www.vishay.com

Vishay Siliconix

HALOGEN

FREE

10 pA, Ultra Low Leakage and Quiescent Current, Load Switch with Reverse Blocking

DESCRIPTION

The SiP32431 and SiP32432 are ultra low leakage and quiescent current slew rate controlled high side switches with reverse blocking capability. The switches are of a low on resistance p-channel MOSFET that supports continuous current up to 1.4 A.

The SiP32431 and SiP32432 operate with an input voltage from 1.5 V to 5.5 V.

The SiP32431 and SiP32432 feature low input logic level to interface with low control voltage from microprocessors. The SiP32431 is of logic high enable control, while SiP32432 is of logic low enable control. Both devices have a very low operating current, typically 10 pA at 3.3 V power supply.

The SiP32431 and SiP32432 are available in lead (Pb)-free package options including 6 pin SC-70-6, and 4 pin TDFN4 1.2 mm x 1.6 mm DFN4 packages. The operation temperature range is specified from -40 °C to +85 °C.

The SiP32431 and SiP32432 compact package options, operation voltage range, and low operating current make it a good fit for battery power applications.

FEATURES

- 1.5 V to 5.5 V input voltage range
- · No bias power rail required
- Low on-resistance $R_{DS(on)}$, typically 105 m Ω at 5 V and 135 m Ω at 3 V for TDFN4 1.2 mm x 1.6 mm package
- Typical 147 m Ω at 5 V and 178 m Ω at 3 V for SC-70-6 package
- Slew rate controlled turn-on time: 100 μs
- Ultra low leakage and quiescent current:
- V_{IN} quiescent current = 0.01 nA
- V_{IN} shutdown leakage = 0.20 nA
- Reverse blocking capability
- SC-70-6 and TDFN4 1.2 mm x 1.6 mm packages
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- · Wireless sensor network
- Smart meters
- Wearable
- Internet of things
- Portable medical devices
- Security systems
- · Battery powered devices
- Portable Instruments

TYPICAL APPLICATION CIRCUIT

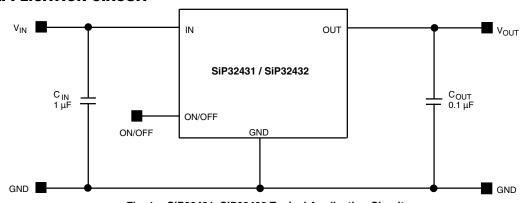


Fig. 1 - SiP32431, SiP32432 Typical Application Circuit

ORDERING INFORMATION								
PART NUMBER	MARKING	ENABLE	PACKAGE	TEMPERATURE RANGE				
SiP32431DR3-T1GE3	MAxx	High enable	SC-70-6					
SiP32432DR3-T1GE3	MDxx	Low enable	30-70-6	-40 °C to +85 °C				
SiP32431DNP3-T1GE4	Dx	High enable	TDFN4 1.2 mm x 1.6 mm	-40 C to +85 C				
SiP32432DNP3-T1GE4	Vx	Low enable						

Notes

• x = lot code

S20-0532-Rev. G, 06-Jul-2020

www.vishay.com

Vishay Siliconix

- · -GE3 denotes halogen-free and RoHS-compliant
- Please use the SiP32431DR3-T1GE3 to replace SiP32431DR3-T1-E3

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		LIMIT	UNIT			
Supply input voltage (V _{IN})	-0.3 to +6					
Enable input voltage (V _{ON/OFF})		-0.3 to +6	V			
Output voltage (V _{OUT})		-0.3 to +6				
Maximum continuous switch current (I	SC-70-6 package	1.2				
Maximum continuous switch current (I _{max.})	TDFN4 1.2 mm x 1.6 mm	1.4	A			
Maximum pulsed current (I _{DM}) V _{IN}	V _{IN} ≥ 2.5 V	3	^			
(pulsed at 1 ms, 10 % duty cycle)	V _{IN} < 2.5 V	1.6				
ESD rating (HBM)		4000	V			
Junction temperature (T _J)		-40 to +125	°C			
They made reciptor as (0)	6 pin SC-70-6 ^b	220	°C AM			
Thermal resistance (θ _{JA}) ^a	4 pin TDFN4 1.2 mm x 1.6 mm ^c	170	°C/W			
Dower discipation (D.)	6 pin SC-70- 6 ^b	250	10/00			
Power dissipation (P _D) ^a	4 pin TDFN4 1.2 mm x 1.6 mm °	324	mW			

Notes

- a. Device mounted with all leads and power pad soldered or welded to PC board
- b. Derate 4.5 mW/ $^{\circ}$ C above $T_A = 70 \, ^{\circ}$ C
- c. Derate 5.9 mW/ $^{\circ}$ C above $T_A = 70$ $^{\circ}$ C, see PCB layout

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating / conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE							
PARAMETER	LIMIT	UNIT					
Input voltage range (V _{IN})	1.5 to 5.5	V					
Operating temperature range	-40 to +85	°C					

www.vishay.com

Vishay Siliconix

SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS SPE $V_{IN} = 5$, $T_A = -40$ °C to +85 °C	CONDITIONS UNLESS SPECIFIED V _{IN} = 5, T _A = -40 °C to +85 °C		LIMITS -40 °C to +85 °C		
		(Typical values are at $T_A = 25$		MIN. a	TYP. b	MAX. a	
Operating voltage c	V _{IN}			1.5	-	5.5	V
Quiescent current		$V_{IN} = 3.3 \text{ V}, V_{on/off} = 3.3 \text{ V}$		-	0.01	100	
Quiescent current	ΙQ	$V_{IN} = 5 \text{ V}, V_{on/off} = 5 \text{ V}$		-	0.05	1000	
Off supply current	1	$V_{IN} = 3.3 \text{ V}, V_{on/off} = 0 \text{ V}, OUT = 0$	open	-	0.01	100	
On supply current	I _{Q(off)}	$V_{IN} = 5 \text{ V}, V_{on/off} = 0 \text{ V}, OUT = 0$	pen	-	-	1000	nA
Off switch current	1	$V_{IN} = 3.3 \text{ V}, V_{on/off} = 0 \text{ V}, OUT =$	1 V	-	0.2	100	
On switch current	I _{SD(off)}	$V_{IN} = 5 \text{ V}, V_{on/off} = 0 \text{ V}, OUT = 0$	0 V	-	-	1000	
Reverse blocking current	I _{RB}	$V_{OUT} = 5.5 \text{ V}, V_{IN} = 0, V_{on/off} = ina$	active	-	130	1000	
		V _{IN} = 5 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 4.2 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 3 V, I _L = 500 mA, T _A = 25 °C - V _{IN} = 4.25 °C -	SC-70-6	-	147	230	
	R _{DS(on)}		TDFN4	-	105	250	
On-resistance			SC-70-6	-	155		mΩ
			TDFN4	-	110		
			SC-70-6	-	178		
			TDFN4 SC-70-6	-	135 275	480	
		$V_{IN} = 1.8 \text{ V}, I_L = 500 \text{ mA}, T_A = 25 ^{\circ}\text{C}$	TDFN4		230		
			SC-70-6	_	395		
		$V_{IN} = 1.5 \text{ V}, I_L = 500 \text{ mA}, T_A = 25 \text{ °C}$	TDFN4	-	350	520	
On-resistance tempcoefficient	TD _{RDS}			-	2800	-	ppm/°C
		$V_{IN} \ge 1.5 \text{ V to} < 1.8 \text{ V}$		-	-	0.3	
On / off input low voltage ^c	V_{IL}	$V_{IN} \ge 1.8 \text{ V to} < 2.7 \text{ V}$	-	-	0.4	1	
		$V_{IN} \ge 2.7 \text{ V to} \le 5.5 \text{ V}$		-	-	0.6	,,
		$V_{IN} \ge 1.5 \text{ V to} < 2.7 \text{ V}$		1.3	-	-	V
On / off input low voltage c	V_{IH}	$V_{IN} \ge 2.7 \text{ V to} < 4.2 \text{ V}$		1.5	-	-	
		$V_{IN} \ge 4.2 \text{ V to} \le 5.5 \text{ V}$		1.8	-	-	1
On / off inner looks are		$V_{on/off} = 3.3 \text{ V}$		-	0.014	100	π Λ
On / off input leakage	I _{ON/OFF}	V _{on/off} = 5.5 V		-	0.042	1000	nA
Output turn-on delay time	t _{d(on)}			-	20	40	
Output turn-on rise time	t _(on)	$V_{IN} = 5 \text{ V}, R_{load} = 10 \Omega, T_A = 25$	°C	-	140	180	μs
Output turn-off delay time	t _{d(off)}			-	4	10	1

Notes

- a. The algebriac convention whereby the most negative value is a minimum and the most positive a maximum
- b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
- c. For V_{IN} outside this range consult typical on / off threshold curve

PIN CONFIGURATION

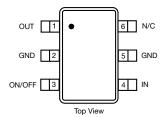


Fig. 2 - SC-70-6 Package

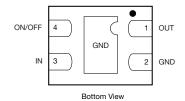
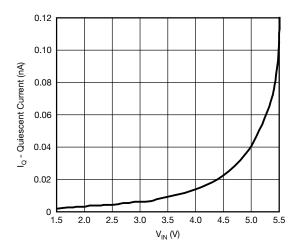


Fig. 3 - TDFN4 1.2 mm x 1.6 mm Package

PIN DESCRIPTION							
PIN NUMBER		NAME	FUNCTION				
SC-70-6	SC-70-6 TDFN4 NAME		FUNCTION				
4	3	IN	This pin is the p-channel MOSFET source connection. Bypass to ground through a 1 µF capacitor				


www.vishay.com

Vishay Siliconix

PIN DES	PIN DESCRIPTION							
PIN NU	IMBER	NAME	FUNCTION					
SC-70-6	TDFN4	INAIVIE	FONCTION					
2, 5	2	GND	Ground connection					
3	4	ON / OFF	Enable input					
1	1	OUT	This pin is the p-channel MOSFET drain connection. Bypass to ground through a 0.1 µF capacitor					

Vishay Siliconix

TYPICAL CHARACTERISTICS (internally regulated, 25 °C, unless otherwise noted)

www.vishay.com

Fig. 4 - Quiescent Current vs. Input Voltage

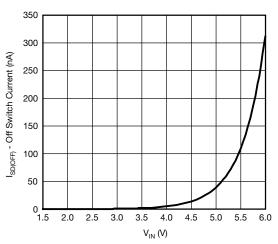


Fig. 5 - Off Switch Current vs. Input Voltage

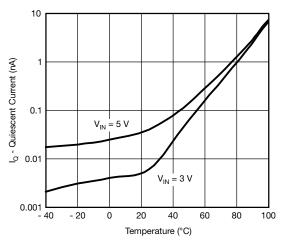


Fig. 6 - Quiescent Current vs. Temperature

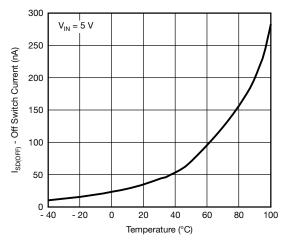


Fig. 7 - Off Switch Current vs. Temperature

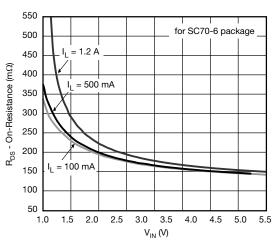


Fig. 8 - $R_{DS(on)}$ vs. V_{IN} for SC-70-6 Package

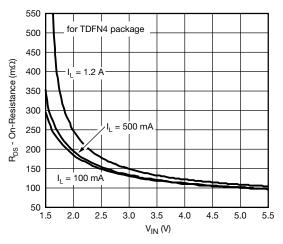
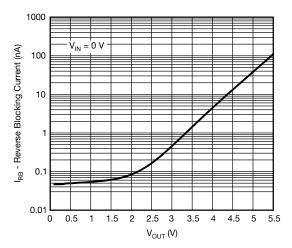



Fig. 9 - R_{DS(on)} vs. Input Voltage

Vishay Siliconix

TYPICAL CHARACTERISTICS (internally regulated, 25 °C, unless otherwise noted)

www.vishay.com

Fig. 10 - Reverse Blocking Current vs. V_{OUT}

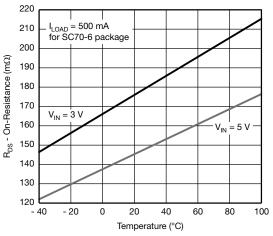


Fig. 11 - R_{DS(on)} vs. Temperature

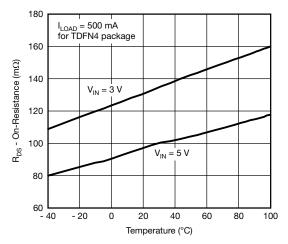


Fig. 12 - R_{DS(on)} vs. Temperature

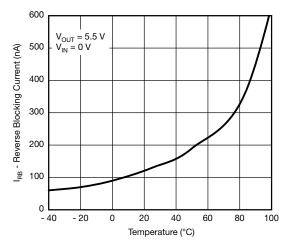


Fig. 13 - Reverse Blocking Current vs. Temperature

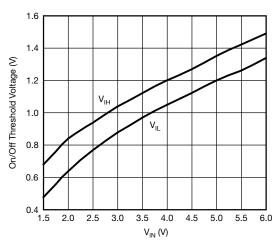


Fig. 14 - On / Off Threshold vs. Input Voltage

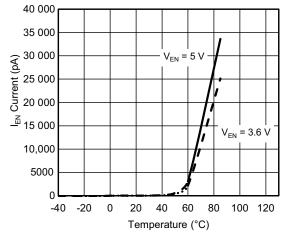


Fig. 15 - I_{EN} Current vs. Temperature

www.vishay.com

Vishay Siliconix

TYPICAL WAVEFORMS

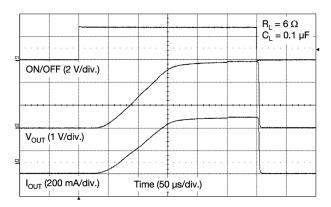


Fig. 16 - Switching (V_{IN} = 3 V)

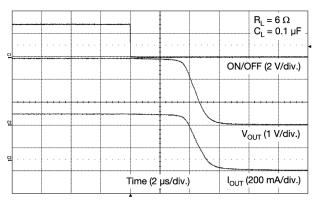


Fig. 18 - Turn-Off $(V_{IN} = 3 V)$

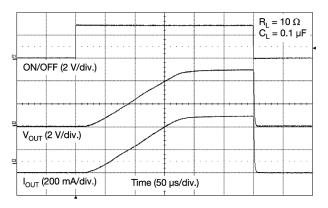


Fig. 17 - Switching $(V_{IN} = 5 V)$

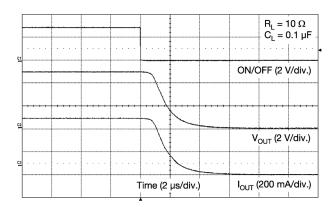


Fig. 19 - Turn-Off $(V_{IN} = 5 V)$

BLOCK DIAGRAM

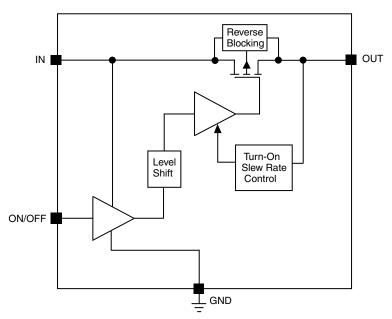


Fig. 20 - Functional Block Diagram

Vishay Siliconix

PCB LAYOUT

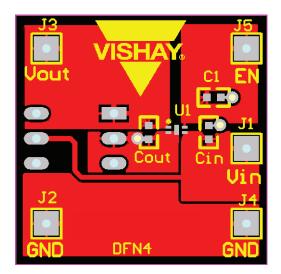


Fig. 21 - Top, TDFN4 1.2 mm x 1.6 mm PCB Layout

DETAILED DESCRIPTION

The SiP32431 and SiP32432 are p-channel MOSFET power switches designed for high-side slew rate controlled load-switching applications. Once turned on, the slew-rate control circuitry is activated and current is ramped in a linear fashion until it reaches the level required for the output load condition. This is accomplished by first elevating the gate voltage of the MOSFET up to its threshold voltage and then by linearly increasing the gate voltage until the MOSFET becomes fully enhanced. At this point, the gate voltage is then quickly increased to the full input voltage to reduce R_{DS(on)} of the MOSFET switch and minimize any associated power losses.

APPLICATION INFORMATION

Input Capacitor

While a bypass capacitor on the input is not required, a 1 μ F or larger capacitor for C_{IN} is recommended in almost all applications. The bypass capacitor should be placed as physically close as possible to the input pin to be effective in minimizing transients on the input. Ceramic capacitors are recommended over tantalum because of their ability to withstand input current surges from low impedance sources such as batteries in portable devices.

Output Capacitor

A 0.1 μ F capacitor or larger across V_{OUT} and GND is recommended to insure proper slew operation. C_{OUT} may be increased without limit to accommodate any load transient condition with only minimal affect on the SiP32431 and SiP32432 turn on slew rate time. There are no ESR or capacitor type requirement.

Enable

The on / off pin is compatible with both TTL and CMOS logic voltage levels.

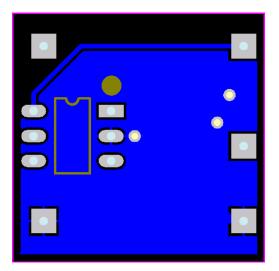


Fig. 22 - Bottom, TDFN4 1.2 mm x 1.6 mm PCB Layout

Protection Against Reverse Voltage Condition

The SiP32431 and SiP32432 contain a body snatcher that normally connects the body to the source (IN) when the device is enabled. In case where the device is disabled but the V_{OUT} is higher than the V_{IN} , the n-type body is switched to out, reverse bias the body diode to prevent the current from going back to the input.

Thermal Considerations

The physical limitations of the layout and assembly of the device limit the maximum current levels as stated in the Absolute Maximum Ratings table. However, another limiting characteristic for the safe operating load current is the thermal power dissipation of the package. To obtain the highest power dissipation, the power pad of the TDFN4 package should be connected to a heat sink on the printed circuit board.

The maximum power dissipation in any application is dependent on the maximum junction temperature, $T_{J\,(max.)}$ = 125 °C, the junction-to-ambient thermal resistance for the TDFN4 1.2 mm x 1.6 mm package, θ_{J-A} = 170 °C/W, and the ambient temperature, T_A , which may be formulaically expressed as:

$$P \text{ (max.)} = \frac{T_{J \text{ (max.)}} - T_{A}}{\theta_{J - A}} = \frac{125 - T_{A}}{170}$$

It then follows that, assuming an ambient temperature of 70 °C, the maximum power dissipation will be limited to about 324 mW.

So long as the load current is below the absolute maximum limits, the maximum continuous switch current becomes a function two things: the package power dissipation and the $R_{DS(on)}$ at the ambient temperature.

As an example let us calculate the worst case maximum load current at $T_A = 70$ °C. The worst case $R_{DS(on)}$ at 25 °C

www.vishay.com

Vishay Siliconix

occurs at an input voltage of 1.5 V and is equal to 520 m Ω . The R_{DS(on)} at 70 °C can be extrapolated from this data using the following formula

 $R_{DS(on)}$ (at 70 °C) = $R_{DS(on)}$ (at 25 °C) x (1 + T_C x ΔT)

Where T_C is 3300 ppm/°C. Continuing with the calculation we have

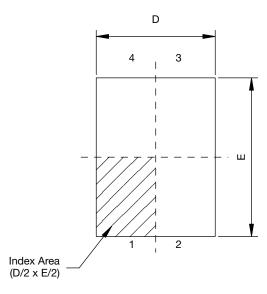
 $R_{DS(on)}$ (at 70 °C) = 520 m Ω x (1 + 0.0033 x (70 °C - 25 °C)) = 597 m Ω

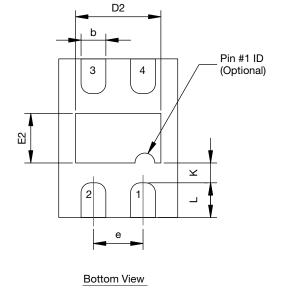
The maximum current limit is then determined by

$$I_{LOAD (max.)} < \sqrt{\frac{P (max.)}{R_{DS(on)}}}$$

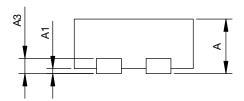
which in case is 0.74 A. Under the stated input voltage condition, if the 0.74 A current limit is exceeded the internal die temperature will rise and eventually, possibly damage the device.

www.vishay.com


Vishay Siliconix


PRODUCT SUMMARY								
Part number	SiP32431DN	SiP32431DR	SiP32432DN	SiP32432DR				
Description	$1.5 \text{ V to } 5.5 \text{ V, } 105$ $\text{m}\Omega$, 10 pA I_{Q} , bidirectional off isolation, EN active high	1.5V to 5.5V , $147 $ $m\Omega$, $10 \text{pA I}_{\text{Q}}$, bidirectional off isolation, EN active high	$1.5~V$ to $5.5~V$, $105~m\Omega$, $10~pA~I_Q$, bidirectional off isolation, EN active low	$1.5~V$ to $5.5~V$, $147~m\Omega$, $10~pA~I_Q$, bidirectional off isolation, EN active low				
Configuration	Single	Single	Single	Single				
Slew rate time (µs)	140	140	140	140				
On delay time (µs)	20	20	20	20				
Input voltage min. (V)	1.5	1.5	1.5	1.5				
Input voltage max. (V)	5.5	5.5	5.5	5.5				
On-resistance at input voltage min. (mΩ)	350	395	350	395				
On-resistance at input voltage max. (m Ω)	105	147	105	147				
Quiescent current at input voltage min. (µA)	0.000002	0.000002	0.000002	0.000002				
Quiescent current at input voltage max. (µA)	0.00004	0.00004	0.00004	0.00004				
Output discharge (yes / no)	No	No	No	No				
Reverse blocking (yes / no)	Yes	Yes	Yes	Yes				
Continuous current (A)	1.4	1.4	1.4	1.4				
Package type	TDFN4	SC-70-6	TDFN4	SC-70-6				
Package size (W, L, H) (mm)	1.2 x 1.6 x 0.5	2.0 x 2.0 x 0.5	1.2 x 1.6 x 0.5	2.0 x 2.0 x 0.5				
Status code	2	2	2	2				
Product type	Slew rate	Slew rate	Slew rate	Slew rate				
Applications	Computers, consumer, industrial, healthcare, networking, portable	Computers, consumer, industrial, healthcare, networking, portable	Computers, consumer, industrial, healthcare, networking, portable	Computers, consumer, industrial, healthcare, networking, portable				

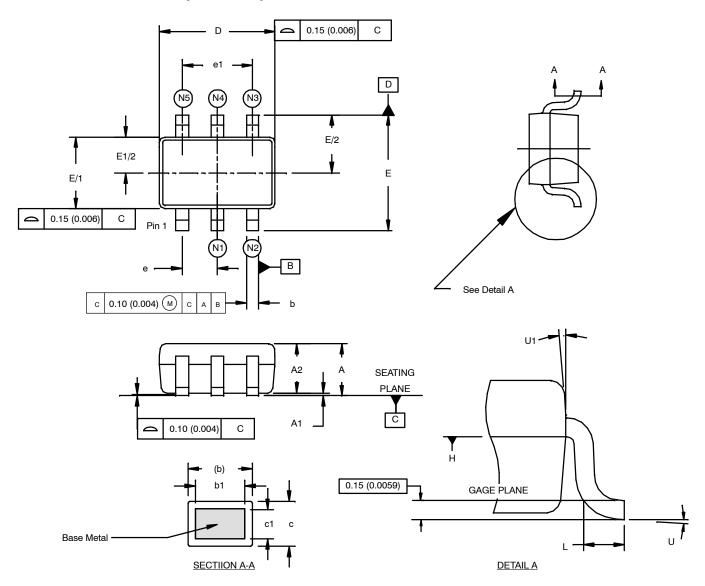
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg266597.



TDFN4 1.2 x 1.6 Case Outline

Top View

Side View


DIM.		MILLIMETERS			INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.45	0.55	0.60	0.017	0.022	0.024		
A1	0.00	-	0.05	0.00	-	0.002		
A3	0.	15 REF. or 0.127 REF	. (1)		0.006 or 0.005 ⁽¹⁾			
b	0.20	0.25	0.30	0.008	0.010	0.012		
D	1.15	1.20	1.25	0.045	0.047	0.049		
D2	0.81	0.86	0.91	0.032	0.034	0.036		
е	0.50 BSC			0.020				
Е	1.55	1.60	1.65	0.061	0.063	0.065		
E2	0.45	0.50	0.55	0.018	0.020	0.022		
K		0.25 typ.			0.010 typ.			
L	0.25	0.30	0.35	0.010	0.012	0.014		

Note

⁽¹⁾ The dimension depends on the leadframe that assembly house used.

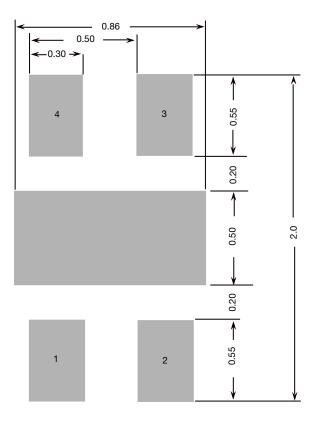
SC-70: 3/4/5/6-LEADS (PIC ONLY)

Pin	LEAD COUNT					
Code	3	4	5	6		
N1	-	_	2	2		
N2	2	2	3	3		
N3	-	3	4	4		
N4	3	_	-	5		
N5	-	4	5	6		

NOTES:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1994.
- 2. Controlling dimensions: millimeters converted to inch dimensions are not necessarily exact.
- Dimension "D" does not include mold flash, protrusion or gate burr. Mold flash, protrusion or gate burr shall not exceed 0.15 mm (0.006 inch) per side.
- 4. The package top shall be smaller than the package bottom. Dimension "D" and "E1" are determined at the outer most extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interlead flash, but including any mismatch between the top and bottom of the plastic body.

Vishay Siliconix


	MILLIMETERS INCHES					
Dim	Min	Nom	Max	Min	Nom	Max
Α	0.80	_	1.10	0.031	-	0.043
A1	0.00	-	0.10	0.000	-	0.004
A2	0.80	0.90	1.00	0.031	0.035	0.040
b	0.15	_	0.30	0.006	-	0.012
b1	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	-	0.25	0.003	-	0.010
с1	0.08	0.13	0.20	0.003	0.005	0.008
D	1.90	2.10	2.15	0.074	0.082	0.084
E	2.00	2.10	2.20	0.078	0.082	0.086
E ₁	1.15	1.25	1.35	0.045	0.050	0.055
е		0.65 BSC			0.0255 BSC	
e ₁	1.30 BSC				0.0512 BSC	
L	0.26	0.36	0.46	0.010	0.014	0.018
U	0°	-	8°	0°	-	8°
U1	4°		10°	4°		10°
ECN: S-42 DWG: 594	145—Rev. A, 1	22-Nov-04				

www.vishay.com Document Number: 73201 2 19-Nov-04

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR TDFN4 1.2 x 1.6

Recommended Minimum Pads Dimensions in mm

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

SIP32431DNP3-T1GE4 SIP32431DR3-T1GE3 SIP32432DNP3-T1GE4 SIP32432DR3-T1GE3