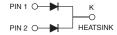


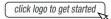
www.vishay.com

Vishay General Semiconductor

COMPLIANT


HALOGEN

**FREE** 


# **Surface-Mount ESD Capability Rectifier**



### SlimDPAK (TO-252AE)



### **DESIGN SUPPORT TOOLS**





| PRIMARY CHARACTERISTICS                                          |                            |  |  |  |  |
|------------------------------------------------------------------|----------------------------|--|--|--|--|
| I <sub>F(AV)</sub>                                               | 2 x 2 A                    |  |  |  |  |
| $V_{RRM}$                                                        | 100 V, 200 V, 400 V, 600 V |  |  |  |  |
| I <sub>FSM</sub>                                                 | 36 A                       |  |  |  |  |
| V <sub>F</sub> at I <sub>F</sub> = 2 A (T <sub>A</sub> = 125 °C) | 0.92 V                     |  |  |  |  |
| T <sub>J</sub> max.                                              | 175 °C                     |  |  |  |  |
| Package                                                          | SlimDPAK (TO-252AE)        |  |  |  |  |
| Circuit configuration                                            | Common cathode             |  |  |  |  |

### **FEATURES**

- Very low profile typical height of 1.3 mm
- Ideal for automated placement
- Oxide planar chip junction
- Low forward voltage drop
- ESD capability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified available
  - Automotive ordering code: base P/NHM3
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912"><u>www.vishay.com/doc?99912</u></a>

### TYPICAL APPLICATIONS

General purpose, power line polarity protection, in both industry and automotive applications.

### **MECHANICAL DATA**

Case: SlimDPAK (TO-252AE)

Molding compound meets UL 94 V-0 flammability rating

Base P/N-M3 - halogen-free, RoHS-compliant

Base P/NHM3 - halogen-free, RoHS-compliant, and

AEC-Q101 qualified

**Terminals:** matte tin plated leads, solderable per J-STD-002 and JESD 22-B102, M3 and HM3 suffix meets JESD 201 class 2 whisker test

| MAXIMUM RATINGS (T <sub>A</sub> = 25 °C unless otherwise noted)                    |  |                                   |             |          |          |          |      |
|------------------------------------------------------------------------------------|--|-----------------------------------|-------------|----------|----------|----------|------|
| PARAMETER                                                                          |  | SYMBOL                            | SE40PWBC    | SE40PWDC | SE40PWGC | SE40PWJC | UNIT |
| Device marking code                                                                |  |                                   | SE40PWBC    | SE40PWDC | SE40PWGC | SE40PWJC |      |
| Maximum repetitive peak reverse voltage                                            |  | $V_{RRM}$                         | 100         | 200      | 400      | 600      | V    |
| Maximum average forward rectified current (fig. 1) per device per diode            |  | ı (1)                             | 4           |          |          |          | Α    |
|                                                                                    |  | I <sub>F(AV)</sub> <sup>(1)</sup> | 2           |          |          |          |      |
| Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load |  | I <sub>FSM</sub>                  | 36          |          |          |          | Α    |
| Operating junction and storage temperature range                                   |  | T <sub>J</sub> , T <sub>STG</sub> | -55 to +175 |          |          |          | °C   |

#### Note

(1) With infinite heatsink



www.vishay.com

# Vishay General Semiconductor

| <b>ELECTRICAL CHARACTERISTICS</b> (T <sub>A</sub> = 25 °C unless otherwise noted) |                                                                     |                          |                               |      |      |      |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|-------------------------------|------|------|------|--|
| PARAMETER                                                                         | TEST CONDITIONS                                                     |                          | SYMBOL                        | TYP. | MAX. | UNIT |  |
| Maximum Instantaneous forward voltage                                             | I <sub>F</sub> = 1.0 A                                              | - T <sub>A</sub> = 25 °C | V <sub>F</sub> <sup>(1)</sup> | 0.94 | -    | V    |  |
|                                                                                   | I <sub>F</sub> = 2.0 A                                              |                          |                               | 1.01 | 1.10 |      |  |
|                                                                                   | I <sub>F</sub> = 1.0 A                                              | T <sub>A</sub> = 125 °C  |                               | 0.84 | -    |      |  |
|                                                                                   | I <sub>F</sub> = 2.0 A                                              |                          |                               | 0.92 | 1.01 |      |  |
| Reverse current                                                                   | Rated V <sub>R</sub>                                                | T <sub>A</sub> = 25 °C   | I <sub>R</sub> <sup>(2)</sup> | -    | 10   | μA   |  |
| neverse current                                                                   | nateu v <sub>R</sub>                                                | T <sub>A</sub> = 125 °C  |                               | 12   | 150  |      |  |
| Typical reverse recovery time                                                     | $I_F = 0.5 \text{ A}, I_R = 1.0 \text{ A}, I_{rr} = 0.25 \text{ A}$ |                          | t <sub>rr</sub>               | 1500 | -    | ns   |  |
| Typical junction capacitance                                                      | 4.0 V, 1 MHz                                                        |                          | CJ                            | 14   | -    | pF   |  |

#### **Notes**

 $^{(1)}$  Pulse test: 300  $\mu s$  pulse width, 1 % duty cycle

(2) Pulse test: pulse width  $\leq$  40 ms

| THERMAL CHARACTERISTICS (T <sub>A</sub> = 25 °C unless otherwise noted) |                                    |  |      |  |  |      |
|-------------------------------------------------------------------------|------------------------------------|--|------|--|--|------|
| PARAMETER SYMBOL SE40PWBC SE40PWDC SE40PWGC SE40PWJC UN                 |                                    |  |      |  |  | UNIT |
| Typical thermal resistance per device                                   | R <sub>θJA</sub> <sup>(1)(2)</sup> |  | °C/W |  |  |      |
| Typical trieffial resistance per device                                 | R <sub>0JM</sub> (3)               |  | C/VV |  |  |      |

#### **Notes**

- (1) The heat generated must be less than thermal conductivity from junction-to-ambient:  $dP_D/dT_J < 1/R_{\theta JA}$
- $^{(2)}$  Free air, mounted on recommended copper pad area; thermal resistance  $R_{\theta JA}$  junction to ambient
- <sup>(3)</sup> Mounted on infinite heat sink; thermal resistance  $R_{\theta JM}$  junction-to-mount

| IMMUNITY TO ELECTRICAL STATIC DISCHARGE TO THE FOLLOWING STANDARDS ( $T_A = 25~^{\circ}\text{C}$ unless otherwise noted) |                                 |                                               |                |     |        |  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|----------------|-----|--------|--|
| STANDARD TEST TYPE TEST CONDITIONS SYMBOL CLASS VAL                                                                      |                                 |                                               |                |     | VALUE  |  |
| AEC-Q101-001                                                                                                             | Human body model (contact mode) | $C = 100 \text{ pF}, R = 1.5 \text{ k}\Omega$ | V <sub>C</sub> | НЗВ | > 8 kV |  |

| ORDERING INFORMATION (Example) |                 |                        |               |                                    |  |  |
|--------------------------------|-----------------|------------------------|---------------|------------------------------------|--|--|
| PREFERRED P/N                  | UNIT WEIGHT (g) | PREFERRED PACKAGE CODE | BASE QUANTITY | DELIVERY MODE                      |  |  |
| SE40PWJC-M3/I                  | 0.20            | 1                      | 4500          | 13" diameter plastic tape and reel |  |  |
| SE40PWJCHM3/I (1)              | 0.20            | I                      | 4500          | 13" diameter plastic tape and reel |  |  |

### Note

(1) AEC-Q101 qualified

# Vishay General Semiconductor

## **RATINGS AND CHARACTERISTICS CURVES** (T<sub>A</sub> = 25 °C unless otherwise noted)

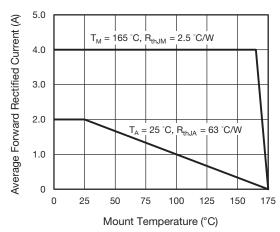



Fig. 1 - Maximum Forward Current Derating Curve

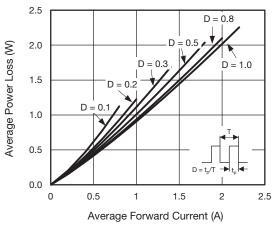



Fig. 2 - Forward Power Loss Characteristics

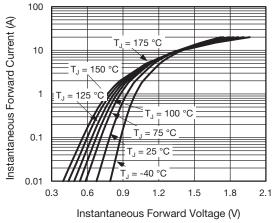



Fig. 3 - Typical Instantaneous Forward Characteristics

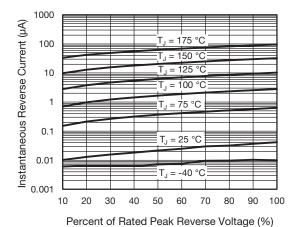



Fig. 4 - Typical Reverse Leakage Characteristics

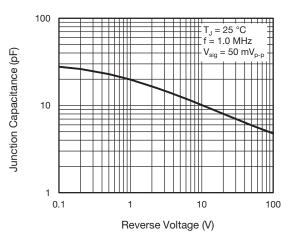
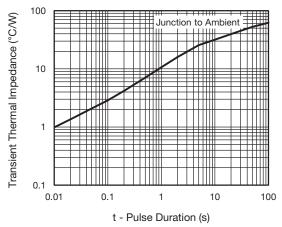
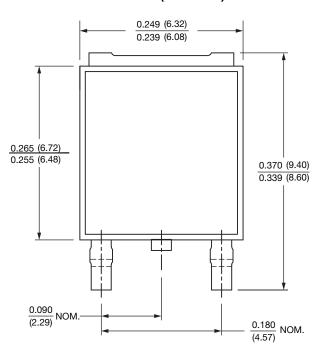
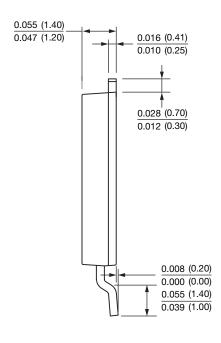


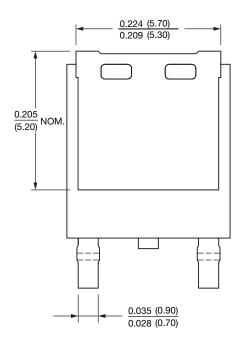

Fig. 5 - Typical Junction Capacitance

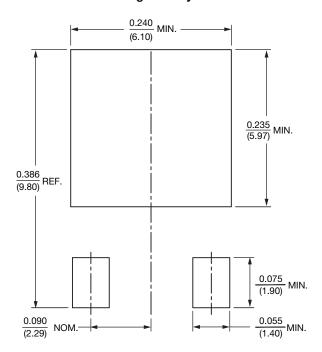




Fig. 6 - Typical Transient Thermal Impedance


Vishay General Semiconductor

## **PACKAGE OUTLINE DIMENSIONS** in inches (millimeters)


www.vishay.com


### SlimDPAK (TO-252AE)





### **Mounting Pad Layout**







## **Legal Disclaimer Notice**

Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## Vishay:

SE40PWBCHM3/I SE40PWBC-M3/I SE40PWDCHM3/I SE40PWDC-M3/I SE40PWGCHM3/I SE40PWGC-M3/I SE40PWJC-M3/I