

Hi-Rel Slotted Optical Switches Types OPB821TX, OPB821TXV

Features

- · Non-contact switching
- · Hermetically sealed components
- Components processed to Optek's screening program patterned after MIL-PRF-19500 for TX and TXV devices

Description

The OPB821TX or OPB821TXV consists of a gallium aluminum arsenide LED and a silicon phototransistor soldered into a printed circuit board, then mounted in a high temperature plastic housing on opposite sides of an 0.080 inch (2.03 mm) wide slot. Lead wires are #24 AWG polytetraflouroethylene (PTFE) insulated conforming to MIL-W-16878. Phototransistor switching takes place whenever an opaque object passes through the slot. For maximum output signal, neither the LED or the phototransistor in the OPB821TX or the OPB821TXV is apertured. The OPB821TX and OPB821TXV use optoelectronic components that have been processed and tested as either TX or TXV components per MIL-PRF-19500. Typical screening and lot acceptance tests are provided on page 13-4.

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Operating Temperature Range	-65° C to +125° C
Storage Temperature Range	
Input Diode	
Forward DC Current	50 mA
Reverse Voltage	2.0 V
Power Dissipation	100 mW ⁽¹⁾
Output Phototransistor	
Collector-Emitter Voltage	50 V
Emitter-Collector Voltage	
Power Dissipation	100 mW ⁽¹⁾
Notes:	

(1) Derate Linearly 1.00 mW/° C above 25° C.

(2) Methanol or isopropanol are recommended cleaning agents.

Types OPB821TX, OPB821TXV

Electrical Characteristics (T_A = 25° C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions	
Input Dioc	ie				•		
Vf	Forward Voltage ⁽³⁾	1.00	1.35	1.70	V	I _F = 20.0 mA	
		1.20	1.55	1.90	٧	I _F = 20.0 mA, T _A = -55° C	
		0.80	1.20	1.60	٧	I _F = 20.0 mA, T _A = 100° C	
lR	Reverse Current		0.1	100	μА	V _R = 2.0 V	
Output Ph	ototransistor						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50	110		V	I _C = 1.0 mA, I _F = 0	
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7.0	10.0		V	I _E = 100 μA, I _F = 0	
IC(off)	Collector-Emitter Dark Current		0.2	100	nA	V _{CE} = 10.0 V, I _F = 0	
			10	100	μA	V _{CE} = 10.0 V, I _F = 0, T _A = 100° C	
Coupled						*	
IC(on)	On-State Collector Current ⁽³⁾	800			μА	V _{CE} = 10.0 V, I _F = 20.0 mA	
		500			μА	V _{CE} = 10.0 V, I _F = 20.0 mA, T _A = -55° C	
		500			μА	V _{CE} = 10.0 V, I _F = 20.0 mA, T _A = 100° C	
V _{CE(SAT)}	Collector-Emitter Saturation Voltage		0.20	0.30	V	I _C = 250 μA, I _F = 20.0 mA	
tr	Output Rise Time		12.0	20.0	μs	V _{CC} = 10.0 V, I _F = 20.0 mA,	
tf	Output Fall Time		12.0	20.0	μs	$R_L = 1,000 \Omega$	

⁽³⁾ Measurement is taken during the last 500 µs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics:

OPB821TX