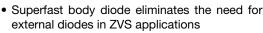

IRFP21N60L

Vishay Siliconix



Power MOSFET

PRODUCT SUMMA	RY		
V _{DS} (V)	600		
R _{DS(on)} (Ω)	V _{GS} = 10 V	0.27	
Q _g (max.) (nC)	150)	
Q _{gs} (nC)	46		
Q _{gd} (nC)	64		
Configuration	Sing	le	

FEATURES

- Lower gate charge results in simple drive RoHS
 Available
- Enhanced dV/dt capabilities offer improved ruggedness
- Higher gate voltage threshold offers improved noise immunity
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

APPLICATIONS

- Zero voltage switching SMPS
- · Telecom and server power supplies
- Uninterruptible power supply
- Motor control applications

ORDERING INFORMATION	
Package	TO-247AC
Lead (Pb)-free	IRFP21N60LPbF

PARAMETER			SYMBOL	LIMIT	UNIT
Drain-source voltage			V _{DS}	600	v
Gate-source voltage			V _{GS}	± 30	v
Continuous drain current	V _{GS} at 10 V	T _C = 25 °C	1	21	
Continuous drain current	V _{GS} at 10 V	T _C = 100 °C	I _D	13	Α
Pulsed drain current ^a			I _{DM}	84	
Linear derating factor				2.6	W/°C
Single pulse avalanche energy ^b			E _{AS}	420	mJ
Repetitive Avalanche Current ^a			I _{AR}	21	А
Repetitive Avalanche Energy ^a			E _{AR}	33	mJ
Maximum power dissipation	T _C = 25 °C		PD	330	W
Peak diode recovery dV/dt ^c			dV/dt	16	V/ns
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +150	°C
Soldering recommendations (peak temperature) ^d	for 10 s			300 ^d	U
Mounting torque	6.00 or M0.			10	lbf · in
Mounting torque	6-32 or M3 screw			1.1	N · m

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Starting T_J = 25 °C, L = 1.9 mH, R_g = 25 Ω , I_{AS} = 21 A, dV/dt = 11 V/ns (see fig. 12a)

c. $I_{SD} \le 21$ A, dI/dt ≤ 530 A/µs, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C

d. 1.6 mm from case

S22-0045-Rev. C, 24-Jan-2022

1

www.vishay.com

Vishay Siliconix

THERMAL RESISTANCE RAT	INGS			
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum junction-to-ambient	R _{thJA}	-	40	
Case-to-sink, flat, greased surface	R _{thCS}	0.24	-	°C/W
Maximum junction-to-case (drain)	R _{thJC}	-	0.38	

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static	•	•					
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 V, I_D =$	= 250 μA	600	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Reference to	25 °C, I _D = 1 mA	-	420	-	mV/°C
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D$	= 250 μA	3.0	-	5.0	V
Gate-source leakage	I _{GSS}	$V_{GS} = \pm 30 \text{ V}$		-	-	± 100	nA
Zava acto voltago droin ourrent	1	V _{DS} = 600 V, V	/ _{GS} = 0 V	-	-	50	μA
Zero gate voltage drain current	IDSS	V _{DS} = 480 V, V	/ _{GS} = 0 V, T _J = 125 °C	-	-	2.0	mA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 13 A ^b	-	0.27	0.32	Ω
Forward transconductance	9 _{fs}	$V_{DS} = 50 \text{ V}, \text{ I}_{D}$	= 13 A	11	-	-	S
Dynamic					-		
Input capacitance	C _{iss}	V _{GS} = 0 V,		-	4000	-	
Output capacitance	C _{oss}	$V_{DS} = 25 V,$		-	340	-	
Reverse transfer capacitance	C _{rss}	f = 1.0 MHz, s	ee fig. 5	-	29	-	pF
	C _{oss} eff.	$V_{GS} = 0 V,$		-	170	-	
Output capacitance	C _{oss} eff. (ER)	$V_{DS} = 0 V \text{ to } 4$	80 V ^c	-	130	-	
Total gate charge	Qg			-	-	150	
Gate-source charge	Q _{gs}	V _{GS} = 10 V	$I_D = 21$ A, $V_{DS} = 480$ V see fig. 7 and 15 ^b	-	-	46	nC
Gate-drain charge	Q _{gd}		See lig. 7 and 15	-	-	64	
Gate resistance	Rg	f = 1 MHz, op	en drain	-	0.63	-	Ω
Turn-on delay time	t _{d(on)}			-	20	-	
Rise time	t _r	$V_{DD} = 300 V, I$		-	58	-	
Turn-off delay time	t _{d(off)}	$R_g = 1.3 \Omega, V_0$ see fig. 11a a	_{3S} = 10 v, nd 11b ^b	-	33	-	ns
Fall time	t _f			-	10	-	
Drain-Source Body Diode Characteristics							
Continuous source-drain diode current	IS	MOSFET sym showing the		-	-	21	Α
Pulsed diode forward current ^a	I _{SM}	integral revers p - n junction		-	-	84	
Body diode voltage	V _{SD}	T _J = 25 °C, I _S	= 21 A, V _{GS} = 0 V ^b	-	-	1.5	V
		T _J = 25 °C, I _F	= 21 A	-	160	240	
Body diode reverse recovery time	t _{rr}	T _J = 125 °C, c	ll/dt = 100 A/µs ^b	-	400	610	ns
		T _J = 25 °C, I _F	= 21 A, V _{GS} = 0 V ^b	-	480	730	
Body diode reverse recovery time	Q _{rr}	-	II/dt = 100 A/µs ^b	-	1540	2310	nC
Reverse recovery time	I _{RRM}	T _J = 25 °C		-	5.3	7.9	А
Forward turn-on time	t _{on}	Intrinsic turn-	on time is negligible (turn-or	is domina	ated by L	and Ln)	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Pulse width $\leq 300~\mu s;~duty~cycle \leq 2~\%$

c. C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising form 0 % to 80 % V_{DS} C_{oss} eff. (ER) is a fixed capacitance that stores the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS}

2

IRFP21N60L

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

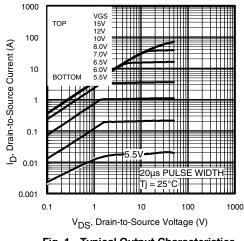


Fig. 1 - Typical Output Characteristics

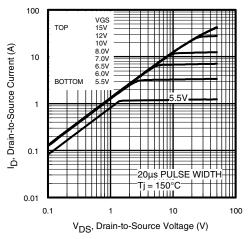


Fig. 2 - Typical Output Characteristics

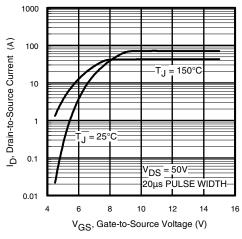


Fig. 3 - Typical Transfer Characteristics

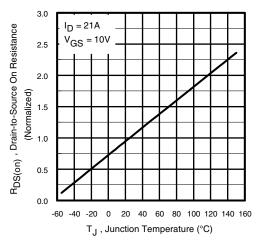


Fig. 4 - Normalized On-Resistance vs. Temperature

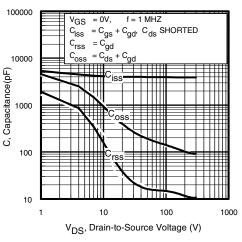


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

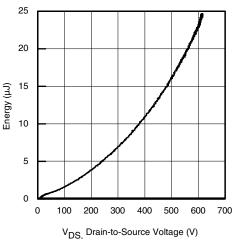


Fig. 6 - Typical Output Capacitance Stored Energy vs. V_{DS}

S22-0045-Rev. C, 24-Jan-2022

3 al questions contact: hym@vist Document Number: 91206

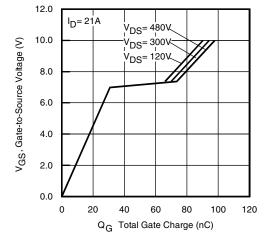


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

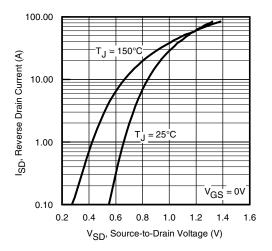


Fig. 8 - Typical Source-Drain Diode Forward Voltage

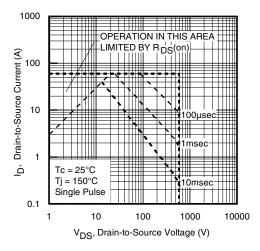


Fig. 9 - Maximum Safe Operating Area

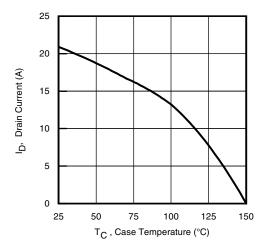


Fig. 10 - Maximum Drain Current vs. Case Temperature

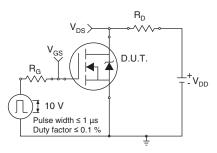


Fig. 11a - Switching Time Test Circuit

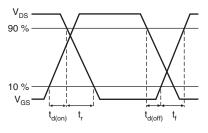
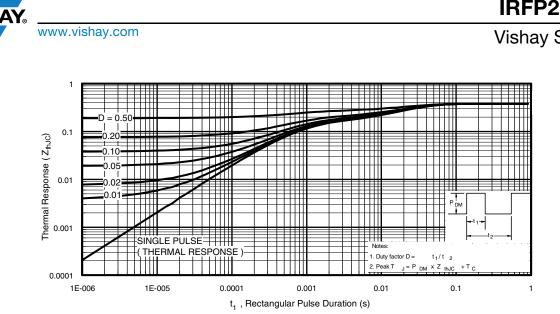



Fig. 11b - Switching Time Waveforms

IRFP21N60L

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

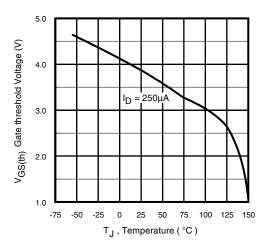


Fig. 13 - Threshold Voltage vs. Temperature

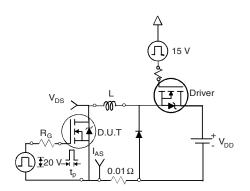


Fig. 14b - Unclamped Inductive Test Circuit

800 (J L ^{I}D 700 TOP 94A Single Pulse Avalanche Energy 13A 600 BOTTOM 21A 500 400 300 200 EAS , 100 0 25 50 75 100 125 150 Starting T $_{J}$, Junction Temperature (°C)

Fig. 14a - Maximum Avalanche Energy vs. Drain Current

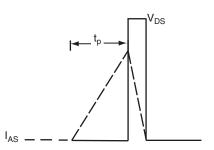


Fig. 14c - Unclamped Inductive Waveforms

5

Document Number: 91206

For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

IRFP21N60L

Vishay Siliconix

IRFP21N60L

Vishay Siliconix

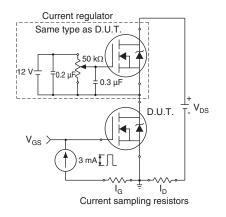


Fig. 15a - Gate Charge Test Circuit

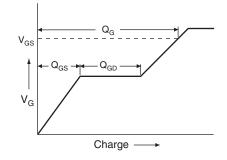
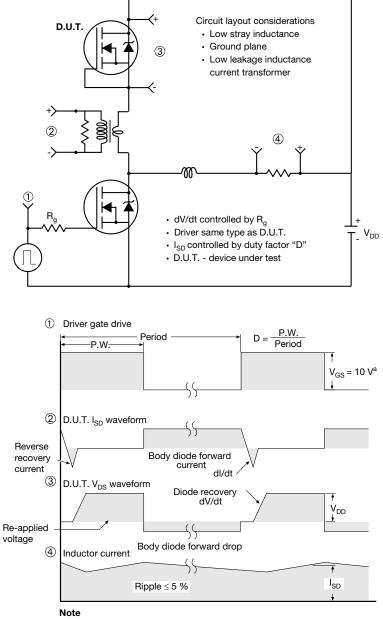
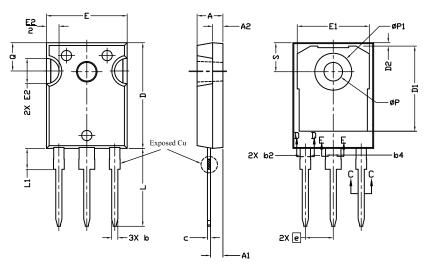



Fig. 15b - Basic Gate Charge Waveform

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices


Fig. 16 - For N-Channel

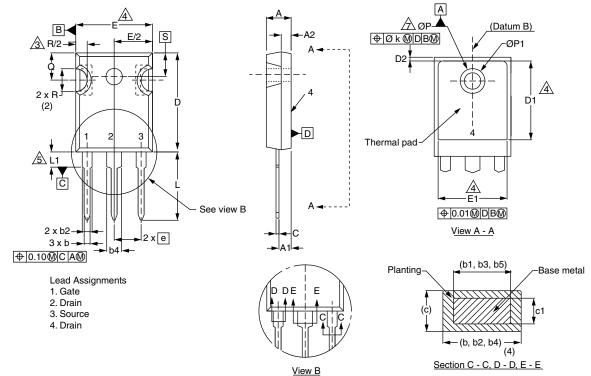
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91206.

TO-247AC (High Voltage)

VERSION 1: FACILITY CODE = 9

Section C--C, D--D, E--E

	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
А	4.83	5.21	
A1	2.29	2.55	
A2	1.50	2.49	
b	1.12	1.33	
b1	1.12	1.28	
b2	1.91	2.39	6
b3	1.91	2.34	
b4	2.87	3.22	6, 8
b5	2.87	3.18	
С	0.55	0.69	6
c1	0.55	0.65	
D	20.40	20.70	4

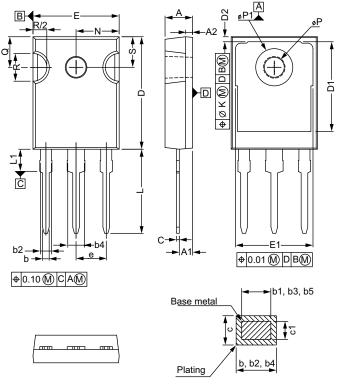

	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
D1	16.25	16.85	5
D2	0.56	0.76	
E	15.50	15.87	4
E1	13.46	14.16	5
E2	4.52	5.49	3
е	5.44	BSC	
L	14.90	15.40	
L1	3.96	4.16	6
ØP	3.56	3.65	7
Ø P1	7.19	7.19 ref.	
Q	5.31	5.69	
S	5.54	5.74	

Notes

- ⁽¹⁾ Package reference: JEDEC[®] TO247, variation AC
- (2) All dimensions are in mm
- ⁽³⁾ Slot required, notch may be rounded
- ⁽⁴⁾ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁵⁾ Thermal pad contour optional with dimensions D1 and E1
- (6) Lead finish uncontrolled in L1
- (7) Ø P to have a maximum draft angle of 1.5° to the top of the part with a maximum hole diameter of 3.91 mm
- (8) Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition

VERSION 2: FACILITY CODE = Y

	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
A	4.58	5.31	
A1	2.21	2.59	
A2	1.17	2.49	
b	0.99	1.40	
b1	0.99	1.35	
b2	1.53	2.39	
b3	1.65	2.37	
b4	2.42	3.43	
b5	2.59	3.38	
с	0.38	0.86	
c1	0.38	0.76	
D	19.71	20.82	
D1	13.08	-	


	MILLIN	IETERS	
DIM.	MIN.	MAX.	NOTES
D2	0.51	1.30	
E	15.29	15.87	
E1	13.72	-	
е	5.46	BSC	
Øk	0.2	254	
L	14.20	16.25	
L1	3.71	4.29	
ØΡ	3.51	3.66	
Ø P1	-	7.39	
Q	5.31	5.69	
R	4.52	5.49	
S	5.51	BSC	

Notes

- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994
- ⁽²⁾ Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1
- ⁽⁵⁾ Lead finish uncontrolled in L1
- ⁽⁶⁾ Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- ⁽⁷⁾ Outline conforms to JEDEC outline TO-247 with exception of dimension c

VERSION 3: FACILITY CODE = N

	MILLIN	IETERS		MILLIN	IETERS
DIM.	MIN.	MAX.	DIM.	MIN.	MAX.
А	4.65	5.31	D2	0.51	1.35
A1	2.21	2.59	E	15.29	15.87
A2	1.17	1.37	E1	13.46	-
b	0.99	1.40	е	5.46	BSC
b1	0.99	1.35	k	0.:	254
b2	1.65	2.39	L	14.20	16.10
b3	1.65	2.34	L1	3.71	4.29
b4	2.59	3.43	N	7.62	BSC
b5	2.59	3.38	Р	3.56	3.66
С	0.38	0.89	P1	-	7.39
c1	0.38	0.84	Q	5.31	5.69
D	19.71	20.70	R	4.52	5.49
D1	13.08	-	S	5.51	BSC

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

⁽²⁾ Contour of slot optional

(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

⁽⁴⁾ Thermal pad contour optional with dimensions D1 and E1

⁽⁵⁾ Lead finish uncontrolled in L1

⁽⁶⁾ Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay: IRFP21N60L