

PRODUCT SPECIFICATION

CP0402A4596ELTR High Directivity **LGA Termination Directional Couplers**

ITF TECHNOLOGY

The ITF High Directivity LGA Coupler is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Coupler is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

APPLICATIONS:

- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

Land Grid Array Advantages:

- Inherent Low Profile
- Self Alignment during Reflow
- Excellent Solderability
- Low Parasitics
- Better Heat Dissipation

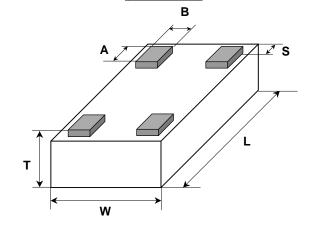
PART NUMBER CODE:

CP	0402	X	XXXX	X	L	TR	
		Type	Frequency	Sub-	LGA	Taped &	
			(MHz)	Type	Term	Reeled	

OUALITY INSPECTION:

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:

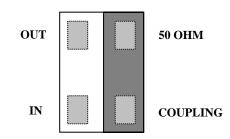
- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, IR, 4 hours

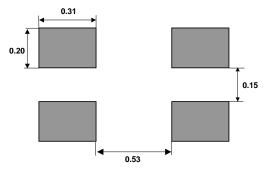

TERMINATION:

Nickel/ Solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

OPERATING TEMPERATURE:

-40°C to +85°C

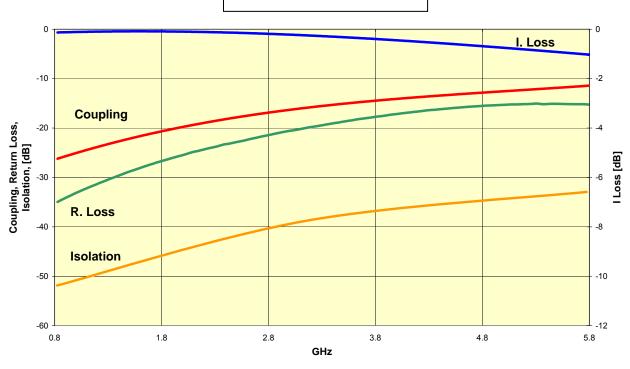

<u>DIMENSIONS - mm (inches)</u> (Bottom View)


	1.0±0.05		
_	(0.040 ± 0.002)		
W	0.58±0.04		
VV	(0.023 ± 0.002)		
т	0.35 ± 0.05		
1	(0.014 ± 0.002)		

Α	0.20±0.05
A	(0.008 ± 0.002)
В	0.18±0.05
Ь	(0.007 ± 0.002)
S	0.05±0.05
3	(0.002 ± 0.002)

TERMINALS (Top View)

Recommended Pad Layout (mm)


PRODUCT SPECIFICATION

Directional Coupler Type CP0402A4596ELTR

P/N	FREQUENCY [Mhz]	COUPLING [dB]	I. Loss max. [dB]	R.Loss [dB]	Directivity [dB]
CP0402A4596ELTR	4596	-12.3±1	-0.8	-15 typ.	15 typ.

CP0402A4596ELTR

PRODUCT SPECIFICATION

CP0402 / CP0603 High Directivity Couplers Test Jigs

GENERAL DESCRIPTION

These jigs are designed for testing the CP0402 and CP0603 High Directivity Couplers using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50Ω microstrips as conducting lines and a bottom ground plane located at a distance of 0.254mm from the microstrips.

The substrate used is Neltec's NH9338ST0254C1BC.

The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841. Both a measurement jig and a calibration jig are provided.

The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50Ω SMA termination.

MEASUREMENT PROCEDURE

When measuring a component, it can be either soldered or pressed using a non-metallic stick until all four ports touch the appropriate pads. Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig terminal connected to port 2. Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port calibration in the required bandwidths.

Place the coupler on the measurement jig as follows:

Input (Coupler) → Connector 1 (Jig). Termination (Coupler) → Connector 3 (Jig). Output (Coupler) → Connector 2 (Jig). Coupling (Coupler) → Connector 4 (Jig).

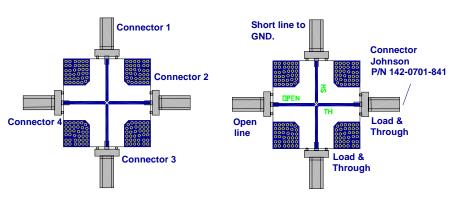
To measure I.Loss connect:

Connector1 (Jig) \rightarrow Port1 (VNA) Connector3 (Jig) \rightarrow 50 Ω Connector2 (Jig) \rightarrow Port2 (VNA) Connector4 (Jig) \rightarrow 50 Ω .

To measure R.Loss and Coupling connect:

Connector1 (Jig) \rightarrow Port1(VNA) Connector3 (Jig) \rightarrow 50 Ω

Connector2 (Jig) \rightarrow 50 Ω Connector4 (Jig) \rightarrow Port2 (VNA).


To measure Isolation connect:

Connector1 (Jig) \rightarrow 50 Ω Connector3 (Jig) \rightarrow 50 Ω

Connector2 (Jig) → Port1(VNA) Connector4 (Jig) → Port2 (VNA).

Measurement Jig

Calibration Jig

AVX Thin Film Operation

ITF Series

CP0402A4596ELTR Specification .doc

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kyocera AVX: CP0402A4596ELTR