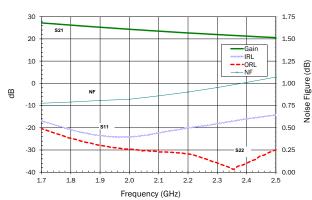


0.8 GHz to 4 GHz, GaAs pHEMT 2-STAGE LOW NOISE MMIC AMPLIFIER



Product Description

The SPF5344Z is a high performance 2-Stage pHEMT MMIC LNA designed for use from 0.8 GHz to 4 GHz. It offers low noise figure and high linearity in a gain block configuration. Its single-supply operation and integrated matching networks make implementation remarkably simple. The off-chip interstage choke and DC block allow for optimum performance tuning.

Gain, RL & NF versus Frequency

Features

- Low Noise Figure = 0.80dB at 2.0GHz
- Gain=24.5dB at 2.0GHz
- OIP3=39dBm at 2.0GHz
- Excellent Return Loss: S11>20dB, S22>20dB at 2.0GHz
- P_{1dB}=22.4dBm at 2.0GHz
- Single-Supply Operation: 5V at Idq=120mA
- Flexible Biasing Options: 3-5 V, Adjustable Current
- Broadband Internal Matching

Applications

- Cellular, PCS, W-CDMA, ISM, WiMAX Receivers
- PA Driver Amplifier
- Low Noise, High Linearity Gain Block Applications

Dovometer	Frequency=0.9GHz		Frequency=2.0GHz			Frequency=2.2GHz			I I to i A	Condition	
Parameter	Min.	Тур.	Max.	Min. Typ.		Max.	Min.	Тур.	Max.	Unit	Condition
Small Signal Power Gain		34.5		22.1	24.5	26.9		22.5		dB	
Noise Figure		0.70			0.80			0.90		dB	
Output Third Order Intercept Point		35.5		35	39.0			39.0		dBm	
Output Power at 1dB Compression		21.8			22.4			22.7		dBm	
Input Return Loss					25.0					dB	
Output Return Loss					25.0					dB	
Reverse Isolation					32.5					dB	
Device Operating Voltage		5.0			5.0			5.0		V	
Device Operating Current (Quiescent)	100	120	160	100	120	160	100	120	160	mA	
Thermal Resistance (junction-to-lead) 1st stage		65			65			65		°C/W	
Thermal Resistance (junction-to-lead) 2nd stage		65			65			65		°C/W	

Note: $V_D = 5.0V$, $I_{DO} = 120$ mA OIP $_3$ Tone Spacing = 1MHz, P_{OUT} per tone = 0 dBm and $Z_S = Z_L = 50\Omega$, 25 °C, Application Circuit Data. The typical noise figure values include evaluation board losses.

SPF5344Z

Absolute Maximum Ratings

_		
Parameter	Rating	Unit
Max Device Current (I _D)	220 (100 mA 1st stage, 120 mA 2nd stage)	mA
Max Device Voltage (V _D)	5.5	V
Max RF Input Power* (See Note)	24	dBm
Max Dissipated Power	1200	mW
Max Junction Temperature (T _J)	150	°C
Operating Temperature Range (T _L)	-40 to + 85	°C
Max Storage Temperature	-65 to +150	°C
ESD Rating - Human Body Model (HBM)	Class 1B	
Moisture Sensitivity (MSL)	MSL 1	

^{*}Note: Load condition 1, $Z_L = 50 \Omega$; Load condition 2, $Z_L = 10:1 \text{ VSWR}$

Operation of this device beyond any one of these limits may cause permanent operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_D V_D \! < \! (T_J \! - \! T_L) / R_{TH}, j \! - \! 1 \text{ and } T_L \! = \! \text{Source Lead Temperature}$

Caution! ESD sensitive device.

CAUDINI COD SENSITIVE DEVICE.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

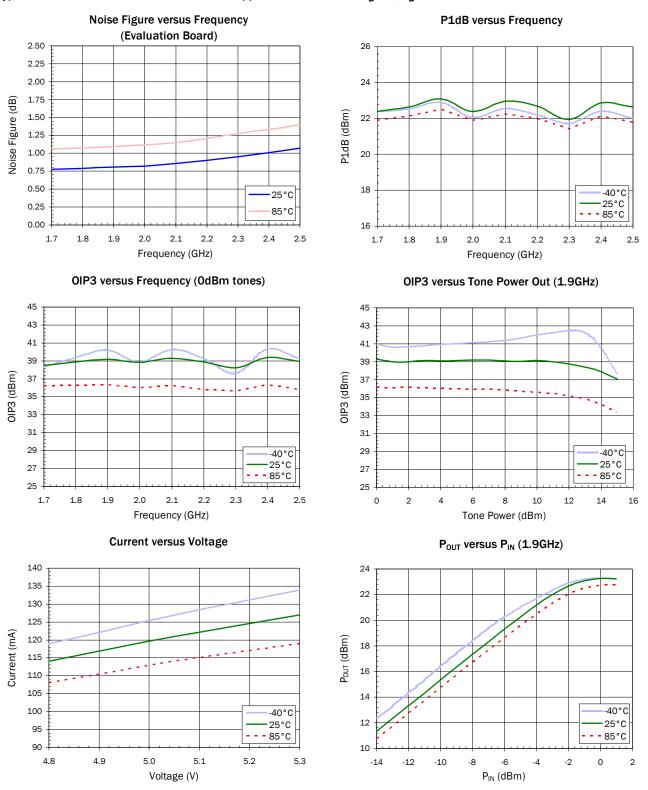
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in

Typical RF Performance - V_D=5.0V (Application Circuit Data)

				Frequency (GHz)								
Symbol	Parameter	Unit	0.8	0.85	0.9	1.8	1.9	2.0	2.1	2.2	2.5	
S ₂₁	Small Signal Gain	dB	36.5	35.5	34.5	26.0	25.5	24.5	23.5	22.5	20.5	
NF	Noise Figure	dB	0.6	0.7	0.7	0.8	0.8	0.8	0.9	0.9	1.1	
OIP ₃	Output IP3	dBm	35.0	35.5	35.6	39.0	39.0	39.0	39.5	39.0	39.0	
P1dB	Output P1dB	dBm	21.5	21.6	21.8	22.6	23.1	22.4	23.0	22.7	22.6	
S ₁₁	Input Return Loss	dB	17.0	22.0	25.0	22.5	25.0	25.0	23.0	20.5	14.5	
S ₂₂	Output Return Loss	dB	15.0	19.5	23.5	25.0	25.0	25.0	25.0	25.0	25.0	
S ₁₂	Reverse Isolation	dB	44.0	43.5	43.5	34.0	33.0	32.5	32.0	31.0	29.5	

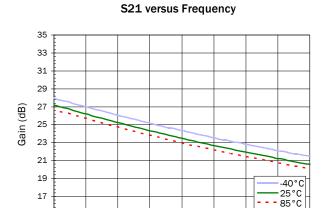
 $Test \ Conditions: \ V_D = 5.0 \ V, \ I_{DO} = 120 \ mA, \ OIP_3 \ Tone \ Spacing = 1 \ MHz, \ P_{OUT} \ per \ tone = 0 \ dBm, \ T_L = 25 \ ^\circ C, \ Z_S = Z_L = 50 \Omega$


rfmd.com

Pin	Function	Description	
1,2,4,5,7,8,9,	N/A	Ground or No-Connect. No connection internal	
11,12,14,15,			
16,18,20			
3	RF IN	RF Input, VG1 applied through this pin.	
6	RF/DC	Connected internally to RF IN (VG1). External No-Connect required.	
10	RF/DC	Connected internally to RF OUT (VD2). External No-Connect required.	
13	RF OUT	RF Output, VD2 applied through this pin.	
17	RF/VG2	RF/DC input of stage 2, VG2 applied through this pin.	
19	RF/VD1	RF/DC output of stage 1, VD1 applied through this pin.	
EPAD	GND	EPAD must be conductively attached to RF and DC ground.	

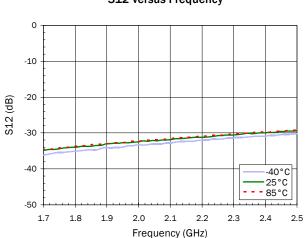
SPF5344Z

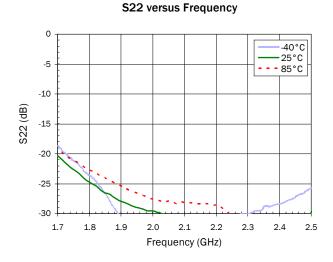
Typical RF Performance - 1.7 GHz to 2.5 GHz Application Circuit with $V_D = 5V$, $I_D = 120$ mA



Typical RF Performance - 1.7 GHz to 2.5 GHz Application Circuit with $V_D = 5V$, $I_D = 120$ mA

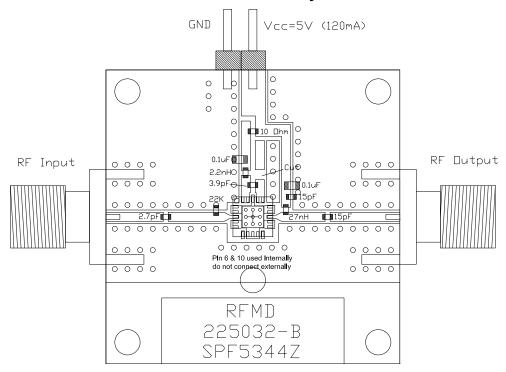
S11 versus Frequency 0 -5 -10 S11 (dB) -15 -20 -40°C -25 25°C --85°C -30 1.8 2.0 2.1 2.2 2.3 2.4 2.5 1.7 1.9 Frequency (GHz) S12 versus Frequency

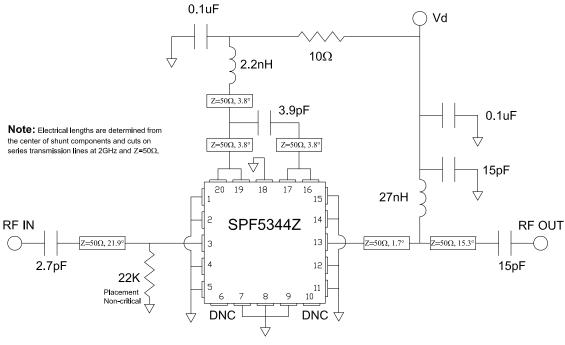



2.1

Frequency (GHz)

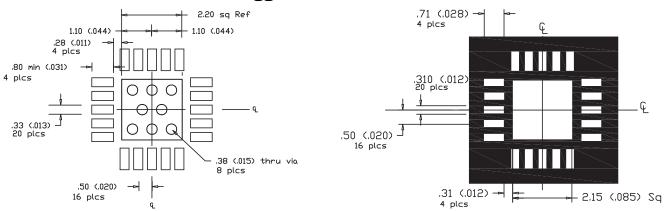
2.2


2.3



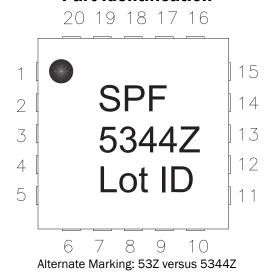
1.7 GHz to 2.5 GHz Evaluation Board Layout and Bill of Materials

1.7 GHz to 2.5 GHz Application Schematic

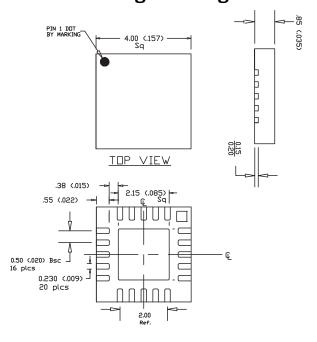


Pin 6 & 10 used internally do not connect externally

SPF5344Z


Suggested Land Pattern

- Generic Land Pattern -


- Generic Solder Mask Opening -

Part Identification

Package Drawing

BOTTOM VIEW

OOrdering Information

Part Number	Description
SPF5344Z	13" Reel with 3000 pieces
SPF5344ZSQ	Sample Bag with 25 pieces
SPF5344ZSR	7" Reel with 100 pieces
SPF5344ZPCK1	1700MHz to 2500MHz PCBA with 5-piece Sample Bag

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

SPF5344Z SPF5344ZSR SPF5344ZPCK1