Medium Power Film Capacitors

FSM (FSN RoHS Compliant) New Design can use FFV Range

DIMENSIONS

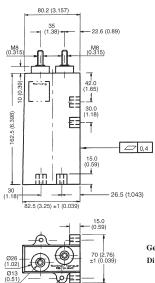
APPLICATIONS

Recovery capacitor for G.T.O. switching (secondary snubber or clamp capacitor). High current DC filtering.

FEATURES

(1.42)

Metallized polypropylene dielectric specially treated to withstand high DC voltage stresses up to 85°C.


Controlled self-healing.

Internal geometry and connections specially developed for high currents (Irms up to 100 A). No liquid impregnant.

Special metallization for DC voltage and high currents.

PACKAGING MATERIAL

Self-extinguishing rectangular plastic case (in accordance with UL 94 VO) (12 kV/50 Hz isolation). Filled with thermosetting resin. M8 outputs. Fixing in two planes. Vibrations and shocks resistant to IEC 60077. Average weight 0.95 kg.

10 (0.39 Max Torque M8: 8.5Nm 13 (0.51) 21.5 (0.846) -1.5 (0.059) TERQUE: 0.3 m.daN -Ø5.5 (0.216) 1 7.5 (0.295) Г 40 (1.57) ±1 (0.039) ∠ 0.6 55 (2.165)

Dimensions: mm (inches)

r 7 5 (0 295) MARKING

Ø5.5 (0.216)

Logo TPC FSM Capacitance and tolerance in clear Nominal voltage in clear RMS current in clear Date of manufacture (IEC coding)

General tolerances: ± 0.5 (0.02)

ELECTRICAL CH	IARACTERISTICS				
Climatic category	40/085/56				
Working temperature	-40°C to +85°C				
	(according to the power				
	to be dissipated)				
Capacitance range C _n	20µF to 54µF				
Tolerance on C _n	±10%				
Rated DC voltage Vndc	750 to 1350 V				
Allowable overvoltages	$V_s = 1.1 V_n dc - 1/3$ of the time				
	1.3 V _n dc – 1 min./day				
	2 V _n dc – 100 ms/day for				
	$V_n dc = \le 1150 V$				
	1.75 V _n dc – 100 ms/day for				
	$V_{n}dc = 1350 V$				
DC test voltage between	10s at 20°C ± 15°C				
terminals	V _e dc – 1.5 V _n dc (IEC 61071)				
RMS current	Irms max. = 65 to 105 A				
Impulse current	I^{2} .t max. = 100 to 270 A ² s				
Tangent of loss angle	Tg δ : see table of values				
Series inductance Ls	≤ 25 nH				
Thermal resistance	Rth ambient/hot spot = 9.2° C/W				
	Rth case/hot spot = 3.3°C/W				
Dielectric	Polypropylene				

Dielectric 6 = Polypropylene

6

Capacitance						
Code						
0 + pF						
0546 =	54µF					

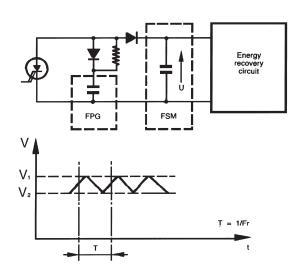
 $0336 = 33 \mu F$ $0206 = 20\mu F$

etc.

0546

Capacitance Tolerances $K = \pm 10\%$

Terminal Code - = Standard (Male Threaded)


25

Medium Power Film Capacitors

FSM (FSN RoHS Compliant) New Design can use FFV Range

1) RECOVERY OF G.T.O. SWITCHING ENERGY

Choice of voltage:

 $V_1 \leq V_n dc$

Repetitive surge:

1.1 V_n dc – 1/3 of the time

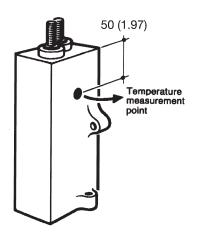
Non-repetitive surge:

1.3 V_ndc – 1 min./day

Occasional max. surge:

2 V_ndc - 100 ms/day for V_ndc = \leq 1150 V 1.75 V_ndc - 100 ms/day for V_ndc = 1350 V

RMS current limits:


The currents given in the tables are maximum. The thermal limits of the dielectric (85°C) must be respected.

The self-heating can be calculated from the series resistance, $Tg\delta$ and the thermal resistance given in the table of values

 $\Delta \emptyset = P \times Rth \le 85^{\circ}C - \emptyset$ ambient

Rth: is given for still air with the capacitor not being subjected to any other heat source.

 $P = (I_{rms})^2 \times R_s + \frac{\pi}{2} \times C (V_1 - V_2)^2 \times f_r \times 10^{-4}$

Temperature measuring point*

Measurement of the case temperature (Θ B) together with the losses gives the temperature of the hot spot. $\Theta = (RthB \times P) + \Theta B \le 85^{\circ}C$

*Important for series/parallel operations.

Important

Typical application

Due to the modular nature of this capacitors series parallel assemblies can be made to increase the capacitance and/or voltage.

Ensure that suitable sized connections are used so that the capacitors will not be overheated. The inductance of the connections must be low enough to ensure equal current sharing of capacitors in parallel.

For series assemblies, connect resistor across each capacitor. Optimal resistance value will be:

R # 30 MΩ/C in μ F (1.5 MΩ for C = 20 μ F).

2) DC FILTERING

Nominal Capacitance

RATINGS AND PART NUMBER REFERENCE – POLYESTER DIELECTRIC

Part Number	Capacitance (µF)	V _n dc (V)	Irms max.* (A)	(I².t) max. (A²s)	Tgð (f→kHz) (10⁻⁴)	Rs (mΩ)	Typical Weight (g)
FSM26A0546K	54	750	105	270	2 + 3.4 f	1	9500
FSM26C0446K	42	900	100	220	2 + 2.8 f	1.05	9500
FSM26L0336K	33	1000	95	170	2 + 2.3 f	1.1	9500
FSM26U0286K	28	1150	85	150	2 + 2 f	1.15	9500
FSM26V0206K	20	1350	65	100	2 + 1.6 f	1.25	9500

*Function of power dissipation

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kyocera AVX: FSM26C0426K FSM26V0206K FSM26V0206K--