
High Isolation Gate Drive Transformers

UL recognized, TUV approved to IEC 60950

Up to 4250Vrms gate to drive isolation

IEC 61558, IEC 61010 & IEC 60601 reinforced insulation compliant designs

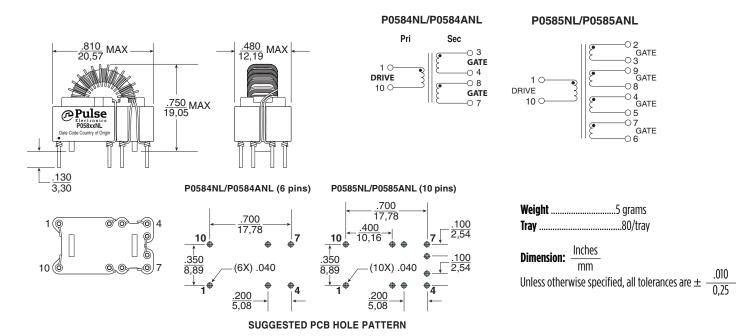
Electrical Specifications @ 25°C – Operating Temperature –40°C to +125°C										
	Turns Ratio	ET (V * µsec MAX)	Primary Inductance (1-10) (µH MIN)	Leakage Inductance Gate to Drive (µH MAX)	DCR Drive (1-10) (m Ω ±20%)	DCR Gates (m Ω ±20%)	Hi-Pot			
Part ^{4, 5} Number							Drive-Gate (Vrms)	Gate-Gate (Vrms)		
P0584NL	1:1:1	95	450	0.5	80	72	3000	1500		
P0585NL	1:1:1:1:1	95	450	3.0	330	180	3000	1500*		
P0584ANL	1:1:1	115	686	0.8	710	710	4250	1500		
P0585ANL	1:1:1:1	115	686	4.6	710	710	4250	1500*		

Notes:

- These gate drive transformers are meant to operate between 50 and 300 kHz with a 12V, 45% bipolar waveform.
- 2. The peak flux density should remain below 2100 Gauss to ensure that the core does not saturate. Use the following procedure to calculate the peak flux density:
 - A. Calculate the Volt-µsec product (ET):
 - ET = 10 * (Drive Voltage) * (Don) / (Frequency in kHz)
 - B. Calculate the operating flux density (B): B_{PK} (Gauss) = X * ET/Ff where: Ff = 1 for unipolar drive applications and 2 for bipolar drive applications, X = 40 for -NL, 33 for -ANL
- 3. The temperature rise of the component is calculated based on the total core loss and copper loss:

- A. To calculate total copper loss (W), use the following formula:

 Copper Loss (W) = Irms² * (DCR_Drive + (# of Gates) * DCR_Gates)
- B. To calculate total core loss (W), use the following formula: Copper Loss (W) = 7.5E-5 * (Frequency in kHz) $^{1.67}$ * (X * ET/1000) $^{2.532}$ X = 20 for -NL, 16 for -ANL
- C. To calculate temperature rise, use the following formula: Temperature Rise (C) = $60.18 * (Core Loss(W) + Copper Loss (W))^{.833}$
- 4. 500Vrms Hi-Pot between pins 5 & 6
- 5. NL versions, which use triple insulated Teflon wire on the drive winding and magnetic wire on the gate windings, are TUV certified.


ANL versions, which use triple insulated wire on both the drive and gate windings, are compliant with IEC 61558, IEC 61010 & IEC 60601.

pulseelectronics.com P515.C (04/15)

High Isolation Gate Drive Transformers

Mechanicals Schematics

P058xxNL

For More Information

For More Inic	ormation				
Pulse Worldwide Headquarters	Pulse Europe Einsteinstrasse 1	Pulse China Headquarters B402. Shenzhen Academy of	Pulse North China Room 2704/2705	Pulse South Asia 135 Joo Seng Road	Pulse North Asia 3F. No. 198
12220 World Trade Drive	D-71083 Herren-	Aerospace Technol-	Super Ocean Finance	#03-02	Zhongyuan Road
San Diego, CA	berg	ogy Bldg.	Ctr.	PM Industrial Bldg.	Zhongli City
92128	Germany	10th Kejinan Road	2067 Yan An Road	Singapore 368363	Taoyuan County 320
U.S.A.		High-Tech Zone	West		Taiwan R. O. C.
		Nanshan District	Shanghai 200336	Tal. CE C207 0000	Tel: 886 3 4356768
Tel: 858 674 8100	Tel: 49 7032 78060	Shenzen, PR China 518057	China	Tel: 65 6287 8998 Fax: 65 6287 8998	Fax: 886 3 4356823 (Pulse) Fax: 886 3 4356820 (FRE)
Fax: 858 674 8262	Fax: 49 7032 7806 135	Tel: 86 755 33966678	Tel: 86 21 62787060	rdx. 03 0207 0990	rdx. 000 3 4330020 (FKE)
1 αλ. 030 0/4 0202	1 dx. 43 7032 7000 133	Fax: 86 755 33966700	Fax: 86 2162786973		

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2015. Pulse Electronics, Inc. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Pulse:

P0585 P0584 P0585NL P0584NL