QPA2511 100 W, 50 V, 1.2 – 1.4 GHz, GaN on SiC Power Amplifier

Product Overview

The QPA2511 is a 2-stage L-Band internally matched GaN Power Amplifier Module. The QPA2511 operates at pulsed RF conditions in frequency range 1.2 – 1.4 GHz providing typically 50 dBm of saturated output power with 29 dB of large-signal gain and 60% of power added efficiency.

The QPA2511 is matched to 50 Ohms with integrated bias circuits and DC blocking capacitor at input port. The QPA2511 in a SMD package provides good thermal properties and is ideal for use in both military and commercial pulsed radar systems.

Evaluation boards are available upon request.

Functional Block Diagram

25.0 x 12.5 x 3.488 mm SMD

Key Features

- Operating Frequency Range: 1.2 1.4 GHz
- Saturated Output Power P_{SAT} > 50 dBm ^{(1) (2)}
- Power Added Efficiency at P_{SAT} > 60% ^{(1) (2)}
- Large Signal Gain at P_{SAT} > 29 dB ^{(1) (2)}
- Bias: V_{DS1,2}=+50 V, I_{DQ1}=10 mA, I_{DQ2}=100 mA
- Package Type: SMD
- Package Dimensions: 25.0 x 12.5 x 3.488 mm Notes:
- 1. Pulsed RF signal on a reference fixture plane.
- 2. 3 dB gain compression.

Performance is typical across frequency. Please reference electrical specification table and data plots for more details.

Applications

- Military Radar
- Commercial Radar

Ordering Information

Part Number	Description
QPA2511	QPA2511 50 Piece Tray
QPA2511EVBLPR2	QPA2511 Evaluation Board

Absolute Maximum Ratings

Parameter	Rating
Breakdown Voltage (BV _{DG})	+145 V
Gate Voltage (V _{G1,2})	-7 to +2 V
Drain Voltage (V _{D1,2})	+55 V
RF Input Power, 50 Ohm load (3)(4)	25 dBm
RF Input Power, 10:1 output VSWR (3)(4)	25 dBm
Channel Temperature	275°C
Storage Temperature	−65 to +150°C

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Driver Stage Gate Voltage (V _{G1})		-2.8		V
Output Stage Gate Voltage (V _{G2})		-2.8		V
Drain Voltage (V _{D1,2})		+50		V
Driver Stage Quiescent Current (I _{DQ1})		10		mA
Output Stage Quiescent Current (I _{DQ2})		100		mA
Operating Temperature	-40		+85	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Notes:

- 3. At temperature +25°C
- 4. Pulse signal 10% Duty Cycle, 100 µs Pulse Width

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Electrical Specifications

Parameter	Conditions	Min	Тур	Max	Units
Operating Frequency Range		1.2		1.4	GHz
Saturated Output Power	3 dB Gain Compression		51.6		dBm
Large Signal Gain	3 dB Gain Compression		32.8		dB
Drain Efficiency	3 dB Gain Compression		69.0		%
Small Signal Gain	Frequency Range 1.2-1.4 GHz		35.8		dB
Input Return Loss	Frequency Range 1.2-1.4 GHz		-10		dB
Output Return Loss	Frequency Range 1.2-1.4 GHz		-10		dB
Driver Stage Gate Leakage (IG1)	$V_{G1} = -3.7 \text{ V}, V_{D1} = +10 \text{ V}$	-4.0			mA
Output Stage Gate Leakage (IG2)	$V_{G2} = -3.7 \text{ V}, V_{D2} = +10 \text{ V}$	-21.0			mA

Test conditions unless otherwise noted: $V_{D1,2}$ = +50 V, I_{DQ1} = 10 mA, I_{DQ2} = 100 mA, T = +25°C, Pulsed RF CW (Duty Cycle = 10%, Pulse Width = 100 µs) on a reference fixture plane for 1.2-1.4 GHz.

Thermal Information

Parameter	Test Conditions	Values	Units
Thermal Resistance (θ_{JC}) ⁽⁵⁾⁽⁶⁾	$T_{CASE} = +85^{\circ}C, V_{DS1,2} = +50 V,$	1.07	°C/W
Peak IR Surface Temperature (T _{CH}) ⁽⁵⁾⁽⁶⁾	$P_{DQ1} = 10$ mA, $P_{DQ2} = 100$ mA. $P_{DISS} = 90.72$ W, Pulsed RF CW	151	°C

Notes:

5. Thermal resistance is measured to package backside.

6. Pulsed CW (Duty Cycle = 10%, Pulse Width = 100 μ s).

7. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

QPA2511 EVB Performance Plots – 1200 – 1400 MHz Reference Design

Notes: Refer to device reference planes where the performance was measured.

QPA2511 EVB Performance Plots – 1200 – 1400 MHz Reference Design

QPA2511 100 W, 50 V, 1.2 – 1.4 GHz, GaN on SiC Power Amplifier

QPA2511 EVB Performance Plots at 3dB Gain Compression

QOUNO.

6

7

QPA2511 Typical Performance – S-Parameters

Notes: Refer to EVB reference planes where S-Parameters were measured.

Data Sheet Rev. C, March 2024 Subject to change without notice. 10 11 12

QPA2511 Evaluation Board Schematic

Bill of Materials

Reference Des.	Value	Description	Manuf.	Part Number
C1, C6, C7, C8, C21	27 pF	Capacitor, 27pF, +/-5%, 250V, HI-Q, 0603	ATC	600S270JT250XT
C3, C9, C10, C11	1000 pF	Capacitor, 1000pF, 10%, 500V, X7R, 1206	Samsung	CL31B102KGFNFNE
C4, C13, C14, C15	0.1 µF	Capacitor, 0.1uF, 10%, 100V, X7R, 1206	TDK	C3216X7R2A104K160AA
C5, C17	10 µF	Capacitor, 10uF, 20%, 100V, AL ELEC, AX	Panasonic	ECA-2AM100
C12, C19	220 µF	Capacitor, 220uF, 20%, 100V, ALU-ELECT, SMD	CDE	AFK227M2AR44T-F
C16, C18	10 µF	Capacitor, 10uF, 10%, 25V, X7R, 1210	Kemet	C1210T106K3RALTM
L1	115 Ohm	Ferrite Bead, 115 Ohm, 10A, SMD	Laird	28F0181-1SR-10
RFIN, RFOUT	-	SMA Connector	Powell Electronics	PSF-S00-000
U1	_	100W 50V 1.2 – 1.4 GHz GaN PA EHS	Qorvo	QPA2511.ELPR
J1, J2	-	Jumper Connector		

QPA2511 100 W, 50 V, 1.2 – 1.4 GHz, GaN on SiC Power Amplifier

QPA2511 Evaluation Board Layout and Stencil

Notes:

- 1. PCB Rogers 4350B 0.020in, 2 Layers, Copper 1.0oz. (2 oz Finish Thickness)
- 2. Stencil thickness 0.006" [150 um]

QPA2513 Evaluation Board Reference Plane for S-Parameters

Package Marking and Dimensions

Marking: QORVO Logo

YY – Calendar Year of Assembly Lot WW – Week Number of the Assembly Lot MXXX – Batch ID ZZZ – Part Number Within One Assembly Lot

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. General tolerance is ± 0.05 unless otherwise noted.
- 3. Package Base: Laminate
- 4. Package Lid: FR-4.
- 5. Contact plating: Au, Thickness is 0.1 µm MIN.

Pin Configuration and Description

Pin Number	Label	Description
1	RF IN	RF Input
2, 3, 4, 5, 6, 7, 8	GND	RF/DC ground.
9	V _{GS1}	Driver Stage Gate Voltage
10, 11, 12	GND	RF/DC ground.
13	V _{DS1}	Driver Stage Drain Voltage
14, 15	GND	RF/DC ground.
16	V _{GS2}	Output Stage Gate Voltage
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29. 30	GND	RF/DC ground.
31	RF OUT, V _{DS2}	RF output, Output Stage Drain Voltage
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48	GND	RF/DC ground.
49 (Backside Paddle)	GND	RF/DC ground.

Power Amplifier Module Biasing Procedure

Bias On	Bias Off
1. Turn ON V _{GS1} to −5 V.	
2. Turn ON V _{GS2} to −5 V.	1. Turn OFF RF.
3. Turn ON V _{DS1} and V _{DS2} to +50 V.	2. Adjust V_{GS1} and V_{GS2} to -5 V.
 Slowly adjust V_{GS1} until I_{DQ1} = 10 mA. 	3. Turn OFF VDS1 and VDS2.
(Typically, $V_{G1} = -2.8 \text{ V.}$)	4. Wait two (2) seconds to allow drain capacitors to discharge.
5. Slowly adjust V _{GS2} until I _{DQ2} = 100 mA.	5. Turn OFF V _{GS1} and V _{GS2} .
(Typically, $V_{G1} = -2.8 \text{ V.}$)	
6. Turn ON RF.	

QPA2511 100 W, 50 V, 1.2 – 1.4 GHz, GaN on SiC Power Amplifier

Recommended Solder Temperature Profile

QULAD

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1B	ANSI/ESDA/JEDEC Standard JS-001	
ESD-Charged Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC Standard JS-002	
MSL-Moisture Sensitivity Level	MSL3	IPC/JEDEC Standard J-STD-020	Caution!

ESD-Sensitive Device

Solderability

Compatible with lead-free (260°C max. reflow temp.) soldering process. Package lead plating is ENEPIG. Solder rework not recommended.

This package is air-cavity and non-hermetic, and therefore cannot be subjected to water washing. The use of no-clean solder to avoid washing after soldering is highly recommended.

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.gorvo.com

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE. INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2024 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

QPA2511 QPA2511EVBLPR2