Features

• 2.5 - 5.5VDC input 1.2A buck regulator module

Integrated inductor

Low profile 1.1mm

- Small footprint 2x2.5mm
- Adjustable output 0.6 to 4.3VDC
- Up to 125°C ambient temperature with derating

RPZ-1.2

1.2 Amp 8-Pin QFN Package

Description

Power

Module

The RPZ-1.2 is a 1.2A buck converter with integrated power transistors and inductor in a tiny 2mm x 2.5mm x 1.1mm thermally-enhanced QFN package. The input range is from 2.5 to 5.5VDC for use in low power/low voltage systems. The tightly regulated output voltage can be set with two resistors in the range from 0.6V up to 4.3V. The output current is up to 1.2A and is fully protected against continuous short-circuits, output overcurrent or over-temperature faults. Its high current and small size make the RPZ-1.2 ideal for optical modules, industrial PCs, machine imaging systems, distributed power architectures, portable equipment in telecom as well as industrial applications.

Selection Guide

Part Number	Input Voltage Range [VDC]	Output Voltage Range ⁽¹⁾ [VDC]	Output Current max. [mA]	Efficiency (2) typ. [%]
RPZ-1.2	2.5 - 5.5	0.6 - 4.3	1200	87

Notes:

Note1: As input approaches output voltage set point, device enters 100% duty cycle mode. In 100% duty cycle mode, Vout equals Vin minus dropout voltage. (refer to "SAFE OPERATING AREA"

Note2: Efficiency tested at V_{IN} = 5VDC, full load, and V_{OUT} = 3.3VDC

Model Numbering

RPZ-1.2Output Current Packaging (3)

Notes:

Note3: add suffix "-R" for tape and reel packaging

add suffix "-CT" for cut tape packaging (refer to ""PACKAGING INFORMATION")

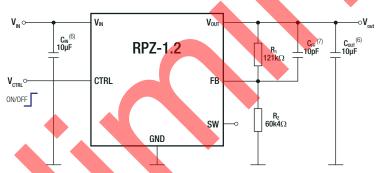
Specifications '

ABSOLUTE MAX RATINGS (exceeding these ratings may damage the device)							
Parameter	Symbol	Min.	Тур.	Max.			
Absolute Maximum Voltage	V _{IN} , V _{OUT} , SW			6VDC			
Absolute Maximum voltage	others (4)			6.6VDC			
Maximum continuous power losses (4)	T _{AMB} = 25°C			1.2W			
Junction Temperature	T _J	-40°C		+150°C			
Lead Temperature	10 second max			+260°C			

Notes:

Note4: For CTRL absolute max ratings, please refer to "CTRL Operating CONDITIONS"

Note5: Exceeding maximum allowable power dissipation causes device to enter thermal shutdown which protects device from permanent damage. Refer to "CHARACTERISTIC CURVES"

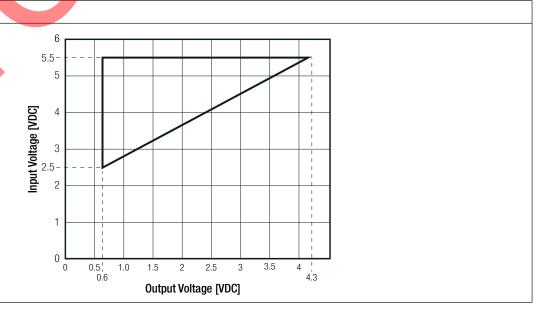

Series

Specifications

OPERATING CONDITIONS (V _{IN} = 5VDC, V _{OUT} = 1.8VDC, I _{OUT} = 1.2A, unless otherwise noted, typical values are at T _{AMB} = +25°C)							
Parameter	Symbol	Condition	Min.	Тур.	Max.		
Input Voltage Range	V _{IN}	refer to "SAFE OPERATING AREA"	2.5VDC		5.5VDC		
Under Voltage Lockout UVLO					2.5VDC		
UVLO hysteresis				100mV			
Output Voltage Range	V _{OUT}	refer to "OUTPUT VOLTAGE SETTING"	0.6VDC		5.5VDC		
Output Current Range	I _{OUT}		0A		1.2A		
Standby current	I _{IN}	$V_{CTRL} = OVDC$. (0.1μΑ	1µA		
Quiescent current	lα	$V_{FB} = V_{REF} \times 105\%$		40μΑ			
Switching frequency	f _{SW}			3MHz			
Feedback voltage	V _{FB}		588mV	600mV	612mV		
Output load regulation			refer to "		c Curves"		
Maximum Duty Cycle			100%				
Minimum On Time				65ns			
Soft Start				1ms			

Typical Application

 V_{IN} = 2.5-5.5VDC, V_{OUT} = 1.8VDC, I_{OUT} = 1.2A

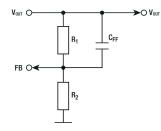


Notes:

Note6: The RPZ-1.2 require a 10µF MLCC input capacitor as close as possible to V_N and GND pin and a 10µF output capacitor to reduce noise.

Note7: Transient load reaction time can be improved by adding a feed-forward capacitor, CFF across Vout and FB pin, but it is not required for normal operation.

SAFE OPERATING AREA


Series

Specifications

OUTPUT VOLTAGE SETTING

A resistor divider connected to the FB pin (pin 3) sets the output voltage of the RPZ-1.2. The output voltage adjustment range is from 0.6VDC to 5.5VDC. The schematic below shows the feedback resistor connections for setting the output voltage. The recommended value of R1 is $121k\Omega$. Use the equation to calculate the value for R2. The table below lists the R2 resistor values according to standard E96 values; therefore, the specified voltage may slightly vary.

Feedback Network

Calculation:

$$R_2 = \frac{0.6V}{(V_{OUTset} - 0.6V)} \times R_1$$

Practical example with $V_{\text{OUTset}} = 1.8 \text{VDC}$

$$R_2 = \frac{0.6V}{(1.8V - 0.6V)} \times 121k\Omega = 60.5k\Omega$$

Table below lists recommended resistor values for common V_{OUT} :

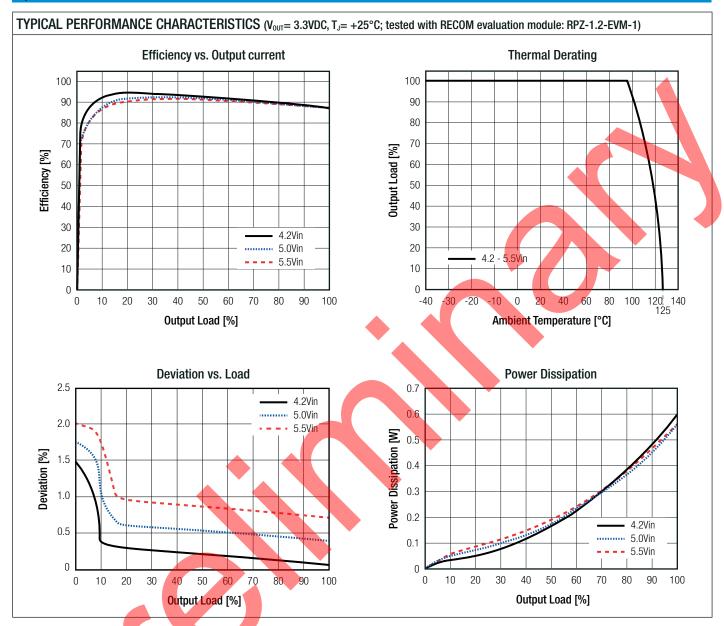
V _{OUTset} [VDC]	R1 [Ω]	R2 [Ω]	C _{FF} [pF]	С _{оит} [µF]
1.2		121k		20
1.5		80k6	10	10
1.8	121k	60k4	10 (optional *)	10
2.5		38k3	(υριισπαί)	10
3.3		26k7		10

*to stabilize the system and optimize the load transient response, place a feed-forward capacitor (C_{FF}) in parallel with R1.

CTRL OPERATING CONDITIONS (V _{IN} = 5VDC, V _{OUT} = 1.8VDC, I _{OUT} = 1.2A, unless otherwise noted, typical values are at T _{AMB} = +25°C)						
Parameter	Symbol	Condition	Min.	Тур.	Max.	
CTRL rising threshold	V _{CTRL_RISING}		1.2VDC			
CTRL falling threshold	V _{CTRL_FALLING}				0.4VDC	
CTRL hysteresis				100mV		

PROTECTIONS					
Parameter			Condition		Value
Short Circuit Protection SCP					hiccup mode
Over Current Protection OCP					1.5A typ.
Thormal abutdown		ju	nction tempera	ture	150°C typ.
Thermal shutdown			hysteresis		15°C

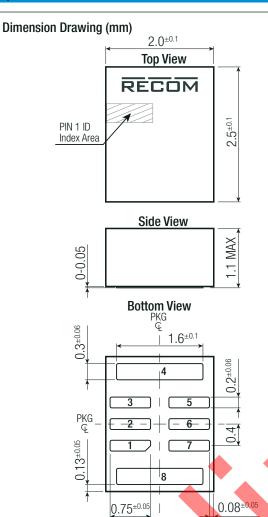
THERMAL OPERATING CONDITIONS (V _{IN} = 5VDC, V _{OUT} = 1.8VDC, I _{OUT} = 1.2A, unless otherwise noted, typical values are at T _{AMB} = +25°C)							
Parameter	Symbol	Condition	Min.	Тур.	Max.		
Operating Ambient Temperature	Temperature T _{AMB} junction to ambient refer to "Thermal Derating"				ating"		
Operating Junction Temperature	T_J		-40°C		+125°C		
Thermal Resistance (8)	$R_{th_{JA}}$	junction to ambient		51.2K/W			
memai Resistance (9)	R _{thJC}	junction to case		5.83K/W			
No	otes:						


Note8: Tested with 60x60mm, double layer PCB (75µm copper) RECOM EVM board.

ENVIRONMENTAL		
Parameter	Condition	Value
TCD.	human-body model (HBM), ANSI/ESDA/JEDEC JS-001	±2.5kV
ESD	charged-device model (CDM), JEDEC JESD22-C101	±750V
MTTF	T _J = 55°C; V _N = 5.5VDC	19700 x 10 ³ hours

Series

Specifications

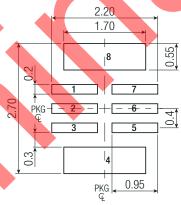

SAFETY AND CERTIFICATIONS	
Certificate Type (Safety)	Standard
RoHS2	RoHS 2011/65/EU + AM2015/863

DIMENSION AND PHYSICAL CHARACTERISTICS				
Parameter	Туре	Value		
Dimension (LxWxH)		2.0 x 2.5 x 1.1mm		
Weight		0.1g typ.		
	continued on next page			

Series

Specifications

Pad Information

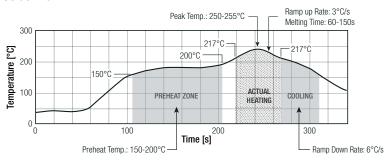

i dd ii	mormat	
Pad #	Function	Description
1	CTRL	Pull high to turn on. Don not leave floating.
2, 6	GND	Ground pin
3	FB	Feedback voltage pin. Connect to the center point of output resistor divider to set the output voltage. (refer to "OUTPUT VOLTAGE SETTING"
4, 5	SW	Switch node pin. Leave floating
7	V _{IN}	Input voltage pin. Decouple to GND with at least a 10µF ceramic capacitor (refer to "Typical Application")
0	W	Output voltage pin. Decouple this pin to GND with at least a 10µF MLCC

(refer to "Typical Application")

All dimensions exclude mold flash and metal burr,

Tolerances: $x.x = \pm 0.1 \text{ mm}$ $x.xx = \pm 0.05 \text{ mm}$

Recommended Footprint Details (*) (Top View)


A large ground plane greatly reduces noise and increases thermal performance.

SOLDERING

Profile Feature	PB-Free Assembly
Preheat	
minimum Temperature (TS_min)	150°C
maximum Temperature (TS_max)	200°C
Time (tS)	60s-120s
Liquids	
Temperature (TL)	217°C
Time (tL)	60-150s
Peak Temperature (TP)	255°C
max Ramp Down Rate (from Ts_max to TP)	6°C/s
max Ramp Up Rate	3°C/s
max time from 25°C to Peak Temperature (TP)	8min

- Ensure that the peak re-flow temperature does not exceed 240°C ±5°C as per JEDEC J-STD020
- The re-flow time period during peak temperature of 240°C \pm 5°C should not exceed 30 seconds.
- 4 Re-flow time above liquids (217°C) should not exceed 150 seconds.
- 5 For solder paste use a standard SAC Alloy such as SAC 305, type 3 or higher.
- Other soldering methods (e.g. vapor-phase) are not verified and have to be validated at his own risk.

Solder Pofil

Series

Specifications

PACKAGING INFORMATION		
Parameter	Туре	Value
Packaging Dimension (LxWxH)	reel 7" (diameter + width)	Ø177.8 + 8.4mm
	tape and reel (carton)	215.0 x 215.0 x 215.0mm
	moisture barrier bag ("-CT")	100.0 x 100.0 x 30.0mm
Packaging Quantity	tape and reel	3000pcs
	moisture barrier bag ("-CT")	50pcs
Tape Width		8mm
Storage Temperature Range		-55°C to +150°C
Moisture Sensitive Level	MSL peak temp. (9)	Level 3, 260°C, 168hrs

Notes:

Note9: The Moisture Sensitivity Level rating is according to the JEDEC industry standard classifications and peak solder temperature

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

www.recom-power.com REV.: 0/2022 I-6

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

RECOM:

RPZ-1.2-CT RPZ-1.2-R