

WE935B00 Datasheet

Single-Band (2.4 GHz) Embedded Wi-Fi b/g/n module with Integrated antenna

Revision 1.1 Aug 29, 2018

Copyright © 2018 Wi2Wi, Inc.

2107 N. 1st Street, Ste. 680, San Jose, CA 95131, United States Email: sales@wi2wi.com | Phone: 1-408-416-4200 | Fax: 1-608-831-3343

Disclaimers

Wi2Wi, Inc. PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE MANAGING DIRECTOR OF Wi2Wi, Inc.

The definitions used herein are:

a) Life support devices or systems are devices which (1) are intended for surgical implant into the body, or (2) support or sustain life and whose failure to perform when properly used in accordance with the instructions for use provided in the labeling can reasonably be expected to result in a significant injury to the user. b) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Wi2Wi does not assume responsibility for use of any of the circuitry described, no circuit patent licenses are implied and Wi2Wi reserves the right at any time to change without notice said circuitry and specifications.

The content of this document is to be treated as strictly confidential and is not to be disclosed, reproduced or used, except as authorized in writing by Wi2Wi, Inc.

Table of Contents

1. O	verview 5	
1.1	Features	
1.2	IEEE 802.11 Standards	6
1.3	TCP/IP Stack features	6
2. Bl	lock Diagram	
2.1	Pin Diagram and Description	
2.2	Physical Dimensions and Pad Locations	11
2.3	Host Mode Configuration	12
2.3.1		
2.3.2		
2.4	General Purpose Input/output	
2.5	Reset	
2.6	Configuration Pins	
2.7	Boot Modes	
2.8	Antenna	
2.9	Power Pins	
3. EI	lectrical Characteristics	
4. Vo	oltage Domains	15
	/LAN Power-Save Modes	
5.1	IEEE Power Save	_
5.2	Deep Sleep	
	oftware Specifications	
	eference Schematics	
	lanufacturing Notes	
8.1	Shield Marking	
8.2	Storage and Baking Instructions	
8.3	Recommended Reflow Profile	
	rdering Information	
10. Da	ata Sheet Status	
11. C	ertifications	24
	eferences	
12.1		_
12.2		
12.3	Disclosures	

WE935B00

List of Figures

Figure 1 : Block Diagram	
Figure 2 : WE935B00 Module Pin Diagram – Top View	8
Figure 3 : Software Architecture	17
Figure 4 : Reference Schematics Page 1	18
Figure 5 : Reference Schematics Page 2	18
Figure 6 : Reference Schematics Page 3	19
Figure 7 : Reference Schematics Page 4	19
Figure 8 : Reference Schematics Page 5	20
Figure 9 : Reference Schematics Page 6	20
Figure 11 : Shield Marking (Top View)	21
Figure 12 : Recommended Reflow Profile	22
List of Table	
List of Table	
Table 1: Pin Description	
Table 2 : HOST MODE	
Table 3 : RF Control	13
Table 4: Electrical Characteristics	14
Table 5: 3.3V Voltage Domain Signal Limits	15
Table 6 : Ordering Information for Modules	23
Table 7 : Ordering Information for Evaluation Kits	23

Revision History:

Revision	Revision Date	Originator	Changes
1.0	Aug 22, 2017	Wi2Wi	Initial version Datasheet
1.1	Aug 29, 2018	SF	Power number updates & formatting corrections

1. Overview

WE935B00 module from Wi2Wi's EM series is a best in class single-band (2.4GHz) high performance embedded Wi-Fi module. This highly integrated plug and play, embedded Wi-Fi module with chip antenna and MHF4 IPEX connector includes dedicated microcontroller, MAC, baseband, RF transceiver, power amplifier, crystal, Tx/Rx switch, filter and OTP memory for calibration data and MAC address. WE935B00 (serial to Wi-Fi module) is a complete wireless subsystem in a small form factor, featuring full 802.11 b/g/n capabilities with embedded Wireless LAN (WLAN) stack, supplicant and TCP/IP stack. By completely offloading the external Microcontroller (MCU) from wireless activities, user can dedicate the external host for application development and significantly reduce their time to market and R&D cost. This WLAN module supports UART and SPI host interfaces and comes in various operating temperatures and certified to FCC, CE and IC.

1.1 Features

- Small footprint: 15 mm x 16.5 mm x 1.86 mm
- Compliant to IEEE 802.11b/g/n Wi-Fi, 1x1 SISO
- 20 MHz Channel Bandwidth
- UART & SPI Host Interfaces
- UART host interface 4 wire including RTS/CTS.
- Simple UART commands to configure Wi-Fi
- Support for Station/Client Mode, Access Point Mode and Concurrent Mode
- Supports 4 clients in AP Mode
- Embedded TCP/IP stack, WLAN stack and security supplicant.
- Supports open, WPA-PSK, WPA2-PSK & WEP Security (TKIP and AES-CCMP Encryption)
- Supports 10 TCP/UDP sockets which includes 2 SSL Sockets, 1 dedicated Web server and 1 dedicated HTTP Client
- Onboard chip Antenna + MHF4 IPEX connector
- Support for Antenna Diversity
- Maximum transmit power up to 18 dBm
- Internal 38.4 MHz, 26 MHz crystal clock and 32.768 KHz crystal Clock.
- Low power operation: Deep Sleep and IEEE Power Save modes
- OTP memory for calibrating the module during production
- Internal memory for firmware
- Single power supply of 3.3V
- Firmware upgrade through Wireless and UART
- Available in industrial (-40°C to +85°C), extended (-30°C to +85°C) and commercial (0°C to +70°C) operating temperature variants
- Certifications: FCC, IC, CE (Ongoing)
- Green/ROHS compliant

1.2 IEEE 802.11 Standards

- 802.11b data rates of 1, 2, 5.5 and 11Mbps (DSSS/CCK Modulation)
- 802.11g data rates of 6, 9, 12, 18, 24, 36, 48 and 54 Mbps (OFDM Modulation) for multimedia content transmission
- 802.11n compliant with maximum data rates up to 72.2 Mbps (20 MHz channel)
- MCS Rate Adaptation (b/g/n)

1.3 TCP/IP Stack features

- Passive Scan
- Active Scan
- 10 Sockets (UDP/TCP)
- HTTP Client
- HTTP Post
- HTTP Get
- SSL Sockets
- Secured HTTP (HTTPS)
- FTP Client
- DNS Client

- mDNS
- DNS-SD
- Static IP configuration
- DHCP Client/Server
- IPv4 Support
- IPv4 Ping
- Software API's to support host interface application
- Tx power Configuration

2. Block Diagram

WE935B00 core block includes a high performance IEEE 802.11b/g/n SOC with integrated antenna. This module requires host MCU/MPU to drive it through high performance UART/SPI interface. This highly integrated module has multiple digital GPIO's and Interrupts. A master Reset pin can be used to completely reset the module. It requires a single power source of 3.3V. This module has chip antenna and MHF4 IPEX connector supporting antenna diversity. An external RF pad is also available on the module exclusively for user convenience.

Figure 1 shows a block diagram of WE935B00 module.

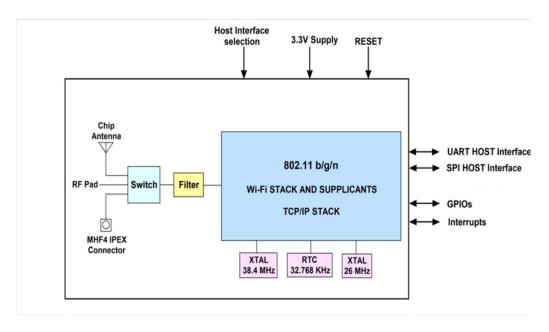


Figure 1: Block Diagram

2.1 Pin Diagram and Description

Figure 2 shows the pin assignments for the 64-pin QFN package.

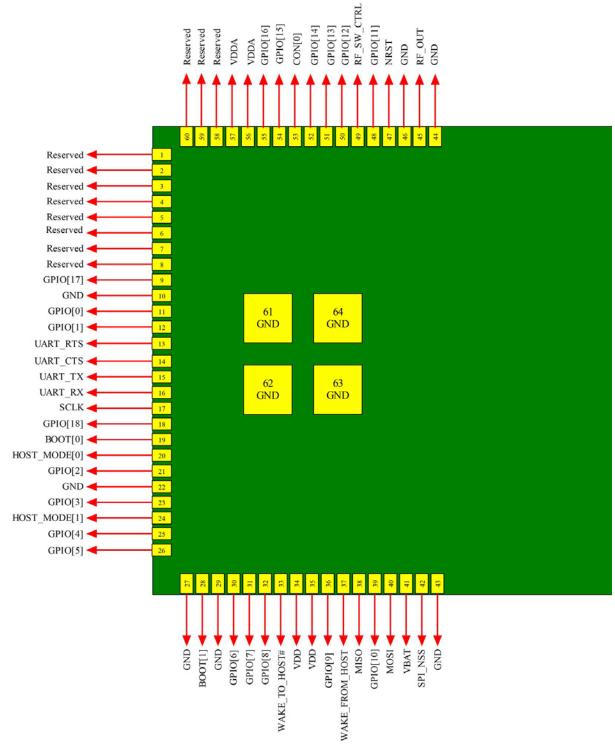


Figure 2: WE935B00 Module Pin Diagram - Top View

Pin No	Pin Name	Туре	Supply	Description		
	HOST MODE CONFIGURATION					
20	HOST_MODE[0]	ı	VDD	HOST_MODE[1:0] Host Mode 00 Reserved 01 Reserved		
24	HOST_MODE[1]	-	VDD	10 SPI 11 UART (Default) Internally Pulled high, pin can be left open for logic one.		
		нс	OST MODE - U	JART		
13	HOST_UART_RTS	0	VDD	Host UART handshak	e signals RTS	
14	HOST_UART_CTS	_	VDD	Host UART handshak	e signals CTS	
15	HOST_UART_TX	0	VDD	Host UART Transmit		
16	HOST_UART_RX	ı	VDD	Host UART receive		
		Н	OST MODE -	SPI		
17	SCLK	I	VDD	SPI clock to the modu	ıle	
38	MISO	0	VDD	Master-IN-Slave-OUT		
40	MOSI	I	VDD	Master-OUT-Slave-IN		
42	SPI_NSS		VDD	Slave Select for SPI		
			GPIO			
11	GPIO[0]	I/O	VDD	General Purpose I/O		
12	GPIO[1]	I/O	VDD	General Purpose I/O		
21	GPIO[2]	I/O	VDD	General Purpose I/O		
23	GPIO[3]	I/O	VDD	General Purpose I/O		
25	GPIO[4]	I/O	VDD	General Purpose I/O		
26	GPIO[5]	I/O	VDD	General Purpose I/O		
30	GPIO[6]	I/O	VDD	General Purpose I/O		
31	GPIO[7]	I/O	VDD	General Purpose I/O		
32	GPIO[8]	I/O	VDD	General Purpose I/O		
36	GPIO[9]	I/O	VDD	General Purpose I/O		

39	GPIO[10]	I/O	VDD	General Purpose I/O	
48	GPIO[11]	I/O	VDD	General Purpose I/O	
50	GPIO[12]	1/0	VDD	General Purpose I/O	
51	GPIO[13]	I/O	VDD	General Purpose I/O	
52	GPIO[14]	I/O	VDD	General Purpose I/O	
54	GPIO[15]	I/O	VDD	General Purpose I/O	
55	GPIO[16]	I/O	VDD	General Purpose I/O	
9	GPIO[17]	I/O	VDD	General Purpose I/O	
18	GPIO[18]	1/0	VDD	General Purpose I/O	
			RESET		
47	NRST	I	VDD	Reset the Module (Active Low)	
		C	ONFIGURATIO	DN	
53	CON[0]	1	VDDA	Pulled down to Ground with 4.7K resistor.	
			BOOT MODES	5	
19	BOOT[0]	I	VDD	BOOT[1:0] Boot Mode X0 Functional Mode (default) 01 Flashing Mode	
				11 RESERVED	
28	BOOT[1]	1	VDD	Should be controlled from Host (or) using jumper.	
			RF		
45	RF_OUT	I/O	VDDA	External RF Pad	
49	RF_SW_CTRL	I	VDDA	Pull Low to Ground for RF OUT selection. Open to use Antenna diversity feature.	
			INTERRUPTS		
33	WAKE_TO_HOST#	0	VDD	Interrupt to external Host (MCU/MPU)	
37	WAKE_FROM_HOST	I	VDD	Interrupt from external Host (MCU/MPU)	

POWER					
34, 35	VDD	Power	3.3V	Power to the Digital section	
41	VBAT	Power	3.3V	VBAT for RTC	
56, 57	VDDA	Power	3.3V	Power to the RF section	
			GROUND		
10, 22, 27, 29, 43, 44, 46	GND	Ground	GROUND	Connect to Ground	
61, 62, 63, 64	EPAD - GND	Ground	GROUND	Connect to Ground	
			RESERVED		
1, 2, 3, 4, 5, 6, 7, 8, 58, 59, 60	Reserved	-	VDD	Do not connect; Leave Floating, internally used.	

Table 1: Pin Description

2.2 Physical Dimensions and Pad Locations

- 64-pins with pads on 3 sides of the module and 4 ground pads in the middle of the module on the bottom side.
- Module Physical Size: 16.5 x 15 x 1.86 mm (including shield)
- Solder Pad Size: 0.25 x 0.40 mm
- Pad Pitch: 0.5 mm
- Pad Center to Module Edge: 0.6 mm
- Pad Finish: ENIG (Electro-less Nickel Immersion Gold)
- Pads: [(Three sides (26 + 17 + 17) + 4 Ground Pads in the middle)]

For Hardware Application notes, module dimensions and symbol library files please contact Wi2Wi sales or send an email to sales@wi2wi.com

2.3 Host Mode Configuration

HOST_MODE [1:0] are host interface selection pins. By default these pins are pulled HIGH which selects UART interface. These pins can be externally pulled LOW to ground. Pin#20 HOST MODE [0] and Pin#24 HOST MODE [1] are Internally Pulled HIGH by default.

HOST_MODE[1:0]	Host Mode
00	Reserved
01	Reserved
10	SPI
11	UART (Default)

Table 2: HOST MODE

2.3.1 UART interface

UART is a very simple and effective interface universally supported by most of the host MCU's. This interface supports Auto baud rate detection. It also has RTS/CTS pins for hardware flow control. The maximum Baud Rate supported is 12.5 Mbps. A unique set of commands are described in the software user guide.

2.3.2 SPI interface

This module acts as SPI slave with a maximum of 25 MHz clock from the master. A unique set of commands are described in the software user guide.

2.4 General Purpose Input/output

Each of the GPIO pins can be configured by software as output or as input. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. Software handles for each GPIO will be available in software user guide in detail.

2.5 Reset

The NRST (pin# 47) is an active low input pin to reset the module. It has a weak pull-up equivalent resistor of 40k Ω internally. A LOW pulse of 10ms generated on this pin will reset the module.

2.6 Configuration Pins

The module has a special configuration pin which requires a pull down of 4.7K to Ground. This pin cannot be left as no connect and is mandatory.

2.7 Boot Modes

Based on the boot mode pins configuration the module will start execution of the firmware after reset. Below is the description of each mode.

- BOOT [1:0] -X0
 - Functional mode (default) Main Flash memory
- BOOT [1:0] -01
 - Flashing mode System memory (Firmware upgrade through UART)
- BOOT [1:0] -11 Reserved.
- These pins can be connected to external jumper (or) can be controlled from a host controller GPIO pins.

2.8 Antenna

WE935B00 module has a chip antenna on the module. It also has MHF4 IPEX connector on the module to connect an external antenna. The chip antenna and MHF4 IPEX connector have antenna diversity between them. The module also has RF_OUT on pin number Pin#45. This can be selected through RF_SW_CTRL pin as shown below.

RF_SW_CTRL	Antenna Selected
Dull bigh (Internal Default)	Diversity between chip antenna
Pull high (Internal, Default)	and MHF4 IPEX connector
Pull Low	RF_OUT pin selected.

Table 3: RF Control

2.9 Power Pins

WE935B00 module has VDD which is Power supply to the Digital section on the module. VBAT pin is a supply pin to the RTC and the backup registers. VDDA is a supply to 802.11 b/g/n analog RF Section. All the three power supply rails need a tightly regulated supply of 3.3V.

3. Electrical Characteristics

Parameter	Test Condition	MIN	TYP	MAX	UNITS		
	Absolute Maximum Rat	ings					
Storage Temperature		-55	-	125	°C		
VDD, VDDA, VBAT		2.7	3.3	4.0	V		
	Recommended Operating Co	nditions	•				
	Commercial	0	_	+70	°C		
Operating Temperature	Extended	-30	-	+85	°C		
- P	Industrial	-40	-	+85	°C		
VDD, VDDA, VBAT		3.0	3.3	3.6	V		
, ,	Current Consumption UAR						
Transmit Mode current Consumption	Measurements during Iperf TX with 11Mbps data rate and max TX power dBm	-	210.67	-	μΑ		
Receive Mode current consumption	Measurements during Iperf RX with 11Mbps data rate	-	111	-	μΑ		
Current consumption in IEEE 802.11 Power Save Mode	Deep Sleep Mode	-	189.434	1	μΑ		
	Current Consumption USB	Mode					
Transmit Mode current Consumption	Measurements during Iperf TX with 11Mbps data rate and max TX power dBm	-	TBD		-		
Receive Mode current consumption	Measurements during Iperf RX with 11Mbps data rate	-	TBD	-	-		
Current consumption in IEEE 802.11 Power Save Mode	Deep Sleep Mode	-	TBD	-	-		
	Current Consumption SPI	Mode					
Transmit Mode current Consumption	Measurements during Iperf TX with 11Mbps data rate and max TX power dBm	-	TBD	-	-		
Receive Mode current consumption	Measurements during Iperf RX with 11Mbps data rate	-	TBD	-	-		
Current consumption in IEEE 802.11 Power Save Mode	Deep Sleep Mode	-	TBD	-	-		
	802.11 RF System Specifications						
Transmit Power Output	FCC Complaint (ongoing)	-	-	18	dBm		
Receive Sensitivity	1 Mbps	-	-	-97	dBm		

Table 4: Electrical Characteristics

4. Voltage Domains

Voltage domains and limits of all the signal pins are listed below.

	Min	Тур	Max	Units
VIH	2	-	3.6	V
VIL	-0.3	-	1	V
VIHYS	300	-	-	mV
VOH	2.3	-	-	V
VOL	-	-	0.4	V

Table 5 : 3.3V Voltage Domain Signal Limits

5. WLAN Power-Save Modes

Two types of power save modes can be used by the WE935B00. They are IEEE Power Save mode and Deep Sleep mode. The key difference between the two modes is the current consumption and the time it takes to the transition from the power save mode to normal Wi-Fi operation.

5.1 IEEE Power Save

This mode puts sections of the Wi-Fi into "sleep with periodic wake" by the appropriate command available in software user guide. The device automatically wakes up to receive beacons periodically, and if there is no traffic indicated for the device, it will go back to sleep. Power consumption is dependent on the DTIM value of the AP it is connected to. When DTIM=1, the device wakes up every 100ms to receive and acknowledge the beacon from AP to maintain association.

5.2 Deep Sleep

This mode puts the complete Wi-Fi section into deep sleep mode, which is the same as the IEEE mode above except there are no periodic wake-ups to receive beacons. Thus it offers lower power consumption than IEEE mode. This mode is entered when the host processor sends the appropriate command. In deep sleep mode, the device is not listening for packets or beacons from the AP, so it cannot maintain an association with it. When the host processor sends a command to take the device out of deep sleep mode, the device will have to re-associate with the AP.

6. Software Specifications

Wi2Wi provides all the handles required to operate WE935B00. It provides instructions in the form of commands to configure and control the module. These commands are proprietary to Wi2Wi and can be easily executed from a small MCU with a minimum memory requirement to store the commands and the data.

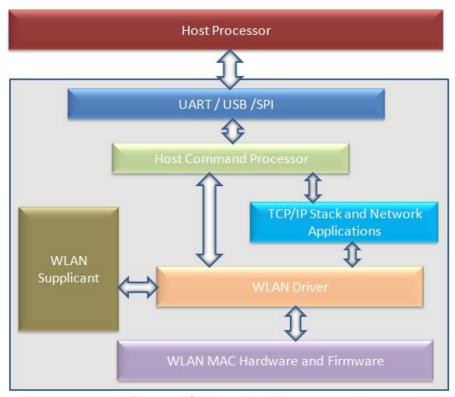


Figure 3: Software Architecture

7. Reference Schematics

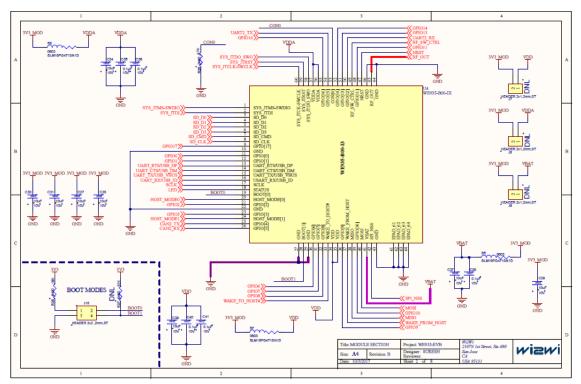


Figure 4 : Reference Schematics Page 1

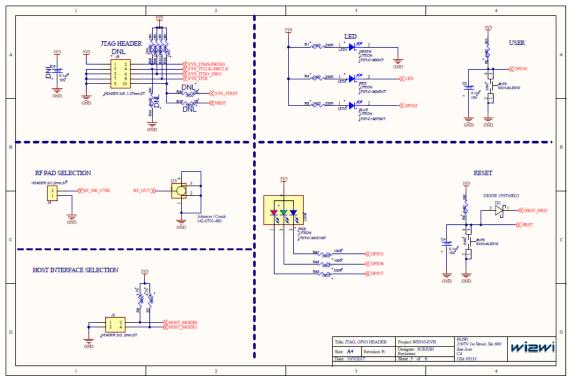


Figure 5 : Reference Schematics Page 2

Copyright © 2018 Wi2Wi, Inc.
Send feedback to support@wi2wi.com

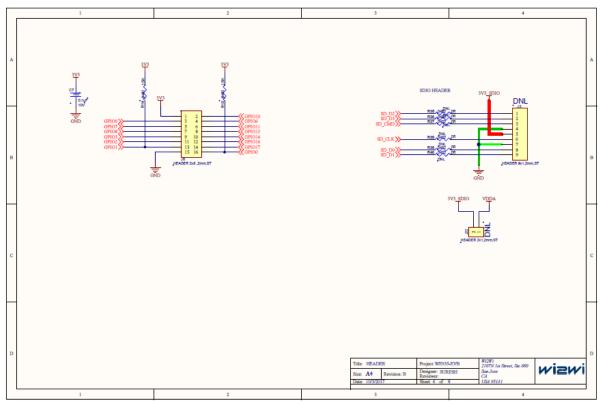


Figure 6 : Reference Schematics Page 3

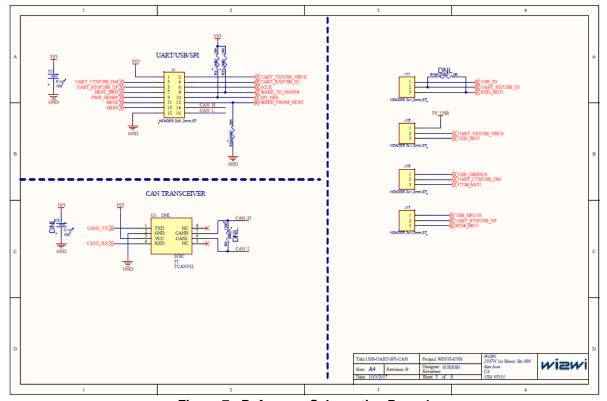


Figure 7 : Reference Schematics Page 4

Figure 8 : Reference Schematics Page 5

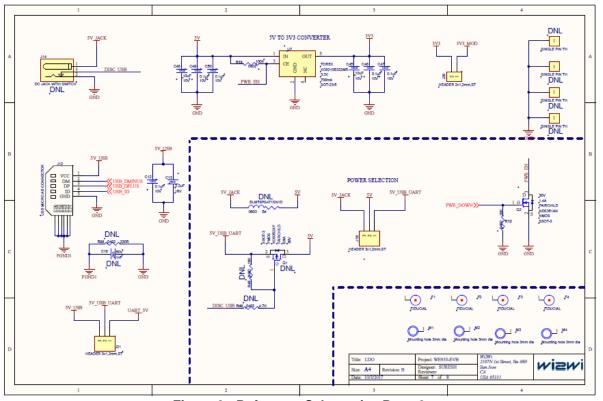


Figure 9 : Reference Schematics Page 6

8. Manufacturing Notes

8.1 Shield Marking

Figure 10: Shield Marking (Top View)

YY indicates Year

WW indicates Work Week

- -I indicates Industrial operating temperature range (-40°C to +85°C)
- -E indicates Extended operating temperature range (-30°C to +85°C)
- -C indicates Commercial operating temperature range (0°C to +70°C)
- 3 indicates Chip Antenna and MHF4 IPEX connector

8.2 Storage and Baking Instructions

WE935B00 is an MSL3 qualified package.

- After opening the bag, the parts should be stored as per J-STD-033 standard, and mounted within 168 hours of factory conditions (≤ 30°C, 60% RH)
- If the parts have been exposed in transit, they need to be baked at 125°C for 16 hours

8.3 Recommended Reflow Profile

Assembly Guidelines:

- 1. Follow solder paste manufacturers recommended profile
 - a. All RoHS solder pastes contain the same basic chemistry; however, each manufacturer may have a recommended reflow profile that performs best for their product
- 2. The profile illustrated below is for reference only
 - a. There is no one profile that fits all scenarios
- 3. Profiles must be dialed in to the specific assembly type
- 4. ENIG finishes are more susceptible to voids and air entrapment
 - a. Selecting a RoHS solder paste that is "ENIG" compatible is recommended

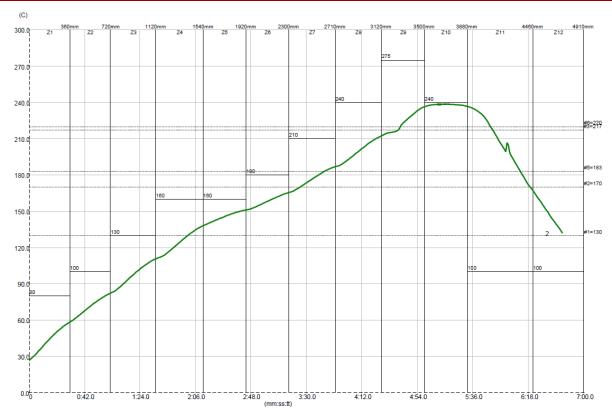


Figure 11: Recommended Reflow Profile

9. Ordering Information

Table 6: Ordering Information for Modules

Part Order Number	Operating Temperature Range	Packaging Method
WE935B00-I3QT	Industrial: -40°C to +85°C	Tray
WE935B00-I3QR	Industrial: -40°C to +85°C	Tape & Reel
WE935B00-E3QT	Extended: -30°C to +85°C	Tray
WE935B00-E3QR	Extended: -30°C to +85°C	Tape & Reel
WE935B00-C3QT	Commercial: 0°C to +70°C	Tray
WE935B00-C3QR	Commercial: 0°C to +70°C	Tape & Reel

Table 7: Ordering Information for Evaluation Kits

Part Order Contents of the Evaluation Kit		Packaging Method
WE935B00-EVK3	WE935B00-I3 Module on Evaluation Board, 2.4 GHz Rubber Duck Antenna, MHF4 IPEX connector cable and USB-A / Micro-AB Cable	Вох

10. Data Sheet Status

Wi2Wi, Inc. reserves the right to change the specification without prior notice in order to improve the design and supply the best possible product. Updated information, firmware and release notes will be made available on www.wi2wi.com. Please check with Wi2Wi Inc. for the most recent data before initiating or completing a design.

11. Certifications

WE935B00 will comply with the following standards:

FCC: 15C IC: RSS-247

CE: EN 300 328 v1.9.1, EN 301 489-1 v1.9.2

EN 301 489-17 v2.2.1, EN 60950-1

© Certification testing is ongoing

12. References

12.1 Specifications

IEEE 802.11 b/g/n Wireless LAN Specification SDIO HS 4-bit Specification

12.2 Trademarks, Patents and Licenses

Trademarks: Wi-Fi

12.3 Disclosures

WE935B00-EVK3: Evaluation Kit

The specification maximum and minimum limits presented herein are those guaranteed when the unit is integrated into the Wi2Wi'sDevelopment System. These limits are to serve as representative performance characteristics of the WE935B00 when properly designed into a customer's product. Wi2Wi makes no warranty, implied or otherwise specified, with respect to design and performance characteristics presented in this specification when used in customer designs.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Wi2Wi:

<u>WE935B00-C3QR</u> <u>WE935B00-C3QT</u> <u>WE935B00-E3QR</u> <u>WE935B00-E3QT</u> <u>WE935B00-I3QR</u> <u>WE935B00-I3QT</u> WE935B00-EVK3