
MODELS X, M, C, F, T, B NTC Thermistors Coated	A COMPANY OF
	FEATURES
	Small size - conformal coated
G	Wide resistance range
	Available in 11 different R-T curves
	Configured for standard P.C. board mounting or assembly in probes

STANDARD ELECTRICAL SPECIFICATIONS and DIMENSIONAL CONFIGURATIONS

Models X, M, C, F, T and B are conformally coated, leaded thermistors for standard P.C. board mounting or assembly in probes. The coating is baked-on phenolic for durability and longterm stability. Leads are solid tinned copper, except T models have solid nickel wires with Teflon[®] insulation to provide isolation when assembled in metal probes or housings.

	R25	R 70	PART	CURVE	DISSIPATION CONSTANT	THERMAL TIME CONSTANT	BODY DIAMETER		LEAD
	(Ohms)	(Ohms)	NUMBER	NUMBER	(Nominal)	(Nominal)	(Max.)	(Min.)	DIAMETER
MODEL X	19.68M	1.6M	13X1604	13	_	_	.095 [2.4]	.070 [1.8]	AWG30 (.0100)
± 10%, ± 5%	9.84M	800,000	13X8003	13	_	_	.095 [2.4]	.070 [1.8]	AWG28 (.0126)
R70 tolerance.	4.92M	400,000	13X4003	13	— —	_	.100 [2.5]	.080 [2.0]	AWG28 (.0126)
Leads solid tinned	3.08M	250,000	13X2503	13		—	.125 [3.2]	.100 [2.5]	AWG28 (.0126)
copper 1.8 ± .2	1.082M	130,000	12X1303	12			.095 [2.4]	.070 [1.8]	AWG30 (.0100)
$[45.7 \pm 5.1]$ long.	998.300	120,000	12X1203	12		—	.095 [2.4]	.070 [1.8]	AWG30 (.0100)
MODEL M	1.0M	_	12M1004*	12			.087 [2.2]	.061 [1.55]	_
± 10%, ± 5%,	200,000	_	7M2003	7	2	12	.095 [2.4]	.070 [1.8]	_
± 3%, ± 2%, ± 1%	150,000	_	7M1503	7		_	.100 [2.5]	.075 [1.9]	_
R25 tolerance.	100,000	-	7M1003	7	_	_	.095 [2.4]	.070 [1.8]	-
Leads solid tinned	100,000		8M1003	8			.095 [2.4]	.070 [1.8]	
copper 1.8 ± .2	100,000	_	4M1003	4	2	12	.095 [2.4]	.070 [1.8]	_
[45.7 ± 5.1] long	80,000	—	8M8002	8		_	.095 [2.4]	.070 [1.8]	_
AWG30 (.0100").	50,000	-	8M5002	8	—	_	.095 [2.4]	.070 [1.8]	
	50,000		7M5002	7		-	.095 [2.4]	.070 [1.8]	_
	50,000	—	4M5002	4	2	10	.085 [2.2]	.060 [1.5]	_
	30,000	—	8M3002	8	—	—	.095 [2.4]	.070 [1.8]	
	30,000	—	4M3002	4	2	10	.085 [2.2]	.060 [1.5]	
	30,000		1M3002	1	—	_	.095 [2.4]	.070 [1.8]	
	25,000		1M2502	1	—	_	.095 [2.4]	.070 [1.8]	_
	20,000		9M2002	9	2	10	.095 [2.4]	.070 [1.8]	—
	20,000	—	1M2002	1	—		.095 [2.4]	.070 [1.8]	—
	17,500	_	1M1752	1	—	—	.095 [2.4]	.070 [1.8]	_
	15,000	—	1M1502	1	—	—	.095 [2.4]	.070 [1.8]	
	10,000	—	9M1002	9	2	12	.095 [2.4]	.070 [1.8]	_
	10,000	- 1	1M1002	1	2	10	.085 [2.2]	.060 [1.5]	
	6,000	-	1M6001	1	2	10	.085 [2.2]	.060 [1.5]	_
	5,000	—	1M5001	1	2	10	.085 [2.2]	.060 [1.5]	-
	2,252	—	1M2251	1	3	12	.095 [2.4]	.070 [1.8]	_
	2,000	—	2M2001	2	3	12	.100 [2.5]	.075 [1.9]	
	1,000	—	2M1001	2	3	12	.085 [2.2]	.060 [1.5]	—

* Available in \pm 10% and 5% R25 tolerance only.

MODELS X, M, C, F, T, B

STANDARD ELECTRICAL SPECIFICATION	19 and D	IMENSIO	NAL CON	FIGURATION			
	R25	PART	CURVE	DISSIPATION CONSTANT	THERMAL TIME	BODY DI	AMETER
[Numbers in brackets indicate millimeters]	(Ohms)	NUMBER	NUMBER	(Nominal)	CONSTANT (Nominal)	(Max.)	(Min.)
MODEL C ± 10%, ± 5%, ± 3%, ± 2%, ± 1% R₂s tolerance. Leads solid tinned copper 1.8 ± .2 [45.7 ± 5.1] long, AWG28 (.0126").	(01000) 500,000 250,000 150,000 100,000 30,000 30,000 30,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 30,000 30,000 20,000 10,000 9,000 8,000 7,000 6,000 4,000 1,500 1,500 1,500 1,000 900 800 700 600 500 400 300 200 150 100 50	12C5003* 12C2503* 12C1503* 12C1503* 12C1503* 12C1003* 7C5002 7C3002 8C2002 8C2002 8C2002 7C2002 4C3002 8C2002 7C2002 4C3002 8C2002 7C2002 1C1001 1C9001 1C6001 1C4001 1C4001 1C4001 1C2001 1C1501 1C1251 1C1001 2C3000 2C5000 2C5000 2C1500 2C1000 2C1000 2C1000	12 12 12 12 12 7 7 8 7 4 8 7 1 1 1 1 1 1 1 1 2	(ioninal) 	$\begin{array}{c} - \\ - \\ - \\ - \\ 12 \\ 12 \\ - \\ - \\ 12 \\ 12$	102 [2.6] 102 [2.6] 133 [3.4] 163 [4.1] 192 [4.9] 095 [2.4] 095 [2.4] 115 [2.9] 095 [2.4] 130 [3.3] 130 [3.3] 130 [3.3] 130 [3.3] 095 [2.4] 095 [2.4] 095 [2.4] 095 [2.4] 095 [2.4] 095 [2.4] 095 [2.4] 095 [2.4] 095 [2.4] 135 [3.4] 145 [3.7] 158 [4.0] 095 [2.4] 095 [2.4] 095 [2.4] 095 [2.4] 1095 [2.4] 100 [2.5] 100 [2.5]	
MODEL F \pm 10%, \pm 5%, \pm 3%, \pm 2%, \pm 1% R ₂₅ tolerance. Leads solid tinned copper 1.8 \pm .2 [45.7 \pm 5.1] long, AWG32 (.0080").	30,000 15,000 10,000 5,000	9F3002 1F1502 1F1002 1F5001	9 1 1 1	0.8 0.8 0.8 0.8	5 5 5 7	.072 [1.8] .072 [1.8] .072 [1.8] .072 [1.8] .072 [1.8]	.050 [1.3] .050 [1.3] .050 [1.3] .050 [1.3]
MODEL T \pm 10%, \pm 5%, \pm 3%, \pm 2%, \pm 1% R ₂₅ tolerance. Leads Teflon® insulated solid nickel 3 \pm .25 [76.2 \pm 6.4] long, AWG30 (.0100").	100,000 100,000 50,000 30,000 30,000 20,000 10,000 10,000 10,000 10,000 3,000 2,252	8T1003 4T1003 8T5002 4T5002 8T3002 9T2002 1T2002 9T1002 1T5001 1T3001 1T2251	8 4 8 4 9 1 9 1 1 1 1			.095 [2.4] .095 [2.4] .095 [2.4] .085 [2.2] .095 [2.4] .085 [2.2] .095 [2.4] .095 [2.4] .095 [2.4] .095 [2.4] .085 [2.2] .085 [2.2] .095 [2.4]	.070 [1.8] .070 [1.8] .070 [1.8] .060 [1.5] .060 [1.5] .070 [1.8] .070 [1.8] .070 [1.8] .075 [1.9] .060 [1.5] .060 [1.5] .070 [1.8] .070 [1.8]
MODEL B \pm 10%, \pm 5%, \pm 3%, \pm 2%, \pm 1% R ₂₅ tolerance. Leads solid tinned copper 1.8 \pm .2 [45.7 \pm 5.1] long, AWG26 (.0159").	50,000 20,000 10,000 10,000 3,000 2,800 2,252 2,000 500 100 50	12B5002 4B2002 7B1002 4B1002 1B1002 1B8001 1B3001 17B2801 1B2251 1B2001 2B5000 2B1000 2B0500	12 4 7 4 1 1 1 1 1 2 2 2			$\begin{array}{c} .252 \ [6.4] \\ .110 \ [2.8] \\ .190 \ [4.8] \\ .135 \ [3.4] \\ .122 \ [3.1] \\ .120 \ [3.1] \\ .150 \ [3.8] \\ .180 \ [4.6] \\ .160 \ [4.1] \\ .160 \ [4.1] \\ .125 \ [3.2] \\ .270 \ [6.9] \\ .350 \ [8.9] \end{array}$.216 [5.5] .090 [2.3] .150 [3.8] .110 [2.8] .085 [2.2] .080 [2.0] .110 [2.8] .150 [3.6] .150 [3.6] .115 [2.9] .085 [2.2] .220 [5.6] .295 [7.5]

* Available in \pm 10% and 5% R2s tolerance only.

1	С	2001	- 5
CURVE NUMBER	MODEL	VALUE	TOLERANCE AT 25°C*
		First three digits are	± 10% = (none)
		significant. The last	± 5% = - 5
		digit is the multiplier.	± 3% = - 3
		(2000 ohm is	± 2% = - 2
		illustrated.)	± 1% = - 1

CHECKLIST FOR ORDERING FILM RESISTORS

ORDERS MUST HAVE COMPLETE INFORMATION INCLUDING THE FOLLOWING:

- 1. Resistor type and model number
- 2. Resistor wattage rating
- 3. Resistor value
- 4. Resistor tolerance
- 5. Temperature Coefficient
- 6. Special quantity of each item
- 7. Specify routing
- 8. Desired delivery

- 9. If you have a drawing covering the part, specify your part number and drawing number and supply a copy with the order. Including the Dale[®] specification number on your drawings will assure you of exact duplication on all future orders.
- 10. Priority rating under DMS regulations and contract number (if applicable).
- 11. Specify if Letter of Certification is required.
- 12. Prices on specific items and quantities will be quoted on request. Quantity of each item ordered at one time determines unit price for manufacturers' orders.

STANDARD DECADE RESISTANCE VALUES

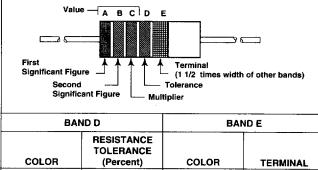
The following table lists four established number series which are used as preferred values in electronic design. Each series is shown under an associated value of tolerance %. The number series under the 10% column is known as the E12 Series because there are 12 standard values within a decade range. 2% and 5% utilize the E24 Series, 1% uses E96 and .1%, .25% and .5% use E192. Successive values within a decade series are related (approximately) by a factor of $12\sqrt{10}$ for the E12 Series, $2^4\sqrt{10}$ for the E24 Series, $96\sqrt{10}$ for the E96 Series and $192\sqrt{10}$ for the E192 Series.

Use of standard values is encouraged because stocking programs are designed around them. However, intermediate values can be special ordered where permitted. Consult factory.

.1%, .25	%,	.1%, .25	%,	.1%, .25	%,	.1%, .25	%,	.1%, .25	%,	.1%, .25	%,	.1%, .25	%,	.1%, .25	%,		
.5%	1%	.5%	1%	.5%	1%	.5%	1%	.5%	1%	.5%	1%	.5%	1%	.5%	1%	2%, 5%	10%
10.0	10.0	13.3	13.3	17.8	17.8	23.7	23.7	31.6	31.6	42.2	42.2	56.2	56.2	75.0	75.0	10	10
10.1		13.5		18.0		24.0		32.0		42.7		56.9		75.9		11	_
10.2	10.2	13.7	13.7	18.2	18.2	24.3	24.3	32.4	32.4	43.2	43.2	57.6	57.6	76.8	76.8	12	12
10.4		13.8		18.4		24.6		32.8		43.7		58.3		77.7		13	-
10.5	10.5	14.0	14.0	18.7	18.7	24.9	24.9	33.2	33.2	44.2	44.2	59.0	59.0	78.7	78.7	15	15
10.6		14.2		18.9		25.2		33.6		44.8		59.7		79.6		16	_
10.7	10.7	14.3	14.3	19.1	19.1	25.5	25.5	34.0	34.0	45.3	45.3	60.4	60.4	80.6	80.6	18	18
10.9		14.5		19.3		25.8		34.4		45.9		61.2		81.6		20	_
11.0	11.0	14.7	14.7	19.6	19.6	26.1	26.1	34.8	34.8	46.4	46.4	61.9	61.9	82.5	82.5	22	22
11.1		14.9		19.8		26.4		35.2		47.0		62.6		83.5		24	
11.3	11.3	15.0	15.0	20.0	20.0	26.7	26.7	35.7	35.7	47.5	47.5	63.4	63.4	84.5	84.5	27	27
11.4		15.2		20.3		27.1		36.1		48.1		64.2		85.6		30	_
11.5	11.5	15.4	15.4	20.5	20.5	27.4	27.4	36.5	36.5	48.7	48.7	64.9	64.9	86.6	86.6	33	33
11.7		15.6		20.8		27.7		37.0		49.3		65.7		87.6		36	_
11.8	11.8	15.8	15.8	21.0	21.0	28.0	28.0	37.4	37.4	49.9	4 9. 9	66.5	66.5	88.7	88.7	39	39
12.0		16.0		21.3		28.4		37.9		50.5		67.3		89.8		43	_
12.1	12.1	16.2	16.2	21.5	21.5	28.7	28.7	38.3	38.3	51.1	51.1	68.1	68.1	90.9	90.9	47	47
12.3		16.4		21.8		29.1		38.8		51.7		69.0		92.0		51	-
12.4	12.4	16.5	16.5	22.1	22.1	29.4	29.4	39.2	39.2	52.3	52.3	69.8	69.8	93.1	93.1	56	56
12.6		16.7		22.3		29.8		39.7		53.0		70.6		94.2		62	_
12.7	12.7	16.9	16.9	22.6	22.6	30.1	30.1	40.2	40.2	53.6	53.6	71.5	71.5	95.3	95.3	68	68
12.9		17.2		22.9		30.5		40.7		54.2		72.3		96.5		75	
13.0	13.0	17.4	17.4	23.2	23.2	30.9	30.9	41.2	41.2	54.9	54.9	73.2	73.2	97.6	97.6	82	82
13.2		17.6		23.4		31.2		41.7		55.6		74.1		98.8		91	

Standard resistance values are obtained from the decade table by multiplying by powers of 10. As an example, 13.3 can represent ohms, 133 ohms, 1.33k, 13.3k, 13.3k, 1.33 Megohm.

Military Product Identification

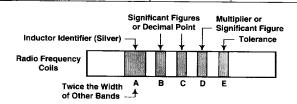


MILITARY PART ORDERING EXAMPLES	
To help in ordering, the following are representative samples of military part numbers on numbers. For complete information, consult Military Specification Qualifi	cross-referenced to Dale® part ed Products List.
RESISTORS: Fixed and Variable	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. Style 1. Style 2. Characteristic 2. Characteristic 3. Resistance Value 3. Value (Tolerance below 1 ohm 10%, 1 ohm and up 5%)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1. Style 2. Characteristic - Temperature Coefficient 3. Resistance Value 4. Tolerance
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	 Style Characteristic - Maximum continuous operating temperatures Resistance Value
$ \begin{array}{c c} \textbf{MIL-R-22684C} & (\text{Basic [RL]}) \text{ (Established Reliability MIL-R-39017 [RLR])} \\ \hline \textbf{RL07} & \textbf{S} & 103 & \textbf{J} & = \text{ Dale Type } CMF-07 & 10k & 5\% & \text{ color banded.} \\ \hline \textbf{1} & \textbf{3} & \textbf{4} & \textbf{1} & \textbf{3} & \textbf{4} & \textbf{1} \\ \hline \end{array} $	1. Style 2. Terminal 3. Resistance Value 4. Tolerance
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1. Style 2. Characteristic 3. Terminal 4. Resistance
$ \begin{array}{c c} \textbf{MIL-R-27208C} & (\text{Basic [RT]}) \text{ (Established Reliability MIL-R-39015 [RTR])} \\ \hline \textbf{RT24} & \textbf{C} & \textbf{2} & \textbf{P} & \textbf{102} & = \text{ Techno Type} & \textbf{126S} & \textbf{1k} & 5\% \\ \hline \textbf{1}, \textbf{4} & \textbf{5} & \textbf{11}, \textbf{4} & \textbf{5} & \textbf{11} \end{array} \right. \\ \end{array} $	1. Style 4. Terminal 2. Resistance - 5. Resistance Temperature Characteristic 3. Temperature Characteristic
$\begin{array}{c c} \textbf{MIL-R-39007G} & (\text{Established Reliability [RWR]}) & (\text{Basic - MIL-R-26 [RW]}) \\ \hline \textbf{RWR74} & \textbf{S} & 10R1 & \textbf{F} & \textbf{R} \\ \hline \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & \textbf{5} \end{array} = Dale Type & ESS-5 & 10.1 \text{ ohm} & 1\% & \textbf{R} \\ \hline \textbf{1} & \textbf{3} & \textbf{4} & \textbf{5} \end{array}$	1. Style 5. Failure Rate Level 2. Terminal 3. Resistance Value 4. Tolerance
$\begin{array}{c c} \textbf{MIL-R-39009C} & (Established Reliability [RER]) & (Basic - MIL-R-18546 [RE]) \\ \hline \textbf{RER65} & \textbf{F} & 1001 & \textbf{R} & = & Dale Type & ERH-10 & 1\% & 1k & R \\ \hline \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & & \hline \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} \end{array}$	1. Style 2. Tolerance 3. Resistance Value 4. Failure Rate Level
MIL-R-39015C(Established Reliability [RTR]) (Basic - MIL-R-27208 [RT])RTR24DP102R= Techno TypeM39015/3007PRT23457735NOTE: 5% tolerance per Military Specification.	1. Style 2. Characteristic 3. Terminal 4. Resistance 5. Failure Rate Level
MIL-R-39017E (Established Reliability [RLR]) (Basic - MIL-R-22684 [RL]) RLR07 C 1002 G R = Dale Type ERL-07 10k 2% R $\overrightarrow{1}$ $\overrightarrow{2}$ $\overrightarrow{3}$ $\overrightarrow{4}$ $\overrightarrow{5}$ $\overrightarrow{1}$ $\overrightarrow{3}$ $\overrightarrow{4}$ $\overrightarrow{5}$	Style 5. Failure Rate Level Terminal Type S. Resistance Value A. Tolerance
$ \begin{array}{ c c c c c c c c } \hline \textbf{MIL-R-39035B} & (Established Reliability [RJR]) (Basic - MIL-R-22097 [RJ]) \\ \hline \textbf{RJR24} & \textbf{F} & \textbf{P} & \textbf{102} & \textbf{R} & = & Techno Type & \textbf{RJR24} & \textbf{F} & \textbf{P} & \textbf{1k} & 10\% \\ \hline \textbf{T} & \textbf{Z} & \textbf{3} & \textbf{4} & \textbf{5} & & \textbf{1} & \textbf{Z} & \textbf{3} & \textbf{4} \\ \hline \textbf{NOTE: 10\% tolerance per Military Specification.} \end{array} $	1. Style 2. Characteristic 3. Terminal 4. Resistance 5. Failure Rate Level
MIL-R-49465A(Basic [RLV]) (Established Reliability - None)NOTE: L Characteristic.NOTE: L Characteristic. $M49465$ 02 L $R0100$ J =Dale TypeCPSL-3-6 0.01 ohm 5% L Characteristic.	1. Military Specification 4. Resistance Value 2. Specification 5. Tolerance Sheet Number 3. Characteristic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1. Style 2. Characteristic/Temperature Coefficient 3. Resistance Value 4. Tolerance 5. Failure Rate Level
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 Military Specification Characteristic Specification Sheet Number Termination Material Resistance Value and Tolerance Failure Rate Level

Military Product Identification

HILLET.	1.14		1.4	Sanatanje Gr	or contract of contracts			PLES			le Di		 A thick is a second state for a second second second second second second second second second second second second second s		
RACK	AND) PA	NEI	- CO	NNE	ЕСТО	ORS	\$							
MIL-C - M2 <u>87</u> 48 1			(Bas <u>0</u> 4		tablis <u>F</u> 6	hed R 1 <u>A</u> 7		lity - None Dale Ty		MP <u>22</u> G5 7	<u>7</u> 3	S <u>L2</u> L 6	1. Military Specification 2. Specification Sheet No 3. Insert Designator (B-7 4. Shield (0 = None)		 5. Shell Polarization (0 = None) 6. Jackscrews or Guidepins 7. Contacts (1A = 100 percent size 22)
RESIS	TOR	NE	TWO	DRKS	5										
MIL-R- M83401 1, 2			(Bas 1 <u>00</u> 3 4	ic [RZ]] <u>G</u> 5) (Esti <u>A</u> 6			eliability M e Type	IL-R-874 MDM	[RZR]) 1 <u>00</u> k 4	<u>2%</u> 5	<u>A</u> 6	NOTE: M Characteristic.	1. Military S 2. Specificat 3. Character 4. Resistant	tion Sheet Number 6. Schematic ristic
Resist	ance	e Va	lue	Exan	nple	s									
Thr	ee Dig	jit Fig	gure						Four D	igit Figur	e		Fiv	e Digit Figur	e
	100	= 10	ohm,	101 =	100	ohm			4	9R9 = 49.	9 ohm	, 1000) = 100 ohm		0.6 ohm, 10000 = 1k ohm
	102	= 1k	ohm,	203 =	20k (ohm			1	001 = 1k	ohm, '	1004 =	1 Megohm		2.7k ohm, 10202 = 102k ohm
Tolera	nce	Exa	mpl	es											
A	= ± 0.0	05%			B =	: ± 0.1	0%		D =	± 0.50%			F = ± 1.0%	$G = \pm 2.0\%$	$J = \pm 5.0\%$
TRAN	SFO	RME	ERS	AND	INE	DOC.	TOF	S							
MIL-T-	27E	(Bas	sic [TF]) (Esta	ablish	ed Re	liabilit	ty - None)						1. Military S	pecification
M27 1	215 2	0						-3Q0TR	1.0 ml	┥ 2%				2. Specificat 3. Specificat	ion Sheet Number ion Sheet Dash Number g Value and Electrical Ratings
MIL-C - <u>LT</u> 1)5E <u>K</u> 3						liability M) μH to 1.		10) 10%	1	NOTES:	Parts will be color banded. Value per Military Standard dash number.	1. Style 2. Grade and 3. Family K	d Class = Coil, Radio Frequency, Fixed

MILITARY COLOR CODES . FILM RESISTORS										
BAND	A&B	BAND C								
COLOR	1st and 2nd SIGNIFICANT FIGURE	COLOR	VALUE MULTIPLIER							
Black	0	Black	1							
Brown	1	Brown	10							
Red	2	Red	100							
Orange	3	Orange	1,000							
Yellow	4	Yellow	10,000							
Green	5	Green	100,000							
Blue	6	Blue	1,000,000							
Purple (Violet)	7	Silver	0.01							
Gray	8	Gold	0.1							
White	9									


L	COLOH	(Percent)	COLOR	TERMINAL
L	Gold	± 5%	White	Solderable
E	Red	± 2%		

8 1/2 x 11 & Pocket-Size Color Code ID Charts

For a 8 1/2 x 11 chart, or a supply of pocket-size charts showing actual colors used in marking film resistors and RF chokes, write to Dale Electronics, Inc., Advertising Department, 2064 12th Avenue, P.O. Box 609, Columbus, NE 68602-0609 or call (402) 563-6417.

Indicate size and type of chart desired: Film Resistor chart or RF Choke.

MILITARY CO	LOR CODES -	RF COILS			
	BAND A & B	BAND C	BAND C		
COLOR	SIGNIFICANT FIGURES or DECIMAL POINT	MULTIPLIER* or SIGNIFICANT FIGURE	INDUCTANCE TOLERANCE		
Black	0	1	_		
Brown	1	10	± 1%		
Red	2	100	± 2%		
Orange	3	1,000	± 3%		
Yellow	4	10,000	± 4%		
Green	5	_	_		
Blue	6	_	_		
Violet	7	_	_		
Gray	8		-		
White	9	_	-		
None**	—		± 20%		
Silver		_	± 10%		
Gold	Decimal Point	_	± 5%		

Band "A" is twice the width of the other bands and is silver in color to identify part as an inductor. ***

For Inductance Values Less Than 10 either Band "B" or Band C" will be gold and will represent the decimal point. The other two bands ("B" and "D" or "C" and "D") will represent significant figures.

For Inductance Values of 10 or More Band "B" and Band "C" represent significant figures and Band "D" is the Multiplier.

For small units, dots may be used in place of bands.

 The multiplier is the factor by which two significant figures are multiplied to yield the nominal inductance value.
 Indicates body color.

*** Coated inductors are marked with four color bands, the first being a double wide significant figure or decimal point in lieu of the double wide silver inductor identifier.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay: 1C4001-5