SAFETY ORGANIZATIONS

THIS FILTER HAS BEEN FORMALLY RECOGNIZED, CERTIFIED OR APPROVED BY THE LISTED AGENCY. THEREFORE, ALL TEST/REDUIREMENTS SPECIFIED IN THE LATEST REVISION OF THE FOLLOWING AGENCY STANDARDS HAVE BEEN MET:

UL RECOGNIZEO: UL 1283 CSA CERTIFIED: CSA C22.2 No. 8 VDE APPROVED: EN 60939-2

OPERATING SPECIFICATIONS

LINE CURRENT/VOLTAGE: 6 AMP, 120/250 VAC, 6 AMP/40°C, 250 VAC

LINE FREGUENCY:

50-60Hz

MAXIMUM LEAKAGE CURRENT,

EACH LINE TO GROUND:

2µA @ 120V 60Hz SuA @ 250V 50Hz

OPERATING AMBIENT TEMP. RANGE: -10°C TO +40°C @ RATED CURRENT, Ir. IN AN AMBIENT, I_0 , HIGHER THAN 40°C, THE MAXIMUM OPERATING CURRENT, I_0 , IS AS FOLLOWS: $I_0 = I_0 - \sqrt{85 - I_0}$ $I_0 = I_r - \sqrt{\frac{85 - T_0}{10}}$

RELIABILITY SPECIFICATIONS:

STORAGE TEMPERATURE: -40°C TO +85°C HUNIDITY: 21 DAYS @ 40°C 95% RH. CURRENT OVERLOAD TEST: 6 TIMES IP FOR 8 SECONDS

CUSTOMER DRAWING CATALOG # PMOSOSL6C ECN # APPRVO, DATE 09-013614 ELC"2" 260CT09

TEST SPECIFICATIONS:

INDUCTANCE: 6.2 mH NONINAL

CAPACITANCE: (NEASUREO @ IKHz, 0.250VAC MAX., 25°C±1°C)

LINE TO GROUND: LINE TO LINE:

N/A

2.0µF ±20%

DISCHARGE RESISTOR:

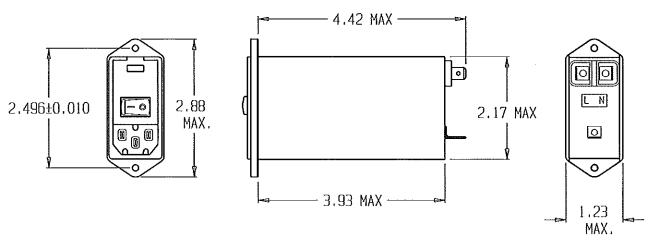
165K A

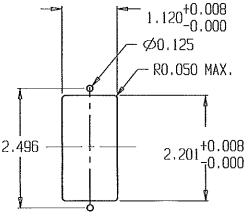
L/G AND L/L I.R.

NO DISCHARGE RESISTOR:

6000MA (MIN.) @ 100VDC,

20°C AND 50% RH


RECOMMENDED RECEIVING INSPECTION HIPDT:


LINE TO GROUND: 1500VAC DR 2250VDC FDR 1 MINUTE

LINE TO LINE; 1450VDC FOR 1 MINUTE

FILTER APPROVAL:

THE BEST WAY TO SELECT AND DUALIFY A FILTER IS FOR YOUR ENGINEERING TO TEST THE UNIT IN YOUR EQUIPMENT.

PANEL CUTOUT

L -		> L
6 <u> </u>	\$ \preceq \frac{\fir}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	 6
N -		N

50~- 50~(MINIMUM) INSERTION LOSS							THIRD ANGLE				
FREGUENCY MHz	.01	, 05	.10	. 15	.50	1.0	5.0	10.0	30.0	PROJECTION UNLESS OTHERWISE SPECIFIED,	<u> </u>
COMMON	8	21	27	29	34	35	25	21	16	TOLERANCE TO BE ±,025 MATERIAL & FINISH: AS SUPPLIED HIS INFORMATION IS CONFIDENTIAL AND PROPRIETARY TO INCO BLECTRONICS CORPORATION AND ITS VOCUME SUBSIDIARIES.	TYC
DIFF. dB	10	15	34	44	75	75	75	70	60	TYTO ELECTRONICS PERSONAL VIOLATION WRITTEN AUTHORIZATION	SEA!
						•		•	•		

Tyco Electronics CURCIN PRODUCTS, 620 S. BUTTERFIRD RD. NINORIEM IL 60060

POWER LINE FILTER

	THEO CLECTION		2-1003103-2		
١,	SCALE: NTC		CATALOG ND.	REV.	
^1	NI2	28MAY08	T		
1	DRW. BY:	DR16:	PMOSOSL6C	I A I	
-	20	ELC	110000000	••	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TE Connectivity: PM0S0SL6C