

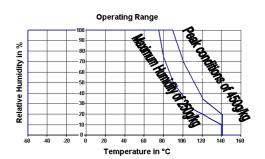
- Miniature Surface mount SMD package
- Lead free component
- Patented solid polymer structure
- Suitable for linear voltage or frequency output circuitry
- Fast response time and very low temperature coefficient

DESCRIPTION

Based on a unique capacitive cell for humidity measurement and a Negative Temperature Coefficient (NTC) thermistor for temperature measurement, this dual-purpose relative humidity / temperature miniaturized sensor is designed for high volume, cost sensitive applications with tight space constraints. It is useful in all applications where dew point, absolute humidity measurements or humidity compensation are required.

FEATURES

APPLICATIONS


- Full interchangeability with no calibration required in standard conditions
- Automotive
- Instantaneous desaturation after long periods in saturation phase
- Home Appliance
- Compatible with automatized assembly processes, including Pb free wave soldering and reflow processes (1)
- Printers
- Individual marking for compliance to stringent traceability requirements
- Meteorology
- · Part may be washed with distilled water
 - (1) Soldering temperature profiles available on request / contact us at humidity.application@meas-spec.com

PERFORMANCE SPECS

MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Operating Temperature	Ta	-60 to 140	C
Storage Temperature	Tstg	-60 to 140	$\mathcal C$
Supply Voltage (Peak)	Vs	10	Vac
Humidity Operating Range	RH	0 to 100	% RH

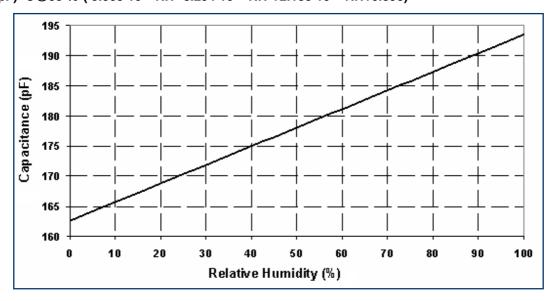
Peak conditions: less than 10% of the operating time.

ELECTRICAL CHARACTERISTICS

(Ta=25℃, measurement frequency @10kHz unless othe rwise noted)

Humidity Characteristics	Symbol	Min	Тур	Max	Unit
Humidity Measuring Range	RH	1		99	%RH
Supply Voltage	Vs			10	V
Nominal Capacitance @55%RH (1)	С	177	180	183	pF
Temperature coefficient	T _{cc}			0.01	pF/℃
Average Sensitivity from 33% to 75%RH	ΔC/%RH		0.31		pF/%RH
Leakage Current (Vcc=5V)	Į.			1	nA
Recovery time after 150 hours of condensation	tr		10		S
Humidity Hysteresis				+/-1	%RH
Long Term Stability	T		+/-0.5		%RH/yr
Time Constant (at 63% of signal, still air) 33%RH to 80%RH	τ		3	5	S
Deviation to typical response curve (10% RH to 90%RH)			+/-2		%RH

(1) Tighter specification available on request


Temperature Characteristics	Symbol	Min	Тур	Max	Unit
Nominal Resistance @25℃	R		10		kΩ
Beta value: B25/100	β	3600	3730	3800	
Temperature Measuring Range	Та	-60		140	C
Nominal Resistance Tolerance @25℃	R _N		2	3	%
Beta Value Tolerance	β		3		%
Response Time	τ		10		S

TYPICAL PERFORMANCE CURVES

HUMIDITY SENSOR

Polynomial Response

C (pF)=C@55 %*($3.903 \cdot 10^{-8} \cdot RH^3 - 8.294 \cdot 10^{-6} \cdot RH^2 + 2.188 \cdot 10^{-3} \cdot RH + 0.898$)

Typical Response Look-Up Table (polynomial reference curve) @10kHz/1V

RH (%)	0	5	10	15	20	25	30	35	40	45	50
Cp (pF)	161.6	163.6	165.4	167.2	169.0	170.7	172.3	173.9	175.5	177.0	178.5
RH (%)	55	60	65	70	75	80	85	90	95	100	
Cp (pF)	180	181.4	182.9	184.3	185.7	187.2	188.6	190.1	191.6	193.1	

Reverse Polynomial Response

RH (%) = -3.4656 10^{+3} *X³+1.0732 10^{+4} *X²-1.0457 10^{+4} *X+3.2459 10^{+3} With X = C(read) / C@55%RH

TEMPERATURE SENSOR

Typical Temperature Output

Depending on the needed temperature measurement range and associated accuracy, we suggest two methods to access to the NTC resistance values.

$$R_T = R_N \times e^{\beta \left(\frac{1}{T} - \frac{1}{T_N}\right)}$$

 R_T NTC resistance in Ω at temperature T in K

 R_N NTC resistance in Ω at rated temperature T in K

T, T_N Temperature in K

β Beta value, material specific constant of NTC

e Base of natural logarithm (e=2.71828)

 \odot The exponential relation only roughly describes the actual characteristic of an NTC thermistor can, however, as the material parameter β in reality also depend on temperature. So this approach is suitable for describing a restricted range around the rated temperature or resistance with sufficient accuracy.

② For practical applications, a more precise description of the real R/T curve may be required. Either more complicated approaches (e.g. the Steinhart-Hart equation) are used or the resistance/temperature relation as given in tabulation form. The below table has been experimentally determined with utmost accuracy for temperature increments of 1 degree.

Actual values may also be influenced by inherent self-heating properties of NTCs. Please refer to MEAS-France/Humirel Application Note HPC106 "Low power NTC measurement".

• Temperature look-up table

Temp	Rout	Max Dev
(℃)	(Ω)	(Ω)
-40	262960	35403
-39	247217	32777
-38	232539	30358
-37	218845	28130
-36	206064	26075
-35	194110	24178
-34	182852	22416
-33	172332	20791
-32	162498	19290
-31	153299	17905
-30	144790	16636
-29	136664	15444
-28	129054	14343
-27	121925	13325
-26	115243	12383
-25	109030	11516
-24	103115	10705
-23	97565	9953
-22	92354	9257
-21	87460	8612
-20	82923	8020
-19	78581	7463
-18	74497	6947
-17	70655	6468
-16	67039	6023
-15	63591	5606
-14	60381	5222
-13	57356	4865
-12	54503	4533
-11	51813	4225
-10	49204	3932
-9	46767	3662
-8	44467	3411
-7	42296	3177
-6	40247	2960
-5	38279	2756
-4	36455	2568
-3	34731	2393
-2	33100	2230
-1	31557	2078

ole		
Temp	Rout	Max Dev
(℃)	(Ω)	(Ω)
0	30029	1932
1	28627	1799
2	27299	1675
3	26042	1560
4	24852	1452
5	23773	1355
6	22708	1261
7	21698	1174
8	20739	1093
9	19829	1017
10	18959	946
11	18128	879
12	17338	817
13	16588	759
14	15876	705
15	15207	654
16	14569	607
17	13962	563
18	13384	522
19	12834	484
20	12280	447
21	11777	413
22	11297	382
23	10840	353
24	10404	325
25	10000	300
26	9600	300
27	9218	300
28	8853	299
29	8506	297
30	8178	296
31	7866	294
32	7568	292
33	7283	290
34	7011	287
35	6734	284
36	6484	281
37	6244	278
38	6015	275
39	5796	271

Temp	Rout	Max Dev
(℃)	(Ω)	(Ω)
40	5575	267
41	5373	264
42	5180	260
43	4995	257
44	4817	253
45	4636	248
46	4473	245
47	4316	241
48	4166	237
49	4021	233
50	3874	229
51	3737	225
52	3606	221
53	3481	217
54	3360	213
55	3237	208
56	3126	204
57	3019	200
58	2917	197
59	2819	193
60	2720	189
61	2629	185
62	2542	182
63	2458	178
64	2378	175
65	2304	171
66	2229	168
67	2158	165
68	2089	161
69	2022	158
70	1960	155
71	1898	152
72	1839	149
73	1782	146
74	1727	143
75	1673	140
76	1622	138
77	1573	135
78	1526	132
79	1480	130

Temp	Rout	Max Dev
(℃)	(Ω)	(Ω)
80	1432	127
81	1390	124
82	1349	122
83	1310	119
84	1272	117
85	1235	115
86	1199	112
87	1163	110
88	1130	108
89	1097	106
90	1067	104
91	1038	102
92	1009	100
93	982	98
94	955	96
95	927	94
96	901	92
97	877	90
98	853	89
99	830	87

Steinhart-Hart coefficients

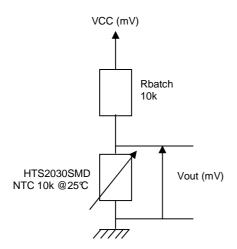
According to the equation below, the Steinhart-Hart coefficients for the operating temperature range for HTS2030SMD thermistor are:

$$\frac{1}{T} = a + b * \ln(R) + C * \ln(R) * \ln(R) * \ln(R)$$

R NTC resistance in Ω at temperature T in K

T Temperature in K

a Constant value (a= 9.94805E-04)


b Constant value (b= 2.46791E-04)

c Constant value (c= 1.10298E-07)

• Temperature Interface circuit

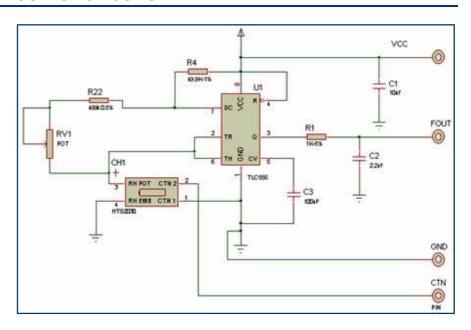
Concerning the temperature sensor of the HTS2030SMD, the following measuring method described below is based on a voltage bridge divider circuit. It uses only one resistor component (Rbatch) at 1% to design HTS2230 temperature sensor interfacing circuit. Rbatch is chosen to be equal to NTC @25°C to get: Vout = Vcc/2 @25°C. There are two proposal configurations: If Rbatch is connected to Vcc and NTC to Ground, it leads to a negative slope characteristic (Pull-Down Configuration). For a positive slope, Rbatch and NTC resistors have to be switched (Pull-Up Configuration).

Pull-Up Configuration

$$V_{OUT}(mV) = \frac{Vcc(mV) * NTC_{HTS2030SMD}(\Omega)}{R_{batch}(\Omega) + NTC_{HTS2030SMD}(\Omega)}$$

Pull-Down Configuration

$$V_{OUT}(mV) = \frac{Vcc(mV) * R_{batch}(\Omega)}{R_{batch}(\Omega) + NTC_{HTS2030SMD}(\Omega)}$$


Temperature conversion: look-up table (Vcc=5Vdc)

Temperature	Resistance	Pull-Up Configuration	Pull-Down Configuration
(℃)	(Ω)	Vout (mV)	Vout (mV)
-40	262960	4817	183
-30	144790	4677	323
-20	82923	4462	538
-10	49204	4155	845
0	30029	3751	1249
10	18959	3273	1727
20	12280	2756	2244
25	10000	2500	2500
30	8178	2249	2751
40	5575	1790	3210
50	3874	1396	3604
60	2720	1069	3931
70	1960	819	4181
80	1432	626	4374
90	1067	482	4518
99	830	383	4617

SUGGESTED FREQUENCY OUTPUT CIRCUITS

CIRCUIT

Note: R22=499k Ω / R4=49.9k Ω /R1=1k Ω / RV1=50k Ω potentiometer/ C1=10nF/C2=2.2nF/C3=100nF

TYPICAL RESPONSE LOOK-UP TABLE (HUMIDITY OUTPUT)

RH (%)	0	5	10	15	20	25	30	35	40	45	50
Fout (Hz)	-	-	7155	7080	7010	6945	6880	6820	6760	6705	6650
RH (%)	55	60	65	70	75	80	85	90	95	100	
Fout (Hz)	6600	6550	6500	6450	6400	6355	6305	6260	6210	-	

QUALIFICATION PROCESS

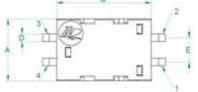
HTS2030SMD sensors have been qualified through a complete qualification process taking in account many of the requirements of the JEDEC standard including:

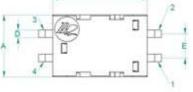
- Solder heat and solderability including lead free process
- Pb free wave soldering and reflow soldering process(260℃) + DI water clean at 45℃
- Mechanical shock JESD-22-B104-A
- Vibration Variable frequency (20 to 2000Hz) JESD-22-B103-A
- Marking permanency
- ESD Electrostatic Discharge Air Gun +-15kV(IEC 1000)
- Salt Atmosphere JESD22-A107-A
- Temperature Cycling 40℃ / +125℃
- High Temperature / Humidity Operating Life 93%RH / 60℃ for 1000 hours
- Low Humidity storage life RH < 10%/23℃ for 1000 hours
- Resistance to immersion in water at ambient temperature and 80℃
- High temperature storage 140℃ for 168 hours
- Resistance to many chemicals linked to home appliances/automotive or consumer applications

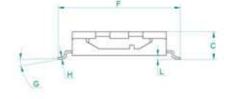
ENVIRONMENTAL AND RECYCLING

HTS2030SMD sensors are lead free components and are compatible with Pb Free soldering processes. HTS2030SMD sensors are free from Cr (6+), Cd and Hg.

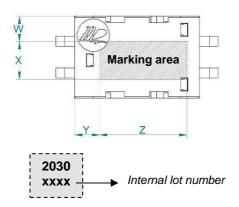
SOLDERING INSTRUCTIONS


We recommend taking specific attention to soldering conditions to get the best performance of MEAS-France/Humirel sensors. See Application Note. To get it, please contact: humirel.application@meas-spec.com


PACKAGE OUTLINE

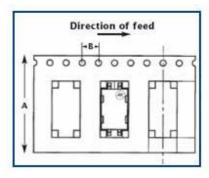

HTS2030SMD GULL WING (JLEAD OPTION ALSO AVAILABLE)

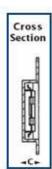
Footprint



Pin Out Assignment

• at 7 toolgillio					
N°	Function				
1	CTN1				
2	CTN2				
3	RH POT				
4	RH EMB				





Dimension	mm
Α	6 ± 0.25
В	10 ± 0.25
C	2.7 ± 0.2
D	0.8 ± 0.1
Е	2.54 ± 0.1
F	13.6 ± 0.1
G	0-10°
Н	0.2 ± 0.05
L	0.15 ± 0.1
W	2± 0.25
X	3± 0.25
Y	2± 0.25
Z	6 ± 0.25

		Α	В	С
Reel Diarneter	Reel Width	Carrier Tape	Carrier Tape Pitch	Carrier Tape Depth
360.mm	30.4.mm	24.mm	4.mm	4mm

ORDERING INFORMATION

HPP804B130: TUBE M.P.Q OF 78 PIECES

HPP804B131: TAPE AND REEL M.P.Q OF 1500 PIECES

HTS2030SMD - TEMPERATURE AND RELATIVE HUMIDITY SENSOR

Sample kit of HTS2030SMD is available through MEASUREMENT SPECIALTIES web site: http://www.meas-spec.com/humidity-sensors.aspx

Customer Service contact details

Measurement Specialties, Inc - MEAS France Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex 3 FRANCE

Tél: +33 (0)5 820 822 02 Fax: +33(0)5 820 821 51

Sales: humidity.sales@meas-spec.com

Revision	Comments	Who	Date
D	Standardized datasheet format	D. LE GALL	April 08
Е	Humidity sensor characteristic drawing updated	D. LE GALL	November 08
F	Package outline paragraph updated	D. LE GALL	June 09
G	Steinhart-Hart equation and temperature interface circuit added, Pinout added	D. LE GALL	July 09
Н	New MEAS template, MEAS-France contact details updated	D. LE GALL-ZIRILLI	October 12

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TE Connectivity: