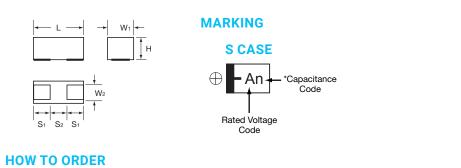
F98-AS1 Series Fused Face-Down, High CV

CASE DIMENSIONS: millimeters (inches)

FEATURES

- . Compliant to the RoHS3 directive 2015/863/EU
- SMD Face Down Design
- . Small and Low Profile
- 100% Surge Current Tested •

APPLICATIONS


- Smartphone
- Mobile Phone
- Wireless Module •
- Hearing Aid

S₂

Code EIA Code EIA Metric L W₁ W_2 н S₁ $2.00 \substack{+0.20 \\ -0.10} \\ (0.079 \substack{+0.008 \\ -0.004} \\ \end{array}$ $1.25 \substack{+0.20 \\ -0.10 \\ 0.049 \substack{+0.008 \\ -0.004 \end{array}}$ 0.90±0.10 0.80±0.10 0.50±0.10 1.00±0.10 s 0805 2012-09 (0.031±0.004) (0.020±0.004) (0.035±0.004) (0.039±0.004)

F98	1A	336	Μ	S	[AS1
\top	\top	\top	Т	Т	-	Г	
Туре	Rated	Capacitance	Tolerance M = ±20%	Case	Pack	aging	Fuse Series
	Voltage	Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)	WI - ±20%	See See table above	Reel Dia (\operatorname{0}(\operatorname	Tape Width (mm) 8	Code

TECHNICAL SPECIFICATIONS

Category Temperature Range:	-55 to +125°C						
Rated Temperature:	+85°C						
Capacitance Tolerance:	±20% at 120Hz						
Dissipation Factor:	Refer to next page						
ESR 100kHz:	Refer to next page						
Leakage Current:	Refer to next page Provided that: After 5 minute's application of rated voltage, leakage current at 85°C 10 times or less than 20°C specified value.						
	After 5 minute's application of rated voltage, leakage current at 125°C 12.5 times or less than 20°C specified value.						
Termination Finish:	Gold Plating (standard)						

KUDEERa The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

F98-AS1 Series Fused Face-Down, High CV

CAPACITANCE AND RATED VOLTAGE RANGE

(LETTER DENOTES CASE SIZE)

Capacitance			*Oon Oodo				
μF	Code	10V (1A)	16V (1C)	20V (1D)	25V (1E)	35 (1V)	*Cap Code
1.0	105					S	A
2.2	225						J
4.7	475						S
10	106		S				а
22	226	S					J
33	336	S					n
47	476	S					S

Released ratings

Please contact to your local KYOCERA AVX sales office when these series are being designed in your application.

RATINGS & PART NUMBER REFERENCE

	Case	Conneitence	Rated	DCL	DF	ESR	100kHz RMS Current (mA)			*1	
Part Number	Size	Capacitance (µF)	Voltage (V)	(μA)	@ 120Hz (%)	@ 100kHz (Ω)	25°C	85°C	125°C	ΔC/C (%)	MSL
	10 Volt										
F981A226MSAAS1	S	22	10	2.2	20	4.5	100	90	40	±20	3
F981A336MSAAS1	S	33	10	3.3	30	6.5	83	75	33	±30	3
F981A476MSAAS1	S	47	10	9.4	35	5.5	90	81	36	±30	3
16 Volt											
F981C106MSAAS1	S	10	16	1.6	18	4.5	100	90	40	±20	3
35 Volt											
F981V105MSAAS1	S	1	35	0.7	20	8.5	73	65	29	±30	3

*2: Leakage Current

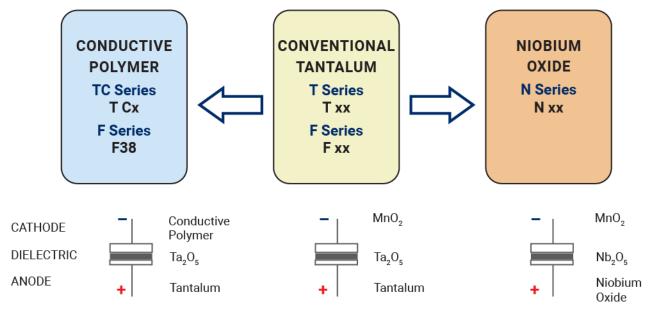
After 5 minute's application of rated voltage, leakage current at 20°C.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

QUALIFICATION TABLE

TEST	F98-AS1 series (Temperature range -55°C to +125°C)						
TEST	Condition						
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change						
Temperature Cycles	-55°C / +125°C, 30 minutes each, 5 cycles Capacitance Change						
Resistance to Soldering Heat	10 seconds reflow at 260°C, 5 seconds immersion at 260°C. Capacitance Change						
Surge	After application of surge in series with a 1kΩ resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change						
Endurance	After 1000 hours' application of rated voltage in series with a 3Ω resistor at 85°C, capacitors shall meet the characteristic requirements in the table above. Capacitance Change						
Shear Test	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side bodywhich has no electrode and has been soldered beforehand on a substrate, there shall be found for 10±1 seconds For 10±1 seconds for the center of capacitor side						
Terminal Strength Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.							
Fuse Activation	5 seconds max. with 2A min. applied current						

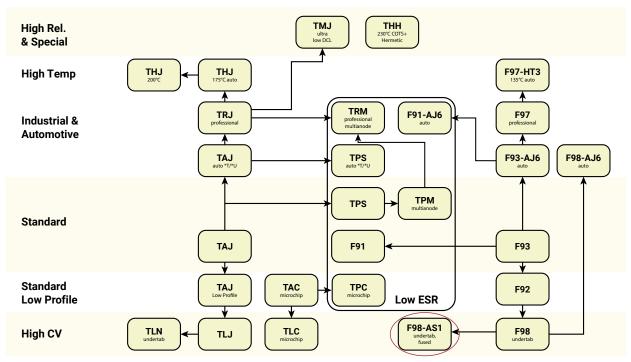
KUDCER8 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


TDS-PTNO-0017 | Rev 1

F98-AS1 Series

Fused Face-Down, High CV

SOLID ELECTROLYTIC CAPACITOR ROADMAP



FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO₂

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

KYOCERA AVX:

F981A226MSAAS1 F981A336MSAAS1 F981C106MSAAS1 F981V105MSAAS1