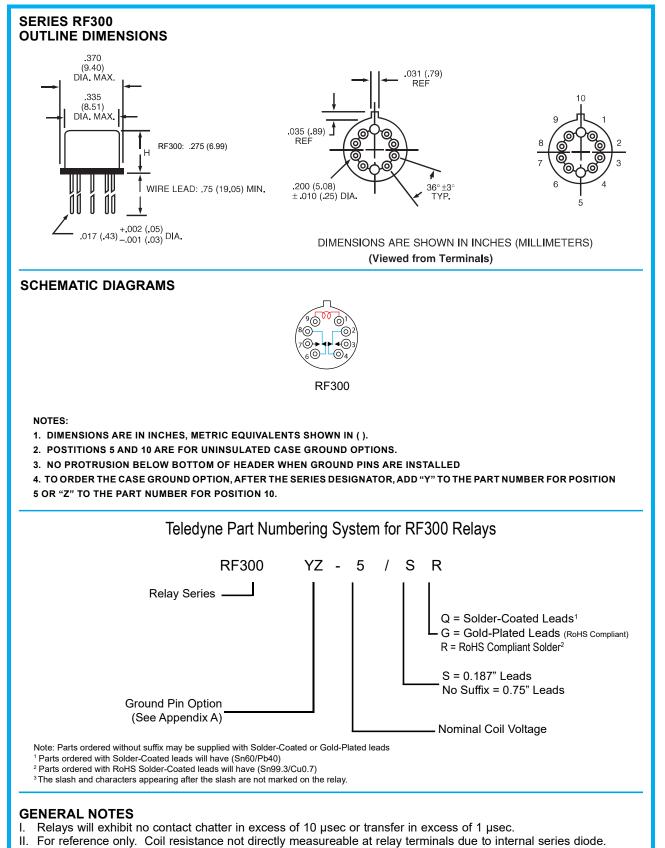
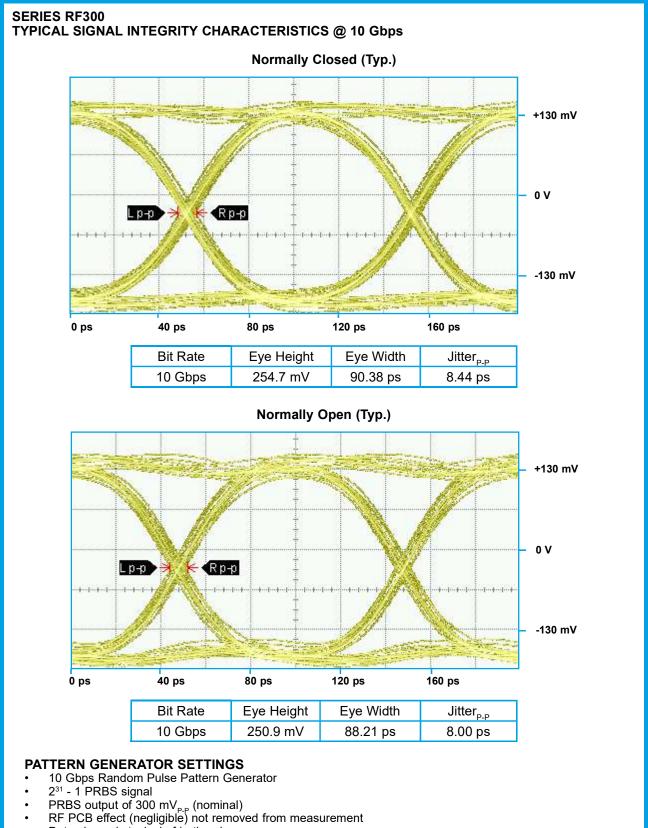


DPDT Non-Latching Electromechanical Relay Signal Integrity up to 18Gbps

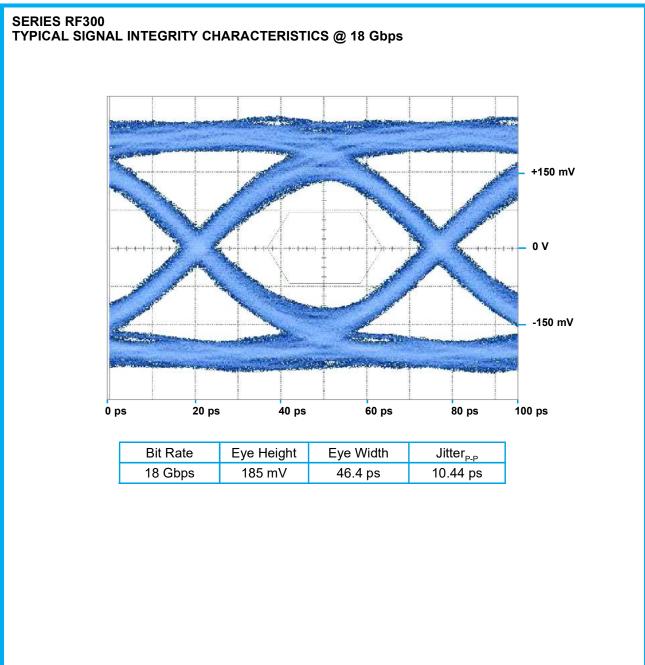
SERIES RF300


DPDT Non-Latching Electromechanical Relay Signal Integrity up to 18Gbps

SERIES RF300 GENERAL ELECTRICAL SPECIFICATIONS (@25°C)					
Contact Arrangement	2 Form C (DPDT)				
Rated Duty	Continuous				
Contact Resistance	0.15 Ω max.				
Contact Load Rating	Resistive: 1Amp/28Vdc Low level: 10 to 50 μA @ 10 to 50 mV				
Contact Life Ratings	10,000,000 cycles (typical) at low level				
Coil Operating Power	RF300-5: 500 mW @ nominal coil	RF300-12: 370 mW @ nominal coil			
Operate Time	RF300: 4.0 mS max.				
Release Time	RF300: 3.0 mS max.				
Intercontact Capacitance	0.4 pf typical				
Insulation Resistance	1,000 M Ω min. between mutually isolated terminals				
Dielectric Strength	350 Vrms (60 Hz) @ atmospheric pressure				


DETAILED ELECTRICAL SPECIFICATIONS (@25°C)

BASE PART NUMBERS (RF300)		RF300-5	RF300-12
Coil Voltage, Nominal (Vdc)		5.0	12.0
Coil Resistance (Ohms ±20%)	RF300	50	390
Pick-up Voltage (Vdc max.)	RF300	3.6	9.0


TELEDYNE RELAYS Everywhere**you**look[™]

- Data shown is typical of both poles

DPDT Non-Latching Electromechanical Relay Signal Integrity up to 18Gbps

PATTERN GENERATOR SETTINGS

- 18 Gbps Random Pulse Pattern Generator
- 2³¹ 1 PRBS signal ٠
- •
- PRBS output of 500 mV_{p.p} (nominal) RF PCB effect (negligible) not removed from measurement Data shown is typical of both poles •

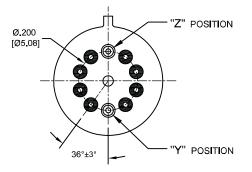
APPENDIX A : Spacer Pads

Pad designation and bottom view dimensions	Height	For use with the following:	Dim. H Max.
		ER412	.295 (7.49)
		712, RF300, RF, RF700, RF703	.300 (7.62)
		ER422, 722	.305 (7.75)
		ER432	.400 (10.16)
		732, RF303	.410 (10.41)
"M4" Spacer Pad for TO-5		RF312	.350 (8.89)
	Dim H	ER411	.295 (7.49)
		RF311	.300 (7.62)
"M4"Spacer Pad for TO-5		RF331	.410 (10.41)
		172	.305 (7.75)
	Dim H	ER114, J114	.300 (7.62)
		ER134, J134	.400 (10.16)
		RF100	.315 (8.00)
"M4" Spacer Pad for Centigrid [®]		RF103	.420 (10.67)
.156 [3.96] (REF)		122C, A152	.320 (8.13)
.256 [6.5] (REF) (REF)		ER116C, J116C	.300 (7.62)
		ER136C, J136C	.400 (10.16)
		RF180	.325 (8.25)
"M9"Spacer Pad for Centigrid [®]		A150	.305 (7.75)

Notes:

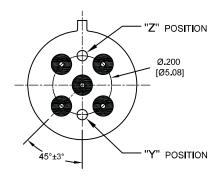
1. Spacer pad material: Polyester film.

- 2. To specify an "M4" or "M9" spacer pad, refer to the mounting variants portion of the part numbering example in the applicable datasheet.
- 3. Dimensions are in inches (mm).
- 4. Unless otherwise specified, tolerance is \pm .010" (.25 mm).
- 5. Add 10 m Ω to the contact resistance shown in the datasheet.
- 6. Add 0.01 oz. (0.25 g) to the weight of the relay assembly shown in the datasheet.

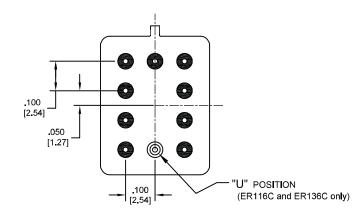

APPENDIX A: Spreader Pads

Pad designation and bottom view dimensions	Height	For use with the following:	Dim. H Max.
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \left) \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \left) \begin{array}{c} \end{array} \left) \begin{array}{c} \end{array} \left) \begin{array}{c} \end{array} \left) \begin{array}{c} \end{array} \left) \end{array} \left) \begin{array}{c} \end{array} \left) \begin{array}{c} \end{array} \left) \end{array} \left) \begin{array}{c} \end{array} \left) \end{array} \left) \begin{array}{c} \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \end{array} \left) \left) \left) \left) \left) \left)		ER411T, ER412, J412	.388 (9.86)
	MAX .014 .014 (REF) .370 [9.4]	712	.393 (9.99)
		ER432, J432	.493 (12.52)
		732	.503 (12.78)
	J421, J422, ER422, 722	.398 (10.11)	

Notes:

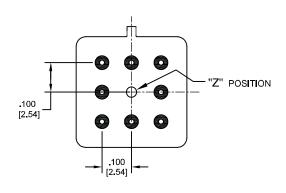

- 1. Spreader pad material: Diallyl Phthalate.
- 2. To specify an "M", "M2" or "M3" spreader pad, refer to the mounting variants portion of the part number example in the applicable datasheet.
- 3. Dimensions are in inches (mm).
- 4. Unless otherwise specified, tolerance is \pm .010" (0.25 mm).
- $\underline{5}/.$ Add 25 m Ω to the contact resistance shown in the datasheet.
- $\underline{6}$ /. Add .01 oz. (0.25 g) to the weight of the relay assembly shown in the datasheet.
- $\underline{7}$ /. Add 50 m Ω to the contact resistance shown in the datasheet.
- $\underline{8}$ /. Add 0.025 oz (0.71 g) to the weight of the relay assembly shown in the datasheet.
- 9/. M3 pad to be used only when the relay has a center pin (e.g. ER411M3-12A, 722XM3-26.)

APPENDIX A: Ground Pin Positions

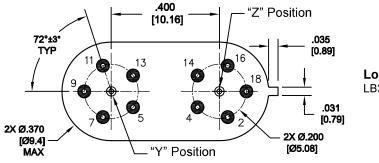


TO-5 Relays:

ER412, ER412T, ER422, ER432, ER432T, 712, 712TN, 400H, 400K, 400V, RF300, RF303, RF341, RF312, RF332, RF310, RF313, RF320, RF323, SI800, SI803, RF700, RF703



TO-5 Relays: ER411, RF311, RF331



Centigrid® Relays:

RF180, ER116C, 122C, ER136C

Centigrid® Relays: RF100, RF103, ER114, ER134, 172

Loopback Relays: LB363

Indicates ground pin position

Indicates glass insulated lead position

Indicates ground pin or lead position depending on relay type

NOTES

- 1. Terminal views shown
- 2. Dimensions are in inches (mm)
- 3. Tolerances: ± .010 (±.25) unless otherwise specified
- 4. Ground pin positions are within .015 (0.38) dia. of true position
- 5. Ground pin head dia., 0.035 (0.89) ref: height 0.010 (0.25) ref.
- 6. Lead dia. 0.017 (0.43) nom.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Teledyne Relays:

<u>RF300-12</u> <u>RF300-5</u> <u>RF303-12</u> <u>RF303-5/G</u> <u>RF303XY-5</u> <u>RF300Y-12</u> <u>RF303Y-12</u> <u>RF303YZ-12</u> <u>RF300YZ-12</u> <u>RF</u>