

Vishay Semiconductors

High Efficiency LED, Ø 5 mm Tinted Non-Diffused Package

DESCRIPTION

The TLH.620. series was developed for standard applications like general indicating and lighting purposes.

It is housed in a 5 mm tinted non-diffused plastic package. The small viewing angle of these devices provides a high brightness.

Several selection types with different luminous intensities are offered. All LEDs are categorized in luminous intensity groups. The green and yellow LEDs are categorized additionally in wavelength groups.

That allows users to assemble LEDs with uniform appearance.

PRODUCT GROUP AND PACKAGE DATA

Product group: LEDPackage: 5 mm

Product series: standard
Angle of half intensity: ± 14°

FEATURES

- · Choice of three bright colors
- Standard T-1¾ package
- Small mechanical tolerances
- · Suitable for DC and high peak current
- Small viewing angle
- · Luminous intensity categorized
- · Yellow and green color categorized
- TLH.620. without stand-offs
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

RoHS

HALOGEN FREE

GREEN (5-2008)

APPLICATIONS

- · Status lights
- Off/on indicator
- · Background illumination
- Readout lights
- Maintenance lights
- · Legend light

PARTS TABLE														
PART	COLOR	LUMINOUS INTENSITY (mcd)		at I _F	WAVELENGTH (nm)		at I _F	FORWARD VOLTAGE (V)		at I _F (mA)	TECHNOLOGY			
		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		
TLHR6200-CS12	Red	10	50	-	10	612	-	630	10	-	2	3	20	GaAsP on GaP
TLHR6205	Red	25	70	-	10	612	-	630	10	-	2	3	20	GaAsP on GaP
TLHY6200-CS12Z	Yellow	10	50	-	10	581	-	594	10	-	2.4	3	20	GaAsP on GaP
TLHG6200	Green	16	40	-	10	562	-	575	10	-	2.4	3	20	GaP on GaP
TLHG6200-CS12	Green	16	40	-	10	562	-	575	10	-	2.4	3	20	GaP on GaP

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25 °C, unless otherwise specified)

ILHK620., ILHY620.							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Reverse voltage		V_{R}	6	V			
DC forward current	T _{amb} ≤ 65 °C	I _F	30	mA			
Surge forward current	t _p ≤ 10 μs	I _{FSM}	1	А			
Power dissipation	T _{amb} ≤ 65 °C	P _V	100	mW			
Junction temperature		T _j	100	°C			
Operating temperature range		T _{amb}	-40 to +100	°C			
Storage temperature range		T _{stg}	-55 to +100	°C			
Soldering temperature	$t \le 5$ s, 2 mm from body	T _{sd}	260	°C			
Thermal resistance junction-to-ambient		R _{thJA}	350	K/W			

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}\text{C}$, unless otherwise specified) TLHR620., RED							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	Ι 10 m Λ	TLHR6200	I _V	10	50	-	mcd
	I _F = 10 mA	TLHR6205	I _V	25	70	-	
Dominant wavelength	I _F = 10 mA		λ_{d}	612	-	630	nm
Peak wavelength	I _F = 10 mA		λ_{p}	-	635	-	nm
Angle of half intensity	I _F = 10 mA		φ	-	± 14	-	0
Forward voltage	I _F = 20 mA		V_{F}	-	2	3	V
Reverse voltage	I _R = 10 μA		V_R	6	15	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		C _j	-	50	-	pF

OPTICAL AND ELECTRICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified) TLHY620., YELLOW

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 10 mA	TLHY6200	l _V	10	50	-	mcd
Dominant wavelength	I _F = 10 mA		λ_{d}	581	-	594	nm
Peak wavelength	I _F = 10 mA		λ_{p}	-	585	-	nm
Angle of half intensity	I _F = 10 mA		φ	-	± 14	-	0
Forward voltage	$I_F = 20 \text{ mA}$		V_{F}	ı	2.4	3	V
Reverse voltage	$I_R = 10 \mu A$		V_R	6	15	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		C _j	-	50	-	pF

Note

 $^{^{(1)}~}$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}C$, unless otherwise specified) TLHG620., GREEN							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 10 mA	TLHG6200	I _V	16	40	-	mcd
Dominant wavelength	I _F = 10 mA		λ_{d}	562	-	575	nm
Peak wavelength	I _F = 10 mA		λ_{p}	=	565	-	nm
Angle of half intensity	I _F = 10 mA		φ	=	± 14	-	0
Forward voltage	I _F = 20 mA		V_{F}	-	2.4	3	V
Reverse voltage	I _R = 10 μA		V_R	6	15	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		C _i	_	50	-	pF

⁽¹⁾ In one packing unit $I_{Vmin.}/I_{Vmax.} \le 0.5$

⁽¹⁾ In one packing unit $I_{Vmin.}/I_{Vmax.} \le 0.5$

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

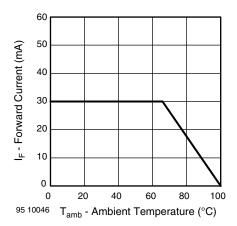


Fig. 1 - Forward Current vs. Ambient Temperature

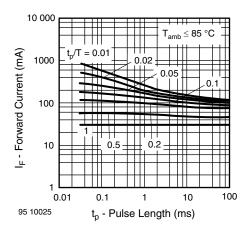


Fig. 2 - Forward Current vs. Pulse Length

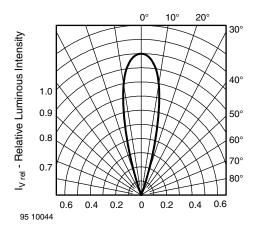


Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

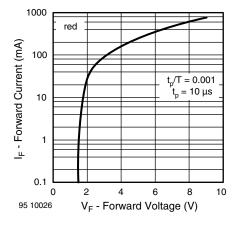


Fig. 4 - Forward Current vs. Forward Voltage

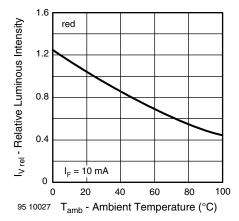


Fig. 5 - Relative Luminous Intensity vs. Ambient Temperature

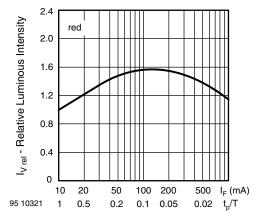


Fig. 6 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

Vishay Semiconductors

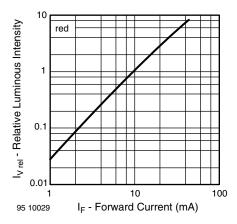


Fig. 7 - Relative Luminous Intensity vs. Forward Current

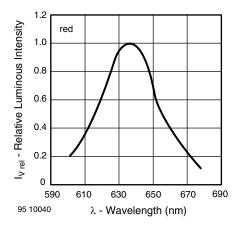


Fig. 8 - Relative Intensity vs. Wavelength

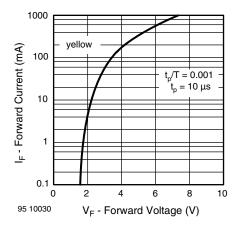


Fig. 9 - Forward Current vs. Forward Voltage

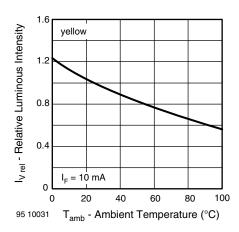


Fig. 10 - Relative Luminous Intensity vs. Ambient Temperature

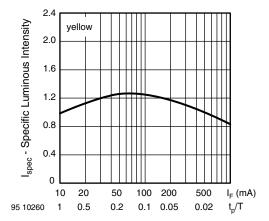


Fig. 11 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

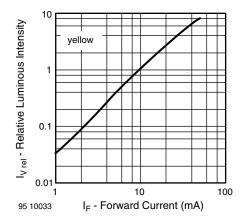


Fig. 12 - Relative Luminous Intensity vs. Forward Current

Vishay Semiconductors

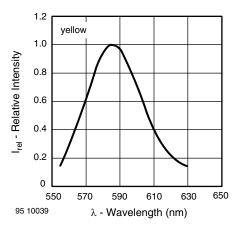


Fig. 13 - Relative Intensity vs. Wavelength

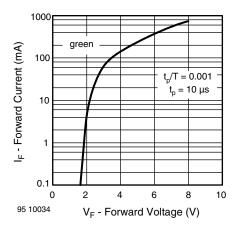


Fig. 14 - Forward Current vs. Forward Voltage

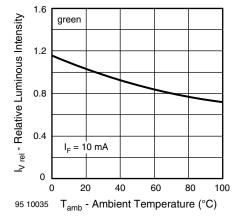


Fig. 15 - Relative Luminous Intensity vs. Ambient Temperature

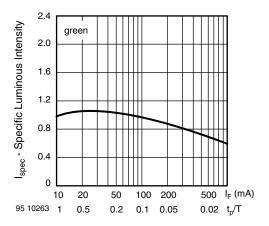


Fig. 16 - Specific Luminous Intensity vs. Forward Current

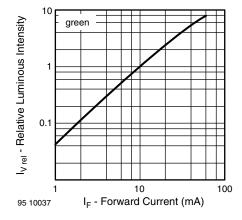
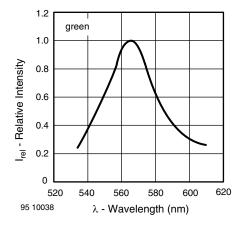
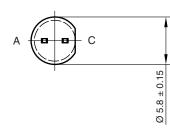
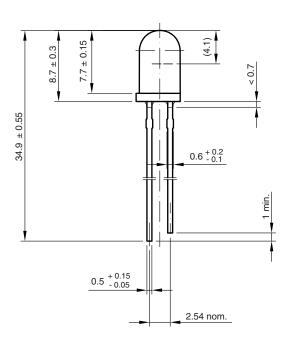


Fig. 17 - Relative Luminous Intensity vs. Forward Current


Fig. 18 - Relative Intensity vs. Wavelength

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

R 2.49 (sphere) Area not plane $Ø5 \pm 0.15$ technical drawings according to DIN specifications $0.5 + 0.15 \\ - 0.05$

6.544-5259.01-4 Issue: 4; 19.05.09 96 12123

REEL

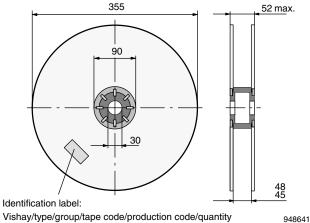


Fig. 19 - Reel Dimensions

TAPE

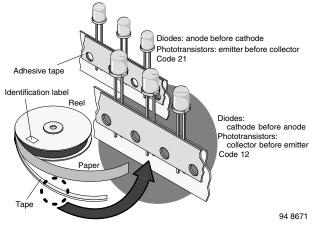


Fig. 20 - LED in Tape

AS12 = cathode leaves tape first AS21 = anode leaves tape first

Vishay Semiconductors

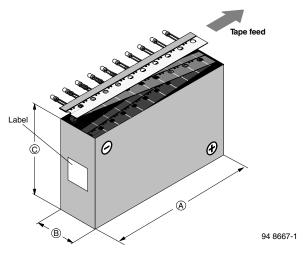
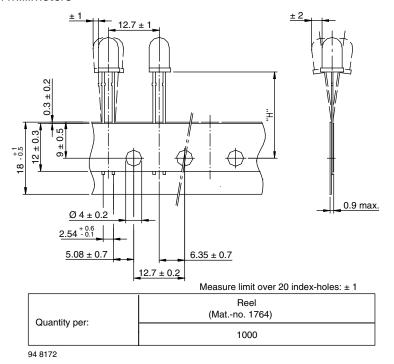



Fig. 21 - Tape Direction

Note

The new nomenclature for ammopack is e.g. ASZ only, without suffix for the LED orientation. The carton box has to be turned to the desired
position: "+" for anode first, or "-" for cathode first. AS12Z and AS21Z are still valid for already existing types, BUT NOT FOR NEW DESIGN

TAPE DIMENSIONS in millimeters

Option	Dim. "H" ± 0.5 mm
CS	22.0

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

TLHR6200 TLHY6200