
Applications

- CATV Line Amplifiers
- HFC Nodes
- Head End Equipment

16-pin SOIC Wide Body Package with Exposed Backside Ground Pad

Functional Block Diagram

Product Features

- Wide Bandwidth (40- 1000 MHz)
- 100% production tested for DOCSIS Edge QAM.
- In-package ESD protection
- Flat Gain
- High Power Compression
- Excellent Input/Output Match
- Low DC Power Consumption
- · Bias optimization through external voltage

General Description

The TAT2801 is a high power, high linearity GaAs MMIC amplifier intended for output stage amplification in CATV infrastructure applications. Featuring a single die design and providing flat gain with low distortion, this amplifier is ideal for use in CATV distribution systems requiring high output powers and low distortion.

The TAT2801 draws 575 mA from a 12 V supply Bias current and voltage may be adjusted externally to optimize output performance for specific applications.

The TAT2801 integrates two TQP200002 ESD protection devices that provide bi-directional protection with very low leakage currents and extremely low capacitance.

The TAT2801 is packaged in an industry standard 16 pin SOIC WB package.

Pin Configuration

Pin No.	Label
1, 4-5, 8-9, 12-13, 16	GND
2	V _{G2} ADJ
3/6	RFIN1 / RFIN2
7	I _{DD} ADJ
10	V _{DD}
11 / 14	RFOUT2 / RFOUT1
15	V _{DD}
Backside Pad	RF/DC Gnd

Ordering Information

Part No.	Description			
TAT2801	CATV Output Stage Amplifier			
TAT2801-PCB 40-1000 MHz Evaluation Board				
Standard T/R size = 1000 pieces on a 7" reel				

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-40 to 150°C
Device Voltage (V _{DD})	+16 V
Device Current (I _{DD})	700 mA
RF Input Power (single tone)	75 dBmV

Operation of this device outside the parameter ranges given above may cause permanent damage.

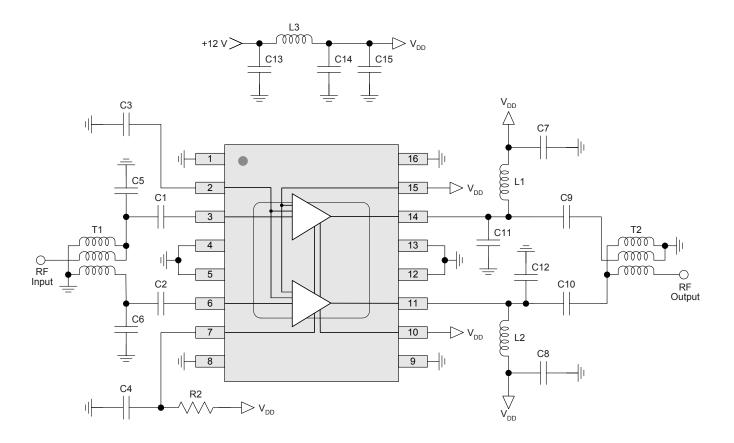
Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Device Voltage (V _{DD})	11.7	12	12.3	V
Case Temperature	-40		+85	°C
Tj (for >10 ⁶ hours MTTF)			200	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

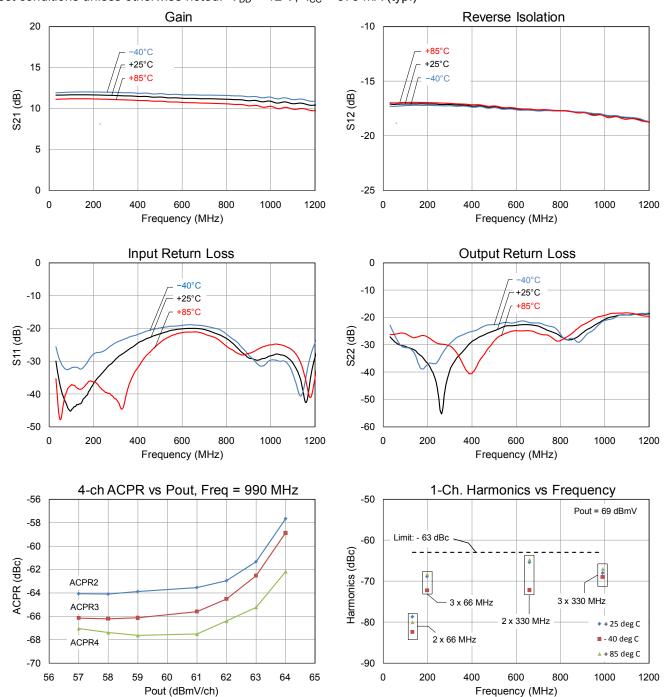
Test conditions unless otherwise noted:	V _{DD} =+12 V, I _{CC} =575 mA (typ.)	, $T_{AMBIENT}$ =+25°C, 75 Ω system
---	--	--


Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		40		1000	MHz
Current			575		mA
Gain		10.6	11.2	12.0	dB
Gain Flatness	Peak deviation from least squared fit curve.		±0.25	±0.3	dB
Gain Slope		-1		0	dB
Input Return Loss			20		dB
Output Return Loss			20		dB
CSO	80 ch. NTSC, + 56 dBmV/ch at 1002 MHz,		-65		dBc
СТВ	15.6 dB tilt, QAM from 553 MHz to 1002 MHz		-76		dBc
XMOD	at 6 dB offset.		-70		dBc
CIN			58		dB
EQAM Vout	ACPR2 (750 kHz – 6 MHz)	60	61		
$4-Ch. ACPR^{(1)}$	ACPR3 (6 MHz – 12 MHz)	60	61		dBmV/ch
	ACPR4 (12 MHz – 18 MHz)	60	61		
1-Ch. Harmonics	Pout = 68 dBmV			-63	dBc
Output P1dB			31		dBm
Output IP3	f ₁ =950 MHz, f ₂ =1000 MHz, Pout=+17 dBm/tone		54		dBm
Thermal Resistance, θjc	Junction to case		12		°C/W

Notes:

1. Measured against DOCSIS 3.0 specified limits for out of band spurious emissions in adjacent channels

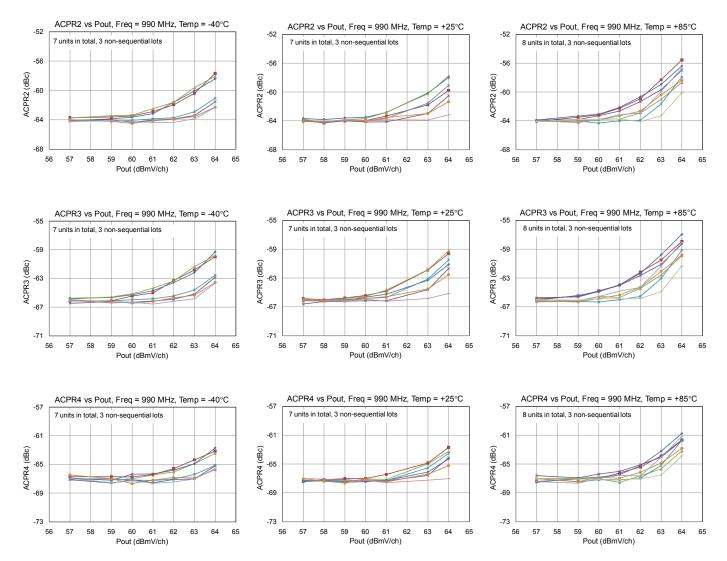
Application Circuit Schematic – TAT2801-PCB



Bill of Material - TAT2801-PCB

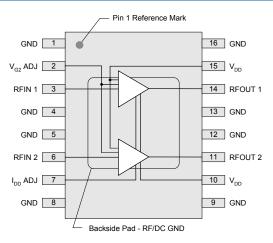
Reference	Value	Description	Manuf.	Part Number
U1		40 MHz – 1 GHz, CATV Gain Block	TriQuint	TAT2801
C1, C2, C3, C4	0.01 uF	Cap, Chip, 0402, 16V, 10%	Various	
C5, C6, C11, C12	0.7 pF	Cap, Chip, 0402, 25V, +/-0.075, NPO/COG	Various	
C7, C8, C13, C14	0.01 uF	Cap, Chip, 0603, 25V, 5%, X7R	Various	
C9, C10	330 pF	Cap, Chip, 0402, 50V, 10%, X7R	Various	
C15	DNP		Various	
R2	7.5 kΩ	Res, Chip, 0402, 1%, 1/16W	Various	
L1, L2	500 nH	Ind, Chip, Ferrite, 1206, 10%, 260mA	Various	
L3	0.9 uH	Ind, Chip, 1008, 5%, 1.4A	Coilcraft	1008AF-901XJL
TX1, TX2	1:1	SMT, 75 OHM, BALUN 1:1, SM-118A	M/A-COM	MABA-008483-CT1760

Performance Plots – TAT2801-PCB

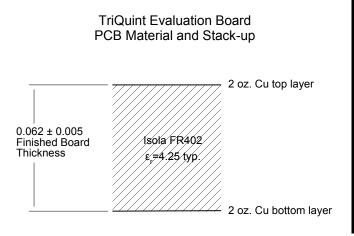


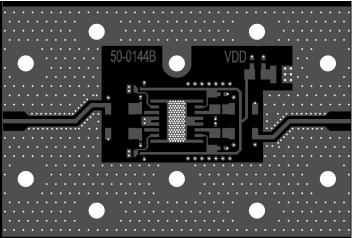
Test conditions unless otherwise noted: V_{DD} =+12 V, I_{CC} = 575 mA (typ.)

Distortion Performance: Lot to Lot Variation Over Temperature


Test conditions unless otherwise noted: V_{DD} =+12 V, I_{CC} = 575 mA (typ.)

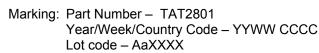
Note: ACPR performance measured using application circuit on pg. 3. ACPR performance at low output power levels is reflective of the limitations of the source. A better test source is likely to result in significantly better ACPR performance at these power levels.

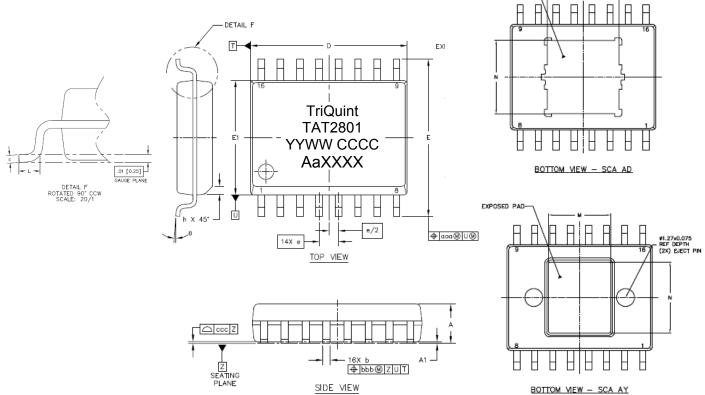



Pin Configuration and Description

Pin No.	Label	Description
1, 4-5, 8-9, 12-13, 16	GND	Grounded internally within the package. Provide grounded land pads.
2	V _{G2} ADJ	Dropping resistor and bypass capacitor required.
3/6	RFINA / RFINB	RF Input A / RF Input B. Impedance matching and DC blocking capacitors required.
7	I _{DD} ADJ	IDD current adjustment. Dropping resistor and bypass capacitor required.
10	V _{DD}	VDD supply for internal biasing
11 / 14	RFOUTB / RFOUTA	RF Output / DC supply. Impedance matching , DC block and bias choke required
15	V _{DD}	VDD supply for internal biasing
Backside Pad	GND	RF/DC ground.

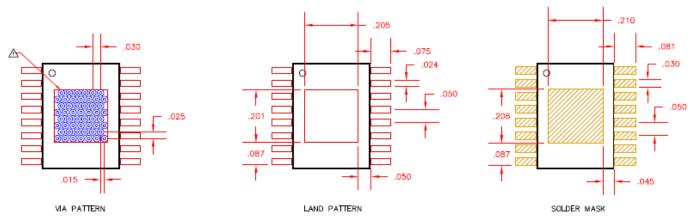
Evaluation Board PCB Information





EXPOSED PAD

Package Marking and Dimensions

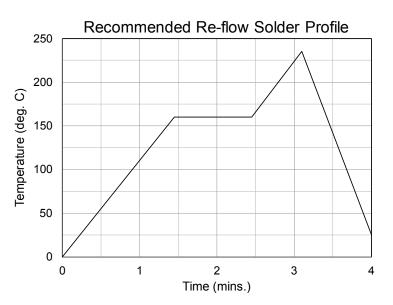


Package Dimensions

	Symbol	MIN	TYP	MAX	MIN	TYP	MAX
TOTAL THICKNESS	A	.087		.098	2.2		2.5
STAND OFF	A1	0		.004	0		0.1
LEAD WIDTH	b	.014		.019	0.35		0.49
L/F THICKNESS	С	.009		.013	0.23		0.33
BODY SIZE	D	.400		.411	10.15		10.45
BODT SIZE	E1	.291		.299	7.4		7.6
	E	.395		.415	10.05		10.55
LEAD PITCH	е		0.05 BSC	;		1.27 BSC	
	L	.016		.050	0.4		1.27
	h	.010		.030	0.25		0.75
	θ	0°		8°	0°		8°
EP SIZE	М	.196	.200	.204	4.98	5.08	5.18
	N	.200	.204	.208	5.08	5.18	5.28
LEAD EDGE OFFSET	ааа		.010			0.25	
LEAD OFFSET	bbb		.010			0.25	
COPLANARITY	CCC		.004			0.10	

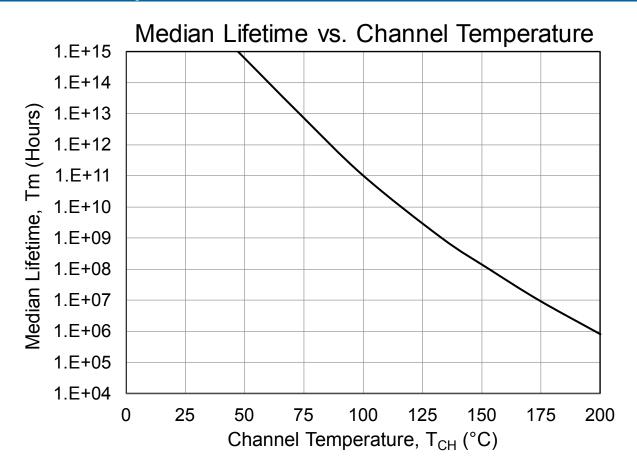
PCB Mounting Pattern

Notes:


- 1. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25mm (0.10").
- 2. Ensure good package backside paddle solder attach for optimum electrical and thermal performance.
- 3. All dimensions are in millimeters. Angles are in degrees.

Recommended Soldering Temperature Profile

Solder paste manufacturers will recommend a "typical" solder reflow profile depending on their particular solder paste's flux and metal composition. This typical profile entails the parameters necessary for the solder to properly melt and reflow, and defines the thermal condition of the PCB soldering surface to be within an optimum temperature range. The profile is obtained by mounting a thermo couple directly to the solder surface area of the PCB, and recording the actual local surface temperature during the reflow process.


The solder reflow profile shown at right is for a typical SAC305 lead free solder paste application and assumes that standard PCB layout rules have been followed, such as solder mask to dam in molten solder during reflow to keep it from wicking away from the solder joint.

The "oven profile" required to achieve the "solder reflow profile" will vary depending on reflow equipment, PCB, components loaded on the PCB, and other factors such as fixturing.

Thermal Reliability

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

MSL Rating

MSL Rating:Level 3Test:260°C convection reflowStandard:JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with J-STD-020, Lead free solder, (260° maximum reflow temperature) and tin/lead (245°C maximum reflow temperature) soldering processes.

Contact plating: NiPdAu

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triquint.com	Tel:	+1.503.615.9000
Email:	info-sales@triquint.com	Fax:	+1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@triquint.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo: TAT2801