

IRF150

N-CHANNEL POWER MOSFET

V _{DSS}	100V
I _{D(cont)}	38A
R _{DS(on)}	0.055Ω

FEATURES

- HERMETICALLY SEALED TO-3 METAL PACKAGE
- SIMPLE DRIVE REQUIREMENTS
- SCREENING OPTIONS AVAILABLE

 TO-3 Metal Package

 Pin 1 – Gate
 Pin 2 – Source

Case – Drain

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25^{\circ}C$ unless otherwise stated)

	1 0030			
V _{GS}	Gate – Source Voltage	±20V		
I _D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 25^{\circ}C)$	38A		
I _D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 100^{\circ}C)$	24A		
I _{DM}	Pulsed Drain Current ¹	152A		
PD	Power Dissipation @ $T_{case} = 25^{\circ}C$	150W		
	Linear Derating Factor	1.2W/°C		
E _{AS}	Single Pulse Avalanche Energy ²	150mJ		
I _{AR}	Avalanche Current ²	38A		
E _{AR}	Repetitive Avalanche Energy ²	15mJ		
dv/dt	Peak Diode Recovery ³	5.5V/ns		
T _J , T _{stg}	Operating and Storage Temperature Range	-55 to +150°C		
ΤL	Lead Temperature 1.6mm (0.63") from case for 10 sec.	300°C		

Notes

1) Pulse Test: Pulse Width $\leq 300 \mu s, \, \delta \leq 2 \%$

2) @ V_DD = 50V , L \geq 160 μH , R_G = 25 Ω , Peak I_L = 38A , Starting T_J = 25°C

3) @ I_{SD} \leq 38A , di/dt \leq 300A/µs , V_{DD} \leq BV_{DSS} , T_J \leq 150°C , Suggested R_G = 2.35 Ω

Semelab plc. Telephone (01455) 556565. Telex: 341927. Fax (01455) 552612.

IRF150

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Cond	ditions	Min.	Тур.	Max.	Unit		
	STATIC ELECTRICAL RATINGS	•					-		
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	l _D = 1mA	100			V		
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			0.10		V/°C		
ΔT_{J}	Breakdown Voltage	l _D = 1mA			0.13				
R _{DS(on)}	Static Drain – Source On–State	$V_{GS} = 10V$	l _D = 24A			0.055	Ω		
	Resistance ¹	$V_{GS} = 10V$	l _D = 38A			0.065			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	l _D = 250mA	2		4	V		
9 _{fs}	Forward Transconductance ¹	$V_{DS} \ge 15V$	I _{DS} = 24A	9			S (U)		
	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$			25	μΑ		
DSS			T _J = 125°C			250			
I _{GSS}	Forward Gate – Source Leakage	$V_{GS} = 20V$				100			
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$			-100	n A			
	DYNAMIC CHARACTERISTICS								
C _{iss}	Input Capacitance	$V_{GS} = 0$			3700				
C _{oss}	Output Capacitance	V _{DS} = 25V			1100		pF		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz			200				
Qg	Total Gate Charge	V _{GS} = 10V		50		125	125		
Q _{gs}	Gate – Source Charge	$I_D = 38A$ 8 $V_{DS} = 0.5BV_{DSS}$ 25			22	nC			
Q _{gd}	Gate – Drain ("Miller") Charge				65				
t _{d(on)}	Turn–On Delay Time	V = 50V				35			
t _r	Rise Time	$V_{DD} = 50V$				190	- ns		
t _{d(off)}	Turn–Off Delay Time	$R_{G} = 2.35\Omega$	I _D = 38A			170			
t _f	Fall Time	$\Pi_{G} = 2.3522$				130			
	SOURCE – DRAIN DIODE CHARAC	TERISTICS					_		
۱ _s	Continuous Source Current					38	A		
I _{SM}	Pulse Source Current ²					152] ^		
V _{SD}	Diode Forward Voltage ¹	I _S = 38A V _{GS} = 0	T _J = 25°C			1.8	v		
t _{rr}	Reverse Recovery Time	l _F = 38A	T _{.1} = 25°C			500	ns		
Q _{rr}	Reverse Recovery Charge ¹	d _i / d _t ≤ 100 A /μ	•			2.9	μC		
t _{on}	Forward Turn-On Time		00		Negligible		· ·		
	PACKAGE CHARACTERISTICS						_ _		
L _D	Internal Drain Inductance (measured fro	m 6mm down drain l		5.0		– nH			
L _S	Internal Source Inductance (from 6mm of	down source lead to		13					
	THERMAL CHARACTERISTICS								
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction – Case				0.83	°C/W			
$R_{\theta CS}$	Thermal Resistance Case – Sink			0.12					
$R_{\theta JA}$	Thermal Resistance Junction – Ambie	ent			30				

Notes

1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%

2) Repetitive Rating - Pulse width limited by maximum junction temperature.

Semelab plc. Telephone (01455) 556565. Telex: 341927. Fax (01455) 552612.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics: IRF150