High Current Composite Inductor - PA2248XXXNLT and PM2248.XXXNLT

Height: 13.0mm Max

Footprint: 16.8mm x 15.8mm Max @ Current Rating: up to 31Arms

Inductance Range: 4.7uH to 33uH

Migh current, low DCR, and high efficiency

Migh reliability

Minimized acoustic noise and minimized leakage flux noise

Available in Commercial (PA2248) and Automotive (PM2248) grades

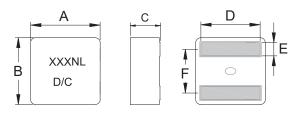
Electrical Specifications @ 25°C, Operating Temperature Range -55°C to +155°C								
Part Number		⊘Inductance	Rated ³	DC Resistance		Saturation Current ²	K Factor	
Commerical	Automotive ⁶	100KHz, 0.1V	Current	TYP.	MAX.	(25°C)	for	
Commenca		uH±20% A		mΩ	mΩ	Α	Core Loss	
PA2248.472NLT	PM2248.472NLT	4.7	31.0	3.0	3.3	40.0	10.9	
PA2248.562NLT	PM2248.562NLT	5.6	29.0	3.5	3.9	35.0	9.6	
PA2248.682NLT	PM2248.682NLT	6.8	27.0	3.8	4.2	32.0	8.6	
PA2248.822NLT	PM2248.822NLT	8.2	26.0	5.1	5.7	29.0	7.8	
PA2248.103NLT	PM2248.103NLT	10.0	25.0	6.3	7.0	27.0	7.2	
PA2248.153NLT	PM2248.153NLT	15.0	22.0	6.8	7.5	21.0	5.7	
PA2248.223NLT	PM2248.223NLT	22.0	17.0	12.6	13.86	19.0	4.7	
PA2248.333NLT	PM2248.333NLT	33.0	14.0	18.5	22.2	16.0	3.7	

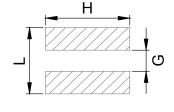
Notes:

- 1. Actual temperature of the component during system operation (ambient plus temperature rise) must be within the standard operating range.
- 2. The saturation current is the current at which the initial inductance is guaranteed to drop by no more than 40%. The typical inductance at a specified current can be found on the typical performance curves.
- The rated current is the DC current required to raise the component temperature by approximately 40 °C. Take note that the components' performanc varies depending on the system condition. It is suggested that the component be tested at the system level, to verify the temperature rise of the component during system operation.
- The part temperature (ambient+temp rise) should not exceed the upper operating

- temperature range under worst case operating conditions. Circuit design, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.
- The PMxxxx.XXXNLT part numbers are AEC-Q200 and IATF16949 certified. The inductance and mechanical dimensions are 100% tested in production but do not necessarily meet a product capability index (Cpk) >1.33 and therefore may not strictly conform to PPAP.

Special Characteristics

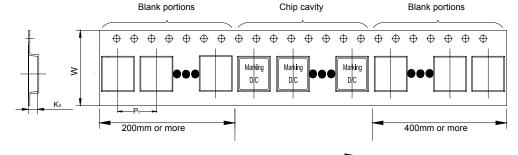

Power.PulseElectronics.com P865. B (11/20)

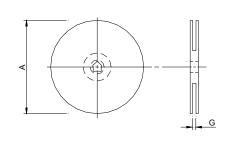

High Current Composite Inductor - PA2248XXXNLT and PM2248.XXXNLT

Mechanical

PA2248.XXXNLT and PM2248.XXXNLT

HN/	\L L <i>P</i>	AYUU	I
-----	---------------	------	---

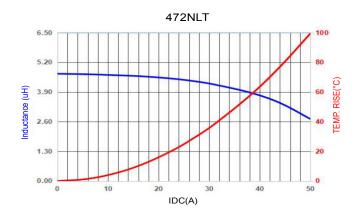

SUGGESTED PAD LAYOUT

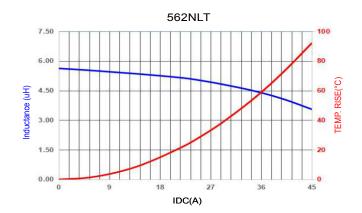

Series	A	В	C	D	E	F	L	G	Н
PA2248/PM2248	16.5±0.3	15.5±0.3	12.7±0.3	13.2±0.5	3.2±0.2	10.4±0.3	15.0 (REF)	6.0(REF)	15.0(REF)

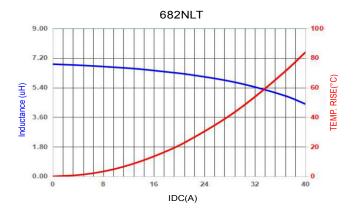
All Dimensions in mm.

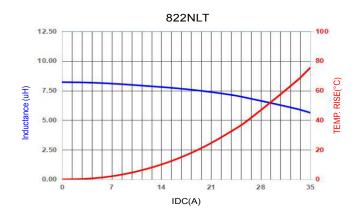
2

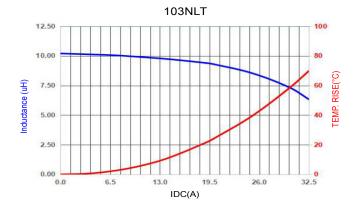
Direction of tape

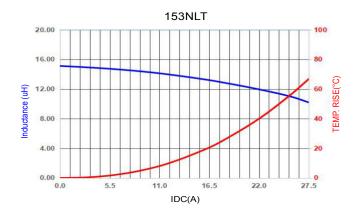

SURFACE MOUNTING TYPE, REEL/TAPE LIST								
	REEL SIZ	E (mm)	TAPE SIZE (mm)			QTY		
	Α	G	P ₁	W	$K_{_{0}}$	PCS/REEL		
PA2248/PM2248	Ø330	32.4	24	32	13.6	100		

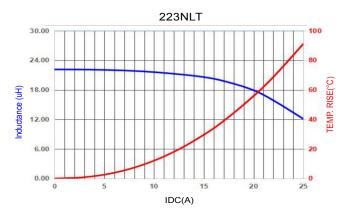

Power.PulseElectronics.com P865. B (11/20)

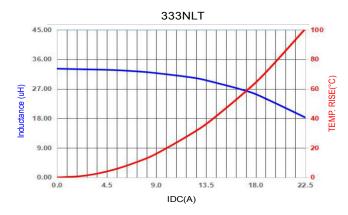

High Current Composite Inductor - PA2248XXXNLT and PM2248.XXXNLT

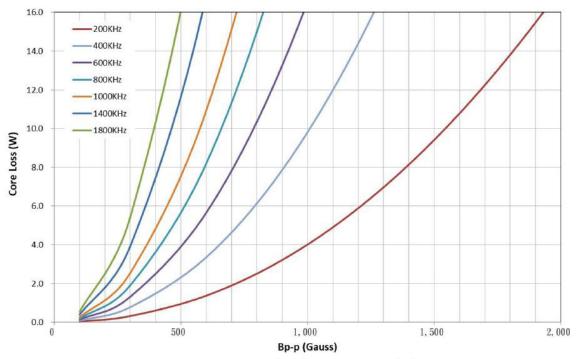



Typical Performance Curves






3


Power.PulseElectronics.com P865. B (11/20)

High Current Composite Inductor - PA2248XXXNLT and PM2248.XXXNLT

CORE LOSS vs FLUX DENSITY

Bp-p = K *L(uH) *delta I(A)

For More Information:

Americas - prodinfo_power@pulseelectronics.com | Europe - power-apps-europe@pulseelectronics.com | Asia - power-apps-asia@pulseelectronics.com

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2020. Pulse Electronics, Inc. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Pulse:

PM2248.153NLT PA2248.153NLT