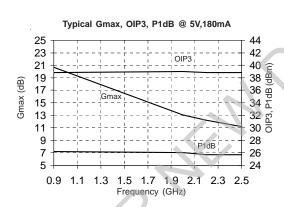
SGA9189Z

Medium Power Discrete SiGe Transistor

Package: SOT-89



Product Description

RFMD's SGA9189Z is a high performance transistor designed for operation to 3GHz. With optimal matching at 2GHz, OIP3 = 39dBm, and P1dB = 25.5dBm. This RF device is based on a silicon germanium heterostructure bipolar transistor (SiGe HBT) process. The SGA9189Z is cost-effective for applications requiring high linearity even at moderate biasing levels. It is well suited for operation at both 5V and 3V. The matte tin finish on the lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. This package is also manufactured with green molding compounds that contain no

antimony trioxide nor halogenated fire retardants.

Features

- 50MHz to 3000MHz Operation
- 39dBm Output IP3 Typ. at 1.96GHz
- 12.2dB Gain Typ. at 1.96GHz
- 25.5dBm P1dB Typ. at 1.96GHz
- 2.1dB NF Typ. at 0.9GHz
- Cost-Effective
- 3V to 5V Operation

Applications

- Wireless Infrastructure Driver **Amplifiers**
- CATV Amplifiers
- Wireless Data, WLL Amplifiers
- AN-021 Contains Detailed Application Circuits

		Specification			Condition	
Parameter	Min.	Тур.	Max.	Unit		
Maximum Available Gain		20.5		dB	900MHz, $Z_S = Z_S^*$, $Z_L = Z_L^*$	
		13.2		dB	1960MHz	
Power Gain	17.5	19.0	20.5	dB	900MHz [1], $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$	
	11.2	12.2	13.2	dB	1960MHz [2]	
Output Power at 1dB Compression		40		dBm	900MHz, $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$	
	23.5	25.5		dBm	1960MHz [2]	
Output Third Order Intercept Point		40.0		dBm	900MHz, $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$, $P_{OUT} = +10$ dBm per tone	
	36.5	39.0		dBm	1960MHz [2]	
Noise Figure		2.1		dB	900MHz, $Z_S = Z_{SOPT}$, $Z_L = Z_{LOPT}$	
		2.6		dB	1960MHz	
DC Current Gain	100	180	300			
Breakdown Voltage	7.5	8.5		V	collector - emitter	
Thermal Resistance		47		°C/W	junction - lead	
Device Operating Voltage		5.5		V	collector - emitter	
Operating Current	155	180	195	mA		

Test Conditions: V_{CE} = 5V, I_{CQ} = 180mA (unless otherwise noted), T_{L} = 25 °C. [1] 100% Tested [2] Sample Tested

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Base Current (IB)	5	mA
Max Device Current (ICE)	200	mA
Max Collector-Emitter Voltage (VCEO)	7	V
Max Collector-Base Voltage (VCBO)	20	V
Max Emitter-Base Voltage (VEBO)	4.8	V
Max Junction Temp (TJ)	+150	°C
Operating Temp Range (TL)	See Graph	
Max Storage Temp	+150	°C

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

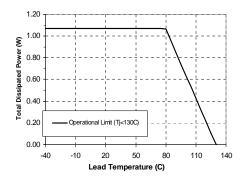
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

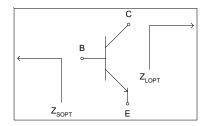
Bias Conditions should also satisfy the following expression: I_DV_D < (T_J - T_L)/R_{TH}, j - I and T_L = T_{LEAD}

Typical Performance with Engineering Application Circuit

Freq (MHz)	VCE (V)	ICQ (mA)	P1dB (dBm)	OIP3 ¹ (dBm)	Gain (dB)	S11 (dB)	S22 (dB)	NF (dB)	ZSOPT (Ω)	ZLOPT (Ω)
945	5	184	25.8	39.5	18.8	-14	-26	2.1	6.8 -j0.85	16 + j5.9
1960	5	179	25.5	40.0	12.2	-23	-21	2.4	7.6 - j11.2	22.8 + j0.7
2140	5	180	25.4	39.0	11.3	-20	-14	2.6	18.1 + j3.4	23.8 - j9.0
2440	5	180	25.4	40.0	10.2	-20	-17	2.7	5.6 - j15.1	23.1 - j2.7

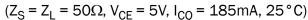
 $^{^{1}}$ P_{OUT} = +10dBm per tone for V_{CE} = 5V, 1MHz tone spacing

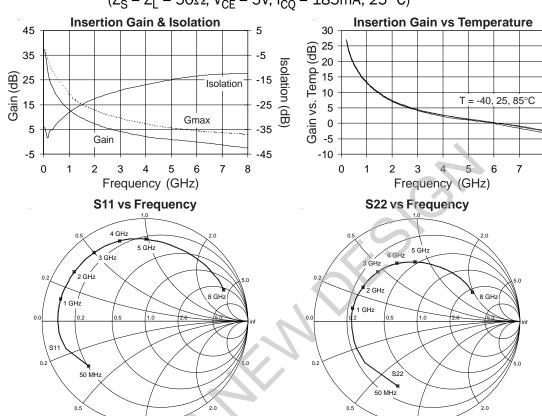

Typical Performance with Engineering Application Circuit

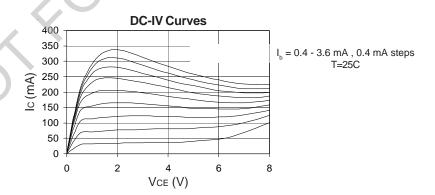

Freq (MHz)	VCE (V)	ICQ (mA)	P1dB (dBm)	OIP3 ² (dBm)	Gain (dB)	S11 (dB)	S22 (dB)	NF (dB)	ZSOPT (Ω)	ZLOPT (Ω)
945	3	165	22.1	34.3	17.7	-18	-11	2.1	9.6 - j1.6	11.0 + j1.4
1960	3	162	22.4	35.0	11.8	-18	-16	2.2	7.8 - j13.1	19.3 - j2.9
2440	3	165	23.2	35.3	9.9	-20	-15	2.6	8.1 - j16.0	21.0 - j6.5

 $^{^{2}}$ P_{OUT} = +6dBm per tone for V_{CE} = 3V, 1MHz tone spacing

Data above represents typical performance of the application circuits notes in Application Note AN-021. Refer to the application note for additional RF data, PCB layouts, and BOMs for each application circuit. The application note also includes biasing instructions and other key issues to be considered. For the latest application notes please visit our site at wwww.RFMD.com or call your local sales representative.

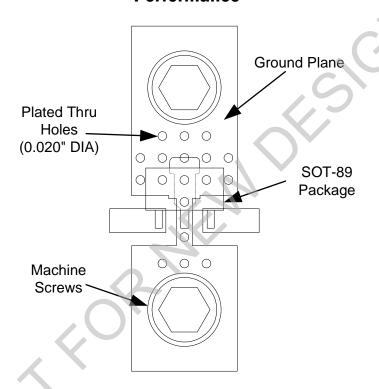

Maximum Recommended Operational Dissipated Power




^{*}Note: Load condition1, $Z_L = 50\Omega$.

De-embedded S-parameters

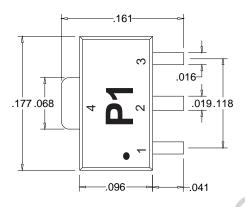
Note: S-parameters are de-embedded to the device leads with $Z_s = Z_t = 50\Omega$. The data represents typical performace of the device. De-embedded s-parameters can be downloaded from our website (www.sirenza.com).



Pin Names and Descriptions

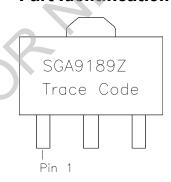
Pin	Name	Description
1	Base	RF input.
2	Emitter	Connection to ground. Use via holes to reduce lead inductance. Place vias as close to ground leads as possible.
3	Collector	RF output.
4	Emitter	Same as pin 2.

Recommended Mounting Configuration for Optimum RF and Thermal Performance


Mounting and Thermal Considerations

It is very important that adequate heat sinking be provided to minimize the device junction temperature. The following items should be implemented to maximize MTTF and RF performance.

- 1. Multiple solder-filled vias are required directly below the ground tab (pin 4). [CRITICAL]
- 2. Incorporate a large ground pad area with multiple plated-through vias around pin 4 of the device. [CRITICAL]
- 3. Use two point board seating to lower the thermal resistance between the PCB and mounting plate. Place machine screws as close to the ground tab (pin 4) as possible. [RECOMMENDED]
- 4. Use 2 ounce copper to improve the PCB's heat spreading capability. [RECOMMENDED]


Package Drawing

Dimensions in inches (millimeters)
Refer to drawing posted at www.rfmd.com for tolerances.

Part Identification

Ordering Information

Part Number	Description
T dit Hairibei	Description
SGA9189Z	13" Reel with 3000 pieces
SGA9189ZSQ	Sample Bag with 25 pieces
SGA9189ZSR	7" Reel with 100 pieces
SGA9189Z-EVB1	870MHz to 960MHz, 8V Operation PCBA
SGA9189Z-EVB2	1930MHz to 1990MHz, 8V Operation PCBA
SGA9189Z-EVB3	2110MHz to 2170MHz, 8V Operation PCBA
SGA9189Z-EVB4	2400MHz to 2500MHz, 8V Operation PCBA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo: SGA9189Z