QOCVO

ACT510xEVK1-102 User's Guide

Description

This document describes the characteristic and operation of the Active Semi ACT5101EVK1-102 and ACT5102EVK1-102 evaluation kits (EVK). It provides setup and operation instructions, schematic, layout, BOM, and test data. The ACT5101EVK1-102 demonstrates the ACT5101QI102 power management IC. The ACT5102EVK1-102 demonstrates the ACT5102QI102 power management IC. Other ACT5101QIxxx and ACT5102QIxxx options can be evaluated on these EVKs by replacing the IC and any other necessary components.

The two EVKs are very similar. The difference is that the ACT5101 output voltage is set by internal registers and it has A/D functionality. The ACT5102 output voltage is set by external resistors and it does not have A/D functionality. The setup and operation of the two EVKs are identical, so this document only references the ACT5101.

Features

The EVKs can be used as a standalone board if desired. However, to access the internal registers and to take full advantage of the IC's capability, the user must connect the EVK kits to a PC with Active Semi's USB-TO-I2C interface dongle and use the GUI software. The EVK provides full access to the each converter's input and output voltage, as well as all the digital control signals. This gives the user the flexibility to configure the EVK to match their real world system.

Figure 1. EVK Picture

EVK Contents

The ACT5101EVK1-102 evaluation kit comes with the following items:

- 1. EVK assembly
- 2. USB-TO-I2C dongle
 - a. Dongle
 - b. Custom 4-pin connector that connects the USB-TO-I2C dongle to the EVK assembly

Required Equipment

ACT5101EVK1-102

USB-TO-I2C Dongle

Power supply \rightarrow 4~22V @ 6A for full power operation

Oscilloscope \rightarrow 100MHz, 4 channels

Digital Multi-meters (DMM)

Windows compatible PC with spare USB port.

Hardware Setup

Figure 2. EVK Setup

Quick Start

Hardware Connections

Refer to Figure 2 for hardware connections.

- 1. Connect a DC power supply to J1. Please ensure the correct power supply polarity.
- 2. Connect an E-Load to J7.
- 3. Connect Digital Multi-Meters to VIN and VOUT to monitor the input voltage and output voltages.
- 4. Add a digital Multi-Meter in series with VIN and VOUT if you want to observe input and output current.
- 5. Be careful to keep the input voltage and battery voltage within the specifications.
- 6. Add a jumper to J6 to connect INTBP to V_IO.
- 7. Optional Connect the EVK to the PC with the USB dongle.

GUI Setup (optional)

- 1. Refer to the end of this document for detailed instructions to install the ACT5101 GUI.
- 2. Connect the USB-TO-I2C dongle to the computer via a USB cable.
- 3. Connect the USB-TO-I2C dongle to the EVK J5 connector. Refer to Figure 3 to ensure the correct polarity of the connection. As a guide, use the "Active-Semi" logo on the top of the dongle so the black wire is connected to the Dongle GND pin.

Figure 3. USB-TO-I2C Dongle Connection

Recommended Operating Conditions

The ACT5101EVK1-102 is designed for a 4V-22V input voltage. The maximum operating voltage is determined by the IC's maximum input voltage rating. The minimum operating voltage is determined by the buck-boost converter's minimum input voltage. The maximum output current is configured by the CMI and external components.

Parameter	Description	Min	Тур	Max	Unit
VIN	Input voltage	4	-	22	V
VOUT	Output voltage	3	-	20	V
l _{in_max}	Maximum input current		5		А
I _{out_max}	Maximum output current		5		А
I _{REG_max}	Maximum LDO VREG load current		0.1		А

Table 1. Recommended	d Operating	Conditions
----------------------	-------------	------------

EVK Operation

Turn On the Evaluation Board

Before applying the input voltage, please make sure the jumper (J6) is installed. Connect V_IO to INTBP or VREG. INTBP is the typical connection.

	UREG	U_IO INTBP
JG		

Figure 4 – Hardware Configuration

After the power source and E-Load are connected to the evaluation board per the required connections, the EVK can be powered for operation. Perform the following steps to turn on the board.

- 1. Ensure that the power supply connected to VIN (J1) is >4V and <22V.
- 2. Turn on power supply.
- 3. Apply the load.
- 4. Remove the shorting jumper from J2 to enable output. Replace the jumper to disable the output.

Input Current Limit Configuration

The ACT5101's ActivePath charger features configurable input and output current limit. These features are programmed with a combination of an external resistor and an internal I²C register. Refer to the ACT5101 datasheet for programming details.

Input Current Limit – The ACT5101EVK1-102 EVK input current limit is set to 11.11A. This is a function of the $5m\Omega$ current sense resister, R2, the $36k\Omega$ RILIM resistor, R6, and the I²C Input Current Limit bits, INLIMIT, which are set to 200% by default. The hardware current limit set by R2 and R6 is 5.56A. This current multiplied by the input current limit scaling factor of 200% gives a 11.11A input current limit. The input current limit is easily changed by modifying any of these three parameters. The easiest way to change the input current limit is with

the Input Current Limit field in the GUI.

Output Current Limit – The ACT5101EVK1-102 EVK output current limit is set to 5A. This is a function of the 10m Ω current sense resister, R16, the 20k Ω RILIM resistor, R12, and the I²C Input Current Limit bits, CC, which are set to 100% by default. The hardware current limit set by R16 and R12 is 5A. This current multiplied by the input current limit scaling factor of 100% gives a 5A output current limit. The output current limit is easily changed by modifying any of these three parameters. The easiest way to change the output current limit is with the Output Constant Current field in the GUI.

INEG LUO	AUL	
VBRC I DO	100% of OLIM	Ŧ
	100% of OLIM	
FET Current Limit	100% of OLIM	
-	100% of OLIM	
Input Current Limit	100% of OLIM	
Uutput Lonstant Lurrent	100% of OLIM	
	99% of OLIM	
Output Slew Rate	98% of OLIM	
	97% of OLIM	-
Input UV threshold	DOW OF OFTH	=

Output Voltage Setting

ACT5101 5.1V default output voltage can be changed I²C using the Output Voltage field GUI setting.

Buck-Boost Converter	5.00V
Operating Mode	5.02V
operating mode	5.04V
Converter Status	5.06V
	5.08V
Output Voltage	5.10V
T	5.12V
Input UV offset voltage	5.14V
Toput IV threshold	5.16V
anyat of the canord	E 101

Additional Programmable Functionality

The ACT5101 contains many additional programmable parameters. Refer to the ACT5101 datasheet for additional functionality and default I²C register values.

<u>QOrvo</u>,

Test Results

QORVO

Figure 4. Schematic

Innovative Power[™] ActiveSwitcher[™] is a trademark of Qorvo.

QOCVO. Layout

Figure 5. Layout Top Layer

Figure 6. Layout Layer GND

Figure 7. Layout Layer VCC

Figure 8. Layout Bottom Layer

UG127 Rev 2.0, 14-Apr-2020

Bill of Materials

Table 2. ACT510x EVK BOM

	ASSY-0314-00-00	ASSY-0314-00-01					
Item	QTY	QTY	Ref Des	Description	Package	MFR	Part Number
1	3	3	C1,C20,C21	Cap, Ceramic, 10uF, 35V, 10%, X5R	1206	Murata	GRM319R6YA106 KA12
2	1	1	C2	ELCap, 100uF, 25V	6.3mmx11mm	Wurth El- ektronik	865080445010
3	1	1	C3	Cap, Ceramic, 3.9nF, 25V, 10%, X7R	0603	Wurth El- ektronik	885012206061
4	1	1	C4	Cap, Ceramic, 39nF, 25V, 10%, X7R	0603	Wurth El- ektronik	885012206067
5	5	5	C5,C8,C11, C14,C15	Cap, Ceramic, 100nF, 50V, 10%, X7R	0603	Wurth El- ektronik	885012206095
6	0	0	C6,C10	DNI	0603	std	std
7	4	4	C7,C9,C17, C18	Cap, Ceramic, 22uF, 35V, 10%, X5R	1206	TDK	C3216X5R1V226 M160AC
8	2	2	C12,C13	Cap, Ceramic, 47nF, 50V, 10%, X7R	0603	Wurth El- ektronik	885012206093
9	1	1	C16	Cap, Ceramic, 1uF, 10V, 10%, X7R	0603	Wurth El- ektronik	885012206026
10	1	1	C19	ELCap, 220uF, 25V	6.3mmx11mm	Wurth El- ektronik	860010473011
11	1	1	D1	SMD LED blue	0603	Wurth El- ektronik	150060BS75000
12	2	2	J1,J7	Connector, 2 pin	2141 S - 3.50mm Hori- zontal Entry Modular	Wurth El- ektronik	691214110002S
13	1	1	J2	Header, 2pin, 100mil		Wurth El- ektronik	61300211119
14	2	2	J3,J4	Header, 1pin, 100mil		Wurth El- ektronik	61300211119
15	2	2	J5,J6	Header, 3pin, 100mil		Wurth El- ektronik	61300211119

QOCVO

16	1	1	 L1	Inductor 10uH, 5A, 26.5mohm	6mmx6mmx6m m	Wurth El- ektronik	74439346100
17	3	3	R1,R4,R17	Res, 10kΩ, 1%	0603	std	std
18	1	1	R2	Res, 5mΩ, 1%	1206	std	std
19	2	2	R3,R12	Res, 20kΩ, 1%	0603	std	std
20	0	0	R5,R7,R10, R11,R13	DNI	0603	std	std
21	1	1	R6	Res, 36kΩ, 1%	0603	std	std
22	4	4	R8,R9,R14, R15	Res, 30Ω, 1%	0603	std	std
23	1	1	R16	Res, 10mΩ, 1%	1206	std	std
24	0	1	R18	Res, 200kΩ, 1%	0603	std	std
25	0	1	R19	Res, 133kΩ, 1%	0603	std	std
26	1	1	R20	Res, 0Ω, 1%	0603	std	std
27	6	6	TP1,TP5,TP 6,TP7,TP9,T P13	Test Point, Red, Through Hole, 1mm	0.040"	Key- stone	5000
28	9	9	TP2,TP3,TP 4,TP6,TP8,T P10,TP11,T P12,TP14	Test Point, Black, Through Hole, 1mm	0.040"	Key- stone	5001
20	1	0	111	IC, ACT5101, Inte- grated Buck-Boost	QFN32-4x4	Active Semi	na
29	0	1		IC, ACT5102, Inte- grated Buck-Boost	QFN32-4x4	Active Semi	na
30	1	1		PCB, ACT5101/02 EVK1 REVB	n/a	n/a	PCB-0314-00
31	2	2		Shunt, 100mil, Black	n/a	n/a	60900213421

QOCVO.

GUI Installation

- 1. Get GUI files from the Active Semi website
- 2. Plug the USB-TO-I2C dongle into a free USB port.
- 3. Follow the instructions in the "Active-Semi GUI and Dongle Driver Installation" folder.
- 4. Double click on the ACT5101 GUI Rev1.0.exe to start the ACT5101 GUI.

Driver	
ACT5101 GUI Rev1.0.cpmu	
ACT5101 GUI Rev1.0.exe	
Active-Semi GUI and Dongle Driver Installation.pdf	
🔊 User Guide.pdf	

GUI Overview

The GUI has 2 basic function buttons allocated in top-left of the Tool Bar which are Read and Write I²C. The GUI contains 2 setting modes: Basic Mode and Advanced Mode. In Basic Mode screen it displays basic user programmable configuration options are programmed using the drop-down boxes or check boxes. Advanced Mode contains the button text for changing setting for every single bit.

Basic Mode

The following figure shows the GUI in basic mode. This mode allows the user to easily change one or more IC settings.

			•			20	4
Basic Mode	7-bit 12C Slave Address	7h24					
Advanced Mode	Buck-Boost Converter			-			
	Operation Mode	Hiz Mode	Soft Start Time	5ms	~		
	Converter Status	RST	Enable Delay Time	1s	\sim		
	Output Voltage	5.10V ~	Off Delay Time	30s	\sim		
	Input UV offset voltage	6.0V ~	Off Load Enable	Disable	\sim		
	Input UV threshold	Input_UV_offset-0.4V ~	Ouput OV Restart Delay	40ms	\sim		
	Output Slew Rate	0.5V/ms ~	Cord Compensation	Disable	~		
	Output Constant Current	100% of OLIM V	Watchdog Timer	Disable	~		
	Input Current Limit	200% of ILIM ~	Die Temperature Regulation	120oC	~		
	FET Current Limit	10A ~	Operation Frequency	500kHz	~		
	READ	WRITE		63.			
	VREG LDO		ADC				
	VREG Enabled	Enabled ~	ADC Enabled	Disabled	~		
	VREG Output Voltage	5.0V ~	Channel To Be Read	Output Current	\sim		
	VREG Input Control	Automatic ~	Channel To Be Converted	Output Current	\sim		
	VREG Input Voltage	VOUT Supply ~	ADC_ONE_SHOT				
	READ	WRITE	ADC_CH_SCAN				
			DIS_ADCBUF				
			READ	WRITE			
			Data Ready	NO			
			ADC_OUT Value	0			
A			Output Compati(laut)				

Advanced Mode

Click the "Advanced Mode" button in the left of the GUI screen to see all available user programmable options. With Advanced Mode, additional user programmable features can be selected using the button text. In the left side of the Advanced Mode Screen, click on the Tiles Selector to display the register to view or change. Then change a register one bit at a time by clicking on the desired bit. The value of the bit is display right next to the bit-name button.

Note that the right side of the screen contains a scroll down button to scroll down to additional registers since the Tile Screen can only display up to 8 bytes at once.

/ 📋 🛹 🗸				Active-Semi Pro	prieta	ary!		to a	304
Basic Mode	Bits	Address 0x00		Address 0x01		Address 0x02		Address 0x03	
Advanced Mode	7	HIZ	0	RFU	0	RFU	0	RFU	0
REGISTERS	6	RFU	0	DIS_SHUTDOWN	0	nIRQ_PIN_STATUS	0	THERMAL_ACTIVE	0
	5	RFU	0	RFU	1	EN_PIN_STATUS	0	RFU	0
	4	RFU	0	FET_ILIMIT	1	RFU	0	RFU	0
	3	RFU	0	RFU	0	RFU	0	RFU	0
	2	WATCHDOG_RESET	0	VREG_EN	1	RFU	0	RFU	0
	1	AUDIO_FREQ_LIMIT	0	WATCHDOG[1]	0	OPERATION_MODE[1]	0	RFU	0
	0	REGISTER_RESET	0	WATCHDOG[0]	0	OPERATION_MODE[0]	0	RFU	0
	Bits	Address 0x04		Address 0x05		Address 0x06		Address 0x07	
	7	RFU	0	nIRQ_CLEAR	0	WATCHDOG_FAULT	0	ADC_OUT[13]	(
	6	RFU	0	RFU	0	VOUT_FAULT	0	ADC_OUT[12]	(
	5	RFU	0	RFU	0	VIN_UV_FAULT	0	ADC_OUT[11]	(
	4	RFU	0	VREG_OC_UVLO	0	VOUT_OV	0	ADC_OUT[10]	(
	3	RFU	0	TSD	0	LIGHT_LOAD	0	ADC_OUT[9]	(
	2	RFU	0	FET_OC	0	VIN_OV	0	ADC_OUT[8]	0
	1	RFU	0	RFU	0	I2C_FAULT	0	ADC_OUT[7]	0
	0	RFU	0	RFU	0	RFU	0	ADC_OUT[6]	C
	Bits	Address 0x08		Address 0x09		Address 0x0A		Address 0x0B	
	7	RFU	0	EN_ADC	0	ADC_DATA_READY	0	RFU	1
active-semi [®]	6	RFU	0	ADC_ONE_SHOT	0	RFU	0	RFU	0

Button Descriptions

Read: Clicking on this button reads the ACT5101 registers and displays them in the GUI. Note that this reads all registers. Active-Semi recommends reading registers each time the ACT5101 powers-up to acquire the initial register settings. Active-semi also recommends reading registers after making changes to them. Immediately reading the registers after a write confirms the changes were properly stored.

?	Active-Semi Proprietary!	€
	Read Button	

Write: Clicking on this button writes the GUI settings to the ACT5101's registers. All registers are written, regardless of whether or not they were changed.

Active-Semi Proprietary!	
Write Button	

Write Button

Dongle Connection Status: The GUI also contains a dongle connection status that indicates Active-Semi's USB-TO-I2C dongle is connected to the USB port. The figure below shows the two possible indication status graphics.

Dongle connected

Dongle Disconnected

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo: ACT5101EVK1-102