Code Composer Studio
Development Tools v3.3

Getting Started Guide

Literature Number: SPRU509H
October 2006

Q‘ TEXAS
INSTRUMENTS

SPRU509H-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

Contents

=l - (o = 9
1 g A goTe 1V ot uTo] o 1N P |
11 Welcome to the World of eXpreSSDSP ™ [iuteieeeeeaeeteieeianeeraieeraeieseeeeseereseereeesseeesneeianes 17

1.2 Development FIOW e et eee et et eeee e e e eeeeeeeeeeeeseeeteeeeeeieeaseeeeeeaaseeeeeesseeeeeesseeesiesseeeess 13

2 Getting Started QUICKIY oo ittt tee ettt eeeeeieteteeeeeeteteraeeeietoraeeeeeietocaeeeiereeaceceeiecnces 13
2.1 Launching the Code Composer Studio Development TOOIS[eeeeeereeereeeereeeeeeeeereeeeoeereseeeeeeses 19

2.1.1 Important Icons Used in Code Composer StUdIO[. s uooeererreeeeeeieeeseeeiseeseeeeseeseeesesanees 19

2.2 Creating a NeW ProjeC e e e ieeeeeeearreeeeeeroeeeeeeeeioreeoeeoeieeioeeoeeeoeroeeeeeeoreeeeeeeroreeeeeeioees 19

2.3 Building Your Programl oo seeeeeeeeeeaeeeeaeeeeeeraneeraeeeeeeeeoeeeoseeraseeeoseeroeeeeosereseeeeseeses 17

2.4 Loading Your Programp e ssee st e seeeeeeeeseasseeetsesseeeiseeseeesseesseeessssseeessesseeeeiesseeeess 17

25 [SF T (ol B2=T oW o o 1o | I 117

ST R CTo I (o I\ o1 o 17

PSR VST [l 2T 1N ool o) & 17

253 SOUICE StEPPING[tteetoeeeeeroeeeeeroeeeeeeoeroeeeeeeoeeeeeeeeroreeeeoeroeeeoeeoeteeeroeeeeeeoereeeeeess 13

254 Viewing Variables i ooieoeeieeeeaeeeieeeeaeereieeeaeeroseeeoeereseeeeseeeeeeeeoeeieseeroseeeaeeeeneeees 13

ARSI O 1111 o101 AV To e (o)1 13

256 SymMbDOl BrOWSEH e eeeieeeereeeeeaeeeeoeeeeseeroseeeoeeeeoeeeeeeroseeeeeeeeoeeeoseereseesoseeeseeeeseeses 13

2.6 INtroduCtion t0 Help e oo ee et oot ereeeeeneeraeeeeaeeeeeesaneeraeeeoeeeeoeeeeneeroseeeoseeroseesoseroseeeeseeses 13

3 Target and HOSt SETUP [oroieieiuieie i i ieeeaeaearareseiererereaeaeararezezerererereaearacaceeerererereeearacacacess 19
3.1 SettingUpthe Target .. oo e e s e teee e eeeeaeeeeeeeeeeeeteaeeeeeieeeeeeiseeseeeeesesseeeseeseeeeeeanees 20

3.1.1 Code Composer Studio Setup Utility[oo ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeesseeeeeeeseeeeeessnees 24

3.1.2 Parallel Debug Manager . e eueeeeteeeeiaaeeraeieaeeeiaeereateraseeeaeeieseeieseeraseesesereseeeeneeses 23

I IRC I o]0 o [=Tei /D] Tote] o =T o | 23

K S r= L1 o = - 24

3.2 (2 (o B | D] SR @AWy o] o Tp4= 1« (o] o| I 24

3.2.1 Default Colors and FaUMS . eieeeeereeereaeereseeeieeeiaeeieseereseeeeseiesseieseeieseeieseieseeeeneeies 24

3.2.2 Default Keyboard ShOMCUS[e seeeeeeeereeeeraeeieaeeeeeeereseeroeeeoeereeeeroseereeeeoeereseeeaseeres 23

3.2.3 Other IDE CUStOMIZAtIONS e tteuerreeeeteeeraseteseereseeresrereseeeseeieseereseeraseessseieseeraneeses 23

4 6feLe [N &g =T 14 [e] o N T 21
4.1 [ofe]0)ils (W] TaTo J = (o) (=T ox ! I 23

411 Creating @ ProjeCt s e sseeeeeeeereaeereneeeaeeeroeeeeoeereseeeoseeroseeeneeteseeeoseeroseeeseereseeeaeees 23

4.1.2 Project ConfigurationS e s.eeeseiieeeeesieeeeeesieeeeeeseaeaeeesesaseeeeieeseeeeiiesseeeisesseeeiseees 34

4.1.3 Project DependenCi@S e eeeeeeereeeeeeroereeeoeioreeoeeaeteeroeeeeeeorioreeeioreeeeeeeroreeeeeaeiaees 31

R Y o1 1 1 39

4.1.5 Source Control INtegratioN] ... euseeeeeeseeeeeeeereeeaeeeseeeseeeeesasseeessesseeeiieeseeesseeseeeesnees 33

4.2 I o 1 o 34

v 32 R VATV ToTo Je=Ta To I =T [1o o J @] [M 34

4.2.2 Customizing the Code WiNdOW] .o eeiieeeeeeieeeaeeeseeeseeeeesaseeeetiesseeeiseeseeeiseeeseeeieees 34

4.2.3 Using the Editor's Text Processing Functionality] .. ce..eeeoeeeeeeeseeeeeeosseeeeeesseeeeeessseeeeeees 33

4.2.4 Setting Auto-Save Defaults]ioeieeeeeeeieeeeeeeeereneeraeeeeeeeeeeeroneeroeieseeeeeeeroseeroseeeaeess 39

4.2.5 Autocompletion, Tooltips and Variable Watching (CodeSense)[.ceeoiioeeeeeiieeeeeeeieeeeeeeie... 39

4.2.6 Using an External EditOn oo oo oot ee et eeeeeteaeeraeeeeaeeeeoeeeoseeioeeeoeeeroeeeeseereceeeaeess 31

4.3 Code Generation TOOIS o ieeeereeeeeeeeeraeeeaeereoeeeeoeeroseeroeeeeseeeeseeroseeroseieseeeeeeeroneeroeeeaeees 33
SPRUS509H-October 2006 Contents 3

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

4.3.1 Code Development FIOW[e :eoereeeeeeeaereeeeoeioeeeeeeaereeroeeoeeeoeroeeeeeeoreeeeeeeroeeeeeeaeioees 39

4.3.2 Project BUild OptioNS ieeeeeeeeeieoeeraeeieaeeeeeeeroseeroseeeoeeeeeeetoseeroseeeoeeeroeeeneereseeeaeees 33

v RCTRS BN o]y o] [T @Y =TV 1Y 410

4.3.4 Assembly Language Development TOOIS it eieeerareeeeeeeroeeeeeeoeroeereeroeeeeeeereeeeoeeaeeeees 449

4.3.5 ASSEMDIEr OVEIrVIEW[eeieoereeoeereoeeraeeeeeeeroeeioseeroseeeoseeroeeioseetoseeeoseeroseeeseereseeeaeees 10

4.3.6 LiNKEr OVeIVIEW oo ieereeeseeseeeeieeseeesieesseesessseeesesssseeeesesseeeisesseeeiseeseeeiseeseeeesnees 17

437 C/C++ Development TOOIS| e eereeereeraeeeeeroereeeroeeeeeeeroeeeeeeorioeeeeeeoeeeeeoeroeeeeeeaeieees 17

4.4 Building Your Code Composer Studio ProjeCt e eeeeeeeereeeeeaeeeeeeeeeoeereseeeeseeraeeeoeereseereeeses 12
441 From Code COmMpPOSer StUIO] . s iueeresreeeeeesreeeeeeseeeseeeseeaseeeeseesseeeisesseeeiseeseeeienens 42

442 EXternal MaKe i ieeieeeroeeeeeeoeroeeeeeeoeeeeeoeioeeeoeeoeeeeeroeeeeeeoeioreeeeeoreeeeeeeroeeeeeeaeioees 17

443 Command LiNe o s e ueeeeeeeeraeeeeaeeieneeeeeeroneeeoeeieseeeeseeroeeroseieseeeeoeesoseeroseeeeees 13

45 Available Foundation SOftWare]. .. oo e e seeeseeeereeseeeesieaeeeesseeseeesssesseeessesseeeeessseeeeeessseeeess 13
ST R 5] o] [0 S 43

4.5.2 Chip Support Library (CSL) ioeeieeeeeoeeieeeeeeoeeroreeeoeereoeeeeseeroseeroeeieseereoeeroseeroeieaeees 1]

4.5.3 Board Support Library (BSL) e uieeeeeesieeeeeeieeeseeereeaseeeeesasseeesiesseeeiieeseeeisseeseeeieees Y|

454 DSP Library (DSPLIB) ecteeeeorteeeeeeeareeeeeoetoreeoeeaeieeroeeeeeeoeroreeeeroreeeeeeeroreeeeeaeioees % |

4.5.5 Image/Video Processing Library (IMGLIB) L iceieeeeaeereaeeeeeeeroneeroeereoeeieeeeroseeroeeeeees 13

45.6 TMS320 DSP Algorithm Standard CompONeNntS]...ue.eeeeeeeeerreseeeerieeseeeiieeseeeeiseeeeeieess 4149

457 Reference FrameWoOrKS|aiee:eeeseeereeeeeeeoeroreeeeroreeeeeoeroeeeeeeoeioreioeeoeeeeroeeeeeeoeeeeeeees a7

4.6 Automation (for Project Management) e e seeeereeeeeaeeeeeeereneereeeeeaeeeeoeeeeseereseeeoeeeeeeeeneeianes 19
4.6.1 Using General Extension Language (GEL) oeiieeeeeeeeeeeeeeereeeeeerreeseeeeieeseeeeiseeseeeieeees 19

4.6.2 Scripting Utility e et e et eeeeeeeeeeeeeeeteneeraeeeeoeeeoseeionteroseeeseeiooeeioseeroeeeaeees 19

5 D=1 o181 i 51
51 Setting Up Your Environment for DEbUQ[e e eeeieerreeeeraieeraeeieneeieeeeianeeraseieseereseeraseereseieneess 57
5.1.1 Setting Custom Debug OptioNS e iseeereeeererereieeieeeereseereseieieeieseeieseereseereseieseeeeseeres 54

5.1.2 SIMUIAHON ettt teeeeeeroeeeeeeoeroeeeeeeoeeeseeoeroeeeeeoeiosetoreoseesetoeeeseeortoeeeseroreeseeorsoeees 54

TN IRC I V110 g Lo g AR/ F=To] o 1o Vo | 53

L N S S s el g o L=Tol | 51

SN R I o] g oo o[[=To! | Y|

N G I d oTo = 1o ol Mo - o | 53

5.2 ST (o BT=] o1 o oo o] I 59
5.2.1 RUNNING/StEPPING et teeeeeeeeteaeeeeeereeeroeeieseeeeseerosreroeeeeoeereseerosteroeieseereseeeaseeres 59

S A = =T | o Jo o & 60

5.2.3 Connecting Breakpoints t0 FileSk . iseeieeeerereieieereeeereseereseieseeieseeieseereseeeeseieseeeeseeres 69

524 WatCh WinAOW] e sseeieeeeeeroeioeeeoeeoeeeseroeeeeeeoeroeioserorieseesrroeeeseeortoseroeroeeeseeoriaeess 64

5.2.5 Property Page Manager WindOW] . o.euieeeereeeieneeiaseeraereiaeieieeieseeianeeraeeieseereseesaneeres 61

526 MemoOry WinOOWueeeieeeereeeieaeeieeeeieseeieseieieeeeseeieseeieseieieeieseeieseeieseereseieseeieseeres 69

5.2.7 ReQiSter WinOOW[i eeieoeeeeeeieaeeeeoeeraseeroeeieseeeeseeroseeroseieseereseeroseeroeeeseereseeeaseeres 74

5.2.8 Disassembly/MiXxed MOOE[. .eueerrreeeraneeraeieaeeiiaeeiaseeraseeeaseieseeieseeraseereeisseeeeneeses 72

I B 0F: 1| IS - Tl /9

5.2.10 SymbOl BrOWSE e e teeeereeeteaeeeeeeeraseeroseieseeeeseeroseeroseeeoeereseeroseeraseeeseereseeeaseeres 73

5211 Command WinOOW] et e eeseeieneetaeeiateiaeeieneereseerareraseieseeieseeiaseeraseieseereseeraneeres 73

ST A V][g To 1 g VARST-AVZ=T | o T= Lo W 1 1Y, M 4

5.2.13 C6000 Functional Simulators Interrupt Latency Detection Feature[.... .. .cooeeeeeeeeeeeeeeene.. 4

5.2.14 Cache CONerenCel e eeeieeieaeiieeeiaaeerasesiaeeeiaeeianeeraseeeaseieseeieseereseerasessseeeeneeses 74

5,215 Cache Tag RAM VieWer o ieoeioeeeeeeaeeeeeeoeraeeeoeeoeieeeroeeeeeeeeoeeeeeeoeioeeeeeroreeeeeesoeees 79

5.2.16 EXCeption REPOriNG i eeeteeeeeeeeeeeeeeeaeereeeeaeeeeoeeeeoeeroseeeoeeeeoeeeeseereseeroeeeseeeeseeses 71

5.2.17 Software Pipelined Loop (SPLOOP) BUffel]csseeerreeereeeereieeeaeeieseieseeraseeraseieseeieneesns 79
Contents SPRU509H-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

5.2.18 MMU Page Table VieWer oot ieeeeeeeeereeeaeeeoeeeeeeeeroeeeeeoeeoeeeoeeoeieeioeeeeeeoereeeeeess 79

53 Advanced Debugging FeaturesS oo e eeeeeeeeeeeoeeieoeeroreeeeeeeearereoeereseeroseeroeeieseereseeroseeraseeenes 79
5.3.1 Advanced Event Triggering (AET) oieeeeeeeeeeeeeereeaeeeeieesseeeiseeseeeieseseeeisessseeesessnees 79

5.4 Real-Time DebUQGQING e eeeteeeeeeeaeiaeereeraeteeeioeeeeeeorroeeeeeeoreeeeeeroeeeeeeoeroeeeeeeeeeeeeioeraeeees el
541 Real-Time MO i otieeeereeieaeeeeeeeianeeroeeeaeeeeoeeeeseeroseeeeseieseeeoseeroseeeosereseeeeeeses 3]

542 Rude Real-Time MOOe. . .uuuuiieeeesiieeeeeeeieeeeeerseaeeeeieaseeesssesseeeseseseeeisesseeeesessnees ¥ |

5.4.3 Real-Time Data EXchange (RTDX)oieoreteeeeeoeeeeoeeeeoeerooeeeoeeeeoeeeeseereseeroeeeseeeeaeeees 83

55 Automation (fOr DeDUQ) e seeeeieeereeeereeeeraeeraeeieaeeeeoeeeoeeroeeeoeeeeseeeeseeroseeeoseeeeeeeeseeranes 39
5.5.1 Using the General Extension Language (GEL) ooeeuieeeeesieeeeeeeiieeeeereeeseeeiseeseeeesessnees 39

5.5.2 Scripting Utility for Debugl et e eeeeeeeeeeeeeereeeeeeeeeoeeeeseereseesoseeeseeeeneeees 34

5.6 RESEt OPtiONS it e teeereneeroneeeaeeeeoeeeeoeereoeeeeseeroseeeoseieseeeeseeroseeroseeeoseeeoeeteseeroseeeaseeres 39
N A =1 [N T 34

5.6.2 EMUIAtOr RESE [eeieeeroeeeeeeorioeeeeeeoeeeeeeoeroeeeoeeoeioeeroeeeseeoeeoeeeeeeoetoeeeeeroeeeeeeeeroeees 31

5.6.3 Advanced ReSetS[.eeiieeeereeieaeeeeoeeroneeroeieseeeeoeereseeroeeeaeeieeeeeoseeroseeeosereseeeaseeses 31

XX A o - e B L | 31

6 N YA N o LY 89
6.1 Application Code ANAlY SIS e ieeeereeeeaeeeeoeeeeoeereoeeeeeeeeeeeeoeeteseeeeseeroseeroeeieseereseeroreraeeeenes 9d
6.1.1 Data ViSualiZatiON] e e e teeeeeeeeieneeraeeeiaeeraeeieseereseeraseeraseieseeieseeraseeraseieseereseeraneeres 9qd

6.1.2 Simulator ANalYSIS.eeieeeereseeeeeeeieeeeeseereseeeeeeeisseeeseeieseeeeseiisseieseeieseeieseissseeeneeies 9]

6.1.3 EMUIAtor ANalYSiS e ieeeereeeeeaeeereeeeeoeeroseeeoeeeroeeeeoeereseeroeeeoeeeeseereseeroseeeoeeeeaeeees 97

6.1.4 DSP/BIOS Real-Time Analysis (RTA) TOOISE .t euetreeeeraeeraeeieaeeieseeianeeraeieseereseesaneees 9]

6.1.5 Code Coverage and Multi-Event Profiler TOOI . seesieeereeeereieeeeeieseeieseereseereseieseeieneees 94

6.2 Application Code TuNING (ACT) eoiieoeeeeeeeeeeereoeeeoeeeeoeeeeoeereoeereseeroseeroeereseereseeroreraeeeanes 94
6.2.1 Tuning DashbOardl.e.ieeeeeeeeieieeiaeeeiaseeraeeieneeiaseeraeeraseieseeieseesasreraseieseereseesaneeres 94

6.2.2 Compiler ConSUNANT .t eereseteeeeeieeeeeaeereseeeaeeeiaeeeeaeeieseeeeseiesseeeseeieseereseeenseeeneeies 94

6.2.3 CaACNe TUNE i stieeereeroeeeeeroeioeeroeeoeeeseeoeeoeeeseeoseeseroseoseertoeeeseeortosereroeeeserossaeess 9d

7 Additional Tools, Help, and TIPS oot eeeieieieeeeeeieieraeaeeeiereraeaeiereraeaeeeierecacaeeereces 99
7.1 [ofe]0g] Lol gl ol MY Lo Lo [T { 109
7.1.1 Opening Component ManNaQge e e eeeeerereeeeeoeioeeeeeeoeeoeeroeroeeeeroereeeeorioceeeroreeeeeees 107

7.1.2 Multiple Versions of Code Composer StUdiOf e eeieeeeeeeeereeeeaeereaeeroseeroseeroeereseeeenees 107]

7.2 (8] oJe VI Vi o | . 101]
7.2.1 Registering Update AQVISOM e eereeeeeeroreeeeeoeioeeeeeeorioeeeoeeoeeeeroereeeeoeioeeeceroeeeeeeees 107

7.2.2 Checking for TOOl Updates e seeeereeeeeaeeereneeeoeereneeeoeeroeeeoeeieneeioseeroeeeoeereseeeenees 107

7.2.3 Automatically Checking for ToOl Updates] ... ieeeeeeieeeeeerieeeeeeereeeseeeiseeseeeesesseeesieeeees 107

7.2.4 Uninstalling the UpdatesS]eeseeeeaereeereeroeeeeeroeioeeeoeeoeeeeeioeeeeeeoeroeeeeeeorioeeeeroeeeeeens 109

7.3 F X o[y o g F= U s =1 o) 107
731 ONINE Help oot e e iieeeeesseeeeeesseeeeeeessasseeessasseeeeiesseeessessseesssesseeessssseeeseeseees 104

7.32 ONliNe TULOM @I et etreeereereeeeeeeaeeaeeeoeeeeeeoeroeeeeeeoeeoeeeeeeoeeeeeeeeroeeeeeeoeioeeeoeeoeeoees 104
SPRUS509H-October 2006 Contents 5

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

List of Figures

1-1 eXpress DSP™ Software and Development TOOIS . eureeeeeaeereeeeeeeeeeoeeeeoeeroseeroeeeseeeeoeeroseeraeeeaeees 13
1-2 Simplified Code Composer Studio Development FIOW[.. e e e ueeee e eeeaeeeeeieeeeeeeieeseeeiieeeeeesessseeeieesnees 13
2-1 Icons on the Code Composer Studio TOOIDAM st toereereereeeeeeroreeeeeeeroeeeeeeoeroeeeeeeoeieeeeeroeeeeeeeeioeees 19
3-1 Standard Setup ConfigUratioNSeeeseeeereeeeeaeereoeeeeneeraeeeeaeereseeeereeroeeroeeroseeioseeeoseeeoeeroneeroseeeanees 2q
3-2 GEL File CoNfiguration [e e s s e eseeeseeesseesesesseeseeessessseeessasseeeteesseeeesesseeeiseesseesssssseeesessnees 22
3-3 Parallel Debug Manager . ee s i eeeeeeereeeeeeeaereeeeeeroeeeeeeoeeoeeeoeeoeioeeeoeeeeeeoetoeeeeeeorioeeeeeroreeeeeeioeees 23
3-4 Modifying Keyboard ShOrtCULSl e e ueeeereeeeraaeereneeeaeeeeeeeeeneereseeeoseeroseeeoeeieseeeeseeroseeeoeereseeeeeeses 23
4-1 Project Creation Wizara] . oo uee e eseee et eseeseeeeseeeeessesseeesisasseeesseeseeesssesseeeeeesseeeesesseeeeisseeesss 23
4-2 Code Composer Studio CoNtrol WinOOW s ez eieeeeeeeoereeereeeaeeeeeoeeoeeeoeeeereeeroeeeeeeorroeeeeeroreeeeeeioeees 29
4-3 P ol 1 (ST (ol o o] =T | 29
4-4 (ofe]g]iTe[S1E=11Te] sl Kelo] | o N 34
4-5 Add Project ConfiguratioNS) e eeeeseeeeeeeeeeeereeeeeieoreroeeeeeeeeoeeeoseeroseeeoseeeeeeeesrereseesoseeeeeeeeeeereees 3]
4-6 Project Configuration DependenCi@S] e e eeeeeeaeereeeeoeereeeeoeereoeeeoeeioseeroeereseeeeseeioseerorereseeeeaeeses 39
4-7 Slell] (N otelslige] Ig) (T [ccMilo]o| T 33
4-8 Elements in the Source Code WinOOW] e e seeeroeeeeeeoeroeeeeeeoeeeeeeoeroeeeoeeoeieeeroeeeeeeoeroeeeeeeoreeeeeeeioeees 34
4-9 Using Regular Expressions with the Text EditON .. eoereeeeeeeeeeeeeeeeeereeeereeeeeeeeeoeeieseeeeseeroseeraeeeeneees 33
4-10 Selective DiSplay .. eeeeereee e e eieeeeeeeteeeseeeiseeseeeseeeseeeeeeaseteetsasseeeesesseeetssesseeissesseeeissssseessessees 349
R 0o To [Y=Y o 1= 31
4-12 Code Development FIOW [oiooeeieeeeeeeeeeeeereaeereeeeaoeeeeeeeeoeeteoeeeoseeroseeeaeeteseeeeseetoseeeoseeesseeeoeeianes 33
4-13 Build OptionS Dialog BOX] e e eeiieeeeeeteeeeeeiseeeeeseeeseeeeseaseeeetsesseeeesesseeeissesseesssesseeessssseeessesaees 39
4-14 TMS320 DSP Algorithm Standard Elements [oeieeeeeereeeeeeeeeeeeeeoeeoeeroeeeeeeeeroeeeeeeorroeeeeeroeeeeeeeioeees 419
4-15 Reference Framework ElementS i seeeeeeeeeeaeereeeeeeeereeeeaeeteoeeeoeeeroseeeoseieseeeeseeroneeroeeesseeeaeeienes 13
5-1 D] 0o\ A 54
5-2 V1T oo YA\ F= Vo] I 59
5-3 D v W @)1 61 | P 53
5-4 Toolbar Icons for Running and DebuggiNg e e e ueeeeeeeireeeeeeieeeeeeerseeseeeeeeasseeeeseseeeeiesseeeiseeseeeeenees 59
5-5 Breakpoint Manager oo e eeeeeeeeereoeeeeeeeenreeeseeeoeeeeeeeeeseeroseeeoseeioeeeoseeteseeeeseeioseeeseeseseeeeseeres 6]
5-6 Sample Parameter DidlOg) e eseeeeeeeeeeeeereneereoeeeaeeeraeeeeseereseeeoseeeoeeeeoeeioseeioeeeseeeeoreroneeraseeeeees 64
5-7 D v W | Lo o] o1 1 (o] N 64
5-8 WatCh LOCAIS Tab et ieteeeeeeroeeeeeeoreeeeeoeeaeeeoeeoeioseeoeeoeeeseeoeeoeeeorioseeseeoeeeseeeeroeeeeeeoesoseioceaeeees 63
5-9 Specifying a Variable 1o WatCh oo oot e e e et eeeeeaeeeraeeeeneereoeeeoseeeoeeeeoeesoseeioeeeseeeeoeetoneeraeeeneees 69
5-10 Watch Element Values e e etieeeieaeeieieeiastiiaseeeaeeieseeieseesaseereseieseeieseeiosteioseieseeieseeioseeraseesaeess 64
Lo A o o] o 1Y § VALY T To (o) 61
5-12 MemOry WinOGOW] e eeueeeeeeeeraneeraeeieaeeeeseeroreroseeeoeeeeoeeeoseeroeeeoseeeeeeieseetoseeeeseeroseeeseereseeeanees 63
5-13 Memory WindowW OptiONS s s e s ieee e eesseeeeeeeaseeeetsasseeetieeseeetsseseeeiseesseeesessseeessssseeeeiesseeeess 63
5-14 ReQiSter WinOOW oo ie e e eeeeeeaeereeeeeeseesentesoeeeeoeeeeseeeosteroseeeeeeeeseeiostetoseeeoeteeoeeeeseereseeeaeees 74
5-15 Editing @ RegiStry ValU€| s e ieeeereaeereeeeaeeeeoeeeaseereoeeeaseeeoeeeeoeeioseeeeseesoseeeoseieseeeeseeroseeraeeieneess 7]
5-16 Customize RegiSter GrOUPS] . .eeeeeieeeeeeseeeeeeeseaseeeetseseeeesieeseeesesesseesssssseeesesssteeeessseeeeiesseeeess 77
5-17 Register Window with Customized Register GroUpL e ieeiereeeeeierieeeeierierieierieceeieeioeeeioeiorieierioeeeies 77
5-18 Disassembly WinOOW e eeeeeeeeeeeraeeieoeeeeeeroneeroeeeeaeeeeoeeroseeroeeeoseeeeeeioseetoseeeeeeeroeeeeseeroseeeaness 72
5-19 Call StaCK WiNOOW e ettt iesetraseeraeeieneeteseeianteiaseiesetteseeieseereseeeastieeeeieseeieseeeeseeroseeeseeieseeranes 73
5-20 Symbol BrowSer WiNOOW] e e s eeeeoeereeeseeeeseeeeeoeeeeoeeeeseeeeseeroeeieeeeeeseeiosteioseeeeeeeeeeeioseeroeeeaeess 73
5-21 Command WinOOW oo s e eeeeereneeraeeieaeeeeeeroeeroseeeoeeeeoeeeoseeroeeeaseeeoeeieseetoneeeoseeroseeeseereseeeanees 73
5-22 Cache Tag RAM VieWel e et i iee et seeeetesseeseeeessesseeetseeseeesseesssesssesseeesessseeeseesseeeeissseeessesseeeess 79
5-23 Cache Tag RAM Viewer Property Pagef . ocioeeeeieeeeeeroeeeeeeoeroeeeeeeorioeeeoeeoreeeeoeioeeeeeeoeieeroeeaeeees 74
5-24 EXCePtiONS WinOOW eieueeeeeeereneeeaeeieneeeeeeroneeroseieseeeeseesoseeroseeeoeeeeoeeioseetoseeeoeeeroseeeseeraseeeaeess 71
5-25 Event ANalySiS WinOOW] e e e ueee e eieeeeeeesseeeeeseseseeesteaseeeeseesseeeisseseeesssesseeissssseeessssseeeeeesseeeess 34
o] O oA V= o ST =T o [=T g Tot=T 8]l
5-27 RTDX Data FIOW ceioeioeeeeeoeeaeeeneeareaneeaeeaeeeoeeaeeoeeeareoeeeoreaseeeeeoreoeeeseeareeseeoreaeereoceaeeoeeeaceaeees 83
5-28 RTDX DiagnOStiCS WiNOOW oo s ee e eieeeeesseeeeessseseeeeteaseeeessesseseieseseeesesssseeesessseeessssseeeisesseeeess 34
5-29 RTDX Configuration WinOOW] i eeeeeeeeeeeeroeeaeeeoeeeeeeeeroeeeeeeoeroeeeeeeortoeeeoeroreereeoeroeeroeeesieeeroeeeeeees 84
5-30 RTDX Channel Viewer WinOOW eeieoeeueoeeeeeereneeraeeteaeeeeseeroseeroeeeoeeeeoeeioseeroseeeoeeeroseeeseeraseeeaeess 33
List of Figures SPRU509H-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

6-1 Sample Graph PropertieS DialOglseeeeeeeeeeraereeereeraeeeoeeoeieeeroeeeeeeoeroeeeeeeoeroeeeeeoeeeeeeeroeereeeeeieees 9d

6-2 o g o] [N T e=To] o I 9d
6-3 Real-Time Capture and ANalySiS|o e s ereireeeeeereeeeeetieaseeesieaseeesseeeseeeisseseeeseeeseeeesessseeeeiesseeeess 97
6-4 D] ol (@S o 7N oo o - 1 P 97
6-5 GOAlS WiNOOW Lo e ettt reeeoeeteeeeeneeioneeeoeeseneeeeseesoseeroseeeseeteseesoseeroseeeseetoseeeoseeroseeeneeroseeeanees 93
6-6 (0= 1ol o[V(o T= R el || 97
7-1 [Ofe] gl e ol gT=T o1 \Y F=Tg oo I=] ¢ IO 100
7-2 Update AdViSOr Web SettiNgS]ieeeeeeereeeeeaeeieoeeeeeeroeeroeeieseereseeeonreioeeioseereseeeoeeroeeienreroseeeaeess 104
SPRU509H-0October 2006 List of Figures 7

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

List of Tables

4-1 CodeWright Text Editor: A Quick Reference[

5-1 GEL Functions for Memory Maps[.............

8

List of Tables

SPRU509H-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

%‘ TEXAS Preface
INSTRUMENTS SPRUS09H—October 2006

Read This First

About This Manual

To get started with Code Composer Studio™ (CCStudio) Development Tools, review the first two sections
of this book. The remaining sections contain more detailed information on specific processes and tools. To
determine whether you can utilize these features, see the online help provided with the Code Composer
Studio installation.

Trademarks

Code Composer Studio, CCStudio, DSP/BIOS, RTDX, TMS320C2000, TMS320C6000, C6000,
TMS320C62x, TMS320C64x, TMS320C67x, C62x, C64x, C67x, TMS320C5000, TMS320C55x%, C55x, and
C54x are trademarks of Texas Instruments Incorporated. The Texas Instruments logo and Texas
Instruments are registered trademarks of Texas Instruments Incorporated.

Intel, Pentium are trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Windows and Windows NT are registered trademarks of Microsoft Corporation.

All trademarks are the property of their respective owners.

SPRUS509H-0October 2006 Read This First 9
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS

INSTRUMENTS
www.ti.com
Trademarks
10 Read This First SPRU509H-0October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

%‘ TEXAS Chapter 1
INSTRUMENTS SPRUS09H—October 2006

Introduction

This section introduces TI's eXpressDSP technology initiative. It also includes a
simplified development flow for Code Composer Studio development tools.

Topic Page
1.1 Welcome to the World of eXpressDSP™ [iiiiiieieeeeieiiicaeaeeeen.s 17
1.2 Development FIOW. o et e et ieeaeee i iaeaeaeieiineaeaeieincaeaeeeinss 13
SPRU509H-0October 2006 Introduction 11

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

Welcome to the World of eXpressDSP™

*L‘ TEXAS
INSTRUMENTS

www.ti.com

1.1 Welcome to the World of eXpressDSP™

Tl has a variety of development tools available that enable quick movement through the digital signal
processor (DSP) based application design process from concept, to code/ build, through debug analysis,
tuning, and on to testing. Many of the tools are part of TI's real-time eXpressDSP™ software and
development tool strategy, which is very helpful in quickly getting started as well as saving valuable time in
the design process. TI's real-time eXpressDSP Software and Development Tool strategy includes three
components that allow developers to use the full potential of TMS320™ DSPs:

» Powerful DSP-integrated development tools in Code Composer Studio
» eXpressDSP Software, including:
— Scalable, real-time software foundation: DSP/BIOS™ kernel
— Standards for application interoperability and reuse: TMS320 DSP Algorithm Standard
— Design-ready code that is common to many applications to get you started quickly on DSP design:

eXpressDSP Reference Frameworks

« A growing base of TI

DSP-based products from TI's DSP Third Party Network, including
eXpressDSP-compliant products that can be easily integrated into systems

Figure 1-1. eXpress DSP™ Software and Development Tools

Code Composer Studio™ dev tools

Compliant
plug-in

Compliant
plug-in

Program
build

Program
debug

Real-time
analysis

XDS560™ emulator

Application/developer kits

Reference Frameworks

Compliant
algorithm

Application
software

TMS320™ DSP Algorithm Standard

Compliant
algorithm

Compliant
algorithm

Signal processing libraries

Host computer

DSP/BIOS™ Drivers
RTDX™
Embedded emulation
JTAG components

TMS320™ DSP

12 Introduction

SPRU509H-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Development Flow

1.2 Development Flow

The development flow of most DSP-based applications consists of four basic phases: application design,
code creation, debug, and analysis/tuning. This user’s guide will provide basic procedures and techniques
in program development flow using Code Composer Studio.

Figure 1-2. Simplified Code Composer Studio Development Flow

Design Code & build Debug
conceptual create project, Syntax checking,
plannenug [write source code, [} breakpoints, —» Analyze and Tune
configuration file logging, etc.
SPRUS509H-0October 2006 Introduction 13

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS

INSTRUMENTS
www.ti.com
Development Flow
14 Introduction SPRU509H-0October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

J@ TEXAS
INSTRUMENTS

This section introduces some of the basic features and functions in Code Composer
Studio so you can create and build simple projects. Experienced users can proceed to
the following sections for more in-depth explanations of Code Composer Studio’s

Chapter 2

SPRU509H-October 2006

Getting Started Quickly

various features.

Topic

Page

2.1
2.2
2.3
2.4
2.5
2.6

Launching the Code Composer Studio Development Tools[..-........ 1§

Creating a New Project]...oeeeeee e ieeeetaeaeeeeieeee 14
Building Your Program[e. .ot ee et iieeeeeieieeaeeenes 17
Loading Your Programf. . .ot ee et ieeeetieieeaeeenees 17
¥ 1Y (ol D11 o 10 (o o [1o Vo | PO 17
Ta)igeLe [VTea (o] I (ol = (=11 o] N 13

SPRUS509H-October 2006

Getting Started Quickly

Bubmit Documentafion FeedbacK

15

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Launching the Code Composer Studio Development Tools

2.1 Launching the Code Composer Studio Development Tools
To launch Code Composer Studio IDE for the first time, click the icon (shown below) on your desktop. A
simulator is automatically configured by default. To configure Code Composer Studio for a specific target,
see for more information.
2.1.1 Important Icons Used in Code Composer Studio
These icons will be referred to throughout this manual.
Figure 2-1. Icons on the Code Composer Studio Toolbar
ﬁ Launches Code Composer Studio
o Rebuilds the project
Ed Builds the project incrementally
E Halts execution
4 Toggles breakpoint
2 Runs project
?1} Single steps project
i+ Stepout
ﬁ!‘, Step over
2.2 Creating a New Project
To create a working project, follow these steps:
1. If you installed Code Composer Studio in C:\\CCStudio_v3.3, create a folder called practice in the
C:\CCstudio_v3.3\myprojects folder.
2. Copy the contents of C:\CCStudio_v3.3\tutorial\target\consultant folder to this new folder. Target refers
to the current configuration of Code Composer Studio. There is no default configuration, you must set
a configuration before starting Code Composer Studio. See for more about Code Composer
Studio configurations.
3. Launch Code Composer Studio.
4. From the CCStudio Project menu, choose New.
5. In the Project Name field, type the project name (practice).
6. In the Location field, type or browse to the folder you created in step 1.
7. By default, Project Type is set as Executable (.out) and Target is set as the current configuration of
Code Composer Studio.
8. Click Finish. Code Composer Studio creates a project file called practice.pjt. This file stores your
project settings and references the various files used by your project.
9. Add files to the project by choosing Add Files to Project from the Project menu. You can also right-click
the project in the Project View window on the left and then select Add Files to Project.
16 Getting Started Quickly SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Building Your Program

2.3

24

2.5

251

25.2

10. Add main.c, DoLoop.c, and Ink.cmd (this is a linker command file that maps sections to memory) from
the folder you created. You may need to choose All Files from the Files of type dropdown box to view
all the types of files.

11. Next, choose Add Files to Project again and browse to the C:\CCStudio_v3.3\target\cgtools\lib\
directory and add the rts.lib file for your configured target.

12. You do not need to manually add any include files to your project, because the program finds them
automatically when it scans for dependencies as part of the build process. After you build your project,
the include files appear in the Project View.

Building Your Program

Now that you have created a functional program, you can build it. Use the Project - Rebuild All function
the first time you build the project. An output window will show the build process and status. When the
build is finished, the output window will display Build complete O errors, 0 warnings.

The Rebuild All command is mainly used to rebuild the project when the project options or any files in the
project have changed. For further information, see Becfion 2.3.

Loading Your Program

After the program has been built successfully, load the program by going to File - Load Program. By
default, Code Composer Studio IDE will create a subdirectory called Debug within your project directory
and store the .out file in it. Select practice.out and click Open to load the program.

Note: Remember to reload the program by choosing File - Reload Program if you rebuild the
project after making changes.

Basic Debugging

To see Code Composer Studio’s versatile debugger in action, complete the following exercises. For more
in-depth information, see [Chapter 3.

Go to Main

To begin execution of the Main function, select Debug — Go Main. The execution halts at the Main function
and you will notice the program counter (yellow arrow) in the left margin beside the function. This is called
the selection margin.

Using Breakpoints

To set a breakpoint, place the cursor on the desired line and press F9. In addition, you can set the
breakpoint by selecting the Toggle Breakpoint toolbar button. When a breakpoint has been set, a red icon
will appear in the selection margin. To remove the breakpoint, simply press F9 or the Toggle Breakpoint
toolbar button again. You can also open the Breakpoints Manager (Debug - Breakpoints) to view all the
breakpoints, set new ones, or change the breakpoint action.

In main.c, set a breakpoint at the line: DoLoop(Inputl, Input2, Weights, Output, LOOPCOUNT);As
execution was halted at the main function, you can press F5, select Debug - Run, or select the Run
toolbar button to run the program. Once execution reaches the breakpoint, it halts, as displayed in the
status bar at the bottom of the CCStudio window.

SPRU509H-0October 2006 Getting Started Quickly 17
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

b TEXAS

INSTRUMENTS

www.ti.com

Introduction to Help

253

254

255

2.5.6

Source Stepping

Source stepping is only possible when program execution has been halted. Since you halted at the
breakpoint, you can now execute the program line by line using source stepping. Step into the DoLoop
function by selecting the Source-Single Step button on the side toolbar. Step through a few times to
observe the executions. The Step Over and Step Out functions are also available below the Single Step
button. Assembly stepping is also available. Whereas source stepping steps through the lines of code,
assembly steppmg steps through the assembly instructions. For more information on assembly stepping,
see B

Viewing Variables

In the debugging process, you should view the value of the variables to ensure that the function executes
properly. Variables can be viewed in the watch window when the CPU has been halted. The watch
window can be opened by selecting View - Watch Window. The Watch Locals tab shows all the relevant
variables in the current execution.

As you continue to Step Into the while loop, the values of the variables change through each execution. In
addition, you can view the values of specific variables by hovering the mouse pointer over the variable or
by placing the variables in the Watchl tab. For more information on variables and watch windows, see

S 2.

Output Window

The Output window is located at the bottom of the screen by default. It can also be accessed by
View - Output Window. By default, the printf function displays the same Output window, showing
information such as the contents of Stdout and the build log.

Symbol Browser

The symbol browser allows you to access all the components in your project with a single click. Select
View - Symbol Browser to open the window. The symbol browser has multiple tabs, including tabs for
Files, Functions, and Globals.

Expanding the tree in the Files tab shows the source files in your project. Double-clicking on files in the
Files or Functions tabs automatically accesses the file. The Globals tab allows you to access the global
symbols in your project.

For more information on the Symbol browser, see Bection 5.2.10.

You should now have successfully created, built, loaded, and debugged your first Code Composer Studio
program.

2.6 Introduction to Help
Code Composer Studio provides many help tools through the Help menu. Select Help - Contents to
search by contents. Select Help - Tutorial to access tutorials to guide you through the Code Composer
Studio development process.
Select Help - Web Resources to obtain the most current help topics and other guidance. User manuals
are PDF files that provide information on specific features or processes.
You can access updates and a number of optional plug-ins through Help - Update Advisor.

18 Getting Started Quickly SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

%‘ TEXAS Chapter 3
INSTRUMENTS SPRUS09H—October 2006

Target and Host Setup
This section provides information on how to define and set up your target configuration

for both single processor and multiprocessor configurations, and how to customize
several general IDE options.

Topic Page
3.1 SettingUpthe Targetl ooo e eeieiieieeeeieiieiaeaeaeiincaeaeeeinss 20
3.2 Host IDE CuStOmMizZation] . e i i eieieeeeaeeeeneaeeeeneaeeacencaesasensaeeas 24
SPRU509H-0October 2006 Target and Host Setup 19

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

” TEXAS
INSTRUMENTS

www.ti.com

Setting Up the Target

3.1 Setting Up the Target

3.1.1 Code Composer Studio Setup Utility

This section provides information on how to define and set up your target configuration for both single
processor and multiprocessor configurations, and how to customize several general IDE options.

3.1.1.1 Adding an Existing Configuration

The Setup utility allows you to configure the software to work with different hardware or simulator targets.
You must select a configuration in Setup before starting the Code Composer Studio IDE.

You can create a configuration using the provided standard configuration files, or create a customized
configuration using your own configuration files (see the online help and/or the tutorial). This example
uses the standard configuration files.

To create a system configuration using a standard configuration file:

1. Double-click on the Setup CCStudio desktop icon. The System Configuration dialog box appears.

2. From the list of Available Factory Boards, select the standard configuration that matches your system.
Your list of available boards will differ depending on your installation.
Determine if one of the available configurations matches your system. If none are adequate, you can
create a customized configuration (see the online help and/or the tutorial).

Figure 3-1. Standard Setup Configurations

£ Code Composer, Studio Setup
File Edit Wiew Help

=ystem Configuration Awailable Factary Boards Family | Platf... | Ends.. 4 | My System 4
Al = lan e -]
ER:ARM11 - YPOMZ420 Plat,,. ARMIL simul., * ARMITOMI
B CA416 Device Cycle Accurate Simulator B &R M7 - YPOM2420 Platf... ARM7 sl . Simulator .
B TMS320C6416 EEARMT Simulator, Big End... ARMZ simul.. big N”Tber oLl
= B TS5 Ren2.x CPU Cyele Accurate Simulator |WGaRM7 Simulator, Littke E... ARMF sl little
* TM5320C55x% B ARM7T ¥D3510 Emulatar ARMT wds5.,.. * C550 Rayly CP
- A:?ESH Simulator EF ARM7 DSS60 Emulator ARM7 xdsS.. * Cyele Accurate
B ARMT ¥D3510 Emulatar ARMS wds5.,.. * Sirmulatar
B 8RM9 XDS560 Emulatar ARM9 xdsS,,, * Mumber of Devic
B ARMIZEE]-S Sirulator L., ARMI simul,.. little 1

B F240 xDS510 Emulatar C24xx xdsG.,, * CE416 Device C
B F240 xDS560 Emulatar C24xx xdsG.,, * e g DE'u'iI:\J
R F2401 x0S510 Enulator C24x xdsG.,, * “ 1

|
4 % || BB Factory Boards |Ei Custom Boards] ﬁe Create Board J < »

Save & Cuit | Remove Al | | | |:|

Drag a device driver to the [eft to add a board to the swskem,

3. Click the Add button to import your selection to the system configuration currently being created. The
configuration you selected now displays under the My System icon in the System Configuration pane
of the Setup window.

If your configuration has more than one target, repeat these steps until you have selected a
configuration for each board.

4. Click the Save & Quit button to save the configuration.

5. Click the Yes button to start the Code Composer Studio IDE with your configuration. You can now start
a project. See of this book, or the online help and tutorial for more information.

20 Target and Host Setup SPRU509H-October 2006
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Setting Up the Target

3.1.1.2 Creating a New System Configuration
To set up a new system configuration, start with the Code Composer Studio Setup dialog box.

Start with a blank working configuration by selecting Remove All from the File menu. (You may also start
with a standard or imported configuration that is close to your desired system. In that case, begin at step
three below after loading the starting configuration).

1. Select the My System icon in the System Configuration pane.

2. In the Available Factory Boards pane, select a target board or simulator that represents your system.
With your mouse drag the board that you want to the left screen under My System, or click on the Add
button. To find the correct board, you can filter the list of boards by family, platform and endianness. If
you wish, you can drag more than one board to the left panel under My System.

3. If you want to use a target board or simulator that is not listed in the Available Factory Boards pane,
you must install a suitable device driver now. (For example, you may have received a device driver
from a third-party vendor or you may want to use a driver from a previous version of Code Composer
Studio.) Proceed to the Installing/Uninstalling Device Drivers help topic (from the main CCStudio
program, select Help - Contents — Code Composer Studio Setup — How To Start - Installing/Uninstalling
Device Drivers) and then continue with this section to complete your system configuration.

4. Click on the processor type you have just added, and open the Connection Properties dialog box using
one of the following procedures:

* Right-click on the processor type in the System Configuration pane and select Properties from the
context menu. If you have selected the current processor, selecting Properties will display the
Processor Properties dialog.

e Select the processor type in the System Configuration pane and then select the Modify Properties
button in the right-hand pane.

5. Edit the information in the Connection Properties dialog.

6. The starting GEL file, the Master/Slave value, the Startup mode, and the BYPASS name and bit
numbers are included in the Processor Properties dialog. To access the Processor Properties dialog,
right-click on the desired processor and choose Properties from the context menu. Other properties
may be available, depending on your processor. When configuring simulators, multiple properties may
appear with default values based on the processor.

The Connection Properties and Processor Properties dialogs may have tabs with different fields. The
tabs that appear and the fields that can be edited will differ depending on the board or processor that
you have selected. After filling in the information in each tab, you can click the Next button to go to the
next tab, or simply click on the next tab itself. When you are done, click the Finish button.

For more information on configuring the Connection or Processor Properties dialogs, see the online help
(Help - Contents - Code Composer Studio Setup - Custom Setup).

3.1.1.3 Creating Multiprocessor Configurations

The most common configurations include a single simulator or a single target board with a single CPU.
However, you can create more complicated configurations in the following ways:

» Connect multiple emulators to your computer, each with its own target board.

» Connect more than one target board to a single emulator, using special hardware to link the scan
paths on the boards.

» Create multiple CPUs on a single board, and the CPUs can be all of the same kind or they can be of
different types (e.g., DSPs and microcontrollers).

Although a Code Composer Studio configuration is represented as a series of boards, in fact, each board
is either a single CPU simulator or a single emulator scan chain that can be attached to one or more
boards with multiple processors. The device driver associated with the board must be able to comprehend
all the CPUs on the scan chain. More information may be found in the online help (Help — Contents — Code
Composer Studio Setup - How To Start - Configuring CCStudio for Heterogeneous Debugging).

SPRU509H-0October 2006 Target and Host Setup 21
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

” TEXAS
INSTRUMENTS

www.ti.com
Setting Up the Target
3.1.1.4 Startup GEL Files

The general extension language (GEL) is an interpretive language, similar to C. GEL functions can be
used to configure the Code Composer Studio development environment. They can also be used to
initialize the target CPU. A rich set of built-in GEL functions is available, or you can create your own
user-defined GEL functions.

The GEL file field under the Processor Properties dialog allows you to associate a GEL file (.gel) with
each processor in your system configuration. Access the Processor Properties dialog by selecting the
current processor and choosing Properties from the context menu.

Figure 3-2. GEL File Configuration
Processor, Properties

Froperty Walue
CACCSTUDIO_W3. 3tochgelhi .. | #
Master!5lave NZ&

Device CEZu
Simulator Type Cycle &cocurate
Detect CPU Resowrce Conflicts Yes

Eoot Mode NOME

Fewind OFF
Endiarness Little Endian

Change property value as neceszarny in the right column,

Surnmary

Tips: ~
- Use initG2x=zim. gel

- Tuming off resource conflict detection improves simulation speed.

Summary:
Simulates the core of the CE2xx processor with Cycle Accuracy. Thisis %

oK | Cancel |

When Code Composer Studio is started, each startup GEL file is scanned and all GEL functions contained
in the file are loaded. If the GEL file contains a StartUp() function, the code within that function is also
executed. For example, the GEL mapping functions can be used to create a memory map that describes
the processor's memory to the debugger.

StartUp(){ /*Everything in this function will be executed

on startup*/ GEL_MapOn(); GEL_MapAdd(0, 0, O0xF000, 1,

1); GEL_MapAdd(0, 1, O0xF000, 1, 1);}

GEL files are asynchronous and not synchronous; in other words, the next command in the GEL file will
execute before the previous one completes. For more information, see the Code Composer Studio online
help. Select Help - Contents - Making a Code Composer Project - Building & Running Your
Project — Automating Tasks with General Extension Language (GEL).

3.1.1.5 Device Drivers

Special software modules called device drivers, are used to communicate with the target. Each driver file
defines a specific target configuration: a target board and emulator, or simulator. Device drivers may either
be supplied by Texas Instruments or by third-party vendors.

Each target board or simulator type listed in the Available Factory Boards pane is physically represented
by a device driver file. Code Composer Studio IDE does not support creating device drivers, but Tl or third
parties may ship device drivers separately from those which are pre-installed.

22 Target and Host Setup SPRU509H-October 2006
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Setting Up the Target

3.1.2 Parallel Debug Manager

In multiprocessor configurations, invoking Code Composer Studio starts a special control known as the
Parallel Debug Manager Plus (PDM+).

Figure 3-3. Parallel Debug Manager

CCStudio: Parallel Debug Manager,
File ©pen Group Debug Options Help

F’}|ﬁl|{'p'|‘3:|E|%“Defaultﬁmup j |Board\-"iew j

System Hame CPU Status | Processor Maode Program | Endianess 05

|- E@ C55xx Rev2.x CPU Cycle Act | cRa16 Dey. . Halted CE416 |Stop-mode[..] Unknown | Little Endian Hone
@ TS 320CH5x

The Parallel Debug Manager allows you to open a separate Code Composer Studio IDE session for each
target device. Activity on the specified devices can be controlled in parallel using the PDM control.

This version of Parallel Debug Manager (PDM+) includes the following features:
* You can connect or disconnect from targets on-the-fly by right-clicking the processor on the right panel.

» The interface allows an expanded view of processors, with several dropdown filters to reveal a list by
group, by CPU or by board.

* Red highlighting on the processor icon (on the left pane) indicates that the processor is not connected
to the system or that it has updated status information.

e Your can put processors into loosely-coupled groups, (i.e., where the processors are not all on the
same physical scan chain). Choosing Group View from the second dropdown menu on the toolbar and
System on PDM's left pane shows which groups are synchronous.

Global breakpoints work only when processors in a group belong to the same physical scan chain. For
further details on the Parallel Debug Manager, see the online help under Help - Contents — Debugging
Windows and Analysis Tools - Parallel Debug Manager.

3.1.3 Connect/Disconnect

Code Composer Studio IDE makes it easy to dynamically connect and disconnect with the target by using
the Connect/Disconnect functionality. Connect/Disconnect allows you to disconnect from your hardware
target and even to restore the previous debug state when reconnecting.

By default, Code Composer Studio IDE will not attempt to connect to the target when the control window
is opened. Connection to the target can be established by going to Debug - Connect. The default behavior
can be changed in the Debug Properties tab under Option - Customize. The status bar will briefly flash a
help icon to indicate changes in the target’s status. When the target is disconnected, the status bar will
indicate this fact, as well as the last known execution state of the target (i.e., halted, running, free running
or error condition). When connected, the status bar will also indicate if the target is stepping (into, over, or
out), and the type of breakpoint that caused the halt (software or hardware). See for more
information on the status bar.

After a connection to the target (except for the first connection), a menu option entitled Restore Debug
State will be available under the Debug Menu. Selecting this option will enable every breakpoint that was
disabled at disconnect. You can also reset them by pressing F9 or by selecting Toggle Breakpoints from
the right-click menu. Breakpoints from Advanced Event Triggering jobs and emulator analysis will not be
enabled.

If the Parallel Debug Manager is open, you can connect to a target by right-clicking on the cell
corresponding to the target device underneath the column marked Name. For further details on
Connect/Disconnect, see the Code Composer Studio online help under Debugging Windows and Analysis
Tools - The Debugging Process - Connect/Disconnect.

SPRU509H-0October 2006 Target and Host Setup 23
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Host IDE Customization

3.14

3.2

3.2.1

Status Bar

The status bar is displayed at the bottom of the Code Composer Studio application window. The status
bar displays messages relating to the target’s connect status along with a basic status indicator. The left
side of the status indicator shows if the target is running or not. The right side of the status indicator turns
yellow to indicate that the target was recently halted. This occurs when you manually halt the process, or
when Code Composer Studio temporarily halts the target to carry out another internal process. The
indicator will turn grey after a few seconds.

The status bar also shows messages about the current options used by CCStudio:

» Process Mode (ARM processors only). The status bar displays the name of the current mode used
by the executed process. The options are:
— ARM: Indicates that the process is in the ARM mode.
— THUMB: Indicates that the process is in the Thumb mode.

» Endianness.The status bar denotes the Endianness sequencing method being used, with either LE
(Little Endian) or BE (Big Endian).

» Jazelle Indicator. The word JAVA is displayed in the status bar when Jazelle is enabled.

* MMU Indicator (ARM processors only). The status bar displays either MMU Off or MMU On to

indicate the status of the Memory Management Unit (MMU) mode. Note: This feature is only available
for ARM 9 and ARM 11 targets.

» Privileges (ARM processors only).The status bar indicates the privilege mode for the application by
displaying either USER mode or SUPERVISOR mode.

» Task Level Debugging Indicator. The status bar indicates the status of Task Level Debugging (TLD)
by displaying TLD when TLD has been enabled on the device. Note: TLD support is not available for
all operating systems.

» Descriptions. The center of the status bar displays text which describes the actions of individual menu
commands and toolbar items as you hold the mouse cursor over them, and the path of the active
source file window. The right area of the status bar shows the line and column position of the cursor
when viewing a source file.

» Profile Clock. The Profile Clock is displayed on the right side of the status bar, if it has been enabled.
See the Application Code Tuning Online Help for more information.

Host IDE Customization

Once Code Composer Studio is launched, you can customize several general IDE options.

Default Colors and Faults

Selecting the menu options Option — Font - Editor Font and Option - Color — Editor Color allows you to
modify the default appearance (or View Setup) in the CodeWright text editor (Eection 4.2.7). Selecting the
menu options Option - Font - Tools Font or Tools Color allows you to modify the default appearance for
various IDE tool windows.

24

Target and Host Setup SPRU509H-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Host IDE Customization

3.2.2 Default Keyboard Shortcuts

The default IDE has more than 80 predefined keyboard shortcuts that can be modified. New keyboard
shortcuts can be created for any editing or debugging commands that can be invoked from a document
window. To assign keyboard shortcuts:

1.
2.

3.

Select Option - Customize.
In the Customize dialog box, select the Keyboard tab to view the following options:

« Filename. The standard keyboard shortcuts file is displayed by default. To load a previous
keyboard configuration file (*.key), enter the path and filename, or navigate to the file.

e Commands. Select the command you want to assign to a keyboard shortcut.

* Assigned Keys. Displays the keyboard shortcuts that are assigned to the selected command.

e Add. Click the Add button to assign a new key sequence for invoking the selected command. In
the Assign Shortcut dialog box, enter the new key sequence, and then click OK.

« Remove. To remove a particular key sequence for a command, select the key sequence in the
Assigned Keys list and click the Remove button.

« Default Keys. Immediately reverts to the default keyboard shortcuts.

e Save As. Click the Save As button to save your custom keyboard configuration in a file. In the
Save As dialog box, navigate to the location where you want to save your configuration, name the
keyword configuration file, and click Save.

Figure 3-4. Modifying Keyboard Shortcuts
Customize

Debug F'rupelliesl Ditectories | Color Feyboard |F'mgram/F'rUiecl.r‘C|D | Control Window Di:j,] H

‘ Save hs..

Filename: |SR{EEEIL]

Commands: Assigned Keys:

Debug; Enable/Disable All Breakpoints ~
Debug: Enable/Disable Hardware Breal
Debug: Toggle Breakpoint

Debug:Add To Watch

DebugAnimate

Debug Assembly/Source Stepping Asse
Debug:Assembly/Source Stepping.Asse

D ebug:Assembly/Source Stepping: Sou
Debug:Assembly/Source Stepping: Sou
Debug Disconnect

Debug:Flush Pipeline on Halt

DebugGo Main v

Default Keys

Description:

oK. Cancel | | Hep |

Click OK to exit the dialog box.

3.2.3 Other IDE Customizations

Specify the number of recent files on the File menu by selecting Option - Customize -, File Access.
Remember a project's active directory by selecting Option - Customize - File Access. When you switch
projects, you can specify whether the IDE will start you inside the directory of your active project or
inside the last directory you used.

Set what kind of information (processor type, project name, path, etc.) appears in the title bar by
selecting Option - Customize - Control Window Display.

Set default closing options by selecting Option - Customize - Control Window Display. You can specify

that the IDE should automatically close all windows when you close a project. Or you can choose to
close all projects whenever you close a control window.

Customize the code window using CodeWright (see Bection 4.2.7).

SPRU509H-0October 2006 Target and Host Setup 25
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS

INSTRUMENTS
www.ti.com
Host IDE Customization
26 Target and Host Setup SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

%‘ TEXAS Chapter 4
INSTRUMENTS SPRUS09H—October 2006

Code Creation

This describes the options available to create code and build a basic Code Composer
Studio IDE project.

Topic Page
4.1 Configuring ProjectSl e eee i ieeeeeiieieeaeaeieieaeaeieinieeaeae. 23
VN 2 1=V =[] (o] { VT 34
4.3 Code Generation TOOIS i e eeeeeeieeaereeneaeraeeneanraeeneaeraernseseaseaeens 33
4.4 Building Your Code Composer Studio Project].coeeeeeeeeeeeeeeiieeeee.. 42
4.5 Available Foundation Software]. . .oieeiiiieeieieieeieaeiaeieaeiaeiesaeinss 13
4.6 Automation (for Project Management)[.o...oeoeeieeeee i eeieieeeeeee. 19
SPRU509H-0October 2006 Code Creation 27

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Configuring Projects

4.1 Configuring Projects

A project stores all the information needed to build an individual program or library, including:

» Filenames of source code and object libraries

» Code generation tool options

* Include file dependencies

4.1.1 Creating a Project

The following procedure allows you to create single or multiple new projects (multiple projects can be

open simultaneously). Each project’s filename must be unique.

The information for a project is stored in a single project file (*.pjt).

1. From the Project menu, choose New. The Project Creation wizard window displays.

Figure 4-1. Project Creation Wizard
Project Creation
Praject Mame: ‘
Lacatior: ‘C:\CEStud\oﬁvl3\tutoria\\s\m54xx\ J
Project Type: ‘Execulabls[uut] j
Target [TM3 3200644 |
| Cancel I Help |

2. In the Project Name field, type the project name.

3. In the Location field, specify the directory where you want to store the project file. Object files
generated by the compiler and assembler are also stored here. You can type the full path in the
Location field or click the Browse button and use the Choose Directory dialog box. It is a good idea to
use a different directory for each new project.

4. In the Project Type field, select a Project Type from the dropdown list. Choose either Executable (.out)
or Library (lib). Executable indicates that the project generates an executable file. Library indicates that
you are building an object library.

5. In the Target field, select the target family for your CPU. This information is necessary when tools are
installed for multiple targets.

6. Click Finish. A project file called yourprojectname.pijt is created. This file stores all files and project
settings used by your project.

The new project and first project configuration (in alphabetical order) become the active project, and

inherit the Tl-supplied default compiler and linker options for debug and release configurations.

28 Code Creation SPRU509H-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Configuring Projects

Figure 4-2. Code Composer Studio Control Window

Active

project DSP/BIOS toolbar

4 JC64x+ Cycle Accurate Simulator, Little Endian/TMS320C64+ - 64xx (Simulator) - Co
File Edit View | Project Debug GEL Option Profie Tools DSP/BIOS Window Help
=

[mainapglicationp v |[Debug
Hler | 3 @ a

Build
g mainapplication.pit (Debug) toolbar
[_] Dependent Prajects
(21 Documents
(2 DSR/EIOS Config
(1 Generated Files
([Include
#- [Libraries
=123 Source
[] anthertestapp.c
kestapp.c

mainapplication.cmd

=
, @ [HALTED:

For Help, press Fi

Project view window

After creating a new project file, add the files for your source code, object libraries, and linker command
file to the project list.

4.1.1.1 Adding Files to a Project

You can add several different files or file types to your project. The types are shown in the graphic below.
To add files to your project:

1. Select Project— Add Files to Project, or right-click on the project’s filename in the Project View window
and select Add Files to Project from the context menu. The Add Files to Project dialog box displays.

Figure 4-3. Add Files to Project

Look in: [5 sinewave ~ cF B~
()debug

(Cysinewave.CS_

= sine.c

Filename: [Open
Fies of ype: | Source Files (. ccc) = Cancel |

All Files [*.] Heb

Co+ Source Files [".cpp.”.cc;".cxe)
4sm Source Files (*a]

Linear Source Fies ")

Obiect and Library Files [*.0"")
Configuration File [*.tcf)
Documents (* " doc.”)

Data Files (*dat."m)

Linker Command File " cmd * lef]

2. In the Add Files to Project dialog box, specify a file to add. If the file does not exist in the current

directory, browse to the correct location. Use the Files of Type dropdown list to set the type of files that
appear in the File name field.

Note: Do not try to manually add header/include files (*.h) to the project. These files are

automatically added when the source files are scanned for dependencies as part of the
build process.

3. Click Open to add the specified file to your project.
The Project View (see is automatically updated when a file is added to the current project.

SPRU509H-0October 2006

Code Creation 29
Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Configuring Projects

The project manager organizes files into folders for source files, include files, libraries, and DSP/BIOS
configuration files. Source files that are generated by DSP/BIOS are placed in the Generated Files folder.
Code Composer Studio IDE searches for project files in the following path order when building the
program:

» The folder that contains the source file

» The folders listed in the Include search path for the compiler or assembler options (from left to right)

» The folders listed in the definitions of the optional DSP_C_DIR (compiler) and DSP_A_DIR
(assembler) environment variables (from left to right)

4.1.1.2 Removing a File

4.1.2

If you need to remove a file from the project, right-click on the file in the Project View and choose Remove
from Project from the context menu.

Project Configurations

A project configuration defines a set of project level build options. Options specified at this level apply to
every file in the project.

Project configurations enable you to define build options for the different phases of program development.
For example, you can define a Debug configuration to use while debugging your program and a Release
configuration for building the finished product.

Each project is created with two default configurations: Debug and Release. Additional configurations can
be defined. Whenever a project is created or an existing project is initially opened, the first configuration
(in alphabetical order) is set to active in the workspace.

When you build your program, the output files generated by the software tools are placed in a
configuration-specific subdirectory. For example, if you have created a project in the directory MyProjects,
the output files for the Debug configuration are placed in MyProjects\Debug. Similarly, the output files for
the Release configuration are placed in MyProjects\Release.

4.1.2.1 Changing the Active Project Configuration

Click on the Select Active Configuration field in the Project toolbar and select a configuration from the
dropdown list.

Figure 4-4. Configuration Toolbar

Select Active Project

Select Active Configuration

' : | S 4
sinewave. pit / - |Del:uug | --| =]
30 Code Creation SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{';‘ TEXAS

INSTRUMENTS

www.ti.com

Configuring Projects

4.1.2.2 Adding a New Project Configuration

1. Select Project - Configurations, or right-click on the project's filename in the Project View window and
select Configurations.

2. In the Project Configurations dialog box, click Add. The Add Project Configuration window displays.

Figure 4-5. Add Project Configurations

Add Project Configuration E]@
Create Configuration: oK |
| Cancel

+ |ze Default Settings
Help
[ebug -

" Copy Settings Fram:

/I

3. In the Add Project Configuration dialog box, specify the name of the new configuration in the Create
Configuration field, and choose to Use Default Settings (build options) or Copy Settings from an
existing configuration to populate your new configuration.

4. Click OK to accept your selections and exit the Add Project Configuration dialog.

o

Click Done to exit the Project Configurations dialog.

6. Modify your new configuration using the Build Options dialog found in the Project menu.

4.1.3 Project Dependencies

The project dependencies tool allows you to manage and build more complex projects. Project
dependencies allow you to break a large project into multiple smaller projects and then create the final
project using those dependencies. Subprojects are always built first, because the main project depends on

them.

4.1.3.1 Creating Project Dependencies (Subprojects)

There are three ways to create a project dependency relationship or subproject.

» Drag-and-drop from the project view windows. Drop the sub-project to the target project icon or to
the Dependent Projects icon under the target project. You can drag-and-drop from within the same
project view window, or you can drag-and-drop between the project view windows of two Code
Composer Studios running simultaneously.

» Drag-and-drop from Windows File Explorer.

1.
2
3.
4

5.

Open the main project in Code Composer Studio.

. Launch Windows Explorer. Both Explorer and Code Composer Studio should be open.

In Windows Explorer, select the .pjt file of the project you want to be a subproject.

. Drag this .pjt file to the Project Window of Code Composer Studio. A plus sign should appear on

the .pjt file you are moving.
Drop it into the Dependent Projects folder of the main project.

» Use the context menu. In the project view, right-click on the Dependent Projects icon under a loaded
project, select Add Dependent Projects from the context menu. In the dialog, browse and select
another project .pjt file. The selected .pjt file will be a sub-project of the loaded project. If the selected
.pjt file is not yet loaded, it will be automatically loaded.

SPRUS509H-0October 2006 Code Creation 31
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

” TEXAS
INSTRUMENTS

www.ti.com
Configuring Projects

4.1.3.2 Project Dependencies Settings

Sub-projects each have their own configuration settings. In addition, the main project has configuration
settings for each sub-project. All of these settings can be accessed from the Project Dependencies dialog.

To open the dialog, select Project Dependencies from the Project menu or from the context menu of the
project.

4.1.3.3 Modifying Project Configurations

In the Project Dependencies dialog, it is possible to modify the subproject settings. As mentioned
previously, the dialog can be accessed by Project - Project Dependencies.

As shown by Figure 4-§, you can choose to exclude certain subprojects from your configuration. In the
example shown, the MyConfig configuration for modem.pjt excludes zlib.pjt from the build. In addition, you
can also select a particular subproject configuration for this configuration. In MyConfig, sinewave.pjt is built
using the Debug configuration rather than the default MyConfig subproject configuration.

Figure 4-6. Project Configuration Dependencies

Project Dependencies E]
Project: |C:\CCStudio_v3.3\tutorial\simE4Hk\modem\modem.pit j
Configurations:
<Al Configurations - n—

D ebu 2 .
volume. pit MyCanfig <def.. ‘Yes<defa..

Release zlib.pit <Excludes Yes (defa..

Add Configuration ...

QK | Cancel Help

4.1.3.4 Sub-project configurations

Each sub-project has its own set of build configurations. For each main project configuration, you can
choose to build each sub-project using a particular configuration. To modify the sub-project setting, use
the dropdown box beside the project (under the Setting column).

41.4 Makefiles

The Code Composer Studio IDE supports the use of external makefiles (*.mak) and an associated
external make utility for project management and build process customization.

To enable the Code Composer Studio IDE to build a program using a makefile, a Code Composer Studio
project must be created that contains the makefile. After a Code Composer Studio project is associated
with the makefile, the project and its contents can be displayed in the Project View window and the
Project - Build and Project - Rebuild All commands can be used to build the program.

1. Double-click on the name of the makefile in the Project View window to open the file for editing.

2. Modify your makefile build commands and options.

Special dialogs enable you to modify the makefile build commands and makefile options. The normal
Code Composer Studio Build Options dialogs are not available when working with makefiles.

Multiple configurations can be created, each with its own build commands and options.

32 Code Creation SPRU509H-0October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Configuring Projects
Note: Limitations and Restrictions: Source files can be added to or removed from the project

Note:

in the Project View. However, changes made in the Project View do not change the
contents of the makefile. These source files do not affect the build process nor are they
reflected in the contents of the makefile. Similarly, editing the makefile does not change
the contents in the Project View. File-specific options for source files that are added in the
Project View are disabled. The Project - Compile File command is also disabled.
However, when the project is saved, the current state of the Project View is preserved.

Before using Code Composer Studio IDE commands to build your program using a
makefile, it is necessary to set the required environment variables. To set environment
variables, run the batch file DosRun.bat. The batch file is located in the directory
C:\CCsStudio_v3.3. If you installed Code Composer Studio IDE in a directory other than
C:\CCsStudio_v3.3, the batch file will be located in the specified directory.

4.1.5 Source Control Integration

The project manager can connect your projects to a variety of source control providers. The Code
Composer Studio IDE automatically detects any installed providers that are compatible.

1. From the Project menu, choose Source Control - Select Provider.

2. Select the Source Control Provider that you want to use and press OK.

If no source control providers are listed, ensure that you have correctly installed the client software for
the provider on your machine.

3. Open one of your projects and select Add to Source Control from Project — Source Control.

E

Add your source files to Source Control.

5. You can check files in and out of source control by selecting a file in the Project View window and right
clicking on the file. Icons will identify source files that are connected to a source control.

Figure 4-7. Source Control Integration

== Project view

@ Files
+-[.7] GEL Files
-1-£3 Projects
- ﬁ modem.pjt {Debug)
(21 pependent Projects
|:| Documents
(23 psRfBIOS Config
(23 Generated Files
+-[27 Include
-9 Libraries
rs55.lib
| a Source

¥ modemt,c

Open

Remaowve fram Project

L1 File Wiews I/‘BDD File Specific Options ...

Properties ...

SPRUS509H-0October 2006 Code Creation 33
Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

Text Editor

” TEXAS
INSTRUMENTS

www.ti.com

4.2 Text Editor

4.2.1 Viewing and Editing Code

Double-click on the filename in the Project View to display the source code in the IDE window.

Selection margin. By default, a selection margin is displayed on the left-hand side of integrated editor
and disassembly windows. Colored icons in the selection margin indicate various options, as described
in the online help. A yellow arrow identifies the location of the Program Counter (PC).

Keywords. The integrated editor features keyword highlighting. Keywords, comments, strings,
assembler directives, and GEL commands are highlighted in different colors. In addition, you can
create or customize new sets of keywords and save them in keyword files (*.kwd).

Keyboard shortcuts. Default keyboard shortcuts can be changed or created for any editing or
debugging commands in a document window. Select Option - Customize to modify keyboard shortcuts.

Bookmarks. Set bookmarks on any line in any source file to find and maintain key locations.

Figure 4-8. Elements in the Source Code Window

Selection
Margin EIE@

00001300 0210A07A ADD.LZ i
O00013ED 021C02FA STw.D2T2
N O00013E4 o0oozooo HOP
h
O000013E8 003CRZEAR LDW.D2T2 ®+5
= O000013EC O00O0&DON HOF 4 Divider
000013F0, 2FF16120 [BO] BHOP.21 D
000013F4 0OZ203E0GA SUB.L2 EO,
O000013FA 023CEZ2FA STwW.D2T2
o adfrtronal processing load |[adtediil] =)
load (processingload) ; QHID13ED 021C02F6 i
O0DOAZFC L3: 000O013E4 00002000
O00f13FC 0oo0zoo1a0 B QO0O013ES 0D03C62ER
oopo1400 02000160 = 000013EC 00006000
oopo1404 01826162 00O013F0 2FF1A120 [BO]
[«] 000013F4 0Z03EOSA

000013FG D23CeZF6

DO0D13FC DWSLS_pro
i 0O0013FC 00020010
M'Xegn'\é'%jiéﬁﬁf)mbly CP:rogram AT 400 O20001 A b
ounter >

4.2.2 Customizing the Code Window

The IDE's text editor (called CodeWright) lets you customize code formatting and behavior. The
Option - Editor menu has additional options for Language, ChromaCoding Lexers, and View Setups.

Language. You can associate a file type (i.e., .cpp , .awk , etc.) with a set of behaviors. Note that the
list of file types under Option - Editor » Language is different from the list of ChromaCoding lexers. By
default, many of the file types are associated with the relevant lexer (i.e., the .h file type is associated
with the C lexer). Some file types are not mapped to lexers at all.

ChromaCoding Lexers. A lexer stores a collection of settings to color various elements of the
programming language vocabulary. This vocabulary includes identifiers, braces, preprocessors,
keywords, operators, strings, and comments. The CodeWright text editor comes with about 20
language-specific lexers already configured for use, including several specific lexers for the Code
Composer Studio IDE, such as GEL, CCS, C, and DSP/BIOS. You can also create new lexers by
clicking the New or Save as button on the right side of any ChromaCoding Lexer dialog box.

View Setups. This defines generic features that are not specific to a single programming language,
such as coloring all comments in all languages blue. However, a lexer defines what comment
delimiters to use before and after a comment for the text editor.

34

Code Creation SPRU509H-0October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Text Editor

Table 4-1. CodeWright Text Editor: A Quick Reference

CodeWright Menu Location

Configurable Settings and Options

Editor Properties (global settings):

Option - Editor - Properties

Settings for File Types (langu
Option - Editor -~ Language

age properties):

Lexer Settings (settings for language-specific lexers):

Option - Editor — ChromaCodi

ng Lexers

View Setups (additional global settings):

Option - Editor - View Setups

Advanced Text Processing

Edit— Advanced, or right-click within text window and select

Advanced

Options for the editor, file loading, debug, selection margin
resizing, tool tips, external editors, and backup (auto-save)

Language options and mapping, tabs and indenting, templates,
coloring for code text, CodeSense, formatting for different file
types, and comments

Identifiers, brace characters, excluding coloring text with regex,
adding new words (keywords, preprocessors, operators) and
keyword defaults, language-specific comments, defaults for
strings, number elements

Showing line numbers and rulers, line highlighting, scrolling, line
number widths, showing visibles (EOL, tabs, spaces, etc.),
general color defaults, general font defaults

Caps to lower (and vice versa), inserting comments and
functions, tabs to spaces (and vice versa), and other advanced
editing options

4.2.3 Using the Editor's Text Processing Functionality

The text editor includes several additional functions for processing text.

» Differencing and merging. You can use the diffing function (File- Difference between files) to
compare two similar files. Merging (File - Merge Files) allows you to merge multiple files.

» Support for regular expressions. Select Edit- Find in Files or Edit- Replace in Files. In addition to
the usual find or replace functionality, the text editor lets you use regular expressions for more complex
text processing. For example, you can do a global replace for all the files in a certain directory. You
can also use saved searches and use the helper dropdown window (see Figure 4-9) to construct

regular expressions.

Figure 4-9. Using Regular Expressions with the Text Editor

Find in Files

Find what: |'\

I files of type: |‘-C;‘ cpp:hithpp J

=10

W In falder: |E.\EESIud|D7v3 ShbutarialhsimBdwxhsin J

™ Match whaole word only

™ Match Case

¥ Regular expression

[Look in open documents
v Loak in project source files:
W Look in project include files

Laok in additional folders:

¥ Look in subfolders

™ Maximal match

[Active Project Only

Addd Folder

Any character

Beginning of line -~
End of line 3
Character class]
Megated character class 1

Define a group 4]
Match left OR. right expression |

after match

Preceding expression zero or more *
Preceding expression once or more +
Preceding expression zero or once 7

Mewline in
Tab it
Backspace \b
Carriage return \r
Form Feed \F
Hexadecimal digit [F3
Escape metacharacter \

Alphanumeric character class [a-zA-20-9]

» Selectively hiding and displaying code. Selective display (Edit—Advanced - Selective Display)
allows you to reveal or hide certain kinds of code according to the chosen parameters. For example,
you can specify that the editor use the selective display function to expand and collapse certain kinds
of code. Or you can choose to hide all function definitions or preprocessor directives by choosing the
appropriate option. A small icon will appear on the margin to indicate that code has been hidden (see
Eigure 4-10). Clicking on the icon toggles the visibility of that particular block of code.

SPRU509H—-0October 2006
Bubmit Documentation FeedbacH

Code Creation 35

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

” TEXAS
INSTRUMENTS

www.ti.com

Text Editor

Figure 4-10. Selective Display

#include <stdia.h>
=
#ihelude "volume.h" —

H.* Flabs] declarations *-
L E Fmd out Sl rer/RUFRTE #E] wS

int gain = MINGAIN;
unsigned int processingload = BAZELOAD

r
-

4 4

4.2.4 Setting Auto-Save Defaults

The text editor can periodically save your working files to prevent loss of work in the event of a system
crash. To use this function, select Option - Editor - Properties - Backup tab and check the box to enable
auto-save. You can also select the time interval between saves or specify the name and location of the
backup file. CCStudio will prompt you before overwriting an old backup file unless you specify otherwise.

4.2.5 Autocompletion, Tooltips and Variable Watching (CodeSense)

The CodeWright text editor uses an autocompletion engine called CodeSense. When the tooltip or

autocompletion activates, an icon will appear underneath the current line of your code. It shows symbols,

function parameters and tooltips for C, C++, and Java code. Tooltips can also be used for variable

watching.

CodeSense only works with certain file types and the CodeSense DLL must be enabled.

To enable CodeSense:

1. Choose Option - Editor — Language - CodeSense tab.

2. In the left box, highlight the file type you are working with.

3. To the right of the File Type box, make sure that CodeSense DLL is enabled. (If CodeSense is not
supported for that particular file type, the option will be disabled.)

After the CodeSense DLL is enabled, CodeSense can be used to:

» List symbols (functions, structs, macros, members, etc.) that are associated with the symbol being
typed.

» Insert symbols from the context list into the current document, completing the symbol being typed.

e Access a symbol's definition using a selected symbol's Goto button in the list. (Ctrl-G is the
corresponding keyboard shortcut for the Goto functionality).

» Obtain a tooltip listing necessary parameters for a function as it is being typed.

» See a symbol's definition in a hover tooltip that can appear automatically, or when either Ctrl or Shift is
pressed (depending on the CodeSense settings).

36 Code Creation SPRU509H-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Text Editor

CodeSense word completion helps you finish typing symbols. Once you have entered a few characters,
complete the following steps to use this feature:

1. Press Ctrl and Space together to bring up a list box of context-sensitive symbols to choose from. The
symbols begin with whatever you have typed so far; the right-hand column provides the definition of
each symbol.

Figure 4-11. Code Sense

§ =
1. usingcodesense.c *

et A Epresd Fusotion
int addHumber(int numl. int num?)
1

¥

[

return numl + num?:

ﬂ clearen extern _CODE_ALCC woid clearen(FILE *_fp]
@ | cunDate DATEPTR cunDate

2. Highlight the appropriate symbol from the list. Press the selected symbol's corresponding image (the
Goto button) to display the definition of the symbol within the library's source code. The key sequence
Ctrl-G will also access a selected symbol's definition.

3. While the dropdown list is still displayed, press Enter. The highlighted symbol is entered into your
document automatically, completing the word you began.

4.2.6 Using an External Editor

The Code Composer Studio IDE supports the use of an external (third-party) text editor in place of the
default integrated editor. After an external editor is configured and enabled, it is launched whenever a new
blank document is created or an existing file is opened. An external editor can only be used to edit files.
The integrated editor is used to debug your program. You can configure an external editor by selecting the
External Editor tab from the Option - Editor — Properties dialog.

SPRUS509H-0October 2006 Code Creation 37
Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Code Generation Tools

4.3 Code Generation Tools

4.3.1 Code Development Flow
Code generation tools include an optimizing C/C++ compiler, an assembler, a linker, and assorted utilities,

see Figure 4-T2.

Figure 4-12. Code Development Flow

C or C/C++
source files

C/C++ compiler
Parser
Optimizer
(optional)
A by | —m— | ——— _i
ssembly
optimizer: Assembly Code i
ONLY applies | preprocessor generator |
to C6000 a
Assembler
source
.asm files With ;he linker
option (-z)
T 1
——— | /|
Assembler | Linker |
— | — I
| |
COFF | Executable |
object | COFF file |
(-obj) files | out file |
| |
L _ 4

4.3.2 Project Build Options

A graphical interface is provided for using the code generation tools. A Code Composer Studio project
keeps track of all information needed to build a target program or library. A project records:

» Filenames of source code and object libraries
* Compiler, assembler, and linker options
e Include file dependencies

When you build a project, CCStudio invokes the appropriate code generation tools to compile, assemble,
and/or link the program. The Build Options dialog box specifies the compiler, assembler, and linker
options (see Figure 4-13). Choose Build Options from the Project menu to access this dialog. This dialog
box lists nearly all the command line options. Any options that are not represented can be typed directly
into the editable text box at the top of the dialog. Each target configuration has a device-specific set of
options. See the compiler or assembly guide for your target for more information.

38 Code Creation SPRU509H-0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Code Generation Tools

Figure 4-13. Build Options Dialog Box

Build Options for mainapplication. pjt (Debug)

General Compiler l Linker] Link. Drder]

g -fr"$[Proj_dir)sDebug” -d" DEEUG" -mwE400

Category: Basic

M Target Version: CBdwx [-mvB400]
Advanced

Feedback Generate Debug Infa: | Full Symbalic Debug (-] »

Files

Assembly Opt Speed vs Size: |Speed Mozt Critical [no -ms]j
Parser Opt Lewvel: Mohe =

Preprocessor

Diagnostics Program Level Opt.: |N0ne j

QK | Cancel | Help |

You can set the compiler and linker options that are used during the build process.

Your build options can be set at two different levels, depending on how frequently or in what configuration
they are needed. First, you can define a set of project-level options that apply to all files in your project.
Then, you can optimize your program by defining file-specific options for individual source code files.

Note: For options that are commonly used together, you can set project-level configurations,

rather than setting the same individual options repeatedly. You can also look for this
information in the online help and tutorial.

4.3.2.1 Setting Project-Level Build Options
1. Select Project - Build Options.
2. In the Build Options Dialog Box, select the appropriate tab.

3. Select the options to be used when building your program.
4. Click OK to accept your selections.

4.3.2.2 Setting File-Specific Options
1.

Right-click on the name of the source file in the Project View window and select File Specific Options
from the context menu.

Select the options to be used when compiling this file. These will differ from the project-level build
options.

3. Click OK to accept your selections.
4. Any changes will only be applied to the selected file.

2.

SPRUS509H-0October 2006 Code Creation 39
Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Code Generation Tools

4.3.3 Compiler Overview

The C and C++ compilers (for C5000™ and C6000™) are full-featured optimizing compilers that translate
standard ANSI C programs into assembly language source. The following subsection describes the key
features of the compilers.

43.3.1

Interfacing with the Code Composer Studio IDE

The following features allow you to interface with the compiler:

Compiler shell program. The compiler tools include a shell program that you use to compile,
assembly optimize, assemble, and link programs in a single step. For more information, see the About
the Shell Program section in the Optimizing Compiler User’s Guide appropriate for your device.
Flexible assembly language interface. The compiler has straightforward calling conventions, so you
can write assembly and C functions that call each other. For more information, see the section on
Run-Time Environment in the Optimizing Compiler User’'s Guide appropriate for your device.

4.3.4 Assembly Language Development Tools

The following is a list of the assembly language development tools:

Assembler. The assembler translates assembly language source files into machine language object
files. The machine language is based on common object file format (COFF).

Archiver. The archiver allows you to collect a group of files into a single archive file called a library.
Additionally, the archiver allows you to modify a library by deleting, replacing, extracting, or adding
members. One of the most useful applications of the archiver is building a library of object modules.

Linker. The linker combines object files into a single executable object module. As it creates the
executable module, it performs relocation and resolves external references. The linker accepts
relocatable COFF object files and object libraries as input.

Absolute lister. The absolute lister accepts linked object files as input and creates .abs files as output.
You can assemble these .abs files to produce a listing that contains absolute, rather than relative,
addresses. Without the absolute lister, producing such a listing requires many manual operations.

Cross-reference lister. The cross-reference lister uses object files to produce a cross-reference listing
showing symbols, their definitions, and their references in the linked source files.

Hex-conversion utility. The hex-conversion utility converts a COFF object file into TI-Tagged,
ASCII-hex, Intel, Motorola-S, or Tektronix object format. You can download the converted file to an
EPROM programmer.

Mnemonic-to-algebraic translator utility. For the TMS320C54x device only, this tool converts
assembly language source files. The utility accepts an assembly language source file containing
mnemonic instructions. It converts the mnemonic instructions to algebraic instructions, producing an
assembly language source file containing algebraic instructions.

4.3.5 Assembler Overview
The assembler translates assembly language source files into machine language object files. These files
are in common object file format (COFF).
The two-pass assembler does the following:
» Processes the source statements in a text file to produce a relocatable object file
» Produces a source listing (if requested) and provides you with control over this listing
» Allows you to segment your code into sections and maintains a section program counter (SPC) for
each section of object code
» Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)
» Assembles conditional blocks
» Supports macros, allowing you to define macros inline or in a library
40 Code Creation SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Code Generation Tools

4.3.6 Linker Overview

The linker allows you to configure system memory by allocating output sections efficiently into the memory

map. As the linker combines object files, it performs the following tasks:
» Allocates sections into the target system’s configured memory

» Relocates symbols and sections to assign them to final addresses

» Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address

binding. The language supports expression assignment and evaluation. You configure system memory by

defining and creating a memory module. The directives MEMORY and SECTIONS allow you to:
» Allocate sections into specific areas of memory

» Combine object file sections

» Define or redefine global symbols at link time

4.3.6.1 Text-Based Linker

The text linker combines object files into a single executable COFF object module. Linker directives in a
linker command file allow you to combine object file sections, bind sections or symbols to addresses or
within memory ranges, and define or redefine global symbols. For more information, see the Code

Generation Tools online help.

4.3.7 C/C++ Development Tools
The following is a list of the C/C++ development tools:

e C/C++ compiler. The C/C++ compiler accepts C/C++ source code and produces assembly language

source code. A shell program, an optimizer, and an interlist utility are parts of the compiler.

— The shell program enables you to compile, assemble, and link source modules in one step. If any

input file has a .sa extension, the shell program invokes the assembly optimizer.
— The optimizer modifies code to improve the efficiency of C programs.
— The interlist utility interweaves C/C++ source statements with assembly language output.

e Assembly optimizer (C6000 only). The assembly optimizer allows you to write linear assembly code

without being concerned with the pipeline structure or with assigning registers. It accepts assembly
code that has not been register-allocated and is unscheduled. The assembly optimizer assigns
registers and uses loop optimization to turn linear assembly into highly parallel assembly that takes

advantage of software pipelining.
» Library-build utility. You can use the library-build utility to build your own customized

run-time-support library. Standard run-time-support library functions are provided as source code in
rts.src and rstcpp.src. The object code for the run-time-support functions is compiled for little-endian

mode versus big-endian mode and C code versus C++ code into standard libraries. The

run-time-support libraries contain the ANSI standard run-time-support functions, compiler-utility

functions, floating-point arithmetic functions, and C 1/O functions that are supported by the compiler.
» C++ name demangling utility. The C++ compiler implements function overloading, operator

overloading, and type-safe linking by encoding a function’s signature in its link-level name. The

process of encoding the signature into the link name is often referred to as name mangling. When you

inspect mangled names, such as in assembly files or linker output, it can be difficult to associate a
mangled name with its corresponding name in the C++ source code. The C++ name demangler is a
debugging aid that translates each mangled name it detects to its original name found in the C++

source code.

SPRUS509H-0October 2006 Code Creation

Bubmit Documentafion FeedbacK

41

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Building Your Code Composer Studio Project

4.4

Building Your Code Composer Studio Project

4.4.1 From Code Composer Studio

4.4.2

To build and run a program, follow these steps:

1. Choose Project - Rebuild All or click the Rebuild All toolbar button. All the files in your project are
recompiled, reassembled, and relinked. Messages about this process are shown in the status bar at
the bottom of the window.

2. By default, the .out file is built into a debug directory located under your current project folder. To
change this location, select a different one from the Select Configuration toolbar.

3. Choose File - Load Program. Select the program you just rebuilt, and click Open. The program is
loaded onto the target DSP and opens a disassembly window that shows the disassembled
instructions that make up the program.

4. Choose View - Mixed Source/ASM. This allows you to simultaneously view your ¢ source and the
resulting assembly code.

5. Click on an assembly instruction in the mixed-mode window. (Click on the actual instruction, not the
address of the instruction or the fields passed to the instruction.)

Press the F1 key. The Code Composer Studio IDE searches for help on that instruction.

Choose Debug - Go Main to begin execution from the main function. The execution halts at Main.
Choose Debug - Run to run the program.

Choose Debug - Halt to quit running the program.

© ® N

Note: You can use the supplied timake.exe utility located in the CCStudio_v3.3\cc\bin directory
to build a project from the DOS shell.

External Make

Code Composer Studio supports the use of external makefiles (*.mak) and an associated external make
utility for project management and build process customization.

To enable the Code Composer Studio IDE to build a program using a makefile, a Code Composer Studio
project must be created that contains the makefile. After a Code Composer Studio project is associated
with the makefile, the project and its contents can be displayed in the Project View window and the
Project - Build and Project - Rebuild All commands can be used to build the program.

Double-click on the name of the makefile in the Project View window to open the file for editing. You can
also modify your makefile build commands and options through special dialogs. The normal Build Options
dialogs are not available when working with makefiles. Multiple configurations can be created, each with
its own build commands and options.

Note: Limitations and Restrictions: Source files can be added to or removed from the project
in the Project View. However, changes made in the Project View do not change the
contents of the makefile. These source files do not affect the build process nor are they
reflected in the contents of the makefile. Similarly, editing the makefile does not change
the contents in the Project View. File-specific options for source files that are added in the
Project View are disabled. The Project - Compile File command is also disabled.
However, when the project is saved, the current state of the Project View is preserved.

42

Code Creation SPRU509H-0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Available Foundation Software

443

Command Line

4.43.1 Using the Timake Utility From the Command Line

The timake.exe utility located in the CCStudio_v3.3\cc\bin directory provides a way to build projects (*.pjt)
outside of the Code Composer Studio environment from a command prompt. This utility can be used to
accomplish batch builds.

To invoke the timake utility:

1. Open a DOS Command prompt.

2. Set up the necessary environment variables by running the batch file DosRun.bat. This batch file must
be run before using timake. If you installed the Code Composer Studio product in C:\CCStudio_v3.3,
the batch file is located at: C:\CCStudio_v3.3\DosRun.bat.

3. Run the timake.exe utility in the CCStudio_v3.3\cc\bin directory.
See the online help topic on the timake utility for more information.

4.4.3.2 Makefiles

4.5

45.1

In addition to the option of using external makefiles within the Code Composer Studio IDE, you can also
export a standard Code Composer Studio project file (*.pjt) to a standard makefile that can be built from
the command line using any standard make utility. Code Composer Studio comes with a standard make
utility (gmake) that can be run after running the DosRun.bat file.

To export a Code Composer Studio Project to a standard makefile:

1. Make the desired project active by selecting the project name from the Select Active Project dropdown
list on the Project toolbar.

2. Select Project - Export to Makefile.

3. In the Exporting <filename>.pjt dialog box, specify the configurations to export, the default
configuration, the host operating system for your make utility, and the file name for the standard
makefile.

4. Click OK to accept your selections and generate a standard makefile.

See the online help topic, Exporting a Project to a Makefile for more information.

Available Foundation Software

DSP/BIOS

DSP/BIOS™ is a scalable real-time kernel, designed specifically for the TMS320C5000™ ,
TMS320C2000™, and TMS320C6000™ DSP platforms. DSP/BIOS enables you to develop and deploy
sophisticated applications more quickly than with traditional DSP software methodologies and eliminates
the need to develop and maintain custom operating systems or control loops. Because multithreading
enables real-time applications to be cleanly partitioned, an application using DSP/BIOS is easier to
maintain and new functions can be added without disrupting real-time response. DSP/BIOS provides
standardized APIs across C2000, C5000, and C6000 DSP platforms to support rapid application
migration.

DSP/BIOS is released separately from the main CCS releases, so updated versions of the DSP/BIOS API
and configuration tools are available through the Update Advisor. After installing an updated version of
DSP/BIOS, you can specify which DSP/BIOS version to be used by CCStudio with the Component
Manager.

SPRUS509H-0October 2006 Code Creation 43
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Available Foundation Software

452

Chip Support Library (CSL)

The Chip Support Library (CSL) provides C-program functions to configure and control on-chip
peripherals. It is intended to simplify the process of running algorithms in a real system. The goal is
peripheral ease of use, shortened development time, portability, hardware abstraction, and a small level of
standardization and compatibility among devices.

Note: Support for the CSL graphic user interface has been removed in CCStudio v3.3. For more
information about CSL or to find out if CSL is supported by your device, check your

45.2.1 Benefits of CSL

453

CSL has the following benefits:

» Standard protocol to program peripherals. CSL provides a higher-level programming interface for
each on-chip peripheral. This includes data types and macros to define peripheral register
configuration, and functions to implement the various operations of each peripheral.

» Basic resource management. Basic resource management is provided through the use of open and
close functions for many of the peripherals. This is especially helpful for peripherals that support
multiple channels.

» Symbol peripheral descriptions. As a side benefit to the creation of CSL, a complete symbolic
description of all peripheral registers and register fields has been created. It is suggested that you use
the higher-level protocols described in the first two bullets, as these are less device-specific, making it
easier to migrate your code to newer versions of DSPs.

Board Support Library (BSL)

The TMS320C6000 DSK Board Support Library (BSL) is a set of C-language application programming
interfaces (APIs) used to configure and control all on-board devices, allowing developers to get algorithms
functioning in a real system. The BSL consists of discrete modules that are built and archived into a library
file. Each module represents an individual API and is referred to as an APl module. The module
granularity is constructed such that each device is covered by a single API module except the 1/0 Port
module, which is divided into two API modules: LED and DIP.

4.5.3.1 Benefits of BSL

454

Some of the advantages offered by the BSL include: device ease of use, a level of compatibility between
devices, shortened development time, portability, some standardization, and hardware abstraction.

DSP Library (DSPLIB)

The DSP Library (DSPLIB) includes many C-callable, assembly-optimized, general-purpose
signal-processing, and image/video processing routines. These routines are typically used in
computationally intensive real-time applications where optimal execution speed is critical. By using these
routines, you can achieve execution speeds considerably faster than equivalent code written in standard
ANSI C language. In addition, by providing ready-to-use DSP and image/video processing functions,
DSPLIB and IMGLIB can significantly shorten your application development time.

For more information on DSPLIB, see the appropriate reference guide for your device:

» TMS320C54x DSP Library Programmer’s Reference (EPRU5S13)

» TMS320C55x DSP Library Programmer’s Reference (EPRU422)

» TMS320C62x DSP Library Programmer’s Reference (EPRU402)

e TMS320C64x DSP Library Programmer’s Reference (EPRU563)

« TMS320C64x+ DSP Big-Endian Library Programmer's Reference(EPRUECH)

» TMS320C64x+ DSP Little-Endian Library Programmer's Reference(GPRUEBS

44

Code Creation SPRU509H-0October 2006
ubmIit Documentation Feedbac

http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm
http://www-s.ti.com/sc/techlit/SPRU518
http://www-s.ti.com/sc/techlit/SPRU422
http://www-s.ti.com/sc/techlit/SPRU402
http://www-s.ti.com/sc/techlit/SPRU565
http://www-s.ti.com/sc/techlit/SPRUEC5
http://www-s.ti.com/sc/techlit/SPRUEB8
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Available Foundation Software

45.4.1 Benefits of DSPLIB
DSPLIB includes commonly-used routines. Use the provided source code to modify functions.

Features include:

» Optimized assembly code routines

» C and linear assembly source code

» C-callable routines fully compatible with the TI Optimizing C compiler
» Benchmarks (cycles and code size)

e Tested against reference C model

45.4.2 DSPLIB Functions Overview

DSPLIB provides a collection of C-callable high performance routines that serve as key enablers for a
wide range of signal and image/video processing applications.

The routines contained in the DSPLIB are organized into the following functional categories:

» Adaptive filtering

» Correlation

« FFT
» Filtering and convolution
* Math

e Matrix functions
* Miscellaneous

4.5.5 Image/Video Processing Library (IMGLIB)

The Image/Video Processing Library (IMGLIB) includes many C-callable, assembly-optimized,
general-purpose signal-processing, and image/video processing routines. The IMGLIB is only available for
C5500/C6000 platform devices. These routines are typically used in computationally intensive real-time
applications where optimal execution speed is critical. By using these routines, you can achieve execution
speeds faster than equivalent code written in standard ANSI C language. In addition, DSPLIB and IMGLIB
can significantly shorten application development time by providing ready-to-use DSP and image/video
processing functions.

For more information on IMGLIB, see the appropriate reference guide for your device:

« TMS32C55x Imaging/Video Processing Library Programmer’s Reference (EPRU037)

« TMS320C62x Image/Video Processing Library Programmer’s Reference (EPRUZ400)

« TMS320C64x Image/Video Processing Library Programmer’s Reference (EPRU023)

» TMS320C64x+ mage/Video Processing Library Programmer's Reference([EPRUEBY)

455.1 Benefits of IMGLIB

IMGLIB includes commonly used routines. Source code is provided that allows you to modify functions to
match your specific needs.

Features include:

» Optimized assembly code routines

e C and linear assembly source code

e C-callable routines fully compatible with the Tl Optimizing C compiler

» Benchmarks (cycles and code size)

» Tested against reference C model

SPRUS509H-0October 2006 Code Creation 45
Bubmif Documentation FeedbacK

http://www-s.ti.com/sc/techlit/SPRU037
http://www-s.ti.com/sc/techlit/SPRU400
http://www-s.ti.com/sc/techlit/SPRU023
http://www-s.ti.com/sc/techlit/SPRUEB9
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Available Foundation Software

455.2 IMGLIB Functions Overview

4.5.6

IMGLIB provides a collection of C-callable high performance routines that can serve as key enablers for a
wide range of signal and image/video processing applications.

The set of software routines included in the IMGLIB are organized into three different functional categories
as follows:

» Image/video compression and decompression
* Image analysis
e Picture filtering/format conversions

TMS320 DSP Algorithm Standard Components

DSPs are programmed in a mix of C and assembly language, and directly access hardware peripherals.
For performance reasons, DSPs have little or no standard operating system support. Unlike
general-purpose embedded microprocessors, DSPs are designed to run sophisticated signal processing
algorithms and heuristics. However, because of the lack of consistent standards, it is not possible to use
an algorithm in more than one system without significant reengineering. Reusing DSP algorithms is labor
intensive, so the time-to-market for a new DSP-based product is lengthy.

The TMS320 DSP Algorithm Standard (known as XDAIS) defines a set of requirements for DSP
algorithms that allow system integrators to quickly assemble systems from using one or more such
algorithms.

45.6.1 Scope of XDAIS

Figure 4-14. TMS320 DSP Algorithm Standard Elements

General Programming Guidelines
Level 1 C callable Reentrant etc.
No hard coded addresses
Algorithm Component Model
Level 2 Modules Packaging etc.
Generic Interfaces
Rules for C62xx Rules for C54xx Rules for C2xxx
Level 3 Interrupt usage Interrupt usage Interrupt usage
Memory usage Memory usage Memory usage
Register usage Register usage Register usage
etc. etc. etc.
L 14 Telecom Imaging Audio Automotive Other
eve Vocoders JPEG Coders etc.
Echo cancel etc. etc.
etc.

Level 1 contains programming guidelines that apply to all algorithms on all DSP architectures, regardless
of application area. Almost all recently developed software modules already follow these guidelines, so
this level formalizes them.

Level 2 contains rules and guidelines that enable all algorithms to operate within a single system.
Conventions are established for an algorithm'’s use of data memory and names for external identifiers, as
well as rules for algorithm packaging.

Level 3 contains the guidelines for specific DSP families. There are no current agreed-upon guidelines for
algorithms for use of processor resources. These guidelines outline the uses of the various architectures.
Deviations from these guidelines may occur, but the algorithm vendor can outline the deviation in the
relevant documentation or module headers.

The shaded boxes in represent the areas that are covered in this version of the specification.

46

Code Creation SPRU509H-0October 2006
ubmIit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Available Foundation Software

Level 4 contains the various vertical markets. Due to the inherently different nature of each of these
businesses, it seems appropriate for the market leaders to define the interfaces for groups of algorithms
based on the vertical market. If each unique algorithm has an interface, the standard will not stay current.
At this level, any algorithm that conforms to the rules defined in the top three levels is considered
eXpressDSP-compliant.

45.6.2 Rules and Guidelines

The TMS320 DSP Algorithm Standard specifies both rules and guidelines. Rules must be followed for
software to be eXpressDSP-compliant. On the other hand, guidelines are strongly suggested
recommendations that are not required for software to be eXpressDSP-compliant.

4.5.6.3 Requirements of the Standard

The required elements of XDAIS are as follows:
» Algorithms from multiple vendors can be integrated into a single system.

» Algorithms are framework-agnostic. That is, the same algorithm can be efficiently used in virtually any
application or framework.

» Algorithms can be deployed in purely static as well as dynamic run-time environments.
» Algorithms can be distributed in binary form.

» Integration of algorithms does not require recompilation of the client application; however,
reconfiguration and relinking may be required.

45.6.4 Goals of the Standard

The XDAIS must meet the following goals:

» Enable developers to easily conform to the standard

» Enable developers to verify conformance to the standard

» Enable system integrators to easily migrate between Tl DSPs

» Enable host tools to simplify a system integrator's tasks; including configuration, performance
modeling, standard conformance, and debugging

e Incur little or no overhead for static systems

45.7 Reference Frameworks

Reference frameworks for eXpressDSP software are provided for applications that use DSP/BIOS and the
TMS320 DSP Algorithm Standard. You first select the reference framework that best approximates your
system and its future needs, and then adapt the framework and populate it with eXpressDSP-compliant
algorithms. Common elements such as device drivers, memory management, and channel encapsulation
are already pre-configured in the frameworks, therefore you can focus on your system. Reference
frameworks contain design-ready, reusable, C-language source code for TMS320C5000 and
TMS320C6000 DSPs.

Reference frameworks software and documentation are available for download from the TI website. They
are not included in the Code Composer Studio installation.

shows the elements that make up a reference framework on the target DSP.

SPRUS509H-0October 2006 Code Creation 47
Bubmif Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

” TEXAS
INSTRUMENTS

www.ti.com

Available Foundation Software

Figure 4-15. Reference Framework Elements

| Application level code

Framework components

Memory

management
and overlays eXpressDSP
alg. 1
Channel
abstraction
eXpressDSP
Algorithm g, 2
manager

DSP/BIOS Chip support library

Device driver adapter

Device driver controller

TMS320 DSP hardware

See the following list for element descriptions:

Device controller and device adapter. The device drivers used in reference frameworks are based
on a standard driver model, which provides device adapters and specifies a standard device controller
interface. If you have unique external hardware, the device controller might require modification, but
the device adapter probably needs little or no modification.

Chip Support Library (CSL). The controller uses CSL modules to support peripheral hardware.

DSP/BIOS. This extensible software kernel is a good example of how each reference framework
leverages different amounts of the eXpressDSP infrastructure, depending on its needs. The low-end
RF1 framework uses relatively few DSP/BIOS modules. In addition to providing an obvious footprint
savings, reducing the number of modules helps clarify design choices for a designer who may not fully
appreciate the ramifications of module selections.

Framework components. These elements are crafted to provide overall system resource
management. One example of this is channel abstraction. Every reference framework needs some
kind of channel management. However, design optimizations can be made based on the number of
channels likely to be in use. For simple systems with 1 to 3 channels, channel scheduling is handled
with the low-overhead DSP/BIOS HWI and IDL modules. For larger numbers of channels, it is wiser to
use the SWI module, although it comes with some extra footprint. For large systems with channels that
change dynamically, the TSK module is most appropriate. The algorithm managers manage some
eXpressDSP-compliant algorithms, similar to channel managers. Other framework components are
modules that handle memory overlay schemes, which is a critical techniqgue in most memory
constrained systems. Starting with the appropriate framework simplifies many development choices.

eXpressDSP-compliant algorithms. Each algorithm follows the rules and guidelines detailed in the
TMS320 DSP Algorithm Standard Rules and Guidelines (EPRU35Z). To be standard-compliant,
algorithms must not directly access any hardware peripherals and must implement standard resource
management interfaces known as IALG (for memory management) and optionally, IDMA (for DMA
resource management). In the examples that Tl provides, the algorithms are simple, including finite
impulse response (FIR) filters and volume controllers. You can substitute more significant
eXpressDSP-compliant algorithms for the Tl-provided ones, making a generic reference framework
more application-specific.

48 Code Creation SPRU509H-0October 2006

Eubmit Documentafion FeedbacH

http://www-s.ti.com/sc/techlit/SPRU352
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Automation (for Project Management)

» Application-level code. The last step is to modify the application-level code. This code applies unique
and value-added application-specific knowledge, allowing for real product differentiation. For instance,
the application code required for a single-channel MP3 player is different than that required for a digital
hearing aid.

4.6 Automation (for Project Management)
4.6.1 Using General Extension Language (GEL)
The General Extension Language (GEL) is an interpretive language, similar to C, that lets you create
functions for Code Composer Studio. You create your GEL functions by using the GEL grammar, and then
load them into the Code Composer Studio IDE. A subset of GEL functions may be used to automate
project build options, or custom GEL menus may be created to automatically open and build a project.
Here's a sample GEL Script to open the volume project:
/*
* Copyright 1998 by Texas |nstruments |ncorporated.
* All rights reserved. Property of Texas Instrunents
I ncor por at ed.
* Restricted rights to use, duplicate or disclose this
code are
* granted through contract.
x|
/*
* —======= Pr‘J Open. gel —=======
* Sinple gel file to denpbnstrate project managenent
capabilities of GEL
*|
nmenui tem " MyProj ect s"
hot menu QpenVol une()
{
/1 Open Volune tutorial exanple
GEL_Proj ectLoad("C:\\CCStudi o_v3.3\\tutorial\\si m65xx\\vol umel\\vol une.pjt");
/1 Set currently active configuration to debug
GEL_Proj ect Set Acti veConfig("C \\CCStudi o_v3.3\\tutorial\\si nb5xx\\vol umel\\vol une. pjt",
" Debug");
/1 Build the project.
GEL_Proj ectBui | d();
}
4.6.2 Scripting Utility
The scripting utility is a set of IDE commands that are integrated into a VB or perl scripting language. You
may utilize the full capabilities of a scripting language, such as perl or VB, and combine it with automation
tasks in Code Composer Studio. The scripting utility can configure a test scenario, open and build a
corresponding project, and load it for execution. There are a number of scripting commands that may be
used to build and manage projects. Scripting is synchronous.
The scripting utility is an add-on capability available through Update Advisor (see Gection 7.2).
SPRU509H-0October 2006 Code Creation 49

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS

INSTRUMENTS
www.ti.com
Automation (for Project Management)
50 Code Creation SPRUS509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

%‘ TEXAS Chapter 5
INSTRUMENTS SPRUS09H—October 2006

Debug

This section applies to all platforms using Code Composer Studio IDE. However, not all
devices have access to all of the tools discussed in this section. For a complete listing
of the tools available to you, see the online help and online documentation provided
with the Code Composer Studio IDE.

This section discusses the various debug tools included with Code Composer Studio.

Topic Page
5.1 Setting Up Your Environment for Debug[o.oeeeeeeeeeeieieieeeeeeeeeen. 52
5.2 BasicDebuggingl. oot iararaeieees 59
5.3 Advanced Debugging Features|......coeeeeee i ieeeaeee 79
5.4 Real-Time DebugQing oo e e ieieeeeaeieieieeaeeeieieiaeaeeeiincaeaeieiess X
5.5 Automation (for DebuUg) i e e ieeieieiiiiaeieieiiacaeaeieinss 34
NI = LY O] o) o] o) A 34
SPRU509H-0October 2006 Debug 51

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Setting Up Your Environment for Debug

5.1 Setting Up Your Environment for Debug

Before you can successfully debug an application, the environment must be configured as shown in the
following sections.

5.1.1 Setting Custom Debug Options

Several debugging options are customizable within Code Composer Studio IDE. You can configure these
options to help with the debug process or to suit your desired preferences.

5.1.1.1 Debug Properties Tab

This debug properties dialog is available from the Customize dialog under Option - Customize - Debug
Properties. It allows you to disable certain default behaviors when debugging, other options are described
in the online help. The behaviors available from the debug properties tab are as follows, your list may
have additional items depending on your installation:

Open the Disassembly Window automatically. Disabling this option prevents the disassembly
Window from appearing after a program is loaded. This option is enabled by default.

Perform Go Main automatically. Enabling this option instructs the debugger to automatically run to
the symbol main for the application loaded. This option is disabled by default.

Connect to the target when a control window is opened. You can disable this option when you are
experiencing target connection problems or don’t need the actual target to be connected (i.e., when
writing source code, etc.). This option is disabled by default.

Remove remaining debug state at connect. When the Code Composer Studio IDE disconnects from
the target, it typically tries to remove breakpoints by default. If there are errors in this process, Code
Composer Studio will try again to remove breakpoints when reconnecting to the target. However, this
second attempt to remove breakpoints may put some targets into a bad state. Thus, Tl recommends
disabling this option to prevent a second attempt to remove breakpoints when reconnecting.

Step over functions without debug information when source stepping. This option allows you to
step over functions that do not have debug information when you are source stepping.

Enable cache highlighting for disassembly and mixed mode. You can disable this feature to
improve performance while debugging. This is only relevant for devices that support cache visibility,
which is currently limited to C64x+ devices. If this option is enabled, then addresses that have been
read from the target device’s cache are displayed with a background color indicating from which level
of cache the address has been read (if any). The same cache highlighting colors will be used in the
memory window, disassembly window, and mixed mode window. The cache highlighting colors can be
configured via the memory window properties (select View - Memory, then right click on the Memory
Window and select Properties from the context menu). Disabling both the cache highlighting and
protected memory options will significantly improve the speed at which a program can be
single-stepped.

Enable highlighting of protected memory for disassembly and mixed mode. You can disable this
feature to improve performance while debugging. This is only relevant for devices that support memory
protection visibility, which is currently limited to C64x+ devices. To use this option, your program must
have a range of addresses configured as a protected memory region. If this option is enabled, then the
disassembly window and mixed mode windows will display "****" for addresses in the protected
memory regions. If the option is not enabled, then the data read from addresses in protected memory
regions for C64x+ devices will be indeterminate and garbage opcodes will be displayed. If you are
debugging programs on C64x+ devices that use the memory protection features of these devices, it is
recommended that this option be enabled. Disabling both the cache highlighting and protected memory
options will significantly improve the speed at which a program can be single-stepped.

Animation speed. Animation speed is the minimum time (in seconds) between breakpoints. Program
execution does not resume until the minimum time has expired since the previous breakpoint. See
for more details.

52 Debug SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Setting Up Your Environment for Debug

5.1.1.2 Directories

To open the source file, the debugger needs the location of the source file where the application is halted.
The debugger includes source path information for all the files in an open project, files in the current
directory, and specified paths to Code Composer Studio IDE.

The paths you specify to Code Composer Studio IDE are empty by default. Thus, if the application being

debugged uses source files that are not in an open project or current directory, then you must specify the
path to these files. If not, the debugger will not be able to automatically open the file when execution halts
at a location that references that source file. It will then prompt you to manually find the file. For instance,
including libraries in a build is a common example of using source files that are not in the open project.

The Directories dialog box enables you to specify additional search paths that the debugger uses to find
the included source files.

To specify a search path directory, select the Directories tab in the Option — Customize menu dialog. The
options include:

» Directories. The Directories list displays the defined search path. The debugger searches the listed
directories in order from top to bottom. If two files have the same name and are located in different
directories, the file located in the directory that appears highest in the Directories list takes precedence.

* New. To add a new directory to the Directories list, click the New icon button. Enter the full path or
browse to the appropriate directory. By default, the new directory is added to the bottom of the list.

» Delete. Select a directory in the Directories list, then click the Delete icon button to remove it.

« Move Up/Move Down. Select a directory in the Directories list, then click the Move Up icon button to
move that directory higher in the list, or Move Down to move that directory lower in the list.

» Look in subfolders. You can enable the debugger to search in the subfolders of the listed paths.

» Default File I/O Directory. In addition to setting source file directories, you can now set a default
directory for File 1/O files by enabling the Default File I/O directory option. Use the browse button to
find the path you wish to select as the default directory.

5.1.1.3 Program/Project/CIO Load Options

You can set defaults for loading a program by selecting the Program/Project/CIO tab from the
Option - Customize menu dialog, including the following default behaviors in the Program section:

* Perform verification during Program Load. This checkbox is enabled by default, so Code Composer
Studio reads back selected memory to verify that the program loaded correctly.

» Load Program After Build. When this option is selected, the executable is loaded immediately upon
building the project, thus the target contains the current symbolic information generated after a build.

» Do Not Set CIO Breakpoint At Load. By default, if your program has been linked using a Tl library
(rts*.lib), a C I/O breakpoint (C$$10$$) is set when the program is loaded. This option enables you to
choose not to set the C I/O breakpoint. The C I/O breakpoint is necessary for the normal operation of
C /O library functions such as printf and scanf. The C 1/O breakpoint is not needed if your program
does not execute CIO functions. When C I/O code is loaded in RAM, Code Composer Studio sets a
software breakpoint. However, when C I/O code is loaded in ROM, Code Composer Studio uses a
hardware breakpoint. Since most processors support only a small number of hardware breakpoints,
using even one can significantly impact debugging. You can also avoid using the hardware breakpoint
when C 1/O code is loaded in ROM by embedding a breakpoint in your code and renaming the label
C$3$10%3 to C$SIOESS.

» Do Not Set End of Program Breakpoint At Load. By default, if your program has been linked using a
Tl library (rts*.lib), an End of Program breakpoint (C$$EXIT) is set when the program is loaded. This
option allows you to choose not to set the End of Program breakpoint. The End of Program breakpoint
halts the processor when your program exits following completion. The End of Program breakpoint is
not needed if your program executes an infinite loop. When End of Program code is loaded in RAM,
Code Composer Studio sets a software breakpoint. However, when End of Program code is loaded in
ROM, Code Composer Studio uses a hardware breakpoint. Since most processors support only a
small number of hardware breakpoints, using even one can have a significant impact when debugging.
You can also avoid using the hardware breakpoint when End of Program code is loaded in ROM by
embedding a breakpoint in your code and renaming the label C$$EXIT to C$$EXITESS to indicate that
this is an embedded breakpoint.

SPRU509H-0October 2006 Debug 53
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Setting Up Your Environment for Debug

Disable All Breakpoints When Loading New Programs. Enabling this option will remove all existing
breakpoints before loading a new program.

The Project Options section offers the following options:

Open Dependent Projects When Loading Projects. By default, if your program has subprojects
upon which a main project is dependent, all the subprojects are opened along with the main project. If
this option is disabled, then the subprojects will not be opened.

Do Not Scan Dependencies When Loading Projects. To determine which files must be compiled
during an incremental build, the project must maintain a list of include file dependencies for each
source file. A dependency tree is created whenever you build a project. To create the dependency
tree, all the source files in the project list are recursively scanned for #include, .include, and .copy
directives, and each included file name is added to the project list. By default, when a project is
opened, all files in the project are scanned for dependencies. If this option is disabled, it will not
automatically scan for dependencies upon opening a project, and the project may open more quickly.

Auto-save Projects Before Build. Enabling this option will save your project automatically before
beginning a build.

Open Project Window On Startup. Enabling this feature will open the active project window when
CCStudio is started.

The CIO Options section offers the following option.

Maximum # of lines. This option allows you to set the maximum number of lines shown in the Output
window’s Stdout tab. The default maximum is 256 lines, but you can set it as high as 32768. Changing
this option may require restarting the program. Once a running application has output more lines than
supported, the oldest output lines will be removed from the window so that the number of displayed
lines does not exceed the maximum.

5.1.1.4 Disassembly Style

Several options are available for changing the information view in the disassembly window. The
Disassembly Style Options dialog box allows you to input specific viewing options for your debugging
session.

To set disassembly style options:
1. Select Option - Disassembly Style, or right-click in the disassembly window and select

Properties — Disassembly Options.

2. Enter your choices in the Disassembly Style Options dialog box.

Figure 5-1. Disassembly Style

C6X Disassembly Style Options @

Addrezzing B adix

* Hex " Dec
Immediate R adix

o Hex " Dec
Digplay Contral

v Address v Op. Code

[+ Cond. Code [v Functional Uit

=
Aliaz Reqizter

v SP v DP

k. | Cancel

3. Click OK. The contents of the disassembly window are immediately updated with the new style.

54

Debug SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Setting Up Your Environment for Debug

5.1.2

5.1.3

Simulation

To configure the simulator to behave closer to the actual hardware target, you can set options for memory
mapping (Bection 5.1.3), pin connect (Eection 5.1.4), or port connect (Section 5.1.5).

Memory Mapping

The memory map tells the debugger which areas of memory it can access. Memory maps vary depending
on the application.

When a memory map is defined and memory mapping is enabled, the debugger checks every memory
access against the memory map. The debugger will not attempt to access an area of memory that is
protected by the memory map.

The debugger compares memory accesses against the memory map in software, not hardware. The
debugger cannot prevent your program from attempting to access nonexistent memory.

5.1.3.1 Memory Mapping with Simulation

The simulator utilizes pre-defined memory map ranges to allow the most generic representation of valid
memory settings for simulated DSP targets. The memory map settings can be altered to some degree;
however, this is not recommended, as simulator performance may be affected by extensive changes to
valid memory ranges.

5.1.3.2 Memory Mapping Using the Debugger

Although the memory map can be defined interactively while using the debugger, this can be inconvenient
because you normally set up one memory map before debugging, and then use this memory map for all
other debugging sessions.

To add a new memory map range:
1. Select Option - Memory Map.

Figure 5-2. Memory Map

Memory Map. @
PROGRAM | pata | 170 |
Starting Address: 0x00000000
Length 001000000
Altributes R - Read and Wiite -
A

Auto - I™ Volatie Memory

Add

Delete

Reset

Nate that the memary map can be changed extemaly and these
seffings can be verridden

Done Help

2. If your actual or simulated target memory configuration supports multiple pages, the Memory Map
dialog box contains a separate tab for each type of memory page (e.g., Program, Data, and 1/O).
Select the appropriate tab for the type of memory that you want to modify. Tabs do not appear for
processors that have only one memory page.

3. Click Done to accept your selections.

SPRU509H-0October 2006 Debug 55
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Setting Up Your Environment for Debug

The Memory Map dialog offers the following options:

e Enable Memory Mapping. Ensure that the Enable Memory Mapping checkbox is checked. Otherwise,
the debugger assumes all addressable memory (RAM) on your target is valid.

» Starting Address. Enter the start address of the new memory range in the Starting Address input
field.

* Length. Enter the length of the new memory range in the Length input field.
» Attributes. Select the read/write characteristics of the new memory range in the Attributes field.

e Access Size (bits). Specify the access size for your target processor. You can select an access size
from the dropdown list, or you can type a value in the Access Size field. It is not necessary to specify a
size for processors that support only one access size.

» Volatile Memory. Normally, a write access consists of Read, Modify, and Write operations. When the
Volatile Memory option is set on a segment of memory, any write access to that memory is completed
by using only a Write operation.

e« Memory Map List. Displays the list of memory-mapped ranges.
e Add. Adds a new memory range to the Memory Map list.

» Delete. In the Memory Map List, select the desired memory map range and click the Delete button.
You can also delete an existing memory map range by changing the Attributes field to None - No
Memory/Protected. This means you can neither read nor write to this memory location.

* Reset. Resets the default values in the Memory Map List.

The debugger allows you to enter a new memory range that overlaps existing ones. The new range is
assumed to be valid, and the overlapped range’s attributes are changed accordingly.

After you have defined a memory map, you may wish to modify its read/write attributes. You can do this
by defining a new memory map (with the same Starting Address and Length) and clicking the Add button.
The debugger overwrites the existing attributes with the new ones.

5.1.3.3 Defining Memory Map with GEL

The memory map can also be defined using the general extension language (GEL) built-in functions. GEL
provides a complete set of memory-mapping functions. You can easily implement a memory map by
putting the memory-mapping functions in a GEL text file and executing the GEL file at start up. (See
Bection 5.5.1] for an introduction to GEL.)

When you first invoke the Code Composer Studio IDE, the memory map is turned off. You can access any
memory location without interference from the memory map. If you invoke Code Composer Studio with an
optional GEL filename specified as a parameter, the GEL file is automatically loaded. If the file contains
the GEL function StartUp(), the GEL functions in the file are executed. You can specify GEL mapping
functions in this file to automatically define the memory mapping requirements for your environment.

Use the following GEL functions to define your memory map:

Table 5-1. GEL Functions for Memory Maps

Function Description
GEL_MapAdd() Memory map add
GEL_MapDelete() Memory map delete
GEL_MapOn() Enable memory map
GEL_MapOff() Disable memory map
GEL_MapReset() Reset memory map
GEL_MapAddstr() Adds to the memory map
56 Debug SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Setting Up Your Environment for Debug

The GEL_MapAdd() function defines a valid memory range and identifies the read/write characteristics of
the memory range. The following is a sample of a GEL file that can be used to define two blocks of length
O0xFO000 that are both readable and writeable:

Start Up()

{

GEL_MapOn() ;

GEL_MapReset () ;

GEL_MapAdd(0, 0, OxF000, 1, 1);
GEL_MapAdd(0, 1, OxF000, 1, 1);
}

When you have set up your memory map, choose Option - Memory Map to view the memory map.

5.1.4 Pin Connect
The Pin Connect tool enables you to specify the interval at which selected external interrupts occur.

To simulate external interrupts:

1. Create a data file that specifies interrupt intervals.

2. Start the Pin Connect tool by choosing Pin Connect from the Tools menu.
3. Select the pin name and click Connect.

4. Load your program.

5. Run your program.

For detailed information on the Pin Connect tool, see the Pin Connect topics provided in the online help:
Help - Contents — Debugging Windows and Analysis Tools — Analysis Tools (Generic) - Pin Connect.

5.1.5 Port Connect

You can use the Port Connect tool to access a file through a memory address. Then, by connecting to the
memory (port) address, you can read data in from a file, and/or write data out to a file.
To connect a memory (port) address to a data file, follow these steps:

1. From the Tools menu, select Port Connect to display the Port Connect window and start the Port
Connect tool.
2. Click the Connect button to open the Connect dialog box.

3. In the Port Address field, enter the memory address. This parameter can be an absolute address, any
C expression, the name of a C function, or an assembly language label. If you want to specify a hex
address, be sure to prefix the address number with Ox. Otherwise, it is treated as a decimal address.

4. In the Length field, enter the length of the memory range. The length can be any C expression.

5. In the Page field (C5000 only), choose type of memory (program or I/O) that the address occupies. For
program memory, choose Prog. For I/O space, choose /0.

6. In the Type field, select the Write or Read radio button, depending on whether you want to read data
from a file or write data to a file.

7. Click OK to display the Open Port File window.
Select the data file to which you want to connect and click Open.

9. Select the No Rewind feature to prohibit the file from being rewound when the end-of-file (EOF) is
reached. For read accesses made after EOF, the value OxFFFFFFFF is read and the file pointer is
kept unchanged.

©

The file is accessed during an assembly language read or write of the associated memory address. Any
memory address can be connected to a file. A maximum of one input and one output file can be
connected to a single memory address. Multiple addresses can be connected to a single file.

For detailed information on the Port Connect tool, see the Port Connect topics provided in the online help:
Help - Contents — Debugging Windows and Analysis Tools - Analysis Tools (Generic) — Port Connect.

SPRU509H-0October 2006 Debug 57
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Setting Up Your Environment for Debug

5.1.6 Program Load

The COFF file (*.out) produced by building your program must be loaded onto the actual or simulated
target board prior to execution.

Program code and data are downloaded onto the target at the addresses specified in the COFF file.
Symbols are loaded into a symbol table maintained by the debugger on the host. The symbols are loaded
at the code and data addresses specified in the COFF file.

A COFF file can be loaded by selecting File — Load Program and then using the Load Program dialog box
to select the desired COFF file.

5.1.6.1 Loading Symbols Only

It is useful to load only symbol information when working in a debugging environment where the debugger
cannot or need not load the object code, such as when the code is in ROM.

Symbols can be loaded by selecting File - Load Symbols - Load Symbols Only from the main menu and
then using the Load Symbols dialog box to select the desired COFF file.

The debugger deletes any previously loaded symbols from the symbol table maintained on the host. The
symbols in the symbol file are then loaded into the symbol table. Symbols are loaded at the code and data
addresses specified in the symbol file. This command does not modify memory or set the program entry
point.

You can also specify a code offset and a data offset that the debugger will apply to every symbol in the
specified symbol file. For example, if you have a symbol file for an executable that contains code
addresses starting at 0x100 and data addresses starting at 0x1000. However, in the program loaded on
the target, the corresponding code starts at 0xX500100 and the data is located at 0x501000.

To specify the code and data offset, select File —~ Load Symbols - Load Symbols with Offsets from the
main menu and then use the Load Symbols dialog box to select the desired COFF file. Once a COFF file
is selected, an additional Load Symbols with Offsets dialog box will appear for you to enter the actual
starting addresses for code and data.

Figure 5-3. Data Offset

Load Symbols With Offsets X
Code Offzet: 50071 00

D ata Offset: 0500100
k. | Cancel |

The debugger automatically offsets every symbol in that symbol file by the given value.

5.1.6.2 Adding Symbols Only

Symbol information can also be appended to the existing symbol table. This command differs from the
Load Symbol command in that it does not clear the existing symbol table before loading the new symbols,
but just appends the new symbols to the existing symbol table.

The steps for adding symbol information, with File - Load Symbols —» Add Symbols with Offsets, or without
offsets File . Load Symbols - Add Symbols Only, is similar to the steps outlined above for loading
symbols.

58

Debug SPRU509H-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2 Basic Debugging

Several components are often necessary for basic debugging in the Code Composer Studio IDE. The
chart below provides a list of the icons used for debugging in CCStudio. If these icons are not visible in
the toolbar, select View — Debug Toolbars - ASM/Source Stepping. From the Debug Toolbars options list,
you will see a list of various debug toolbars which can be made visible. A visible toolbar has a checkmark
next to the name in the menu.

Figure 5-4. Toolbar Icons for Running and Debugging

“ Step into (source mode)

o Step over (source mode)

i Step out (source and assembly mode)
™ Single step (assembly mode)

o+ Step over (assembly mode)

z Run

ﬁ Halt

% Animate

'QTEI Toggle breakpoint

Expression

™} Runto Cursor

1 setPC to Cursor

5.2.1 Running/Stepping

5.2.1.1 Running

To run a program, select the appropriate command under the Debug item on the IDE's menu. If the Target
Control toolbar is also visible, run icons will be visible on a vertical toolbar on the left side. If these icons
are not already visible, select View - Debug Toolbars - Target Control.

These commands allow you to run the program:

Main. Take your execution to your main function by selecting Debug - Go Main.
Run. After execution has been halted, you can continue to run by pressing the Run button.

Run to Cursor. If you want the program to run to a specific location, you can place the cursor at that
location and press this button.

Set PC to Cursor. You can also set the program counter to a certain location by placing the cursor at
the location and then pressing this button.

Low Power Run. Choose Debug - Low Power Run. This is the same as a normal run, except that the
target is not prevented from going into low power mode (sleep mode). If power is lost, the lower left
corner of the CCStudio window will display a message. Losing power may cause breakpoints to be
lost. After a halt, all breakpoints will be verified, and disabled if they are no longer present.

Animate. This action runs the program until a breakpoint is encountered. Breakpoints stop the
execution of the program. While the program is stopped, you can examine the state of the program,
examine or modify variables, examine the call stack, etc. If you associate a file with the breakpoint
action Read Data from File or Write Data to File, you can stop the program execution and then
resume. Modify the animate speed by selecting Customize from the Option menu.

Halt. Lastly, you can halt execution at any time by pressing the halt button.

SPRU509H-0October 2006 Debug 59
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.1.2 Stepping

Both source and assembly stepping are available only when the execution has been halted. Source
stepping steps through lines of code displayed in your source editor; Assembly stepping steps through
lines of instructions that display in your disassembly window. By accessing the mixed Source/ASM mode
through View - Mixed Source/ASM, you can view both source and assembly code simultaneously.

To perform a stepping command, choose the appropriate stepping icon on the toolbar, or select
Debug - Assembly/Source Stepping and then the appropriate command.

There are three types of stepping:

» Single Step or Step Into executes one single statement and halts execution.

» Step Over executes the function and halts after the function returns.

» Step Out executes the current subroutine and returns to the calling function. Execution is then halted
after returning to the calling function.

5.2.1.3 Multiprocessor Broadcast Commands Using PDM

When using the Parallel Debug Manager (PDM), all run/step commands are broadcast to all target
processors in the current group. If the device driver supports synchronous operation, each of the following
commands is synchronized to start at the same time on each processor.

» Use Locked Step (Step Into) to single step all processors that are not already running.

» Use Step Over to execute a step over on all processors that are not already running.

» If all the processors are inside a subroutine, you can use Step Out to execute the step-out command
on all the processors that are not already running.

* Run sends a global run command to all processors that are not already running.
» Halt stops all processors simultaneously.
* Animate starts animating all the processors that are not already running.

* Run Free disables all breakpoints before executing the loaded program starting from the current PC
location.

5.2.2 Breakpoints
Breakpoints are essential components of any debugging session. They stop the execution of the program.
While the program is stopped, you can examine the state of the program, examine or modify variables,
examine the call stack, etc. Breakpoints can be set on a line of source code in an editor window or on a
disassembled instruction in the disassembly window. After a breakpoint is set, it can be enabled or
disabled. You can also associate actions or conditions with it.
If a breakpoint is set on a source line, there must be an associated line of disassembly code. When
compiler optimization is turned on, many source lines do not allow the setting of breakpoints. To see
allowable lines, use mixed mode in the editor window.
Note: Code Composer Studio tries to relocate a breakpoint to a valid line in your source window
and places a breakpoint icon in the selection margin beside the line on which it locates
the breakpoint. If an allowable line cannot be determined, it reports an error in the
message window.
Note: Code Composer Studio briefly halts the target whenever it reaches a breakpoint that is
connected to a file. Any windows or displays connected to that breakpoint are updated
when execution stops. Therefore, the target application may not meet real-time deadlines
if you are using certain actions with breakpoints. At this stage of development, you are
testing the algorithm. Later, you can analyze real-time behavior using RTDX and
DSP/BIOS.
60 Debug SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.2.1 Breakpoint Manager

The Breakpoint Manager allows you to configure individual breakpoints, and allows you to choose various
actions or properties to associate with the breakpoints. To open the Breakpoint Manager, select
Breakpoints from the Debug menu. On C55x emulators, you also have options to set hardware
breakpoints, watchpoints, or counters. See the C55x Emulation Breakpoint Options main online help topic
for more information on these options.

Figure 5-5. Breakpoint Manager

O Breakpoints
oNew ~ B By Q@ - @ - [- B Flcoumns T - = B
Location 4 Condit.. Logical.. Action Group
1 P® volume.c, lin.. 0x0 (0x0) Halt Target Default Gr..

The Breakpoint Manager includes the following functions on the toolbar:

* New Item. When you click this, it will prompt you to enter an address that will be the location for the
breakpoint. That address corresponds to the location within the Assembly window. It can also
correspond to a symbol in your code. If you type in a location that the breakpoint manager does not
recognize, you will receive an error message that the breakpoint’s location does not resolve to an
address. To correct this, verify that the location is valid and that it is spelled correctly. You can still
create/enable a breakpoint by double-clicking in the Selection Margin. By default, all newly created
breakpoints are enabled. However, you can disable an individual breakpoint by unchecking the first
checkbox for the breakpoint in the Breakpoint Manager. On C55x emulators, this menu also has
options to create hardware breakpoints, watchpoints, and counters. On the C64xx CPU Cycle Accurate
Simulator and C6416 Device Functional Simulator, there is also an option to make a Watchpoint. See
for more information.

» Remove Selected Items. Clicking this icon allows you to remove several breakpoints at the same
time. However, it only removes the selected breakpoints. To remove more than one breakpoint, you
need to select several breakpoints.

* Remove All. Clicking this icon removes all breakpoints. A different icon performs the same action in
the project toolbar.

 Enable All. This icon has two separate actions it can execute. If you click on the icon, it will
automatically enable all breakpoints. There is also a dropdown menu next to the icon that has a list of
breakpoint groups you have configured. Choosing a group from the list will enable only those
breakpoints in the group you have chosen. Enabled breakpoints have a checkmark next to them in the
manager window.

« Disable All. If you click on the icon, it will automatically disable all breakpoints. There is also a
dropdown menu next to the icon that has a list of breakpoint groups you have configured. Choosing a
group from the list will disable only those breakpoints in the group you have chosen. Disabled
breakpoints do not have a checkmark next to them in the manager window.

» Goto Location. This opens the location of any of your breakpoints in the Breakpoint Manager.
Highlight the breakpoint in the Breakpoint Manager and click on the main icon to view the location of
the breakpoint in the source editor. You can also view the same memory address in different windows
(Source Editor, Disassembly Window, Memory Window) by choosing a window from the dropdown
menu next to the icon.

SPRU509H-0October 2006 Debug 61
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

* Open Property Window. This button launches the property window for the selected breakpoint. You
can also open the Property Window by right-clicking within the Breakpoint Manager window and
selecting Properties from the context menu. Properties that cannot be edited will appear grayed-out in
the Property Window.

» Hide/Show Columns. This option allows you to choose which columns to display inside the
Breakpoint Manager.

» Create/Filter Groups. If you have created a group of breakpoints, clicking this button will display a list
of the groups you have created. This dialog allows you to create, remove, or rename breakpoint
groups. There is also a dropdown menu that lists all breakpoint group, including the default group
(grayed out). A checkmark beside the menu item indicates the breakpoint that belongs to this group is
visible in the list view; otherwise, it is hidden. The menu item Show System Breakpoints enables
system breakpoint visibility, although system breakpoints are read only.

» Load Configuration. This button allows you to load a set of breakpoints that you have previously
saved (see Save Breakpoint Configuration).

e Save Configuration. After closing the IDE, all your breakpoints will be lost. However, you can save
them to a configuration with this button, which creates an XML file inside your project, making it
possible to restore them later.

Once a breakpoint has been created, the Breakpoint Manager allows you to associate an action with that
breakpoint. See the online help for more information on the Breakpoint Manager, including a guide to the
different breakpoint icons.

5.2.2.2 Software Breakpoints

Breakpoints can be set in any disassembly window or document window containing C/C++ source code.
There is no limit to the number of software breakpoints that can be set, provided they are set at writable
memory locations (RAM). Software breakpoints operate by modifying the target program to add a
breakpoint instruction at the desired location.

To set a software breakpoint:

1. In a document window or disassembly window, move the cursor over the line where you want to place
a breakpoint.

2. Double-click in the selection margin immediately preceding the line when you are in a document
window. In a disassembly window, double-click on the desired line.

A breakpoint icon (solid red dot) in the selection margin indicates that a breakpoint has been set at the
desired location.

The Toggle Breakpoint context menu option or Toggle Breakpoint button also enable you to quickly set
and clear breakpoints.

1. In a document window or disassembly window, put the cursor in the line where you want to set the
breakpoint.

2. Right-click and select Toggle Breakpoint from the context menu, or click on the Toggle Breakpoint icon
button on the Project toolbar.

Finally, you can also create a software breakpoint using the Breakpoint Manager.

1. From the Debug menu, select Breakpoints.

2. In the Breakpoint Manager, select the New Item icon in the toolbar, select New Software Breakpoint
from the dropdown menu and type in a location for the breakpoint.

3. The new breakpoint will appear in the Breakpoint Manager list.

62 Debug SPRU509H-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.2.3 Hardware Breakpoints

Hardware breakpoints differ from software breakpoints in that they do not modify the target program; they
use hardware resources available on the chip. Hardware breakpoints are useful for setting breakpoints in
ROM memory or breaking on memory accesses instead of instruction acquisitions. A breakpoint can be
set for a particular memory read, memory write, or memory read or write. Memory access breakpoints are
not shown in the source or memory windows. The number of hardware breakpoints you can use depends
on your DSP target. Hardware breakpoints can also have a count, which determines the number of times
a location is encountered before a breakpoint is generated. If the count is 1, a breakpoint is generated
every time. Hardware breakpoints cannot be implemented on a simulated target. On C55x emulators, you
also have options to set hardware breakpoints, watchpoints, or counters. See the C55x Emulation
Breakpoint Options main help topic for more information on these options.

To set a hardware breakpoint:
1. Select Debug - Breakpoints. The Breakpoint Manager appears.
2. From the New Item button dropdown menu, select Hardware Breakpoint.

3. Enter the program or memory location where you want to set the breakpoint. Use one of the following
methods:

e For an absolute address, you can enter any valid C expression, the name of a C function, or a
symbol name.

« Enter a breakpoint location based on your C source file. This is convenient when you do not know
where the C instruction is located in the executable. The format for entering in a location based on
the C source file is: fileName, lineNumber.

5.2.2.4 C64x Simulator Watchpoints

Watchpoints halt simulation when an access is made to a targeted memory location. The access could
be from the CPU or from the DMA (if supported by the particular device configuration). Debug reads
and writes to memory locations do not cause watchpoints to trigger. Watchpoints are supported by the
following configurations:

e C64xx CPU Cycle Accurate Simulator

* (6416 Device Functional Simulator

To use this option, you must load a project and open the Breakpoint Manager by selecting Debug -
Breakpoints. In the Breakpoint Manager, select New Watchpoint from the dropdown menu next to the
New Item icon in the toolbar. The New Watchpoint dialog will open. Enter a location for the watchpoint
and an event to break on. Location can be specified either as an absolute memory address, or a
symbol name. For example, to create a watchpoint on a global variable defined in a .c file as:

int IntegerA;

You would specify the watchpoint location as:

&lIntegerA

You can choose from the following events:

« Memory Read
e Memory Write

e All Access Types

Choose an event and click OK. The Breakpoint Manager will show your new watchpoint. See the
online help for Watchpoints for more information on modifying existing watchpoint properties or halting
the target on these breakpoints.

5.2.3 Connecting Breakpoints to Files

5.2.3.1 Functions

You can set an action for a breakpoint that will allow you to:

» Transfer input data from a file on the host PC to a buffer on the target for use by the algorithm
» Transfer output data from a buffer on the target to a file on the host PC for analysis

» Update a window, such as a graph, with data

SPRU509H-0October 2006 Debug 63
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

” TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.3.2 Using Breakpoints to Transfer Data from a PC File to a Target

You can use a breakpoint to transfer the contents of a PC file to the target for use as test data and update
the data windows.

1.

8.

9.

Choose File - Load Program. Select filename.out, and click Open.

2. Double-click on the filename.c file in the Project View.
3.
4. Put your cursor in a line of the main function to which you want to add a breakpoint. Identify the name

Choose Breakpoints from the Debug menu to open the Breakpoint Manager.

of the function (datalO, for instance).

Click the Toggle Breakpoint toolbar button or press F9. This will set a software breakpoint. The
selection margin indicates that a breakpoint has been set (red icon). You can also set a breakpoint
using the Breakpoint Manager or using the Property Window for the Breakpoint Manager.

The breakpoint should appear in the Breakpoint Manager. In the Breakpoint Manager window, find the
Action column, and click on the dropdown box in the row for the breakpoint you just made. Select
Read Data from File as the action. A Parameter dialog box appears.

Click on the space next to File in the Parameter dialog box, browse to your project folder, select
filename.dat, and click Open. Then change the Start Address and the Length values as desired. Also,
you can put a check mark in the Wrap Around box if required. The Start Address field specifies where
the data from the file is to be placed. The Length field specifies how many samples from the data file
are read each time the breakpoint is reached. The Wrap Around option causes the IDE to start reading
from the beginning of the file when it reaches the end of the file. This allows the data file to be treated
as a continuous stream of data.

Figure 5-6. Sample Parameter Dialog

Parameter,

File CACCStudio_w3. 5|
Wrap Around [True

Start Address 0x00000000
Length 0=00000000

If thiz is true, then when the end of the file is
reached. the reads will occur from the beginning
of the file again

Cancel

Click OK. A control window for the filename.dat file appears that allows you to start, stop, rewind, or
fast forward within the data file.

Figure 5-7. Data File Control

C:\..\sine.dat

The breakpoint should appear as connected in the Breakpoint Manager.

To connect to a file output, choose the action Write Data to File in the Breakpoint Manager. You will need
to input information on the File, Format, Starting Address, and Length, as well as Page type for certain
devices.

64 Debug SPRU509H-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.4 Watch Window

5.2.4.1 Using Watch Window to Track a Variable's Value

When debugging a program, it is useful to see how the value of a variable changes during program
execution. The watch window allows you to monitor the values of local and global variables and C/C++
expressions. You can also add a global or file static variable from a list as a watched expression. For
detailed information on the watch window, see the Watch Window topics provided in the online help:
Help - Contents - Debugging Windows and Analysis Tools - Debugging Windows - Watch Window. To
open the watch window:

1.

akrwn

o

9.

Select View - Watch Window, or click the Watch Window icon button on the Watch toolbar.
The watch window contains two tabs: Watch Locals and Watch 1.

« Inthe Watch Locals tab, the debugger automatically displays the Name, Value, Type, and Radix
option of the variables that are local to the currently executing function.

« Inthe Watch 1 tab, the debugger displays the Name, Value, Type, and Radix option of the local
and global variables and expressions that you specify.

Choose File - Load Program. Load your .out file for this project.
Double-click on the filename.c file in the Project View.
Put your cursor in a line that allows breakpoints.

Click the Toggle Breakpoint toolbar button or press F9. The selection margin indicates that a
breakpoint has been set (red icon).

Choose View - Watch Window. A separate area in the lower-right corner of the window appears. At run
time, this area shows the values of watched variables. By default, the Watch Locals tab is selected and
displays variables that are local to the executed function.

If not at main, choose Debug - Go Main.

. Choose Debug - Run, or press F5 or the Run icon. The watch window will update the local values.

Figure 5-8. Watch Locals Tab

M ame | Walue | T | Radix |
+ = input 00002538 i | hex
+ o output 00002508 .. | hex

&, Waich Locals | &% iaich 1

Select the Watch 1 tab.

10. Click on the Expression icon in the Name column and type the name of the variable to watch.
11. Click on the white space in the watch window to save the change. The value should immediately

appear, similar to this example.

SPRU509H-0October 2006 Debug 65
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

” TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

Figure 5-9. Specifying a Variable to Watch

MHame | Walue | T | R adix |
+ o dataldl 000001418 f.. | hex
=

&, atch Locals o4 Watch 1

12. Click the Step Over toolbar button or press F10 to step over the call to your watched variable.

In addition to watching the value of a simple variable, you can watch the values of the elements of a
structure.

5.2.4.2 Using Watch Window to Watch Values of a Structure's Elements

To watch the values of the elements of a structure:

1.
2. Click on the Expression icon in the Name column and type the name of the expression to watch.
3.

4. Click once on the + sign. The line expands to list all the elements of the structure and their values.

5.
6.

Select the Watch 1 tab.

Click on the white space in the watch window to save the change.

(The address shown for Link may vary.)

Figure 5-10. Watch Element Values

2 Watch Window

MHame | Walue | T | R adix |
+ = datald 0x00001 415 f. | hex
-6 st [3 | hex
@ Beta | 2934 i | dec
& Echo.. | 9432 i. | dec
g Emor.. | 213 i | dec
@ Ratio | 3432 i. | dec
+ & Link 0x00002B58 3. | hex
=
2, Watch Locals W

Double-click on the value of any element in the structure to edit that value.
Change the value of a variable.

Notice that the value changes in the watch window. The value also changes color to red, indicating that
you have changed it manually.

66 Debug SPRU509H-October 2006

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.5 Property Page Manager Window

CCsStudio has added property windows for options relating to the following debug windows: the Breakpoint
Manager (Bection 5.2.9), the Memory window (Section 5.2.6), and the Cache Tag RAM Viewer

(Bection 5.2.15). Other debug windows still use separate dialog boxes for property configuration. Each
debug window has a different set of options and the list may change depending on what is selected inside
the debug window. For instance, the property values may change for different breakpoints in the
Breakpoint Manager, or for different memory addresses in the Memory window. When the Breakpoint
Manager, Memory Window, or Cache Tag RAM Viewer are open, right-click anywhere in that window and
select Properties from the context menu, or select View - Property Window.

Figure 5-11. Property Window

& Property Page Manager E@@

ﬂ |Memol_v\u"indow-1 Properties

= -
Winclowy Title Memory YWindow - 1
Symbol Display True
Fort Family Courier Mew
Fort Size 8§25

Top Cortrol Bar Yisibil Enabled
Biottam Control Bar i Enabled

Track Expression I:l Dizabled
=]

Memory Snalysis I:l Dizabled

Backaround Coloring | Cache Coloring

Cache Line Boundary Mone b
=]

=]
Label Dizplay Color - Bilue
arhel ineRnUndarhl MiarkiSran: j

Window Title
This string is used to display the title for the
MEmary window

To collapse a set of properties, choose the minus sign next to the set. To expand a set of properties,
choose the plus sign next to the collapsed set. If you click on a single property, the description of that
property will appear in the bottom of the window. Clicking on a property value and hovering over it with the
mouse will display a short tool tip description of that property value.

If the descriptions of a property are long, you may not be able to read the entire description of that
property. To show the rest of the description, grab the border cursor (i.e., the two parallel lines) and move
it upward to expand the available space for description.

To enable or disable the value of a property, click on the value twice to confirm the change. Otherwise,
choose the desired value from the dropdown menu or type in the box.

For the Breakpoint Manager Property Window, once you have changed a property, the title of the Property
Window will show in italics with a star (*) next to it. Click on the Submit Changes icon in the toolbar to
apply the changes to the property window. The Refresh icon will also apply the changes. Once you have
applied the changes, the title of the window will be in normal text again. The Add icon will add a new
breakpoint (or other item) with the same properties.

The Property Window for C55x emulator breakpoints also has advanced options available for each item
selected. If you click on one of the advanced properties, a description of the property will appear in the
description box below.

SPRU509H-0October 2006 Debug 67
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.6 Memory Window

The memory window allows you to view the contents of memory starting at a specified address. Select
View - Memory to display the memory window. You can enter a starting address in the text box at the top
left of the window, or select a target from the right dropdown menu. You can also edit the contents of a
selected memory location by double-clicking on the value. For devices that support cache management,
the memory window also has color backgrounds and highlighting to display various kinds of cache and
cache tag information. You can open multiple instances of the memory window. Any property changes
made within an open memory window apply only to that memory window, except for the Memory Analysis
property, which applies to all memory windows.

Figure 5-12. Memory Window

= Memory Window - 3 E@@
Enter an address = | | Target| L5455 Simulator [with VTP & TCPY, Littls Enc_~

0x00001240 | c_int00 =
0x00001840 | 0x0730FEZA 0xz07800064 0x07BFOSFZ 0x070000Z4 0x07000064 3
0x000015E4 | 0x0Z0B10ZA& 0xz0Z000064 0x00100362 Ox0zZ0CCozEs Ox0183416Z -
0x000018C2 | 0x0Z000068 0x018CE80Z8 0x01200068 0x00000000 0x000C1262Z
0x000018DC | OxOLE88162 Oxz0Z0B30Z4 0x0Z000064 0x00100362 Ox0Z02AZ58
0x000018F0 | Ox01856162 Ox000EA1Z0 0x00000000 0x00000000

0x00001900 | _srgs_wain

0x00001900 | 0x0Z7FFFAA 0x0Z7FFFEE 0x01FFFFAR Ox0ZFCAZSA O0xOFFFE393
0x00001514 | 0x00148478 Ox01FFFFES 0x3Z0COZES 0x0Z004358 OxO0ZFFFFAA
0x00001928 | OxOZFFFFEA Oxz0Z00A354 Ox3Z148054 0x00000000 Ox00000000
0x0000153C | 0x00000000

0x00001940 | abort

0x00001540 | 0x00000000 0x0001A120 000000000 0x00000000 0x00000000
[Ready [Hex32Bi-CSyle +||# LIPCache. @ LIDCach. W L2Cache

4

“

The L1P Cache/L1D Cache/L2 Cache checkboxes on the bottom let you highlight memory values coming
from cache instead of addressable memory for certain devices. See the online help sections on the
memory window for more detailed information on using the memory window for cache coherency.

Double-clicking on a memory value will allow you to directly edit the value. Values that have been edited
will appear in red. For more information on the memory window and its options, see the online help. To
refresh the active memory window, right-click within the memory window and choose Refresh.

The Memory Window Properties window allows you to specify various characteristics of the memory
window. To view the properties of the memory window, right-click in the Memory Window and choose
Properties from the context menu. Some properties will appear only if you enable other properties. The list
below contains a comprehensive list of properties. However, that does not mean all are available for your
target or applicable to your configuration.

Figure 5-13. Memory Window Options
| Property Page Manager Q@@

[Memory Window-3 properties

1=
Window Title: Memary Wincow - 3
Symbol Display True
Fort Family Courier Mew:
Fort Size 8.25

Top Cortrol Bar Wisibility Enabled
Bottom Cortral Bar Yisikilt Enabled

Track Expression I:l Disabled
Memory Analysis I:l Disabled
Background Coloring Mode Cache Coloring
Cache Ling Boundzty kart Mone

=]
Label Display Color |
CachelineBoundaryhlarke I:l DarkGray
External BackColor 1 window
L1D BackColor [mliceBlue
L1P BackCalar [Lightvellow
L2 BackColor [Honeydew

InaccessinleBackColor [] Silver

Window Title
Thizs string is used to display the tile for the memory wincow

68

Debug SPRU509H-October 2006
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

The Properties page offers these memory window options:
* Memory Display:
— Window Title: This string is used to display the title for the memory window.
— Symbol Display: This Boolean property indicates whether the memory window should display
symbols.
— Font Family: This specifies which font family to use when displaying data in the memory window.
— Font Size: This specifies which font size to use when displaying data in the memory window.
— Top Control Bar Visibility: Use this to show and hide the top control bar on the memory window.
— Bottom Control Bar Visibility: Use this to show and hide the bottom bar on the memory window.
— Minimum Scroll: Use this to set the minimum possible value the memory window can be scrolled to.
— Maximum Scroll: Use this to set the minimum possible value the memory window can be scrolled
to.
— Track Expression: If enabled, the memory window will refreshed the expression currently in the
address combo box each time the target halts.
» Memory Window Configuration:
— Background Coloring Mode:

* None: Turns off background coloring.

» Cache Coloring: Background color reflects which level of cache the memory was read from.

» Memory Level Coloring: Background color reflects which level of cache or mapped memory the
memory was read from.

— Cache Line Boundary Markers: Configures the memory window to draw a thin line around the left
and top edges of the data at the start of a cache line.

— Memory Analysis: Note: Auto-disabled when in polite real-time mode or continuous refresh. When
enabled, Cache Tag RAM Details will be displayed as properties of the selected address item in the
property editor and memory analyzer options will become visible in the Bold property category. This
property is shared by all views of this memory space. Disable to reduce the time it takes to update
the display.

* Address (specific address of cursor): The properties under this category vary depending on the
memory/cache type currently selected by the cursor. Depending on cache levels you are using at that
memory address, you may see one line or multiple lines containing values. The data can reveal the
cause of visibility or data corruption problems by indicating whether a line is dirty in any cache.

— L1D Cache/L1P Cache/L2 Cache/External: The values listed here display discrepancy/coherency
problems. It also displays which levels of the memory hierarchy this data is cached in.

— L1D Cache LRU/L2 Cache LRU: LRU (least recently used) is true if this cache line is the next to be
evicted from cache. L1P does not have LRUs.

— L1D Cache Dirty Bit/L2 Cache Dirty Bit: Dirty bit is true if this cache line has been modified by the
CPU. L1P does not have dirty bits, and emulation writes will not set the dirty bit.

— Dirty Cache Lines Analysis: This value will indicate any cache marked as dirty at this memory
address.

» Bold Values (Memory Analyzers): Only visible when Memory Analysis has been enabled.

— Data Memory Differences: Compares the contents of cached data memory with the contents of the
mapped data memory it is associated with and highlights addresses where the two are different.

— LRU Cache Lines: Highlights cached memory addresses that have been marked as Least Recently
Used.

— Dirty Cache Lines: Highlights cached memory addresses that have been marked as dirty.

— Program Memory Differences: Compares the contents of cached program memory with the
contents of the mapped program memory it is associated with and highlights addresses where the
two are different.

SPRU509H-0October 2006 Debug 69
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

e Colors:

— Label Display Color: The color to be used when displaying labels in the memory window.

— CacheLineBoundaryMarkerColor: If one of the Cache Line Border Marks is enabled, the start of each
cache line in the target device's memory is identified by drawing a line to the left and above the first
memory item in the cache line.

— L1D BackColor: Each level in the target device's memory hierarchy can be displayed with a unique
background color to provide a visual indication in the memory window of where in the memory
hierarchy a memory item is being read from.

— External BackColor: Each level in the target devices' memory hierarchy can be displayed with a unique
background color to provide a visual indication in the memory window of where in the memory
hierarchy

— L1P Back Color: Each level in the target device's memory hierarchy can be displayed with a unique
background color to provide a visual indication in the memory window of where in the memory
hierarchy a memory item is being read from.

— L2 Back Color: Each level in the target device's memory hierarchy can be displayed with a unique
background color to provide a visual indication in the memory window of where in the memory
hierarchy a memory item is being read from.

— InaccessibleBackColor : Each level in the target device's memory hierarchy can be displayed with a
unigue background color to provide a visual indication in the memory window of where in the memory
hierarchy a memory item is being read from.

5.2.7 Register Window
The register window enables you to view and edit the contents of various registers on the target.
Figure 5-14. Register Window

& Register Window <0> - EDMACC CEK

DMACC < e 00060401 ~

~% Core Registers “|[ocepg 01374445

@R QCHMAD 00000000

% EMTC QCHMAP 1 00000000

g e QCHMAP_2 00000000

% 120 QCHMAP_3 00000000

% MCBSD DMAQNUM_0 oooonoon

% SRIO DMAQNUM 1 0ooooooo

_;% SYSTINTC v || | DMAQNUM 2 gooooono b
To access the register window, select View — Registers and select the register set that you would like to
view or edit. Double-clicking on the value of a register will allow you to directly edit the value. Values that
have been edited will appear in red.
You can view the registers in grid view (default) or in tree view. Right-click on the Register window and
select Grid view or Tree view from the context menu. Tree view allows you to expand some registers to
show the individual bits for that register. Any registers that support a bitfield will have a small + sign next
to them. These can be expanded to view the bitfield. The value for each bit can be edited by
double-clicking on the value. Any edited values will appear in red.
To access the contents of a register without opening the Registers window, select Edit » Register. Choose
the register from the dropdown list and edit the value as desired.
70 Debug SPRU509H-October 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

Figure 5-15. Editing a Registry Value

Edit Registers

Reqister: |><SSP j
Yalue: [0+00005H
Dane | Help |

5.2.7.1 Customizing Register Groups

The register now has a additional feature that allows you to organize registers into customized groups.
With the register window open, right-click and choose Customize Register Group from the context menu.
Create a new group with the New Group button, and then use the arrow buttons in the dialog to move
individual registers into the register group.

Figure 5-16. Customize Register Groups

Customize Register. @

System Reqgisters: User Defined Register Groups:
IDMa1_DST -~ - %
IDMa1_SRC
IDMAT_STAT RGO
=% INTCGEM IRG1
EVTCLR[4] ISR
EVTFLAGH]
EVTMASK[4]
EVTSET[4] <<
EXPMASK[4] —J
INTDMASK
INTMLES
INTMLI2 v
4 S >
New Group l Del Group(s) l
Cancel l 0K l

Choose OK to return to your normal register window, which will now show your custom group. If you click
on it, your chosen registers now appear on the right panel.

Figure 5-17. Register Window with Customized Register Group

B2 Register Window <0> - MyGroup Q@@
roup XA |[|zcr 00000000
® BMNGTGEM 27 RO 00000000
$ Core Registers IRO1 00000000
% ICMAGEM
- ISR 00000000
% INTCGEM

%® MEMPROT CCNFIGGEM

v

A& >

To delete the custom group you have created, either right-click inside the Register Window and choose
Remove User Defined Group or open the Customize Register dialog and choose the Del Group(s) button.

SPRU509H-October 2006 Debug 71
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

” TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.8

Disassembly/Mixed Mode

5.2.8.1 Disassembly Mode

When you load a program onto your actual or simulated target, the debugger automatically opens a
disassembly window.

Figure 5-18. Disassembly Window

Disassembly g@gl

000274 4804

nooz7c datald:
oooz¥c 4504
000Z7E c_int0O0:

SP0027E ec314e003a0d
000284 783kLfc02
000288 F406Ff91F_95
000280 F£5064100_98

000292 £496fa00_98
NON?a7 FRARANND Q7 s

The disassembly window displays the disassembled instructions and symbolic information needed for
debugging. Disassembly reverses the assembly process and allows the contents of memory to be
displayed as assembly language code. Symbolic information consists of symbols and strings of
alphanumeric characters that represent addresses or values on the target.

As you step through your program using the stepping commands, the PC advances to the instruction.

5.2.8.2 Mixed Mode

529

In addition to viewing disassembled instructions in the disassembly window, the debugger enables you to
view your C source code interleaved with disassembled code, allowing you to toggle between source
mode and mixed mode. To change your selection, toggle View - Mixed Source/ASM, or right-click in the
source file window and select Mixed Mode or Source Mode, depending on your current selection.

Call Stack

Use the Call Stack window to examine the function calls that led to the current location in the program. To
display the Call Stack:

1. Select View - Call Stack, or click the View Stack button on the Debug toolbar.

Figure 5-19. Call Stack Window

"= Call Stack Q@E|

maini
hostiocfyg.sh2:526:5435()

2. Double-click on a function listed in the Call Stack window. The source code containing that function is
displayed in a document window. The cursor is set to the current line within the desired function. Once
you select a function in the Call Stack window, you can observe local variables that are within the
scope of that function.

The call stack only works with C programs. Calling functions are determined by walking through the linked
list of frame pointers on the runtime stack. Your program must have a stack section and a main function;
otherwise, the call stack displays the message C source is not available. Also note that the Call Stack
window displays only the first 100 lines of output, it omits any lines over 100.

72

Debug SPRU509H-October 2006
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2.10 Symbol Browser

The Symbol Browser window (Figure 5-20) displays five tabbed windows for a loaded COFF output file
(*.out):

All associated files
Functions

Global variables
Types

Labels

Each tabbed window contains nodes representing various symbols. A plus sign (+) preceding a node
indicates that the node can be further expanded. To expand the node, simply click the + sign. A minus
sign (-) precedes an expanded node. Click the - sign to hide the contents of that node.

To open the Symbol Browser window, select View — Symbol Browser.

Figure 5-20. Symbol Browser Window

Spmboly

|

| Address

+ walume. out

CACCS tudio_w3. IhtutorialhsimBduty..

B Files ‘@ Functions

W Globals

=1 Labels]

For detailed information on the Symbol Browser tool, see the Symbol Browser topics provided in the
online help.

5.2.11 Command Window

The Command Window enables you to specify commands to the debugger using the Tl Debugger
command syntax.

Many of the commands accept C expressions as parameters. This allows the instruction set to be
relatively small, yet powerful. Because evaluating some types of C expressions can affect existing values,
you can use the same command to display or change a value.

To open the Command Window, select Tools -~ Command Window.

Figure 5-21. Command Window

B TiCommandWindow:

Command Window Flug-in, Version 5.98.0.161
Copyright @ 1994-2006 Texas Insztruments
THS320C6416 Simulator
Enter 'HELF' for information
Bosard Version 00.00.00
Target Silicon Version 00.00 00
Device Driver Version 05.03.20

Command: | Rd |

For detailed information on the Command Window, see the Command Window topics provided in the
online help.

SPRU509H—-0October 2006
Bubmit Documentation FeedbacH

Debug 73

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

*5‘ TEXAS
INSTRUMENTS

www.ti.com
Basic Debugging
5.2.12 Memory Save/Load Utility

Previous versions of CCStudio supported data file formats in either a COFF output file (.out) or a
CCsStudio data file (.dat). This tool allows you to support raw binary data transfers, and also allows for
faster download speeds. This new option is available for ARM and C5000 targets. It has been optimized to
take advantage of the newer emulation capabilities of the XDS560 to allow improvements of data
download speeds (host to target), as well as additional improvements in speed regardless of emulator.
There is also an option to perform byte swapping for every 16-bit word during the data transfer. You can
use the Write file to memory tab to load a file, and the Save memory to file tab to save a file.

5.2.13 C6000 Functional Simulators Interrupt Latency Detection Feature

This tool allows you to measure the worst-case interrupt latency of the code, including programming
interrupt constraints such as disabling GIE /NMIE, and architectural behavior such as non-serviceability of
interrupts in branch delay slots. Note: This feature is only available on the C6000 functional simulators.

While programming, you may find that the algorithm has a larger interrupt latency than quoted. If so, you
may not discover it until late in the development lifecycle, and it may require a delay to correct.
Characterization of the interrupt latency of the code is needed so that you can determine the real time
latencies in the application. The application consists of multiple components that cannot be individually
designed. The Interrupt Latency Detection (ILD) feature on the C6000 simulator provides you with a
deterministic measure of the worst-case interrupt latency of the code. As a result, you can quote the
interrupt latency of the code for a given set of test vectors. See the online help topics for the Interrupt
Latency Detection Feature for more information on how to use this option.

5.2.14 Cache Coherence

If multiple devices, such as the CPU or peripherals, share the same cacheable memory region, cache and
memory can become incoherent. Suppose the CPU accesses a memory location that is subsequently
allocated in cache. Later, a peripheral writes data to this same location that is meant to be read and
processed by the CPU. However, since this memory location is kept in cache, the memory access hits in
cache and the CPU reads the old data instead of the new data. A similar problem occurs if the CPU writes
to a memory location that is cached, and the data is to be read by a peripheral. The data only is updated
in cache but not in memory from where the peripheral reads the data. The cache and the memory are said
to be incoherent. Coherence needs to be addressed if the following events are true:

» Multiple requestors (CPU data path, CPU fetch path, peripherals, DMA controllers, other external
entities) share a region of memory for the purpose of data exchange.

« This memory region is cacheable by at least one device.
* A memory location in this region has been cached.

» This memory location has been modified (by any device).
Consequently, if a memory location is shared, cached, and has been modified, there is a cache coherence
problem.

C64x+ DSPs automatically maintain cache coherence for DMA (includes EDMA and IDMA) data accesses
to L2 SRAM through a hardware cache coherence protocol based on snoop commands. The coherence
mechanism is activated on a DMA read and write access. When a DMA read of a cached L2 SRAM
location occurs, the data is directly forwarded from L1D cache to the DMA without being updated in L2
SRAM. On a DMA write, the data is forwarded to L1D cache and is updated in L2 SRAM.

For other scenarios, it is your responsibility to maintain cache coherency, see the online help for more
information.

74 Debug SPRU509H-October 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU509H

{'f TEXAS
INSTRUMENTS

www.ti.com

Basic Debugging

5.2