

# VNQ5027AK-E

Quad channel high side driver with analog current sense for automotive applications

### Features

| Max supply voltage                | $V_{CC}$          | 41V                 |
|-----------------------------------|-------------------|---------------------|
| Operating voltage range           | $V_{CC}$          | 4.5 to 36 V         |
| Max on-state resistance (per ch.) | R <sub>ON</sub>   | 27 mΩ               |
| Current limitation (typ)          | I <sub>LIMH</sub> | 42 A                |
| Off-state supply current          | ۱ <sub>S</sub>    | 2 µA <sup>(1)</sup> |

1. Typical value with all loads connected.

- Output current: 42A
- 3.0 V CMOS compatible input
- Current sense disable
- Proportional load current sense
- Undervoltage shut-down
- Overvoltage clamp
- Thermal shutdown
- Current and power limitation
- Very low standby current
- Protection against loss of ground and loss of Vcc
- Very low electromagnetic susceptibility
- Optimized electromagnetic emission
- Reverse battery protection (see Application schematic on page 20)
- In compliance with the 2002/95/EC European directive
- Package: ECOPACK<sup>®</sup>



### **Applications**

- All types of resistive, inductive and capacitive loads
- Suitable as LED driver

## Description

The VNQ5027AK-E is a monolithic device made using STMicroelectronics VIPower technology. It is intended for driving resistive or inductive loads with one side connected to ground. Active Vcc pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).

This device integrates an analog Current Sense which delivers a current proportional to the load current (according to a known ratio) when CS\_DIS is driven low or left open. When CS\_DIS is driven high, the CURRENT SENSE pin is in a high impedance condition. Output current limitation protects the device in overload condition. In case of long overload duration, the device limits the dissipated power to safe level up to thermal shut-down intervention.

Thermal shut-down with automatic restart allows the device to recover normal operation as soon as fault condition disappears.

#### Table 1. Device summary

| Package     | Order codes |               |  |
|-------------|-------------|---------------|--|
|             | Tube        | Tape and reel |  |
| PowerSSO-24 | VNQ5027AK-E | VNQ5027AKTR-E |  |

September 2013

Doc ID 12730 Rev 7

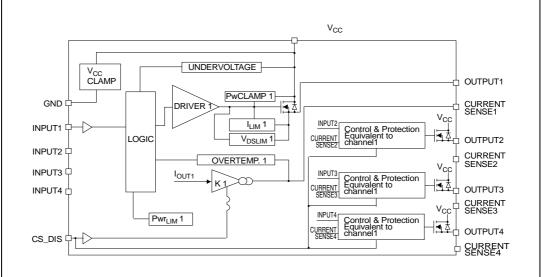
# Contents

| 1 | Bloc | diagram and pin configuration5                               |  |  |  |  |
|---|------|--------------------------------------------------------------|--|--|--|--|
| 2 | Elec | trical specifications7                                       |  |  |  |  |
|   | 2.1  | Absolute maximum ratings 7                                   |  |  |  |  |
|   | 2.2  | Thermal data                                                 |  |  |  |  |
|   | 2.3  | Electrical characteristics 9                                 |  |  |  |  |
|   | 2.4  | Electrical characteristics curves 17                         |  |  |  |  |
| 3 | App  | lication information                                         |  |  |  |  |
|   | 3.1  | GND protection network against reverse battery               |  |  |  |  |
|   |      | 3.1.1 Solution 1: resistor in the ground line (RGND only) 20 |  |  |  |  |
|   |      | 3.1.2 Solution 2: a diode (DGND) in the ground line          |  |  |  |  |
|   | 3.2  | Load dump protection                                         |  |  |  |  |
|   | 3.3  | MCU I/Os protection                                          |  |  |  |  |
|   | 3.4  | Maximum demagnetization energy (VCC = 13.5V) 23              |  |  |  |  |
| 4 | Pack | age and PC board thermal data 24                             |  |  |  |  |
|   | 4.1  | PowerSSO-24 <sup>™</sup> thermal data                        |  |  |  |  |
| 5 | Pack | age and packing information 27                               |  |  |  |  |
|   | 5.1  | ECOPACK® packages 27                                         |  |  |  |  |
|   | 5.2  | PowerSSO-24™ mechanical data                                 |  |  |  |  |
|   | 5.3  | Packing information                                          |  |  |  |  |
| 6 | Revi | sion history                                                 |  |  |  |  |



# List of tables

| Table 1.  | Device summary                                          | . 1 |
|-----------|---------------------------------------------------------|-----|
| Table 2.  | Pin functions                                           | . 5 |
| Table 3.  | Suggested connections for unused and not connected pins | . 6 |
| Table 4.  | Absolute maximum ratings                                | . 7 |
| Table 5.  | Thermal data                                            | . 8 |
| Table 6.  | Power section                                           | . 9 |
| Table 7.  | Switching (VCC=13V; Tj= 25°C)                           | . 9 |
| Table 8.  | Current Sense (8V <v<sub>CC&lt;16V)</v<sub>             | 10  |
| Table 9.  | Protection                                              |     |
| Table 10. | Logic input                                             | 12  |
| Table 11. | Truth table                                             | 15  |
| Table 12. | Electrical transient requirements (part 1/3)            | 15  |
| Table 13. | Electrical transient requirements (part 2/3)            | 16  |
| Table 14. | Electrical transient requirements (part 3/3)            | 16  |
| Table 15. | Thermal parameters                                      | 26  |
| Table 16. | PowerSSO-24 <sup>™</sup> mechanical data                | 28  |
| Table 17. | Document revision history                               | 30  |
|           |                                                         |     |




# List of figures

| Figure 1.  | Block diagram                                                                                |
|------------|----------------------------------------------------------------------------------------------|
| Figure 2.  | Configuration diagram (top view)                                                             |
| Figure 3.  | Current and voltage conventions7                                                             |
| Figure 4.  | Current sense delay characteristics                                                          |
| Figure 5.  | Delay response time between rising edge of output current and rising edge of Current Sense   |
|            | (CS enabled)                                                                                 |
| Figure 6.  | Switching characteristics                                                                    |
| Figure 7.  | I <sub>OUT</sub> /I <sub>SENSE</sub> vs I <sub>OUT</sub>                                     |
| Figure 8.  | Maximum current sense ratio drift vs load current                                            |
| Figure 9.  | Output voltage drop limitation                                                               |
| Figure 10. | Off-state output current                                                                     |
| Figure 11. | High level input current                                                                     |
| Figure 12. | Input clamp voltage                                                                          |
| Figure 13. | Input low level                                                                              |
| Figure 14. | Input high level                                                                             |
| Figure 15. | Input hysteresis voltage                                                                     |
| Figure 16. | On-state resistance vs T <sub>case</sub>                                                     |
| Figure 17. | On-state resistance vs V <sub>CC</sub>                                                       |
| Figure 18. | Undervoltage shutdown                                                                        |
| Figure 19. | Turn-on voltage slope                                                                        |
| Figure 20. | I <sub>LIMH</sub> vs T <sub>case</sub>                                                       |
| Figure 21. | Turn-off voltage slope                                                                       |
| Figure 22. | CS_DIS high level voltage                                                                    |
| Figure 23. | CS_DIS clamp voltage                                                                         |
| Figure 24. | CS_DIS low level voltage 19                                                                  |
| Figure 25. | Application schematic                                                                        |
| Figure 26. | Waveforms                                                                                    |
| Figure 27. | Maximum turn-off current versus inductance (for each channel)                                |
| Figure 28. | PowerSSO-24 <sup>™</sup> PC board                                                            |
| Figure 29. | Rthj-amb vs PCB copper area in open box free air condition (one channel ON) 24               |
| Figure 30. | PowerSSO-24 <sup>™</sup> thermal impedance junction ambient single pulse (one channel on) 25 |
| Figure 31. | Thermal fitting model of a double channel HSD in PowerSSO-24 <sup>™</sup>                    |
| Figure 32. | PowerSSO-24 <sup>™</sup> package dimensions                                                  |
| Figure 33. | PowerSSO-24 <sup>™</sup> tube shipment (no suffix)                                           |
| Figure 34. | PowerSSO-24 <sup>™</sup> tape and reel shipment (suffix "TR")                                |
|            |                                                                                              |



# **1** Block diagram and pin configuration



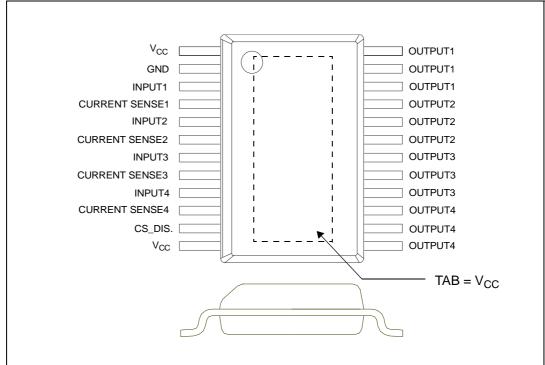
#### Figure 1. Block diagram

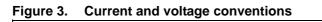


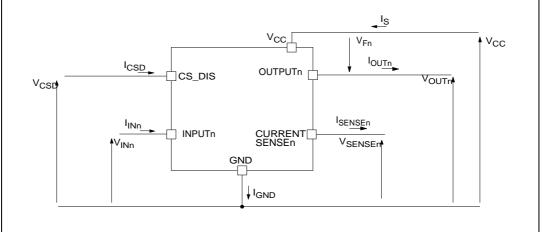
| Name                          | Function                                                                                      |
|-------------------------------|-----------------------------------------------------------------------------------------------|
| V <sub>CC</sub>               | Battery connection.                                                                           |
| OUTPUT <sub>n</sub>           | Power output.                                                                                 |
| GND                           | Ground connection. Must be reverse battery protected by an external diode / resistor network. |
| INPUT <sub>n</sub>            | Voltage controlled input pin with hysteresis, CMOS compatible. Controls output switch state.  |
| CURRENT<br>SENSE <sub>n</sub> | Analog current sense pin, delivers a current proportional to the load current.                |
| CS_DIS                        | Active high CMOS compatible pin to disable the current sense pin.                             |



Figure 2. Configuration diagram (top view)





Table 3. Suggested connections for unused and not connected pins


| Connection / pin | Current Sense            | N.C. | Output | Input                     | CS_DIS                    |
|------------------|--------------------------|------|--------|---------------------------|---------------------------|
| Floating         | N.R. <sup>(1)</sup>      | Х    | Х      | Х                         | Х                         |
| To ground        | Through 1 kΩ<br>resistor | Х    | N.R.   | Through 10 kΩ<br>resistor | Through 10 kΩ<br>resistor |

1. Not recommended.



# 2 Electrical specifications





Note:

 $V_{Fn} = V_{OUTn} - V_{CC}$  during reverse battery condition.

## 2.1 Absolute maximum ratings

Stressing the device above the ratings listed in the "Absolute maximum ratings" tables may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions in this section for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

| Symbol               | Parameter                                                                                                                                                                   | Value                                   | Unit   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| V <sub>CC</sub>      | DC supply voltage                                                                                                                                                           | 41                                      | V      |
| -V <sub>CC</sub>     | Reverse DC supply voltage                                                                                                                                                   | 0.3                                     | V      |
| - I <sub>GND</sub>   | DC reverse ground pin current                                                                                                                                               | 200                                     | mA     |
| I <sub>OUT</sub>     | DC output current                                                                                                                                                           | Internally limited                      | А      |
| - I <sub>OUT</sub>   | Reverse DC output current                                                                                                                                                   | 24                                      | Α      |
| I <sub>IN</sub>      | DC Input current                                                                                                                                                            | -1 to 10                                | mA     |
| I <sub>CSD</sub>     | DC Current Sense disable Input current                                                                                                                                      | -1 to 10                                | mA     |
| -I <sub>CSENSE</sub> | DC Reverse CS pin current                                                                                                                                                   | 200                                     | mA     |
| V <sub>CSENSE</sub>  | Current Sense maximum voltage                                                                                                                                               | V <sub>CC</sub> -41<br>+V <sub>CC</sub> | V<br>V |
| E <sub>MAX</sub>     | Maximum switching energy (single pulse)<br>(L=0.8 mH; R <sub>L</sub> =0Ω; V <sub>bat</sub> =13.5V; T <sub>jstart</sub> =150°C; I <sub>OUT</sub> = I <sub>limL</sub> (Typ.)) | 140                                     | mJ     |

 Table 4.
 Absolute maximum ratings



| Symbol           | Parameter                                                       | Value       | Unit |
|------------------|-----------------------------------------------------------------|-------------|------|
|                  | Electrostatic discharge<br>(human body model: R=1.5KΩ; C=100pF) |             |      |
|                  | – Input                                                         | 4000        | V    |
| V <sub>ESD</sub> | - Current sense                                                 | 2000        | V    |
|                  | – CS_DIS                                                        | 4000        | V    |
|                  | – Output                                                        | 5000        | V    |
|                  | - V <sub>CC</sub>                                               | 5000        | V    |
| V <sub>ESD</sub> | Charge device model (CDM-AEC-Q100-011)                          | 750         | V    |
| Тj               | Junction operating temperature                                  | - 40 to 150 | °C   |
| T <sub>stg</sub> | Storage temperature                                             | - 55 to 150 | °C   |

 Table 4.
 Absolute maximum ratings (continued)

## 2.2 Thermal data

#### Table 5. Thermal data

| Symbol                | Parameter                                              | Max value      | Unit |
|-----------------------|--------------------------------------------------------|----------------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case (with one channel ON) | 1.35           | °C/W |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient                    | See Figure 29. | °C/W |



# 2.3 Electrical characteristics

Values specified in this section are for 8 V<V  $_{CC}<$  36 V, -40 °C< T  $_j$  <150 °C, unless otherwise stated.

| Symbol               | Parameter                                                | Test conditions                                                                                                                                                               | Min. | Тур.             | Max.             | Unit           |
|----------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|------------------|----------------|
| V <sub>CC</sub>      | Operating supply voltage                                 |                                                                                                                                                                               | 4.5  | 13               | 36               | V              |
| V <sub>USD</sub>     | Undervoltage shutdown                                    |                                                                                                                                                                               |      | 3.5              | 4.5              | V              |
| V <sub>USDhyst</sub> | Undervoltage shut-down<br>hysteresis                     |                                                                                                                                                                               |      | 0.5              |                  | V              |
| R <sub>ON</sub>      | On-state resistance                                      | I <sub>OUT</sub> = 3A; T <sub>j</sub> = 25°C<br>I <sub>OUT</sub> = 3A; T <sub>j</sub> = 150°C<br>I <sub>OUT</sub> = 3A; V <sub>CC</sub> =5V; T <sub>j</sub> = 25°C            |      |                  | 27<br>54<br>37   | mΩ<br>mΩ<br>mΩ |
| V <sub>clamp</sub>   | Clamp voltage                                            | I <sub>S</sub> = 20 mA                                                                                                                                                        | 41   | 46               | 52               | V              |
| Is                   | Supply current                                           | Off-state; V <sub>CC</sub> =13V; T <sub>j</sub> =25°C;<br>V <sub>IN</sub> =V <sub>OUT</sub> =V <sub>SENSE</sub> =V <sub>CSD</sub> =0V                                         |      | 2 <sup>(1)</sup> | 5 <sup>(1)</sup> | μA             |
|                      |                                                          | On-state; V <sub>CC</sub> =13V; V <sub>IN</sub> =5V;<br>I <sub>OUT</sub> =0A                                                                                                  |      | 8                | 14               | mA             |
| I <sub>L(off)</sub>  | Off-state output current <sup>(2)</sup>                  | V <sub>IN</sub> =V <sub>OUT</sub> =0V; V <sub>CC</sub> =13V;<br>T <sub>j</sub> =25°C<br>V <sub>IN</sub> =V <sub>OUT</sub> =0V; V <sub>CC</sub> =13V;<br>T <sub>i</sub> =125°C | 0    | 0.01             | 3                | μA             |
|                      | Output Maria                                             | 1,-120 0                                                                                                                                                                      | 0    |                  | 5                |                |
| $V_{F}$              | Output - V <sub>CC</sub> diode<br>voltage <sup>(2)</sup> | -I <sub>OUT</sub> =3A; T <sub>j</sub> =150°C                                                                                                                                  |      |                  | 0.7              | V              |

| Table 6 | 5. | Power | section  |
|---------|----|-------|----------|
|         |    |       | 00001011 |

1. PowerMOS leakage included.

2. For each channel.

### Table 7.Switching (VCC=13V; Tj= 25°C)

| Symbol                                 | Parameter Test condition                            |                                             | Min. | Тур.                     | Max. | Unit |
|----------------------------------------|-----------------------------------------------------|---------------------------------------------|------|--------------------------|------|------|
| t <sub>d(on)</sub>                     | Turn-on delay time                                  | $R_L$ = 4.3 $\Omega$ (see <i>Figure</i> 6.) |      | 40                       |      | μs   |
| t <sub>d(off)</sub>                    | Turn-off delay time                                 | $R_L$ = 4.3 $\Omega$ (see <i>Figure</i> 6.) |      | 40                       |      | μs   |
| (dV <sub>OUT</sub> /dt) <sub>on</sub>  | Turn-on voltage slope                               | R <sub>L</sub> = 4.3Ω                       |      | See<br><i>Figure 19.</i> |      | V/µs |
| (dV <sub>OUT</sub> /dt) <sub>off</sub> | Turn-off voltage slope                              | R <sub>L</sub> = 4.3Ω                       |      | See<br>Figure 21.        |      | V/µs |
| W <sub>ON</sub>                        | Switching energy<br>losses during t <sub>won</sub>  | $R_L = 4.3\Omega$ (see <i>Figure 6</i> .)   |      | 0.2                      |      | mJ   |
| W <sub>OFF</sub>                       | Switching energy<br>losses during t <sub>woff</sub> | $R_L = 4.3\Omega$ (see <i>Figure 6</i> .)   |      | 0.3                      |      | mJ   |



| Symbol                                         | Parameter                                      | Test conditions                                                                                                                           | Min.         | Тур.         | Max.         | Unit |
|------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|------|
| K <sub>0</sub>                                 | I <sub>OUT</sub> /I <sub>SENSE</sub>           | I <sub>OUT</sub> = 0.5A;<br>V <sub>SENSE</sub> = 0.5 V; V <sub>CSD</sub> =0 V;<br>T <sub>j</sub> = -40°C150°C                             | 1680         | 2910         | 4120         |      |
| dK <sub>0</sub> /K <sub>0</sub> <sup>(1)</sup> | Current sense ratio drift                      | I <sub>OUT</sub> = 0.5A; V <sub>SENSE</sub> = 0.5V;<br>V <sub>CSD</sub> = 0V;<br>T <sub>J</sub> = -40 °C to 150 °C                        | -12          |              | 12           | %    |
| K <sub>1</sub>                                 | I <sub>OUT</sub> /I <sub>SENSE</sub>           | I <sub>OUT</sub> = 2A;<br>V <sub>SENSE</sub> = 4 V; V <sub>CSD</sub> =0 V;<br>T <sub>j</sub> = -40°C150°C<br>T <sub>j</sub> = 25°C150°C   | 2050<br>2190 | 2700<br>2700 | 3410<br>3210 |      |
| dK <sub>1</sub> /K <sub>1</sub> <sup>(1)</sup> | Current sense ratio drift                      | I <sub>OUT</sub> = 2A; V <sub>SENSE</sub> = 4V;<br>V <sub>CSD</sub> = 0V;<br>T <sub>J</sub> = -40 °C to 150 °C                            | -10          |              | 10           | %    |
| K <sub>2</sub>                                 | I <sub>OUT</sub> /I <sub>SENSE</sub>           | I <sub>OUT</sub> = 3A;<br>V <sub>SENSE</sub> = 4 V; V <sub>CSD</sub> =0 V;<br>T <sub>j</sub> = -40°C150°C<br>T <sub>j</sub> = 25°C150°C   | 2260<br>2350 | 2690<br>2690 | 3160<br>3030 |      |
| dK <sub>2</sub> /K <sub>2</sub> <sup>(1)</sup> | Current sense ratio drift                      | I <sub>OUT</sub> = 3A; V <sub>SENSE</sub> = 4V;<br>V <sub>CSD</sub> = 0V;<br>T <sub>J</sub> = -40 °C to 150 °C                            | -7           |              | 7            | %    |
| K <sub>3</sub>                                 | I <sub>OUT</sub> / I <sub>SENSE</sub>          | I <sub>OUT</sub> = 10A;<br>V <sub>SENSE</sub> = 4 V; V <sub>CSD</sub> = 0 V;<br>T <sub>j</sub> = -40°C150°C<br>T <sub>j</sub> = 25°C150°C | 2490<br>2590 | 2700<br>2700 | 2870<br>2800 |      |
| dK <sub>3</sub> /K <sub>3</sub> <sup>(1)</sup> | Current sense ratio drift                      | I <sub>OUT</sub> = 10A; V <sub>SENSE</sub> = 4 V;<br>V <sub>CSD</sub> = 0V;<br>T <sub>J</sub> = -40 °C to 150 °C                          | -4           |              | 4            | %    |
|                                                |                                                | $I_{OUT}$ = 0A; V <sub>SENSE</sub> = 0V;<br>V <sub>CSD</sub> = 5V; V <sub>IN</sub> = 0V;<br>T <sub>j</sub> = -40°C150°C                   | 0            |              | 1            | μΑ   |
| I <sub>SENSE0</sub>                            | Analog sense leakage current                   | V <sub>CSD</sub> = 0V; V <sub>IN</sub> = 5V;<br>T <sub>j</sub> = -40°C150°C                                                               | 0            |              | 2            | μA   |
|                                                |                                                | I <sub>OUT</sub> = 2A; V <sub>SENSE</sub> = 0V;<br>V <sub>CSD</sub> = 5V; V <sub>IN</sub> = 5V;<br>T <sub>j</sub> = -40°C150°C            | 0            |              | 1            | μΑ   |
| I <sub>OL</sub>                                | open load on-state current detection threshold | V <sub>IN</sub> = 5V, I <sub>SENSE</sub> = 5 µA                                                                                           | 5            |              | 30           | mA   |
| V <sub>SENSE</sub>                             | Max analog sense<br>output voltage             | I <sub>OUT</sub> = 3A; V <sub>CSD</sub> = 0V                                                                                              | 5            |              |              | V    |

Table 8.Current Sense (8V<V<sub>CC</sub><16V)</th>



| Symbol                | Parameter                                                                                           | Test conditions                                                                                                                                                                   | Min. | Тур. | Max. | Unit |
|-----------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>SENSEH</sub>   | Analog sense output voltage in over temperature condition                                           | V <sub>CC</sub> = 13V; R <sub>SENSE</sub> = 3.9KΩ                                                                                                                                 |      | 9    |      | V    |
| I <sub>SENSEH</sub>   | Analog sense output current in over temperature condition                                           | V <sub>CC</sub> = 13V; V <sub>SENSE</sub> = 5V                                                                                                                                    |      | 8    |      | mA   |
| t <sub>DSENSE1H</sub> | Delay response time from falling edge of CS_DIS pin                                                 | V <sub>SENSE</sub> <4V, 0.5A <lout<10a<br>I<sub>SENSE</sub>= 90% of I<sub>SENSE max</sub><br/>(see <i>Figure 4</i>.)</lout<10a<br>                                                |      | 50   | 100  | μs   |
| t <sub>DSENSE1L</sub> | Delay response time from<br>rising edge of CS_DIS pin                                               | V <sub>SENSE</sub> <4V, 0.5A <lout<10a<br>I<sub>SENSE</sub>=10% of I<sub>SENSE max</sub><br/>(see <i>Figure 4</i>.)</lout<10a<br>                                                 |      | 5    | 20   | μs   |
| t <sub>DSENSE2H</sub> | Delay response time from rising edge of INPUT pin                                                   | V <sub>SENSE</sub> <4V, 0.5A <lout<10a<br>I<sub>SENSE</sub>=90% of I<sub>SENSE max</sub><br/>(see <i>Figure 4</i>.)</lout<10a<br>                                                 |      | 70   | 300  | μs   |
| $\Delta t_{DSENSE2H}$ | Delay response time between<br>rising edge of output current<br>and rising edge of current<br>sense | V <sub>SENSE</sub> < 4V,<br>I <sub>SENSE</sub> = 90% of I <sub>SENSEMAX,</sub><br>I <sub>OUT</sub> = 90% of I <sub>OUTMAX</sub><br>I <sub>OUTMAX</sub> =2A (see <i>Figure 5</i> ) |      |      | 200  | □□µs |
| t <sub>DSENSE2L</sub> | Delay response time from<br>falling edge of input pin                                               | V <sub>SENSE</sub> <4V, 0.5A <lout<10a<br>I<sub>SENSE</sub>=10% of I<sub>SENSE max</sub><br/>(see <i>Figure 4</i>.)</lout<10a<br>                                                 |      | 100  | 250  | μs   |

Current Sense (8V<V<sub>CC</sub><16V) (continued) Table 8.

1. Parameter guaranteed by design; it is not tested.

 $T_{RS}$ 

T<sub>HYST</sub>

 $V_{\mathsf{DEMAG}}$ 

VON

|                   | rocouon                                         |                                                                         |                     |                     |
|-------------------|-------------------------------------------------|-------------------------------------------------------------------------|---------------------|---------------------|
| Symbol            | Parameter                                       | Test conditions                                                         | Min.                | Тур.                |
| I <sub>limH</sub> | DC short circuit current                        | V <sub>CC</sub> =13V<br>5V <v<sub>CC&lt;36V</v<sub>                     | 29                  | 42                  |
| l <sub>limL</sub> | Short circuit current<br>during thermal cycling | V <sub>CC</sub> =13V; T <sub>R</sub> <t<sub>j<t<sub>TSD</t<sub></t<sub> |                     | 16                  |
| T <sub>TSD</sub>  | Shutdown temperature                            |                                                                         | 150                 | 175                 |
| Τ <sub>R</sub>    | Reset temperature                               |                                                                         | T <sub>RS</sub> + 1 | T <sub>RS</sub> + 5 |
| т                 | Thermal reset of                                |                                                                         | 125                 |                     |

#### Protection<sup>(1)</sup> Table 9.

STATUS

 $(T_{TSD}-T_R)$ 

clamp

limitation

Thermal hysteresis

Turn-off output voltage

Output voltage drop

| 1. | To ensure long term reliability under heavy overload or short circuit conditions, protection and related |
|----|----------------------------------------------------------------------------------------------------------|
|    | diagnostic signals must be used together with a proper software strategy. If the device is subjected to  |
|    | abnormal conditions, this software must limit the duration and number of activation cycles.              |

I<sub>OUT</sub>= 2A; V<sub>IN</sub>=0; L=6mH

I<sub>OUT</sub>=0.2A; T<sub>j</sub>=-40°C...150°C



(see *Figure 9*.)

Max.

59

59

200

7

25

V<sub>CC</sub>-46 V<sub>CC</sub>-52

135

V<sub>CC</sub>-41

Unit

А

А

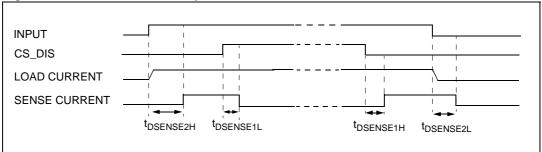
А

°C

°C

°C

°C


V

mV

| Symbol                 | Parameter                 | Test conditions                                   | Test conditions Min. Typ. |      | Max. | Unit   |
|------------------------|---------------------------|---------------------------------------------------|---------------------------|------|------|--------|
| V <sub>IL</sub>        | Input low level voltage   |                                                   |                           |      | 0.9  | V      |
| ۱ <sub>IL</sub>        | Low level input current   | V <sub>IN</sub> = 0.9V                            | 1                         |      |      | μA     |
| V <sub>IH</sub>        | Input high level voltage  |                                                   | 2.1                       |      |      | V      |
| I <sub>IH</sub>        | High level input current  | V <sub>IN</sub> = 2.1V                            |                           |      | 10   | μA     |
| V <sub>I(hyst)</sub>   | Input hysteresis voltage  |                                                   | 0.25                      |      |      | V      |
| V <sub>ICL</sub>       | Input clamp voltage       | I <sub>IN</sub> = 1mA<br>I <sub>IN</sub> = -1mA   | 5.5                       | -0.7 | 7    | V<br>V |
| V <sub>CSDL</sub>      | CS_DIS low level voltage  |                                                   |                           |      | 0.9  | V      |
| I <sub>CSDL</sub>      | Low level CS_DIS current  | V <sub>CSD</sub> =0.9V                            | 1                         |      |      | μA     |
| V <sub>CSDH</sub>      | CS_DIS high level voltage |                                                   | 2.1                       |      |      | V      |
| I <sub>CSDH</sub>      | High level CS_DIS current | V <sub>CSD</sub> =2.1V                            |                           |      | 10   | μA     |
| V <sub>CSD(hyst)</sub> | CS_DIS hysteresis voltage |                                                   | 0.25                      |      |      | V      |
| V <sub>CSCL</sub>      | CS_DIS clamp voltage      | I <sub>CSD</sub> = 1mA<br>I <sub>CSD</sub> = -1mA | 5.5                       | -0.7 | 7    | V<br>V |

| Table 10. | Logic input |
|-----------|-------------|

#### Figure 4. Current sense delay characteristics



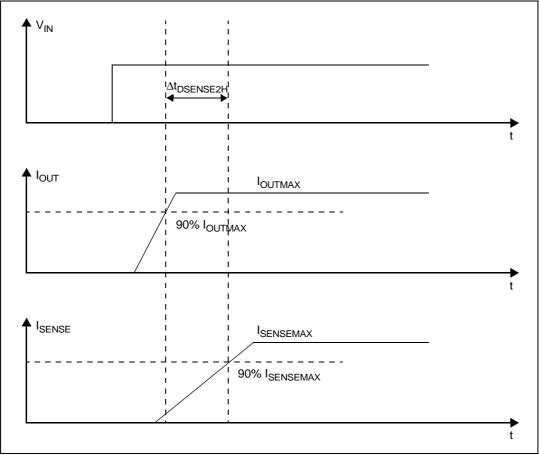
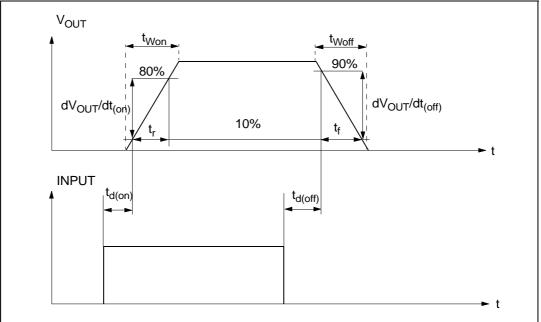




Figure 5. Delay response time between rising edge of output current and rising edge of Current Sense (CS enabled)

Figure 6. Switching characteristics





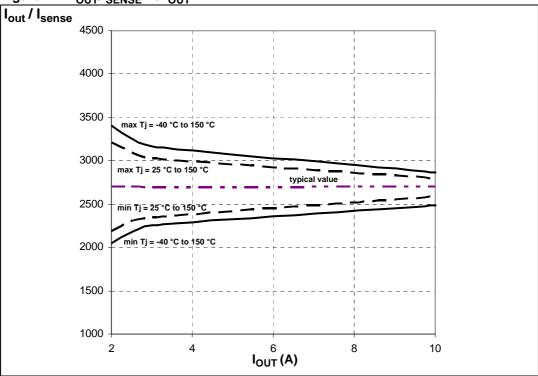
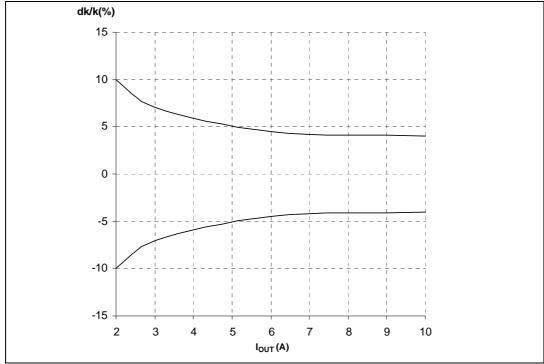



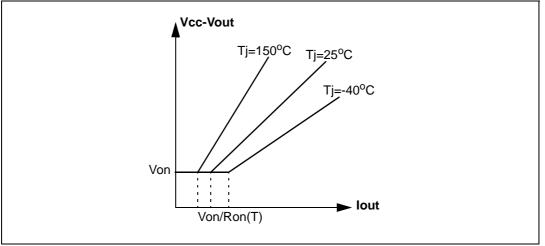

Figure 7. I<sub>OUT</sub>/I<sub>SENSE</sub> vs I<sub>OUT</sub>

Figure 8. Maximum current sense ratio drift vs load current



Note:

Parameter guaranteed by design; it is not tested.




#### Table 11. Truth table

| Conditions                                             | Input       | Output      | Sense (V <sub>CSD</sub> =0V) <sup>(1)</sup>                                                             |
|--------------------------------------------------------|-------------|-------------|---------------------------------------------------------------------------------------------------------|
| Normal operation                                       | L           | L           | 0<br>Nominal                                                                                            |
|                                                        |             |             | Nominai                                                                                                 |
| Overtemperature                                        | H           | L           | U<br>V <sub>SENSEH</sub>                                                                                |
| Undervoltage                                           | L<br>H      | L           | 0<br>0                                                                                                  |
| Short circuit to GND $(R_{sc} \le 10 \text{ m}\Omega)$ | L<br>H<br>H | L<br>L<br>L | 0<br>0 if T <sub>j</sub> < T <sub>TSD</sub><br>V <sub>SENSEH</sub> if T <sub>j</sub> > T <sub>TSD</sub> |
| Short circuit to $V_{CC}$                              | L<br>H      | H<br>H      | 0<br>< Nominal                                                                                          |
| Negative output voltage clamp                          | L           | L           | 0                                                                                                       |

1. If the V<sub>CSD</sub> is high, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit.

#### Figure 9. Output voltage drop limitation



| Table 12. | Electrical | transient | requirements | (part 1/3) |
|-----------|------------|-----------|--------------|------------|
|-----------|------------|-----------|--------------|------------|

| ISO 7637-2:<br>2004(E) | Test   | levels | Number of               | Burst cy  | t cycle/pulse Delays an<br>etition time Impedance |              |
|------------------------|--------|--------|-------------------------|-----------|---------------------------------------------------|--------------|
| test pulse             | =      | IV     | pulses or<br>test times | repetitio |                                                   |              |
| 1                      | -75 V  | -100 V | 5000 pulses             | 0.5 s     | 5 s                                               | 2 ms, 10 Ω   |
| 2a                     | +37 V  | +50 V  | 5000 pulses             | 0.2 s     | 5 s                                               | 50 μs, 2 Ω   |
| 3a                     | -100 V | -150 V | 1h                      | 90 ms     | 100 ms                                            | 0.1 μs, 50 Ω |
| 3b                     | +75 V  | +100 V | 1h                      | 90 ms     | 100 ms                                            | 0.1 μs, 50 Ω |



| ISO 7637-2:<br>2004(E) | Test  | levels | Number of               | Burst cycle/pulse | Delays and     |
|------------------------|-------|--------|-------------------------|-------------------|----------------|
| test pulse             | Ш     | IV     | pulses or<br>test times | repetition time   | Impedance      |
| 4                      | -6 V  | -7 V   | 1 pulse                 |                   | 100 ms, 0.01 Ω |
| 5b <sup>(2)</sup>      | +65 V | +87 V  | 1 pulse                 |                   | 400 ms, 2 Ω    |

 Table 12.
 Electrical transient requirements (part 1/3) (continued)

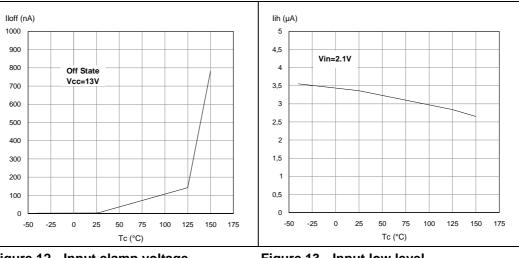
### Table 13. Electrical transient requirements (part 2/3)

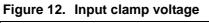
| ISO 7637-2:<br>2004(E) | Test level results <sup>(1)</sup> |    |  |
|------------------------|-----------------------------------|----|--|
| test pulse             | Ш                                 | IV |  |
| 1                      | С                                 | С  |  |
| 2a                     | С                                 | С  |  |
| 3a                     | С                                 | C  |  |
| 3b                     | С                                 | C  |  |
| 4                      | С                                 | С  |  |
| 5b <sup>(2)</sup>      | С                                 | С  |  |

1. The above test levels must be considered referred to Vcc = 13.5V except for pulse 5b.

2. Valid in case of external load dump clamp: 40V maximum referred to ground.

#### Table 14. Electrical transient requirements (part 3/3)


| Class | Contents                                                                                                                                                                 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С     | All functions of the device are performed as designed after exposure to disturbance.                                                                                     |
| E     | One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. |




#### 2.4 **Electrical characteristics curves**

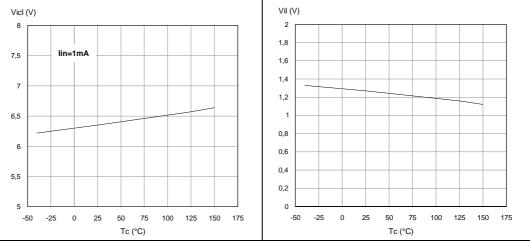
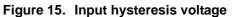
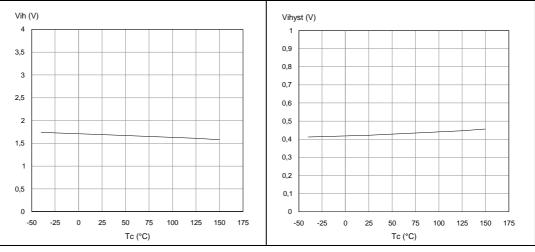



Figure 11. High level input current















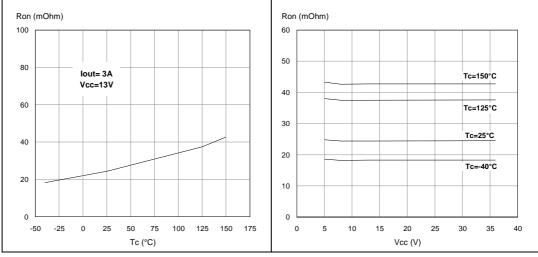
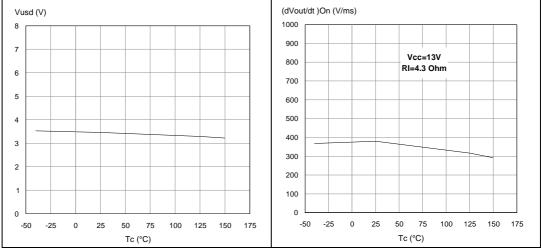
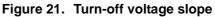





Figure 16. On-state resistance vs T<sub>case</sub>



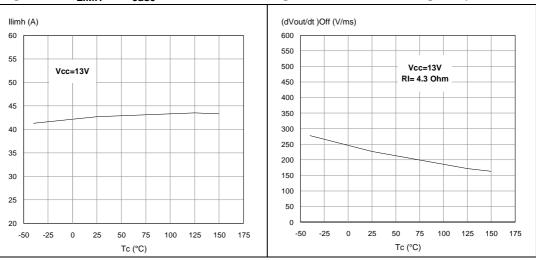
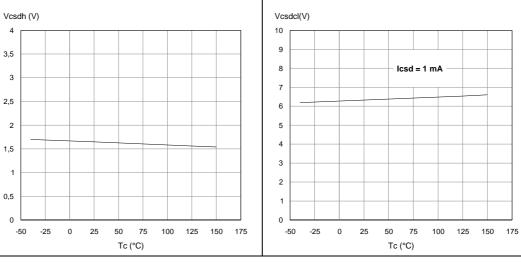



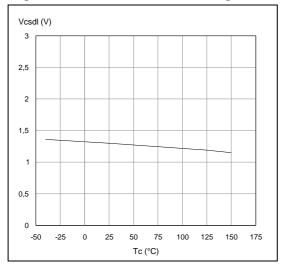

Figure 19. Turn-on voltage slope





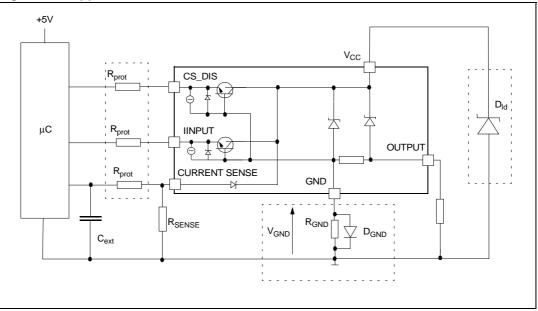















# 3 Application information





Note: Channel 2, 3, 4 have the same internal circuit as channel 1.

## 3.1 GND protection network against reverse battery

### 3.1.1 Solution 1: resistor in the ground line (R<sub>GND</sub> only)

This can be used with any type of load.

The following is an indication on how to dimension the  $\mathsf{R}_{\mathsf{GND}}$  resistor.

- 1.  $R_{GND} \leq 600 \text{mV} / (I_{S(on)max}).$
- 2.  $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where  $\mathsf{-I}_{\text{GND}}$  is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power Dissipation in  $R_{GND}$  (when  $V_{CC}$ <0: during reverse battery situations) is:

 $P_{\rm D} = (-V_{\rm CC})^2 / R_{\rm GND}$ 

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where  $I_{S(on)max}$  becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the  $R_{GND}$  will produce a shift ( $I_{S(on)max} * R_{GND}$ ) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same  $R_{GND}$ .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (see below).



### 3.1.2 Solution 2: a diode (D<sub>GND</sub>) in the ground line

A resistor ( $R_{GND}$ = 1k $\Omega$ ) should be inserted in parallel to  $D_{GND}$  if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift ( $\approx$ 600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

### 3.2 Load dump protection

 $D_{ld}$  is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the  $V_{CC}$  max DC rating. The same applies if the device is subject to transients on the  $V_{CC}$  line that are greater than the ones shown in the ISO T/R 7637/1 table.

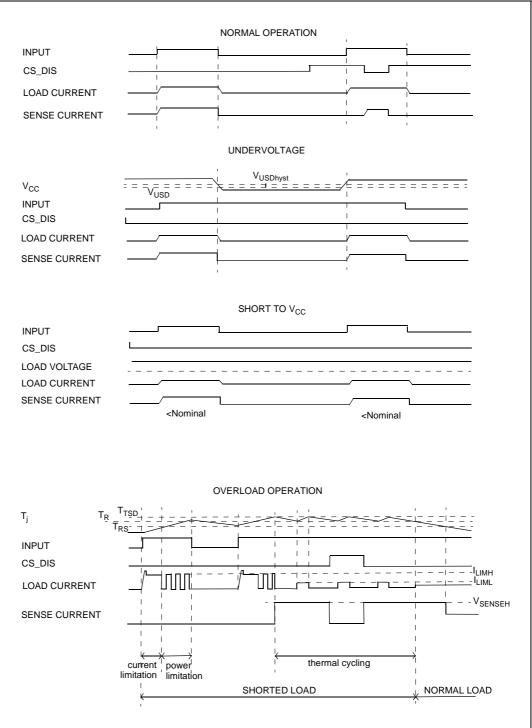
### 3.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the  $V_{CC}$  line, the control pins will be pulled negative. ST suggests to insert a resistor ( $R_{prot}$ ) in line to prevent the  $\mu$ C I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of  $\mu$ C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of  $\mu$ C I/Os.

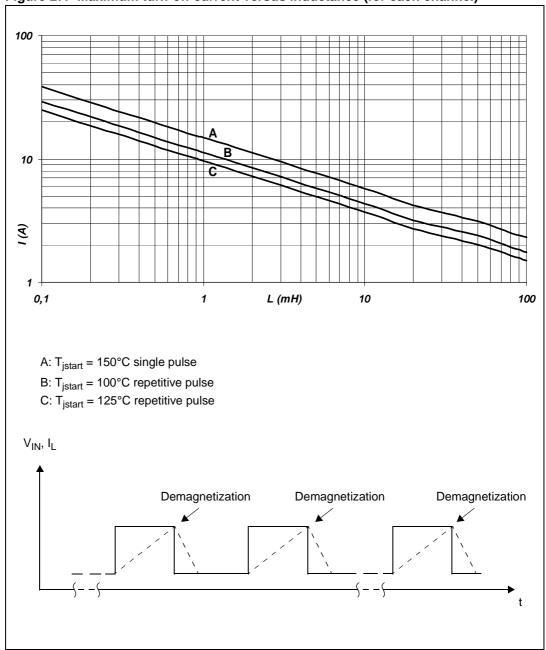
 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$ 

Calculation example:


For V<sub>CCpeak</sub>= - 100V and I<sub>latchup</sub>  $\ge$  20mA; V<sub>OHµC</sub>  $\ge$  4.5V

 $5k\Omega \le R_{prot} \le 180k\Omega$ .

Recommended values:  $R_{prot} = 10k\Omega$ ,  $C_{EXT} = 10nF$ .




#### Figure 26. Waveforms



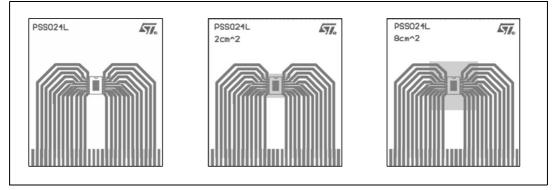


# 3.4 Maximum demagnetization energy (V<sub>CC</sub> = 13.5V)



#### Figure 27. Maximum turn-off current versus inductance (for each channel)

Note: Values are generated with  $R_L = 0\Omega$ .


In case of repetitive pulses,  $T_{jstart}$  (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.



# 4 Package and PC board thermal data

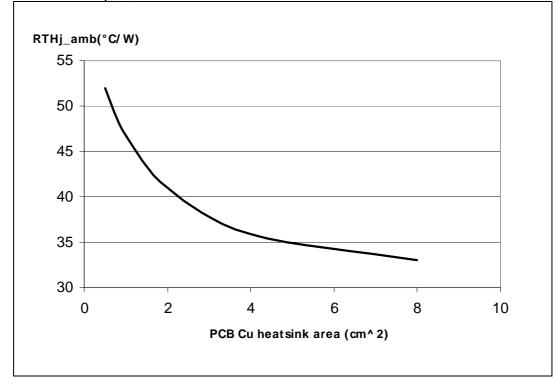

### 4.1 PowerSSO-24<sup>™</sup> thermal data

Figure 28. PowerSSO-24<sup>™</sup> PC board



Note: Layout condition of  $R_{th}$  and  $Z_{th}$  measurements (PCB: Double layer, Thermal Vias, FR4 area= 77mm x 86mm, PCB thickness=1.6mm, Cu thickness=70µm (front and back side), Copper areas: from minimum pad lay-out to 8cm<sup>2</sup>).

Figure 29. R<sub>thj-amb</sub> vs PCB copper area in open box free air condition (one channel ON)





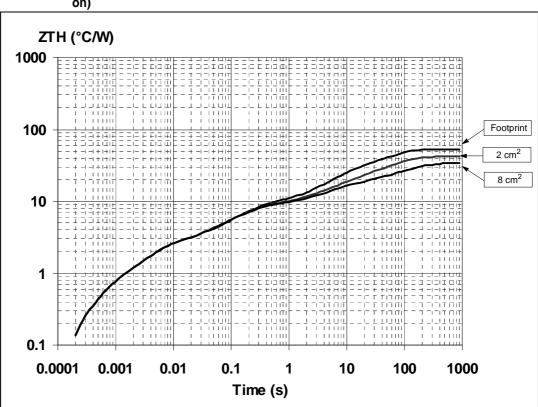



Figure 30. PowerSSO-24<sup>™</sup> thermal impedance junction ambient single pulse (one channel on)

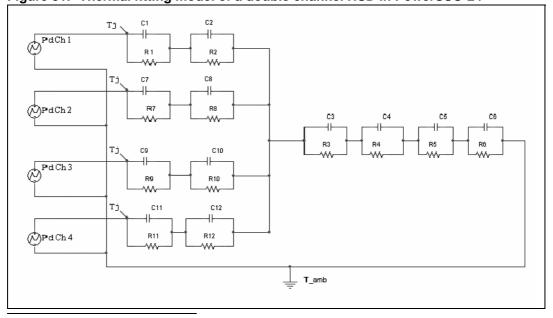



Figure 31. Thermal fitting model of a double channel HSD in PowerSSO-24<sup>™</sup> <sup>(a)</sup>

a. The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.



# Equation 1: pulse calculation formula $Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp}(1 - \delta)$

where  $\delta = t_p / T$ 

| Table 15.         Thermal parameters |
|--------------------------------------|
|--------------------------------------|

| Area/island (cm <sup>2</sup> ) | Footprint | 2  | 8  |
|--------------------------------|-----------|----|----|
| R1=R7=R9=R11 (°C/W)            | 0.28      |    |    |
| R2=R8=R10=R12 (°C/W)           | 0.9       |    |    |
| R3 (°C/W)                      | 6         |    |    |
| R4 (°C/W)                      | 7.7       |    |    |
| R5 (°C/W)                      | 9         | 9  | 8  |
| R6 (°C/W)                      | 28        | 17 | 10 |
| C1=C7=C9=C11 (W.s/°C)          | 0.001     |    |    |
| C2=C8=C10=C12 (W.s/°C)         | 0.003     |    |    |
| C3 (W.s/°C)                    | 0.025     |    |    |
| C4 (W.s/°C)                    | 0.75      |    |    |
| C5 (W.s/°C)                    | 1         | 4  | 9  |
| C6 (W.s/°C)                    | 2.2       | 5  | 17 |

# 5 Package and packing information

# 5.1 ECOPACK<sup>®</sup> packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: <u>www.st.com</u>.

 $\mathsf{ECOPACK}^{\mathbb{R}}$  is an ST trademark.

# 5.2 PowerSSO-24<sup>™</sup> mechanical data

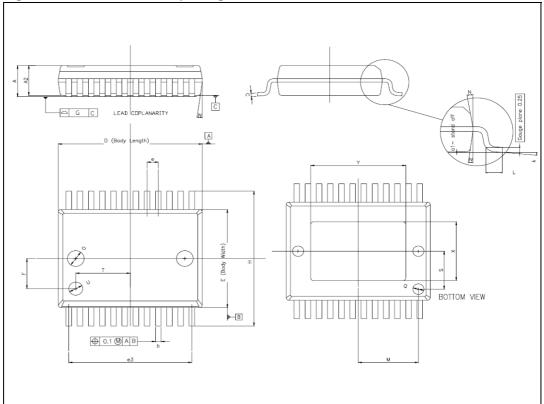
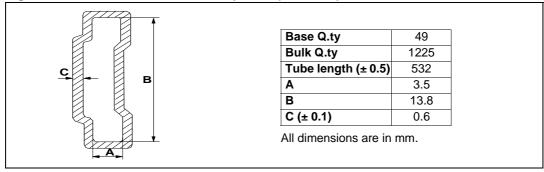
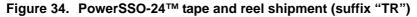
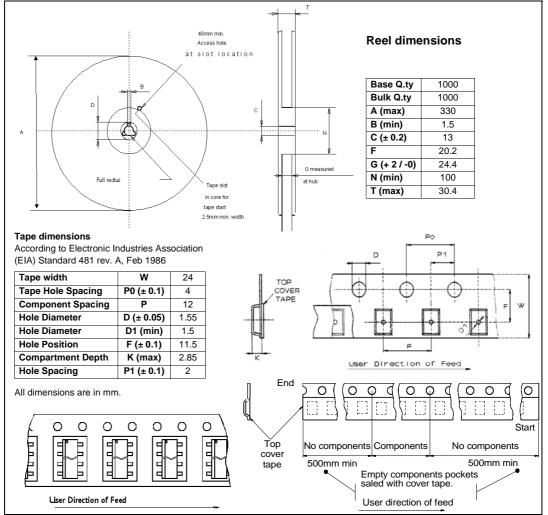



Figure 32. PowerSSO-24<sup>™</sup> package dimensions




| Complete | Millimeters |      |       |
|----------|-------------|------|-------|
| Symbol   | Min         | Тур  | Мах   |
| А        |             |      | 2.45  |
| A2       | 2.15        |      | 2.35  |
| a1       | 0           |      | 0.1   |
| b        | 0.33        |      | 0.51  |
| С        | 0.23        |      | 0.32  |
| D        | 10.10       |      | 10.50 |
| E        | 7.4         |      | 7.6   |
| е        |             | 0.8  |       |
| e3       |             | 8.8  |       |
| F        |             | 2.3  |       |
| G        |             |      | 0.1   |
| Н        | 10.1        |      | 10.5  |
| h        |             |      | 0.4   |
| k        | 0°          |      | 8°    |
| L        | 0.55        |      | 0.85  |
| 0        |             | 1.2  |       |
| Q        |             | 0.8  |       |
| S        |             | 2.9  |       |
| Т        |             | 3.65 |       |
| U        |             | 1.0  |       |
| Ν        |             |      | 10°   |
| Х        | 4.1         |      | 4.7   |
| Y        | 6.5         |      | 7.1   |


 Table 16.
 PowerSSO-24™ mechanical data




### 5.3 Packing information

#### Figure 33. PowerSSO-24<sup>™</sup> tube shipment (no suffix)









# 6 Revision history

| Table 17. Document | revision history |
|--------------------|------------------|
|--------------------|------------------|

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17-Nov-2006 | 1        | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18-Dec-2007 | 2        | Table 4: Absolute maximum ratings: $E_{MAX}$ max value changed from82 to 140 mJ.Updated Table 8: Current Sense ( $8V < V_{CC} < 16V$ ):- added dK <sub>0</sub> /K <sub>0</sub> parameter- added dK <sub>1</sub> parameter- added dK <sub>1</sub> /K <sub>1</sub> parameter- added dK <sub>2</sub> /K <sub>2</sub> parameter- added dK <sub>3</sub> /K <sub>3</sub> parameter- added $\Delta t_{DSENSE2H}$ parameter- added $A_{tDSENSE2H}$ parameter- added $I_{OL}$ parameter- added $I_{OL}$ parameterAdded Figure 5: Delay response time between rising edge of output<br>current and rising edge of Current Sense (CS enabled).Added Figure 7: $I_{OUT}/I_{SENSE}$ vs $I_{OUT}$ Added Section 2.4: Electrical characteristics curves.Added Section 3.4: Maximum demagnetization energy<br>( $VCC = 13.5V$ ).Figure 31: Thermal fitting model of a double channel HSD in<br>PowerSSO-24 <sup>TM</sup> : added note.Added ECOPACK® packages information.Update Section 5.2: PowerSSO-24 <sup>TM</sup> mechanical data. |
| 12-Feb-2008 | 3        | Corrected typing error in <i>Table 8: Current Sense (8V<v<sub>CC&lt;16V)</v<sub></i> : changed $I_{OL}$ test condition from $V_{IN} = 0V$ to $V_{IN} = 5V$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10-Apr-2008 | 4        | Corrected Figure 27: Maximum turn-off current versus inductance (for each channel).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19-Jun-2009 | 5        | Table 16: PowerSSO-24™ mechanical data:– Deleted A (min) value– Changed A (max) value from 2.47 to 2.45– Changed A2 (max) value from 2.40 to 2.35– Changed a1 (max) value from 0.075 to 0.1– Added F row– Updated k row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22-Jul-2009 | 6        | Updated Figure 32: PowerSSO-24 <sup>™</sup> package dimensions.<br>Updated Table 16: PowerSSO-24 <sup>™</sup> mechanical data:<br>- Deleted G1 row<br>- Added O, Q, S, T and U rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20-Sep-2013 | 7        | Updated disclaimer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



Doc ID 12730 Rev 7

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: VNQ5027AKTR-E VNQ5027AK-E