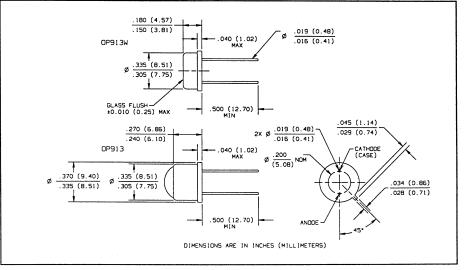


PIN Silicon Photodiodes Types OP913SL, OP913WSL

Features


- Wide or Narrow receiving angle available
- Large active area (.115" x .115")
- Fast switching time
- Linear response vs irradiance
- Enhanced temperature range

Description

The OP913SL and OP913WSL each consist of a PIN silicon photodiode mounted in a two-leaded, TO-5 hermetically sealed package. The lensing effect of the OP913SL allows an acceptance angle of 10° measured from the optical axis to the half power point. The flat lens of the OP913WSL has an acceptance half angle of 30°. The large active area allows very low light level detection.

Replaces

OP913 and OP913W

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

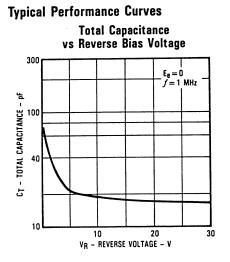
Reverse Voltage
Storage Temperature Range
Operating Temperature Range
Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:
(1) BMA flux is recommended. Duration can be extended to 10 sec. max, when flow soldering

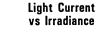
- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. (2) Derate linearly 1.5 mW/^o C above 25^o C.
- (3) Junction temperature maintained at 25° C.
- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.
- (5) At any particular wavelength the flux responsivity, Rθ, is the ratio of the diode photocurrent to the radiant flux producing it. Rθ is related to quantum efficiency by:

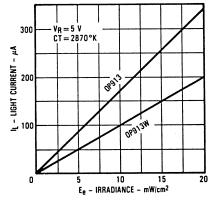
$$\mathsf{R}_{\Theta} = \eta \,\mathsf{q} \, \left(\frac{\lambda}{1240} \right)$$

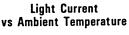
Where ηq is the quantum efficiency in electrons per photon and λ is the wavelength in nanometers. Thus at 900 nm, 0.60 A/W corresponds to a quantum efficiency of 83%.
(6) NEP is the radiant flux at a specified wavelength, required for unity signal-to-noise ratio normalized for bandwidth.

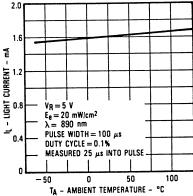
$$\mathsf{NEP} = \frac{\mathsf{I}_{\mathsf{N}}/\sqrt{\Delta f}}{\mathsf{R}_{\Theta}}$$

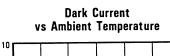

where $I_N/\sqrt{\Delta f}$ is the bandwidth normalized shot noise.

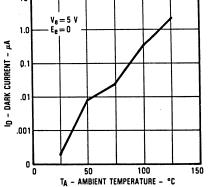

NEP calculation is made using responsivity at peak sensitivity wavelength, with spot noise measurement at 1000 Hz in a noise bandwidth of 6 Hz. (λ , f, Δf) = (λ p,1000 Hz, 6 Hz).

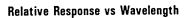

Types OP913SL, OP913WSL

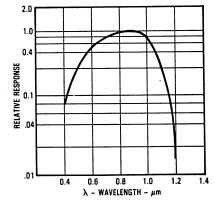

SYMBOL	PARAMETER		MIN	ТҮР	MAX	UNITS	TEST CONDITIONS
ال	Reverse Light Current	OP913SL OP913WSL	120 40			μΑ μΑ	$V_{R} = 5 V, E_{e} = 5 mW/cm^{2(3)(4)}$
ID	Reverse Dark Current				25	nA	$V_{R} = 10 V, E_{e} = 0^{(3)}$
Vcc	Open Circuit Voltage	OP913SL OP913WSL		400 300		mV mV	$E_e = 5 \text{ mW/cm}^{2(4)}$
Isc	Short Circuit Current	OP913SL OP913WSL	120 40			μΑ μΑ	E _e = 5 mW/cm ²⁽⁴⁾
V _{(BR)R}	Reverse Breakdown Voltage		32			V	I _R = 100 μA
Ст	Total Capacitance	OP913SL OP913WSL			150 150	pF pF	V _R = 0, E _e = 0, f = 1 MHz
t _{on,} t _{off}	Turn-On Time, Turn-Off Time	OP913SL OP913WSL		50 50		ns ns	$VR = 10 V, R_L = 1 k\Omega$


Electrical Characteristics ($T_A = 25^{\circ} C$ unless otherwise noted)









Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics: OP913SL OP913WSL