
RF/Microwave Capacitors

RF/Microwave Multilayer Capacitors (MLC)

100B Series Porcelain Superchip® Multilayer Capacitors

GENERAL DESCRIPTION

KYOCERA AVX, the industry leader, offers new improved ESR/ESL performance for the 100 B Series RF/Microwave Capacitors. This Series is now available with extended operating temperatures up to 175°C. High Density porcelain construction provides a rugged, hermetic package.

FUNCTIONAL APPLICATIONS

- Bypass
- Impedance Matching
- Coupling
- DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- UHF/Microwave RF **Power Amplifiers**
- Oscillators
- Low Noise Amplifiers
- Filter Networks
- · Timing Circuits

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

FEATURES

- Case B Size (.110" x .110")
- Capacitance Range 0.1pF to 1000pF
- Extended WVDC up to 1500 VDC
- Low ESR/ESL
- · High Q
- · Low Noise
- · Ultra-Stable Performance
- · High Self-Resonance
- · Established Reliability (QPL)

PACKAGING OPTIONS

Tape & Reel

(100 pcs)

Orientation Tape & Reel

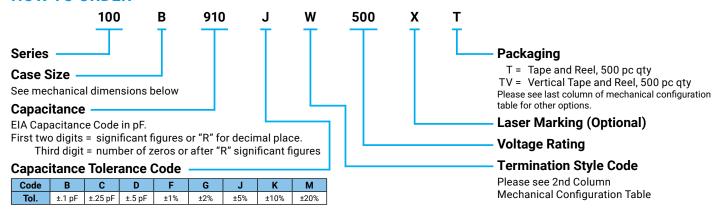
ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	+90 ±20 PPM/°C (-55°C to +125°C) +90 ±30 PPM/°C (+125°C to +175°C)					
Capacitance Range	0.1pF to 1000pF					
Operating Temperature	-55°C to +125°C*					
Quality Factor	greater than 10,000 at 1 MHz					
Insulation Resistance (IR)	0.1 pF to 470 pF: 10 ⁶ Megohms min. @ +25°C at rated WVDC. 10 ⁵ Megohms min. @ +125°C at rated WVDC. 510 pF to 1000 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.					
Working Voltage (WVDC)	See Capacitance Values table					
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds					
Aging Effects	None					
Piezoelectric Effects	None					
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater					
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.					

RF/Microwave Capacitors

RF/Microwave Multilayer Capacitors (MLC)

100B Series Porcelain Superchip® Multilayer Capacitors



CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Rated	WVDC	CAP.	CAP. (pF)	TOL.	RATED	WVDC
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	CODE	(pr)		STD.	EXT.
0R1	0.1	В			2R4	2.4				200	20				151	150			EXT.
0R2	0.2	ь		E	2R7	2.7			ш	220	22				161	160		300	EXI.
0R3	0.3	В, С		'AG	3R0	3.0			AG	240	24			Ж	181	180		300	1000
0R4	0.4	ь, с		EXTENDED VOLTAGE	3R3	3.3			EXTENDED VOLTAGE	270	27			VOLTAGE	201	200			VOLT.
0R5	0.5			\ \ \ \ \ \ \	3R6	3.6	В, С,		<u> </u>	300	30			.70	221	220			VOLI.
0R6	0.6			DEI	3R9	3.9	В, С, D		DEI	330	33			>	241	240			EXT.
0R7	0.7			EN	4R3	4.3			EN	360	36				271	270			LXI.
0R8	0.8			X	4R7	4.7			<u> </u>	390	39				301	300			
0R9	0.9			4	5R1	5.1			-	430	43		500	1500	331	330		200	600
1R0	1.0				5R6	5.6				470	47	F, G,		1000	361	360	F, G,		
1R1	1.1		500	1500	6R2	6.2		500	1500	510	51	J, K,			391	390	J, K,		VOLT.
1R2	1.2		000	1000	6R8	6.8	D 0		1000	560	56	M			431	430	M		
1R3	1.3	B, C,			7R5	7.5	B, C, J, K,			620	62			٩	471	470			EXT.
1R4	1.4	D		Ä	8R2	8.2	M		й	680	68			DE	511	510			
1R5	1.5			ZA G	9R1	9.1			ΡĀ	750	75			EXTENDED	561	560		100	
1R6	1.6			70	100	10			70	820	82			X	621	620			
1R7	1.7			0	110	11			2	910	91				681	680			300
1R8	1.8			DE	120	12	F, G, J,		DE	101	100				751	750			
1R9	1.9			Ë	130	13	K, M		Ē	111	110				821	820		50	
2R0	2.0			EXTENDED VOLTAGE	150	15			EXTENDED VOLTAGE	121	120		300		911	910			
2R1	2.1				160	16				131	130			1000	102	1000			VOLT
2R2	2.2				180	18													

VRMS = 0.707 X WVDC

HOW TO ORDER

The above part number refers to a 100 B Series (case size B) 91 pF capacitor,

J tolerance (±5%), 500 WVDC, with W termination (Tin /Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

[•] SPECIAL VALUES, TOLERANCES, DIFFERENT WVDC AND MATCHING AVAILABLE. • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100B Series Porcelain Superchip® Multilayer Capacitors

MECHANICAL CONFIGURATION

Series	I arm MII -DDL- Caca			Outline W/T is	Body inc	Lead and Termination Dimensions and Material							
& Case Size	Code	55681	& Type	a Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)		Material	s	Pkg Type	Pkg Code
100B	w	CDR14BG	B Solder Plate	Y→ ← ↓ <u>w</u> → L ← † → T ←	.110+ .02001 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)				Lead, Solder F kel Barrier Ter		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100B	Р	CDR14BG	B Pellet	Y→ ← ↓ <u>w</u>	.110+ .03501 (2.79 + 0.89-0.25)	.110 ±.015 (2.79 ±0.38) .102 (2.59) max. .110 ±.015 (2.79 ±0.38)	.015 (0.38)		eavy Tin/Lead Nickel Barrier T		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100	
100B	Т	N/A	B Solderable Nickel	Y→ ← ↓ w	.110+ .02001 (2.79 + 0.51-0.25)			±.010 (0.25)	Nic	RoHS Compl Tin Plated o kel Barrier Ter	ver	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100B	CA	CDR13BG	B Gold Chip	Y→ ← ↓ w → L ← ↑→ T ←	.110+.020010 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)			Nic	RoHS Compl Gold Plated o kel Barrier Ter	over	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100B	MS	CDR21BG	B Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.110 ±.015 (2.79 ±0.38)	.120 (3.05) max.	N/A	Length (L _L)	Width (W _L)	Thickness (T _L)	Cap Pac, 20 pcs	C20
100B	AR	CDR22BG	B Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.135 ±.015 (3.43 ±0.38)				.250 (6.35)	.093±.005 (2.36 ±0.13)	.004 ± .001 (.102±.025)	Box, 20 or 100 pcs	B20 or B100
100B	RR	CDR24BG	B Radial Ribbon				.102 (2.59) max.		min.			Box, 20 or 100 pcs	B20 or B100
100B	RW	CDR23BG	B Radial Wire	→ L ← → W ←	.145 ±.020				.500	#26 AWG.,		Box, 20 or 100 pcs	B20 or B100
100B	AW	CDR25BG	B Axial Wire	→ L ← W → T ←	(3.68 ±0.51)				(12.7)	.016 (.406) dia. nominal		Box, 20 or 100 pcs	B20 or B100

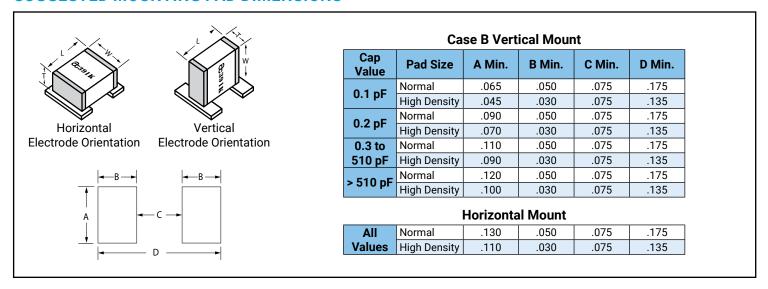
Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100B Series Porcelain Superchip® Multilayer Capacitors

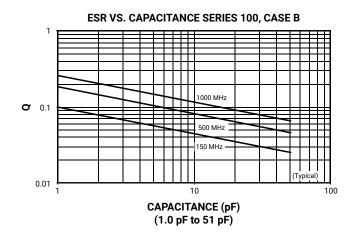
NON-MAGNETIC MECHANICAL CONFIGURATION

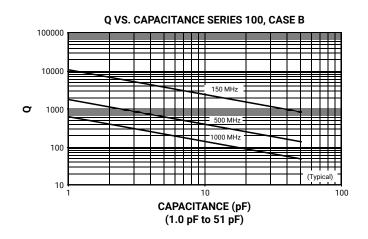
Series & Case	Term.	MIL-PRF-	Case Size	Outline W/T is a Termination		Dimensions thes (mm)				Termination and Materia	ıl	Pkg Type	Pkg Code
Size	Code	55681	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)		Materials			
100B	WN	Meets Requirements	B Non-Mag	Y→ ← ↓ <u>w</u>	.110+ .02001 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)				ead, Solder Pla el Barrier Termi		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100B	PN	Meets Requirements	B Solderable Nickel	Y→ ← ↓ <u>w</u> → L ← ↑→ T ←	.110+ .03501 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	.015 (0.38) ±.010 (0.25)	Heavy Tin / Lead, Coated over Non-Magnetic Barrier Termination			T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac,100 pcs	T1K or T TV1K or TV C100
100B	TN	Meets Requirements	B Non-Mag Solderable Barrier	Y→ ← ↓ <u>w</u> → L ← ↑ → T ←	.110+.020010 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)				RoHS Complia Tin Plated ove netic Barrier T	r	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs	T1K or T TV1K or TV C100
100B	MN	Meets Requirements	B Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)	Cap Pac, 20 pcs	C20
100B	AN	Meets Requirements	B Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid \stackrel{\iota}{\iota} \stackrel{\iota}{\iota} \mid \leftarrow \\ \hline \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \rightarrow \mid \stackrel{\iota}{\iota} \mid \leftarrow \\ \hline \end{array}$.135 ±.015 (3.43 ±0.38)			N/A			.004 ± .001 (.102±.025)	Box, 20 or 100 pcs	B20 or B100
100B	FN	Meets Requirements	B Radial Ribbon	$\begin{array}{c c} & & & \\ & \downarrow &$.110 ±.015 (2.79 ±0.38)	.102 (2.59)					Box, 20 or 100 pcs	B20 or B100
100B	RN	Meets Requirements	B Radial Wire	→ L ← → W ←	.145 ±.020		max.			#26 AWG., 2.7) .016 (.406) dia. nominal		Box, 20 or 100 pcs	B20 or B100
100B	BN	Meets Requirements	B Axial Wire	→ L ← ± w + → T ←	(3.68 ±0.51)				.500 (12.7)			Box, 20 or 100 pcs	B20 or B100

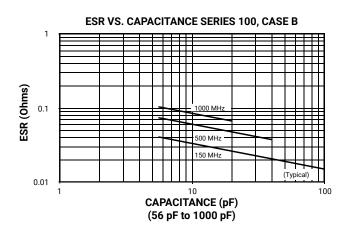
Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

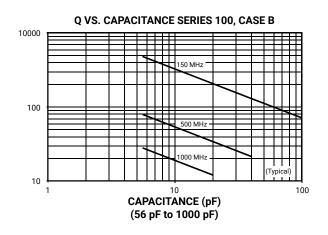

RF/Microwave Capacitors

RF/Microwave Multilayer Capacitors (MLC)

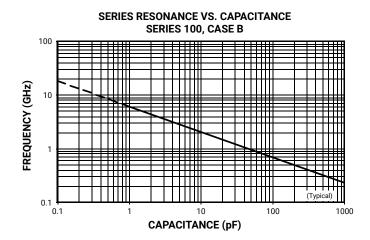

100B Series Porcelain Superchip® Multilayer Capacitors




SUGGESTED MOUNTING PAD DIMENSIONS

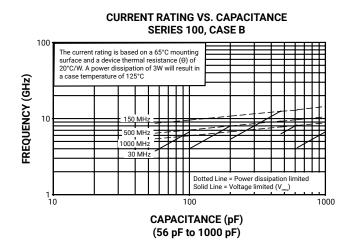


PERFORMANCE DATA



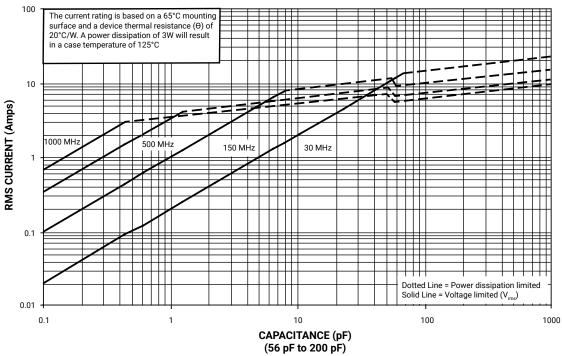
RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC)

100B Series Porcelain Superchip® Multilayer Capacitors



PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE SERIES 100, CASE B The current rating is based on a 65°C mounting surface and a device thermal resistance (θ) of RMS CURRENT (Amps) 20°C/W. A power dissipation of 3W will result in a case temperature of 125°C Solid Line = Voltage limited (V__) 1000 CAPACITANCE (pF) (0.1 pF to 51 pF)



RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100B Series Porcelain Superchip® Multilayer Capacitors

PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE SERIES 100, CASE B

DESIGN KITS

Kit #	RoHS Compliant	Item #	Description	Cap. Value Range (pF)	Cap. Value (pF) Tol. (pF)	Price
Kit 9		DK0009	100B Porcelain Superchip®,	0.1 to 2.0	10, 12, 15, 18, 20, 22, 24, 27, 30,	¢100.00
Kit 9T	ROHS	DK0009T	16 different values, 15 pcs. min. per value	0.1 to 2.0	33, 39, 47, 56, 68, 82, 100±5%	\$180.00
Kit 10		DK0010	100B Porcelain Superchip®,	10 to 27	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470±5%	\$180.00
Kit 10T	RoHS	DK0010T	16 different values, 15 pcs. min. per value	10 (0 27	560, 680, 820, 1000±5%	

For Online Kit Orders, Catalog & Application Notes, Visit: www.avx.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

KYOCERA AVX:

100B620JP500X 100B620JP500XTV 100B620JPN500X 100B620JT500X 100B620JT500XTV 100B620JTN1500X 100B620JTN1500XT 100B620JTN500X 100B620JTN500XT 100B620JW500T 100B620JW500X 100B620JW500XTV 100B620JWN500X 100B620JWN500XT 100B620KP500X 100B620KT500X 100B620KW500X 100B621FCA100X 100B621FP100X 100B621FPN100X 100B621FPN100XT 100B621FT100X 100B621FTN100X 100B621FTN100XT 100B621FW100X 100B621GMS100X 100B621GP100X 100B621GT100X 100B621GTN100X 100B621GW100X 100B621GW100XTV 100B621JMN100X 100B621JP100X 100B621JT100X 100B621JT100XTV 100B621JTN100X 100B621JTN100XT 100B621JTN300XT 100B621JW100X 100B621JWN100X 100B621JWN100XT 100B621KP100X 100B621KT100X 100B621KW100X 100B621KW300XT 100B621MCA100X 100B621MCA100XT 100B621MT100X 100B621MW100X 100B680FCA500X 100B680FMN1500X 100B680FMN500X 100B680FMS500X 100B680FP1500X 100B680FP500X 100B680FPN500X 100B680FPN500XT 100B680FT1500X 100B680FT500X 100B680FT500XTV 100B680FTN1500XT 100B680FTN500X 100B680FTN500XT 100B680FW1500XT 100B680FW500X 100B680FWN500X 100B680FWN500XT 100B680GMN500X 100B680GP500X 100B680GT500X 100B680GT500XTV 100B680GTN1500X 100B680GTN500X 100B680GTN500XT 100B680GWN1500XT 100B680GWN500X 100B680GWN500XT 100B680JAN500X 100B680JCA500X 100B680JMN500X 100B680JMS500X 100B680JP500XTV 100B680JPN500X 100B680JPN500XT 100B680JT500XTV 100B680JTN1500X 100B680JTN1500XT 100B680JTN500X 100B680JW500X 100B680JW500XTV 100B680JWN500X 100B680JWN500XT 100B680KCA500X 100B680KP500X 100B680KT500X 100B680KTN500X 100B680KTN500XT 100B680KW500X 100B680KWN500X 100B680KWN500XT