
RFPP2870

28dB Push Pull Hybrid
40MHz to 1003MHz

The RFPP2870 is a Hybrid Push Pull amplifier module. The part employs GaAs MESFET, GaAs pHEMT and GaN HEMT die and is operated from 40MHz to 1003MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

Package: SOT-115J

Ordering Information

RFPP2870

Box with 50 pieces

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	70	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

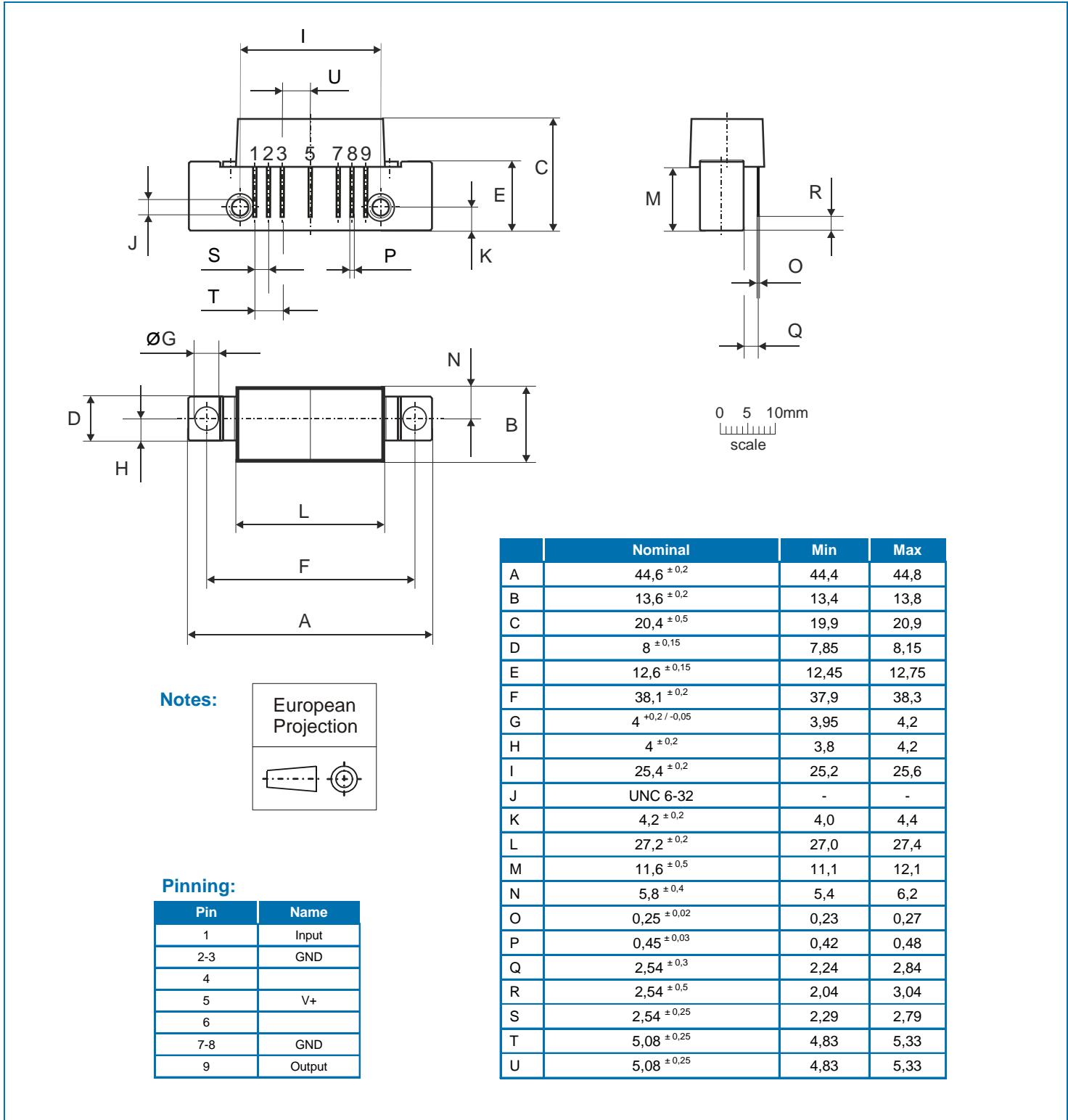
Caution! ESD sensitive device.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Parameter	Specification			Unit	Condition
	Min	Typ	Max		
General Performance					$V_+ = 24V; T_{MB} = 30^\circ C; Z_S = Z_L = 75\Omega$
Power Gain		27.0		dB	$f = 50MHz$
	28.0	28.5	29.0	dB	$f = 1003MHz$
Slope ^[1]	0.5	1.0	2.0	dB	$f = 40MHz$ to $1003MHz$
Flatness of Frequency Response			0.8	dB	$f = 40MHz$ to $1003MHz$ (peak to valley)
Input Return Loss	20			dB	$f = 40MHz$ to $320MHz$
	19			dB	$f = 320MHz$ to $640MHz$
	18			dB	$f = 640MHz$ to $870MHz$
	17			dB	$f = 870MHz$ to $1003MHz$
Output Return Loss	20			dB	$f = 40MHz$ to $320MHz$
	19			dB	$f = 320MHz$ to $640MHz$
	18			dB	$f = 640MHz$ to $870MHz$
	17			dB	$f = 870MHz$ to $1003MHz$
Noise Figure		4.5	5.0	dB	$f = 50MHz$ to $1003MHz$
Total Current Consumption (DC)		250.0	270.0	mA	
Distortion Data 40MHz to 550MHz					$V_+ = 24V; T_{MB} = 30^\circ C; Z_S = Z_L = 75\Omega$
CTB		-70	-64	dBc	$V_O = 46dBmV$, flat, 79 analog channels plus 75 digital channels (-6dB offset) ^{[2][4]}
XMOD		-65	-60	dBc	
CSO		-75	-66	dBc	
CIN	65	70		dB	
Distortion Data 40MHz to 750MHz					$V_+ = 24V; T_{MB} = 30^\circ C; Z_S = Z_L = 75\Omega$
CTB		-70		dBc	$V_O = 44dBmV$; 112 analog channels flat ^{[3][4]}
XMOD		-63		dBc	
CSO		-72		dBc	


1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

2. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +46dBmV flat output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier.

3. 112 analog channels, NTSC frequency raster: 55.25MHz to 745.25MHz, 44dBmV flat output level.

4. Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA. Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA. Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested. Carrier to Intermodulation Noise (CIN) - The CIN parameter is defined by ANSI/SCTE 17 (Test procedure for carrier to noise).

Package Drawing (Dimensions in millimeters)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Qorvo](#):

[RFPP2870](#)