2-R RSH2-053.3S/H3 RSH2-053.3S/H3-R RSH2-1205S/H3-R RSH2-1205S/H3-R RSH2-1212S/H2 RSH2-1212S/H2-R RSH2-1212S/H3 RSH2-1212S/H3-R RSH2-1215S/H3 RSH2-1215S/H3-R RSH2-1215S/H3 RSH2-1215S/H3-R RSH2-1215S/H3 RSH2-1215S/H3-R RSH2-1215S/H3 RSH2-1215S/H3-R RSH2-1224S/H3-R RSH2-1215S/H3 RSH2-123.3S/H2-R RSH2-123.3S/H2-R RSH2-123.3S/H3-R RSH2-123.3S/H3-R RSH2-2405S/H3-R RSH2-2405S/H3-R RSH2-2412S/H3-R RSH2-2412S/H3-R RSH2-2405S/H3-R RSH2-2415S/H3-R RSH2-2415S/H3-R RSH2-2415S/H3-R RSH2-2415S/H3-R RSH2-2415S/H3-R RSH2-2415S/H3-R RSH2-2415S/H3-R RSH2-2424S/H3-R RSH2-243.3S/H3-R RSH2-24424S/H3-R RSH2-3.305S/H2-R RSH2-3.305S/H2-R RSH2-3.312S/H3-R RSH2-3.312S/H3-R RSH2-3.312S/H3-R RSH2-3.312S/H3-R RSH2-3.312S/H3-R RSH2-3.3324S/H3-R RSH2-3.3324S/H3-R RSH2-3.333.3S/H3-R RSH2-3.333.
```